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Abstract. We study the asymptotic behavior, as the mesh size ε tends to zero, of a general
class of discrete energies defined on functions u : α ∈ εZN ∩ Ω �→ u(α) ∈ R

d of the form

Fε(u) =
∑

α,β∈εZ
N

[α,β]⊂Ω

gε(α, β, u(α) − u(β))

and satisfying superlinear growth conditions. We show that all the possible variational limits are
defined on W 1,p(Ω; R

d) of the local type ∫
Ω

f(x,∇u) dx.

We show that, in general, f may be a quasi-convex nonconvex function even if very simple interactions
are considered. We also treat the case of homogenization, giving a general asymptotic formula that
can be simplified in many situations (e.g., in the case of nearest neighbor interactions or under
convexity hypotheses).
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1. Introduction. The energetic description of the asymptotic behavior of lattice
systems when the mesh size tends to zero turns out to be useful both as a microscop-
ical theoretical justification of theories in continuum mechanics and as a powerful
means, thanks to which a great number of microscopical phenomena can be read in
the macroscopical setting. In this paper we describe variational limits of discrete lat-
tice systems in a vectorial and nonconvex setting when general “atomic” interaction
energies are taken into account that lead to continuum “elastic” theories described
by bulk integral energies. We will limit our analysis to square lattices, but more gen-
eral geometries, e.g., hexagonal lattices, can be easily included in this framework by
a change of variables (see, for instance, [10, Examples 5.1 and 5.2], for details). In
mathematical terms, given a fixed open set Ω ⊂ R

N and ε > 0, we consider energies
defined on functions u : α ∈ εZN ∩ Ω �→ u(α) ∈ R

d of the general form

Fε(u) =
∑

α,β∈εZ
N

[α,β]⊂Ω

gε(α, β, u(α) − u(β)).

In the case N = d = 3 we can picture the lattice εZN∩ Ω as the reference configuration
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Fig. 1. Interactions on the lattice εZN .

of a set of interacting material points (see Figure 1). Here u is the field mapping the
reference configuration into the deformed one; thus the total stored energy Fε(u) is
obtained, according to the classical theory of crystalline structures in “hyperelastic”
regime, by the superposition of the energy densities gε(α, β, u(α) − u(β)) weighing the
pairwise interaction between points in positions α and β in the reference configuration
lattice. Note that the only assumption we make is that gε depends on the displacement
field in α and β through the differences u(α) − u(β). This condition, expressing the
invariance under translation of our energies, arises naturally in many situations, as,
for example, in frame indifferent models.

It is usually more convenient to group the energy densities as

Fε(u) =
∑
ξ∈ZN

∑
α∈Rξ

ε(Ω)

gε(α, α + εξ, u(α + εξ) − u(α)),

where Rξ
ε(Ω) := {α ∈ εZN : [α, α + εξ] ⊂ Ω}. Setting

fξ
ε (α, ζ) = ε−Ngε(α, α + εξ, ε|ξ|ζ)

we can rewrite

Fε(u) =
∑
ξ∈ZN

∑
α∈Rξ

ε(Ω)

εNfξ
ε

(
α,

u(α + εξ) − u(α)

ε|ξ|

)
,(1.1)

thus highlighting the dependence of the energy on discrete difference quotients in the
direction ξ.

The aim of this paper is to provide a characterization of all the possible variational
limits, as the mesh size ε tends to zero, of a very general class of energies of the
form (1.1). Upon identifying u with a function constant on each cell of the lattice
εZN , we can make the asymptotic analysis precise, thanks to the notions and the
methods of De Giorgi’s Γ-convergence (see [16], [4], [15]). On the functions fξ

ε (α, ·)
we make assumptions of two types: a growth hypothesis of superlinear type on nearest
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neighbors (see 3.2) that ensures that the limit is finite only on W 1,p(Ω; Rd) and a decay
assumption as ξ → +∞ (see (3.3), (H1), (H2)) that allows us to neglect very long-
range interactions. Under these conditions, a compactness theorem holds asserting
that, up to passing to a subsequence, the energies Fε have a Γ-limit energy F defined
on the Sobolev space W 1,p(Ω; Rd) and taking the form

F (u) =

∫
Ω

f(x,Du) dx

(see Theorem 3.1). A similar compactness result for quadratic interactions in planar
networks has been observed by Vogelius [23] (see also Piatnitski and Remy [20]).

Note that the decay assumption on the density energies fξ
ε as |ξ| → +∞ guar-

antees that the nonlocality of our discrete functionals disappears in the limit. If this
hypothesis is lifted, then we may have nonlocal Γ-limits (see [3]). On the other hand,
if growth conditions are removed, the limit may be defined on sets of functions with
bounded variation where a different analytical approach is needed (see [22], [5], [14],
[1], [3], [8], [10]).

To perform our analysis, we develop the discrete analogue of a localization argu-
ment used, for example, in the context of homogenization theory for multiple integrals
which allows us to regard our energies and their Γ-limits as functionals defined on pairs
function-set and then to prove that all the hypotheses of an integral representation
theorem are fulfilled. In order to treat minimum problems with boundary data, we
also derive a compactness theorem in case that our functionals are subject to Dirichlet
boundary conditions (see (3.30) and Theorem 3.10).

An interesting special case is when the arrangement of the “material points”
presents a periodic feature; i.e., in terms of fε, we have

fξ
ε (·, z) = fξ

( .

ε
, z

)
fξ(·, z), Qk-periodic,

where Qk = (0, k)N . By adapting the integral homogenization arguments to our
discrete setting, we prove that the whole family Fε Γ-converges to a limit energy of
the form

F (u) =

∫
Ω

fhom(Du) dx.

Note that in this setting we also include, when k = 1, the situation when fξ(α, z) is
independent of α. If not only nearest neighbor interactions are present, the formula
for fhom highlights a multiple-scale effect also in this case (see [4]). An interesting
example showing the effect of nonlinearities of “geometrical” origin is contained in a
work by Friesecke and Theil [18], where an interpretation in terms of the Cauchy–Born
rule is given.

Here fhom is given by the following homogenization formula:

fhom(M) = lim
h→+∞

1

hN
min {Fh(u), u|∂Qh

= Mα} ,(1.2)

where

Fh(u) =
∑
ξ∈ZN

∑
α∈Rξ(Qh)

fξ

(
α,

u(α + ξ) − u(α)

|ξ|

)
,
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and u|∂Qh
= Mα means that “near” the boundary of Qh the function u is the discrete

interpolation of the affine function Mx (for more precise definitions see (3.29) and
Theorem 4.1). This formula generalizes that obtained in [11] in a one-dimensional
scalar setting.

In general, (1.2) cannot be simplified to a cell problem formula and gives rise to
a quasi-convex nonconvex function even for simple interactions. Indeed, in section
7 we provide an example of quasi-convex nonconvex fhom drawing inspiration from
Šverák’s construction of a quasi-convex function which is not polyconvex (see [21]).

In sections 5 and 6 we study some important cases when the formula for fhom can
be simplified. For convex interactions a periodicity cell problem formula holds: if fξ

is a convex function in the second variable for all ξ ∈ Z
N , then (1.2) can be written

as

fhom(M) =
1

kN
min {F(u), u Qk-periodic} ,

where

F(u) =
∑
ξ∈ZN

∑
α∈{0,1,...,k−1}N

fξ

(
α,

u(α + ξ) − u(α)

|ξ| + M · ξ

|ξ|

)

(see Theorem 5.1). An analogous result for discrete quadratic forms has been obtained
by Piatnitski and Remy [20]. Our result has been used by Braides and Francfort [7]
as a step for the derivation of optimal bounds for composite conducting networks in
the particular case of quadratic interactions (see Remarks 3.2 and 5.2).

If we consider only interactions along independent directions a reduction to the
one-dimensional case occurs: if k = 1, that is, fξ does not depend on α, and

fξ ≡ 0 ∀ξ ∈ Z
N : ξ 	= jei, i ∈ {1, 2, . . . , N}, j ∈ N,(1.3)

where {e1, e2, . . . , eN} is the standard orthonormal base in R
N , then

fhom(M) =

N∑
i=1

(f̃i)(M
i),

(f̃i) being convex functions defined by a one-dimensional homogenization formula and
M i the ith column of M (see Theorem 6.3). Note that here a superposition principle
holds, in the sense that the limit energy is obtained by relaxing the energies due to
the interactions in every coordinate direction independently and then summing over
them.

From the results obtained in the one-dimensional setting in [11] (see Theorems
6.1 and 6.2), we deduce that the limit energy density fhom can be rewritten by a
nonasymptotic formula only if nearest and next-to-nearest neighbor interactions along
the coordinate directions are considered (see Remark 6.5). In particular, in the case
of only nearest neighbor interactions, the only effect of the passage from the dis-
crete setting to the continuum is a separate convexification process in the coordinate
directions.

2. Notation and preliminaries. We denote by {e1, e2, . . . , eN} the standard
basis in R

N , by | · | the usual euclidean norm, and by 〈·, ·〉 the scalar product in R
N .

We denote by Md×N and Md×d
sym the space of d × N matrices and symmetric d × d



INTEGRAL REPRESENTATION FOR DISCRETE SYSTEMS 5

matrices, respectively. For P ∈ Md×N , Q ∈ MN×l, P ·Q denotes the standard row
by column product. For x, y ∈ R

N , [x, y] denotes the segment between x and y. If
Ω is a bounded open subset of R

N , A(Ω) is the family of all open subsets of Ω, while
A0(Ω) denotes the family of all open subsets of Ω whose closure is a compact subset
of Ω. If B ⊂ R

N is a Borel set, we will denote by |B| its Lebesgue measure. We use
standard notation for Lp and Sobolev spaces.

We also recall the standard notation for slicing arguments (see [4]). Let ξ ∈ SN−1,
and let Πξ = {y ∈ R

N : 〈y, ξ〉 = 0} be the linear hyperplane orthogonal to ξ. If y ∈ Πξ

and E ⊂ R
N we define Eξ = {y s.t. ∃t ∈ R : y + tξ ∈ E} and Eξ

y = {t ∈ R : y + tξ ∈
E}. Moreover, if u : E → R we set uξ,y : Eξ

y → R by uξ,y(t) = u(y + tξ).
We also introduce a useful notation for difference quotient along any direction.

Fix ξ ∈ R
N ; for ε > 0 and for every u : R

N → R
d we define

Dξ
εu(x) :=

u(x + εξ) − u(x)

ε|ξ| .

2.1. Γ-convergence. We recall the notion of Γ-convergence in Lp(Ω; Rd) (see
[16], [15], [4]). A sequence of functionals Fj : Lp(Ω; Rd) → [0,+∞] is said to Γ-
converge to a functional F : Lp(Ω; Rd) → [0,+∞] at u ∈ Lp(Ω; Rd) as j → +∞, and
we write F (u) = Γ- limj Fj(u) if the following two conditions hold:

(i) (lower semicontinuity inequality) for all sequences (uj) converging to u in
Lp(Ω; Rd) we have that F (u) ≤ lim infj Fj(uj);

(ii) (existence of a recovery sequence) there exists a sequence (uj) converging to
u in Lp(Ω; Rd) such that F (u) = limj Fj(uj).

We say that Fj Γ-converges to F if F (u) = Γ- limj Fj(u) at all points u ∈ Lp(Ω; Rd)
and that F is the Γ-limit of Fj . The main reason for the introduction of this conver-
gence is the following fundamental theorem.

Theorem 2.1. Let F = Γ- limj Fj, and let a compact set K ⊂ Lp(Ω; Rd) exist
such that infLp(Ω;Rd) Fj = infK Fj for all j. Then

∃ min
Lp(Ω;Rd)

F = lim
j

inf
Lp(Ω;Rd)

Fj .

Moreover, if (uj) is a converging sequence such that limj Fj(uj)=limj infLp(Ω;Rd) Fj,
then its limit is a minimum point for F . If (Fε) is a family of functionals indexed
by ε > 0, then we say that Fε Γ-converges to F as ε → 0+ if F = Γ- limj Fεj for all
(εj) converging to 0. If we define the lower and upper Γ-limits by

F ′(u) = Γ- lim inf
ε→0+

Fε(u) = inf

{
lim inf
ε→0+

Fε(uε) : uε → u

}
,

F ′′(u) = Γ- lim sup
ε→0+

Fε(u) = inf

{
lim sup
ε→0+

Fε(uε) : uε → u

}
,

respectively, then Fε Γ-converges to F as ε → 0+ if and only if F ′(u) = F ′′(u) = F (u).
Note that the functions F ′ and F ′′ are lower semicontinuous (see [15, Proposition
6.8]).

2.2. Integral representation on Sobolev spaces. In this section we recall
an integral representation result on Sobolev spaces for functionals defined on pairs
function-sets (see [13]).

Theorem 2.2. Let 1 ≤ p < ∞, and let F : W 1,p(Ω; Rd) ×A(Ω) → [0,+∞] be a
functional satisfying the following conditions:
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(i) (locality) F is local, i.e., F (u,A) = F (v,A), if u = v a.e. on A ∈ A(Ω);
(ii) (measure property) for all u ∈ W 1,p(Ω; Rd) the set function F (u, ·) is the

restriction of a Borel measure to A(Ω);
(iii) (growth condition) there exists c > 0 and a ∈ L1(Ω) such that

F (u,A) ≤ c

∫
A

(a(x) + |Du|p) dx

for all u ∈ W 1,p(Ω; Rd) and A ∈ A(Ω);
(iv) (translation invariance in u) F (u + z,A) = F (u,A) for all z ∈ R

d, u ∈
W 1,p(Ω; Rd), and A ∈ A(Ω);

(v) (lower semicontinuity) for all A ∈ A(Ω), F (·, A) is sequentially lower semi-
continuous with respect to the weak convergence in W 1,p(Ω; Rd).

Then there exists a Carathéodory function f : Ω × M
d×N → [0,+∞) satisfying the

growth condition

0 ≤ f(x,M) ≤ c(a(x) + |M |p)

for all x ∈ Ω and M ∈ Md×N such that

F (u,A) =

∫
A

f(x,Du(x)) dx

for all u ∈ W 1,p(Ω; Rd) and A ∈ A(Ω).
If, in addition, it holds that

(vi) (translation invariance in x)

F (Mx,B(y, �)) = F (Mx,B(z, �))

for all M ∈ Md×N , y, z ∈ Ω, and � > 0 such that B(y, �) ∪B(z, �) ⊂ Ω, then f does
not depend on x.

3. Compactness and integral representation. In this section we define the
class of discrete energies we are going to consider in the rest of the paper, and we
prove a general compactness theorem, asserting that any sequence of energies in this
class has a subsequence whose Γ-limit F is an integral functional.

In what follows, Ω will denote a bounded open set of R
N with Lipschitz boundary.

We consider the family of functionals Fε : Lp(Ω; Rd) → [0,+∞] defined as

Fε(u) =

⎧⎪⎨
⎪⎩

∑
ξ∈ZN

∑
α∈Rξ

ε(Ω)

εNfξ
ε

(
α,Dξ

εu(α)
)

if u ∈ Aε(Ω),

+∞ otherwise,

(3.1)

where for any ξ ∈ Z
N and ε > 0

Rξ
ε(Ω) := {α ∈ εZN : [α, α + εξ] ⊂ Ω},

Aε(Ω) := {u : R
N → R

d : u constant on α + [0, ε)N for any α ∈ εZN ∩ Ω},

and fξ
ε : (εZN ∩Ω)×R

d → [0,+∞) is a given function. On fξ
ε we make the following

assumptions:

fei
ε (α, z) ≥ c1(|z|p − 1) ∀(α, z) ∈ (εZN ∩ Ω) × R

d, i ∈ {1, . . . , N},(3.2)



INTEGRAL REPRESENTATION FOR DISCRETE SYSTEMS 7

fξ
ε (α, z) ≤ Cξ

ε (|z|p + 1) ∀(α, z) ∈ (εZN ∩ Ω) × R
d, ξ ∈ Z

N ,(3.3)

where c1 > 0, and {Cξ
ε}ε,ξ satisfies

lim sup
ε→0+

∑
ξ∈ZN

Cξ
ε < +∞;(H1)

∀δ > 0 ∃Mδ > 0 : lim sup
ε→0+

∑
|ξ|>Mδ

Cξ
ε < δ.(H2)

The main result of this section is stated in the following theorem.
Theorem 3.1 (compactness). Let {fξ

ε }ε,ξ satisfy (3.2), (3.3), and let (H1)–(H2)
hold. Then for every sequence (εj) of positive real numbers converging to 0, there
exists a subsequence (εjk) and a Carathéodory function quasi-convex in the second
variable f : Ω × R

d×N satisfying

c(|M |p − 1) ≤ f(x,M) ≤ C(|M |p + 1),

with 0 < c < C, such that (Fεjk
(·)) Γ-converges with respect to the Lp(Ω; Rd)-topology

to the functional F : Lp(Ω; Rd) → [0,+∞] defined as

F (u) =

⎧⎨
⎩

∫
Ω

f(x,∇u) dx if u ∈ W 1,p(Ω; Rd),

+∞ otherwise.

(3.4)

Remark 3.2 (quadratic forms). Under the hypotheses of Theorem 3.1, if, in
addition, for any ξ ∈ Z

N and ε > 0 fξ
ε (α, ·) is a positive quadratic form on R

d, that
is,

fξ
ε (α, z) = 〈Aξ

ε(α)z, z〉, Aξ
ε(α) ∈ Md×d

sym,

then, by the properties of Γ-convergence (see [15]), the limit energy density f(x, ·) is
a quadratic form on Md×N , that is,

f(x,M) = A(x) (M,M) , A(x) ∈ T2Md×N ,(3.5)

where T2Md×N is the vectorial space of all two times covariant tensors on Md×N .
To prove Theorem 3.1 we use a localization technique, which is a standard argu-

ment dealing with limits of integral functionals (see, for example, [6] in the context
of homogenization theory). We stress the fact that here this analysis becomes more
difficult to perform because of the nonlocality of our discrete energies.

The first step is to define a “localized” version of our energies: given an open set
A we isolate the contributions due to interactions within A as follows. For u ∈ Aε(Ω),
A ∈ A(Ω), and ξ ∈ Z

N , set

Fξ
ε (u,A) :=

∑
α∈Rξ

ε(A)

εNfξ
ε

(
α,Dξ

εu(α)
)
,(3.6)

where

Rξ
ε(A) := {α ∈ εZN : [α, α + εξ] ⊂ A}.



8 ROBERTO ALICANDRO AND MARCO CICALESE

The function Fξ
ε represents the energy due to the interactions within A along the

direction ξ. Then the local version of the functional in (3.1) is given by

Fε(u,A) =

⎧⎨
⎩

∑
ξ∈ZN

Fξ
ε (u,A) if u ∈ Aε(Ω),

+∞ otherwise.

(3.7)

We will prove also the following result.
Theorem 3.3 (local compactness). Let {fξ

ε }ε,ξ satisfy (3.2), (3.3), and let (H1)–
(H2) hold. Given (εj), a sequence of positive real numbers converging to 0, let (εjk)
and f be as in Theorem 3.1. Then for any u ∈ W 1,p(Ω; Rd) and A ∈ A(Ω) there holds

Γ- lim
k

Fεjk
(u,A) =

∫
A

f(x,∇u) dx.

We will derive the proof of Theorems 3.1 and 3.3 as a direct consequence of some
propositions and lemmas which are fundamental steps to show that our limit func-
tionals satisfy all the hypotheses of the representation theorem, Theorem 2.2.

In the next two propositions we show that, thanks to hypotheses (3.2) and (3.3),
the Γ-lim inf and the Γ-lim sup of Fε are finite only on W 1,p(Ω; Rd) and satisfy stan-
dard p-growth conditions.

Proposition 3.4. Let {fei
ε }ε,i satisfy (3.2). If u ∈ Lp(Ω; Rd) is such that

F ′(u,A) < +∞, then u ∈ W 1,p(A; Rd), and

F ′(u,A) ≥ c
(
‖∇u‖p

Lp(A;Rd×N )
− |A|

)
(3.8)

for some positive constant c independent of u and A.
Proof. Let εn → 0+, and let un converge to u in Lp(Ω; Rd) and be such that

lim infn Fεn(un, A) < +∞. By the growth condition (3.2) we get

Fεn(un, A) ≥ c1

N∑
i=1

∑
α∈R

ei
εn (A)

εNn |Dei
εnun(α)|p − c1N |A|.

For any i ∈ {1, . . . , N}, consider the sequence of piecewise-affine functions (vin) defined
as follows:

vin(x) := un(α) + Dei
εnun(α)(xi − αi), x ∈

(
α + [0, εn)N

)
∩ Ω, α ∈ Rei

εn(A).

Note that vin is a function of bounded variation, and we will denote by
∂vi

n

∂xi
the density

of the absolutely continuous part of Dxiv
i
n with respect to the Lebesgue measure.

Moreover, for HN−1-a.e. y ∈ (A)ei the slices (vin)ei,y ∈ W 1,p
(
(A)eiy ; Rd

)
. For any

η > 0, set

Aη := {x ∈ A : dist (x,Ac) > η}.

Then, with fixed η > 0, it is easy to check that vin → u in Lp(Aη; R
d) for every

i ∈ {1, . . . , N}; moreover, since
∂vi

n

∂xi
(x) = Dei

εnun(α) for x ∈ α + [0, εn)N , we get

Fεn(un, A) ≥ c1

N∑
i=1

∫
Aη

∣∣∣∣∂vin∂xi
(x)

∣∣∣∣
p

dx− c1N |A|.(3.9)
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We apply now a standard slicing argument. By Fubini’s theorem and Fatou’s lemma
for any i we get

lim inf
n

∫
(Aη)

∣∣∣∣∂vin∂xi
(x)

∣∣∣∣
p

≥
∫

(Aη)ei
lim inf

n

∫
(Aη)

ei
y

∣∣(vin)′ei,y(t)
∣∣p dt dHN−1(y).

Since, up to passing to a subsequence, we may assume that, for HN−1-a.e. y ∈ (Aη)
ei

(vin)ei,y → uei,y in Lp
(
(Aη)

ei
y ; Rd

)
, we deduce that uei,y ∈ W 1,p

(
(Aη)

ei
y ; Rd

)
for

HN−1-a.e. y ∈ (Aη)
ei , and

lim inf
n

∫
(Aη)

∣∣∣∣∂vin∂xi
(x)

∣∣∣∣
p

≥
∫

(Aη)ei

∫
(Aη)

ei
y

∣∣u′
ei,y(t)

∣∣p dt dHN−1(y).

Then, by (3.9), we have

lim inf
n

Fεn(un, A) ≥ c1

N∑
i=1

∫
(Aη)ei

∫
(Aη)

ei
y

∣∣u′
ei,y(t)

∣∣p dt dHN−1(y) − c1N |A|.

Since, in particular, the previous inequality implies that

N∑
i=1

∫
(Aη)ei

∫
(Aη)

ei
y

∣∣u′
ei,y(t)

∣∣p dt dHN−1(y) < +∞,

thanks to the characterization of W 1,p by slicing, we obtain that u ∈ W 1,p
(
Aη; R

d
)
,

and

lim inf
n

Fεn(un, A) ≥ c1

N∑
i=1

∫
Aη

∣∣∣∣ ∂u∂xi
(x)

∣∣∣∣
p

dx− c1N |A|

≥ c

(∫
Aη

‖∇u(x)‖p dx− |A|
)
.

Letting η → 0+, we get the conclusion.
Proposition 3.5. Let {fξ

ε }ε,ξ satisfy (3.3), and let (H1) hold. Then for every
u ∈ W 1,p(Ω; Rd) there holds

F ′′(u,A) ≤ C
(
‖∇u‖p

Lp(A;Rd×N )
+ |A|

)
(3.10)

for some positive constant C independent of u and A.
Proof. We first show that inequality (3.5) holds for u smooth and then recover

the proof for any u ∈ W 1,p(Ω; Rd) by using a density argument.
Let u ∈ C∞

c (RN ; Rd), and consider the family (uε) ⊂ Aε(Ω) defined as

uε(α) := u(α), α ∈ εZN .

Then uε → u in Lp(Ω; Rd) as ε → 0+. Moreover, for any α ∈ εZN , we have

Dξ
εuε(α) =

1

|ξ|

∫ 1

0

∇u(α + εξs)ξ ds
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so that, by Jensen’s inequality, we get

|Dξ
εuε(α)|p =

1

|ξ|p

∣∣∣∣
∫ 1

0

∇u(α + εξs)ξ ds

∣∣∣∣
p

≤ 1

|ξ|p
∫ 1

0

|∇u(α + εξs)ξ|p ds ≤
∫ 1

0

|∇u(α + εξs)|p ds.

By the regularity hypothesis on u and by Fubini’s theorem, we easily obtain the
following inequalities:

εN
∫ 1

0

|∇u(α + εξs)|p ds =

∫
α+[0,ε)N

∫ 1

0

|∇u(α + εξs)|p ds dx

≤
∫
α+[0,ε)N

∫ 1

0

|∇u(x + εξs)|p ds dx + c(u)

∫
α+[0,ε)N

∫ 1

0

|x− α|p ds dx

≤
∫ 1

0

∫
α+sεξ+[0,ε)N

|∇u(x)|p dx ds + c(u)εpεN ,

where by c(u) we denote a constant depending only on u. By (3.3) and the last
inequality, we then have

Fε(uε, A) ≤
∑
ξ∈ZN

Cξ
ε

∑
α∈Rξ

ε(A)

∫ 1

0

∫
α+sεξ+[0,ε)N

|∇u(x)|p dx ds

+ (1 + c(u)εp)
∑
ξ∈ZN

Cξ
ε

∑
α∈Rξ

ε(A)

εN

≤
∑
ξ∈ZN

Cξ
ε

(∫
Aε

|∇u(x)|p dx + (1 + c(u)εp) |Aε|
)
,

where

Aε := A + [0, ε)N .

Eventually, letting ε → 0+, by (H1) we get

lim sup
ε→0+

Fε(uε, A) ≤ C

(∫
A

|∇u(x)|p dx + |A|
)
,

and the conclusion follows by the definition of F ′′. Now let u ∈ W 1,p(Ω; Rd), and let
(un) ⊂ C∞

c (RN ; Rd) converge to u in the W 1,p(Ω; Rd)-topology. Then, by the lower
semicontinuity of F ′′, we obtain

F ′′(u,A) ≤ lim inf
n

F ′′(un, A) ≤ lim
n

C
(
‖∇un‖pLp(A;Rd×N )

+ |A|
)

= C
(
‖∇u‖p

Lp(A;Rd×N )
+ |A|

)
.

The next technical lemma asserts that finite difference quotients along any direc-
tion can be controlled by finite difference quotients along the coordinate directions.

Lemma 3.6. Let A ∈ A(Ω), and set Aε := {x ∈ A : dist (x, ∂A) > 2
√
Nε}. Then

for any ξ ∈ Z
N and u ∈ Aε(Ω) there holds

∑
α∈Rξ

ε(Aε)

|Dξ
εu(α)|p ≤ C

N∑
i=1

∑
α∈R

ei
ε (A)

|Dei
ε u(α)|p.(3.11)
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Fig. 2.

Proof. Let us fix some notations: for ξ ∈ Z
N and α ∈ εZN , set

Iξε (α) :=
{
β ∈ εZN :

(
β + [−ε, ε]N

)
∩ [α, α + εξ] 	= ∅

}
;

moreover, we will denote by ‖ · ‖1 the norm on R
N defined as

‖ξ‖1 :=

N∑
i=1

|ξi|, ξ = (ξ1, . . . , ξN ) ∈ R
N .

Let α ∈ Rξ
ε(Aε), and consider {αh}‖ξ‖1

h=1 ⊂ Iξε (α) such that

α‖ξ‖1
= α + εξ, α1 = α, αh = αh−1 + εei(h)

for some i(h) ∈ {1, . . . , N} (see Figure 2). Then, since

Dξ
εu(α) =

1

|ξ|

‖ξ‖1∑
h=1

D
ei(h)
ε u(αh)

by Jensen’s inequality, we get

|Dξ
εu(α)|p =

(
‖ξ‖1

|ξ|

)p
∣∣∣∣∣∣

1

‖ξ‖1

‖ξ‖1∑
h=1

D
ei(h)
ε u(αh)

∣∣∣∣∣∣
p

≤
(
‖ξ‖1

|ξ|

)p
1

‖ξ‖1

‖ξ‖1∑
h=1

|Dei(h)
ε u(αh)|p.

Since for any h = 1, . . . , N , αh ∈ R
ei(h)
ε (A) and all the norms are equivalent in a

finite-dimensional space, we infer that

∑
α∈Rξ

ε(Aε)

|Dξ
εu(α)|p ≤ C

N∑
i=1

∑
β∈R

ei
ε (A)

γξ
ε(β)

‖ξ‖1
|Dei

ε u(β)|p,
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where

γξ
ε(β) := #{α ∈ Rξ

ε(Aε) : β ∈ Iξε (α)}.

Hence, the proof is complete if we show that γξ
ε(β) ≤ C|ξ|. To this aim, notice that

{α ∈ Rξ
ε(Aε) : β ∈ Iξε (α)} ⊆ εZN ∩Qξ

ε(β),

where

Qξ
ε(β) := {x ∈ R

N : x = y + tξ, y ∈ β + [−ε, ε]n, t ∈ [−ε, ε]N}.

Thus, we infer that

γξ
ε(β) ≤ C

∣∣Qξ
ε(β)

∣∣
εN

.

Now we use a slicing argument to provide an estimate of
∣∣Qξ

ε(β)
∣∣. By Fubini’s theorem,

we get

|Qξ
ε(β)| =

∫
(Qξ

ε(β))
ξ
H1

(
Qξ

ε(β)
)ξ
y
dHN−1(y)

≤ HN−1
(
(Qξ

ε(β))ξ
)
2(
√
N + |ξ|)ε ≤ c(N)|ξ|εN ,

where the last inequality holds, since for any ξ ∈ Z
N

HN−1
(
(Qξ

ε(β))ξ
)
≤ c(N)εN−1.

In the next two propositions we establish the subadditivity and the inner regu-
larity of the set function F ′′(u, ·). To this end we use a careful modification of De
Giorgi’s cut-off functions argument, which appears frequently in the proof of the in-
tegral representation of Γ-limits of integral functionals (see [6], [15]). We underline
that the nonlocality of our energies requires a deeper analysis in which a key role is
played by hypothesis (H2), which allows us to show that very long-range interactions
do not lead to nonlocal terms in the limit.

Proposition 3.7. Let {fξ
ε }ε,ξ satisfy (3.2),(3.3), and let (H1)–(H2) hold. Let

A,B ∈ A(Ω), and let A′, B′ ∈ A(Ω) be such that A′ ⊂⊂ A and B′ ⊂⊂ B. Then, for
any u ∈ W 1,p(Ω; Rd),

F ′′ (u,A′ ∪B′) ≤ F ′′ (u,A) + F ′′ (u,B) .

Proof. Without loss of generality, we may suppose that F ′′(u,A) and F ′′(u,B)
are finite. Let uε, vε ∈ Aε(Ω) both converge to u in Lp(Ω; Rd) and be such that

lim sup
ε→0+

Fε(uε, A) = F ′′(u,A), lim sup
ε→0+

Fε(vε, B) = F ′′(u,B).

By (3.2) and Lemma 3.6, we infer that

sup
ξ∈ZN

sup
ε>0

∑
α∈Rξ

ε(Aε)

εN |Dξ
εuε(α)|p < +∞,(3.12)

sup
ξ∈ZN

sup
ε>0

∑
α∈Rξ

ε(Bε)

εN |Dξ
εvε(α)|p < +∞,(3.13)
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where Aε and Bε are defined as in Lemma 3.6. Moreover, since (uε) and (vε) converge
to u in the Lp(Ω; Rd)-topology, we have∑

α∈εZN∩Ω′

εN (|uε(α)|p + |vε(α)|p) ≤ ‖uε‖pLp(Ω;Rd)
+ ‖vε‖pLp(Ω;Rd)

≤ C < +∞,

(3.14)

∑
α∈εZN∩Ω′

εN (|uε(α) − vε(α)|p) ≤ ‖uε − vε‖pLp(Ω;Rd)
→ 0+(3.15)

for any Ω′ ⊂⊂ Ω. Set

d := dist (A′, Ac) ,

and for any i ∈ {1, . . . , N} define

Ai :=

{
x ∈ A : dist(x,A′) < i

d

N

}
.

Let ϕi be a cut-off function between Ai and Ai+1, with ‖∇ϕi‖∞ ≤ 2N
d . Then for any

i ∈ {1, . . . , N} consider the family of functions wi
ε ∈ Aε(Ω) still converging to u in

Lp(Ω; Rd) defined as

wi
ε(α) := ϕi(α)uε(α) + (1 − ϕi(α)) vε(α).

Note that, for any ξ ∈ Z
N , we have

Dξ
εw

i
ε(α) = ϕi(α + εξ)Dξ

εuε(α) + (1 − ϕi(α + εξ))Dξ
εvε(α)

+ (uε(α) − vε(α))Dξ
εϕ(α).(3.16)

Fix i ∈ {1, 2, . . . , N − 3}. Given ξ ∈ Z
N and α ∈ Rξ

ε(A
′ ∪B′), then either α ∈ Rξ

ε(Ai)
or α ∈ Rξ

ε(A
c

i+1 ∩B′), or

[α, α + εξ] ∩
(
Ai+1 \Ai

)
∩B′ 	= ∅.

Then, if we set (
Ai+1 \Ai

)ε,ξ
:= {x = y + tξ, |t| ≤ ε, y ∈ Ai+1 \Ai},

Sε,ξ
i :=

(
Ai+1 \Ai

)ε,ξ ∩ (A′ ∪B′) ,

we get

Rξ
ε(A

′ ∪B′) ⊆ Rξ
ε(Ai) ∪Rξ

ε(B
′ \Ai+1) ∪Rξ

ε

(
Sε,ξ
i

)
(see Figure 3). Thus, since Dξ

εw
i
ε(α) = Dξ

εuε(α) if α ∈ Rξ
ε(Ai) and Dξ

εw
i
ε(α) =

Dξ
εvε(α) if α ∈ Rξ

ε(A
c

i+1 ∩B′), we get by (3.3) and (3.16)

Fξ
ε (wi

ε, A
′ ∪B′) ≤ Fξ

ε (uε, A) + Fξ
ε (vε, B)(3.17)

+ C Cξ
ε

∑
α∈Rξ

ε(S
ε,ξ
i

)

εN
(
|Dξ

εuε(α)|p + |Dξ
εvε(α)|p + Np |uε(α) − vε(α)|p + 1

)
.
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Fig. 3. α ∈ Rξ
ε(Ai), β ∈ Rξ

ε(S
ε,ξ
i ), γ ∈ Rξ

ε(B
′ \Ac

i+1).

If ε|ξ| ≤ d
2N , then

Sε,ξ
i ⊆

(
AN−1 \A′

)
∩B′ =: SN ⊂⊂ A ∩B.(3.18)

If ε|ξ| ≥ d
2N , then

1

εp|ξ|p ≤ 2pNp

dp
,

and so

|Dξ
εuε(α)|p ≤ CNp (|uε(α)|p + |uε(α + εξ)|p) ,

and the same inequality holds for vε. Thus, in this case we get by (3.17)

Fξ
ε (wi

ε, A
′ ∪B′) ≤ Fξ

ε (uε, A) + Fξ
ε (vε, B)(3.19)

+ CNp Cξ
ε

∑
α∈Rξ

ε(A′∪B′)

εN (|uε(α)|p + |uε(α + εξ)|p + |vε(α)|p + |vε(α + εξ)|p + 1) .

Let Mδ > 0 be such that lim supε→0+

∑
|ξ|>Mδ

Cξ
ε < δ. Then, by (3.17), (3.18), and

(3.19), summing over ξ ∈ Z
N , for ε small enough we get

Fε(w
i
ε, A

′ ∪B′) ≤ Fε(uε, A) + Fε(vε, B)

+ C
∑

|ξ|≤Mδ

Cξ
ε

∑
α∈Rξ

ε(S
ε,ξ
i

)

εN
(
|Dξ

εuε(α)|p + |Dξ
εvε(α)|p + Np |uε(α) − vε(α)|p + 1

)

+ C
∑

Mδ<|ξ|≤ d
2Nε

Cξ
ε

∑
α∈Rξ

ε(SN )

εN
(
|Dξ

εuε(α)|p + |Dξ
εvε(α)|p + Np |uε(α) − vε(α)|p + 1

)

+ CNp
∑

|ξ|> d
2Nε

Cξ
ε

∑
α∈εZN∩A′∪B′

εN (|uε(α)|p + |vε(α)|p + 1) .

Note that, for ε small enough and |ξ| ≤ Mδ, we have that Rξ
ε(S

ε,ξ
i ) ∩ Rξ

ε(S
ε,ξ
j ) 	= ∅

if and only if |i − j| = 1, and
⋃N−3

i=1 Rξ
ε(S

ε,ξ
i ) ⊆ Rξ

ε(Aε ∩ Bε). Thus, summing over
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i ∈ {1, 2, . . . , N − 3}, averaging, and taking into account (3.12), (3.13), (3.14), and
(3.15), we get

1

N − 3

N−3∑
i=1

Fε(w
i
ε, A

′ ∪B′) ≤ Fε(uε, A) + Fε(vε, B)(3.20)

+
C

N − 3
(1 + NpO(ε)) + C(δ + O(ε))(1 + NpO(ε))

+ C (δ + O(ε))(Np) .

For any ε > 0 there exists i(ε) ∈ {1, . . . , N − 3} such that

Fε(w
i(ε)
ε , A′ ∪B′) ≤ 1

N − 3

N−3∑
i=1

Fε(w
i
ε, A

′ ∪B′).(3.21)

Then, since w
i(ε)
ε still converges to u in Lp(Ω; Rd), by (3.20) and (3.21), letting ε → 0+,

we get

F ′′(u,A′ ∪B′) ≤ F ′′(u,A) + F ′′(u,B) +
C

N − 3
+ Cδ (1 + Np) .

Eventually, letting first δ → 0+ and then N → +∞, we obtain the thesis.
Proposition 3.8. Let {fξ

ε }ε,ξ satisfy (3.2), (3.3), and let (H1)–(H2) hold. Then,
for any u ∈ W 1,p(Ω; Rd) and for any A ∈ A(Ω), there holds

sup
A′⊂⊂A

F ′′(u,A′) = F ′′(u,A).

Proof. Since F ′′(u, ·) is an increasing set function, it suffices to prove that

sup
A′⊂⊂A

F ′′(u,A′) ≥ F ′′(u,A).

To do this, we apply the same argument of the proof of Proposition 3.7. Given δ > 0,
there exists A′′ ⊂⊂ A such that

|A \A′′| + ‖∇u‖p
Lp(A\A′′)

≤ δ.

Let Ω̃ ⊃⊃ Ω, and let ũ ∈ W 1,p(Ω̃; Rd) be an extension of u. By reasoning as in
the proof of Proposition 3.5, we may find vε ∈ Aε(Ω̃) such that vε converges to ũ in
Lp(Ω̃; Rd) and

lim sup
ε→0+

Fε(vε, A \A′′) ≤ C
(
|A \A′′| + ‖∇u‖p

Lp(A\A′′)

)
≤ Cδ.(3.22)

We remark that this extension on Ω̃ is just a technical tool to exploit an analogue
of inequality (3.14) and obtain a control of the interactions near the boundary of Ω.
Let A′ ∈ A(Ω) be such that A′′ ⊂⊂ A′ ⊂⊂ A, and let uε ∈ Aε(Ω) converge to u in
Lp(Ω; Rd), with

lim sup
ε→0+

Fε(uε, A
′) = F ′′(u,A′).

Set

d := dist(A′′, A′c),
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and for any i ∈ {1, . . . , N} define

Ai :=

{
x ∈ A : dist(x,A′) < i

d

N

}
.

Let ϕi be a cut-off function between Ai and Ai+1, with ‖∇ϕi‖∞ ≤ 2N
d . Then for any

i ∈ {1, . . . , N} consider the family of functions wi
ε ∈ Aε(Ω) still converging to u in

Lp(Ω; Rd) defined as

wi
ε(α) := ϕi(α)uε(α) + (1 − ϕi(α)) vε(α).

Now we can set

Sε,ξ
i :=

(
Ai+1 \Ai

)ε,ξ ∩A

so that

Rξ
ε(A) ⊆ Rξ

ε(Ai) ∪Rξ
ε(A \Ai+1) ∪Rξ

ε

(
Sε,ξ
i

)
.

Let δ > 0, and let Mδ > 0 be such that lim supε→0+

∑
|ξ|>Mδ

Cξ
ε < δ. Then, by

reasoning as in the proof of Proposition 3.7, for ε small enough, we get

Fε(w
i
ε, A) ≤ Fε(uε, A

′) + Fε(vε, A \A′′)

+ C
∑

|ξ|≤Mδ

Cξ
ε

∑
α∈Rξ

ε(S
ε,ξ
i

)

εN
(
|Dξ

εuε(α)|p + |Dξ
εvε(α)|p + Np |uε(α) − vε(α)|p + 1

)

+ C
∑

Mδ<|ξ|≤ d
2Nε

Cξ
ε

∑
α∈Rξ

ε(SN )

εN
(
|Dξ

εuε(α)|p + |Dξ
εvε(α)|p + Np |uε(α) − vε(α)|p + 1

)

+ CNp
∑

|ξ|> d
2Nε

Cξ
ε

(
‖uε‖pLp(Ω;Rd)

+ ‖vε‖pLp(Ω̃;Rd)
+ 1

)
.

Since uε and vε satisfy (3.12), (3.13), (3.14), and (3.15) with Aε replaced by A′
ε and

Bε by (A \A′′
ε ), then we can choose i(ε) ∈ {1, . . . , N − 3} such that

Fε(w
i(ε)
ε , A) ≤ 1

N − 3

N−3∑
i=1

Fε(w
i
ε, A)(3.23)

≤ Fε(uε, A
′) + Cδ +

C

N − 3
(1 + NpO(ε))

+C(δ + O(ε)) (1 + NpO(ε)) + CNp(δ + O(ε)).

Then, since w
i(ε)
ε still converges to u in Lp(Ω; Rd), by (3.23), letting ε → 0+, we get

F ′′(u,A) ≤ sup
A′⊂⊂A

F ′′(u,A′) + C

(
1

N − 3
+ δ + δNp

)
.

Eventually, letting first δ → 0+ and then N → +∞, we obtain the thesis.
The following proposition asserts that F ′′(·, ·) satisfies hypothesis (i) of Theorem

2.2. The argument we use for the proof is still the same one exploited in the last two
propositions.
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Proposition 3.9. Let {fξ
ε }ε,ξ satisfy (3.2), (3.3), and let (H1)–(H2) hold. Then

for any A ∈ A(Ω) and for any u, v ∈ W 1,p(Ω; Rd) such that u = v a.e. there holds

F ′′(u,A) = F ′′(v,A).

Proof. Thanks to Proposition 3.8, we may assume that A ∈ A0(Ω). We first
prove

F ′′(u,A) ≥ F ′′(v,A).(3.24)

Once more we apply the argument used in the previous proposition. Given δ > 0,
there exists Aδ ⊂⊂ A such that

|A \Aδ| + ‖∇u‖p
Lp(A\Aδ)

≤ δ.

Let vε ∈ Aε(Ω) and uε ∈ Aε(Ω) be such that

vε → v in Lp(Ω; Rd),(3.25)

uε → u in Lp(Ω; Rd),(3.26)

and

lim sup
ε→0+

Fε(uε, A) = F ′′(u,A),

lim sup
ε→0+

Fε(vε, A \Aδ) = F ′′(v,A \Aδ) ≤ C
(
|A \Aδ| + ‖∇u‖p

Lp(A\Aδ)

)
≤ Cδ.(3.27)

Set

d := dist(Aδ, A
c),

and for any i ∈ {1, . . . , N} define

Ai :=

{
x ∈ A : dist(x,Aδ) < i

d

N

}
.

Let ϕi be a cut-off function between Ai and Ai+1, with ‖∇ϕi‖∞ ≤ 2N
d . Then for

any i ∈ {1, . . . , N} consider the family of functions wi
ε ∈ Aε(Ω) converging to v in

Lp(Ω; Rd) defined as

wi
ε(α) := ϕi(α)uε(α) + (1 − ϕi(α)) vε(α).

Then, following the same steps as in the proofs of Propositions 3.7 and 3.8, we can
choose i(ε) ∈ {1, . . . , N − 3} such that

Fε(w
i(ε)
ε , A) ≤ 1

N − 3

N−3∑
i=1

Fε(w
i
ε, A)(3.28)

≤ Fε(uε, A) + Cδ +
C

N − 3
(1 + NpO(ε))

+ C(δ + O(ε)) (1 + NpO(ε)) + C(δ + O(ε))Np.
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Then, since w
i(ε)
ε still converges to v in Lp(Ω; Rd), by (3.28), letting ε → 0+, we get

F ′′(v,A) ≤ F ′′(u,A) + C

(
1

N − 3
+ δ + δNp

)
.

Eventually, letting first δ → 0+ and then N → +∞, we obtain (3.24). Reversing the
roles of u and v we obtain the thesis.

Proof of Theorems 3.1 and 3.3. By the compactness property of the Γ-convergence
and by Proposition 3.8, there exists a subsequence (εjk) such that, for any (u,A) ∈
W 1,p(Ω; Rd) ×A(Ω), there holds

Γ(Lp)- lim
k

Fεjk
(u,A) := F (u,A)

(see [6, Theorem 10.3]). Moreover, by Proposition 3.4,

Γ(Lp)- lim
k

Fεjk
(u) = +∞

for u ∈ Lp(Ω; Rd) \ W 1,p(Ω; Rd). So far, it suffices to check that, for every (u,A) ∈
W 1,p(Ω; Rd) × A(Ω), F (u,A) satisfies all the hypotheses of Theorem 2.2. In fact, it
can be easily seen that the superadditivity property of Fε(u, ·) is conserved in the
limit. Thus, as an easy consequence of Propositions 3.5, 3.7, 3.8, and 3.9 and thanks
to the De Giorgi–Letta criterion (see [17], [6]), hypotheses (i), (ii), and (iii) hold true.
Moreover, as Fε(u,A) depends on u only through its difference quotients, hypothesis
(iv) is satisfied, and, finally, by the lower semicontinuity property of the Γ-limit, also
hypothesis (v) is fulfilled.

3.1. Convergence of minimum problems. In order to treat minimum prob-
lems with boundary data, we also derive a compactness theorem in case that our
functionals are subject to Dirichlet boundary conditions.

Given ϕ ∈ Lip (RN ) and l ∈ N, set, for any ε > 0 and A ∈ A(Ω),

Al
ε,ϕ(A) := {u ∈ Aε(R

N ) : u(α) = ϕ(α) if
(
α + [−lε, lε]N ) ∩Ac 	= ∅

)
}.(3.29)

Then define Fϕ,l
ε : Lp(Ω; Rd) ×A(Ω) → [0,+∞] as

Fϕ,l
ε (u,A) =

⎧⎨
⎩

Fε(u,A) if u ∈ Al
ε,ϕ(A),

+∞ otherwise.

(3.30)

By simplicity of notation we set Aε,ϕ(A) := A1
ε,ϕ(A) and Fϕ

ε := Fϕ,1
ε .

Theorem 3.10. Let {fξ
ε }ε,ξ satisfy (3.2), (3.3), and let (H1)–(H2) hold. Given

(εj), a sequence of positive real numbers converging to 0, let (εjk) and f be as in
Theorem 3.1. For any ϕ ∈ Lip (RN ), let Fϕ : Lp(Ω; Rd) ×A(Ω) → [0,+∞] be defined
as

Fϕ(u,A) =

⎧⎨
⎩

∫
A

f(x,∇u) dx if u− ϕ ∈ W 1,p
0 (A; Rd),

+∞ otherwise.

Then, for any A ∈ A(Ω) with Lipschitz boundary and l ∈ N, (Fϕ,l
εjk

(·, A)) Γ-converges

with respect to the Lp(Ω; Rd)-topology to the functional Fϕ(·, A).
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Proof. For the sake of simplicity we prove the theorem with l = 1, the proof being
the same in the other cases. Let us first prove the Γ-liminf inequality. Let (uk) be a
sequence of functions belonging to Aεjk ,ϕ

(A) converging to u in the Lp-topology such
that

lim inf
k

Fϕ
εjk

(uk, A) = lim
k

Fϕ
εjk

(uk, A) < +∞.

Then, from (3.2), we get in particular that

sup
k

N∑
i=1

∑
α∈R

ei
εjk

(A)

εNjk |D
ei
εjk

un(α)|p < +∞.(3.31)

Thanks to the boundary conditions on uk it is easy to deduce that

sup
k

N∑
i=1

∑
α∈R

ei
εjk

(Ω)

εN |Dei
εjk

un(α)|p < +∞.

Then, by reasoning as in the proof of Proposition 3.4, we can prove that u ∈ W 1,p(Ω; Rd),
and, since (uk) converge to ϕ in Lp(Ω \A; Rd), we get that u− ϕ ∈ W 1,p

0 (A; Rd). By
Theorem 3.3 one has

lim inf
k

Fϕ
εjk

(uk, A) = lim inf
k

Fεjk
(uk, A) ≥ Fϕ(u,A).

To prove the Γ-limsup inequality, let us first consider u ∈ W 1,p(Ω; Rd) such that
supp (u−ϕ) ⊂⊂ A. Let uk ∈ Aεjk

(Ω) be such that (uk) converges to u in Lp(Ω; Rd),
and

lim sup
k

Fεjk
(uk, A) = Fϕ(u,A).

Then, by reasoning as in the proof of Proposition 3.8, given δ > 0, we can find suitable
cut-off functions φk with supp (u− ϕ) ⊂⊂ supp φk ⊂⊂ A such that if we set

vk(α) := φk(α)uk(α) + (1 − φk(α))ϕ(α),

then (vk) still converges to u in Lp(Ω; Rd), vk ∈ Aεjk ,ϕ
(Ω) for k large enough, and

lim sup
k

Fεjk
(vk, A) ≤ lim supFεjk

(uk, A) + δ.

Thus, thanks to the definition of Γ-limsup, we have

Γ-limsupFϕ
εjk

(u,A) ≤ Fϕ(u,A) + δ.

By the arbitrariness of δ, we obtain the required inequality. In the general case
the thesis follows by a density argument, thanks to the lower semicontinuity of Γ-
limsup and to the continuity of F with respect to the strong convergence in
W 1,p(Ω; Rd).

As a consequence of the previous theorem we derive the following result about
the convergence of minimum problems with boundary data.
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Corollary 3.11. Under the hypotheses of Theorem 3.10 we get that, for any
ϕ ∈ Lip (RN ), l ∈ N and A ∈ A(Ω) with Lipschitz boundary,

lim
k

inf{Fεjk
(u,A) : u ∈ Al

εjk ,ϕ
} = min{F (u,A) : u− ϕ ∈ W 1,p

0 (A; Rd)}.

Moreover, if (uk) is a converging sequence such that

lim
k

Fεjk
(uk, A) = lim

k
inf{Fεjk

(u,A) : u ∈ Al
εjk ,ϕ

},

then its limit is a minimizer for min{F (u,A) : u− ϕ ∈ W 1,p
0 (A; Rd)}.

Proof. Let (uk) be a sequence such that Fεjk
(uk, A) < +∞. Then, by (3.2) and

by the boundary conditions on uk, it is easy to show that

sup
n

N∑
i=1

∑
α∈εnZN∩K

εN |Dei
εjk

uk(α)|p < +∞

for any compact set K of R
N . By virtue of this property, up to passing to a continuous

extension of uk vanishing outside a bounded open set containing Ω, we get

lim
|h|→0

sup
k

‖τhuk − uk‖Lp(RN ;Rd) = 0,

where we have set

(τhu)(x) := u(x + h), x ∈ R
N, h ∈ R

N .

Then, by the Frechét–Kolmogorov theorem, there exists a subsequence (ukn) converg-
ing in Lp(Ω; Rd) to a function u ∈ Lp(Ω; Rd). Arguing as in the previous proof it is
easy to show that u− ϕ ∈ W 1,p

0 (Ω). The thesis follows, thanks to Theorem 3.10 and
Theorem 2.1.

We can also derive the analogue of Theorem 3.10 and Corollary 3.11 about the
convergence of minimum problems with periodic conditions.

Let Q(Ω) be the family of all open N -cubes contained in Ω. For any ε > 0, r > 0,
Q = (x0, x0 + r)N ∈ Q(Ω), and ϕ ∈ Lip (RN ), set

rε = ε
([r

ε

]
− 2

)
,

A#
ε,ϕ(Q) =

{
u ∈ Aε(R

N ) : u− ϕ̂ rε − periodic
}
,

where ϕ̂ ∈ Aε(R
N ), ϕ̂(α) = ϕ(α) for any α ∈ εZN . Then define Fϕ,#

ε : Lp(Ω; Rd) ×
Q(Ω) → [0,+∞] as

Fϕ,#
ε (u,Q) =

⎧⎨
⎩

Fε(u,Q) if u ∈ A#
ε,ϕ(Q),

+∞ otherwise.

(3.32)

Theorem 3.12. Let {fξ
ε }ε,ξ satisfy (3.2), (3.3), and let (H1)–(H2) hold. Given

(εj), a sequence of positive real numbers converging to 0, let (εjk) and f be as in
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Theorem 3.1. Then, for any ϕ ∈ Lip (RN ), let F# : Lp(Ω; Rd) ×Q(Ω) → [0,+∞] be
defined as

Fϕ,#(u,Q) =

⎧⎨
⎩

∫
Q

f(x,∇u) dx if u ∈ W 1,p
# (Q; Rd),

+∞ otherwise.

Then, for any Q ∈ Q(Ω), (Fϕ,#
εjk

(·, Q)) Γ-converges with respect to the Lp(Ω; Rd)-

topology to the functional Fϕ,#(u,Q).

Proof. To prove the Γ-liminf inequality, let (uk) be a sequence of functions be-
longing to A#

εjk ,ϕ
(Q) converging to u in the Lp-topology such that

lim inf
k

Fϕ,#
εjk

(uk, Q) = lim
k

Fϕ,#
εjk

(uk, Q) < +∞.

Then, arguing as in the proof of Theorem 3.10 and observing that rε → r, we can
conclude that u− ϕ ∈ W 1,p

# (Q; Rd), and

lim inf
k

Fϕ,#
εjk

(uk, Q) ≥ Fϕ,#(u,Q).

By a density argument it suffices to prove the Γ-limsup inequality for u such that
u−ϕ ∈ W 1,∞

# (Q′; Rd) for any open N -cube Q′ such that (x0 +δ, x0 +r−δ) ⊆ Q′ ⊆ Q

for some δ > 0. Note that, for such a u, Aεjk ,u
⊆ A#

εjk ,ϕ
for k large enough. Then

the existence of a recovery sequence is ensured by Theorem 3.10.

As a consequence of the previous theorem, by reasoning as in the proof of Corol-
lary 3.11 one can prove the following result.

Corollary 3.13. Under the hypotheses of Theorem 3.12 we get that, for any
ϕ ∈ Lip (RN ) and Q ∈ Q(Ω),

lim
k

inf{Fεjk
(u,Q) : u ∈ A#

εjk ,ϕ
(Q)} = min{F (u,Q) : u− ϕ ∈ W 1,p

# (Q; Rd)}.

Moreover, if (uk) is a converging sequence such that

lim
k

Fεjk
(uk, Q) = lim

k
inf{Fεjk

(u,Q) : u ∈ A#
εjk ,ϕ

},

then its limit is a minimizer for min{F (u,Q) : u− ϕ ∈ W 1,p
# (Q; Rd)}.

4. Homogenization. In this section we will show that if the functions fξ
ε are

obtained by rescaling by ε functions fξ periodic in the space variable, then a Γ-
convergence result holds true. This models the case when the arrangement of the
“material points” presents a periodic feature (see Figure 4).

Let k = (k1, . . . , kN ) ∈ ZN be given, and set

Rk := (0, k1) × · · · × (0, kN ).

For any ξ ∈ ZN , let fξ : ZN × Rd → [0,+∞) be such that fξ(·, z) is Rk-periodic for
any z ∈ Rd. Then we consider fξ

ε of the following form:

fξ
ε (α, z) := fξ

(α
ε
, z

)
.(4.1)
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Fig. 4. Example of periodic structure.

In this case, the growth conditions (3.2) and (3.3) and hypotheses (H1) and (H2) can
be rewritten as follows:

fei(α, z) ≥ c1(|z|p − 1) ∀i ∈ {1, . . . , N},(4.2)

fξ(α, z) ≤ Cξ(|z|p + 1),(4.3)

where ∑
ξ∈ZN

Cξ < +∞.(H3)

In what follows we will use the following notation: for any x = (x1, . . . , xN ) ∈ RN

define

[x]k :=

([
x1

k1

]
k1, . . . ,

[
xN

kN

]
kN

)
.

Moreover, for any A ∈ A(Ω), ε > 0, l ∈ N, and M ∈ Md×N we denote by Al
ε,M (A)

the set defined in formula (3.29) with ϕ(x) = Mx. By simplicity of notation, we set
A1

ε,M (A) := Aε,M (A). Finally, for every r > 0 we set Qr := (0, r)N .
The following theorem is the main result of this section, and its proof is obtained

by adapting a homogenization argument to the discrete setting. We remark that a
central role is played by Theorems 3.1 and 3.3 and by the convergence of minimum
problems with boundary data stated in Corollary 3.11. Moreover, we recall that the
following result has been already proven in [11] in the one-dimensional case, where a
more straightforward proof is possible.

Theorem 4.1. Let {fξ
ε }ε,ξ satisfy (4.1)–(4.3), and let (H3) hold. Then (Fε)

Γ-converges with respect to the Lp(Ω;Rd)-topology to the functional F : Lp(Ω;Rd) →
[0,+∞] defined as

F (u) =

⎧⎨
⎩

∫
Ω

fhom(∇u) dx if u ∈ W 1,p(Ω;Rd),

+∞ otherwise,

(4.4)
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where fhom : Md×N → [0,+∞) is given by the following homogenization formula:

fhom(M) := lim
h→+∞

1

hN
min

⎧⎨
⎩

∑
ξ∈ZN

∑
β∈Rξ

1(Qh)

fξ(β,Dξ
1v(β)), v ∈ A1,M (Qh)

⎫⎬
⎭ .(4.5)

Proof. Let (εn) be a sequence of positive numbers converging to 0. Then, by
Theorems 3.1 and 3.3, we can extract a subsequence (not relabelled) such that (Fεn) Γ-
converges to a functional F defined as in (3.4) and such that, for any u ∈ W 1,p(Ω;Rd),
A ∈ A(Ω),

Γ- lim
n

Fεn(u,A) =

∫
A

f(x,∇u) dx.

The theorem is proved if we show that f does not depend on the space variable x and
f ≡ fhom. To prove the first claim, by Theorem 2.2, it suffices to show that if we set

F (u,A) =

∫
A

f(x,∇u) dx,

then

F (Mx,B(y, ρ)) = F (Mx,B(z, ρ))

for all M ∈ Md×N , y, z ∈ Ω and ρ > 0 such that B(y, ρ)∪B(z, ρ) ⊂ Ω. We will prove
that

F (Mx,B(y, ρ)) ≤ F (Mx,B(z, ρ)),

the proof of the opposite inequality being analogous. By the inner regularity of
F (Mx, ·), given by Proposition 3.8, it suffices to show that for any ρ′ < ρ we get

F (Mx,B(y, ρ′)) ≤ F (Mx,B(z, ρ)).(4.6)

Then let vn ∈ Aεn(Ω) be such that (vn) converges to Mx in Lp(Ω;Rd), and

lim
n

Fεn(vn, B(z, ρ)) = F (Mx,B(z, ρ)).(4.7)

For n ∈ N, define un ∈ Aεn(Ω) as

un(α) :=

⎧⎨
⎩

vn

(
α− εn

[
y−z
εn

]
k

)
+ εnM

[
y−z
εn

]
k

if α ∈ εnZ
N ∩B(y, ρ′),

Mα otherwise.

Then it is easy to verify that (un) converges to Mx in Lp(Ω;Rd). Moreover, for n
large enough

Rξ
εn(B(y, ρ′)) − εn

[
y − z

εn

]
k

⊆ Rξ
εn(B(z, ρ)).

Thus, since, by the periodicity hypothesis, fξ(α−εn[y−z
εn

]k, z) = fξ(α, z) and Dξ
εun(α)

= Dξ
εvn(α− εn[y−z

εn
]k), we get for n large enough

Fεn(un, B(y, ρ′)) ≤ Fεn(vn, B(z, ρ)).
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Eventually, by (4.7), we obtain

F (Mx,B(y, ρ′)) ≤ lim inf
n→+∞

Fεn(un, B(y, ρ′))

≤ lim
n→+∞

Fεn(vn, B(z, ρ)) = F (Mx,B(z, ρ)).

In order to prove that f ≡ fhom, first note that, by the lower semicontinuity of F
in W 1,p(Ω;Rd), f is quasi-convex so that, by the p-growth properties of f , for any
A ∈ A(Ω) with Lipschitz boundary and for any M ∈ Md×N there holds

f(M) =
1

|A| min

{∫
A

f(∇u) dx : u−Mx ∈ W 1,p
0 (A;Rd)

}

=
1

|A| min
{
F (u,A) : u−Mx ∈ W 1,p

0 (A;Rd)
}

=
1

|A| lim
n

inf {Fεn(u,A) : u ∈ Aεn,M (A)} ,

where the last equality follows by Corollary 3.11. In particular, if x0 ∈ Ω and r > 0
are such that Qr(x0) := (x0, x0 + r)N ⊆ Ω, then

f(M) = lim
n

1

rN
inf{Fεn(u,Qr(x0)) : u ∈ Aεn,M (Qr(x0))}.

Without loss of generality, we may suppose x0 = 0. If we set

Tn :=

[
r

εn

]
+ 1,

then it is easy to show that Aεn,M (Qr) = Aεn,M (QεnTn) and that for ξ ∈ ZN

Rξ
εn (Qr) = Rξ

εn (QεnTn). Thus

f(M) = lim
n

1

rN
inf{Fεn(u,Q(0, εnTn)) : u ∈ Aεn,M (QεnTn

)}.

Eventually, through the change of variable

β =
α

ε
, v(β) =

1

ε
u(εβ),(4.8)

we get

f(M) = lim
n

(εn
r

)N

inf

⎧⎨
⎩

∑
ξ∈ZN

∑
β∈Rξ

1(QTn )

fξ(β,Dξ
1v(β)), v ∈ A1,M (QTn)

⎫⎬
⎭

= lim
n

1

TN
n

inf

⎧⎨
⎩

∑
ξ∈ZN

∑
β∈Rξ

1(QTn )

fξ(β,Dξ
1v(β)), v ∈ A1,M (QTn)

⎫⎬
⎭ ,

where the last equality holds since

lim
n

Tn
εn
r

= 1.

Then the thesis will follow by the next proposition.
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Proposition 4.2. Let fξ satisfy (4.2), (4.3), and (H3) for any ξ ∈ ZN . Then
the limit

lim
h→+∞

1

hN
inf

⎧⎨
⎩

∑
ξ∈ZN

∑
β∈Rξ

1(Qh)

fξ(β,Dξ
1v(β)), v ∈ A1,M (Qh)

⎫⎬
⎭

exists for all M ∈ Md×N .
Proof. Let M ∈ Md×N be fixed, and set

F1(v,A) :=
∑
ξ∈ZN

∑
β∈Rξ

1(A)

fξ(β,Dξ
1v(β)),

fh(M) :=
1

hN
inf {F1(v,Qh), v ∈ A1,M (Qh)} .

Moreover, for any R > 0, set

FR
1 (v,A) :=

∑
|ξ|≤R

∑
β∈Rξ

1(A)

fξ(β,Dξ
1v(β)),

fR
h (M) :=

1

hN
inf

{
FR

1 (v,Qh), v ∈ A1,M (Qh)
}
.

We prove that

lim
R→+∞

sup
h

|fR
h (M) − fh(M)| = 0.(4.9)

To this end, since fR
h (M) ≤ fh(M) for any h ∈ N and R > 0, it suffices to prove that

for any δ > 0, there exist Rδ > 0 such that

fh(M) ≤ fR
h (M) + δ ∀R > Rδ, h ∈ N.

Fix δ > 0, and let vRh ∈ A1,M (Qh) be such that

1

hN
FR
h (vRh , Qh) ≤ fR

h (M) +
1

R
.(4.10)

By testing the minimum problem defining fR
h (M) with v(α) = Mα, we get, by (4.3)

and (H3), that

fR
h (M) ≤ 1

hN
FR
h (Mα,Qh) ≤ C|M |p.

Thus, by (4.10) and (4.2), we obtain that

sup
h,R

1

hN

N∑
i=1

∑
β∈R

ei
1 (Qh)

|Dei
1 vRh (β)|p < +∞.

Then, by arguing as in the proof of Lemma 3.6 and thanks to the particular geometry
of the sets Qh, we deduce that

sup
h,R

1

hN
sup
ξ∈ZN

∑
β∈Rξ

1(Qh)

|Dξ
1v

R
h (β)|p < +∞.
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Eventually, we have

fh(M) ≤ 1

hN
Fh(vRh , Qh) ≤ 1

hN
FR
h (vRh , Qh) +

1

hN

∑
|ξ|>R

Cξ
∑

β∈Rξ
1(Qh)

|Dξ
1v

R
h (β)|p

≤ fR
h (M) +

1

R
+ C

∑
|ξ|>R

Cξ.

Thus, it suffices to choose Rδ > 0 such that for R > Rδ

1

R
+ C

∑
|ξ|>R

Cξ ≤ δ.

So far, in order to prove the thesis, it suffices to show that for any R > 0 there exists
the limit

lim
h

fR
h (M).

Set

fR,R
h (M) :=

1

hN
inf

{
FR

1 (v,Qh), v ∈ A[R]
1,M (Qh)

}
.

Using backward the scaling argument exploited in the proof of the previous propo-
sition and thanks to Theorem 3.10 and Corollary 3.11, one can show that, for any
subsequence (hn) ⊂ N, it is possible to extract a further subsequence (not relabelled)
such that

lim
n

fR
hn

(M) = lim
n

fR,R
hn

(M).(4.11)

Thus, to complete the proof, it is sufficient to prove that there exists the limit

lim
h

fR,R
h (M).

Let h ∈ N, and let vh ∈ A[R]
1,M (Qh) be such that

1

hN
FR

1 (vh, Qh) ≤ fR,R
h (M) +

1

h
.

For any k > h define a function uk ∈ A[R]
1,M (Qk) as follows:

uk(α) =

⎧⎨
⎩

vh(α− hi) + hM i if α ∈ hi + Qh, i ∈
{
0, . . . ,

[
k
h

]
− 1

}N
,

Mα otherwise.

Note that for any ξ ∈ ZN , |ξ| ≤ R we have

Rξ
1(Qk) ⊆

⎛
⎜⎝ ⋃

i∈{0,...,[ k
h ]−1}N

Rξ
1(hi + Qh)

⎞
⎟⎠ ∪Rξ

1

⎛
⎜⎝Qk \

⋃
i∈{0,...,[ k

h ]−1}N

(hi + Qh)

⎞
⎟⎠

∪

⎛
⎜⎝ ⋃

i∈{0,...,[ k
h ]−1}N

(
hi +

(
{0, . . . , h + R}N \ {0, . . . , h−R}N

))⎞⎟⎠ .
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Moreover, Dξ
1uk(α) = M ξ

|ξ| if α ∈ Rξ
1(Qk \

⋃
i∈{0,...,[ k

h ]−1}N (hi + Qh)) or

α ∈
⋃

i∈{0,...,[ k
h ]−1}N

(
hi +

(
{0, . . . , h + R}N \ {0, . . . , h−R}N

))
, and

#

⎛
⎜⎝Rξ

1

⎛
⎜⎝Qk \

⋃
i∈{0,...,[ k

h ]−1}N

(hi + Qh)

⎞
⎟⎠

⎞
⎟⎠ ≤ kN −

[
k

h

]N
hN ,

#
(
{0, . . . , h + R}N \ {0, . . . , h−R}N

)
≤ (h + R)N − (h−R)N .

Then, by (4.3) and (H3), we get

fR,R
k (M) ≤ 1

kN
FR

1 (uk, Qk) ≤
[
k

h

]N
1

kN
FR

1 (vh, Qh)

+ C|M |P 1

kN

(
kN −

[
k

h

]N
hN +

[
k

h

]N (
(h + R)N − (h−R)N

))

≤
[
k

h

]N
hN

kN

(
fR,R
h (M) +

1

h

)

+ C|M |P 1

kN

(
kN −

[
k

h

]N
hN +

[
k

h

]N (
(h + R)N − (h−R)N

))
.

By letting k tend to +∞, we then get

lim sup
k

fR,R
k (M) ≤ fR,R

h (M) +
1

h
+ C|M |P 1

hN

(
(h + R)N − (h−R)N

)
.

Eventually, letting h tend to +∞, we obtain

lim sup
k

fR,R
k (M) ≤ lim inf

h
fR,R
h (M),

that is, the conclusion.
Remark 4.3. In formula (4.5) we can replace A1,M (Qh) by Al

1,M (Qh) for any
fixed l ∈ N, the proof being exactly the same.

Remark 4.4. The function fhom in Theorem 4.1 also satisfies

fhom(M) = lim
h→+∞

1

hN
inf

⎧⎨
⎩

∑
ξ∈ZN

∑
β∈Rξ

1(Qh)

fξ

(
β,M

ξ

|ξ| + Dξ
1v(β)

)
,

v ∈ A1,# (Qh−2)

}
,(4.12)

where, for every k ∈ R,

A1,#(Qk) := {v ∈ A1(R
N ) : v k-periodic}.

This characterization can be proved by arguing as in the proof of Theorem 4.1 and
Proposition 4.2, taking into account Corollary 3.13 and recalling that, since fhom is
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quasi-convex, there holds

fhom(M) =
1

rN
min

{∫
Qr

fhom(M + ∇ψ) dx : ψ ∈ W 1,p
# (Qr;R

d)

}

=
1

rN
min

{
F (Mα + ψ,Qr) : ψ ∈ W 1,p

# (Qr;R
d)

}
.

As a consequence of Theorem 3.10, Corollary 3.11, and Theorem 4.1 we immediately
derive the following result about Γ-convergence and convergence of minimum problems
for homogeneous functionals subject to Dirichlet boundary conditions.

Theorem 4.5. For any ϕ ∈ Lip (RN ) and l ∈ N let Fϕ,l
ε be defined by (3.30),

and let Fϕ : Lp(Ω;Rd) ×A(Ω) → [0,+∞] be defined as

Fϕ(u,A) =

⎧⎨
⎩

∫
A

fhom(∇u) dx if u− ϕ ∈ W 1,p
0 (A;Rd),

+∞ otherwise.

(4.13)

Under the hypotheses of Theorem 4.1, Fϕ
ε (·, A) Γ-converges with respect to the

Lp(Ω;Rd)-topology to Fϕ(·, A) for any A ∈ A.
Corollary 4.6. Under the hypotheses of Theorem 4.5, for any ϕ ∈ Lip (RN ), l ∈

N, and A ∈ A(Ω),

lim
ε→0

inf{Fε(u,A) : u ∈ Al
ε,ϕ} = min{F (u,A) : u− ϕ ∈ W 1,p

0 (A;Rd)}.

Moreover, for any (εj) converging to zero as j tends to infinity, if (uj) is a converging
sequence such that

lim
j

Fεj (uj , A) = lim
j

inf{Fεj (u,A) : u ∈ Al
εj ,ϕ},

then its limit is a minimizer for min{F (u,A) : u− ϕ ∈ W 1,p
0 (A;Rd)}.

An analogous result about the convergence of minimum problems with periodic
conditions follows by Theorem 3.12 and Corollary 3.13.

5. The convex case: A cell problem formula. In this section we will see that
in the convex case the function fhom can be rewritten by a single periodic minimization
problem on the periodic cell Rk. Set

k̂ :=

N∏
i=1

ki,

Ik :=

N∏
i=1

{0, . . . , ki − 1},

and

A1,#(Rk) := {u ∈ A1(R
N ) : u is Rk-periodic}.

Theorem 5.1. Let (fξ
ε )ε,ξ satisfy all the assumptions of Theorem 4.1, and in,

addition, let fξ
ε (α, ·) be convex for all α ∈ εZN , ε > 0, and ξ ∈ ZN . Then the

conclusion of Theorem 4.1 holds with fhom satisfying

fhom(M) =
1

k̂
inf

⎧⎨
⎩

∑
ξ∈ZN

∑
β∈Ik

fξ

(
β,M

ξ

|ξ| + Dξ
1v(β)

)
, v ∈ A1,# (Rk)

⎫⎬
⎭
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for all M ∈ Md×N .
Proof. Set

f(M) :=
1

k̂
inf

⎧⎨
⎩

∑
ξ∈ZN

∑
β∈Ik

fξ

(
β,M

ξ

|ξ| + Dξ
1v(β)

)
, v ∈ A1,# (Rk)

⎫⎬
⎭ .

We first prove that

fhom(M) ≤ f(M).(5.1)

With fixed δ > 0, let v ∈ A1,# (Rk) be such that

1

k̂

∑
ξ∈ZN

∑
β∈Ik

fξ

(
β,M

ξ

|ξ| + Dξ
1v(β)

)
≤ f(M) + δ.

f#
h (M) := inf

⎧⎨
⎩

∑
xi∈ZN

∑
β∈Rξ

1(Qh)

fξ

(
β,M

ξ

|ξ| + Dξ
1v(β)

)
, v ∈ A1,#(Qh−2)

⎫⎬
⎭ .

For n ∈ N, since in particular v ∈ A1,#(Qnk̂), we get

f#

nk̂+2
(M) ≤

∑
ξ∈ZN

∑
β∈Rξ

1(Qnk̂)

fξ

(
β,M

ξ

|ξ| + Dξ
1v(β)

)

≤ nN k̂N−1
∑
ξ∈ZN

∑
β∈Ik

fξ

(
β,M

ξ

|ξ| + Dξ
1v(β)

)
,

where the last inequality follows by the periodicity of v, (f(·, z)) and by the fact that

Qnk̂ is the union of nN k̂N−1 periodicity cells. Eventually, by Remark 4.4, we get

fhom(M) ≤ lim sup
n

1

(nk̂ + 2)N
f#

nk̂+2
(M)

≤ 1

k̂

∑
ξ∈ZN

∑
β∈Ik

fξ

(
β,M

ξ

|ξ| + Dξ
1v(β)

)
≤ f(M) + δ,

and inequality (5.1) follows by letting δ tend to 0. Let us prove that

fhom(M) ≥ f(M).

For any R > 0, set

fR
hom(M) := lim

h→+∞

1

hN
inf

⎧⎨
⎩

∑
|ξ|≤R

∑
β∈Rξ

1(Qh)

fξ(β,Dξ
1v(β)), v ∈ A[R]

1,M (Qh)

⎫⎬
⎭ ,

f
R
(M) :=

1

k̂
inf

⎧⎨
⎩

∑
|ξ|≤R

∑
β∈Ik

fξ

(
β,M

ξ

|ξ| + Dξ
1v(β)

)
, v ∈ A1,# (Rk)

⎫⎬
⎭ .
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By (4.9) and (4.11)we easily derive that

lim
R→+∞

fR
hom(M) = fhom(M).

Analogously one can prove that

lim
R→+∞

f
R
(M) = f(M).

Thus it suffices to prove that for any R > 0

fR
hom(M) ≥ f

R
(M).(5.2)

For n ∈ N, let u ∈ A[R]
1,M (Qnk̂), and let v ∈ A1,#(Qnk̂) be such that

v(α) = u(α) −Mα ∀α ∈ Qnk̂.

Moreover, set

Ink :=

N∏
i=1

⎧⎨
⎩0, . . . , n

∏
j �=i

kj − 1

⎫⎬
⎭ .

Then we get

1

(nk̂)N

∑
|ξ|≤R

∑
β∈Rξ

1(Qnk̂)

fξ

(
β,M

ξ

|ξ| + Dξ
1v(β)

)

=
1

(nk̂)N

∑
|ξ|≤R

∑
β∈{0,...,nk̂}N

fξ

(
β,M

ξ

|ξ| + Dξ
1v(β)

)
−O

(
1

n

)

=
1

k̂

∑
|ξ|≤R

∑
β∈Ik

1

k̂N−1nN

∑
γ∈In

k

fξ

(
β,M

ξ

|ξ| + Dξ
1v

(
β +

N∑
i=1

γikiei

))
−O

(
1

n

)

≥ 1

k̂

∑
|ξ|≤R

∑
β∈Ik

fξ

⎛
⎝β,M

ξ

|ξ| +
1

k̂N−1nN

∑
γ∈In

k

Dξ
1v

(
β +

N∑
i=1

γikiei

)⎞
⎠−O

(
1

n

)
,

where in the last inequality we have used the convexity hypothesis on fξ. Eventually,
set

vn(β) :=
1

k̂N−1nN

∑
γ∈In

k

v

(
β +

N∑
i=1

γikiei

)
.

It is easy to show that vn ∈ A1,#(Rk), and so, by the previous inequality, we get

1

(nk̂)N

∑
|ξ|≤R

∑
β∈Rξ

1(Qnk̂)

fξ

(
β,M

ξ

|ξ| + Dξ
1v(β)

)

≥ 1

k̂

∑
|ξ|≤R

∑
β∈Ik

fξ

(
β,M

ξ

|ξ| + Dξ
1vn(β)

)
−O

(
1

n

)

≥ f
R
(M) −O

(
1

n

)
.
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Passing to the inf with respect to u ∈ AR
1,#(Qnk̂), we get

fR,R

nk̂+2
(M) ≥ f

R
(M) −O

(
1

n

)
,

and then, letting n tend to +∞, we obtain (5.2).
Remark 5.2 (quadratic forms). Under the hypotheses of Theorem 5.1, if, in

addition, for any ξ ∈ ZN fξ(α, ·) is a positive quadratic form on Rd, that is,

fξ(α, z) = 〈Aξ(α)z, z〉, Aξ(α) ∈ Md×d
sym,

then, thanks to Remark 3.2, the limit energy density fhom(·) is a homogeneous
quadratic form on Md×N , and formula (3.5) becomes

fhom(M)= Ahom (M,M)

=
1

k̂
inf

{ ∑
ξ∈ZN

∑
β∈Ik

〈
Aξ(β) ·

(
M

ξ

|ξ| + Dξ
1v(β)

)
,

(
M

ξ

|ξ| + Dξ
1v(β)

)〉
,

v ∈ A1,# (Rk)

}

with Ahom ∈ T2(Md×N ).
If N = d = 1 and only nearest-neighbor interactions are taken into account, that

is,

fξ ≡ 0 if ξ 	= e1, fe1(α, z) = a(α)z2,

with a : ZN → (0,+∞) k-periodic, the previous minimum problem can be easily
solved (see [9]), giving the analogue in the discrete setting of a well-known homoge-
nization result for integral functionals (see [6]). In fact, in this case

Ahom =
1

k

⎛
⎝k−1∑

β=0

1

a(β)

⎞
⎠

−1

is the harmonic mean of a(·).
Remark 5.3. Note that if Rk = (0, 1)N , that is, fξ does not depend on the space

variable α, in Theorem 5.1 we obtain

fhom(M) =
∑
ξ∈ZN

fξ

(
M

ξ

|ξ|

)
.

6. Interactions along independent directions and reduction to the one-
dimensional case. In this section we first recall some results proven in the one-
dimensional setting in [11], where a nonasymptotic formula defining the limit energy
density fhom is provided when only nearest and next-to-nearest neighbor interactions
are considered.

Then in Theorem 6.3 we will show that if only interactions along the coordinate
directions are taken into account, the N -dimensional problem can be reduced to a
one-dimensional one.
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The following two theorems have been proven in [11] in the case d = 1. Their
proof in the case d > 1 is the same.

Theorem 6.1 (nearest-neighbor interactions). Let Ω = (0, l) ⊂ R, and let
Fε : Lp(Ω;Rd) → [0,+∞) be defined as

Fε(u) :=

⎧⎪⎨
⎪⎩

l−2∑
i=1

εf

(
u(ε(i + 1)) − u(εi)

ε

)
if u ∈ Aε(Ω),

+∞ otherwise,

with f : Rd → [0,+∞) satisfying f(z) ≥ C(|z|p−1). Then the conclusions of Theorem
4.1 hold with

fhom(z) = f∗∗(z).

Theorem 6.2 (next-to-nearest neighbor interactions). Let Ω = (0, l) ⊂ R, and
let Fε : Lp(Ω;Rd) → [0,+∞) be defined as

Fε(u) :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

l−2∑
i=1

εf1

(
u(ε(i + 1)) − u(εi)

ε

)
+

l−3∑
i=1

εf2

(
u(ε(i + 2)) − u(εi)

2ε

)

if u ∈ Aε(Ω),

+∞ otherwise,

with f1, f2 : Rd → [0,+∞) satisfying f1(z) ≥ C(|z|p − 1). Then the conclusions of
Theorem 4.1 hold with

fhom(z) = f̃∗∗(z),

where f̃(z) = f2(z) + 1
2 inf{f1(z1) + f1(z2), z1 + z2 = 2z}. Back to the general

N -dimensional setting, we consider now energies of the form

Fε(u) =

⎧⎪⎨
⎪⎩

N∑
i=1

F i
ε(u,Ω) if u ∈ Aε(Ω),

+∞ otherwise,

(6.1)

where, for any i ∈ {1, . . . , N}, F i
ε : Aε(Ω) ×A(Ω) → [0,+∞] is defined as

F i
ε(u,A) :=

+∞∑
k=1

∑
α∈R

kei
ε (A)

εNfk
i (Dkei

ε u(α)),(6.2)

with fk
i : Rd → [0,+∞) satisfying

f1
i (z) ≥ c(|z|p − 1), fk

i (z) ≤ Ck
i (|z|p + 1),

and

N∑
i=1

+∞∑
k=1

Ck
i < +∞.
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This is a particular case of the model considered in section 4, with fξ ≡ 0 if ξ 	= kei,
fkei(0, z) = fk

i (z), i ∈ {1, . . . , N}, k ∈ N, and Rk = (0, 1)N .
The following theorem shows that, in this case, the homogenization formula defin-

ing fhom can be rewritten as a sum of N one-dimensional homogenization formulas.
Theorem 6.3. Let Fε be defined by (6.2). Then the Γ-convergence result stated

in Theorem 4.1 holds with fhom satisfying

fhom(M) =

N∑
i=1

f̃i(M
i)(6.3)

for any M = (M1, . . . ,MN ) ∈ Md×N , where f̃i : Rd → R, i ∈ {1, . . . , N}, is defined
by the following one-dimensional homogenization formula:

f̃i(z) := lim
h→+∞

1

h
inf

⎧⎨
⎩

+∞∑
k=1

h−k−1∑
j=1

fk
i

(
v(j + k) − v(j)

k

)
, v ∈ A1,z((0, h))

⎫⎬
⎭ .

Proof. We first prove that

fhom(M) ≥
N∑
i=1

f̃i(M
i).

To do this, by the definition of fhom(M), it suffices to show that for any i ∈ {1, . . . , N},
u ∈ A1,M (Qh) we have

1

hN
F i

1(u,Qh) ≥ f̃i(M
i) + O(h).(6.4)

We use a slicing argument. For i ∈ {1, . . . , N}, set

mi
h(z) :=

1

h
inf

⎧⎨
⎩

+∞∑
k=1

h−k−1∑
j=1

fk
i

(
v(j + k) − v(j)

k

)
, v ∈ A1,z((0, h))

⎫⎬
⎭ .

By simplicity of notation, we prove (6.4) for i = 1. Given u ∈ A1,M (Qh), we may
write

F1
1 (u,Qh) =

∑
β∈{1,...,h−1}N−1

+∞∑
k=1

h−k−1∑
j=1

fk
1

(
u(j + k, β) − u(j, β)

k

)
.(6.5)

Since for any β ∈ {1, . . . , h − 1}N−1 the function v(j) := u(j, β) − M̃β belongs to
A1,M1(0, h), where M̃ :=

(
M2, . . . ,MN

)
, from (6.5) we get

1

hN
F1

1 (u,Qh) ≥ 1

hN−1
#

(
{1, . . . , h− 1}N−1

)
m1

h(M1) ≥ m1
h(M1).

We then easily infer inequality (6.4).
We now prove that

fhom(M) ≤
N∑
i=1

f̃i(M
i).(6.6)
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With fixed η > 0, for any i ∈ {1, . . . N} let vih ∈ A2
1,Mi(0, h) be such that

1

h

+∞∑
k=1

h−k−1∑
j=1

fk
i

(
vih(j + k) − vih(j)

k

)
≤ mi

h(M i) + η,(6.7)

and set

uh(α) :=

N∑
i=1

vih(αi), α = (α1, . . . , αN ).

Note that uh ∈ Mα + A1,#(Qh−2). Moreover, by the analogue of (6.5) applied to
F i

1(u,Qh) for any i ∈ {1, . . . , N} and by (6.7), we easily deduce that

1

hN

N∑
i=1

F1(uh, Qh) ≤
N∑
i=1

mi
h(M i) + Nη.

Eventually, by the characterization of fhom given by formula (4.12), letting first h
tend to +∞ and then η tend to 0, we get (6.6).

Remark 6.4. Note that formula (6.3) highlights that a superposition principle
holds, in the sense that the limit energy is obtained by relaxing the energies due to
the interactions in every coordinate direction independently and then summing over
them.

Remark 6.5. (a) (nearest-neighbors) by Theorem 6.1, if fk
i = 0 for all k 	= 1,

then formula (6.3) can be rewritten as

fhom(M) =

N∑
i=1

(f1
i )∗∗(M i);

(b) (next-to-nearest neighbors) by Theorem 6.2, if fk
i = 0 for all k 	= 1, 2, then formula

(6.3) can be rewritten as

fhom(M) =

N∑
i=1

(f̃i)
∗∗(M i),

with

f̃i(z) = f2
i (z) +

1

2
inf{f1

i (z1) + f1
i (z2), z1 + z2 = 2z}.

7. An example of quasi-convex nonconvex limit energy density. In the
following we provide an example of vector-valued discrete interaction energies defined
in the plane whose continuous counterpart has an energy density which is a quasi-
convex (nonpolyconvex) function. Our example draws inspiration from Šverák’s con-
struction of a quasi-convex function which is not polyconvex (see [21]). Let N = d = 2,
p > 1, and define fi : R2 → [0,+∞), i = 1, 2, 3, as

fi(z) =

⎧⎨
⎩

1 + |z|p if z 	= ± ξi
|ξi| ,

0 otherwise,
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where ξ1 = e1, ξ2 = e2, ξ3 = e1 + e2. Let Fε be defined as

Fε(u) =

3∑
i=1

∑
α∈R

ξi
ε

ε2fi
(
Dξi

ε u(α)
)
;

then the conclusions of Theorems 4.1 and 4.5 and Corollary 4.6 hold with fhom given
by

fhom(M) = lim
h→+∞

1

hN
min

⎧⎪⎨
⎪⎩

3∑
i=1

∑
β∈R

ξi
1 (Qh)

fi(D
ξi
1 v(β)), v ∈ A1,M (Qh)

⎫⎪⎬
⎪⎭ .

Theorem 7.1. fhom is not convex.
Proof. By testing the minimum problem defining fhom with the identity function

and its opposite, we immediately obtain that

fhom(I) = fhom(−I) = 0,

where I is the identity matrix in M2×2. The claim is proven if we show that
fhom(0) > 0. We argue by contradiction. Without loss of generality we may as-
sume that Theorem 4.5 holds with A = Q1. If fhom(0) were zero, there should exist
a sequence un ∈ Aεn,0(Q1) such that un → 0 in Lp(Q1;R

2) and

lim
n

Fεn(un) = 0.(7.1)

Set

T+ := {(x1, x2) ∈ R2 : 0 ≤ x1 ≤ 1, x1 ≤ x2 ≤ 1},
T− := {(x1, x2) ∈ R2 : 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ x1},

and consider the family of piecewise affine functions vn : Q1 → R2 defined as follows:

vn(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

un(α) + De1
εnun(α)(x1 − α1)

+De2
εnun(α + εne1)(x2 − α2) if x ∈ α + εnT

−,

un(α) + De1
εnun(α + εne2)(x1 − α1)

+De2
εnun(α)(x2 − α2) if x ∈ α + εnT

+.

Note that vn|∂Q1
= 0. Moreover, it is easy to check that

Fεn(un) =

∫
Q1

f̃(∇vn) dx,(7.2)

where f̃ : M2×2 → [0,+∞) is defined as

f̃(ζ) := f1(ζ1) + f2(ζ2) + f3

(
ζ1 + ζ2√

2

)
, ζ = (ζ1, ζ2) ∈ M2×2.

In particular, by (7.1)

lim
n

∫
Q1

f̃(∇vn) dx = 0.(7.3)
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Since we have

f̃(ζ) ≥ c(|ζ11 − ζ22|p + |ζ12 + ζ21|p),

by (7.1) and (7.2) we obtain

lim
n

∫
Q1

(|∇1v
1
n −∇2v

2
n|p + |∇1v

2
n + ∇2v

1
n|p) dx = 0.(7.4)

Since

∆v1
n = div(∇1v

1
n −∇2v

2
n,∇1v

2
n + ∇2v

1
n),

∆v2
n = div(∇1v

2
n + ∇2v

1
n,−∇1v

1
n + ∇2v

2
n),

using the Lp estimates for the Laplace operator (see [19]) we obtain that

‖∇vin‖
p
Lp(Q1;R2) ≤ ‖∆vin‖

p
W−1,p(Q1;R2)

≤
∫
Q1

(|∇1v
1
n −∇2v

2
n|p + |∇1v

2
n + ∇2v

1
n|p) dx

for i = 1, 2. Then, by (7.4) and the previous estimates, ∇vn converges to 0 strongly
in Lp(Q1;M

2×2), so that

lim
n

∫
Q1

f̃(∇vn) dx = f̃(0) |Q1| > 0.

Hence we reach a contradiction.
Remark 7.2. In the particular case 1 < p < 2, thanks to the growth hypotheses

on fi, fhom is a quasi-convex nonpolyconvex function (see [6, Remark 6.9]).
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Abstract. The authors introduce two nonlinear advection-diffusion equations, each of which
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1. Introduction. We introduce two nonlinear advection-diffusion equations that
each combine Burgers’s convection with a fourth order nonlinear diffusion intended
for image processing:

(YK) ut +

(
1

2
u2

)
x

= −(g(uxx)uxx)xx

and

(TT) ut +

(
1

2
u2

)
x

= −(g(uxx)uxxx)x,

with g(s) = 1
1+s2 . Very little is known about the fourth order diffusions, despite recent

demonstrations of their effectiveness for image denoising [43, 51]. The combined
advection-diffusion equations have the possibility of smooth traveling wave solutions
approximating Burgers’s shocks. We prove rigorously that such smooth traveling wave
solutions of (YK) do not exist for sufficiently large jumps, whereas smooth traveling
wave solutions of (TT) exist for all jump values. These results suggest very different
behavior of the fourth order nonlinear imaging equations introduced by You and
Kaveh [51] and Tumblin and Turk [43].
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1.1. Nonlinear PDEs for image denoising. Nonlinear PDEs are now com-
monly used in image processing for issues ranging from edge detection, denoising,
and image inpainting to texture decomposition. Before the development of nonlinear
PDE-based methods, the problem of noise reduction in images was treated through
linear filtering, in which the image intensity function is convolved with a Gaussian.
The method of linear filtering was introduced by Marr and Hildreth [34] and then
further developed by Witkin [50], Koenderink [28], and Canny [15]. It is equivalent to
solving the heat equation with initial data given by the noisy image intensity function.
Although this technique quickly damps out any noise in the image, it also badly blurs
edges, often leaving objects in the image unrecognizable.

Nonlinear second order PDEs were introduced with the intention of smoothing
while preserving edges. Examples of second order nonlinear PDEs for image processing
date back to the seminal works of Perona and Malik [36] and Rudin, Osher, and Fatemi
[38]. Their methods are based on a nonlinear version of the heat equation,

ut = ∇ · ((g(|∇u|)∇u),(1.1)

in which the “thresholding function” g is small in regions of sharp gradients. A number
of mathematical issues arise with these equations and their use. For example, Perona
and Malik suggest using a smooth, positive, and even function g that decays fast
enough for large ∇u so that significant diffusion takes place only in regions away from
image edges. Specifically, Perona and Malik required the existence of some K > 0
such that

d

ds
(g(s)s) > 0 for 0 < s < K(1.2)

and

d

ds
(g(s)s) < 0 for s > K.(1.3)

However, the nonmonotonicity of g(s)s causes (1.1) to be ill-posed in regions of high
gradients, and the ensuing dynamics result in a characteristic “staircase” instability.
Following [1] and [26], the cause of this ill-posedness can be seen by rewriting the
Laplacian locally in terms of ν = ∇u

|∇u| and a direction η perpendicular to ν. Letting

F (s) = g(s)s, (1.1) can be rewritten as

ut = F ′(|∇u|)uνν + g(|∇u|)uηη.(1.4)

Requirement (1.3) then implies that in regions where |∇u| > K, (1.4) (and therefore
(1.1)) is backwards parabolic in the direction of the gradient.

A typical thresholding function g is

g(s) =
1

1 +
(
s
k

)2 ,(1.5)

where k is a parameter used to establish a standard edge size for the image [21, 27,
45, 46]. Figure 1 shows (1.5) for k = 1. We note that degenerate parabolic equations
which have structure similar to those of Perona and Malik, and which exhibit the
same “staircasing” effect, arise in simplified models for the velocity field of a sheared
granular medium [49].
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Fig. 1. An example thresholding function. g(s) and g(s)s are shown for g(s) = 1
1+s2

.

In the past few years, a number of authors have proposed analogous fourth order
PDEs for edge detection and image denoising with the hope that these methods would
perform better than their second order analogues [17, 18, 32, 33, 43, 44, 51]. Indeed
there are good reasons to consider fourth order equations. First, fourth order linear
diffusion damps oscillations at high frequencies (i.e., noise) much faster than second
order diffusion. Second, there is the possibility of having schemes that include effects
of curvature (i.e., the second derivatives of the image) in the dynamics, thus creating
a richer set of functional behaviors. On the other hand, the theory of fourth order
nonlinear PDEs is far less developed than that of their second order analogues. Also,
such equations often do not possess a maximum principle or comparison principle,
and implementation of the equations could thus introduce artificial singularities or
other undesirable behavior.

Some examples of fourth order equations include the L2-curvature gradient flow
method of You and Kaveh [51],

ut = −∆(g(∆u)∆u),(1.6)

the Perona–Malik analogue by Wei [44],

ut = −∇ · (g(|∇u|)∇∆u),(1.7)

and Tumblin and Turk’s “low curvature image simplifiers” [43],

ut + ∇ · (g(Diju)∇∆u) = 0.(1.8)

In (1.8), g is a function of the second derivatives of the image intensity function u.
Although application of these PDEs to images as demonstrated in [43], [44], and [51]
give similar results, it is unclear how the dynamics of the equations compare to each
other and to the more established second order methods. Rigorous analysis is thus
needed to better understand the new PDEs. One immediate observation is that (1.6)
is linearly ill-posed in regions of high curvature, while (1.8) is not. Further insight
into the two equations is gained by again defining F (s) = g(s)s and noticing that
(1.6) can be rewritten as

ut = −F ′ (∆u) ∆2u− F ′′ (∆u) |∇∆u|2 ,(1.9)
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while picking Diju = ∆u allows us to rewrite (1.8) as

ut = −g (∆u) ∆2u− g′ (∆u) |∇∆u|2 .(1.10)

We see that (1.9), like (1.1), is ill-posed in regions where F ′ (s) is negative. On the
other hand, (1.10) is always linearly well-posed. Also note that (1.9) becomes unstable
in all directions when F ′ (s) changes sign, whereas (1.4) has the instability only in the
direction of ∇u.

A class of equations including (1.7) and (1.8) was studied in [24] by the authors,
who proved global existence of H1 solutions when the argument of g, in the form of
derivatives of the intensity u, is convolved with a standard mollifier kernel. However,
as is well known for some second order equations, as in (1.1), such mollification can
turn an ill-posed problem into a well-posed problem [16]. The resulting numerical
methods for the equations with mollification appear to smooth out, but not remove,
undesirable artifacts of the method without mollification, such as the staircase insta-
bility of the Perona–Malik method.

1.2. The model equations. We introduce two model problems designed for
studying the dynamics of these new image processing equations without mollification.
Both are convection-diffusion equations which can be studied by a combination of
analytical and computational methods. We introduce a Burgers convection into the
dynamics of the fourth order diffusions (1.6) and (1.8) in order to instigate shock
or jump-type behavior typical of edges in images. Such convective motion has real
application in image processing. One area in particular is image inpainting [2, 3], for
which image information is convectively flowed into a region where the image content
is unknown. Thus our study gives insight into the behavior of hybrid imaging methods
that combine diffusion and convection.

The two fourth order equations are compared with a second order convection
diffusion equation that was introduced in [23] and [29]. This equation combines a
Burgers convection term with the second order diffusion of (1.1). The authors of [23]
and [29] share our motivation of using these equations as tools for understanding the
diffusion dynamics.

The three model equations that we consider are

(PM) ut +

(
1

2
u2

)
x

= (g(ux)ux)x,

(YK) ut +

(
1

2
u2

)
x

= −(g(uxx)uxx)xx,

and

(TT) ut +

(
1

2
u2

)
x

= −(g(uxx)uxxx)x.

In each equation, we use the thresholding function

g(s) =
1

1 + s2
,(1.11)

as in [36]. Many of our results can be easily generalized to thresholding functions
g which satisfy the properties stated in [36]. Remarks are made regarding possible
generalizations of our results.
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The idea of creating a simplified model PDE in order to understand more complex
dynamics is an approach in applied analysis that has met with tremendous success in
recent decades. A few examples include applications in combustion [12], singularities
[25], aggregation in bacterial colonies [13], surface tension driven interfaces [4, 6, 11],
shockwaves [19], vortex dynamics [20], and solidification [39]. In imaging, a very
relevant problem is the interaction of higher order diffusion with jump discontinuities.
Thus it is very natural to consider a model problem combining Burgers’s equation,
which produces shocks, with higher order diffusion.

We are interested in one overarching question for all three problems: When do
the equations have smooth solutions, and when do they develop singularities (jumps
in u or its derivatives)? This fundamental question arises when using such methods
for image processing. Moreover, if a singularity forms, it is unclear whether a solution
to the equation will continue to exist, perhaps as a weak or distribution solution, as
is the case with shock dynamics.

We focus on a special class of similarity solutions—traveling waves of the form
u(x− ct). This traveling wave ansatz reduces the fourth order PDEs (YK) and (TT)
to third order ODEs, to which we apply phase plane analysis from dynamical systems
theory, as well as rigorous analysis using Conley index theory and estimates involving
Lyapunov functions. Analyzing the simpler Perona–Malik equation (PM) is much
more straightforward; however, it gives some insight and provides a standard for
comparison with the more complicated fourth order equations.

Our approach in this paper has been successfully used for other fourth order
nonlinear equations that model physical systems. A mathematically similar family of
PDEs are the lubrication equations used to model thin liquid films under the influence
of surface tension. These equations take the form

ut + ∇ · (m(u)∇∆u) = 0,

where m(u) is typically degenerate (i.e., f vanishes when u vanishes). Convection in
thin films can arise due to body forces such as gravity or surface stresses involving
gradients of surface tension. Recent analysis of traveling waves for the PDE

ut + (f(u))x = −(u3uxxx)x

has led to an understanding of compressive and undercompressive shock dynamics in
driven films [8, 10, 9, 14]. Similar work has also been done to study the convective
Cahn–Hilliard equation [47, 48]. We consider some of the analytical methods for these
problems in our study of traveling waves for image processing.

1.3. Organization. We derive traveling wave ODEs for all three PDEs in sec-
tion 2. By restricting ourselves to traveling wave solutions, the problems simplify to
nonlinear ODEs. Sections 3–5 each contain an analysis of one of the three travel-
ing wave ODEs. We first consider the simpler problem (PMODE) in section 3 and
use it as a standard for comparing (YKODE), discussed in section 4, and (TTODE),
considered in section 5. The three sections share the same outline. We first prove
analytic results for the considered ODE. These results are then illustrated with phase
plane visualizations which also provide strong evidence for ODE properties that are
not proved here. We close each section with a numerical demonstration of the PDE’s
behavior and its relationship with the corresponding ODE.
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2. Traveling wave solutions to PDEs. Traveling waves are similarity solu-
tions of the form

u(x, t) = φ(x− ct),(2.1)

where c ∈ R is the wave speed. By substituting (2.1) into the PDE, we reduce the
problem to an ODE in the variable ξ = x − ct. ODEs are typically easier to study,
as there are many well-understood analytical and numerical methods for examining
their qualitative behavior.

In this paper we consider traveling wave solutions that satisfy

lim
ξ→−∞

φ(ξ) = uL and lim
ξ→+∞

φ(ξ) = uR.(2.2)

Such solutions correspond to trajectories connecting φ = uL to φ = uR in the phase
space of the traveling wave ODE. They give diffusive shocks, similar to those for the
viscous Burgers equation [31]. The values of uL and uR determine the viscous shock’s
wave speed, c.

2.1. ODEs resulting from (PM), (YK), and (TT). Assume

u(x, t) = φ(x− ct) = φ(ξ)(2.3)

for some real number c to be determined. Using the notation φ′ := d
dξφ and substi-

tuting (2.3) into (PM), (YK), and (TT), we derive the ODEs

φ′(φ− c) = (g(φ′)φ′)′,(2.4)

φ′(φ− c) = −(g(φ′′)φ′′)′′,(2.5)

and

φ′(φ− c) = −(g(φ′′)φ′′′)′,(2.6)

respectively. Assuming (2.2) and that all of the derivatives of φ decay at infinity,
integrating each ODE yields

(PMODE) r(φ) = g(φ′)φ′,

(YKODE) r(φ) = −(g(φ′′)φ′′)′,

and

(TTODE) r(φ) = −g(φ′′)φ′′′,

where

r(φ) :=
1

2
φ2 − cφ +

1

2
uLuR,(2.7)

with wave speed

c =
1

2
(uL + uR).(2.8)

For reference, we call (PMODE) the Perona–Malik ODE, (YKODE) the You–
Kaveh ODE, and (TTODE) the Tumblin–Turk ODE. Each ODE has two equilibrium
points: L, where φ = uL, and R, where φ = uR. A trajectory of one of the given ODEs
is a traveling wave solution of the respective PDE if and only if that trajectory is a
heteroclinic orbit connecting L and R. Each equation also has an entropy condition
(which we derive) requiring uL > uR for such an orbit to exist. This entropy condition
is analogous to that of the viscous Burgers equation [31].
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2.2. Reducing the number of parameters. Consider (PMODE), for a given
pair uL and uR, and corresponding wave speed, c = 1

2 (uL + uR). Letting Φ = φ− c,
(PMODE) becomes

1

2

(
Φ2 − 1

4
(uR − uL)2

)
= g(Φ′)Φ′.(2.9)

The dynamics of (PMODE) and (2.9) are affected solely by the difference between uL

and uR. Changing their average, which gives the wave speed c, alters φ by only an
added constant. The same holds true for (YKODE) and (TTODE).

For simplicity, we consider only the case c = 0, and we do so without loss of
generality. All of our computational examples are done with φ(0) = c = 0. These ODE
solutions correspond to PDE solutions that travel with zero speed. We study the full
range of behavior of the traveling wave ODEs by adjusting only one parameter, γ :=
uL > 0. Insisting c = 0 forces uR = −γ. With these conditions r(φ) = 1

2

(
φ2 − γ2

)
.

For both fourth order equations, L = (0, 0, γ) and R = (0, 0,−γ). For (PMODE), L
corresponds to φ = γ, and R corresponds to φ = −γ.

2.3. Comparing the traveling wave ODEs. In [29], Kurganov, Levy, and
Rosenau proved the existence of traveling wave solutions of (PM) for the case g(s) =

1
1+s2 . Traveling wave solutions exist for only a small range of left and right states. In
particular, if uL is much larger than uR, the ODE will not have a solution connecting
L to R. We generalize the results of [23] and [30] in section 3, which contains a proof of
the existence of solutions of (PMODE) for the general class of functions g satisfying
the properties listed by Perona and Malik. By studying (PM) and (PMODE), we
develop a framework for analyzing the higher order equations. In section 3.4, we
compare solutions of (PMODE) with the PDE (PM). Numerical experiments show
a one-to-one correspondence between heteroclinic orbits of the ODE and attracting
steady state solutions of the PDE. When there is no trajectory connecting L to R
in the ODE, a jump discontinuity forms in the PDE. We show that this restriction
of left and right states stems from a singularity in the ODE which is caused by the
lack of monotonicity of g(s)s. The same dilemma also occurs in (YKODE), and we
establish results in section 3 that parallel the higher order problem.

The higher order diffusion makes analytical results more difficult to obtain for
(YKODE) and (TTODE). However, in section 4 we prove that (YKODE) does not
have a smooth solution connecting L and R for large γ. By studying the ODE phase
plane with the method introduced by [8], we discover that the unstable manifold of
the left state intersects the stable manifold of the right state only when γ is small
enough—just as in the second order case. We conclude the section by comparing the
ODE solutions with the PDE (YK).

The Tumblin–Turk ODE is remarkably different from the other two ODEs. In
section 5, we use a topological argument to prove that (TTODE) has smooth solutions
connecting L and R for all γ > 0. Cross-sections of its phase plane illustrate the key
differences between the phase plane geometries of (YKODE) and (TTODE). Once
again, we follow the discussion with numerical computations of the PDE.

3. Perona–Malik with advection. Equation (PM) is carefully studied in [23]
and [29]. We review and expand upon those results here, as they provide an excellent
foundation for our analysis of (YK) and (TT). We first prove that (PMODE) has an
orbit corresponding to a traveling wave solution of (PM) only when γ > 0 is smaller
than a critical value, γc. This result is followed with a numerical and asymptotic
description of solutions of (PMODE) for γ > γc.
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3.1. The traveling wave ODE. We consider a general thresholding function
g, as described in the introduction. Define

F (s) = g(s)s(3.1)

so that (PMODE) can be written as

r(φ) = F (φ′).

Since g(s)s is bounded, we can only define F−1 on a subset of R. F−1 has three
branches that depend on the unique K satisfying

g′(K)K + g(K) = 0.(3.2)

Two of these branches correspond to the regions |s| > K, where d
ds (g(s)s) < 0. The

third is an interior branch with its range centered around zero and corresponds to the
interval |s| < K, where d

ds (g(s)s) > 0. We define F−1 on the interior branch, since our
traveling waves have φ′ → 0 as ξ → ±∞. With this definition, we rewrite (PMODE)
as

φ′ = F−1(r(φ)),

with the requirement

|r(φ)| ≤ F (K) = g(K)K.(3.3)

This condition is satisfied if and only if

0 ≤ γ ≤
√

2g(K)K(3.4)

and is essential to proving the following theorem, which is proved in [29] for the specific
case g(s) = 1

1+s2 .
Theorem 3.1. Let g be a smooth, positive, and nonincreasing function of |s|,

with some K > 0 satisfying

d

ds
(g(s)s) > 0 for |s| < K and

d

ds
(g(s)s) < 0 for |s| > K.

Then the ODE (PMODE) has a continuous solution φ(ξ) satisfying

lim
x→−∞

φ(ξ) = γ and lim
x→+∞

φ(ξ) = −γ(3.5)

if and only if

0 ≤ γ ≤
√

2g(K)K.(3.6)

Proof. Any traveling wave solution of (PM) satisfying (2.2) corresponds to a
trajectory of (PMODE) connecting L, the point φ = γ, to R, the point φ = −γ. Such
a trajectory can only exist when γ > 0, since F−1(r(φ)) < 0 for |φ| < |γ|. This is
analogous to the Lax–Oleinik entropy condition for Burgers’s equation [31]. If γ ≤ 1,
r(φ) ≤

√
2g(K)K for all φ ∈ (−γ, γ), so the existence of an orbit connecting L to R

is obvious.
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Fig. 2. Heteroclinic orbits of (PMODE) for different values of γ. Solutions connecting L to R
exist only for γ ≤ 1. For γ = 1.1, we show two trajectories—one starting near L and one approaching
R.

Suppose γ >
√

2g(K)K. Any continuous heteroclinic orbit, φ, connecting L to R
must have φ(ξ0) = 0 for some ξ0. We calculate |r(0)| = 1

2γ
2 > g(K)K and remember

that g(s)s ≤ g(K)K for all s, implying that φ cannot possibly satisfy (PMODE).
Remark. For the remainder of the paper, we restrict the main part of our dis-

cussion to g(s) = 1
1+s2 , for which K = 1, and |g(s)s| ≤ 1

2 . Comments regarding
generalizing our results to other thresholding functions will be made throughout the
paper.

Figure 2 shows solutions of (PMODE) for g(s) = 1
1+s2 and various values of γ.

Equation (PMODE) has a trajectory connecting L to R only when γ ≤ 1. When
γ > 1, (PMODE) has only a solution near the equilibrium points. Starting with φ
slightly smaller than γ, we integrate forward in time until |r(φ)| = 1

2 = max {g(s)s}.
We then start with φ slightly larger than −γ and integrate backward in time until
|r(φ)| = 1

2 . Figure 2 shows φ(ξ) for γ = 1.1 in the regions of ξ, where F−1(r(φ(ξ))) is
defined.

3.2. Second order version of (PMODE). Expanding the right side of (2.4)
yields a second order form of the traveling wave ODE for (PM):

φ′ = (g′(φ′)φ′ + g(φ′))φ′′.(3.7)

Unlike (PMODE), (3.7) does not depend on the choice of γ. Due to the properties of
g, (3.7) becomes singular as |φ′| → 1. We rewrite (3.7) as a system of two ODEs:

φ′ = v, v′ =
φv

g′(v)v + g(v)
.(3.8)
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Fig. 3. Phase plane of ODE system (3.8). A series of trajectories are plotted for different
values of γ. If γ > 1, any connection from (γ, 0) to (−γ, 0) would need to pass through the line of
singularity, φ′ = −1.

System (3.8) has a line of equilibrium points at v = 0. Figure 3 shows integral curves
where φ → −γ as ξ → ∞ and φ → γ as ξ → −∞. Each integral curve coincides with
a particular value of γ. As γ increases, the integral curves move toward the singular
line v = −1, clearly illustrating the results of section 3 and showing why heteroclinic
orbits of (PMODE) do not exist for large γ. Such traveling waves would require φ′ to
pass through the singular value φ′ = −1.

3.3. Singularities in solutions of (PMODE). We now consider the behavior
of singular solutions of (PMODE). We examine two cases: γ > 1 and γ = 1. When
γ > 1, there is no traveling wave solution. We consider a trajectory φ(ξ) starting near
L and moving toward R and examine ξ0 satisfying

lim
ξ→ξ−0

φ′(ξ) = −1 and lim
ξ→ξ−0

φ(ξ) = φ∗

for some φ∗ > 0. We have φ′φ → −φ∗ as ξ → ξ0. Near φ′ = −1,

g′(φ′)φ′ + g(φ′) ∼ 1

2
(φ′ + 1),

so ∫ ξ0

ξ

−φ∗ ∼
∫ ξ0

ξ

(φ′ + 1)φ′′,

and

φ′(ξ) ∼
√

4φ∗(ξ0 − ξ) − 1.(3.9)
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When γ = 1, there is a nonsmooth traveling wave solution. In this case, φ∗ = 0 and
φ(ξ) ∼ −(ξ0 − ξ) near ξ = ξ0, so

φ′(ξ) ∼
√

2|ξ − ξ0| − 1.(3.10)

This singular behavior is demonstrated by the solid line trajectory in Figure 3.

3.4. Second order PDE computations. We test the stability of each trav-
eling wave solution found from (PMODE) by choosing an initial condition near the
traveling wave and numerically integrating the PDE (PM). We use centered differ-
ences in space and backward Euler in time with an adaptive time step. The Burgers
term is computed with a centered difference in flux form. We use Newton’s method
to approximate solutions of the nonlinear system, and the time step is adjusted to
expedite convergence of Newton’s method. If convergence requires more than three
iterations, the time step is decreased by 10%.

Figure 4 shows computations for γ = 1 and γ = 1.1. When 0 ≤ γ ≤ 1 (PMODE)
has a heteroclinic orbit between L and R. The case γ = 1 is discussed in section
3.3. This traveling wave, φ, is continuous but nonsmooth. φ′ behaves like (3.10) near
φ = 0. Given an initial condition near this traveling wave, the PDE solution converges
to the traveling wave solution, as long as the gradient of the initial condition is not too
large (for large gradients, (PM) becomes ill-posed, and a jump discontinuity occurs).
There is no traveling wave solution for γ > 1, as seen in the computations for γ = 1.1;
although the initial condition is smooth with small gradient, a discontinuity develops
in finite time, and the long time solution has a jump discontinuity.

4. You–Kaveh with advection. Equation (YK) shares many of the properties
of (PM). We prove that orbits of (YKODE) corresponding to traveling wave solutions
of (YK) do not exist when γ is too large. This nonexistence follows from a singularity
in (YKODE) that is analogous to that of (PMODE). We study the phase space of
(YKODE) for evidence of the existence of traveling wave solutions when γ is small.
For simplicity, we assume g(s) = 1

1+s2 , which is the thresholding function chosen by
You and Kaveh in [51]. However, our results generalize to other thresholding functions
as described in section 1.1.

4.1. The traveling wave ODE. Equation (YKODE) can be expanded to

r(φ) = − (g′(φ′′)φ′′ + g(φ′′))φ′′′.(4.1)

Since g′(s)s + g(s) = 0 for s = ±1, we immediately see a similarity to (PMODE): a
solution φ of (YKODE) becomes singular in φ′′′ when |φ′′| → ±1, just as a solution φ
of (PMODE) becomes singular in φ′′ when |φ′| → ±1.

Remark. For general functions g as described in [36], there exists a K > 0
satisfying (3.2), so (4.1) is singular at φ′′ = ±K. A solution φ of (PMODE) becomes
singular in φ′′ when |φ′| → K, and a solution φ of (YKODE) becomes singular in φ′′′

when |φ′′| → K.

4.2. Lyapunov function for the You–Kaveh ODE. Equation (YKODE) has
a Lyapunov function. Multiplying (YKODE) by φ′ and integrating, we have∫ ξ

−∞
r(φ(y))φ′(y)dy + g(φ′′(ξ))φ′(ξ)φ′′(ξ) =

∫ ξ

−∞
g(φ′′(y))(φ′′(y))2dy.(4.2)

Define

R(s) =

∫ s

r(α)dα.
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Fig. 4. PDE (PM) solution, u, for γ = 1.0 and γ = 1.1. When γ = 1.0, u approaches the
corresponding traveling wave ODE solution as t increases. γ = 1.0 is the maximum value for which
the PDE has a traveling wave connecting γ to −γ. When γ = 1.1, u forms a jump discontinuity in
finite time.
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Fig. 5. R(φ) for γ = 2. We mark the maximum and minimum values, φ and φ, for a bounded
solution of (YKODE).

We see that

L1(ξ) = R(φ(ξ)) + g(φ′′(ξ))φ′(ξ)φ′′(ξ)(4.3)

is nondecreasing, since

d

dξ
L1(ξ) = g(φ′′(ξ))(φ′′(ξ))2 ≥ 0.(4.4)

Since L1(ξ) = R(φ(ξ)) at extrema of φ, the structure of R(φ) = 1
6φ

3 − 1
2γ

2φ has a
tremendous effect on solutions of (YKODE). Figure 5 shows R for a particular γ. The
structure of R implies the entropy condition γ > 0. If γ < 0, then R(γ) > R(−γ), so
there could not be a heteroclinic orbit traveling from L = (0, 0, γ) to R = (0, 0,−γ).
R’s essential behavior remains the same for different values of γ. Assuming γ > 0, R
is a cubic polynomial with a local maximum at −γ and a local minimum at γ. R(φ)
strictly increases for φ < −γ and for φ > γ, while it strictly decreases for −γ < φ < γ.

Let

φ = 2γ and φ = −2γ.(4.5)

A simple calculation shows

R(φ) = R(−γ) and R(φ) = R(γ).(4.6)

The following lemmas are essential for proving that (YKODE) does not have a
smooth heteroclinic orbit connecting L and R when γ is large. Lemma 4.1 is merely
a tool for proving Lemma 4.2.
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Lemma 4.1. Let φ and φ be defined by (4.5). Let ξ∗ ∈ R be given. Suppose φ(ξ)
is a bounded solution of (YKODE) that is defined for all ξ ∈ R. Then there exists a
ξ+ > ξ∗ satisfying

φ < φ(ξ+) < φ.

Similarly, there is a ξ− < ξ∗ satisfying the same

φ < φ(ξ−) < φ.

Proof. Consider any bounded solution φ of (YKODE). We first show that given
any ξ∗ ∈ R, there exists a ξ+ > ξ∗ such that φ < φ(ξ+) < φ. If this were not the

case, |r(φ(ξ))| ≥ |r
(
φ
)
| = |r (2γ)| > 0 for all ξ > ξ∗, thus implying

∣∣(g(φ′′)φ′′)
′∣∣ ≥

|r(2γ)| > 0 for all ξ > ξ∗, contradicting the fact that g(s)s is bounded. Similarly,
given ξ∗ ∈ R, there exists a ξ− < ξ∗ with φ < φ(ξ−) < φ.

Lemma 4.2. Let φ and φ be defined by (4.5). Any bounded solution φ(ξ) of
(YKODE) that is defined for all ξ ∈ R must satisfy

φ ≤ φ(ξ) ≤ φ(4.7)

for all ξ ∈ R.
Proof. For the sake of contradiction, suppose there exists a ξ1 with φ(ξ1) > φ.

With the knowledge of Lemma 4.1, we choose some ξ0 < ξ1 with φ < φ(ξ0) < φ. By

the same lemma, there also exists a ξ2 > ξ1 with φ(ξ1) < φ, so φ has a local maximum,
φ(ξM ) = φM > φ with ξ0 < ξM < ξ2. Since φ′ = 0 at extrema,

L1(ξM ) = R(φ(ξM )) > R(−γ) > R(γ).

Since φ is smooth, there exists some ξ with ξM < ξ < ξ2 satisfying φ(ξ) = φ and
φ(ξ) < φ for all ξ ∈ (ξ, ξ1]. There are two possible behaviors of φ(ξ) for ξ > ξ. Either
φ has an extrema φ(ξ∗) < φ or φ is monotonically decreasing for ξ > ξ. Consider the
first case. Since φ(ξ∗) is an extrema,

L1(ξ∗) = R(φ(ξ∗)) < R(φ(ξM )) = L1(ξM ).

This contradicts the fact that L1 is strictly increasing, since ξM < ξ∗. Now suppose
φ(ξ) decreases monotonically for ξ > ξ. Since φ is bounded, it approaches a limit as
ξ → ∞. This limit must be either γ or −γ, or g(φ′′)φ′′ would blow up as argued in
the proof of Lemma 4.1. For each limit,

lim
ξ→∞

L1(ξ) < L1(ξM ),

contradicting the fact that L1 increases. It follows that φ(ξ) < φ for all ξ. A similar
argument shows that φ is bounded below by φ.

As already noted, |φ′′| = 1 is a singular value for (YKODE). We use the Lyapunov
function to prove the following lemma, which shows that smooth heteroclinic orbits are
forbidden from crossing this value. Lemma 4.3 is essential for showing that (YKODE)
does not have a smooth heteroclinic orbit connecting L to R when γ is too large.

Lemma 4.3. Let φ(ξ) be a smooth heteroclinic orbit connecting L to R. Then for
all ξ, |φ′′(ξ)| ≤ 1.

Proof. We show φ′′(ξ) ≤ 1. Proving φ′′(ξ) ≥ −1 follows the same line of argument.
Suppose that φ is a smooth trajectory for which there exists a ξ∗ such that φ′′(ξ∗) > 1.
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We show that φ cannot connect L to R. Our argument follows directly from the ODE
and its Lyapunov function. Since φ is a smooth heteroclinic orbit,

lim
ξ→−∞

φ′′(ξ) = 0,

so we can find some ξc so that φ′′(ξc) = 1 and φ′′(ξ) > 1 for ξ ∈ (ξc, ξ∗]. Since
φ is smooth, and g′(φ′′)φ′′ + g(φ′′) = 0 for φ′′ = 1, we must have r(φ(ξc)) = 0,
and therefore φ(ξc) = ±γ. Suppose φ(ξc) = γ. Then the Lyapunov function implies
φ′(ξc) > 0, so there is some ε > 0 so that φ(ξ) > γ for ξ ∈ (ξc, ξc + ε). The ODE then
implies φ′′′(ξ) > 0 for ξ ∈ (ξc, ξc + ε), and since both φ′(ξ) and φ′′(ξ) are positive on
the same interval, φ will continue to grow without bound, prohibiting it from being a
heteroclinic orbit.

Now suppose φ(ξc) = −γ. Then the Lyapunov function implies φ′(ξc) < 0. We
can pick a new ε > 0 such that φ(ξ) < −γ and φ′′(ξ) > 1 for ξ ∈ (ξc, ξc + ε). The
ODE then implies φ′′′(ξ) > 0 on the same interval. In fact, the ODE ensures that this
interval can be extended and φ′′ will continue to increase until φ′ becomes positive
and φ once again intersects −γ. So there is some ξ′ > ξc with φ(ξ′) = −γ, φ′(ξ′) > 0,
and φ′′(ξ′) > 1. So L1(ξ

′) > R(−γ), and φ cannot be a heteroclinic orbit connecting
L to R.

4.3. Nonexistence of traveling waves for (YKODE). Integrating (YKODE)
on an arbitrary interval [ξ1, ξ2], we see

g(φ′′(ξ2))φ
′′(ξ2) − g(φ′′(ξ1))φ

′′(ξ1) =

∫ ξ2

ξ1

r(φ(y))dy.(4.8)

Since |g(s)s| ≤ 1
2 , smooth solutions of (YKODE) are restricted by∣∣∣∣∣

∫ ξ2

ξ1

r(φ(y))dy

∣∣∣∣∣ ≤ 1(4.9)

on any interval [ξ1, ξ2]. We now use (4.9) to show that when γ is too large, the You–
Kaveh ODE does not have a smooth heteroclinic orbit between L and R.

Theorem 4.4. There exists a finite C > 0 such that (YKODE) has no smooth
solution satisfying

lim
ξ→−∞

φ(ξ) = γ and lim
ξ→+∞

φ(ξ) = −γ(4.10)

when γ > C.
Proof. Suppose φ is a smooth solution of (YKODE) that satisfies (4.10). Then

φ must be a heteroclinic orbit connecting L to R, and there exists at least one ξ
with φ(ξ) = 0. Let ξ0 be the minimum of all points ξ satisfying φ(ξ) = 0. Let ξ−
be the largest number satisfying both ξ− < ξ0 and φ(ξ−) = γ. Since φ′′′ > 0 when
−γ < φ < γ, φ′(ξ) ≤ 0 for all ξ ∈ [ξ−, ξ0]. Otherwise both φ′ and φ′′ would become
positive in (ξ−, ξ0). φ

′ would have to become negative again so that φ(ξ0) = 0, but
this would require that φ become larger than γ, contradicting the assumptions on ξ−.

Let µ denote the minimum of φ′ on [ξ−, ξc]. Then restriction (4.9) implies

1 ≥
∫ ξc

ξ−

−r(φ(s))ds =

∫ ξc

ξ−

−r(φ(s))
φ′(s)

φ′(s)
ds ≥ 1

µ

∫ ξc

ξ−

−r(φ(s))φ′(s)ds

=
1

µ
(R(γ) −R(0)).
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Since µ < 0 and R(γ) < R(0), the above gives

R(0) −R(γ) ≤ |µ| .(4.11)

From the bounds on φ and φ′′ given by Lemmas 4.2 and 4.3, we see that

|µ| ≤ 2
√

2γ(4.12)

as a result of the following interpolation lemma.
Lemma 4.5. Suppose f ∈ C2(R) satisfies |f | ≤ M and |f ′′| ≤ C. Then

|f ′| ≤ 2
√
CM.

Proof. Given x ∈ R, Taylor’s theorem shows

f ′(x) =
f(x + 2h) − f(x)

2h
− f ′′(ξ)h(4.13)

for all h > 0 and some ξ ∈ [−h, h]. The bounds on f and f ′′ give us

|f ′(x)| ≤ M

h
+ Ch.

Choosing h =
√

M
C gives

|f ′(x)|2 ≤
(
M

h
+ Ch

)2

= 4MC.

Calculating

R(0) −R(γ) =
1

3
(γ)3

and combining (4.11) with (4.12) proves Theorem 4.4.
Remark. Theorem 4.4 does not depend on the choice g = 1

1+s2 . It relies only on
the properties of thresholding functions as explained in [36] and in section 1.1. In
particular, the nonexistence follows mainly from the nonmonotonicity of g(s)s.

4.4. The (YKODE) phase space. We rewrite (4.1) as a system of first order
ODEs:

φ′ = v, v′ = w, w′ = − r(φ)

g′(w)w + g(w)
.(4.14)

System (4.14) has two equilibrium points, L = (γ, 0, 0) and R = (−γ, 0, 0). A
traveling wave solution of (YK) satisfying (2.2) corresponds to a heteroclinic orbit
connecting L to R. Let W s(L) and Wu(L) denote, respectively, the stable and unstable
manifolds of L, and define W s(R) and Wu(R) in the same way.

Since γ > 0, Wu(L) and W s(R) are both two-dimensional with complex eigenval-
ues, while Wu(R) and W s(L) are one-dimensional manifolds. We follow the method
used in [8] and [14]. We illustrate the unstable manifold of L by considering a set
of initial values near L and integrating (4.14) forward in time. Each trajectory will
approach Wu(L). To visualize the manifold, we mark the intersections of each com-
puted trajectory with a two-dimensional plane (a Poincaré section) in the phase space.
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Fig. 6. Cross-section of the phase plane of (YKODE) with γ = 0.5. We show the intersections
of the stable and unstable manifolds of both equilibrium points with the plane φ = 0 (denoted Σ0).

This plane is chosen so that all trajectories intersect the plane transversely. Any
two-dimensional manifold intersects the plane on a curve, and any one-dimensional
manifold intersects at a point. Picking initial points near R and integrating the ODE
backward in time produces trajectories approaching W s(R). Traveling wave solutions
of (4.14) correspond to intersections of Wu(L) with W s(R).

In each figure, initial values are taken at a distance of 10−7 to 10−5 from the
corresponding equilibrium point. We consider the plane φ = 0, denoted by Σ0. Any
intersection of Wu(L) with W s(R) must appear on Σ0. The symmetry of (4.14) implies
that the restriction of Wu(L)

⋂
W s(R) to Σ0 occurs on the line w = 0.

Figure 6 shows the intersection of stable and unstable manifolds of uL and uR

with Σ0 for γ = 0.5. Since Wu(L) and W s(R) intersect each other, there is a hetero-
clinic orbit connecting L to R. One end of Wu(L) spirals around the one-dimensional
manifold, Wu(R). Symmetry gives the same relationship between W s(R) and W s(L).
As γ is increased, the spiral structure of Wu(L) shifts toward the line w = 1, while
W s(R) shifts toward w = −1. Figure 7 demonstrates that the manifolds do not have
this spiral structure on Σ0 when γ is too large. The one-dimensional manifolds W s(L)
and W s(R) no longer intersect Σ0 when these spiral structures disappear. Further
increasing γ moves Wu(L) and W s(R) away from each other. For large enough γ,
Wu(L) and W s(R) do not intersect each other, as seen in Figure 7, where γ = 1.3.

In Figure 8, we draw Wu(L) for a sequence of γ values. W s(R) is not shown,
since it can be deduced by reflecting Wu(L) across the line w = 0. The two manifolds
intersect only when the restriction of Wu(L) to Σ0 intersects the line w = 0. Wu(L)
(and consequently W s(R)) shifts away from the line w = 0 as γ increases. For large
enough γ, Wu(L) does not intersect the line w = 0 at Σ0. As proved in Theorem 4.4,
there is a value γc such that Wu(L) and W s(L) do not intersect when γ > γc. Our
numerical experiments suggest that 1.16 < γc < 1.17.
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Fig. 8. Wu(L)
⋂

Σ0 for (YKODE) with different values of γ. A traveling wave solution exists
when Wu(L)

⋂
Σ0 intersects the line φ′′ = 0. We see that no such intersection exists for large

enough γ.
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Fig. 9. Trajectories of (YKODE) near the boundaries of Wu(L) for γ = 1.0. We show the
second derivatives of trajectories that pass near the top and bottom boundaries of Wu(L)

⋂
Σ0.

Trajectories near the top boundary have second derivatives approaching the singular value w = 1 as
φ approaches 0, as can be seen from Figure 7. Trajectories near the bottom boundary have a second
derivative near φ′′ = −1 but not where φ = 0. The traveling wave solution’s second derivative is
shown for comparison.

4.5. Manifold boundaries caused by singularities in solutions of
(YKODE). Wu(L) and W s(R) have boundaries caused by the ODE’s singularity.
Consider γ = 1.0, for which Wu(L)

⋂
Σ0 is bounded above by w = 1. Certainly the

manifold cannot extend past w = 1, since (4.14) is singular there, but there is also a
boundary on the opposite end of Wu(L)

⋂
Σ0. This boundary is far from either line

of singularity, w = ±1. Figure 9 shows the second derivative of trajectories near these
top and bottom boundaries of Wu(L)

⋂
Σ0. Let ξ0 denote the value of ξ for which a

given trajectory φ(ξ) intersects Σ0 (ξ0 could be different for each trajectory). Near
the top boundary, φ′′(ξ0) gets arbitrarily close to φ′′(ξ0) = 1. Trajectories near the
bottom boundary approach φ′′(ξc) = −1 for some ξc < ξ0.

The singularities of solutions to (YKODE) are similar to those of (PMODE),
but they occur in higher derivatives. Consider a trajectory φ with second derivative
approaching −1 (the case φ′′ → 1 is very similar). Assume there is some ξ∗ with

lim
ξ→ξ∗

φ′′(ξ) = −1 and lim
ξ→ξ∗

φ(ξ) = φ∗.

Again we have multiple cases, but this time they depend on the zeros of r(φ).
Case 1. r(φ∗) 
= 0. This corresponds to the case γ > 1 for (PMODE). But now

the singularity occurs in φ′′′ as ξ → ξ∗:

φ′′(ξ) ∼ 2
√
r(φ∗)(ξ∗ − ξ) − 1.(4.15)
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Fig. 10. Traveling wave solutions of (YK). We show them for different values of γ.

This singularity is demonstrated by trajectory near the top boundary of Wu(L),
drawn in Figure 9.

Case 2. r(φ∗) = 0. Either φ∗ = γ or φ∗ = −γ. It is easy to check that

φ′′(ξ) ∼
√

2|ξ − ξ∗| − 1.(4.16)

Case 2 is demonstrated by the trajectory near the bottom boundary of Wu(L), as
seen in Figure 9. It also corresponds to a critical case for traveling wave solutions of
(YKODE). We expect that there is some γc for which (YKODE) has a nonsmooth
traveling wave solution analogous to the solution of (PMODE) for γ = 1.

4.6. Traveling wave solutions of (YK). Solutions of ODE (4.1) that corre-
spond to traveling waves connecting L to R are given by the intersection of Wu(L)
with W s(R). Our study of the phase space suggests that there is at most one such
intersection for any given γ. The traveling waves shown in Figure 10 were produced
by finding this intersection.

In Figure 11, we provide graphs of the second derivative of traveling wave solu-
tions. In each case, |φ′′| is bounded by 1 as expected. The local extrema of φ′′ are
achieved at φ = ±γ, where φ′′′ = 0. As γ increases, these extreme values approach the
singular values φ′′ = ±1. Because of the ODE’s symmetry, φ′′ approaches a singular
value in two places. φ′′ approaches −1 when φ = γ, and it approaches +1 when
φ = −γ.

To illustrate that the traveling waves are stable for the PDE dynamics, we im-
plement (YK) with a fully implicit scheme. We use centered differences for all spatial
derivatives, including the Burgers term, which is approximated by centered differences
in flux form. We use a Newton solver and an adaptive time step. The time step was
adjusted to expedite convergence of the Newton method, as was done for (PM) in
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Fig. 11. The second derivatives of traveling wave solutions of (YK). Traveling waves for γ near
1.16 have second derivatives near the singular value w = −1.

section 3.4. The correspondence between (YK) and (YKODE) is not as clear as it is
for (PM) and (PMODE). The numerics become very difficult for γ near the range of
nonexistence of traveling waves. In this parameter range, the PDE numerics do not
converge nicely to a traveling wave solution, even when our ODE numerics suggest
one exists. It is not clear whether this difficulty results from the numerics or from
the PDE. We show an example with a smaller γ in Figure 12. In this case, the PDE
solution clearly converges to the solution of (YKODE).

5. Tumblin–Turk with advection. We show that (TT) is qualitatively differ-
ent from both (PM) and (YK). We first use a topological argument to prove that for
all γ > 0, (TTODE) has an orbit corresponding to a traveling wave solution of (TT).
Our primary tool is the Conley index, as discussed in [40]. We use standard meth-
ods [8, 37], but the particular nonlinear structure of (TTODE) requires new a priori
bounds and estimates. We rely on the observation that (TTODE) can be rewritten as

r(φ) = −(arctan(φ′′))′(5.1)

when g(s) = 1
1+s2 . The analysis consequently depends very much on this particular

choice of g.
In section 5.3, we present phase plane illustrations that contrast solutions of

(TTODE) to those of (YKODE) and (PMODE). We conclude our discussion of the
Tumblin–Turk equations with numerical simulations of (TT).

5.1. Lyapunov function for (TTODE). We seek a Lyapunov function, L2(ξ),
for (TTODE). Let R(s) denote a primitive of r(s). Multiplying (5.1) by φ′ and inte-
grating produces

R(φ) = − arctan(φ′′)φ′ +

∫ ξ

arctan(φ′′(s))φ′′(s)ds.
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Fig. 12. Approximate solution of (YK). When γ = 0.7, u approaches the traveling wave solution
given by (YKODE).

Since arctan(s)s ≥ 0 for all s, we easily check that

L2(ξ) = R(φ(ξ)) + arctan(φ′′(ξ))φ′(ξ)(5.2)

satisfies

d

dξ
L2(ξ) = arctan(φ′′(ξ))φ′′(ξ) ≥ 0.(5.3)

As was the case for L1, L2(ξ) = R(φ(ξ)) at zeros of φ′ and φ′′. This establishes the
entropy condition γ > 0 and the following lemma.

Lemma 5.1. Let φ and φ be defined by (4.5). Any bounded smooth solution φ of
(TTODE) that is defined on the real line must satisfy

φ ≤ φ(ξ) ≤ φ(5.4)

for all ξ ∈ R.
Proof. The proof follows the same argument as that of Lemma 4.2.

5.2. System of ODEs for (TTODE). We rewrite (TTODE) as a system of
three ODEs:

φ′ = v, v′ = tan(w), w′ = −r(φ).(5.5)

System (5.5) has two equilibrium points, L = (γ, 0, 0) and R = (−γ, 0, 0). We use
Conley index theory to prove the existence of a heteroclinic orbit connecting L to R.
To do this, we first find uniform bounds for all bounded solutions (φ, v, w) of (5.5).
Lemma 5.1 provides such a bound for φ. It is particularly important to find a bound
C such that |w| ≤ C < π

2 . To do so, we first examine v′ = φ′′.
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Lemma 5.2. Any bounded smooth solution φ of (TTODE) satisfies∫ ∞

−∞
arctan(φ′′(s))φ′′(s)ds ≤ R(−γ) −R(γ) =

2

3
γ3.(5.6)

Proof. We follow an argument used in the proof of Theorem 4.8 in [10]. Let φ
be a bounded solution of (TTODE). Bound (5.6) is obvious if either φ(ξ) = γ or
φ(ξ) = −γ for all ξ. Since L = (γ, 0, 0) and R = (−γ, 0, 0) are the only equilibrium
points of (TTODE), we now assume that φ is nonconstant. We first examine the
behavior of φ(ξ) as ξ → ∞. There are two cases to consider, depending on the set of
extrema of φ.

Case 1. Suppose there exists a ξM such that φ has no extrema for ξ > ξM . Then φ
approaches an equilibrium point as ξ → ∞. Since L is increasing, φ → −γ as ξ → ∞;
otherwise all extrema of φ would be less than φ, and φ would grow without bound as
ξ → −∞. We therefore have∫ ∞

0

arctan(φ′′(s))φ′′(s)ds = R(−γ) −R(φ(0)).

Case 2. Now assume that there is no such ξM . Since φ solves (TTODE), it is
analytic (see, e.g., [41]) and must have a countable set of extrema with no limit
point. Suppose the extrema occur at ξi with ξi > 0 and ξi < ξi+1. The Lyapunov
function implies that R(ξi) is a bounded increasing sequence, and we therefore have
R(ξ) → R+ for some R+ ≤ R(−γ). For each ξi,∫ ξi

0

arctan (φ′′(s))φ′′(s)ds = R (φ(ξi) −R (φ(0)) ≤ R(−γ) −R(φ(0)).

The monotone convergence theorem gives us∫ ∞

0

arctan(φ′′(s))φ′′(s)ds = R+ −R(φ(0)) ≤ R(−γ) −R(φ(0)).(5.7)

Similar arguments show

∫ 0

−∞
arctan(φ′′(s))φ′′(s)ds ≤ R(φ(0)) −R(γ).(5.8)

Combining (5.7) and (5.8) completes the proof.
We interpret Lemma 5.2 to mean that φ′′ = v′ is almost L1, since arctan (s)s is

linear in s for large s. Specifically, for any ε > 0, we define S = {s : |φ′′(s)| > ε} and
discover ∫

S

|φ′′(s)|ds ≤ 1

arctan ε

∫
S

| arctan(φ′′(s))φ′′(s)|ds(5.9)

≤ 1

arctan ε

∫ ∞

−∞
arctan(φ′′(s))φ′′(s)ds ≤ 2

3 arctan ε
γ3.

We now show that w is bounded away from ±π
2 , the asymptotes of tanw.

Lemma 5.3. There exists a positive C1 < π
2 such that for any bounded solution

(φ, v, w) of system (5.5), |w| ≤ C1 for all ξ ∈ R.
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Proof. Since φ ≤ φ(ξ) ≤ φ for all ξ, | − r(φ)| ≤ γ2, which by (5.5) implies a
uniform Lipschitz bound for w,

w(ξ0 − h) ≥ w(ξ0) − γ2h for all ξ0 and all h > 0.(5.10)

We use (5.9) with the uniform Lipschitz continuity of w to derive a pointwise bound
on w. We focus on bounding w away from w = +π

2 . To make use of (5.9), we must
find an interval on which w is bounded away from zero. Pick ξ0 with π

4 < w(ξ0) <
π
2 .

If no such ξ0 exists, then w(ξ) ≤ π
4 . Choose δ > 0 so

π

4
> w(ξ0) − γ2δ ≥ π

6
,(5.11)

also implying by (5.10) that w(ξ) ≥ π
6 for all ξ ∈ [ξ0 − δ, δ]. Let

S =

{
ξ : φ′′(ξ) ≥

√
3

3
= tan

π

6

}
.

Then Lemma 5.2 ensures∫
S

|v′| =

∫
S

|φ′′| ≤ 6

π
(R(−γ) −R(γ)) =

4

π
γ3.(5.12)

Now using (5.10) and (5.11), we calculate

∫
S

|v′(s)|ds ≥
∫ ξ0

ξ0−δ

|v′(s)|ds

=

∫ ξ0

ξ0−δ

| tan (w(s))|ds

≥
∫ ξ0

ξ0−δ

tan (w(ξ0) − γ2(ξ0 − s))ds

=
1

γ2
log

∣∣∣∣cos (w(ξ0) − γ2δ)

cos (w(ξ0))

∣∣∣∣
≥ 1

γ2
log

∣∣∣∣ cos π
4

cos (w(ξ0))

∣∣∣∣.
Combining this with (5.12), we see

1

γ2
log

∣∣∣∣∣
√

2

2 cos (w(ξ0))

∣∣∣∣∣ ≤ 4

π
γ3,(5.13)

so

cos (w(ξ0)) ≥
√

2

2
e−γ2( 4

π γ3) > 0,(5.14)

and

w(ξ0) ≤ C1 := arccos

(√
2

2
e−

4
π γ5

)
<

π

2
.(5.15)
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The same argument with slight adjustments shows that

w(ξ0) ≥ −C1 = − arccos

(√
2

2
e−

4
π γ5

)
> −π

2
.

Corollary 5.4. There exists a C2 > 0 satisfying |v| ≤ C2.
Proof. Since w is bounded in an interval strictly contained within (−π

2 ,
π
2 ), we

have a bound on φ′′ = tanw. We use Lemma 4.5 to bound v = φ′.
Theorem 5.5. Given any γ > 0, there exists a solution φ of (TTODE) such that

φ(ξ) → γ as ξ → −∞, and φ(ξ) → −γ as ξ → ∞.
Proof. Our proof centers on the Conley index. We refer the reader to [40], which

contains an excellent description of Conley index theory. Let C1 and C2 be given by
Lemma 5.3 and Corollary 5.4. Define the set

N =

⎧⎨
⎩(φ, v, w) :

φ ≤ φ ≤ φ
|v| ≤ C2

|w| ≤ C1

⎫⎬
⎭ .(5.16)

N is an isolating neighborhood, as all bounded trajectories are strictly contained
within the interior of N . As explained in Theorem 22.18 of [40], N contains an isolat-
ing block, B. Isolating blocks of (TTODE) are special isolating sets whose boundary
points immediately leave the set in positive or negative time under the flow defined
by (TTODE). The Conley index is the homotopic equivalence class of the quotient
space B/b+, where b+ is the set of all points on ∂B that leave B in positive time.

Let β ∈ R, and define the continuous deformation of (TTODE),

r(φ) + β = −g(φ′′)φ′′′.(5.17)

Let β0 = γ2

2 . Consider β ∈ [0, β0). The new system has a new function

Rβ(φ) =
1

6
φ3 +

(
β − 1

2
γ2

)
φ.

The new Lyapunov function is found by replacing R with Rβ . The system has two

equilibrium points: Lβ = (0, 0,
√

γ2 − 2β) and Rβ = (0, 0,−
√

γ2 − 2β). The system
has new upper and lower bounds for all bounded solutions:

φβ = 2
√
γ2 − 2β ≤ φ

and

φ
β

= −2
√
γ2 − 2β ≥ φ.

It is easy to check that B is an isolating block for the adjusted system with 0 ≤ β ≤ β0.
When β = β0, the only bounded trajectory of (5.17) is the constant function φ =

0, so B remains an isolating block. Choosing β > β0 produces a differential equation
with no equilibrium points. B remains an isolating block of the flow and contains
no isolated invariant set (other than the null set). It follows that the homotopic
equivalence class of B/b+ is that of the null set, implying the existence of an orbit of
(TTODE) connecting L and R (see Theorem 22.33 in [40]). The Lyapunov function
ensures that the trajectory flows from L to R.
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Fig. 13. Changes of the manifolds for (TTODE) with increasing γ. The intersections of Wu(L)
and W s(R) with Σ0 are shown for γ = 1.0 and γ = 2.0.

5.3. The (TTODE) phase space. As suggested by our analysis of both equa-
tions, the phase plane geometry of (TTODE) is remarkably different from that of
(YKODE). Using the method discussed in section 4.4, we visualize the phase space
by considering the cross-section u = 0, denoted by Σ0. Any intersection of Wu(L)
with W s(R) is visible on Σ0, where it must occur on the line w = 0. We draw Wu(L)
by computing trajectories with initial conditions near L and marking their intersec-
tions with Σ0. W

s(R) is drawn similarly but by numerically integrating (TTODE)
backward in time.

Smooth curves in the phase space must lie between the two planes w = ±π
2 , since

v = tanw. Figures 13 and 14 show the intersections of W s(R) and Wu(L) with Σ0

for various values of γ. Since W s(R) and Wu(L) do not have boundaries caused by
singularities of (TTODE), both manifolds stretch from w = −π

2 to w = π
2 , even for

large γ. This allows an intersection at w = 0 for all γ > 0; increasing γ shifts only
the manifolds in the −v = −φ′ direction. This is remarkably different from the You–
Kaveh ODE (YKODE), for which W s(R) and Wu(L) have boundaries that allow the
manifolds to shift away from each other when γ is increased.

5.4. Traveling wave solutions of (TT). Figure 15 shows traveling wave so-
lutions of (TT) for a series of γ-values. Each traveling wave was produced by finding
the intersection of Wu(L) with W s(R) in the phase space of (TTODE). As the jump
height from uL to uR increases, so does the traveling wave’s slope near the jump.
Although the ODE solutions are smooth, the jump transition can be so severe that
when viewed at large length scales the solution appears to have a shock. This is
demonstrated when γ = 7, as shown in Figure 15.

Numerical examples suggest that the heteroclinic orbits of (TTODE) are stable
traveling wave solutions of (TT). To numerically integrate (TT), we use the change
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Fig. 16. Numerically integrated solution of (TT) for γ = 7.0.

of variables w = arctanuxx and solve the nonlinear system

ut + uux = wxx,(5.18)

tanw = −uxx

using a fully implicit scheme with centered differences in space. We use Newton’s
method and an adaptive time step, as we did for (PM) in section 3.4. The change of
variables w = arctanuxx is used to ensure that uxx remains bounded. See [7] for a
discussion on numerically implementing the fourth order diffusion.

Figure 16 shows the behavior of u, given an initial condition near the traveling
wave profile. The computations suggest that the traveling wave is a stable solution of
the PDE.

6. Conclusions. We have considered traveling wave solutions of the advection-
diffusion equations

(YK) ut +

(
1

2
u2

)
x

= −(g(uxx)uxx)xx

and

(TT) ut +

(
1

2
u2

)
x

= −(g(uxx)uxxx)x,

with g(s) = 1
1+s2 , in order to clearly illustrate the features of higher order nonlinear

diffusion equations recently proposed for use in image processing.



66 J. B. GREER AND A. L. BERTOZZI

The advection term ( 1
2u

2)x in (YK) and (TT) serves two roles. First, it allows
for traveling wave solutions that approximate shocks, which in images correspond to
edges. By converting the problem to one of traveling waves, we reduce a fourth order
PDE to a third order ODE for which we are able to prove rigorous results and perform
clear phase space computations. Second, advective PDEs combining similar diffusion
terms are being used for such processes as image inpainting [2, 3]. Thus these kinds
of equations are interesting for image processing in their own right.

We discover a fundamental difference between solutions of (YK) and (TT). Smooth
traveling waves solutions of (YK) do not exist for sufficiently large jump height,
whereas solutions of (TT) exist for all jumps. This suggests that the dynamics of
the full PDE (YK) is quite different from that of (TT). In a separate paper, we prove
that in one dimension the PDE (TT) without advection has globally smooth solutions,
given smooth initial data. The study in this paper would lead us to conjecture that
(YK) without advection does have finite time singularities in uxx, just as the classical
Perona–Malik equation has finite time singularities in the slope.

Although the PDE numerics suggest that the smooth traveling waves are stable, a
rigorous proof of this is still forthcoming. Rigorous stability results for traveling wave
solutions of second order convection-diffusion equations include Goodman’s proof of
multidimensional stability of viscous scalar shock fronts [22] and Osher and Ralston’s
proof of stability of traveling wave solutions of the convective porous media equation
[35]. Fourth order traveling waves are more difficult to analyze due to the lack of
a maximum principle and the fact that the traveling waves themselves often do not
have a closed form expression. In [9], Evans function techniques are used to prove
instability of fourth order thin film traveling waves, although they establish only a
consistent condition for stability.

Our work is done entirely in one dimension, but there is at least one obvious
extension to two dimensions. Traveling wave solutions of the model equations cor-
respond to plane wave solutions of the equations with diffusions in two dimensions,
while the advection term remains only in the x-direction. These plane waves move
in the x-direction and do not depend on y. In physical applications, the existence
and stability of plane waves is relevant for pattern formation [5, 22, 42]. Analagous
questions in imaging are interesting and have not been explored to our knowledge.
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Abstract. We discuss existence and regularity of the solutions of the wave-resistance problem
for a thin semisubmerged body moving at uniform subcritical velocity in a heavy fluid (e.g., water)
of constant depth. The main assumption (on the geometry of the body) is that the flow is two-
dimensional; i.e., it can be completely described in the vertical plane containing the direction of
the motion. Then the problem can be formulated in terms of a boundary value problem for a
holomorphic function (the complex velocity field) satisfying a nonlinear condition (the Bernoulli
condition) on a free boundary (the free surface of the fluid). By a hodograph transformation and
choosing an appropriate functional setting, we first reduce the problem to the resolution of a nonlinear
functional equation depending on two unknown parameters, which are related to the positions in the
hodograph plane of the points of contact between the free surface and the body. The main result
of this paper is the proof of the existence, under mild assumptions on the body’s profile, of an
exact solution of the nonlinear problem: the resulting free surface is asymptotically flat at infinity
upstream and is oscillating downstream; moreover, it is tangent to the body’s profile at the contact
points.

Key words. free boundary, nonlinear boundary condition, hodograph transformation
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1. Introduction and statement of the problem. Let us consider an infinitely
long, semisubmerged horizontal cylinder, moving at a uniform speed on the free surface
of a heavy fluid, in the direction orthogonal to its generators. The unperturbed
fluid, which is at rest, has finite constant depth H. Compressibility and viscosity
are neglected as well as surface tension; moreover, the fluid motion is assumed to be
irrotational.

We want to find the steady flow generated by the cylinder’s motion. Because of
the geometry of the problem, the flow can be completely described in the vertical plane
containing the direction of the motion. Then the problem can be formulated in terms
of a boundary value problem for a holomorphic function (the complex velocity field)
satisfying a nonlinear condition (the Bernoulli condition) on a free boundary (the free
surface of the fluid); moreover, the free boundary is the union of two disconnected
curves ending on the cylinder’s profile at unknown points (see Figure 1).

The solvability of this problem was established in [1] (for a cylinder with sym-
metric cross section) and in [2] (for a generic cylinder) in the case of supercritical
velocity (see below). The proof relies on the assumption that the piercing part of
the cylinder is small compared to its length (and to the fluid’s depth) and essentially
consists in the application of the implicit function theorem to a functional equation
in the hodograph plane. In this approach, a crucial step is the proof of the unique
solvability of a linear problem, which is obtained by considering the limit when the
cylinder’s section becomes a beam and the flow (in a reference system connected with
the cylinder) approaches the constant, parallel flow [3].
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In the present work, we prove the solvability of the free boundary problem in
the case of subcritical velocities. As it is already clear at the level of the linearized
problem [4] and from numerical experiments [5], the properties of the solutions are
quite different for subcritical and supercritical flows. For example, in the former case
the flow may have nontrivial oscillations at infinity downstream, while in the latter
case it is asymptotically parallel. This behavior is of course related to the situation
that arises in the free-surface water waves: there, a supercritical flow is associated
with solitary waves (that exponentially decay at infinity in both directions; see, e.g.,
[6], [7]), while subcritical flows develop a periodic wave train [7], [8, Chap. 71]. As a
consequence, the former proof of the solvability will not extend in a trivial way to the
subcritical flow. Nevertheless, we can still formulate the problem in terms of a func-
tional equation in the hodograph plane with the same assumptions on the geometry
of the cylinder. As in the case of supercritical velocities, we seek a “local” result of
existence for a solution which, for some small parameter ε tending to zero, approaches
the constant parallel flow. To reach this goal, in contrast with the supercritical case,
we will not fix a priori the asymptotic velocity of the perturbed field at infinity up-
stream; the solution that we obtain will be a perturbation of the constant flow with
prescribed subcritical velocity

c0 <
√
gH(1.1)

(here g is the acceleration of gravity); the perturbed flow will be parallel at upstream
infinity, but its velocity c will depend on the parameter ε and will approach the
unperturbed velocity c0 as ε → 0. Similarly, the origin in the hodograph plane will
not be completely fixed a priori, but we let it depend on a parameter changing with
ε; we prescribe only its value in the limit ε = 0 when the hodograph map is linear
(see section 2). Both these quantities will be determined, as functions of ε, from
the resolution of the problem, together with the free surface and the velocity field.
The necessity of considering additional unknowns comes from the requirement to
satisfy two nonresonance conditions at infinity downstream, where the velocity field
is oscillating. More precisely, one finds that in the linearized problem (see below)
the wave number and the phase of the oscillating far field are directly related to the
above parameters; hence, by suitably setting their values, we can search the perturbed
solutions in a common space of functions oscillating with the same wave number at
downstream infinity.

In order to state the various equations of the problem, we choose a coordinate
system connected with the cylinder and such that the xy-plane is orthogonal to the
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horizontal generators of the cylinder; the x-axis is directed as the unperturbed flow,
the undisturbed free surface is at y = 0, and the bottom of the region occupied by
the fluid is at y = −H. The cross section of the “hull” is described by the equation

y = εf(x),(1.2)

where ε > 0 is a small parameter and f is a C1 function defined in some neighborhood
of the origin, say J , and such that, for some other neighborhood of the origin J ′ =
(a, b) ⊂ J , we have

f(x) < 0 for x ∈ J ′,

f(x) = 0 for x = a and x = b,

f(x) > 0 for x ∈ J\J̄ ′,

xf ′(x) > 0 for x ∈ J\{0},
f ′(0) = 0.

(1.3)

The fluid surface is described by the equation y = h(x), where h is an unknown
smooth function defined in R\[x−, x+], with x± ∈ J . The two numbers x± are the
abscissae of the points where the free surface meets the hull so that h(x±) = εf(x±).
Note that the values x± are unknown, and their determination is part of the problem.
It is natural to assume that x− and x+ lie in small neighborhoods of the points a and
b, respectively, which are bounded away from the origin.

We set

h∗(x) =

{
h(x) for x ≤ x−, x ≥ x+

εf(x) for x− ≤ x ≤ x+.
(1.4)

Then

S∗ = {(x, y) ∈ R2 : −H < y < h∗(x)}(1.5)

will denote the region filled with the fluid. We assume (as usual) that the curve
y = h∗(x) is a streamline; i.e., the free surface and the wetted part of the cylinder
form a single streamline; the bottom {y = −H} is also assumed to be a streamline.
Let us introduce the complex variable z = x + iy and the complex velocity function
ω(z) = u(x, y)− iv(x, y), holomorphic in S∗, with u and v components of the velocity
vector. We can now state our problem in the following form: find three scalars,
the asymptotic velocity c, the abscissae x+ > 0 and x− < 0, and a real function
h ∈ C1(R\[x−, x+]) and a complex function ω = u − iv holomorphic in S∗ and
bounded in S∗, such that the following boundary conditions hold:

1

2
|ω(x, h(x))|2 + gh(x) = constant, x < x− or x > x+,(1.6)

v(x, h(x)) = h′(x)u(x, h(x)), x < x− or x > x+,(1.7)

v(x, εf(x)) = εf ′(x)u(x, εf(x)), x− ≤ x ≤ x+,(1.8)

v(x,−H) = 0, x ∈ R,(1.9)

lim
x→−∞

ω(z) = c,(1.10)

lim
x→−∞

h(x) = 0.(1.11)

Equations (1.7), (1.8) indicate that the free surface and the wetted hull are arcs of
a streamline; (1.9) expresses the same property for the bottom, while (1.6) is the
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Bernoulli condition on the free surface. The asymptotic conditions (1.10), (1.11)
state that at infinity upstream the flow approaches a constant parallel flow, and the
free boundary approaches the straight line h(x) = 0. We stress that the asymptotic
velocity c is an unknown function of ε which tends to c0 as ε → 0. As discussed above,
the perturbation due to the presence of the cylinder does not in general vanish (in
two dimensions) at infinity downstream if (1.1) holds. The statement of the problem
is completed by the continuity conditions

h(x±) = εf(x±).(1.12)

Rigorous mathematical results about nonlinear ship waves are quite rare in the
literature; the problem appears in a linearized version (the Neumann–Kelvin problem;
see, e.g., [4, Part 2] and references cited therein), or it has been treated by numerical
methods [5]. Some authors [9], [10] (see also [7]) consider the water waves problem
by assuming a variable pressure of the form: p0 (atmospheric pressure) +εp(x) acting
on the free surface; if p(x) is compactly supported, this extra pressure may simulate
the action of a ship.

The aim of this paper is to prove the existence, for small values of the parameter ε,
of an exact solution of the nonlinear problem, which, for ε → 0, reduces to the trivial
parallel flow ω = c0, h = 0. The main steps in implementing this program are the
following: in the next section, we use a hodograph transformation which (partially)
overcomes the difficulties due to the free boundary; the transformed problem proves
to be convenient for a functional reformulation. The proof of solvability is achieved
in two steps: see sections 3 and 4; in particular, in section 3 we exploit the results
obtained in [3] for the linearized problem. Some technical results and side properties
of the solution are described in the appendix.

The main result of the paper (the precise statement is Theorem 5.6) is that, for a
given profile εf(x) with ε > 0 small, f satisfying (1.3), and some additional technical
conditions (also involving the data c0 and H) there is a solution of the system (1.6)–
(1.12). More specifically, there is a flow ωε(z) which is asymptotically parallel when
x → −∞; the asymptotic velocity c is a known quantity depending on ε and tending
to c0 as ε → 0. The free surface and the cylinder profile form a single C1 streamline:
they match at known points x− and x+ (depending on ε). Moreover, the free surface
is exponentially vanishing for x → −∞ and is bounded and asymptotically periodic
when x → +∞; the period is also a known function of ε. This result qualitatively
agrees with the numerical experiments presented in [5, Par. 3] for Froude numbers
approximately ranging from 0.35 to 0.6 and for a parabolic profile. Also, the analysis
developed in [9] (where we still have a localized obstacle on the bottom and a localized
extra pressure on the free surface) shows that, for Froude numbers strictly less than
1, all bounded solutions are asymptotically periodic at infinity downstream.

2. The hodograph transformation. By means of the hodograph transfor-
mation (see [2] for details) we can reformulate the problem by taking the complex
potential

w = ϕ + iψ(2.1)

(where ϕ(x, y) is the velocity potential and ψ(x, y) the stream function) as the inde-
pendent variable and the reciprocal of the velocity field

1

ω(z)
= Ω(w), Ω = U − iV,(2.2)
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as the unknown. Given the function Ω, the (inverse) hodograph map w �→ z =
x + iy is defined by the relation dz/dw = Ω modulo an additive complex constant;
the imaginary part of this constant can be fixed in such a way that the streamline
consisting of the free surface and the wetted hull corresponds to ψ = 0 (see (2.5)).
Then the domain S∗ of the physical plane is mapped onto the strip

AH ≡ {(ϕ,ψ) ∈ R2 : −cH < ψ < 0}.(2.3)

The real part of the additive constant is left undetermined for the moment and is
assumed to change with ε. For ε = 0 we assume that the image of the point w = 0
coincides with the origin in the physical plane, which can be placed at a minimum
point of the function f on the x-axis; for ε > 0, the origin of the hodograph plane
will be mapped (for small enough ε) to an unknown point (x̄, εf(x̄)) on the cylinder’s
profile according to the discussion of the introduction. Taking account of the above
conditions, the relation between the physical plane variables and the hodograph plane
ones can be written

x(ϕ,ψ) = x̄ +

∫ ϕ

0

U(s, ψ)ds +

∫ ψ

0

V (0, t)dt,(2.4)

y(ϕ,ψ) =

∫ ψ

−cH

U(ϕ, t)dt−H =
1

c
ψ −

∫ ϕ

−∞
V (s, ψ)ds.(2.5)

We stress that the functions U , V and the parameters x̄, c in (2.4), (2.5) depend on
ε; for ε = 0, we have U = 1/c0, V = 0, x̄ = 0, and c = c0, and the map is simply the
multiplication by 1/c0.

We call ϕ− and ϕ+ the values of ϕ at the separating points P− = (x−, εf(x−))
and P+ = (x+, εf(x+)), respectively. Then the upper boundary of the strip consists
of the segment

I = {(ϕ,ψ) : ψ = 0, ϕ− < ϕ < ϕ+},(2.6)

which is the image of the cylinder’s hull, and the two half-lines

F = {(ϕ,ψ) : ψ = 0, ϕ < ϕ−} ∪ {(ϕ,ψ) : ψ = 0, ϕ > ϕ+},(2.7)

which are the image of the free surface; we stress that the separating abscissae ϕ− < 0
and ϕ+ > 0 are also unknown. The bottom is mapped onto the line

B = {(ϕ,ψ) : ψ = −cH, ϕ ∈ R}.(2.8)

Then the function Ω must be holomorphic in AH and satisfy the boundary conditions

−1

2

∂|Ω|−2

∂ϕ
+ gV = 0 on F,(2.9)

V + εf ′(x)U = 0 on I,(2.10)

V = 0 on B.(2.11)

Moreover, we require the condition at infinity upstream

lim
ϕ→−∞

Ω =
1

c
.(2.12)
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The continuity conditions (1.12) are written

−
∫ ϕ±

−∞
V (s, 0)ds = εf

(
x̄ +

∫ ϕ±

0

U(s, 0)ds

)
.(2.13)

As already noticed in [2] these two conditions, now written in the hodograph plane,
are not independent if (2.10) holds. We now show, however, that there is another
independent condition at the point (ϕ+, 0), related to the Bernoulli equation (1.6). In
fact, for physical reasons and recalling the asymptotic conditions (1.10), (1.11), the
constant appearing on the right-hand side of (1.6) must have the same value c2/2 on
both components of the free surface; this holds in particular at the two points P±.
In terms of the hodograph variables, we get by (2.5), (2.9), and the limit condition
(2.12)

1

2
|Ω(ϕ, 0) |−2 + g y(ϕ, 0) =

c2

2

for ϕ ≤ ϕ− (and ψ = 0); by (2.2), this is equivalent to (1.6). On the other hand,
there is no prescribed limit at infinity downstream (only boundedness of the flow field
is required). This means that we have the additional condition

|cΩ(ϕ+, 0)|−2 +
2g

c2
y(ϕ+, 0) = 1,

which, taking account of (2.13), becomes

|cΩ(ϕ+, 0)|−2 +
2g

c2
εf

(
x̄ +

∫ ϕ+

0

U(s, 0)ds

)
= 1.(2.13′)

Equations (2.9)–(2.13′) formulate the problem in the hodograph plane; by the previous
discussion, we could replace (2.13) with the analogous of (2.13′) at ϕ−.

We stress that in the above problem the size and the position of the segment
I defined by (2.6) are unknown (the same is true for the depth of the bottom B
of the strip in the hodograph plane; see (2.8)). Therefore, a further change of the
independent variables and unknowns will prove convenient in the following. Let us
first introduce the new parameters

ϕ∗ =
ϕ+ − ϕ−

2c
, ϕm =

ϕ+ + ϕ−
2c

.(2.14)

Then, by setting

ρ =
ϕ− cϕm

cϕ∗ , σ =
ψ

cϕ∗ ,(2.15)

the beam I is mapped onto the interval (−1, 1) of the ρ-axis, and the strip AH becomes

A∗ = {(ρ, σ) ∈ R2 : −H∗ < σ < 0},(2.16)

where

H∗ =
H

ϕ∗ .(2.17)
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Then we define the new unknown

χ = ξ − iη

(as a function of the new variables (2.15)) by subtracting the asymptotic field 1/c
from Ω and dividing by ε; namely, we set

U(ϕ,ψ) =
1

c

(
1 + εξ(ρ, σ)

)
, V (ϕ,ψ) =

ε

c
η(ρ, σ).(2.18)

We now want to write the nonlinear boundary conditions (2.9), (2.10) as formal
operator equations in the new variables. We first note that on the line σ = 0 (that is,
ψ = 0) the right-hand side of (2.4) takes the form

x̄ + ϕ∗
∫ ρ

ρm

(1 + εξ(s, 0))ds ≡ x(ρ),(2.19)

where we set ρm = −ϕm/ϕ∗; note that (2.19) is independent of c.
We now define the functions

G(ρ) = f ′(x(ρ))(2.20)

and

BI(χ, x̄;ϕm, ϕ∗, ε) =
{
η + G( · )(1 + εξ)

}∣∣∣
|ρ|<1, σ=0

.(2.21)

Furthermore, by introducing the parameter

ν∗ = ϕ∗ν = ϕ∗ g

c2
,(2.22)

we define

BF (χ, ν∗; ε) =
{
− 1

2ε

∂

∂ρ
|1 + εχ|−2 + ν∗η

}∣∣∣
|ρ|>1, σ=0

(2.23)

and

B(χ, x̄, ν∗;ϕm, ϕ∗, ε) = (BI(χ, x̄;ϕm, ϕ∗, ε), BF (χ, ν∗; ε)).(2.24)

Then, for every ε > 0, the equation

B(χ, x̄, ν∗;ϕm, ϕ∗, ε) = 0(2.25)

is equivalent to the conditions (2.9), (2.10). Moreover, the function χ must be holo-
morphic in A∗, vanishing for ρ → −∞, and satisfying the linear condition η(ρ,−H∗) =
0. The notation used stresses the dependence of the differential system on the various
parameters of the problem: x̄, ν∗ (and then c), ϕm, ϕ∗; such quantities are unknown
functions of ε as well as the field χ. Our strategy for solving the problem in the
hodograph plane will consists of two steps: first, we fix ϕ∗ and ϕm independent of
ε and solve (via the implicit function theorem) (2.25) with respect to χ, ν∗, and x̄
for small ε, starting with the solution of a linear problem at ε = 0 (see section 3.1
below). The values of ν∗ and x̄ for ε > 0 will be determined by requiring the solution
χ to belong to an appropriate Banach space (see section 3.2). Thus, in this way, we
determine a family of hodograph maps depending on the parameters ϕ∗, ϕm, and ε



76 CARLO D. PAGANI AND DARIO PIEROTTI

(note that also the strip A∗ where the function χ is defined depends on ϕ∗; see (2.16),
(2.17)). Then, in the second step, we select a pair ϕ∗ = ϕ∗(ε), ϕm = ϕm(ε) by solving
(2.13), (2.13′): the selected map, corresponding to those values of the parameters, will
finally determine the solution of the problem in the physical plane. The reason for
this two-step procedure is that we do not know a priori the limit positions for ε → 0 of
the points P± so that we cannot linearize the whole problem around a known solution
at ε = 0.

In the next section, we will formulate (2.25) as an operator equation between
suitable Banach spaces; this equation will be solved, for fixed ϕm, ϕ∗, in section 4,
while in section 5 we discuss (2.13), (2.13′) determining ϕm, ϕ∗.

3. The functional setting of the problem.

3.1. The problem at ε = 0 in the hodograph plane. According to the
previous discussion, we fix the two parameters ϕ∗ > 0 and ϕm and discuss the linear
problem obtained from (2.25) by letting ε → 0 (formally) in the expressions (2.21),
(2.23); the results obtained will suggest the correct functional setting of the nonlinear
problem.

We first recall that c → c0 and x̄ → 0 as ε → 0; hence, by recalling (2.22) we also
have ν∗ → ν∗0 , where

ν∗0 = ϕ∗g/c20.(3.1)

Then, for ε → 0 the system (2.25), together with the condition on the bottom and
the asymptotic condition, leads to the following problem for a holomorphic function
χ0 = ξ0 − iη0 in the domain A∗ (see [2]):

∂ρξ0 + ν∗0η0 = 0 for σ = 0, |ρ| > 1,

η0(ρ, 0) = −f ′(ϕ∗ρ + ϕm) for |ρ| < 1,

η0 = 0 for σ = −H∗, ρ ∈ R,

lim
ρ→−∞

χ0 = 0.

By substituting, in the first equation, ∂ρξ0 with −∂ση0, we obtain a boundary
value problem for the harmonic function η0 (the harmonic conjugate ξ0 is then deter-
mined by the requirement of vanishing at infinity upstream).

Problem L0. Find η0 harmonic in A∗ such that

∂ση0(ρ, 0) − ν∗0 η0(ρ, 0) = 0 for |ρ| > 1,(3.2)

η0(ρ, 0) = −f ′(ϕ∗ρ + ϕm) for |ρ| < 1,(3.3)

η0(ρ,−H∗) = 0 for ρ ∈ R,(3.4)

lim
ρ→−∞

η0(ρ, ·) = 0.(3.5)

By adding to (3.2)–(3.5) the natural requirement that the solution is H1
loc and

bounded (more generally, polynomially bounded) in the strip outside any neighbor-
hood of the interval [−1, 1] × {0}, Problem L0 coincides with the problem obtained
by formal linearization of the original nonlinear problem in the physical plane; see [3].
Then, by the results of [3], we have the following.
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Theorem 3.1. Given f ′ ∈ H1/2(I) (with I defined by (2.6)), Problem L0 is
uniquely solvable for ν∗0H

∗ = gH/c20 > 1, provided the positive solution µ of

tanh(µH∗) =
µ

ν∗0
(3.6)

is different from nπ/2, n = 1, 2, . . . . Furthermore, if f ′ ∈ H3/2(I), the solution is
continuous and bounded in the closed strip A∗, and there are real constants A0, B0

such that

sup
(ρ,σ)∈A∗

eλ0|ρ|
∣∣∣η0(ρ, σ) − θ(ρ)[A0 sin(µρ) + B0 cos(µρ)] sinh(µ(σ + H∗))

∣∣∣ < ∞,(3.7)

where λ0 is the first positive solution of the equation

tan(λH∗) =
λ

ν∗0
(3.8)

and θ is the characteristic function of the interval (0,+∞).
From Theorem 3.1 we get no information on the solvability of Problem L0 at the

“singular values” µ = nπ/2, n = 1, 2, . . . . However, by a careful reconsideration of
some arguments of [3], it can be shown that the solutions defined by Theorem 3.1 have
well defined limits for µ → nπ/2 and that these limits are still solutions to Problem
L0 with the same regularity and asymptotic properties (3.7). In fact, we can now
state the following.

Theorem 3.2. Let f be given as in Theorem 3.1, and suppose that the positive
solution of (3.6) satisfies µ = nπ/2, n = 1, 2, . . . . Then there is a unique solution η0

of Problem L0, which is defined as the limit for µ → nπ/2 of the solutions given by
Theorem 3.1.

The proof is given in the appendix.
Remark 3.3. It is worthwhile to point out further properties of the solution of

Problem L0 which will be useful for the definition of an appropriate functional setting
for (2.25). We stress that these properties, as well as the asymptotic representation
(3.7), hold for every positive value of µ.

(i) It can be shown (see also [1]) that if the datum in (3.2) belongs to the Sobolev

space W
2− 1

p
p (−1, 1), with p ∈ (1, 4/3), then η0 belongs to W 2

p (B) for every

bounded, measurable B ⊂ A∗. We recall the inclusion W 2
p (B) ⊂ C0,α(B̄),

with α = 2 − 2/p ; also notice that the space W 2
p is an algebra for p > 1 and

that the product between functions of W 2
p is continuous. Moreover, since the

gradient of η0 is locally integrable along any curve contained in the closed
strip A∗, the harmonic conjugate ξ0 is continuous on A∗ (and also in W 2

p of
any bounded subset).

(ii) The holomorphic function χ0 = ξ0 − η0 is everywhere bounded in A∗ and
smooth up to the boundary outside any neighborhood of the interval [−1, 1]×
{0}. Moreover, a bound similar to (3.7) also holds for the function ∂ρξ0.

(iii) For coefficients A0 and B0, in the representation (3.7), the following formulas
hold (see Proposition A.4 of the appendix):

A0 =

∫ 1

−1

f ′(ϕ∗ρ + ϕm)α(ρ)dρ,(3.9)

B0 =

∫ 1

−1

f ′(ϕ∗ρ + ϕm)β(ρ)dρ,(3.10)
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where α, β are real continuous functions on [−1, 1] depending only on ν∗0 and
H∗.

Remark 3.4. By Theorems 3.1 and 3.2, we have that the linearized problem of
the flow past a surface-piercing obstacle is uniquely solvable for every subcritical value
of the velocity c0. This property was never proved before in the linear theory of
wave-body interaction, [4] and will be discussed in a more general framework in a
forthcoming paper.

Let us now go back to the representation (3.7); we note that the parameter ν∗0
determines the wave number of the perturbed flow at downstream infinity. Moreover,
the choice x̄ = 0 at ε = 0 affects the asymptotic phase of η0. Actually, for ρ → +∞
we can write

η0(ρ, σ) ≈ C0 sin(µρ + δ0) sinh(µ(σ + H∗)),(3.11)

where δ0 = arctan(B0/A0); since A0 and B0 are linear functionals of the boundary
datum of Problem L0, i.e., of −f ′(ϕ∗ρ+ϕm) for |ρ| < 1, a different choice of the limit
value of x̄ corresponds to a shift of the argument of f ′ and therefore to a change of δ0.
Now, it is clear that, given ϕ∗, ϕm, ν∗0 , and H∗, the constant δ0 in (3.11) is fixed by
the integrals on the right-hand sides of (3.9), (3.10) (we suppose that at least one of
these integrals is not vanishing; if A0 = 0 we take δ0 = π/2). In the following, for the
sake of simplicity, we shall assume that the function ρ �→ f ′(ϕ∗ρ + ϕm) is orthogonal
to β so that B0 = 0 and δ0 = 0. In this case, the solution η0 is asymptotically odd
with respect to ρ for ρ → +∞. Then we will look for solutions of the nonlinear
problem (2.25) with the same symmetry at infinity. We point out that the restriction
to invariant subspaces of functions with definite symmetry is also a crucial step in the
proof of the existence of periodic water waves by bifurcation methods [8], [11]. Later,
we will show how to get rid of the previous orthogonality assumption; we remark only
here that, in the general case, the function ρ �→ η0(ρ − δ∗0 , σ) is asymptotically odd,
where

δ∗0 = δ0/µ.(3.12)

Remark 3.5. When A0, B0 are both vanishing, we get C0 = 0 in (3.11), and
the phase δ0 is undetermined. In this case, we have a waveless solution of the linear
Problem L0 (see [4], [14]), which is also uniquely determined.

3.2. The functional equation. It is now convenient to outline our strategy
for solving (2.25); we want to solve such an equation for every pair ϕ∗, ϕm in a
neighborhood of the previously discussed solution at ε = 0. We remark that this
solution is a function χ0 = ξ0 − iη0 holomorphic in the strip (2.16); moreover, χ0

vanishes for ρ → −∞ and approaches, for ρ → +∞, a holomorphic function χ#

0 which
is 2π/µ periodic with respect to ρ, where µ is the positive solution of (3.6). Finally, by
the discussion at the end of the previous section, χ#

0 satisfies the symmetry condition

χ#

0 (−ρ, σ) = χ#

0 (ρ, σ).
Thus, it is natural to solve the functional equation (2.25) in a space of functions

defined in the fixed strip A∗ and with the above asymptotic properties. We note in par-
ticular that we look for solutions having the same wave number and symmetry, in the
limit ρ → +∞, for every positive (small enough) ε; as we will see, this can be accom-
plished by letting the parameters ν∗, x̄ vary from the initial values ν∗0 , 0. This means
that we will solve the functional equation with respect to the unknowns (χ, x̄, ν∗) in
a neighborhood of the solution (χ0, 0, ν

∗
0 ). We first define suitable Banach spaces for
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the discussion of the functional equation (2.25); then we will show that the operator
B is a continuously differentiable map between these spaces. In the next section, we
will prove the invertibility of the Frechet derivative B′ at ε = 0 and solve (2.25) by
the implicit function theorem. Taking account of Theorem 3.1 and Remark 3.3, we
now introduce a Banach space X of holomorphic functions defined in A∗ and contin-
uous up to the boundary. Let us fix ρ0 > 1 and set Qρ0 = [−H∗, 0] × R\(−ρ0, ρ0);
moreover, given ρ̄ > ρ0, let Bρ̄ ⊂ A∗ be the bounded rectangle (−H∗, 0) × (−ρ̄, ρ̄).
Finally, take 1 < p < 4/3, α = 2 − 2/p, and define

X =
{
χ = ξ − iη ∈ Hol(A∗), χ|Bρ̄

∈ W 2
p (Bρ̄), χ|Qρ0

∈ C1,α(Qρ0),

η(·,−H∗) = 0, lim
ρ→−∞

χ = 0, lim
ρ→+∞

|χ− χ#| = 0,
}
,(3.13)

where χ# = ξ# − iη# is holomorphic in the strip and 2π/µ-periodic with respect to ρ
and such that χ#(−ρ, σ) = χ#(ρ, σ). The limits in (3.13) are uniform with respect to
σ. The space X is endowed with the following norm:

||χ||X = ||χ||C1,α(Qρ0
) + ||χ||W 2

p (Bρ̄)

+ sup
Qρ0

eλ
∗|ρ|{|η(ρ, σ) − θ(ρ)η#(ρ, σ)| + |∂ρξ(ρ, σ) − θ(ρ)∂ρξ

#(ρ, σ)|},(3.14)

where 0 < λ∗ < λ0 and λ0 is the lowest positive solution of (3.8). We note that X is a
linear space of bounded, continuous functions up to the boundary of A∗; furthermore,
X is complete with respect to the norm (3.14). In fact, if χn is a Cauchy sequence in
X, we have in particular that χn converges uniformly on the closure of the strip A∗ to
a continuous function χ which is holomorphic in A∗; moreover, it can be shown that
χ is the limit in X of the sequence. For, by (3.14), if χn ∈ X is a Cauchy sequence of
functions asymptotic to the periodic functions χ#

n , then the χ#
n form is also a Cauchy

sequence in C0([�, � + 2π/µ] × [−H∗, 0]), with � ≥ ρ0; hence, χ#
n → χ# uniformly,

with χ# holomorphic and satisfying the properties described below (3.13). Now, by
writing explicitly the Cauchy condition for χn − χm and taking the limit for m → ∞
at every point of the closed strip, we find that χ ∈ X with the above limit χ# in the
definition (3.13); moreover, limn→∞ χn = χ in X. Let us now define the space

Y = W
2− 1

p
p (−1, 1) × Yρ0,ρ̄ ,(3.15)

where Yρ0,ρ̄ is the set of the real functions l defined (a.e.) in R\[−1, 1] and with the
following properties:

l|(−ρ̄,−1)∪(1,ρ̄) ∈ W
1− 1

p
p ((−ρ̄,−1) ∪ (1, ρ̄)),

l|R\(−ρ0,ρ0) ∈ C0,α(R\(−ρ0, ρ0)),

sup
|ρ|≥ρ0

eλ
∗|ρ||l(ρ) − θ(ρ)l#(ρ)| < ∞,(3.16)

where l# is continuous, 2π/µ-periodic, and odd. The linear space Yρ0,ρ̄, equipped with
the norm

||l||Y = ||l||
W

1− 1
p

p ((−ρ̄,−1)∪(1,ρ̄))
+ ||l||C0,α(R\(−ρ0,ρ0))

+ sup
|ρ|≥ρ0

eλ
∗|ρ||l(ρ) − θ(ρ)l#(ρ)|,(3.17)

is a Banach space. The crucial result of this section is the following.
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Theorem 3.6. Let f be a C3,1 function defined in an interval J containing the
interval (2.6). Then, for every bounded domain Φ ⊂ R2 of the form ϕ∗ ∈ [a, b] ⊂ R+,
ϕm ∈ [−ϕ∗, ϕ∗], there exists ε0 > 0 and a bounded open set U ⊂ X × R2 such that
the operator

B : U × Φ × [0, ε0) → Y,

defined by (2.24), is continuously differentiable with respect to (χ, x̄, ν∗); furthermore,
the solution (χ0, 0, ν

∗
0 ) of the linear problem

B(χ, x̄, ν∗;ϕm, ϕ∗, 0) = 0

belongs to U .
Proof. This proof follows along the same lines as the proof of Theorem 3.5 in [1]

and of Theorem 3.2 in [2] and is only sketched here. We recall that B is a family of
operators, acting on the variables (χ, x̄, ν∗) ∈ X×R2, depending on three parameters:
ϕ∗, ϕm, and ε. We assume that ε belongs to some interval [0, ε0) and the pair ϕ∗,
ϕm to some bounded domain Φ as defined above. We prove the assertions of the
theorem separately for the two components of the operator B. We stress that the
assumption f ∈ C3,1(J) guarantees the continuity of the Nemitski operator associated

with f ′′ from W
3− 1

p
p (−1, 1) to W

2− 1
p

p (−1, 1); furthermore, by Remark 3.3(i) it follows

that W
2− 1

p
p (−1, 1) is an algebra and that the product between functions in this space

is continuous (see also [12, Theorem 1.4.4.2]). These properties allow us to conclude
that, for suitably chosen UI ⊂ X × R (containing the point (χ0, 0)) and ε0 > 0, the

operator BI given by (2.21) is continuous from UI × Φ × [0, ε0) into W
2− 1

p
p (−1, 1)

and continuously differentiable with respect to (χ, x̄); its G-differential at the point
(χ0, 0) ∈ UI is given by

dGBI(χ0, 0; ε)[χ, x̄]

= η(ρ, 0) + εf ′
(
ϕ∗

∫ ρ

ρm

(
1 + εξ0(s, 0)

)
ds

)
ξ(ρ, 0)

+f ′′
(
ϕ∗

∫ ρ

ρm

(
1 + εξ0(s, 0)

)
ds

)(
1 + εξ0(ρ, 0)

)(
x̄ + εϕ∗

∫ ρ

ρm

ξ(s, 0)ds

)

= η(ρ, 0) + x̄f ′′(ϕ∗ρ + ϕm) + O(ε), |ρ| < 1.(3.18)

It is easy to check that the map (χ, x̄;ϕm, ϕ∗, ε) �→ dGBI(χ, x̄;ϕm, ϕ∗, ε) is continuous;
then BI is Frechet differentiable with the continuous derivative in UI × Φ × [0, ε0).
Similarly, we can check differentiability of BI with respect to the parameters ϕm, ϕ∗,
and ε.

In order to exploit similar arguments for the second component of B, i.e., BF

given by (2.23), it is convenient to write it in the form

BF (χ, ν∗; ε) =

{
ν∗η + ξρ + ε

∂

∂ρ

1
2 (η2 − 3ξ2) − εξ(ξ2 + η2)

(1 + εξ)2 + ε2η2

} ∣∣∣
|ρ|>1, σ=0

.(3.19)

Again by the properties of the spaces W
2− 1

p
p with p > 1 and recalling the definitions

(3.16), (3.17), one can verify that, for suitably chosen UF ⊂ X × R+ (containing the
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point (χ0, ν
∗
0 )) and ε0 > 0, the operator BF acts continuously from UF × [0, ε0) into

Yρ0,ρ̄; we particularly emphasize that if χ satisfies the asymptotic symmetry condition
specified in the definition of the space X, then the right-hand side of (3.19) satisfies
the analogous condition for the space Yρ0,ρ̄ (see (3.16)). The operator BF is also
differentiable with respect to (χ, ν∗), and its G-differential at the point (χ0, ν

∗
0 ) can

be written

dGBF (χ0, ν
∗
0 ; ε)[χ, ν∗] = ν∗η0(ρ, 0) + ν∗0η(ρ, 0) + ξρ(ρ, 0) +O(ε), |ρ| > 1.(3.20)

The map (χ, ν∗; ε) �→ dGBF (χ, ν∗; ε) is continuous; then BF is Frechet differentiable
with the continuous derivative in UF × [0, ε0). We can also readily check the differen-
tiability of BF with respect to ε. By collecting all these facts, we get the proof of the
theorem.

4. Solvability of the functional equation. In this section we solve (2.25) in
a neighborhood of the solution at ε = 0. To this aim, we prove the invertibility of
the Frechet derivative B′(χ0, 0, ν

∗
0 ;ϕm, ϕ∗, 0); by Theorem 3.6 and evaluating (3.18),

(3.20) at ε = 0, we are led to consider the following boundary value problem.
Problem L. Find χ = ξ − iη ∈ X such that

ησ(ρ, 0) − ν∗0 η − ν∗ η0(ρ, 0) = l(ρ) for |ρ| > 1,(4.1)

η(ρ, 0) + x̄f ′′(ϕ∗ρ + ϕm) = k(ρ) for |ρ| < 1,(4.2)

η(ρ,−H∗) = 0,(4.3)

where the pair (k, l) belongs to the space Y defined by (3.15), (3.16). We will show
that problem (4.1)–(4.3) is uniquely solvable in the space X (see (3.13)) for a unique
choice of the pair (x̄, ν∗) in a neighborhood of (0, ν∗0 ). We search a solution of the
problem in the form

η = η1 + η2,

where η1, η2 are harmonic in the strip and satisfy, respectively, the conditions

∂ση1(ρ, 0) − ν∗0η1 = 0 for |ρ| > 1,(4.4)

η1(ρ, 0) = k(ρ) − x̄f ′′(ϕ∗ρ + ϕm) − η2(ρ, 0) for |ρ| < 1,(4.5)

η1(ρ,−H∗) = 0 for ρ ∈ R,(4.6)

∂ση2(ρ, 0) − ν∗0 η2 = l(ρ) + ν∗ η0(ρ, 0) for |ρ| > 1,(4.7)

η2(ρ,−H∗) = 0 for ρ ∈ R.(4.8)

It is readily verified that if η1, η2 solve the system (4.4)–(4.8), their sum η solves
Problem L; on the other hand, we know that (4.4)–(4.6) is solvable by Theorem 3.1.
Now we will consider problem (4.7)–(4.8). By the definition of the space Yρ0,ρ̄ and
by the continuation properties of Sobolev space functions [12, Par. 1.4.3], we can
assume that the datum l on the right-hand side of (4.7) is defined on R and satisfies

l|(−ρ̄,ρ̄) ∈ W
1− 1

p
p (−ρ̄, ρ̄). Furthermore, let us define

l∗(ρ) = l(ρ) + ν∗ η0(ρ, 0), ρ ∈ R.(4.9)
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We denote by Z the set of functions l∗ defined in R such that

l∗|(−ρ̄,ρ̄) ∈ W
1− 1

p
p (−ρ̄, ρ̄) and have property (3.16) in R\(−1, 1).

We stress that a function l∗ ∈ Z may be decomposed as

l∗(ρ) = l∗0(ρ) + θ(ρ)l#(ρ),(4.10)

where l∗0 is integrable and exponentially decaying for |ρ| → ∞, while l# is 2π/µ-
periodic, continuously differentiable, and odd. We now discuss an auxiliary problem
in the strip whose solution proves the existence of the required function η2.

4.1. An auxiliary problem. Let us consider the following problem:

∆Ψ = 0 in A∗,(4.11)

∂σΨ(ρ, 0) − ν∗0 Ψ(ρ, 0) = l∗(ρ) for ρ ∈ R,(4.12)

Ψ(ρ,−H∗) = 0 for ρ ∈ R.(4.13)

Moreover, we require that Ψ vanishes for ρ → −∞. Then, we have the following.
Proposition 4.1. For every l∗ ∈ Z there exists a function Ψ satisfying (4.11)–

(4.13) and vanishing exponentially for ρ → −∞. Moreover, if l∗ satisfies the linear
condition ∫ π/µ

−π/µ

sin(µρ)l#(ρ) = 0,(4.14)

then Ψ is bounded and asymptotically 2π/µ-periodic (with respect to ρ) for ρ → +∞.
Proof. Let us consider the convolution

(K � l∗)(ρ, σ) =

∫
R

K(ρ− ρ′, σ)l∗(ρ′)dρ′,(4.15)

where

K(ρ, σ) =
1

2π

∫
R

eipρ
sinh[p(σ + H∗)]

p cosh(pH∗) − ν∗0 sinh(pH∗)
dp.(4.16)

We stress that the integrand in (4.16) has two simple poles at p = ±µ on the real
axis; therefore, the integral is understood as the Fourier transform of a tempered
distribution, which can be evaluated by integrating along the path in the complex
plane consisting of the intervals (−∞,−µ− ε), (−µ+ ε, µ− ε), (µ+ ε,+∞) of the real
axis and two semicircles of radius ε and center at (±µ, 0) surrounding the poles in the
lower half plane. As a result, we obtain

K(ρ, σ) = κ(ρ, σ) + C θ(ρ) sin(µρ) sinh[µ(σ + H∗)],(4.17)

where C is a constant, θ is the characteristic function of the interval (0,+∞), and

κ(ρ, σ) =

∞∑
n=0

cn sin[λn(σ + H∗)]e−λn|ρ|.
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The coefficients cn are given by

cn = [(1 − ν∗0H
∗) cos(λnH

∗) − λnH
∗ sin(λnH

∗)]−1, n = 0, 1, 2 . . . ,

where λn are the positive solutions of the equation

tan(λH∗) =
λ

ν∗0
.

Note that λnH
∗ ≈ (n + 3/2)π for large n so that |cn| = O(1/n). It follows in

particular that |κ(ρ, σ)| ≤ C log(|ρ|) for ρ in a neighborhood of the origin so that, for
every σ ∈ [−H∗, 0] and p ≥ 1, the function ρ �→ κ(ρ, σ) belongs to Lp(R). Moreover,
we have from (4.16) that ∆K = 0 in A∗ and that Kσ(ρ, σ) − ν∗0K(ρ, σ) → δ(ρ) in
S ′(R) for σ → 0; then (4.15) solves (4.11)–(4.13) at least for l∗ ∈ S(R). We will now
show that (4.15) is well defined also for l∗ ∈ Z and that the proposition holds with
Ψ = (K � l∗).

Let us first consider the function κ � l∗; by (4.10), we can write

(κ � l∗)(ρ, σ) = (κ � l∗0)(ρ, σ) +

∫ +∞

0

κ(ρ− ρ′, σ)l#(ρ′)dρ′.

By explicit bounds using the integrability and the decay properties of the factors we
get |(κ � l∗0)(ρ, σ)| ≤ Ce−λ∗|ρ|, where C depends on the norms of κ and l∗0 in L1(R).
The second term is a bounded function defined in R and decreasing like Ceλ0ρ for
large negative values of ρ (recall that λ0 > λ∗); moreover, we have the identity∫ +∞

0

κ(ρ−ρ′, σ)l#(ρ′)dρ′ =

∫
R

κ(ρ′, σ)l#(ρ−ρ′)dρ′−
∫ +∞

ρ

κ(ρ′, σ)l#(ρ−ρ′)dρ′.(4.18)

Recalling that l# is periodic and odd and observing that κ(−ρ, σ) = κ(ρ, σ), we have
that the first term on the right-hand side is periodic and odd with respect to ρ. The
second term is also vanishing as Ce−λ0ρ for ρ → +∞. Let us now consider the
convolution between l∗ and the last term of (4.17); it is proportional to the function

sinh[µ(σ + H∗)]

∫ ρ

−∞
sin[µ(ρ− ρ′)]l∗(ρ′)dρ′,(4.19)

which is bounded by Ceλ
∗ρ for ρ → −∞. To study the other limit, we write∫ ρ

−∞
sin[µ(ρ− ρ′)]l∗(ρ′)dρ′ = [A(ρ) + Pc(ρ)] sin(µρ) + [B(ρ) + Ps(ρ)] cos(µρ),(4.20)

where

A(ρ) =

∫ ρ

−∞
l∗0(ρ

′) cos(µρ′)dρ′, B(ρ) = −
∫ ρ

−∞
l∗0(ρ

′) sin(µρ′)dρ′,(4.21)

Pc(ρ) =

∫ ρ

0

cos(µρ′)l#(ρ′)dρ′, Ps(ρ) = −
∫ ρ

0

sin(µρ′)l#(ρ′)dρ′.(4.22)

By expanding l# in Fourier sine series and integrating term by term in (4.22), we
find that the function Ps is bounded (and periodic) only if condition (4.14) holds. We
point out that a second “nonresonance” condition for Pc is ruled out by the choice of
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an odd l#. Then the right-hand side of (4.20) approaches a 2π/µ-periodic function
for ρ → +∞; note that such a function is not odd, unless limρ→+∞ B(ρ) = 0.

It remains to prove that (4.15) actually solves the problem. We point out that,
by (4.10), the Fourier transform in S ′ of a function l∗ ∈ Z has the form

l̂∗(p) = l̂∗0(p) −
∞∑

n=1

bn l̂
∗
n(p),(4.23)

where l̂∗0(p) is a smooth function, bn are the coefficients of the Fourier series of l#,

and l̂∗n(p) = limε→0 nµ/[(p − iε)2 − (nµ)2] (the limit being in S ′(R)). Then we can
define the one-parameter family of tempered distributions

Ψ̂(p, σ) =
sinh[p(σ + H∗)]

p cosh(pH∗) − ν∗0 sinh(pH∗)
l̂∗(p), σ ∈ [−H, 0],

where the first factor on the right-hand side is regularized as in the discussion following
(4.16). It is readily checked that

lim
σ→0

[∂σΨ̂(p, σ) − ν∗0 Ψ̂(p, σ)] = l̂∗(p)

in the distributional sense. Thus, by the properties of the Fourier transform F in S ′

(see [13], Thm. 7.15) we have that the inverse transform F−1Ψ̂ solves (4.11)–(4.13)
and is equal (a.e.) to the convolution (4.15).

Remark 4.2. We remark that if (4.14) holds, the coefficient b1 of the series on
the right-hand side of (4.23) vanishes. As a consequence, in evaluating the inverse
Fourier transform of Ψ̂ by complex plane integration, we have only contributions of
simple poles, which produce the oscillating terms of the solution at +∞. If b1 �= 0,
there are poles of order two at p = ±µ, generating a “resonance” term in Ψ, whose
amplitude grows linearly for ρ → +∞, in agreement with the previous calculations
(see (4.20) and (4.22)).

By taking l∗ as in (4.9) we can now choose η2 = Ψ as the harmonic function
satisfying (4.7) and (4.8). We now show that there is a unique value of ν∗ such that
(4.14) holds. For, by (4.9) and by the asymptotic properties of η0, we have

l#(ρ) = l#(ρ) + ν∗A0 sinh(µH∗) sin(µρ);

inserting in (4.14) we find

ν∗ = − 1

πA0 sinh(µH∗)

∫ π/µ

−π/µ

l#(ρ) sin(µρ)dρ.(4.24)

4.2. Invertibility of the Frechet derivative. We can now state the main
result of this section.

Theorem 4.3. Let ν∗0 > 1/H∗, and assume that

F (ϕm, ϕ∗) ≡
∫ 1

−1

f ′′(ϕ∗ρ + ϕm)β(ρ)dρ �= 0.(4.25)

Then, for every pair (k, l) ∈ Y , there is a unique pair (x̄, ν∗) ∈ R2 such that Problem
L is uniquely solvable in X.
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Proof. We first note that, by Theorems 3.1 and 3.2, there is a unique harmonic
function η1 which satisfies (4.4)–(4.6) and the asymptotic condition (3.7). Then the
function η = η1 + η2, with η2 defined in section 4.1, satisfies (4.1)–(4.3) and vanishes
(exponentially) at −∞. Moreover, by choosing ν∗ as in (4.24), we have that η is
bounded and asymptotically 2π/µ-periodic for ρ → +∞. It remains to satisfy the
symmetry condition. To this aim, we recall that by (4.18)–(4.22) the function η2

approaches, for ρ → +∞, the sum of an odd (periodic) function with the function

B+ cos(µρ) sinh[µ(σ + H∗)],(4.26)

where B+ is proportional to the limit for ρ → +∞ of the function B(ρ) defined in
(4.21). On the other hand, by denoting with k∗ the right-hand side of (4.5), we have
for large positive values of ρ

η1 ≈ [A1 sin(µρ) + B1 cos(µρ)] sinh[µ(σ + H∗)],(4.27)

where, by recalling (3.10), B1 =
∫ 1

−1
k∗(ρ)β(ρ)dρ.

Then η is asymptotically odd if

B1 + B+ = 0.

By the definition of k∗ and by (4.25) the above equation is satisfied by choosing

x̄ =
1

F (ϕ∗, ϕm)

{
B+ +

∫ 1

−1

[k(ρ) − η2(ρ, 0)]β(ρ)dρ

}
.(4.28)

It remains to prove uniqueness. Assume that the real numbers x̃ and ν̃∗ and the
function η̃ solve the homogeneous Problem L. By Proposition 4.1, there is a harmonic
function η̃2, vanishing for ρ → −∞, bounded by a linear function for ρ → +∞ (see
Remark 4.2), and satisfying conditions (4.7), (4.8) with l = 0 and ν∗ = ν̃∗. As a
consequence, η̃1 = η̃ − η̃2 solves (4.4)–(4.6) with k = 0 and with x̄ = x̃ and satisfies
the same conditions at infinity. Then, by Theorems 3.1 and 3.2, such an η̃1 is uniquely
determined and satisfies (3.7); it follows that η̃ is bounded and asymptotically periodic
only if η̃2 has the same properties. By (4.24), this implies ν̃∗ = 0 so that η̃2 = 0. In
this case, condition (4.5) becomes η̃1(ρ, 0) = −x̃f ′′(ϕ∗ρ + ϕm), for |ρ| < 1. However,
by condition (4.25), η̃ = η̃1 cannot approach an odd (periodic) function for ρ → +∞,
unless x̃ = 0. Then we also get η̃ = 0.

We could now deduce local solvability of (2.25) by the implicit function theorem.
We recall, however, that Theorem 4.3 has been proved by assuming a specific symme-
try of the solutions at downstream infinity, starting from the additional condition that
the right-hand side of (3.10) vanishes. We now show that the theorem holds without
this extra assumption if one suitably modifies the definitions of the function spaces X,
Y and the condition (4.25); at the end of the section, we will discuss the restrictions
on the form of the cylinder’s profile f for the validity of the latter condition.

Recalling the discussion at the end of section 3.1, if δ∗0 �= 0 in (3.12), we change
the definition (3.13) of the space X by requiring that the limit function χ# satisfies
the condition χ#(−ρ−δ∗0 , σ) = χ#(ρ− δ∗0 , σ). Similarly, in the definition (3.16) of the
space Yρ0,ρ̄ we assume l#(−ρ − δ∗0) = −l#(ρ − δ∗0); then we can formulate Problem
L as before, referring to the new spaces X, Y . We can also modify in the obvious
way the definition of the space Z below (4.9) and the properties of the function l# in
the decomposition (4.10). The first crucial remark is that a solution of the auxiliary
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problem (see section 4.1) with datum l∗ in the new space Z is simply a translation
(with respect to ρ) of the solution Ψ given by Proposition 4.1, corresponding to the
asymptotically odd datum ρ �→ l∗(ρ − δ∗0). More precisely, Proposition 4.1 is now
satisfied by the function (ρ, σ) �→ Ψ(ρ+δ∗0 , σ), provided the following condition holds:

∫ π/µ

−π/µ

sin[µ(ρ + δ∗0)]l#(ρ) = 0.(4.29)

We can now proceed as in section 4.1 and choose η2(ρ, σ) = Ψ(ρ + δ∗0 , σ) to satisfy
conditions (4.7), (4.8); by (4.9) and recalling (3.11), we easily check that there is again
a unique value of ν∗ such that (4.29) holds. Let us now turn to Theorem 4.3; we
define as before η = η1 + η2, with η1 solving (4.4)–(4.6) and satisfying the asymptotic
condition (4.27); then, by a suitable translation of (4.26) we find that η belongs to
the (new) space X if

(A1 −B+ sin δ0) sin(µρ) + (B1 + B+ cos δ0) cos(µρ) = C sin(µρ + δ0),

that is,

A1 sin δ0 −B1 cos δ0 = B+.(4.30)

Note that, for δ0 = 0, (4.30) reduces to the previous condition B1+B+ = 0. Recalling
(3.9), (3.10), if the assumption (4.25) is replaced by

F0(ϕ
m, ϕ∗) ≡

∫ 1

−1

f ′′(ϕ∗ρ + ϕm)[cos δ0 β(ρ) − sin δ0 α(ρ)]dρ �= 0,(4.31)

we can solve (4.30) by choosing

x̄ =
1

F0(ϕ∗, ϕm)

{
B+ +

∫ 1

−1

[k(ρ) − η2(ρ, 0)][cos δ0 β(ρ) − sin δ0 α(ρ)]dρ

}
.(4.32)

The rest of the proof of Theorem 4.3 now follows with obvious modifications. Now,
with the new definitions of the space X (and Y ) and by the implicit function theorem,
we can state the following.

Theorem 4.4. Let f ∈ C3,1, (ϕm, ϕ∗) ∈ Φ ⊂ R2, and U ⊂ X × R2 be given as
in Theorem 3.6; moreover, assume that condition (4.31) holds, with δ0 defined by the
asymptotic condition (3.11). Then there exists ε0 > 0 such that, for every ε ∈ [0, ε0),
the equation B(χ, x̄, ν∗, ϕm, ϕ∗, ε) = 0 has a unique solution

(χ(ϕm, ϕ∗, ε), ν(ϕm, ϕ∗, ε), x̄(ϕm, ϕ∗, ε)) ∈ U .

Moreover, the map ε �→ (χ(ϕm, ϕ∗, ε), ν(ϕm, ϕ∗, ε), x̄(ϕm, ϕ∗, ε)) is differentiable.
In view of the discussion of the last conditions (2.13), (2.13′), it will be important

to investigate the properties the function F0 defined in (4.31) (see section 5 and the
appendix). We remark here that the form of this function also depends on the data
c0, H, f ′.

5. Solution of the additional conditions. Theorem 4.4 provides, for a given
pair of parameters ϕm, ϕ∗, a function χ holomorphic in A∗, satisfying the requested
conditions on the boundary of A∗ and the prescribed asymptotic behavior. We still
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have to satisfy the continuity condition (2.13) and the additional condition (2.13′).
These two conditions, when ε → 0, reduce to⎧⎪⎨

⎪⎩
−ϕ∗

∫ −1

−∞
η0(s, 0)ds = f(ϕm − ϕ∗),

c20
g ξ0(1, 0) = f(ϕm + ϕ∗).

(5.1)

Here η0 is the solution to Problem L0, and ξ0 is its harmonic conjugate vanishing
at infinity upstream. We shall prove that there exists a pair of numbers (ϕm, ϕ∗)
satisfying system (5.1); then, by a continuity argument, we will deduce the existence,
for small enough values of ε, of a pair solving (2.13) and (2.13′). Notice that, by
integrating from −∞ to −1 the boundary condition following (3.1), we get

−ϕ∗
∫ −1

−∞
η0(s, 0)ds =

c20
g
ξ0(−1, 0).

Then, by returning to the parameters ϕ± (see (2.14)), we can write system (5.1) in
the form ⎧⎨

⎩
f(ϕ−/c0) =

c20
g ξ0(−1, 0;ϕ−, ϕ+),

f(ϕ+/c0) =
c20
g ξ0(1, 0;ϕ−, ϕ+).

(5.2)

Here we have stressed the dependence of ξ0 on the unknowns ϕ±. By arguments
similar to those used in the proof of Proposition 4.1 in [2], one finds that the maps
(ϕ−, ϕ+) �→ ξ0(±1, 0;ϕ−, ϕ+) are continuous on the second quadrant of the plane
(ϕ−, ϕ+). We first show that system (5.2) has a solution. Let us fix R > 0 and define
QR = (−c0R, 0) × (0, c0R); consider now the function

G : QR → R2,

G1(ϕ−, ϕ+) = f(ϕ−/c0) −
c20
g
ξ0(−1, 0;ϕ−, ϕ+),(5.3)

G2(ϕ−, ϕ+) = f(ϕ+/c0) −
c20
g
ξ0(1, 0;ϕ−, ϕ+).(5.4)

Then we have the following.

Lemma 5.1. Let f be a function satisfying (1.3) and such that f ′ ∈ W
2− 1

p
p on

any interval including the origin; assume further that f satisfies the growth condition
f(x) ≈ C0|x|α (C0, α positive constants) for large |x| and that this relation can be
differentiated. Then there exists R > 0 such that G1(−c0R,ϕ+) > 0 for 0 < ϕ+ < c0R
and G2(ϕ−, c0R) > 0 for −c0R < ϕ− < 0.

Proof. By recalling Remark 3.3, the quantities |ξ0(±1, 0;ϕ−, ϕ+)| can be bounded
by a (local) Sobolev norm of the solution of Problem L0; then, mapping the problem
in the plane of the scaled hodograph variables (ϕ/c0, ψ/c0) (which equal the physical
space variables at ε = 0; see the discussion following (2.4), (2.5)) and using estimates
on the solution (see, e.g., [1, equation (4.9)]), it can be proved that the absolute values
of the right-hand sides of (5.2) are bounded by the Sobolev norm of f ′ in the interval
(ϕ−/c0, ϕ+/c0). Then the proposition follows by the assumptions on the growth of f
and its derivatives.
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Remark 5.2. We note that the quantities |ξ0(±1, 0;ϕ−, ϕ+)| decrease to zero
for ϕ+ − ϕ− → 0; this means that, in this limit, both components of G are strictly
negative.

Proposition 5.3. Let f satisfy the assumptions of Lemma 5.1; suppose further
that for every point in QR with ϕ− = 0 or ϕ+ = 0 we have

f(0) <
c20
g
ξ0(1, 0; 0, ϕ−), f(0) <

c20
g
ξ0(−1, 0;ϕ+, 0).(5.5)

Then system (5.2) has a solution.
Proof. By Lemma 5.1, conditions (5.5) and definitions (5.3), (5.4) we have

G1(−c0R,ϕ+) > 0, G1(0, ϕ+) < 0

for 0 < ϕ+ < c0R and

G2(ϕ−, c0R) > 0, G2(ϕ−, 0) < 0

for 0 < ϕ− < c0R. Now the statement that the map G has a zero in QR is equivalent
to the Brouwer fixed point theorem.

Remark 5.4. Regarding condition (5.5), we notice that, in the linear problem, the

two quantities
c20
g ξ0(±1, 0) represent the height of the free boundary at the contact

points with the cylinder. Then, roughly speaking, the two inequalities in (5.5) state
the (quite natural) requirement that the free surface reaches the cylinder’s hull at
least at the minimum of its profile (placed at x = 0). It can be shown that, for

fixed (ϕ−/c0, ϕ+/c0), the quantities
c20
g ξ0(±1, 0) are vanishing for c0 → 0; hence, the

assumptions of Proposition 5.3 hold (for a given f) if the velocity c0 is small enough.
This is in agreement with the physical intuition, since for small values of the velocity
the perturbation of the free boundary from the line y = 0 should be small, even if
compared to the width of a thin obstacle. It is also clear that, for c0 � 1, the solutions
of (5.2) are such that ϕ−/c0 ≈ a and ϕ+/c0 ≈ b, where a, b are, respectively, the
negative and positive solutions of f = 0 (see (1.3)).

Now, assuming that condition (4.31) holds for every pair (ϕ∗, ϕm) corresponding
(through (2.14)) to a point of QR, we get the solvability of the system (2.13), (2.13′)
for small ε. In fact, by Theorem 4.4, we can define a map ε �→ Ω(ϕ, 0;ϕ+, ϕ−, ε) such
that the composite maps appearing in (2.13), (2.13′) are continuous on QR; moreover,
(2.13), (2.13′) reduce to (5.1) (that is, (5.2)) when ε → 0.

Thus, as remarked at the end of the previous section, we should study the domain
of validity of condition (4.31) for a given profile f and positive c0, H satisfying (1.1);
we note, however, that it is not strictly necessary to satisfy such a condition at every
point of QR. In fact, by homotopy with the linear map (ϕ−, ϕ+) �→ (− 2

c0R
ϕ− −

1, 2
c0R

ϕ+ − 1), it follows that the topological degree deg(QR,G,0) is equal to 1;
then, if the solutions of (5.2) are isolated points in QR, there is at least one solution
Φ∗ = (ϕ∗

−, ϕ
∗
+) with local mapping degree (or index i(G,Φ∗,0)) different from zero by

the index sum theorem [15]. Now, assuming only that (4.31) holds at Φ∗ and observing
that the function F0 appearing in this condition is continuous, we can still define a
map ε �→ Ω(ϕ, 0;ϕ+, ϕ−, ε) in a suitable neighborhood of this point and write (2.13),
(2.13′) as small perturbations of (5.1) in the same neighborhood; by the continuity
property, the local mapping degree does not change for small enough ε so that (2.13),
(2.13′) have a solution near Φ∗. Then we introduce the following definition:
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Definition 5.5. We say that a pair of positive real numbers c0, H satisfying
(1.1) and a real function f (satisfying (1.3)) are admissible data for the nonlinear
problem if the following conditions hold:

(i) f satisfies the assumptions of Theorem 4.4 and has polynomial growth;
(ii) relations (5.5) hold;
(iii) condition (4.31) is satisfied at least for one solution Φ∗ = (ϕ∗

−, ϕ
∗
+) of system

(5.2) with index i(G,Φ∗,0) �= 0.
In the appendix, by exploiting some qualitative properties of the function F0, we will
show, as an example, that all the conditions of the above definition are satisfied for
hulls with parabolic profiles and for every subcritical value of the Froude number
c0/

√
gH.

Summing up the previous results, we can finally state our main result.
Theorem 5.6. Let f , c0, H be admissible data as in Definition 5.5. Then

one can find ε0 > 0 such that, for every ε ∈ [0, ε0), there exist a positive constant
c (c = c0 at ε = 0), two real numbers x− < 0, x+ > 0, a real function h(x) on
(−∞, x−)∪(x+,+∞), and a complex function ω holomorphic in the domain S∗ defined
by (1.5) such that conditions (1.6)–(1.12) hold. Moreover, the free surface and the
cylinder profile form a single C1 streamline, given in parametric form by⎧⎪⎪⎪⎨

⎪⎪⎪⎩
x(ρ) = x̄ + ϕ∗

∫ ρ

ρm

(1 + εξ(s, 0))ds,

y(ρ) = −εϕ∗
∫ ρ

−∞
η(s, 0)ds,

ρ ∈ R,

where ϕ∗ > 0, ρm, and x̄ ∈ (x−, x+) are known quantities (depending on ε) and the
functions ξ(ρ, 0), η(ρ, 0) are now determined from Theorem 4.4. By the properties of
ξ and η, the free surface is exponentially vanishing for x → −∞ and is bounded and
asymptotic to a 2π

µ0
-periodic function when x → +∞; here µ0 is the positive solution

of the equation

tanh(µ0H) = µ0
c20
g
.

As a concluding remark, we observe that, in contrast with the situation encoun-
tered in the supercritical case, we are not able to give more detailed information on
the location of the contact points x±.

Appendix. In part I we prove Theorem 3.2 and property (iii) of Remark 3.3.
Moreover, by exploiting some technical results obtained in the course of the proof (see
Proposition A.4 below) in part II we write a more explicit form of the function F0

defined in (4.31) and provide simple examples of data satisfying Definition 5.5.
I. To begin with, we need the following result, which is proved in [3, section 4].
Proposition A.1. For every ν∗0 > 1/H∗ such that µ �= nπ/2 (with µ the solution

of (3.6) there are nontrivial harmonic functions ζs, ζc satisfying (3.2), (3.4) and the
homogeneous condition (3.3) (i.e., with f ′ = 0) and with the following properties:

ζs(−ρ, σ) = −ζs(ρ, σ), ζc(−ρ, σ) = ζc(ρ, σ),(A.1)

ζs(ρ, σ) = [As sin(µρ) + sgn(ρ)Bs cos(µρ)] sinh[µ(σ + H∗)] + ζs0(ρ, σ),(A.2)

ζc(ρ, σ) = [sgn(ρ)Ac sin(µρ) + Bc cos(µρ)] sinh[µ(σ + H∗)] + ζc0(ρ, σ)),(A.3)
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where the functions ζs0 , ζ
c
0 are exponentially decreasing as ρ → ∞ and the coefficients

As, Ac, Bs, Bc depend analytically on µ and are such that

AsBc − BsAc = Λ(µ) sinµ cosµ,(A.4)

with Λ(µ) > 0. We stress that the functions ζs, ζc do not satisfy the asymptotic con-
dition (3.5) and therefore are not solutions of the homogeneous Problem L0. However,
they play a crucial role in the proof of unique solvability in Theorem 3.1; in fact, it is
proved in [3, Theorem 4.7] that if µ �= nπ/2 the solution of Problem L0 is uniquely
determined and has the form

η0 = η̃0 + α0ζ
s + β0ζ

c,(A.5)

where η̃0 is a suitably defined harmonic function satisfying the conditions of Problem
L0 except for the asymptotic condition (it is in general oscillating at both limits
x → ±∞; see [3, Proposition 4.3]) and the coefficients α0, β0 are uniquely determined
by imposing condition (3.5).

Now there are further properties of the functions ζs, ζc and of the coefficients α0,
β0 which allow us to prove solvability when the relation µ = nπ/2 holds. Actually,
we have the following.

Proposition A.2. Let η0 be the solution of Problem L0 given by Theorem 3.1.
Then there exists the limit of η0 for µ → nπ/2 and is still a solution of Problem L0

with the same regularity and asymptotic properties.
Proof. Let η0 be given by (A.5). By Proposition 4.3 of [3], the function η̃0 on the

right-hand side is defined for every positive value of µ and satisfies the regularity prop-
erties discussed in Remark 3.3; further results in [3] (see section 4 and the appendix)
show that the coefficients As, Bs and the function ζs0 in (A.2) are proportional to sinµ,
while the coefficients Ac, Bc and the function ζc0 in (A.3) are proportional to cosµ.
Then the functions 1

sinµζ
s, 1

cosµζ
c have well-defined uniform limits in the strip A∗ for

µ → nπ/2, n = 1, 2, . . . ; such limits define nontrivial harmonic functions in the strip
satisfying the same homogeneous boundary conditions. On the other hand, it follows
by explicit calculation (see [3, equation (4.21)]) that for µ �= nπ/2 the coefficients of
ζs, ζc in (A.5) have the form

α0 =
Λf ′(µ)

sinµ
, β0 =

Λf ′(µ)

cosµ
,

where, for every positive µ, Λf ′(µ) is a linear functional proportional to∫ 1

−1

f ′(ϕ∗ρ + ϕm)
[ 1

cosµ
ζcσ(ρ, 0) − 1

sinµ
ζsσ(ρ, 0)

]
dρ.(A.6)

(The traces of the derivatives ζsσ, ζcσ are continuous functions on [−1, 1] by the regu-
larity results of [3]). From the previous discussion, we have that the uniform limits for
µ → nπ/2, n = 1, 2, . . . , of the functions η0 given by Theorem 3.1 exist and are solu-
tions to Problem L0 corresponding to the values nπ/2 of the solution of (3.6).

In order to prove the uniqueness statement of Theorem 3.2, we investigate the
relation between the coefficients A0, B0 in the asymptotic representation (3.7) and
the functions ζs, ζc.

Lemma A.3. Let η0 be a solution of Problem L0 with µ �= nπ/2, and let ζs, ζc

be defined by Proposition A.1. Then the following formulas hold:

A0 =
K∗

µΛ sinµ cosµ

∫ 1

−1

f ′(ϕ∗ρ + ϕm)[Acζ
s
σ(ρ, 0) −Asζ

c
σ(ρ, 0)]dρ,(A.7)
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B0 =
K∗

µΛ sinµ cosµ

∫ 1

−1

f ′(ϕ∗ρ + ϕm)[Bcζ
s
σ(ρ, 0) − Bsζ

c
σ(ρ, 0)]dρ,(A.8)

where Λ is defined by (A.4) and

K∗ =
2

H∗

( sinh(2µH∗)

2µH∗ − 1
)−1

.

Proof. Apply Green’s formula to η0 and to each of the harmonic functions ζs, ζc

in the bounded rectangle (−R,R) × (−H∗, 0), with R > 1; then, letting R → ∞ and
taking account of (3.7), (A.2), and (A.3) (which can be differentiated with respect to
ρ) we get

0 =

∫ 1

−1

f ′(ϕ∗ρ + ϕm)ζsσ(ρ, 0)dρ

+ lim
R→+∞

∫ 0

−H∗

[
ζs(R, σ)∂ρη0(R, σ) − η0(R, σ)ζsρ(R, σ)

]
dσ

=

∫ 1

−1

f ′(ϕ∗ρ + ϕm)ζsσ(ρ, 0)dρ

+µ(A0Bs −B0As)

∫ 0

−H∗
sinh2[µ∗(σ + H∗)]dσ,

0 =

∫ 1

−1

f ′(ϕ∗ρ + ϕm)ζcσ(ρ, 0)dρ

+ lim
R→+∞

∫ 0

−H∗

[
ζc(R, σ)∂ρη0(R, σ) − η0(R, σ)ζcρ(R, σ)

]
dσ

=

∫ 1

−1

f ′(ϕ∗ρ + ϕm)ζcσ(ρ, 0)dρ

+µ(A0Bc −B0Ac)

∫ 0

−H∗
sinh2[µ∗(σ + H∗)]dσ.

Then, (A.7) and (A.8) follow by elementary calculations.
Proposition A.4. Let µ �= nπ/2; then the relations (3.9), (3.10) are satisfied by

choosing

α(ρ) =
K∗

µΛ sinµ cosµ
[Acζ

s
σ(ρ, 0) −Asζ

c
σ(ρ, 0)],(A.9)

β(ρ) =
K∗

µΛ sinµ cosµ
[Bcζ

s
σ(ρ, 0) − Bsζ

c
σ(ρ, 0)].(A.10)

Moreover, the right-hand sides of (A.9), (A.10) have limits for µ → nπ/2, which verify
(3.9), (3.10) for µ = nπ/2.

Proof. From (A.7), (A.8), the above defined α, β verify relations (3.9), (3.10)
for µ �= nπ/2. On the other hand, recalling the proof of Proposition A.2, the proof
of Lemma A.3 is also valid for µ = nπ/2 by replacing ζs, ζc with the limits for
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µ → nπ/2 of 1
sinµζ

s, 1
cosµζ

c, respectively. Furthermore, it is easily checked that also

the right-hand sides of (A.9), (A.10) have finite uniform limits for µ → nπ/2. Hence,
the proposition follows.

Proof of Theorem 3.2. Existence of a solution η0 for the “singular values” of µ
follows from Proposition A.2. Suppose that η̂0 is another solution corresponding to
µ = nπ/2 and with the same boundary data; then by (3.9), (3.10) we have that η̂0

satisfies (3.7) with the same coefficients A0, B0 as η0. Then η0 − η̃0 is a waveless
solution of the homogeneous Problem L0; in particular, η0 − η̂0 belongs to H1(A∗).
By the uniqueness of a variational solution (see [14, Theorem 4.7]) we get η0 = η̃0.

II. Discussion of condition (4.31) and an example of data satisfying Definition 5.5.
From (A.9), (A.10), the function F0 in condition (4.31) can be written

F0(ϕ
∗, ϕm) =

∫ 1

−1

f ′′(ϕ∗ρ + ϕm)γ0(ρ)dρ,

where γ0(ρ) is proportional to the function

1

sinµ cosµ

[
(cos δ0 Bc − sin δ0 Ac)ζ

s
σ(ρ, 0) − (cos δ0Bs − sin δ0 As)ζ

c
σ(ρ, 0)

]
.

We note that, by the proof of Lemma A.3 and by the definition of δ0 in (3.11), the
coefficients of ζsσ, ζcσ in the above expression are proportional to the scalar products

(f ′, ζcσ) =

∫ 1

−1

f ′(ϕ∗ρ + ϕm)ζcσ(ρ, 0)dρ,

(f ′, ζsσ) =

∫ 1

−1

f ′(ϕ∗ρ + ϕm)ζsσ(ρ, 0)dρ,

respectively; hence, we can write (4.31) in the form

1

sinµ cosµ

[
(f ′, ζcσ)(f ′′, ζsσ) − (f ′′, ζcσ)(f ′, ζsσ)

]
�= 0,(A.11)

where the scalar products involving f ′′ are defined in the same way. It can be shown
that the above scalar products are analytic functions of the parameters ν∗0 , H∗ of
Problem L0; recalling (2.17) and (3.1), we conclude that the left-hand side of (A.11) is
an analytic function of ϕ∗ and ϕm if also f is analytic. We now show that this function
does not vanish identically in the simple case of the parabolic profile f(x) = x2/2− γ
(γ > 0). Then we have f ′(ϕ∗ρ + ϕm) = ϕ∗ρ + ϕm and f ′′(ϕ∗ρ + ϕm) = 1, with
ρ ∈ [−1, 1]; by the symmetry relations (A.1) we get from (A.11)

ϕ∗

sinµ cosµ

(∫ 1

−1

ζcσ(ρ, 0)dρ

)(∫ 1

−1

ρζsσ(ρ, 0)dρ

)
�= 0.(A.12)

We note that the left-hand side of (A.12) is independent of ϕm. By estimates of the
above integrals which follow from the definitions of ζs, ζc (see [3, equations (4.13),
(4.14)]) and by scaling ρ → ϕ∗ρ, σ → ϕ∗σ, one can show that (A.12) holds for ϕ∗ > 0
small enough. Then (A.12) is satisfied for every positive value of ϕ∗, except possibly
for a discrete set. We further remark that the integrals in the above condition depend
on ϕ∗ only through the parameters ν∗0 , H∗; therefore, for a given Froude number
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c0√
gH

= 1√
ν∗
0H

∗ we can say that (A.12) holds for any fixed value of the ratio ν∗0/H
∗

outside a discrete set. Let us now discuss system (5.2) for the parabolic profile; we
denote by a± and b± the values of ξ0(±1, 0) corresponding to a solution of Problem L0,
respectively, with the functions ρ and 1 on the right-hand side of (3.3). We stress that,
for a given Froude number, the quantities a±, b± depend only on the ratio ν∗0/H

∗; by

linearity and the relation
c20
g = ϕ∗/ν∗0 , system (5.2) takes the form (in terms of the

variables ϕ∗, ϕm) ⎧⎨
⎩

1
2 (ϕm − ϕ∗)2 − γ = a−

ν∗
0
ϕ∗2 + b−

ν∗
0
ϕ∗ϕm,

1
2 (ϕm + ϕ∗)2 − γ = a+

ν∗
0
ϕ∗2 + b+

ν∗
0
ϕ∗ϕm.

(A.13)

We will solve this system with respect to ϕ∗, ϕm for given values of ν∗0 , H∗; in
terms of the physical parameters, this means that we do not fix c0 and H but only the
Froude number c0√

gH
. Now, again by scaling arguments, one can show that the four

quantities a±
ν∗
0

, b±
ν∗
0

are vanishing for ν∗0/H
∗ → ∞ (at a fixed Froude number). Then,

by elementary calculations, we find that (A.13) has a unique solution (with ϕ∗ > 0)
for any large enough values of ν∗0/H

∗; by the previous discussion, these values, except
possibly for a discrete subset, also satisfy (A.12).
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Abstract. We introduce a novel approach to nonlinear signal analysis, which is referred to as
supremal multiscale analysis. The proposed approach provides a rigorous mathematical foundation
for a class of nonlinear multiscale signal analysis schemes and leads to a decomposition that can
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We use supremal multiscale analysis to construct a multiscale image decomposition scheme based
on two mathematical concepts that play a key role in the analysis and interpretation of images by
vision systems, namely, regional maxima and connectivity. The resulting scheme is referred to as
skyline supremal multiscale analysis and satisfies several useful properties desired by any multiscale
image analysis tool. It is grayscale invariant, as well as translation and scale invariant. Moreover,
it progressively removes connected components from the level sets of an image without introducing
new ones. But, most importantly, it decomposes the regional maxima of an image in a natural causal
hierarchy by gradually removing these maxima without introducing new ones.

Image decomposition by skyline supremal multiscale analysis can be used to construct nonlinear
tools for image processing and analysis that provide solutions to problems where traditional linear
techniques are ineffective. We discuss one such tool and illustrate its use in object-based extraction
and denoising.
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1. Introduction. An important methodology for signal processing and analysis
represents a signal at multiple scales. This methodology is based on the fundamen-
tal observation that information pertaining to features of interest in a signal is not
confined to a particular scale, but it may span several scales. In order to effectively
characterize such information, it is necessary to gradually simplify the signal, by
means of a scale-dependent operator, which monotonically removes features of inter-
est as the scale increases. The resulting evolution of a signal from fine to coarse scales
is known as a scale-space (e.g., see [1, 2, 18, 21, 22, 42]).

Although early scale-space techniques were based on linear operators, it has been
increasingly recognized that these techniques severely limit the capability of scale-
spaces to accurately represent features of interest at coarser scales. For this reason,
scale-space techniques based on nonlinear operators (or nonlinear partial differential
equations) have appeared in the literature (e.g., see [1, 2, 32, 38, 41]). It is noticeable
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that several of these techniques are based on morphological operators [1, 2, 3, 8, 9, 10,
15, 17, 28, 29, 37, 38].

On the other hand, a popular approach for multiscale signal processing and anal-
ysis is based on the multiresolution theory of Mallat [23, 24, 25] and Meyer [30].
According to this approach, approximations of a given signal at various scales (or
resolutions) can be computed by means of orthogonal projections of the signal on a
sequence of approximation spaces. The signal is then represented by means of a coarse
approximation plus added details. The details are computed by means of orthogonal
projections of the given signal on a sequence of detail spaces, with the detail spaces
being orthogonal complements to the corresponding approximation spaces. At finer
scales, the approximation error tends to zero, and a signal is spanned by spaces of
successive details at all resolutions. This approach has naturally led to popular tech-
niques for signal processing and analysis based on wavelet decompositions and filter
banks (e.g., see [25, 39]).

The basic assumption behind the multiresolution theory of Mallat and Meyer
is that signals reside in a vector space (namely, the space L2(R) of finite energy
functions), with the approximation and detail spaces being subspaces of this vector
space. Therefore, the theory is applied to linear multiscale tools for signal analysis. An
attempt to conceptualize this approach in a nonlinear setting has appeared in [13, 14].
However, the discussion in [13, 14] on this issue is only preliminary.

To accomplish this goal, it is necessary (among other things) to extend linear
concepts such as vector spaces, orthogonal projections, orthogonal spaces, and linear
operators to a nonlinear setting. One way to do this is to assume that the signal space
is a complete lattice (i.e., a nonempty collection of partially ordered elements such that
any subcollection has a supremum and an infimum [4]). Complete lattices form the
algebraic foundation of mathematical morphology [16], which assumes that signals
are not combined by means of numerical addition and subtraction but by means
of supremum and infimum. In mathematical morphology, an operator is “linear”
if it commutes over suprema or infima. In the former case, the operator is called a
dilation, whereas, in the latter case, it is called an erosion. Many linear concepts, such
as convolution, can be recast in terms of suprema and infima (e.g., see [12, 26, 27]).

In this paper, we introduce a novel approach to nonlinear signal analysis that
provides a rigorous mathematical foundation for a class of nonlinear multiscale signal
analysis schemes and leads to a decomposition that can effectively be used for sig-
nal processing and analysis. The proposed approach, which we refer to as supremal
multiscale analysis, is related to the supremal scale-spaces proposed by Heijmans and
van den Boomgaard in [15] and is similar in flavor to the well-known linear multires-
olution theory of Mallat and Meyer. In this framework, vector spaces are replaced
by sup-closed spaces, projections are replaced by idempotent operators, orthogonal
projections are replaced by sup-projections, orthogonal spaces are replaced by sup-
orthogonal spaces, and linear operators are replaced by morphological operators.

We use supremal multiscale analysis to construct a multiscale image decomposi-
tion scheme, based on morphological reconstruction operators, which selectively re-
moves regional maxima from a signal. Perhaps the most important feature of the
proposed scheme, which is referred to as skyline supremal multiscale analysis, is its
construction by means of two mathematical concepts that play a key role in the anal-
ysis and interpretation of images by vision systems, namely, regional maxima and
connectivity (e.g., see [17, 20, 34]). This scheme represents a signal as the supremum
of a coarse approximation and details. The coarse approximation preserves regional
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maxima that are at some level σ or above, while it flattens the rest. In addition, the
details preserve regional maxima with values in nonoverlapping subintervals of (0, σ)
and flatten the rest. The skyline supremal multiscale analysis is shown to satisfy
a number of useful properties desired by any multiscale signal analysis tool. It is
grayscale, translation, and scale invariant. Moreover, it progressively removes con-
nected components from the level sets of a signal without introducing new ones. But,
most importantly, it decomposes the regional maxima of a signal in a natural causal
hierarchy by gradually removing these maxima without introducing new ones.

Image decomposition by skyline supremal multiscale analysis can be used to con-
struct nonlinear tools for image processing and analysis that can provide solutions
to some problems where traditional linear techniques are ineffective. We discuss one
such tool and illustrate its effectiveness in object-based extraction and denoising.

This paper is structured as follows. In section 2, we provide a brief overview of
basic mathematical concepts used throughout the paper and introduce our notation.
In section 3, we introduce our framework for nonlinear multiscale analysis, which leads
to the concepts of supremal multiscale approximation and supremal multiscale anal-
ysis. We also establish a relationship between the supremal multiscale approximation
and scale-spaces and present two binary examples that illustrate these concepts. In
section 4, we present the skyline supremal multiscale analysis scheme, constructed
by means of morphological reconstruction operators, which decomposes the regional
maxima of a signal in a natural causal hierarchy by selectively removing these maxima
without introducing new ones. We show that the proposed scheme is indeed a supre-
mal multiscale analysis, and we study its main properties. In section 5, we present
examples that illustrate the use of the proposed multiscale approach in two image
processing and analysis problems: object-based extraction and denoising. In the first
case, the skyline supremal multiscale decomposition scheme is used to extract objects
of interest, by placing them on individual frames, and enhance their presence by sup-
pressing (flattening) surrounding details. In the second case, the scheme is used to
restore an image corrupted by structured (more than a pixel thick) “pepper” noise.
Finally, we summarize our conclusions in section 6.

2. Mathematical preliminaries. In this section, we review basic mathemati-
cal concepts and introduce our notation. For a more detailed exposition, the reader
is referred to [4, 5, 6, 7, 16, 35, 36].

A partially ordered set or, briefly, a poset, is a nonempty set furnished with a
binary partial order relation ≤ (i.e., a binary order relation that is reflexive, antisym-
metric, and transitive). A complete lattice (L,≤) is a poset such that every family
M ⊆ L has an infimum

∧
M and a supremum

∨
M in L. Every complete lattice

(L,≤) has a least element O and a greatest element I, given by O =
∧
L and I =

∨
L,

respectively. In this paper, whenever we use the term “lattice” we mean “complete
lattice.” In addition, we often refer to “lattice L” when there is no confusion as to
the underlying partial order.

The following are some examples of lattices.
Example 1.

(a) The collection P(E) of all subsets of a set E, with set inclusion as the par-
tial order. The infimum and supremum are set intersection and set union,
respectively. This lattice is used as a mathematical model for binary images
defined on E.

(b) The collection G(Rd) of all open subsets of the Euclidean space R
d, with set

inclusion as the partial order. The infimum is the topological interior of set
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intersection, whereas the supremum is set union. This lattice can also be used
as a mathematical model for binary images on E. In this case, it is assumed
that images do not include their boundary.

(c) The set R = R ∪ {−∞,∞} of extended real numbers and the set Z = Z ∪
{−∞,∞} of extended integers, as well as any closed subinterval of those,
with the usual numerical ordering as the partial order. The infimum and
supremum are given by the usual numerical infimum and supremum. These
are chains (i.e., totally ordered lattices), which are used for modeling image
values.

(d) The collection Fun(E, T ) of all functions from a set E into a lattice T , with
the partial order f ≤ g if f(v) ≤T g(v), for all v ∈ E, where “≤T ” is the
partial order relation on T . The infimum and supremum are the pointwise
infimum and supremum, given, respectively, by (

∧
fα)(v) =

∧
fα(v) and

(
∨
fα)(v) =

∨
fα(v), for all v ∈ E, where the infimum and supremum on

the right-hand side are in T . When T is a chain, this lattice is used as a
mathematical model for grayscale images defined on E.

(e) The collection Funu(E, T ) of all upper semicontinuous (u.s.c.) functions [19]
from a topological space E into a lattice T , with the partial order f ≤ g
if f(v) ≤T g(v), for v ∈ E. The infimum is the usual pointwise infi-
mum, given by (

∧
ufα)(v) =

∧
fα(v), for v ∈ E. However, the supremum

is given by (
∨
ufα) (v) =

∨
{t ∈ T | v ∈

⋃
Xt(fα)}, for v ∈ E, where

Xt(f) = {v ∈ E | f(v) ≥ t} is the level set of f at level t, and A denotes
the closure of a set A [7, Prop. 4.2.6]. Nevertheless, it can be shown that
the supremum of any finite family of u.s.c. functions corresponds to the usual
pointwise supremum. In general, whenever

∨
fα is u.s.c., then

∨
ufα =

∨
fα

so that the supremum in lattice Funu(E,R) can, and often does, reduce to
the usual pointwise supremum. When T is a chain, this lattice is also used
as a mathematical model for grayscale images defined on E. In this case,
however, images are assumed to satisfy the property of upper semicontinuity.

The level sets of a function f ∈ Fun(E, T ) satisfy the following properties:
(a) Xt(f) ⊆ Xs(f) if t ≥ s; (b) f ≤ g if and only if Xt(f) ⊆ Xt(g) for all t ∈ T (in
particular, f = g if and only if Xt(f) = Xt(g) for all t ∈ T ); (c) for t ∈ T , we have
that Xt(

∧
fα) =

⋂
Xt(fα), whereas Xt(

∨
fα) =

⋃
Xt(fα) if {fα} is a finite family or

if T is finite; (d) f ∈ Funu(E, T ) if and only if the sets Xt(f) are closed in E for all
t ∈ T .

Given a family M ⊆ L, we denote by 〈M | ∨ 〉 the family sup-generated by M,
i.e., the family consisting of all elements of L that are obtained by taking suprema of
elements of M. The family M is said to be sup-closed if M = 〈M | ∨ 〉 (in particular,
M must be nonempty, since O =

∨
∅ ∈ M).

A subset S of a lattice L is called a sup-generating family for L if every element
of L can be written as the supremum of elements in S; i.e., L = 〈 S | ∨ 〉. An element
of the sup-generating family S is called a sup-generator. It is assumed here that O is
not a sup-generator; i.e., O /∈ S. For example, the lattice P(E) of binary images is
sup-generated by the points in E. We define the family S(A) = {x ∈ S | x ≤ A} for
A ∈ L. Clearly, A is sup-generated by S(A).

An operator ψ on a lattice L is a mapping ψ: L → L. The invariance domain of
ψ is defined as Inv(ψ) = {A ∈ L | ψ(A) = A}. An operator ψ is said to be increasing,
if A ≤ B ⇒ ψ(A) ≤ ψ(B), for all A,B ∈ L; antiextensive, if ψ(A) ≤ A, for all
A ∈ L; idempotent, if ψψ(A) = ψ(A), for all A ∈ L. If ψ distributes over infima,
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it is called an erosion, whereas, if it distributes over suprema, it is called a dilation.
If ψ is increasing, antiextensive, and idempotent, it is called an opening. It can be
shown (e.g., see [33]) that if {γα} is a family of openings, then

∨
γα is an opening

as well, with Inv(
∨
γα) = 〈

⋃
Inv(γα) | ∨ 〉. Given a poset K, the family of openings

{γα | α ∈ K} is a granulometry if γα1 ≤ γα2 for α1 ≥ α2.
The translation Ah of a set A ∈ P(E) is another set in P(E), given by Ah = {v+

h | v ∈ A}. The translation-invariant erosion of A ∈ P(E) by a structuring element
B ∈ P(E) is defined as εB(A) = AB = {h ∈ E | Bh ⊆ A}. Similarly, the translation-
invariant dilation of A by B is defined as δB(A) = A ⊕ B =

⋃
{Bh | h ∈ A}. It can

be shown that the operator θB(A) = A◦B = (AB)⊕B =
⋃

h∈E{Bh | Bh ⊆ A} is
an opening. This operator is referred to as a structural opening. If A ∈ Inv(θB), we
say that A is B-open.

An increasing operator ψ on L is said to be ↓-continuous if, for every totally
ordered subset K of L that contains at most a countable number of elements, we have
that

ψ
(∧

K
)

=
∧
A∈K

ψ(A).

If ψ is an ↓-continuous operator on a lattice L and if {A(s) | s ∈ R} is a decreasing
family of elements in L, then [7, Prop. 2.2.10]

(2.1) ψ

(∧
s<t

A(s)

)
=

∧
s<t

ψ(A(s)) ∀ t ∈ R.

Consider now a lattice L, with a sup-generating family S. A family C ⊆ L is
called a connectivity class in L if the following conditions are satisfied:

(i) O ∈ C;

(ii) S ⊆ C;

(iii) for a family {Cα} in C such that
∧
Cα �= O, we have that

∨
Cα ∈ C.

The family C generates a connectivity in L, and the elements in C are said to be
connected.

Classical topological and graph-theoretic connectivities correspond to connectiv-
ity classes, and so do several examples of fuzzy connectivity [5, 7]. Moreover, based
on the notion of connectivity class, many new interesting examples of connectivity
can be defined [5, 6, 7, 35, 36].

We say that C is a connected component of A ∈ L if C ∈ C, C ≤ A, and
there is no C ′ ∈ C different from C such that C ≤ C ′ ≤ A. In other words, a
connected component of an object is a maximal connected part of the object. The
set of connected components of A is denoted by C(A).

We can define an operator γx(A) that extracts connected components from ele-
ments A ∈ L by

γx(A) =
∨

{C ∈ C | x ≤ C ≤ A}, A ∈ L, x ∈ S.

It can be seen that this operator is an opening; it is called the connectivity opening
associated with C. It can also be checked that γx(A) ∈ C. As a matter of fact, γx(A)
is the connected component C of A marked by x (i.e., such that x ≤ C).

It is natural to extend connectivity openings to operators that extract connected
components marked by arbitrary markers, not just sup-generators. This gives rise
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Fig. 1. (a) Original image f and a marker g. (b) The grayscale reconstruction ρ̃ (f | g),
according to the usual topological connectivity of the Euclidean real line.

to the reconstruction operator associated with a connectivity class C. For a marker
M ∈ L, the reconstruction ρ(A | M) of a given A ∈ L from M is defined by

ρ(A | M) =
∨

x∈S(M)

γx(A) =
∨

{C ∈ C(A) | C ∧M �= O}.

The second equality above can be easily verified [6, 7]. Hence, the reconstruction
operator ρ(A | M) extracts the connected components of A that “intersect” marker M .
Being a supremum of openings, the operator ρ(· | M) is an opening on L for a fixed
marker M ∈ L. When M reduces to a sup-generator x, the reconstruction ρ(A | x)
reduces to the connectivity opening γx(A), provided that x ≤ A.

Given a connectivity class C in the binary lattice P(E) and the associated recon-
struction operator ρ: P(E)×P(E) → P(E), we can define an operator ρ̃: Fun(E, T )×
Fun(E, T ) → Fun(E, T ) by

(2.2) ρ̃ (f | g)(v) =
∨

{t ∈ T | v ∈ ρ(Xt(f) | Xt(g))}, v ∈ E.

It can be shown that ρ̃ (· | g) is an opening on Fun(E, T ) for a fixed marker g ∈
Fun(E, T ). If we assume that T is a chain, then the operator ρ̃(f | g) in (2.2) is known
as the grayscale reconstruction of f from marker g associated with the connectivity
class C. The grayscale reconstruction is a very useful operator in applications [40].
Figure 1 illustrates the grayscale reconstruction operator in the one-dimensional case.

3. Supremal scale-spaces and multiscale analysis. In this section, we in-
troduce a framework for nonlinear multiscale signal analysis, which is related to the
supremal scale-spaces introduced by Heijmans and van den Boomgaard [15]. The pro-
posed framework is referred to as supremal multiscale analysis and leads to a nonlinear
multiscale signal representation scheme that decomposes a signal into the supremum
of a coarse approximation and details. We show that supremal multiscale analysis
satisfies a number of properties, which are similar in flavor to properties satisfied by
the well-known linear multiresolution signal analysis scheme of Mallat [23, 24, 25] and
Meyer [30]. As a matter of fact, we derive the supremal multiscale analysis scheme by
using nonlinear analogues of certain linear concepts (e.g., vector spaces, orthogonal
projections, and orthogonal complements).

We assume that signals of interest reside in a complete lattice (V,≤). An operator
φ on V is said to be a projection if it is idempotent [14, 31]. Furthermore, we say that
φ is a projection on U ⊆ V if Ran(φ) = U and φ is idempotent on U (in which case
Inv(φ) = Ran(φ) = U), where Ran(φ) denotes the range of operator φ. In the linear
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multiresolution framework proposed in [23, 24, 25, 30], approximations of signals
at various scales are computed by means of orthogonal projections on a sequence
of approximation spaces. An orthogonal projection of a signal f ∈ V on a vector
subspace U ⊆ V is defined as the signal φ(f) ∈ U that minimizes the norm ‖f − g‖
over all signals g ∈ U . Note that the range of this operator is U and that the operator
is idempotent; therefore, it is a projection on U . In the nonlinear framework proposed
here, V is not a vector space in general. Therefore, we introduce the alternative notion
of sup-projection, which is conceptually analogous to an orthogonal projection.

Definition 3.1. Let U ⊆ V such that U is sup-closed in V. The operator

(3.1) φ(f) =
∨

{g ∈ U | g ≤ f}, f ∈ V,

defines the sup-projection of f on U .
The sup-closure requirement and (3.1) imply that Ran(φ) = U and that φ is idem-

potent on U ; therefore, φ is a projection on U . The requirement that U must be
sup-closed is analogous to the linear requirement that U must be a vector space (i.e.,
closed under linear combinations). Note that (3.1) implies that φ(f) is the “closest”
element to f in U , in the sense of the underlying partial order. Hence, a sup-projection
is a nonlinear analogue of an orthogonal projection.

A fundamental aspect of (linear) multiresolution analysis is that distinct signal
approximations can be obtained from each other by means of scaling (this is known
as the “dilation” property). In order to formulate this idea in a nonlinear setting, we
use a general definition of scaling, proposed in [15]. In what follows, id denotes the
identity operator.

Definition 3.2. A family S = {st | t ∈ (0,∞)} of operators on a lattice V is a
scaling if

(i) s1 = id,
(ii) srst = srt for r, t ∈ (0,∞).
This definition implies that S is a commutative group, where the inverse s−1

t of
st is given by s−1

t = s1/t for t ∈ (0,∞). Moreover, if S = {st | t ∈ (0,∞)} is a scaling
on V, then so is Sp = {stp | t ∈ (0,∞)}, p ∈ R [15].

Example 2.

(a) For V = P(Rd), the scaling {tA | t ∈ (0,∞)}, where tA = {tv | v ∈ A}, for
A ∈ V, is known as the spatial scaling.

(b) For V = Fun(E,R), the scalings {tf(·) | t ∈ (0,∞)}, {f(·/t) | t ∈ (0,∞)},
and {tf(·/t) | t ∈ (0,∞)} are known as the gray-level, spatial, and umbral
scalings, respectively.

In practice, useful scalings consist of increasing operators. We refer to these as
increasing scalings. For example, all scalings considered in Example 2 are increasing.
The following result shows that scalings are increasing if and only if they consist of
dilations.

Proposition 3.3. A scaling S = {st | t ∈ (0,∞)} on a lattice V is increasing if
and only if st is a dilation for every t ∈ (0,∞).

Proof. The reverse implication follows trivially from the fact that every dilation
is an increasing operator [16]. We show the direct implication. Given t ∈ (0,∞) and
{fα} ⊆ V, we have that st(

∨
fα) ≥

∨
st(fα), since st is increasing. To show the

reverse inequality, note that s−1
t (

∨
st(fα)) ≥

∨
s−1
t st(fα) =

∨
fα, since s−1

t = s1/t

is increasing. Applying st on both sides of this inequality gives sts
−1
t (

∨
st(fα)) =∨

st(fα) ≥ st(
∨
fα). Therefore, st(

∨
fα) =

∨
st(fα), and st is a dilation on V.
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We now introduce an axiomatic formulation for supremal multiscale approxima-
tions, which compute approximations of signals at various scales by means of sup-
projections on a sequence of approximation spaces.

Definition 3.4. Let S be a scaling on a lattice V. A family {Vσ | σ ∈ (0,∞)}
of sup-closed subsets of V is said to be a supremal multiscale S-approximation of V
if the following properties are satisfied:

1. The sequence {Vσ | σ ∈ (0,∞)} is decreasing; i.e.,

(3.2) Vτ ⊆ Vσ for τ ≥ σ.

This implies that an approximation at scale σ contains all necessary infor-
mation to compute an approximation at a coarser scale τ ≥ σ.

2. The sequence {Vσ | σ ∈ (0,∞)} “converges” to V, as σ → 0+, in the sense
that

(3.3) lim
σ→0+

Vσ �
〈 ⋃

σ∈(0,∞)

Vσ | ∨
〉

= V.

This implies that any signal can be recovered by the supremum of its approx-
imations at sufficiently small scales.

3. (S-invariance). We have that

(3.4) f ∈ Vσ ⇔ sτ/σ(f) ∈ Vτ for σ, τ ∈ (0,∞).

This means that an approximation space Vσ can be obtained from another
approximation space Vτ , and vice-versa, by means of scaling.

The previous properties are similar in flavor to properties satisfied by the linear
multiresolution analysis scheme of Mallat and Meyer. The approximation of a signal
f ∈ V at scale σ ∈ (0,∞) is given by the sup-projection of f on the approximation
space Vσ, which therefore must be sup-closed. This is the nonlinear analogue of
the assumption that the approximation spaces are vector subspaces. The inclusion
property specified by (3.2) is also true in the linear case. The convergence requirement
specified by (3.3) is similar to the one in the linear case, except that linear closure is
replaced by sup-closure. Finally, the scaling requirement specified by (3.4) is similar
to the one in the linear case. However, a very important property of the linear case
is the existence of vector bases for the approximation spaces. This is an inherently
linear property and has no counterpart in a nonlinear setting.

Note that the sup-closure assumption implies that, for σ ∈ (0,∞), Vσ is a complete
lattice under the partial order of V [16, Prop. 2.12]. The proof of the following result
is straightforward.

Proposition 3.5. The family {Vσ | σ ∈ (0,∞)} is a supremal multiscale S-
approximation of V if and only if the family {Vσp | σ ∈ (0,∞)}, p ∈ R, is a supremal
multiscale Sp-approximation of V.

For each σ ∈ (0,∞), let us define the approximation operator φσ on V as the
operator that maps an element f ∈ V to its sup-projection on Vσ; i.e.,

(3.5) φσ(f) =
∨

{g ∈ Vσ | g ≤ f}, f ∈ V, σ ∈ (0,∞).

The operator φσ provides the approximation of a signal in V at scale σ. The following
fundamental result implies that a supremal multiscale approximation can be specified
by its approximation operators.
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Proposition 3.6. Let {Vσ | σ ∈ (0,∞)} be a supremal multiscale S-approximation
of V, where S is an increasing scaling. The family {φσ | σ ∈ (0,∞)} of approximation
operators is such that Inv(φσ) = Vσ, for σ ∈ (0,∞), and

(i) the family {φσ | σ ∈ (0,∞)} is a granulometry on V,
(ii)

∨
σ∈(0,∞) φσ = id,

(iii) φσ = sσ/τ φτ s
−1
σ/τ for σ, τ ∈ (0,∞).

Conversely, if {φσ | σ ∈ (0,∞)} is a family of operators on V that satisfies the pre-
vious properties (i)–(iii), then {Vσ = Inv(φσ) | σ ∈ (0,∞)} is a supremal multiscale S-
approximation of V, with approximation operators that coincide with {φσ | σ ∈ (0,∞)}.

Proof. For f ∈ Inv(φσ), we have that f = φσ(f) =
∨
{g ∈ Vσ | g ≤ f} ⇒

f ∈ 〈Vσ | ∨ 〉 = Vσ, since Vσ is sup-closed, so that Inv(φσ) ⊆ Vσ. The reverse
inclusion follows easily from (3.5); hence, Inv(φσ) = Vσ. We now show (i). From
(3.5), it is clear that φσ is increasing and antiextensive. This implies that φσφσ ≤
φσ. On the other hand, (3.5) implies that g ∈ Vσ, g ≤ f ⇒ g ≤ φσ(f) so that
φσ(f) =

∨
{g ∈ Vσ | g ≤ f} ≤

∨
{g ∈ Vσ | g ≤ φσ(f)} = φσφσ(f) for f ∈ V.

Therefore, φσ is idempotent, and hence it is an opening. For τ ≥ σ, we have that
Inv(φτ ) = Vτ ⊆ Vσ = Inv(φσ), which implies that φτ ≤ φσ [16, Thm. 3.24]. Therefore,
{φσ | σ ∈ (0,∞)} is a granulometry on V. To show (ii), we use the fact that the
supremum

∨
θα of openings is an opening, with Inv(

∨
θα) = 〈

⋃
Inv(θα) | ∨ 〉. Hence,

Inv(
∨

σ∈(0,∞) φσ) = 〈
⋃

σ∈(0,∞) Inv(φσ) | ∨ 〉 = 〈
⋃

σ∈(0,∞) Vσ | ∨ 〉 = V = Inv(id). But,
since id is an opening and two openings are equal if and only if their domains of
invariance are equal [16, Thm. 3.24], we get that

∨
σ∈(0,∞) φσ = id. We now show (iii).

For f ∈ V, we have that φσ(f) =
∨
{g ∈ Vσ | g ≤ f} =

∨
{sσ/τ (h) | h ∈ Vτ , sσ/τ (h) ≤

f} = sσ/τ (
∨
{h | h ∈ Vτ , h ≤ s−1

σ/τ (f)}) = sσ/τ φτ s
−1
σ/τ (f), since sσ/τ is a dilation (see

Proposition 3.3). Therefore, φσ = sσ/τ φτ s
−1
σ/τ for σ, τ ∈ (0,∞).

We now show the converse implication. Note that, for each σ ∈ (0,∞), Vσ =
Inv(φσ) is sup-closed, since φσ is an opening. Equation (3.2) follows from the fact
that φσ ≤ φτ for σ ≥ τ [16, Thm. 3.24]. Equation (3.3) follows from V = Inv(id) =
Inv(

∨
σ∈(0,∞) φσ) = 〈

⋃
σ∈(0,∞) Vσ | ∨ 〉. To verify (3.4), note that f ∈ Vσ ⇔ f =

φσ(f) = sσ/τ φτ s
−1
σ/τ (f) ⇔ sτ/σ(f) = φτsτ/σ(f) ⇔ sτ/σ(f) ∈ Vτ for σ, τ ∈ (0,∞).

Finally, if {φ′
σ | σ ∈ (0,∞)} are the approximation operators associated with {Vσ |

σ ∈ (0,∞)}, then Inv(φ′
σ) = Vσ = Inv(φσ) ⇔ φ′

σ = φσ for σ ∈ (0,∞) (see [16,
Thm. 3.24]).

The following proposition shows that we can build supremal multiscale approxi-
mations by using unions of existing ones.

Proposition 3.7. Let S be an increasing scaling. If, for each α, {Vα
σ | σ ∈

(0,∞)} is a supremal multiscale S-approximation of V, with approximation operators
{φα

σ | σ ∈ (0,∞)}, then {〈
⋃

α Vα
σ | ∨ 〉 | σ ∈ (0,∞)} is a supremal multiscale S-

approximation of V as well, with approximation operators {
∨

α φα
σ | σ ∈ (0,∞)}.

Proof. Equations (3.2) and (3.3) are easy to show; therefore, we show only (3.4).
Let Vσ = 〈

⋃
α Vα

σ | ∨ 〉 for σ ∈ (0,∞). For f ∈ Vσ, we have that f =
∨
fβ , where each

fβ belongs to some Vα
σ . Therefore, sτ/σ(fβ) ∈ Vτ , for each β and τ ∈ (0,∞). Since Vτ

is sup-closed and since sτ/σ is a dilation (see Proposition 3.3), we have that sτ/σ(f) =
sτ/σ(

∨
fβ) =

∨
sτ/σ(fβ) ∈ Vτ , as required. Now let φσ be the approximation operator

associated with Vσ. Since Inv(φα
σ) = Vα

σ , we have that Inv(φσ) = Vσ = 〈
⋃

α Vα
σ | ∨ 〉 =

Inv(
∨

α φα
σ). Since two openings are equal if and only if their domains of invariance are

equal [16, Thm. 3.24] and since
∨

α φα
σ is an opening, we conclude that φσ =

∨
α φα

σ ,
as required.
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To illustrate the concept of supremal multiscale approximation, we now provide
two binary examples. A grayscale supremal multiscale approximation scheme will be
discussed in the next section.

Example 3.

(a) Let V = G(Rd) be the lattice of open subsets of the Euclidean space, and
consider the spaces

(3.6) Vσ = {A ∈ V | A is σB-open}, σ ∈ (0,∞),

where B ∈ V is a bounded convex structuring element (e.g., an open ball of
unit radius). In (3.6), σB = {σb | b ∈ B}. The family {Vσ | σ ∈ (0,∞)} is
a supremal multiscale S-approximation of V, where S is the spatial scaling:
Vσ is sup-closed, for σ ∈ (0,∞), and (3.2) and (3.4) are clearly satisfied,
whereas (3.3) follows from the facts that B = {(σB)v | v ∈ R

d, σ ∈ (0,∞)} ⊂⋃
σ∈(0,∞) Vσ and B is a basis for the Euclidean topology. In this case, the

approximation operators are the structural openings

φσ(A) = A◦σB, A ∈ V, σ ∈ (0,∞).

(b) Let V = G(Rd), furnished with a connectivity class C, and consider the opening
by reconstruction operators:

(3.7) φσ(A) = ρ(A | A◦σB), A ∈ V, σ ∈ (0,∞),

where B ∈ V is a bounded structuring element. It can be shown that the
invariance domain of φσ is given by

(3.8) Vσ(A) = {A ∈ V | C◦σB �= ∅ ∀ C ∈ C(A)}, σ ∈ (0,∞).

The family {Vσ | σ ∈ (0,∞)} is a supremal multiscale S-approximation of V,
where S is the spatial scaling. Properties (i) and (iii) of Proposition 3.6 are
clearly satisfied. Now we have that φσ(A) =

⋃
{C ∈ C(A) | C ∩ (A σB) �=

∅} =
⋃
{C ∈ C(A) | ∃ v ∈ C such that (σB)v ⊆ A}. Since A is open, for any

C ∈ C(A) and v ∈ C, we can find a σ such that (σB)v ⊆ A so that C ⊆ φσ(A).
It then follows that A =

⋃
σ∈(0,∞) φσ(A), which shows property (ii). The

approximation operators {φσ | σ ∈ (0,∞)} are, of course, given by (3.7).
We now show that supremal multiscale approximations and scale-spaces are re-

lated. The following definition introduces the notion of supremal scale-space in the
terminology of [15].

Definition 3.8. Let V be a lattice, and let S be a scaling on V. A family
{φσ | σ ∈ (0,∞)} of operators on V is said to be a supremal S-scale-space if

(i) φσφτ = φσ∨τ for σ, τ ∈ (0,∞),
(ii) φσsσ = sσφ1 for σ ∈ (0,∞).
We have the following result.
Proposition 3.9. Let {Vσ | σ ∈ (0,∞)} be a supremal multiscale S-approximation

of V, where S is an increasing scaling. The family {φσ | σ ∈ (0,∞)} of approximation
operators, given by (3.5), is a supremal S-scale-space.

Proof. Properties (i) and (ii) of a supremal scale-space follow directly from prop-
erties (i) and (iii) in Proposition 3.6.

Therefore, given a signal f ∈ V, its approximations {φσ(f) | σ ∈ (0,∞)} form
a scale-space, where increasing scale corresponds to an “evolution” of f towards de-
creasing levels of “detail.” Several scale-spaces that coincide with or are similar to the
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two binary supremal multiscale approximation schemes of Example 3 have appeared
in [3, 8, 9, 10, 15, 17, 28, 29, 37].

We now proceed to derive a nonlinear multiscale signal analysis scheme based on
supremal multiscale approximations.

In linear orthogonal wavelet decomposition schemes, given two approximation
spaces Vσ+1 ⊆ Vσ, one defines a detail space Wσ+1 (also called a wavelet space) as the
orthogonal complement of Vσ+1 in Vσ, given by

(3.9) Wσ+1 = {f ∈ Vσ | f ⊥ Vσ+1}.

From the fact that Vσ and Vσ+1 are vector spaces, it follows that Wσ+1 is a vector
space as well. Moreover, Wσ+1 ⊆ Vσ and Wσ+1 ⊥ Vσ+1.

In vector analysis, a space V is said to be the direct sum of two subspaces V1

and V2, which is denoted by V = V1 ⊕ V2, if

(3.10) V = {f + g | f ∈ V1 and g ∈ V2} and V1 ∩ V2 = {O}.

A fundamental property of linear wavelet analysis is that Vσ = Vσ+1⊕Wσ+1; i.e., the
approximation space at scale σ is the direct sum of the approximation and detail spaces
at scale σ + 1 (which, in this case, is also an orthogonal sum, since Wσ+1 ⊥ Vσ+1).

In order to formulate similar ideas in a nonlinear setting, we need to define non-
linear analogues of the notions of “orthogonal complement” and “direct sum.” A
signal f is said to be sup-orthogonal to a sup-closed space V if its sup-projection on
V is O. Therefore, a signal f is sup-orthogonal to an approximation space Vσ if and
only if φσ(f) = O. A space W is said to be sup-orthogonal to V if every signal in W is
sup-orthogonal to V. Note that this implies that W and V cannot have any common
elements other than {O}. Given two approximation spaces Vσ and Vτ , with τ > σ,
we define a detail space Wσ,τ as the sup-orthogonal complement of Vτ in Vσ, given by

(3.11) Wσ,τ = {f ∈ Vσ | φτ (f) = O}, τ > σ.

Note that this is the nonlinear analogue of (3.9). Moreover, we say that a space V is
the direct sup-sum of two subspaces V1 and V2, which we denote by V = V1 ©∨ V2, if

V = 〈 V1 ∪ V2 | ∨ 〉 and V1 ∩ V2 = {O}.

This is the analogue of (3.10), where vector summation is replaced by supremum.

We now have the following definition.

Definition 3.10. Let {Vσ | σ ∈ (0,∞)} be a supremal multiscale S-approximation
of V. If the detail spaces Wσ,τ , given by (3.11), satisfy the property

(3.12) Vσ = Vτ ©∨ Wσ,τ for σ ∈ (0,∞), τ ∈ (σ,∞),

then {Vσ, Wσ,τ | σ ∈ (0,∞), τ ∈ (σ,∞)} is said to be a supremal multiscale S-analysis
of V.

It follows that, in a supremal multiscale analysis, for every σ ∈ (0,∞), τ ∈ (σ,∞),
we have that

(a) Vτ ,Wσ,τ ⊆ Vσ,
(b) Wσ,τ is sup-orthogonal to Vτ ,
(c) Vσ is the direct sup-sum of Vτ and Wσ,τ .



SUPREMAL MULTISCALE SIGNAL ANALYSIS 105

These properties are the nonlinear analogues of similar properties satisfied by the
approximation and detail spaces in linear orthogonal wavelet analysis.

Next, we define the notion of detail operator.
Definition 3.11. Let {Vσ, Wσ,τ | σ ∈ (0,∞), τ ∈ (σ,∞)} be a supremal multi-

scale S-analysis of V. If ψσ,τ is a projection on Wσ,τ and

(3.13) φσ = φτ ∨ ψσ,τ for σ ∈ (0,∞), τ ∈ (σ,∞),

then {ψσ,τ | σ ∈ (0,∞), τ ∈ (σ,∞)} is a family of detail operators of the supremal
multiscale S-analysis.

From (3.13), it follows that an approximation φσ(f) of a signal f ∈ V can be
decomposed, in a unique way, as the supremum of a sup-projection φτ (f) on Vτ

and a projection ψσ,τ (f) on Wσ,τ . Furthermore, ψσ,τ (f) is sup-orthogonal to Vτ ;
i.e., φτψσ,τ (f) = O. Therefore, the approximation of f at scale σ has a unique
decomposition as the supremum of the approximation signal at scale τ and a sup-
orthogonal detail signal, which contains information about f that is present at scale σ
but is removed at the coarser scale τ . Finally, by applying the supremum

∨
σ∈(0,τ) on

both sides of (3.13) and by using properties (i) and (ii) of Proposition 3.6, we get

(3.14) f = φτ (f) ∨
∨

σ∈(0,τ)

ψσ,τ (f) for τ ∈ (0,∞).

This shows that a signal f ∈ V can be uniquely decomposed in terms of a scaled
signal φτ (f) at scale τ ∈ (0,∞) and detail signals ψσ,τ (f), σ ∈ (0, τ). It is worthwhile
noticing that the decomposition suggested by (3.14) is conceptually analogous to the
well-known wavelet decomposition.

Note that, for τ ′ ≥ τ , we have φτ ′ψσ,τ (f) ≤ φτψσ,τ (f) = O ⇒ φτ ′ψσ,τ (f) = O.
Therefore, a detail signal ψσ,τ (f) is sup-orthogonal to all approximation spaces Vτ ′ ,
τ ′ ≥ τ .

In practice, a multiscale signal decomposition scheme can be constructed by se-
lecting initial and final approximation scales σ and τ and a set of intermediary scales
σ0 = σ, σ1, . . . , σN−1, σN = τ such that σk < σk+1 for k = 0, 1, . . . , N − 1. Then, by
repeatedly applying (3.13), we get

(3.15) φσ(f) = φτ (f) ∨
∨

0≤k≤N−1

ψσk,σk+1
(f), τ > σ,

which provides a decomposition of the approximation φσ(f) of a signal f into the
sequence {φτ (f), ψσ,σ1

(f), ψσ1,σ2(f), . . . , ψσN−1,τ (f)}. Clearly, all detail signals are
sup-orthogonal to the final approximation space Vτ ; i.e., φτψσk,σk+1

(f) = O for k =
0, 1, . . . , N − 1.

Example 4.

(a) Let V = G(Rd), and consider the supremal multiscale approximation of V
given in Example 3(a). Using (3.6) and (3.11), we get

Wσ,τ = {A ∈ V | A◦σB = A and A◦ τB = ∅}, τ > σ.

Clearly, Vσ = 〈 Vτ ∪Wσ,τ | ∨ 〉 and Vσ ∩ Wσ,τ = {∅}. Therefore, (3.12) is
satisfied so that {Vσ, Wσ,τ | σ ∈ (0,∞), τ ∈ (σ,∞)} is a supremal multiscale
S-analysis of V, where S is the spatial scaling. If B is a structuring element
that contains the origin, then the operators

ψσ,τ (A) = A◦σB � A τB, τ > σ,
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Fig. 2. A binary “Matisse” image.

are projections on Wσ,τ that satisfy (3.13). Therefore, {ψσ,τ | σ ∈ (0,∞), τ ∈
(σ,∞)} is a family of detail operators associated with the supremal multiscale
analysis. As an illustration, this scheme is applied on the binary “Matisse”
image1 depicted in Figure 2. The result is depicted in Figure 3. Note that

ψσ,τ (A) = (A σB) ⊕ σB � (A σB)  (τ − σ)B, τ > σ.

This shows that the detail signal ψσ,τ (A) is obtained by applying a mor-
phological gradient on the erosion A  σB (a morphological gradient is an
operator of the form A⊕ tB �A sB, where B is a structuring element that
contains the origin—see [12, 16]).

(b) Let V = G(Rd), and consider the supremal multiscale approximation of V
given in Example 3(b). Using (3.8) and (3.11), we get

Wσ,τ = {A ∈ V | C◦σB �= ∅ and C◦ τB = ∅ ∀ C ∈ C(A)}, τ > σ,

for σ ∈ (0,∞) and τ ∈ (σ,∞). Again, Vσ = 〈 Vτ ∪Wσ,τ | ∨ 〉 and Vσ∩Wσ,τ =
{∅}. Therefore, (3.12) is satisfied so that {Vσ, Wσ,τ | σ ∈ (0,∞), τ ∈ (σ,∞)}
is a supremal multiscale S-analysis of V, where S is the spatial scaling. The
operators

ψσ,τ (A) = ρ(A | A◦σB) � ρ(A | A◦ τB), τ > σ,

are projections on Wσ,τ that satisfy (3.13). Therefore, {ψσ,τ | σ ∈ (0,∞), τ ∈
(σ,∞)} is a family of detail operators associated with the supremal multi-
scale analysis. The detail signal ψσ,τ (A) contains the connected components
of A whose “size” is between σ and τ . The resulting supremal multiscale
S-analysis scheme is a discrete size transform based on openings by recon-
struction (see [12, 16] for the notion of the discrete size transform and [10]
for such a decomposition). This scheme is illustrated in Figure 4.

The previous examples are binary. In the following, we present an important
example of supremal multiscale analysis based on a reconstructive scheme that selec-
tively removes regional maxima from a grayscale signal.

1Henri Matisse: Woman with Amphora and Pomegranates, 1952—Paper on canvas.
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ψ 1 2, ( )A

ψ 2 3, ( )A

φ 2 ( )A

φ 3 ( )A

 φ1( )A

φ 4 ( )A ψ 3 4, ( )A

Fig. 3. An illustration of supremal multiscale analysis of a binary “Matisse” image A depicted
in Figure 2 based on structural openings. Note that φk(A) = φk+1(A) ∪ ψk,k+1(A), for k = 1, 2, 3,
and φ1(A) = φ4(A) ∪ ψ1,2(A) ∪ ψ2,3(A) ∪ ψ3,4(A), in accordance with (3.13) and (3.15). In this
example, B is a disk structuring element of unit radius.
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ψ 1 2, ( )A

ψ 2 3, ( )A

φ 2 ( )A

φ3 ( )A

φ 1( )A

φ 4 ( )A ψ 3 4, ( )A

Fig. 4. An illustration of supremal multiscale analysis of the binary “Matisse” image A depicted
in Figure 2 based on openings by reconstruction. Note that φk(A) = φk+1(A) ∪ ψk,k+1(A), for
k = 1, 2, 3, and φ1(A) = φ4(A)∪ ψ1,2(A)∪ ψ2,3(A)∪ ψ3,4(A), in accordance with (3.13) and (3.15).
In this example, B is a disk structuring element of unit radius.
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X ft( )
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Fig. 5. A signal f with a regional maximum R at level t. Note that R is a connected component
of Xt(f), that R ∩ Xs(f) = ∅, for s > t, and that f is constant over R. The usual topological
connectivity of the Euclidean real line is assumed.

4. Skyline supremal multiscale analysis. Recall the lattice Funu(E, T ) of
u.s.c. functions, discussed in Example 1(e). Here we adopt as the lattice V of signals
of interest the lattice V = Funu(E,R+) of nonnegative u.s.c. real-valued functions
defined on a topological space E. We are making the following basic assumption.

Assumption 1. We assume that E is a compact Hausdorff space with a countable
basis. Moreover, we assume that E is furnished with a connectivity class C ⊆ P(E)
such that we have the following:

(a) A ∈ C implies that A ∈ C (in this case, the connectivity class C is said to be
compatible with the topology of E [6]).

(b) The connectivity openings {γx | x ∈ E}, associated with C, are ↓-continuous
operators on F(E) (i.e., on the collection of all closed subsets of E).

(c) For each A ∈ F(E), γx(A) is an u.s.c. function from A into F(E).
For example, one may assume E to be a connected, closed, and bounded subset

of R
d, with the Euclidean topology, and take C to be the connectivity class consisting

of the usual Euclidean connected subsets of E. It has been shown in [6] that this
choice satisfies all conditions stated in Assumption 1.

Next, we give a precise definition of a regional maximum of a signal in V.
Definition 4.1. A set R ⊆ E is a regional maximum of f ∈ Funu(E,R+) at

level t ∈ R+ if R is a connected component of Xt(f) and R∩Xs(f) = ∅ for all s > t.
Therefore, regional maxima depend on the underlying connectivity assumed. See

Figure 5 for an illustration. A regional maximum is always a closed set, since Xt(f)
is closed and C is compatible [7]. It is easy to see that a signal f ∈ Funu(E,R+)
is constant over a regional maximum R; we denote this constant value by f(R). In
addition, we denote by R(f) the set of all regional maxima of a signal f and by Rt(f)
the set of all regional maxima of f at level t or above; i.e., Rt(f) = {R ∈ R(f) |
f(R) ≥ t} for t ∈ R+.

We have the following result regarding regional maxima.
Proposition 4.2.

(a) Any function f ∈ Funu(E,R+) has at least one regional maximum.
(b) A function f ∈ Funu(E,R+) has exactly one regional maximum if and only

if Xt(f) ∈ C for all t ∈ R+.
Proof. (a) From Weierstrass’s theorem of real analysis [19] and the facts that E

is compact and f is an u.s.c. function, f achieves its supremum in E; i.e., there is a
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point x0 ∈ E such that f(x0) =
∨
{f(x) | x ∈ E}. It is clear that Xt(f) = ∅ for all

t > f(x0). Hence, R = γx0(Xf(x0)(f)) is a regional maximum of f at level f(x0).
(b) We show that f has two or more regional maxima if and only if Xt(f) �∈ C,

for some t ∈ R+, which is the contrapositive of the assertion. To show the direct
implication, assume that R1 and R2 are two regional maxima of f . If f(R1) =
f(R2) = t, then Xt(f) �∈ C. Otherwise, let f(R1) = t1 > t2 = f(R2). We have
that R1 ⊆ Xt1(f) ⊆ Xt2(f). But R2 ∩Xt1(f) = ∅ ⇒ R1 ∩ R2 = ∅ so that R2 must
be a strict subset of Xt2(f), which implies that Xt2(f) �∈ C. To show the converse
implication, assume that Xt(f) �∈ C, for some t ∈ R+, and let C1 and C2 be two
connected components of Xt(f). Sets C1 and C2 are closed subsets of the compact
space E; thus C1 and C2 are themselves compact [11]. Hence, the restrictions f1

and f2 of f to C1 and C2, respectively, are u.s.c. functions defined on compact sets
so that each achieves its supremum, say, at points x1 ∈ R1 and x2 ∈ R2. Clearly,
the corresponding regional maxima of f1 and f2 at f(x1) and f(x2), respectively, are
distinct regional maxima of f .

Part (a) of the previous proposition shows that the set R(f) of regional maxima
of f is nonempty, whereas part (b) indicates that the notions of regional maxima and
connectivity of level sets are closely related.

Recall from section 2 the grayscale reconstruction operator associated with a
connectivity class C ⊆ P(E). This operator will be central for our purposes. The
next fundamental result shows that a signal f ∈ Funu(E,R+) can be “reconstructed”
from the grayscale reconstructions of f “marked” by each of its regional maxima.
Before that, we need the following definition: A cylinder hA,t of base A ⊆ E and
height t ∈ R+ is a function in Funu(E,R+) defined by

hA,t(x) =

{
t if x ∈ A,
0 otherwise

for x ∈ E.

Proposition 4.3. Let f ∈ Funu(E,R+). For each R ∈ R(f), we have that
g = ρ̃(f | hR,f(R)) ∈ Funu(E,R+), and R(g) = {R}, with g(R) = f(R). Moreover,

(4.1) f =
∨

u
{ρ̃(f | hR,f(R)) | R ∈ R(f)}.

Proof. From the definition of ρ̃ in (2.2), we can write

(4.2) g(v) = ρ̃(f | hR,f(R))(v) =
∨

{t ∈ R+ | v ∈ ρ(Xt(f) | Xt(hR,f(R)))}, v ∈ E.

Note that Xt(hR,f(R)) = R, if t ≤ f(R), and Xt(hR,f(R)) = ∅ if t > f(R). Also,
Xt(f) ∩ R = ∅ for t > f(R). Hence, ρ(Xt(f) | Xt(hR,f(R))) = ρ(Xt(f) | R) for

all t ∈ R+. Moreover, R is connected so that it must be contained in one of the
connected components of Xt(f), and, therefore, ρ(Xt(f) | R) = γx(Xt(f)) for some
x ∈ R. Thus, (4.2) becomes g(v) =

∨
{t ∈ R+ | v ∈ γx(Xt(f))} for v ∈ E. Hence,

Xt(g) =
⋂

s<t γx(Xs(f)) = γx
(⋂

s<t Xs(f)
)

= γx(Xt(f)), for all t ∈ R+, from the
↓-continuity of γx on F(E) and (2.1). In other words, Xt(g) is a closed (by the
compatibility of C) connected set, for all t ∈ R+, so that, by Proposition 4.2(b), g is
u.s.c. and has a single regional maximum. In addition, we have that Xt(g) = R, for
t = f(R), and Xt(g) = ∅, for t > f(R), so that R is the only regional maximum of g
at level g(R) = f(R). This shows the first part of the result. Note that the right-hand
side of (4.1) makes sense, since ρ̃(f | hR,f(R)) is a function in Funu(E,R+) for each
R ∈ R(f). Let C be a connected component of any nonempty level set Xt(f) of f . It
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follows from the fact that any closed subset of a compact space is compact and from
the compatibility of C that C is compact. In addition, the restriction of f to C is
an u.s.c. function; hence, C contains some regional maximum R ∈ Rt(f). Moreover,
the definition of regional maximum implies that each R ∈ Rt(f) must be contained
in some component C of Xt(f). Since Xt(f) equals the union of its components, we
conclude that Xt(f) =

⋃
R∈Rt(f) ρ(Xt(f) |R). But, by definition, any R ∈ R(f) �

Rt(f) does not intersect Xt(f). Hence, Xt(f) =
⋃

R∈R(f) ρ(Xt(f) |R). In addition,

from our previous discussion, we have that Xt( ρ̃(f | hR,f(R))) = ρ(Xt(f) |R) for all

t ∈ R+. It follows from the last two equations and the fact Xt(f) =
⋂

s<t

⋃
Xs(fα)

that [7]

Xt

(∨
u

{ρ̃(f | hR,f(R)) | R ∈ R(f)}
)

=
⋂
s<t

⋃
R∈R(f)

Xt( ρ̃(f | hR,f(R)))

=
⋂
s<t

⋃
R∈R(f)

ρ(Xs(f) |R)

=
⋂
s<t

Xs(f) =
⋂
s<t

Xs(f) = Xt(f),

for all t ∈ R+, which implies (4.1).
Now consider the subsets Vσ of V given by

(4.3) Vσ = {O} ∪ {f ∈ V | R(f) = Rσ(f)}, σ ∈ (0,∞).

In other words, Vσ consists of the least signal O and all signals whose regional maxima
are at level σ or above. The following is a fundamental result for our purposes.

Proposition 4.4. The space Vσ is sup-closed in Funu(E,R+) for σ ∈ (0,∞).
Proof. First, note that

∨
∅ = O ∈ Vσ for every σ ∈ (0,∞). For a given σ ∈ (0,∞),

let {fα} be a family of functions in Funu(E,R+) such that {fα} ⊆ Vσ. We can assume,
without loss of generality, that fα �= O for all α. Hence, Rσ(fα) = R(fα) �= ∅, for
each fα, which implies that Xt(fα) �= ∅ for all t ≤ σ. Let f =

∨
ufα. We have

that Xt(f) =
⋂

s<t

⋃
Xs(fα) ⊇

⋃
Xt(fα) [7]. Therefore, Xt(f) �= ∅ for all t ≤ σ.

Suppose that R is a regional maximum of f at a level r < σ. By definition, we have
that R ∩ Xt(f) = ∅ for all t > r. Therefore, the sets R and T = Xσ(f) are closed
nonempty disjoint sets. Moreover, since E is a compact Hausdorff space, there exist
disjoint open sets U and V such that R ⊂ U and T ⊂ V [11]. Now, given x ∈ R,

we have that R = γx(Xr(f)) = γx(
⋂

s<r

⋃
Xs(fα)) =

⋂
s<r γx(

⋃
Xs(fα)) from the

↓-continuity of γx on F(E) and (2.1). Let C(s) = γx(
⋃
Xs(fα)) for s < r. Note

that {C(s)}s<r is a decreasing family of nonempty closed sets in the compact space
E, and

⋂
s<r C(s) ⊂ U . It follows that there is some p < r such that C(p) ⊂ U

[7, Prop. 2.3.7]. Since γx(A) is an u.s.c. function from A into F(E), we can apply
Proposition 4.1.14 in [7] to conclude that there is some connected component C of⋃

Xp(fα) such that C ⊂ U . Clearly, this implies that there is some index α′ such
that a connected component C ′ of Xp(fα′) is contained in U . This follows from the
fact that each component of

⋃
Aα must contain at least one component of some Aα′ .

However, note that T = Xσ(f) ⊇
⋃
Xσ(fα) implies that Xσ(fα) ⊂ V for all α. Hence,

C ′∩Xσ(fα′) = ∅ so that function fα′ has a regional maximum inside C ′ at some level
below t, which is a contradiction. Therefore, f =

∨
ufα must not have any regional

maxima below level σ; i.e., f ∈ Vσ, as required.
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We can now use the previous result to show that the family {Vσ | σ ∈ (0,∞)} is
a supremal multiscale approximation of V.

Proposition 4.5. The family {Vσ | σ ∈ (0,∞)}, given by (4.3), is a supremal
multiscale S-approximation of V for the gray-level scaling S = {tf(·) | t ∈ (0,∞)}.

Proof. From Proposition 4.4, Vσ is sup-closed in V for each σ ∈ (0,∞). In
addition, (3.2) is clearly satisfied, whereas (3.4) is a direct consequence of the fact
that Xτ (f) = Xtτ (tf), which implies that R is a regional maximum of f at level τ
if and only if R is a regional maximum of tf at level tτ . To show (3.3), note that
Proposition 4.3 implies that, for a given f ∈ V, ρ̃(f | hR,f(R)) ∈ Vf(R) for each R ∈
R(f). Moreover, it implies that f =

∨
u{ρ̃(f | hR,f(R)) | R ∈ R(f)} ∈ 〈

⋃
Vσ | ∨u 〉,

from which we obtain the desired result.
The next result provides an expression for the associated approximation operators.
Proposition 4.6. Let {Vσ | σ ∈ (0,∞)} be the supremal multiscale approxima-

tion of V, given by (4.3). The associated approximation operators are given by

(4.4) φσ(f) =
∨

u
{ ρ̃(f | hR,f(R)) | R ∈ Rσ(f)}, f ∈ V, σ ∈ R+.

Proof. Let σ ∈ (0,∞), and consider the operator θ(f) =
∨
u{ ρ̃(f | hR,f(R)) | R ∈

Rσ(f)} for f ∈ V. Note that Proposition 4.3 guarantees that θ is an operator on V.
We show that φσ(f) =

∨
u{g ∈ Vσ | g ≤ f} = θ(f) for f ∈ V. First, we show that θ is

an increasing operator. Let f, g ∈ V such that f ≤ g. Consider a regional maximum
R ∈ Rσ(f) at level t = f(R). Since R ∈ C and R ⊆ Xt(f) ⊆ Xt(g), we must have
that R ⊆ C for some connected component C of Xt(g). As argued in the proof of
Proposition 4.3, there is a regional maximum R′ ∈ Rσ(g) such that R′ ⊆ C. For
any s ≤ t, it is clear that ρ(Xs(g) | R) = ρ(Xs(g) | R′), since both R and R′ are
contained in the same connected component of Xs(g) that contains C. This implies
that Xs( ρ̃(f | hR,f(R))) = ρ(Xs(f) | R) ⊆ ρ(Xs(g) | R) = ρ(Xs(g) | R′) = Xs( ρ̃(g |
hR′,g(R′))), for all s ≤ f(R), where we have used the fact that ρ(· | R) is an opening
and thus is increasing. Since Xs( ρ̃(f | hR,f(R))) = ∅, for s > f(R), we conclude that
ρ̃(f | hR,f(R)) ≤ ρ̃(g | hR′,g(R′)). This implies that θ(f) ≤ θ(g) so that θ is increasing.
Now let f ∈ V. If Rσ(f) = ∅, then clearly θ(f) = φσ(f) = O. Hence, we can assume
that Rσ(f) �= ∅. We have that φσ(f) ∈ Vσ; hence Rσ(φσ(f)) = R(φσ(f)). It follows
from Proposition 4.3 that φσ(f) = θ(φσ(f)). But, since θ is increasing and φσ is
antiextensive, we have that θ(φσ(f)) ≤ θ(f). Therefore, φσ(f) ≤ θ(f). To show the
converse inequality, note that Proposition 4.3 implies that ρ̃(f | hR,f(R)) ∈ Vσ for
each R ∈ Rσ(f). Since Vσ is sup-closed, we must have θ(f) ∈ Vσ. Combined with
the fact that θ(f) ≤ f , this implies that θ(f) ≤ φσ(f). Hence, φσ(f) = θ(f).

Given a signal f ∈ V, its approximation φσ(f), obtained from f by means of (4.4),
preserves the regional maxima of f that are at level σ or above, while it flattens the
rest. As the scale σ increases, only the highest peaks in the signal survive. In this
scale-space, evolution towards decreasing levels of detail is akin to viewing a city
skyline as one moves away from it: near the city, the shorter buildings are visible, but
far away only the tallest buildings can be discerned. This is illustrated in Figure 6. For
this reason, we refer to this scheme as a skyline supremal multiscale approximation,
whereas the associated scale-space is referred to as a skyline supremal scale-space.

In addition to being grayscale, translation, and scale invariant, the most striking
property of the skyline supremal scale-space is that, by construction, it decomposes
the regional maxima of a function f in a natural causal hierarchy. As σ increases, the
scaling operator φσ removes regional maxima from f without introducing new ones.
Moreover, as σ increases, the scaling operator φσ progressively removes connected
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Fig. 6. Skyline supremal multiscale analysis of a one-dimensional signal f . Note that the
scaling φσ(f) preserves the regional maxima (depicted by ∗) of f that are at level σ or above, while
it flattens the rest. Moreover, the detail signal ψσ,τ (f) preserves the regional maxima of f with
values in [σ, τ) and flattens the rest. Finally, φσk (f) = φσk+1 (f) ∨ ψσk,σk+1 (f), for k = 0, 1, and
φσ0 (f) = φσ2 (f) ∨ ψσ0,σ1 (f) ∨ ψσ1,σ2 (f), in accordance with (3.13) and (3.15), respectively.

components from the level sets Xt(f) of f without introducing new ones. These
properties are much desired by any useful scale-space scheme [3, 18, 21, 22, 41].

We now derive the corresponding supremal multiscale analysis. From (3.11), (4.3),
and (4.4), we have that

Wσ,τ = {O} ∪ {f ∈ V | R(f) = Rσ(f) � Rτ (f)}, τ > σ.

It is easy to check that (3.12) is satisfied so that {Vσ, Wσ,τ | σ ∈ (0,∞), τ ∈ (σ,∞)}
is a supremal multiscale S-analysis of V, where S is the gray-level scaling. This is
referred to as the skyline supremal multiscale analysis of V. The operators

ψσ,τ (f) =
∨

u
{ρ̃(f | hR,f(R)) | R ∈ Rs(f) � Rτ (f)}, τ > σ,
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f

τ 

σ

Fig. 7. The function f ∈ Vσ is level-σ connected, but it is not level-τ connected. The usual
topological connectivity of the Euclidean real line is assumed for the underlying binary connectivity
class C.

are projections on Wσ,τ . Therefore, these are detail operators associated with the
skyline supremal multiscale analysis scheme. The detail signal ψσ,τ (f) preserves the
regional maxima of f with values in [σ, τ) and flattens the rest. This is illustrated in
Figure 6.

From our previous discussion, it is clear that (4.3) satisfies (3.2) and (3.3), regard-
less of the choice of scaling. Whether or not (3.4) is satisfied depends on the choice of
scaling and the choice of the connectivity class C, since the concept of regional maxi-
mum depends on the underlying connectivity class. In the case of gray-level scaling,
our results hold true for any choice of connectivity class C. However, in the cases of
spatial and umbral scalings, the results are valid if C is invariant to spatial scalings,
i.e., if A ∈ C ⇔ tA ∈ C, for all A ∈ F(E) and t ∈ (0,∞). Topological connectivity
clearly satisfies this property.

Additional insight can be gained by realizing that each approximation space Vσ

constitutes a complete lattice, under the partial order of V, with supremum
∨σ

and
infimum

∧σ
, given by

∨σ
fα =

∨
u
fα,

∧σ
fα = φσ

(∧
fα

)
=

∨
u

{
ρ̃
(∧

fα | hR,(
∧

fα)(R)

)
| R ∈ Rσ

(∧
fα

)}
.

In this framework,
∧σ

fα = O if and only if
∧
fα has no regional maxima at level σ or

above. Hence, even if the signals {fα} have nonzero pointwise infimum, they can still
have zero infimum in Vσ.

It has been shown in [7] that the family

Sσ = {δv,t | t ≥ σ} ∪ {f ∈ V | R(f) = {R}, f(R) = σ}

is sup-generating in Vs. Moreover, assuming this sup-generating family, we can define
a connectivity class Cσ on Vσ, given by [7]

Cσ = {f ∈ Vσ | Xt(f) ∈ C ∀ t ≤ σ}.

We call this the level-σ connectivity class. In this framework, a function f ∈ Vσ

is level-σ connected if all level sets below level σ are connected, according to the
connectivity class C. Loosely speaking, this means that f is not allowed to have any
“disconnecting dips” below level σ. See Figure 7 for an illustration.



SUPREMAL MULTISCALE SIGNAL ANALYSIS 115

multiscale
decomposition filtering image

restitution

multiscale object-based filtering

f f̂( )D f ˆ ( )D f

Fig. 8. Block diagram for multiscale object-based filtering.

The connected components of a function f ∈ Vσ are associated with the regional
maxima of f contained in the connected components of the level set Xσ(f). For each
C ∈ C(Xσ(f)), there corresponds a grayscale level-σ connected component fC of f ,
given by

fC =
∨

u
{ρ̃(f | hR,f(R)) | R ∈ Rσ(f) and R ⊆ C}.

Therefore, we can write the approximation signal φσ(f) as the supremum of grayscale
connected components; i.e.,

φσ(f) =
∨

u
{fC | C ∈ C(Xσ(f))}, σ ∈ (0,∞).

These grayscale connected components are “mutually disjoint,” in the sense that, for
α �= β, we have that φσ(fCα

∧ fCβ
) = O, which says that the infimum fCα

∧ fCβ

has no regional maxima above level σ. This is similar to the linear case, in which the
orthogonal projection of a function f over a linear approximation space Vσ is obtained
with an expansion in terms of the orthogonal scaling basis [25].

5. Multiscale object-based filtering. Several image processing and analysis
tasks are geared towards identifying objects of interest and manipulating those ob-
jects to achieve a desired result. For example, if we want to remove certain objects
from a scene, we should first identify those objects and then extract them from the
scene with operators that do not affect other objects. This task is referred to as
object-based filtering and can be effectively implemented by the three-step multiscale
approach depicted in Figure 8. The first step performs a multiscale decomposition
of an image f into a finite collection D(f) = {f1, f2, . . . , fN} of images that contain
objects of interest in f at various scales such that f can be uniquely reconstructed
from D(f). The images in D(f) are then processed individually by the filtering step.

This produces a new multiscale decomposition D̂(f), which is then used to restitute

the filtered image f̂ . Note that D(f̂) = D̂(f).
In this paper, we assume that objects of interest are identified by their intensity

distribution and, more precisely, by the regional maxima of such intensities. Moreover,
we assume that regional maxima associated with similar objects have similar values.
In this case, we are interested in a technique that identifies the regional maxima of an
image f and decomposes f into a finite collection D(f) = {f1, f2, . . . , fN}, with each
image fk containing all regional maxima of f with similar values, such that f can be
uniquely reconstructed from D(f). This naturally leads to the previously discussed
skyline supremal multiscale analysis scheme.

We specify a finite collection {σk | k ∈ I} of scales, where I = {0, 1, . . . , N},
such that φσ0(f) = f and σk < σk+1, and decompose the grayscale image f into the
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collection D(f) = {ψσk,σk+1
(f) | k ∈ I}, where ψσN ,σN+1

(f) � φσN
(f). The image f

can be uniquely reconstructed from such decomposition, since (recall (3.15))

f = φσ0(f) =
∨
k∈I

ψσk,σk+1
(f).

Recall that ψσk,σk+1
(f) contains the regional maxima of f with values in [σk, σk+1)

with all other regional maxima suppressed (flattened), whereas φσN
(f) contains the

regional maxima of f that are above level σN with all other regional maxima sup-
pressed.

During the filtering step, a subset J ⊆ I is determined, and then the images
{ψσj ,σj+1(f) | j ∈ J} are processed to produce a new collection {ψ̂σj ,σj+1(f) |
j ∈ J}. The output of the filtering step depicted in Figure 8 is given by D̂(f) =

{ψσk,σk+1
(f), ψ̂σj ,σj+1(f) | k ∈ I�J, j ∈ J}, and the new filtered image f̂ is obtained

by means of

f̂ =
∨

k∈I�J

ψσk,σk+1
(f) ∨

∨
j∈J

ψ̂σj ,σj+1
(f).

We illustrate the previous filtering approach with two examples. Figure 9(a)
depicts a grayscale MRI “tumor” image f that contains several objects, including a
large tumor on the right-hand side and a small tumor slightly above it.2 Our objective
is to extract the tumors and place them on two different image frames. Moreover,
we would like to enhance their presence by flattening surrounding details. We set
σk = k + 1, for k = 0, 1, . . . , N − 1, where N is the maximum grayscale value in f (in
this case, N = 255). The skyline supremal multiscale decomposition of the “tumor”
image f reveals that most information related to the small tumor is contained in
the detail images ψk,k+1(f), 153 ≤ k ≤ 173, whereas most information related to
the large tumor is contained in the detail images ψk,k+1(f), 206 ≤ k ≤ 212. This
observation leads to a “filtering” step in Figure 8 that preserves the previous detail
images and sets the rest equal to zero. The images f̂ , obtained by the “restitution”
step of Figure 8, are depicted in Figures 9(b) and (c). The results indicate that, as
expected, the skyline supremal multiscale decomposition scheme successfully extracts
the two tumors and flattens surrounding details.

Figure 10 depicts a grayscale ”boat” image f that has been corrupted by “pepper”
noise. The noise consists of black spots (that may be more than one pixel thick), which
are randomly distributed over the entire image. Our objective is to remove the noise
from the image depicted in Figure 10(b) and recover a sufficiently good approximation
of the original image depicted in Figure 10(a). This is the classical problem of image
denoising.

As before, we set σk = k + 1, for k = 0, 1, . . . , N − 1, where N = 255. Skyline
supremal multiscale analysis of the noisy “boat” image f depicted in Figure 10(b)
reveals that most information related to noise is contained in image φN (N − f),
since the black spots in f show as narrow bright peaks of amplitude N in the negative
image N−f . This observation leads to a “filtering” step in Figure 8 that preserves all
detail images but replaces φN (N −f) with its grayscale reconstruction ρ̃(φN (N −f) |
φN (N − f)◦B), where B is a disk structuring element of radius 4. The structural
opening φN (N − f)◦B removes most peaks in φN (N − f) due to noise and provides

2The image is courtesy of Christos Davatzikos.
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(a) (b) (c)

Fig. 9. (a) A grayscale MRI “tumor” image. (b) Extraction of the small tumor and flattening
of surrounding details. (c) Extraction of the large tumor and flattening of surrounding details.

a marker for the reconstruction of the “noise-free” part of φN (N − f). The image f̂ ,
obtained by subtracting the result of the “restitution” step of Figure 8 from N , is
depicted in the first row of Figure 11(a).

On the other hand, the first row of Figure 11(b) depicts the result obtained
from a conventional morphological denoising approach that subtracts the grayscale
reconstruction ρ̃(N − f | (N − f)◦B), applied on the negative noisy image N − f ,
from N . Although, at first glance, the two results seem to be similar, the details
depicted in the second row of Figure 11 reveal that they are different in quality.
Although noise has been equally suppressed in both cases, the result depicted in
Figure 11(b) shows that direct application of grayscale reconstruction on the noisy
image may result in excessive smoothing of important features (e.g., the masts and
the letters on the stern). Clearly, a denoising approach based on skyline supremal
multiscale analysis is more preferable in this case.

6. Conclusion. In this paper, we have presented a new approach to nonlinear
multiscale signal analysis. The proposed scheme is related to the concept of supremal
scale-spaces, introduced by Heijmans and van den Boomgaard, and is referred to as
supremal multiscale analysis. To develop this approach, we have extended (among
other things) the concepts of (orthogonal) vector spaces, (orthogonal) projections,
and linear operators to a nonlinear setting. We have accomplished this by employing
the theory of complete lattices in conjunction with mathematical morphology and by
replacing numerical addition with supremum. We have also proposed a particular
supremal multiscale analysis scheme that is based on morphological reconstruction
operators. This approach, which is referred to as skyline supremal multiscale analysis,
decomposes the regional maxima of a signal in a natural causal hierarchy by gradually
removing these maxima without introducing new ones. More precisely, the skyline
supremal multiscale analysis scheme represents a signal as the supremum of a coarse
approximation and details. The coarse approximation preserves the regional maxima
above some level σ, while it flattens the rest. On the other hand, the details preserve
regional maxima with values in nonoverlapping subintervals of (0, σ) and flatten the
rest. We show that this scheme is grayscale, translation, and scale invariant, and it
progressively removes connected components from the level sets of a signal without
introducing new ones. We believe that skyline supremal multiscale analysis can be
effectively used for multiscale signal decomposition, representation, and analysis.
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(a) (b)

Fig. 10. (a) An original grayscale “boat” image. (b) A noisy copy of the image depicted in (a).

(a) (b)

Fig. 11. Denoising results obtained: (a) by skyline supremal multiscale analysis and grayscale
reconstruction of φN (N − f) from its structural opening φN (N − f)◦B, and (b) by grayscale recon-
struction of N − f from its structural opening (N − f)◦B.
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Abstract. We consider the initial-boundary value problem in a convex domain for the Vlasov–
Poisson system. Boundary effects play an important role in such physical problems that are modeled
by the Vlasov–Poisson system. We establish the global existence of classical solutions with regular
initial boundary data under the absorbing boundary condition. We also prove that regular symmetric
initial data lead to unique classical solutions for all time in the specular reflection case.
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1. Introduction. The behavior of a confined hot plasma is governed by the
Vlasov–Maxwell system with boundary conditions. A simpler model is the Vlasov–
Poisson system where the speed of light is treated as infinity and the magnetic field
is neglected. For the absorbing case, we consider Π = [0, T ] × Ω × R

3, where Ω is a
smooth bounded convex domain in R

3 and T > 0 is arbitrary, while we restrict to the
unit ball Ω = B in the case of the specular reflection. We denote by nx the outward
normal vector at a boundary point x ∈ ∂Ω. The Vlasov–Poisson system describes a
collisionless plasma electrostatic:

ft + v · ∂xf + ∇ϕ · ∂vf = 0,

∆ϕ = ρ = 4π

∫
R3

f (t, x, v) dv,

f |t=0 = f0,

(1.1)

where f (t, x, v) represents the distribution of an electron gas, and ϕ is the electrostatic
potential. The particles have the same sign of charge inside the region Ω, and ∇ϕ (t, x)
is the self-consistent electric field. Boundary effects play an important role in such
physical problems as tokamaks, diodes, and electron guns. Particles can be either
absorbed at the boundary or reflected specularly at the boundary. For the absorbing
boundary case, at {v · nx < 0}, with nx the outward normal at x ∈ ∂Ω, we have

f (t, x, v) = g (t, x, v) ,(1.2)

where g is a given function. In the case of the specular reflection, at {v · nx < 0}, we
have

f (t, x, v) = f (t, x, v∗) ,(1.3)

where v∗ = v − 2 (v · nx)nx.
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In this article, we construct classical solutions for the nonlinear Vlasov–Poisson
system in a three-dimensional smooth bounded convex domain. We demonstrate our
results of regularity as follows.

Theorem 1.1 (absorbing case). Assume the absorbing condition (1.2) for the
Vlasov and the Dirichlet boundary condition for the Poisson. Let f0 ≥ 0, g ≥ 0 be
smooth with compact supports and f0 be not identically zero. Let f0 and g satisfy
some compatibility conditions. Moreover, assume some vanishing condition for g at
{x ·nx = 0}. Then there exists a unique smooth solution f and ϕ of (1.1) with (1.2),
where f has compact support for v.

Theorem 1.2 (specular reflection case). Assume the specular boundary condition
(1.3) for the Vlasov and the Dirichlet boundary condition for the Poisson. Assume

there is an ω0 > 0 such that f0 (x, v) is constant for
(
1 − |x|2

)2
+ (2v · x)2 ≤ ω0.

(a) Assume f0 ∈ C1. Let f0 have compact support and satisfy the compatibility
conditions. Let f0 be spherically symmetric. Then there exists a unique spherically
symmetric solution (f, ϕ) of (1.1) with (1.3) such that f ∈ W 1,∞ with compact sup-
port.

(b) Assume f0 ∈ C1,η for some η > 0. Let f0 have compact support and satisfy
the compatibility conditions. Let f0 be spherically symmetric. Then there exists a
unique spherically symmetric solution (f, ϕ) of (1.1) with (1.3) such that f ∈ C1,µ,
ϕ ∈ C3,µ for some 0 < µ < η, with compact support.

Much effort and fruitful achievement have been made for the Cauchy problem
for the Vlasov–Poisson system during the last few decades. Many mathematicians
have made their contributions to the Vlasov–Poisson system in the whole three space
dimensions without boundary conditions. In particular, in [22], [18], [23], and [16],
global classical solutions for the Vlasov–Poisson system have been constructed by
different methods, provided the initial data is regular.

However, the boundary-value problem is much more complicated since the bound-
ary is always characteristic. In a half space with a flat boundary [7], [8], it is known
that singularities of distribution function are expected, forming from the boundaries,
unless the electric field has the correct sign. The global classical solutions for the full
Vlasov–Poisson system have been constructed for a half space with a flat boundary
in [7], [8] for one dimension and three dimensions, respectively.

This article extends the work of Guo to a three-dimensional smooth convex do-
main. We note that convexity plays an important role in obtaining regularity of the
solutions of the Vlasov equation with boundary conditions. We refer the reader to [8]
for a simple counterexample. We begin by generalizing the linear C1,α and W 1,p

estimates in [7] and [8] to a general smooth bounded convex domain where a new
geometric part comes in. As in the half space case, the main difficulty lies in the
estimation of the particles moving slowly in the normal direction near the boundary.
This can be overcome via the geometric velocity lemma with an extra factor coming
from the geometry of the convexity. We still require the outwardness of the electric
field E at the boundary and the flatness of the initial density f0 to ensure the regular-
ity in the linear problem. In the absorbing case, we adopt the high-moment technique
in [18] in order to establish the existence of global classical solutions for the absorbing
boundary condition. The key step to get control of large velocities is to represent the
macrocharge density in the presence of the boundary condition. We are able to attain
a representation for the charge density in spite of the complex particle paths by an
exact cancellation at the boundary. This cancellation demands a new computation.
Unfortunately, neither this high-moment method nor the technique first invented by
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Pfaffelmoser worked for the specular reflection case. The central difficulty comes
from the fact that we cannot avoid so many repeated bounces of the particles near
the boundary with very small tangential angles if the particles are allowed to reflect
at the boundary. This accelerates the hindrance to the control on the behavior of the
particles near the boundary in addition to the difficulty from large velocities. In fact,
the number of bounces of a particle near the boundary with constant velocity v and
its tangential angle θ is proportional to |v|/θ. So even if the particle moves slowly
near the boundary, we easily lose the control on the number of bounces, because the
particle moves almost tangentially with the very small θ. However, the invariance
of the angular momentum in the spherically symmetric case enables us to treat the
particles with small tangential angles since the angular momentum of the particles
near the boundary with small tangential velocity amounts approximately to the full
velocity. This leads to a global bound on the increase in velocity, employing the idea
in [14].

This article is arranged as follows. From section 2 to section 4, we study the
linear problem. In section 2, we establish the velocity lemma for a convex domain,
followed by the study of the bouncing trajectories. The absorbing case is discussed in
section 3. We deal with the linear estimates for the specular reflection in section 4.
In section 5, we treat the fully nonlinear Vlasov–Poisson system with the absorbing
boundary condition and get its regularity. Finally, in section 6, the nonlinear Vlasov–
Poisson system, endowed with the specular boundary condition, obtains the regularity
for the spherically symmetric case.

2. Bouncing trajectories. Let the boundary γ of Π consist of

γ+ = {(t, x, v) |0 ≤ t ≤ T, x ∈ ∂Ω, v · nx < 0} ,(2.1)

γ− = {(t, x, v) |0 ≤ t ≤ T, x ∈ ∂Ω, v · nx > 0} ,
γ0 = {(t, x, v) |0 ≤ t ≤ T, x ∈ ∂Ω, v · nx = 0} .

Let Πs = {t = s} ∩ Π, γs = {t = s} ∩ γ, γ+
s = {t = s} ∩ γ+, and γ−

s = {t = s} ∩ γ−

for 0 ≤ s ≤ t.
Let the unique trajectory of

d

dτ
X = V,

d

dτ
V = E(2.2)

such that X (t; t, x, v) = x, V (t; t, x, v) = v be the following:

Γ (τ ; t, x, v) = (τ ;X (τ ; t, x, v) , V (τ ; t, x, v)) ,(2.3)

where E (t, x) = ∇ϕ (t, x) is the given electric field.
We consider in this section the initial-boundary problem for the linear Vlasov

equation

ft + v · ∂xf + E · ∂vf = 0,(2.4)

f |t=0 = f0, f |γ+ = g,

where the given electric field E (t, x) satisfies E (t, x) · nx ≥ δ > 0 at the boundary,
for a fixed δ > 0.

In the following, we establish a generalized velocity lemma [8] for our convex
domain.
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Let x0 ∈ ∂Ω; there exist a neighborhood V of x0 and a smooth convex function
φ (x1, x2) such that, after proper translation and rotation, x0 = (0, 0, 0), ∂Ω ∩ V =
{x = (x1, x2, x3) |x1 = φ (x2, x3)}, and Ω ∩ V = {x = (x1, x2, x3) |x1 > φ (x2, x3)}.
Straightening out the portion of the boundary by the diffeomorphism Φ (x1, x2, x3) =
(x1 − φ (x2, x3) , x2, x3) with the inverse Ψ (x1, x2, x3) = (x1 + φ (x2, x3) , x2, x3), we
may assume that near the point x0 = (0, 0, 0), ∂Ω = {x1 = 0}, Ω = {x1 > 0}. Now
we consider the Vlasov–Poisson system in the new coordinates

t̃ := t, x̃ := Φ (x) , ṽ =: ∂Φ (x) v,

Ẽ
(
t̃, x̃
)

:= ∂Φ (x)E (t, x) = ∂Φ (Ψ (x̃))E
(
t̃,Ψ (x̃)

)
,

f̃
(
t̃, x̃, ṽ

)
:= f (t, x, v) = f

(
t̃,Ψ (x̃) , ∂Ψ (x̃) ṽ

)
.

Then we have

0 = ft + v · ∂xf + E · ∂vf

= f̃t̃ + ṽ · ∂x̃f̃ +
[
Ẽ
(
t̃, x̃
)

+ v∂2Φ (x) v
]
· ∂ṽ f̃ .

Notice that the outward normal ñx̃ = nx∂Ψ (x̃), and so the boundary set γ+ corre-
sponds to γ̃+, γ0 corresponds to γ̃0, and γ− corresponds to γ̃−, respectively, under
this change of variables since

ñx̃ · ṽ = [nx∂Ψ (x̃)] · [∂Φ (x) v] = nx · v.

Furthermore, the assumption on the electric field is invariant under the change of
variables for the same reason. We shall now look at the sign on v∂2Φ1 (x) v as follows:

v · ∂2Φ1 · v =
[
v1 v2 v3

] ⎡⎣ 0 0 0
0 −∂22φ −∂23φ
0 −∂32φ −∂33φ

⎤
⎦
⎡
⎣ v1

v2

v3

⎤
⎦

=
[
v2 v3

] [ −∂22φ −∂23φ
−∂32φ −∂33φ

] [
v2

v3

]
≤ 0

since φ is a convex function.
We can thus reduce locally our case to the half space case with a different equation.

For our convenience, we will use the notation without a tilde, indicating things with
a tilde, throughout this section. We now consider locally the following system in the
upper half space in the time interval

[
t̃, t̃ + ε

]
:

ft + v · ∂xf + [E (t, x) + J (x, v)] · ∂vf = 0,

where E1 (t, x) ≤ −δ < 0, J1 (x, v) ≤ 0 for all v, at γ = {(t, x, v) |x1 = 0}.
Lemma 2.1 (velocity lemma). Suppose E1 (t, 0, x̄) ≤ −δ and J1 (x, v) ≤ 0. Let

E ∈ C1 and J ∈ C1. Let (τ,X (τ) , V (τ)) ∈ Π̄ for small time interval
[
t̃, t̃ + ε

]
.

Then for t̃ ≤ s ≤ t ≤ t̃ + ε,

e−C(t−s)α (s) ≤ α (t) ≤ eC(t−s)α (s) ,(2.5)

where

α (t) = X2
1 (t) + V 2

1 (t) − 2
[
E1

(
t; 0, X̄ (t)

)
+ J1 (X,V )

]
X1,
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(τ,X (τ) , V (τ)) is a trajectory (2.2), and C depends on Ω, ‖E‖C1 , δ, and
sups≤τ≤t |V (τ)|.

Proof. We follow closely the proof of Lemma 1.1 in [7]. Expanding E1 (t, x)
around x1 = 0, we get from (2.2)

X•
1 = V1,(2.6)

V •
1 = E1

(
τ ; 0, X̄ (τ)

)
+ ∂x1

E
(
τ ; ζ, X̄ (τ)

)
X1 (τ) + J1 (X (τ) , V (τ)) ,

where • means the τ derivative, and 0 ≤ ζ ≤ X1 (τ). We multiply the first of (2.6)
with X1 (τ) and the second of (2.6) with V1 (τ). Then there is a C large, depending
on ‖∇xE‖∞, such that, along the trajectory,

[
eCτ

(
X2

1 (τ) + V 2
1 (τ)

)]• ≥ 2
[
E1

(
τ ; 0, X̄ (τ)

)
+ J1 (X (τ) , V (τ))

]
eCτV1 (τ)

for s ≤ τ ≤ t. Notice that[
E1

(
τ ; 0, X̄ (τ)

)
+ J1 (X (τ) , V (τ))

]
eCτV1 (τ)(2.7)

=
{[
E1

(
τ ; 0, X̄ (τ)

)
+ J1 (X (τ) , V (τ))

]
eCτX1 (τ)

}•
− C

[
E1

(
τ ; 0, X̄ (τ)

)
+ J1 (X (τ) , V (τ))

]
eCτX1 (τ)

− d

dτ

[
E1

(
τ ; 0, X̄ (τ)

)
+ J1 (X (τ) , V (τ))

]
eCτX1 (τ) .

Integrating (2.7) from s to t, for C large enough, we get the left-hand side (LHS) of
(2.5) as

eCt
(
X2

1 (τ) + V 2
1 (τ)

)
− eCs

(
X2

1 (τ) + V 2
1 (τ)

)
≥ 2
[
E1

(
t; 0, X̄ (t)

)
+ J1 (X (t) , V (t))

]
eCtX1 (t)

− 2
[
E1

(
s; 0, X̄ (s)

)
+ J1 (X (s) , V (s))

]
eCsX1 (s)

−
∫ t

s

d

dτ

[
E1

(
τ ; 0, X̄ (τ)

)
+ J1 (X (τ) , V (τ))

]
eCτX1 (τ) dτ

−
∫ t

s

C
[
E1

(
τ ; 0, X̄ (τ)

)
+ J1 (X (τ) , V (τ))

]
eCτX1 (τ) dτ

≥ 2
[
E1

(
t; 0, X̄ (t)

)
+ J1 (X (t) , V (t))

]
eCtX1 (t)

− 2
[
E1

(
s; 0, X̄ (s)

)
+ J1 (X (s) , V (s))

]
eCsX1 (s) .

We have used the fact that∣∣∣∣ ddτ [E1

(
τ ; 0, X̄ (τ)

)
+ J1 (X (τ) , V (τ))

]∣∣∣∣
≤
∣∣E1t

(
τ ; 0, X̄ (τ)

)
+ ∇x̄E1

(
τ ; 0, X̄ (τ)

)
· V̄ (τ) + ∇xJ (X (τ) , V (τ)) · V (τ)

+ ∇vJ1 (X (τ) , V (τ)) · [E (τ ;X (τ)) + J (X (τ) , V (τ))]
∣∣

≤ C (1 + ‖E‖C1) ,

and E1

(
τ ; 0, X̄ (τ)

)
+ J1 (X (τ) , V (τ)) ≤ −δ < 0. Similarly, we establish the right-

hand side (RHS) of (2.5).
Corollary 2.2. Suppose that E (t, x) · nx ≥ δ > 0 for all x ∈ ∂Ω for some fixed

constant δ > 0. Let (t, x, v) with x /∈ ∂Ω connect to (t0, x0, v0) with x ∈ ∂Ω through
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a trajectory, where t0 < t and the trajectory stays in the domain Ω in (t0, t]. Then
we have (t0, x0, v0) ∈ γ+.

Proof. We may assume without loss of generality that x is near the boundary
so that we can localize near the point x. Then, by Lemma 2.1, we deduce that
(t0, x0, v0) ∈ γ+.

The following corollary gives a better estimate for C in the velocity lemma when
(d/dt)E1|γ ≡ 0. We refer the reader to [7], [8] for the proof in the half space case
with the flat boundary. It is important for the nonlinear specular case.

Corollary 2.3. If E ∈ C0,1
t,x and E1 (t, 0, x̄) ≡ E0 (0, x̄) < 0 for all 0 ≤ t ≤ T ,

then for t̃ ≤ s ≤ t ≤ t̃ + ε,

e−C(t−s)β (s) ≤ β (t) ≤ eC(t−s)β (s) ,

where

β (t) = V 2
1 (t) − 2

[
E0

(
0, X̄ (t)

)
+ J1 (X (t) , V (t))

]
X1 (t) ,

and C depends only on sup0≤t≤T ‖E‖C0,1/2(Ω) (t), E0, and sups≤τ≤t |V (τ)|.
In many physical problems, particles may have the complex behavior of bouncing

off the boundary repeatedly. In order to describe such phenomena and to study
especially the specular reflection case, we will investigate trajectories which bounce
many times at the boundary. We call such a particle path which ends at a given point
a “back-time cycle” as in [8]. Notice that the density is constant along these kinds of
generalized trajectories.

Definition 2.4. v∗ = v − 2 (v · nx)nx is said to be the reflected velocity of v.
Definition 2.5 (back-time cycles). Given a C1 field E (t, x), by an l-cycle, we

mean the trajectories in Π̄ which connect (t, x, v) =
(
tl, xl, vl

)
with

(
tl−1, xl−1, vl−1

)
,(

tl−1, xl−1, vl−1
∗
)

with
(
tl−2, xl−2, vl−2

)
, . . . ,

(
ti, xi, vi∗

)
with

(
ti−1, xi−1, vi−1

)
, . . . ,(

t1, x1, v1
∗
)

with (0, x0, v0), where ti > ti−1, xi ∈ ∂Ω for 1 ≤ i ≤ l − 1, vi · nx ≥ 0,
1 ≤ i ≤ l.

We rewrite the velocity lemma, Lemma 2.1, involving our geometry. Let ξ (x) be
a smooth function which defines the boundary such that

∂Ω = {ξ (x) = 0} , Ω = {ξ (x) > 0} ;(2.8)

then nx = −∇ξ (x) / |∇ξ (x)| is the outward normal at each point x at the boundary.
For instance, ξ (x) = 1 − |x|2 for the unit ball.

Lemma 2.6 (geometric velocity lemma). Let E (t, x) · nx ≥ δ > 0 for all x ∈ ∂Ω
with E ∈ C1. If the trajectory stays away from the origin, i.e., |X (τ) | ≥ σ for
s ≤ τ ≤ t, for any small fixed σ > 0, then

e−C(t−s)α (s) ≤ α (t) ≤ eC(t−s)α (s) ,(2.9)

where

α (t) = ξ2 (X (t)) + [V (t) · ∇ξ (X (t))]
2

− 2
[
E
(
t, X̄ (t)

)
· ∇ξ

(
X̄ (t)

)
+ V (t) · ∇2ξ (X (t)) · V (t)

]
ξ (X (t))

and where C depends on ‖E‖C1 , sup0≤τ≤t [|X (τ)| + |V (τ)|], δ, and σ.
Proof. Let X̄ be the point at the boundary which lies on the half-line from the

point X in the direction −∇ξ (X). Then we expand E ·∇ξ (X) around E ·∇ξ
(
X̄
)

to
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get

(E · ∇ξ) (X) = (E · ∇ξ)
(
X̄
)

+ ∇x (E · ∇ξ) ·
(
X − X̄

)
= E

(
t, X̄
)
· ∇ξ

(
X̄
)

+

[
∇x (E · ∇ξ) ·

(
X − X̄

)
ξ (X)

]
ξ (X) .

From the fact that ξ (X) = ξ
(
X̄
)

+ ∇ξ (θ) ·
(
X − X̄

)
= ∇ξ (θ) ·

(
X − X̄

)
for some

point θ on the line segment connecting X and X̄, which implies that ∇ξ (θ)· (X−X̄)
ξ(X) = 1,

we can easily see that
∣∣ (X−X̄)

ξ(X)

∣∣ ≤ C. (Near the boundary where ξ (X) ≈ 0, we have

|∇ξ (θ)| ≥ c > 0, and ∇ξ (θ) is almost parallel to X − X̄.) Along the trajectory, there
is a C so large that{

eCτ
[
ξ2 (X) + (V · ∇ξ)

2
]}•

= eCτ
[
Cξ2 (X) + C (V · ∇ξ)

2
+ 2ξ (X) (V · ∇ξ)

+ 2 (V · ∇ξ)
(
E · ∇ξ (X) + V · ∇2ξ · V

)]

= eCτ

[
Cξ2 (X) + C (V · ∇ξ)

2
+ 2

(
1 + ∇x (E · ∇ξ) ·

(
X − X̄

)
ξ (X)

)
ξ (X) (V · ∇ξ)

+ 2 (V · ∇ξ)
(
E
(
t, X̄
)
· ∇ξ

(
X̄
)

+ V · ∇2ξ · V
)]

≥ eCτ
[
2 (V · ∇ξ)

(
E
(
t, X̄
)
· ∇ξ

(
X̄
)

+ V · ∇2ξ · V
)]

.

Assuming that E (t, x) · nx ≥ δ > 0, we notice that for a large C,

eCτ
[
2 (V · ∇ξ)

(
E
(
t, X̄
)
· ∇ξ

(
X̄
)

+ V · ∇2ξ · V
)]

=
{
2eCτξ (X)

[
E
(
t, X̄
)
· ∇ξ

(
X̄
)

+ V · ∇2ξ · V
]}•

− 2eCτC
[
E
(
t, X̄
)
· ∇ξ

(
X̄
)

+ V · ∇2ξ · V
]
ξ (X)

− 2eCτ
[
Et

(
t, X̄
)
· ∇ξ

(
X̄
)

+ X̄• · ∇x̄E
(
t, X̄
)
· ∇ξ

(
X̄
)

+ E
(
t, X̄
)
· ∇2ξ

(
X̄
)
· X̄• + 2E · ∇2ξ (X) · V

+ V ·
(
∇3ξ (X) · V

)
· V
]
ξ (X)

≥
{
2eCτξ (X)

[
E
(
t, X̄
)
· ∇ξ

(
X̄
)

+ V · ∇2ξ · V
]}•

,

where ξ (X) ≥ 0, and
∣∣X̄•∣∣ ≤ C (since |X (τ)| ≥ σ > 0), |X (τ)| ≤ C, |V (τ)| ≤ C,

and |E|C1 ≤ C. This proves the LHS of (2.9). Similarly, we get the RHS of (2.9) to
complete the proof of the lemma.

The following lemma shows that if a particle initially has a nonzero normal ve-
locity, then its normal velocity of a particle remains bounded away from 0, and the
bound is independent of the number of the bounces.

Lemma 2.7. Let E (t, x) · nx ≥ δ > 0 for all x ∈ ∂Ω. Consider the back-time
cycle of (t, x, v). Then there exist C1 and C2 such that

C1

[
ξ (x) + (v · ∇ξ (x))

2
]
≤
(
vi · ∇ξ

(
xi
))2 ≤ C2

[
ξ (x0) + (v0 · ∇ξ (x0))

2
]
,

C1

[
ξ (x0) + (v0 · ∇ξ (x0))

2
]
≤
(
vi · ∇ξ

(
xi
))2 ≤ C2

[
ξ (x) + (v · ∇ξ (x))

2
]
,
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where 1 ≤ i ≤ l, and C1 and C2 are independent of l and dependent on ‖E‖C1 , δ,
and the bound for |V (τ)|.

Proof. We may assume that Ω contains the origin without loss of generality. We
first consider small balls Bσ with radius σ > 0 small and let (s, y, w) connect with(
t̃, x̃, ṽ

)
through a trajectory in the ball Bσ. Since |X (τ)| ≤ σ, we have ξ (X (τ)) ≥

C (σ). Then there is a constant D such that

{
eDτ

[
ξ (X) + (V · ∇ξ (X))

2
]}•

= eDτ
[
Dξ (X) + D (V · ∇ξ (X))

2
+ V · ∇ξ (X)

+ 2 (V · ∇ξ (X))
(
E · ∇ξ (X) + V · ∇2ξ · V

)]
≥ 0,

where D depends on ‖E‖∞, Ω, σ, and the bound for |V (τ)|. Hence we get

eDs
[
ξ (y) + (w · ∇ξ (y))

2
]
≤ eDt̃

[
ξ (x̃) + (ṽ · ∇ξ (x̃))

2
]
.(2.10)

Next, let (s, y, w) connect with
(
t̃, x̃, ṽ

)
through a trajectory which goes through the

σ-ball, where both y and x̃ are at the boundary. Let
(
s
′
, y

′
, w

′)
and

(
t̃
′
, x̃

′
, ṽ

′)
be the

two points with
∣∣y′ ∣∣ = ∣∣x̃′ ∣∣ = σ on the trajectory connecting (s, y, w),

(
t̃, x̃, ṽ

)
. Then

by the geometric velocity lemma and by (2.10), there exist a C and D such that

eDs (w · ∇ξ (y))
2 ≤ eDs

′
[
ξ2
(
y

′
)

+
(
w

′ · ∇ξ
(
y

′
))2

− 2
{

(E · ∇ξ)
(
s
′
, ȳ

′
)

+ w
′ · ∇2ξ

(
y

′
)
· w′
}
ξ
(
y

′
)]

≤ CeDs
′
[
ξ
(
y

′
)

+
(
w

′ · ∇ξ
(
y

′
))2
]

≤ CeDt̃
′
[
ξ
(
x̃

′
)

+
(
ṽ

′ · ∇ξ
(
x̃

′
))2
]

≤ CeDt̃
′
[
ξ2
(
x̃

′
)

+
(
ṽ

′ · ∇ξ
(
x̃

′
))2

− 2
{

(E · ∇ξ)
(
t̃
′
, x̃

′
)

+ ṽ
′ · ∇2ξ

(
x̃

′
)
· ṽ′
}
ξ
(
x̃

′
)]

≤ CeDt̃ (ṽ · ∇ξ (x̃))
2
,

where C depends on ‖E‖∞, Ω, δ, and the bound for |V (τ)|. Now we observe that
the number # of such happenings of hitting the σ-ball through the whole cycle is
uniformly bounded. Along the trajectory, we have

C∆t ≥
∣∣∣∣∣
∫ t

′′

t′
V (τ) dτ

∣∣∣∣∣ = |∆x| ≥ cσ,

which implies that ∆t ≥ Cσ > 0. Then Cσ × # ≤
∑

∆t ≤ T indicates that # is

uniformly bounded. Now pick i and consider
∣∣vi · ∇ξ

(
xi
)∣∣2. For the upper bound,
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we have

eDti
(
vi · ∇ξ

(
xi
))2

≤ C#eDt
[
ξ2 (x) + (v · ∇ξ (x))

2 − 2
(
E · ∇ξ (x̄) + v · ∇2ξ (x) · v

)
ξ (x)

]
≤ C × C#eDt

[
ξ (x) + (v · ∇ξ (x))

2
]
.

On the other hand, the lower bound is achieved as

c#
[
2δξ (x0) + (v0 · ∇ξ (x0))

2
]

≤ c#
[
ξ2 (x0) + (v0 · ∇ξ (x0))

2 − 2
(
E · ∇ξ (x̄0) + v0 · ∇2ξ (x0) · v0

)
ξ (x0)

]
≤ eDti

(
vi · ∇ξ

(
xi
))2

.

Therefore, we get

C1

[
ξ (x0) + (v0 · ∇ξ (x0))

2
]
≤
(
vi · ∇ξ

(
xi
))2 ≤ C2

[
ξ (x) + (v · ∇ξ (x))

2
]
,

where C1 and C2 are independent of l and dependent on ‖E‖C1 , δ, Ω, and the bound
for |V (τ) | on the cycle. Similarly, we can get the second part of the lemma.

We prove the following corollary by the same method as in [7], [8].
Corollary 2.8. Suppose that E ∈ C0,1

t,x and [E (t, x) · nx] |γ ≡ E0 (x) > 0.
Consider the back-time cycle of (t, x, v). Then there are C1 and C2 > 0 such that

C1

[
ξ (x) + (v · ∇ξ (x))

2
]
≤
(
vi · ∇ξ

(
xi
))2 ≤ C2

[
ξ (x0) + (v0 · ∇ξ (x0))

2
]
,

C1

[
ξ (x0) + (v0 · ∇ξ (x0))

2
]
≤
(
vi · ∇ξ

(
xi
))2 ≤ C2

[
ξ (x) + (v · ∇ξ (x))

2
]
,

where C1 and C2 are independent of the number of the bounces, depend on
sup0≤τ≤T ‖E‖C0,1/2(Ω) (τ), ‖E0‖C1 , and the bound for |V (τ)| on the cycle.

We now see that t0 (t, x, v), x0 (t, x, v), v0 (t, x, v) are C1 functions of (t, x, v)
locally when (t0, x0, v0) connects with (t, x, v) through a trajectory:

x0 = x +

∫ t0

t

[
v +

∫ s

t

E (τ) dτ

]
ds.

Let ξ be the smooth function which defines the boundary in (2.8). Then we have

0 = ξ (x0)

= ξ

(
x +

∫ t0

t

[
v +

∫ s

t

E (τ) dτ

]
ds

)
:= ξ̄ (t0; t, x, v)

with C1 coefficients. By differentiating ξ̄ with respect to t0, we get, by Corollary 2.2,

∂ξ̄

∂t0
(t0; t, x, v) = ∇ξ (x0) ·

[
v +

∫ t0

t

E (τ) dτ

]
= ∇ξ (x0) · v0 = nx0 · v0 < 0.

We thus have t0 = t0 (t, x, v) ∈ C1 by the implicit function theorem and v0 =
v0 (t, x, v), x0 = x0 (t, x, v) ∈ C1.
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Now we consider trajectories without any bounces from a point to a boundary
point, which are close to each other, and from any point to an initial point.

Lemma 2.9. Let (t, x, v) connect with (0, x0, v0) through a trajectory. Then

v0 = v +

∫ 0

t

E (τ,X (τ ; t, x, v)) dτ,

x0 = x− vt−
∫ t

0

∫ s

t

E (τ,X (τ ; t, x, v)) dτds.

Considering x0 and v0 as functions of (t, x, v), we have

v0t = −E (t, x) +

∫ 0

t

∇xE ·Xtdτ,

x0t = −v + E (t, x) t−
∫ t

0

∫ s

t

∇xE ·Xtdτ,

∇xv0 =

∫ 0

t

∇xE∇xXdτ, ∇vv0 = I +

∫ 0

t

∇xE∇vXdτ,

∇xx0 = I −
∫ t

0

∫ s

t

∇xE∇xXdτ, ∇vx0 = −tI −
∫ t

0

∫ s

t

∇xE∇vXdτ.

Here all the integrations are taken along the trajectory (τ,X (τ ; t, x, v) , V (τ ; t, x, v)).
∇xE∇xX and ∇Ex ∇vX are matrix multiplications.

Lemma 2.10. Let (t, x, v) connect with (t0, x0, v0) through a trajectory, where
x0 ∈ ∂Ω. Then

v0 = v +

∫ t0

t

E (τ) dτ, x0 = x +

∫ t0

t

[
v +

∫ s

t

E (τ) dτ

]
ds.(2.11)

For v0 with nx0
· v0 < 0,

x0t = t0tv − v + t0t

∫ t0

t

E (τ) dτ −
∫ t0

t

E (t, x) ds +

∫ t0

t

∫ s

t

∇xE ·Xtdτ,

∇xx0 = I + t0x ⊗
(
v +

∫ t0

t

E (τ) dτ

)
+

∫ t0

t

∫ s

t

∇xE∇xXdτds,

∇vx0 = (t0 − t) I + t0v ⊗
(
v +

∫ t0

t

E (τ) dτ

)
+

∫ t0

t

∫ s

t

∇xE∇vXdτds,

v0t = t0tE (t0, x0) − E (t, x) +

∫ t0

t

∇xE ·Xtdτ,

∇xv0 = E (t0, x0) ⊗ t0x +

∫ t0

t

∇xE∇xXdτ,

∇vv0 = I + E (t0, x0) ⊗ t0v +

∫ t0

t

∇xE∇vXdτ,

t0x = (nx0
· v0)

−1

[
nx0

+

∫ t

t0

∫ s

t

nx0
· (∇xE∇xX) dτds

]
,

t0v = (nx0
· v0)

−1

[
(t− t0)nx0

+

∫ t

t0

∫ s

t

nx0
· (∇xE∇vX) dτds

]
,

t0t = 1 + (nx0
· v0)

−1
nx0

·
[∫ t

t0

E (τ) dτ + (t0 − t)E (t, x) +

∫ t0

t

∫ s

t

∇xE ·Xtdτds

]
.
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Proof. Let ξ be the function defining the boundary as in (2.8); then we have

ξ (x0 (t, x, v)) = 0.(2.12)

We differentiate (2.12) with respect to x, v, and t to get

nx0
· ∇xx0 = 0, nx0

· ∇vx0 = 0, nx0
· x0t = 0.(2.13)

We now differentiate the second equation of (2.11) to get

∇xx0 = I + v0 ⊗ t0x +

∫ t0

t

∫ s

t

∇xE∇xXdτds.(2.14)

By multiplying (2.14) with nx0 and by (2.13), we get

0 = n0x · ∇xx0 = (n0x · v0) t0x + n0x +

∫ t0

t

∫ s

t

n0x · (∇xE∇xX) dτds.

We thus have if n0x · v0 < 0,

t0x = (nx0
· v0)

−1

[
nx0

+

∫ t

t0

∫ s

t

nx0
· (∇xE∇xX) dτds

]
.(2.15)

By differentiating the second equation of (2.11) with respect to v and t, we deduce the
formulas for t0v and t0t. We differentiate the first equation of (2.11) and do the same
thing to obtain the formulas for ∇xv0, ∇vv0, and v0t. Thus our lemma follows.

Lemma 2.11. Let (t, x, v) connect with (t0, x0, v0) through a trajectory with t close
to t0, where x0 ∈ ∂Ω. If E · n ≥ δ > 0 at the boundary for all time, then

|t− t0| ≤ C |v0 · nx0 | ,
where C depends on ‖E‖C1 and δ.

Proof. We need only to consider the case when |v0 · nx0
| is small. Notice that

x = x0 + v0 (t− t0) +

∫ t

t0

∫ s

t0

E (τ) dτds.

Setting

h (t) = ξ (x) = ξ

(
x0 + v0 (t− t0) +

∫ t

t0

∫ s

t0

E (τ) dτds

)
,

we expand h (t) around t = t0 to get

ξ (x) = ξ (x0) + h
′
(t0) (t− t0) + h

′′
(t0) (t− t0)

2
+ O (t− t0)

3

= (v0 · ∇ξ (x0)) (t− t0)

+
[
v0 · ∇2ξ (x0) · v0 + E (t0, x0) · ∇ξ (x0)

]
(t− t0)

2
+ O (t− t0)

3
.

Thus, we obtain

t− t0

=
v0 · ∇ξ (x0) ±

√
(v0 · ∇ξ (x0))

2
+ 4ξ (x) [v0 · ∇2ξ (x0) · v0 + E (t0, x0) · ∇ξ (x0)]

−2 [v0 · ∇2ξ (x0) · v0 + E (t0, x0) · ∇ξ (x0)]

+ o (t− t0) .

Since −
[
v0 · ∇2ξ (x0) · v0 + E (t0, x0) · ∇ξ (x0)

]
≥ δ |∇ξ (x0)| > 0, we have

|t− t0| ≤
1

2δ |∇ξ (x0)|
2 |v0 · ∇ξ (x0)| =

1

δ
|v0 · nx0 | .
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3. Regularity for linear absorbing.

Theorem 3.1. Let Ω be a smooth bounded convex domain, E(t, x) ∈
C1
(
[0,∞) × Ω̄

)
, and E (t, x) · nx ≥ δ > 0 for all x ∈ ∂Ω for some fixed constant

δ > 0. Let an initial datum f0 ∈ C1
(
Π̄0

)
and a boundary datum g ∈ C1 (γ̄+) be

compactly supported. Assume the following compatibility conditions hold for x ∈ ∂Ω
and v with nx · v < 0 (2.1):

f0 (x, v) = g (0, x, v) ,(3.1)

gt (0, x, v) + v · ∇xf0 (x, v) + E (0, x) · ∇vf0 (x, v) = 0.(3.2)

(a) Then there exists a solution f ∈ C1
(
Π̄\γ0

)
to (2.4).

(b) Furthermore, assume the following vanishing conditions hold:

|∇g (t, x, v)| ≤ C |nx · v|1+κ
, |∇f0 (x, v)| ≤ C(|ξ (x)| + |nx · v|)κ,(3.3)

where ξ is the function defining the boundary ∂Ω in (2.8) and κ > 0. Then f (t, x, v) ∈
C1
(
Π̄
)
.

Proof. We define f (t, x, v) as follows. For any (t, x, v) ∈ [0, T ] × Ω̄ × R
3\γ0, let

(t0, x0, v0) be the first point on ∂Π which connects with (t, x, v) through a back-time
trajectory. By applying the velocity lemma, Lemma 2.1, it follows that (t0, x0, v0) /∈
γ0; i.e., (t0, x0, v0) is not in the singular set. If t0 = 0, we define

f (t, x, v) = f0 (x0, v0) .

The t-derivative of f is given by

ft (t, x, v) = ∇xf0 (x0, v0) · x0t + ∇vf0 (x0, v0) · v0t(3.4)

= ∇xf0 (x0, v0) ·
[
−v + E (t, x) t−

∫ t

0

∫ s

t

∇xE ·Xtdτds

]

+ ∇vf0 (x0, v0) ·
[
−E (t, x) +

∫ 0

t

∇xE ·Xtdτ

]
.

On the other hand, if x0 ∈ ∂Ω, we define

f (t, x, v) = g (t0, x0, v0) .(3.5)

When nx · v < 0, by Lemma 2.10, the t-derivative of f is

ft (t, x, v) = gt (t0, x0, v0) t0t + ∇x̄g (t0, x0,v0) · x0t + ∇vg (t0, x0,v0) · v0t.(3.6)

It is clear to see that f is well defined when t0 = 0 and x0 ∈ ∂Ω by the assumption
(3.1). We now show that the two different t-derivatives of f coincide in the case that
t0 = 0, x0 ∈ ∂Ω, and nx0

· v0 < 0. Using the formulas

v = v0 +

∫ t

0

E (τ) dτ,

t0t = 1 + (nx0
· v0)

−1
nx0

·
[∫ t

t0

E (τ) dτ + (t0 − t)E (t, x) +

∫ t0

t

∫ s

t

∇xE ·Xtdτds

]
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from Lemma 2.10 and the compatibility conditions (3.1), (3.2) into (3.6) yields

ft (t, x, v) = [−v0 · ∇xf0 − E (0, x0) · ∇vf0] t0t

+ ∇xf0 ·
[
t0tv0 − v − E (t, x) t−

∫ t

0

∫ s

t

∇xE ·Xtdτds

]

+ ∇vf0 ·
[
t0tE (0, x0) − E (t, x) +

∫ 0

t

∇xE ·Xtdτ

]

= ∇xf0 ·
[
−v − E (t, x) t−

∫ t

0

∫ s

t

∇xE ·Xtdτds

]

+ ∇vf0 ·
[
−E (t, x) +

∫ 0

t

∇xE ·Xtdτ

]
.

This is the same as (3.4). By similar computations, we see that fx and fv are contin-
uous when t0 = 0 and x0 ∈ ∂Ω. Thus part (a) follows.

For (b), we define f (t, x, v) = 0 for (t, x, v) ∈ γ0. We show that |∇f (t, x, v)| → 0
when (t, x, v) goes to a point in γ0. If (t, x, v) connects with (t0, x0, v0), then it follows
from (3.5), (3.4), and from the velocity lemma, Lemma 2.1, and Lemma 2.10 that

∣∣∇(t,x,v)f (t, x, v)
∣∣ ≤ C

1

|nx0
· v0|

|∇g (t0, x0, v0)| ≤ C |nx0 · v0|κ .

If (t, x, v) connects with (0, x0, v0), then by (3.4)

|∇f (t, x, v)| ≤ C |∇f0 (x0, v0)| ≤ C(|ξ (x0)| + |nx0 · v0|)κ.

By the velocity lemma, Lemma 2.1, as ξ2 (x) + (nx · v)2 → 0, nx0 · v0 → 0 and
|ξ (x0)| + |nx0

· v0| → 0. The theorem thus follows.
We also deduce the following theorem.
Theorem 3.2. Let E (t, x) ∈ C1

(
[0,∞] × Ω̄

)
with E (t, x)·nx ≥ δ > 0 on ∂Ω. Let

F0 (x, v), H (t, x, v), and G (t, x, v) be (n×1)-vector-valued functions and A (t, x, v) be
an (n × n)-matrix function such that G (t, x, v) ∈ C1 (γ̄+), F0 ∈ C1

(
Π̄0

)
, H (t, x, v)

and A (t, x, v) ∈ C1
(
Π̄
)
, and H, G, and F0 have compact support in v. Assume the

compatibility conditions hold for x ∈ ∂Ω, v with v · nx < 0:

F0 (x, v) = G (0, x, v) ,(3.7)

Gt (x, v) + v · ∇xF0 + E (0, x) · ∇vF0 = A (0, x, v)F0 (x, v) + H (0, x, v) .

(a) Then there exists a unique (n×1)-vector-valued function F (t, x, v) ∈ C1
(
Π̄\γ0

)
such that Ft+v ·∇xF+E ·∇vF = AF+H, F |γ+ = G, F |t=0 = F0 for (t, x, v) ∈ Π̄\γ0.

(b) Furthermore, assume that the vanishing conditions hold:

|∇G (t, x, v)| ≤ C |v · nx|1+κ
, |∇H (t, x, v)| ≤ C (|ξ (x)| + |v · nx|)1+κ

,

|∇F0 (t, x, v)| ≤ C (|ξ (x)| + |v · nx|)κ .

Then F (t, x, v) ∈ C1
(
Π̄
)
.

From now on, ∇T
x denotes the tangential derivative, ∇⊥

x denotes the normal
derivative, vT denotes the tangential component of v, and v⊥ denotes the normal
component of v.
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Theorem 3.3. Let 1 ≤ p ≤ ∞, and let

f0 ∈ W 1,p (Π0) , g ∈ W 1,p
(
γ+
)
,

|∇g| ≤ C |nx · v| .(3.8)

Let f0 and g have compact support and satisfy

f0 (x, v) = g (0, x, v) for all x ∈ ∂Ω and v with nx · v < 0.

Let E (t, x) ∈ W 1,∞ ([0,∞) × Ω̄
)

(E ∈ W 1,∞∩C1 for p = ∞) and E (t, x)·nx ≥ δ > 0.
Then there exists an f (t, x, v) ∈ W 1,p (Πs) for 0 ≤ s ≤ T such that

ft + v · ∇xf + E · ∇vf = 0, f |t=0 = f0, f |γ+ = g(3.9)

in the sense of distribution. The following estimates hold:∫
Πs

|ft|p +

∫
γ−
s

(nx · v) |ft|p ≤
∫

Π0

|f0t|p −
∫
γ+
s

(nx · v) |gt|p

+ C

∫ s

0

∫
Πτ

|∇f |p dτ,∫
Πs

∣∣∇T
x f
∣∣p +

∫
γ−
s

(nx · v)
∣∣∇T

x f
∣∣p ≤

∫
Π0

∣∣∇T
x f0

∣∣p − ∫
γ+
s

(nx · v)
∣∣∇T

x g
∣∣p

+ C

∫ s

0

∫
Πτ

|∇f |p dτ,∫
Πs

∣∣∇⊥
x f
∣∣p +

∫
γ−
s

(nx · v)
∣∣∇⊥

x f
∣∣p ≤

∫
Π0

∣∣∇⊥
x f0

∣∣p − ∫
γ+
s

(nx · v)
∣∣∇⊥

x g
∣∣p

+ C

∫ s

0

∫
Πτ

|∇f |p dτ,∫
Πs

|∇vf |p +

∫
γ−
s

(nx · v) |∇vf |p ≤
∫

Π0

|∇vf0|p −
∫
γ+
s

(nx · v) |∇vg|p

+ C

∫ s

0

∫
Πτ

|∇f |p dτ,

where

∇⊥
x f |γ+ = − (nx · v)−1 [

gt + vT · ∇T
x g + E · ∇vg

]
,

∇⊥
x g = − (nx · v)−1 [

gt + vT · ∇T
x g + E · ∇vg

]
,

∇⊥
x f |t=0 = f0x, 0 ≤ s ≤ T.

Proof. Let Nσ be a σ-neighborhood of γ0 = {x ∈ ∂Ω, nx · v = 0}.
We construct fn

0 ∈ C∞
c , which is constant on Nσ, and En ∈ C∞ such that

fn
0 → f0 in W 1,p (Π0\Nσ) , En → E in W 1,∞, En · nx ≥ δ/2 > 0.

After choosing fn
0 and En, we construct gn such that

gn (0, x, v) = fn
0 (x, v) on γ+\Nσ,

gnt (0, x, v) = −v · ∇xf
n
0 − En (0, x) · ∇vf

n
0 on γ+\Nσ,

gn → g in W 1,p
(
γ+\Nσ

)
.
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We first choose gn → g in W 1,p (γ+\Nσ), where gn ∈ C∞
c . Then modify it as

gn (t, x, v)+[fn
0 (x, v)−gn (0, x, v)]+tχ (t) [−v · ∇xf

n
0 − En (0, x) − gnt (0, x, v)], where

χ (t) ∈ C∞, χ (0) = 1, and
∫
|χ (t)|p dt is very small. We can see that this sequence sat-

isfies all the above conditions. Clearly, from Theorem 3.1 there exists fn ∈ C1
(
Π̄\γ0

)
such that fn satisfies (3.9) with initial and boundary data fn

0 and gn, respectively.
By applying the Gronwall inequality and since |nx · v| ≥ σ, we deduce that

‖fn‖W 1,p(Π\Nσ) ≤ Cσ,

‖fn‖W 1,p(γ−\Nσ) ≤ Cσ

for all σ > 0, uniformly in n. By letting n → ∞, we show that for 1 < p < ∞ there
exists an f in W 1,p such that

fn ⇀ f in W 1,p (Π\Nσ) ∩W 1,p (γ\Nσ)

for all σ > 0, and our theorem thus follows. For p = 1, we show that {fn} is a Cauchy
sequence in W 1 by considering fn − fm in (3.9). From the equation for fn − fm,

∂t (fn − fm) + v · ∇x (fn − fm) + En · ∇v (fn − fm) = (Em − En) · ∇vf
m,

we take derivatives (in the sense of distribution) and integrate with respect to x and v
and then with respect to time. Using that {fn

0 }, {gn} are Cauchy in W 1,1 and fn and
its derivatives are compactly supported uniformly in n (since ‖En‖W1,∞ are uniformly
bounded in n and fn

0 , g
n are compactly supported), we can deduce that {fn} is a

Cauchy sequence. For p = ∞, we use E ∈ C1 itself instead of using approximate
fields En in our construction of fn

0 , g
n to apply Theorem 3.1. Then we have, by

taking derivatives,

∂t∂ (fn − fm) + v · ∇x (∂ (fn − fm)) + E · ∇v (∂ (fn − fm)) = ∂E · ∇v (fm − fn) .

By integrating along the corresponding trajectory, we get the Gronwall inequality for
∂ (fn − fm), which implies that {fn} is a Cauchy sequence in W 1,∞. Here we note
that by the vanishing assumption (3.8),

‖f‖W 1,p(Π) ≤ C
(
1 + ‖f0‖W 1,p(Π0)

+ ‖g‖W 1,p(γ+)

)
,

where C depends on T , the support of f0 and g, and the constant on the vanishing
condition on g, ‖E‖W 1,∞ . Our theorem thus follows.

We also deduce the following theorem.
Theorem 3.4. Let 1 ≤ p ≤ ∞, and let F0 (x, v), H (t, x, v), and G (t, x, v) be

(n× 1)-vector-valued functions and A (t, x, v) be an (n×n)-matrix function such that
G (t, x, v) ∈ W 1,p (γ+), F0 (x, v) ∈ W 1,p (Π0), H (·, x, v) ∈ W 1,p (Πs) ∩W 1,p (γ+) for
0 ≤ s ≤ T , and A ∈ C0,1 (Π). Let the vanishing condition hold on ∂Ω:

|∇G| ≤ C|nx · v|, |∇H| ≤ C |nx · v| .

Let F0 and G have compact support in v, and let F0 and G satisfy

F0 (x, v) = G (0, x, v) for all x ∈ ∂Ω and v with nx · v < 0.

Let E (t, x) ∈ W 1,∞ ([0,∞) × Ω̄
)

(E ∈ W 1,∞∩C1 for p = ∞) and E (t, x)·nx ≥ δ > 0.
Then there exists an F (t, x, v) ∈ W 1,p (Πs) ∩W 1,p (γ+) for 0 ≤ s ≤ T such that

Ft + v · ∇xF + E · ∇vF = A (F ) + H, F |t=0 = F0, F |γ+ = G
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in the sense of distribution. The following estimates hold:∫
Πs

|Ft|p +

∫
γ−
s

(nx · v) |Ft|p ≤
∫

Π0

|F0t|p −
∫
γ+
s

(nx · v) |Gt|p

+ C

∫ s

0

∫
Πτ

(|∇F |p + |∇H|p) dτ,∫
Πs

∣∣∇T
xF
∣∣p +

∫
γ−
s

(nx · v)
∣∣∇T

xF
∣∣p ≤

∫
Π0

∣∣∇T
xF0

∣∣p − ∫
γ+
s

(nx · v)
∣∣∇T

xG
∣∣p

+ C

∫ s

0

∫
Πτ

(|∇F |p + |∇H|p) dτ,∫
Πs

∣∣∇⊥
x F
∣∣p +

∫
γ−
s

(nx · v)
∣∣∇⊥

x F
∣∣p ≤

∫
Π0

∣∣∇⊥
x F0

∣∣p − ∫
γ+
s

(nx · v)
∣∣∇⊥

x G
∣∣p

+ C

∫ s

0

∫
Πτ

(|∇F |p + |∇H|p) dτ,∫
Πs

|∇vF |p +

∫
γ−
s

(nx · v) |∇vF |p ≤
∫

Π0

|∇vF0|p −
∫
γ+
s

(nx · v) |∇vG|p

+ C

∫ s

0

∫
Πτ

(|∇F |p + |∇H|p) dτ,

where ∇⊥
x F |γ+ = −(nx · v)−1

[
Gt + vT · ∇T

xG + E · ∇vG
]
, ∇⊥

x F |t=0 = F0x, and

∇⊥
x G = −(nx · v)−1

[
Gt + vT · ∇T

xG + E · ∇vG
]
, 0 ≤ s ≤ T .

Definition 3.5 (boundary and initial operators). Suppose that f ∈ C∞
c satisfies

ft + v · ∇xf + E · ∇vf = 0, f |t=0 = f0, f |γ+ = g

in the classical sense. The unique boundary operator L+ and the unique initial oper-
ator L0 are defined by

∂αf |γ+ = Lα
+

(
∇T

x , ∂v, ∂t
)
f |γ+ , ∂αf |t=0 = Lα

0 (∂x, ∂v) f |t=0,

where ∂ is the usual differential operator of t, x, v with multi-index α; |α| is the order
of α.

For the higher regularity, we refer the reader to [7], [8].
Theorem 3.6 (high regularity). Suppose that E (t, x, v) ·nx ≥ δ > 0 on ∂Ω, E ∈

W k,∞. Let 0 ≤ f0 ∈ W k,p (Π0), f0 have compact support in v, 0 ≤ g ∈ W k,p (γ+),
and g have compact support in v. Let ∂αg (t, x, v) = 0 for x ∈ ∂Ω, v ·nx = 0, |α| = k,

and let
∣∣∂(k)g

∣∣ ≤ C |v · nx|k. Assume that the following compatibility conditions are
satisfied:

∂αf |{t=0}∩γ+ =
{
Lα

+

(
∇T

x , ∂v, ∂t
)
g
}
|t=0 = {Lα

0 (∂x, ∂v) f0} |γ+ ,(3.10)

where |α| ≤ k − 1. Then there is a unique W k,p solution f such that∫
Πs

∣∣∂θf
∣∣p +

∫
γ−
s

(v · nx)
∣∣∂θf

∣∣p ≤ C, 0 ≤ s ≤ T,

where C depends on f0, g, and E, |θ| ≤ k. For |α| ≤ k,

∂αf |γ+ = Lα
+

(
∇T

x , ∂v, ∂t
)
g, ∂αf |t=0 = Lα

0 (∂x, ∂v) f0.
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Sketch of proof. We use an induction on the order k. We omit the detailed proof;
instead we shall prove our theorem with |α| = k = 2:

∂t∂tf + v · ∇x∂tf + E · ∇v∂tf = −∂tE · ∇vf,

∂t∂vf + v · ∇x∂vf + E · ∇v∂vf = −∂xf,

∂t∂xf + v · ∇x∂xf + E · ∇v∂xf = −∂xE · ∇vf.

We think of F = (∂tf, ∂xf, ∂vf) as an unknown vector-valued function. We already
know that F ∈ Lp by Theorem 3.3, and we want to prove here that F is actually in
W 1,p. Theorem 3.4 applies to this case with H = �0, and

A =

⎛
⎝ 0 0 −∂tE

03 −I3 03

03 03 −∂xE

⎞
⎠ ,

which is in W 1,∞ by assumption, where F0 = (−v · ∇xf0 − E · ∇vf0, ∂xf0, ∂vf0) ∈
W 1,p (Π0), G =

(
gt, ∂

T
x g,−(v · nx)−1

[
gt + vT · ∇T

x g + E · ∇vg
]
, ∂vg

)
∈ W 1,p (γ+).

By our assumption that
∣∣∂2g

∣∣ ≤ C |v · nx|2, ‖E‖W 1,∞ ≤ M , we have

|∇G| ≤ C |v · nx| .

Moreover, by our compatibility condition, we have

F0 (x, v) = G (0, x, v) .

We then apply Theorem 3.4 to get F ∈ W 1,p. The theorem thus follows.

4. Regularity for linear specular reflection. Now we study the purely spec-
ular problem:

ft + v · ∇xf + E · ∇vf = 0, f |t=0 = f0,(4.1)

f (t, x, v) = f (t, x, v∗) , x ∈ ∂Ω.

We seek the compatibility conditions. After the change of coordinates (flattening out
the boundary), we transform the original Vlasov–Poisson system into an equivalent
system. Using the same notation (t, x, v) and f , we have

ft + v · ∇xf + (E + J) · ∇vf = 0,

where J1 (x, v) = (v2, v3)·∂2φ (x)·(v2, v3), Ji (x, v) = 0 for j = 2, 3. From the specular
reflection condition on f , we have f (t, 0, x̄, v1, v̄) = f (t, 0, x̄,−v1, v̄) for all x̄ ∈ R

2

and v ∈ R
3, which also implies that f0 (0, x̄, v1, v̄) = f0 (0, x̄,−v1, v̄). By taking the

t-derivative and plugging in t = 0, we get

ft (0, 0, x̄, v1, v̄) = ft (0, 0, x̄,−v1, v̄) ,

where

ft (0, 0, x̄, v1, v̄) = −v1f0x1 (0, x̄, v1, v̄) − v2f0x2 (0, x̄, v1, v̄) − v3f0x3 (0, x̄, v1, v̄)

−
3∑

i=1

(Ei + Ji) f0vi (0, x̄, v1, v̄) ,

ft (0, 0, x̄,−v1, v̄) = v1f0x1 (0, x̄,−v1, v̄) − v2f0x2 (0, x̄,−v1, v̄) − v3f0x3 (0, x̄,−v1, v̄)

−
3∑

i=1

(Ei + Ji) f0vi (0, x̄,−v1, v̄) .
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Since f0v1 (0, x̄, v1, v̄) = −f0v1
(0, x̄, v1, v̄), we get

v1f0x1
(0, x̄, v1, v̄) + v1f0x1

(0, x̄,−v1, v̄) + 2 (E1 + J1) (0, 0, x̄, v) f0v1
(0, x̄, v1, v̄) = 0.

(4.2)

Therefore, the corresponding compatibility conditions under the original coordinate
system are

f0 (x, v) = f0 (x, v∗) ,(4.3)

v⊥∗ ∇⊥
x f0 (x, v∗) + v⊥∇⊥

x f0 (x, v) + 2E⊥ (0, x)∇⊥
v f0 (x, v) = 0(4.4)

for all x ∈ ∂Ω. Assume that E (t, x) ∈ C1 and E (t, x) · nx ≥ δ > 0 at the boundary.
We also assume that f0 ∈ C1 and has compact support, and

f0 ≡ constant when ξ2 (x) + (v · ∇ξ (x))
2 ≤ ω0

for some fixed ω0 > 0. We then define an iterating sequence as a family of the solutions
of the following linear problems:

fk+1
t + v · ∇xf

k+1 + E · ∇vf
k+1 = 0, fk+1|t=0 = f0,(4.5)

fk+1 (t, x, v) = fk (t, x, v∗) , x ∈ ∂Ω, v · nx ≤ 0

for k = 0, 1, 2, . . . , where f0 is a smooth extension of Π satisfying the compatibility
conditions. Since ‖E‖L∞ ≤ C, it easily follows that fk has a uniform bound for its
support in x and v. The major result in this section is the following theorem.

Theorem 4.1. Let E (t, x) ·nx = E0 (x) > 0 for all x ∈ ∂Ω. Let f0 have compact

support, and assume that when ξ2 (x) + (v · ∇ξ (x))
2 ≤ ω0 for some fixed ω0 > 0,

f0 (x, v) ≡ constant.

(a) Assume f0 ∈ C1, E ∈ C0 ([0, T ] × Ω), and

sup
0≤t≤T

‖∇xE‖C0(Ω) (t) < ∞.

Let f0 satisfy (4.3). Then there exists a unique W 1,∞ solution f of (4.1), and
‖f‖W 1,∞ depends only on ω0, ‖E‖C0+sup0≤t≤T ‖∇xE‖C0(Ω) (t), ‖E0‖C1 , and ‖f0‖C1 .

(b) Moreover, if f0 ∈ C1,η for some η > 0, assume that E ∈ C0,η ([0, T ] × Ω) and

sup
0≤t≤T

‖∇xE‖C0,η(Ω) (t) < ∞.

Let f0 satisfy both (4.3) and (4.4). Then there exists a unique C1,µ solution f of
(4.1), for some 0 < µ < η depending on ω0, ‖E‖C0,η + sup0≤t≤T ‖∇xE‖C0,η(Ω) (t),

‖E0‖C1,η , and ‖f0‖C1,η .
We first show a uniform C1 bound for the iterating sequence fk.
Lemma 4.2 (C1 bounds). Suppose that E (t, x) · nx = E0 (x) > 0 for all x ∈ ∂Ω,

E,E0 ∈ C1, f0 ∈ C1,β, and

f0 ≡ constant when ξ2 (x) + (v · ∇ξ (x))
2 ≤ ω0, ω0 > 0.

Suppose that (4.5) has a solution fk. Let (0, x0, v0) be on the back-time cycle of
(t, x, v). Then ∣∣∇(t,x,v)f (t, x, v)

∣∣ ≤ C
∣∣∇(x,v)f0 (x0, v0)

∣∣ ,
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where C is independent of k, and depends on f0, ω0, E0, and E.
Proof. Let the back-time cycle from (t, x, v) be

(
tl, xl, vl

)
= (t, x, v),

(
tl−1, xl−1,

vl−1
)
, . . . ,

(
t1, x1, v1

)
, (0, x0, v0). We need only to consider when ξ (x)+ (v · ∇ξ (x))

2

is small. We distinguish, on the back-time cycle from (t, x, v) to (t0, x0, v0), large-
time intervals from small-time intervals in the following way. By Lemma 2.7, we may

assume that
∣∣vj · nxj

∣∣ ≥ c ω
1/2
0 for all j, since ∇f0 = 0 when ξ2 (x)+ |v ·∇ξ (x)|2 ≤ ω0.

If tj − tj−1 ≥ c ω
1/2
0 , then it is called a large-time interval on the cycle, otherwise a

small-time interval with tj − tj−1 ≤ c ω
1/2
0 ≤

∣∣vj · nxj

∣∣. We first treat the portion of
our back-time cycle with small-time intervals, which is more complicated but crucial
to estimate. Without loss of generality, we use the same back-time cycle as above for
our convenience in dealing with small-time intervals. From our construction (4.5), we
have

fk (t, x, v) = fk
(
tl−1, xl−1, vl−1

)
= fk−1

(
tl−1, xl−1, vl−1

∗
)

= fk−1
(
tl−2, xl−2, vl−2

)
= · · · = f0 (x0, v0) .

From the first relation that fk (t, x, v) = fk
(
tl−1, xl−1, vl−1

)
, with xl−1 ∈ ∂Ω, vl−1 ·

nxl−1 < 0, we have ∣∣∇fk (t, x, v)
∣∣ = ∣∣I ll−1∇fk

(
tl−1, xl−1, vl−1

)∣∣ ,
where

I ll−1 =

⎛
⎜⎜⎝

∂tl−1

∂t
∂xl−1

∂t
∂vl−1

∂t

∂tl−1

∂x
∂xl−1

∂x
∂vl−1

∂x

∂tl−1

∂v
∂xl−1

∂v
∂vl−1

∂v

⎞
⎟⎟⎠ .

By Lemmas 2.10 and 2.11, I ll−1 takes the form⎛
⎝ C C C

C (ω0) C (ω0) C (ω0)
C C C

⎞
⎠ .

Here we have used Lemma 2.7 and the assumption to get∣∣∣∣∂tl−1

∂x

∣∣∣∣ ≤ C +
1

|vl−1 · nxl−1 | ≤ C +
1

C
[
ξ (x0) + (v0 · ∇ξ (x0))

2
]1/2

≤ C +
C

Cω0
= C (ω0) ,

where C depends on ‖E‖C1 . Next we consider

fk
(
tl−1, xl−1, vl−1

)
= fk−1

(
tl−1, xl−1, vl−1

∗
)
,

where vl−1
∗ = vl−1 − 2

(
vl−1 · nxl−1

)
nxl−1 . Clearly, we have∣∣∇fk

(
tl−1, xl−1, vl−1

)∣∣ = ∣∣I l−1
∗ ∇fk−1

(
tl−1, xl−1, vl−1

∗
)∣∣ ,

where I l−1
∗ takes the form ⎛

⎝ 1 0 0
0 Id C
0 0 C

⎞
⎠ .
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Now consider the map
(
tj−1, xj−1, vj−1

)
�−→

(
tj , xj , vj∗

)
, where xj−1, xj ∈ ∂Ω, 2 ≤

j ≤ l. Let Jj
j−1 be the Jacobian matrix of the map. We now estimate it. Since(

tj−1, xj−1, vj−1
)

connects with
(
tj , xj , vj∗

)
through a trajectory,

vj∗ = vj−1 +

∫ tj

tj−1

E (τ) dτ,

xj = xj−1 + vj∗
(
tj − tj−1

)
+

∫ tj

tj−1

∫ s

tj
E (τ) dτds.

Here we notice that

c
(
tj − tj−1

)
≤
∣∣vj−1 · nxj−1

∣∣ ≤ C
(
tj − tj−1

)
(4.6)

by Lemma 2.11 and by expanding ξ
(
xj
)

around ξ
(
xj−1

)
as

0 = ξ
(
xj
)

= ξ

(
xj−1 + vj−1

∗
(
tj − tj−1

)
+

∫ tj

tj−1

∫ s

tj
E (τ) dτds

)

=
(
vj−1
∗ · ∇ξ

(
xj−1

)) (
tj − tj−1

)
+ O

(
tj − tj−1

)2
.

We then get a similar estimate

∣∣∇fk−1
(
tj , xj , vj∗

)∣∣ = ∣∣∣Jj
j−1∇fk−1

(
tj−1, xj−1, vj−1

)∣∣∣ ,
where

Jj
j−1 =

⎛
⎝ C C C

C (ω0) C (ω0) C (ω0)
C C C

⎞
⎠ ,

and C depends only on the C1 norm of E. Since
(
t1, x1, v1

)
connects with (0, x0, v0),

with x1 ∈ ∂Ω, we have∣∣∣∇fk−(l−2)
(
t1, x1, v1

)∣∣∣ = ∣∣I1
0∇f0 (x0, v0)

∣∣
≤ C |∇f0 (x0, v0)| .

By Lemma 2.7 and (4.6), we have
∣∣vi · nxi

∣∣ ≥ c (ω0) for all i and l × c (ω0) ≤∑
i

∣∣vi · nxi

∣∣ ≤ ∑(
ti+1 − ti

)
≤ T to see that the number of bounces is uniformly

bounded and dependent on ω0, δ, and ‖E‖C1 . Therefore,

∣∣∇fk (t, x, v)
∣∣ =
∣∣∣∣∣I ll−1

l−1∏
j=1

Ij∗

l−1∏
j=2

Jj
j−1I

1
0∇f0 (x0, v0)

∣∣∣∣∣
≤ C (ω0) |∇f0 (x0, v0)| .

In a similar manner, we can obtain estimates on the portion of the cycle with large-
time intervals. Here we have the uniform bound on the number of bounces with
large-time intervals in a rather trivial way since the size of each interval was chosen

to be ∆t ≥ c ω
1/2
0 by the construction. We thus deduce our lemma.
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Lemma 4.3. Suppose that E (t, x) · nx = E0 (x) > 0 at the boundary and that
(4.5) has the solution fk. Then

∥∥fk
∥∥
L∞(Π)

≤ ‖f0‖L∞(Π0)
for all k.

Proof. Let the cycle from (t, x, v) be
(
ti, xi, vi

)
, 1 ≤ i ≤ l, and (0, x0, v0). Clearly,

on each trajectory fk is a constant.

We establish a uniform C0,µ estimate for fk in (4.5) by using Corollaries 2.2
and 2.3.

Lemma 4.4. (a) The sequence is well defined, and fk ∈ C1.

(b) If |x− y| is small and the field satisfies

sup
0≤t≤T

|E (t, x) − E (t, y)| ≤ −L |x− y| log |x− y| ,

then there is a ω > 0, depending on L and ‖E‖∞, such that if ξ2 (x)+(v · ∇ξ (x))
2 ≤ ω,

fk (t, x, v) ≡ constant for any k.

(c) Moreover, for constants C and µ > 0 depending on L, ω, and α,

∥∥fk
∥∥
C0,µ ≤ C ‖f0‖C0,α .

Proof. For (a), we apply Theorem 3.1. From the velocity lemma, Lemma 2.1, and
Lemma 4.2,

∣∣∇(t,x,v)f
k (t, x, v)

∣∣ ≡ 0 when |v · nx| ≤ C (ω0) to satisfy the vanishing
condition (3.3). It suffices to check for any k that the compatibility condition in
Theorem 3.1 is satisfied. First, it is trivial to see that f0 (x, v) = fk (0, x, v∗) by (4.2).
We use an induction on k. Clearly, it is true for k = 0 if we choose f0 properly.
Supposing that the condition for k = n − 1 is true, we deduce from (4.5) and (4.2)
that for x ∈ ∂Ω,

fn
t (0, x, v) = fn−1

t (t, x, v∗) |t=0

= −v∗ · ∇xf
n−1 (0, x, v∗) − E (0, x) · ∇vf

n−1 (0, x, v∗)

= −v∗ · ∇xf0 (x, v∗) − E (0, x) · ∇vf0 (x, v∗)

= −v · ∇xf0 (x, v) − E (0, x) · ∇vf0 (x, v) .

This is exactly (3.2) in Theorem 3.1.

For part (b), we use Corollary 2.3, since

sup
0≤t≤T

|E (t, x) − E (t, y)| ≤ C |x− y|1/2 .

For any (t, x, v) ∈ Π̄ and for all k, let the back-time cycle of (t, x, v) be
(
tl−1, xl−1, vl−1

)
,

. . . , (0, x0, v0). From (4.5),
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fk (t, x, v) = fk
(
tl−1, xl−1, vl−1

)
= fk−1

(
tl−1, xl−1, vl−1

∗
)

= fk−1
(
tl−2, xl−2, vl−2

)
...

= f0 (x0, v0) .

By Corollary 2.8, we have

C1

[
ξ2 (x) + (v · ∇ξ (x))

2
]
≤
(
vi · ∇ξ

(
xi
))2 ≤ C2

[
ξ2 (x0) + (v0 · ∇ξ (x0))

2
]
,

C1

[
ξ2 (x0) + (v0 · ∇ξ (x0))

2
]
≤
(
vi · ∇ξ

(
xi
))2 ≤ C2

[
ξ2 (x) + (v · ∇ξ (x))

2
]
,

for 1 ≤ i ≤ l, and C1 and C2 depend only on L, ‖E0‖C1 . Let ω = C1ω0. Then we
clearly have the conclusion of (b).

We omit the proof of part (c) and refer the reader to [8] for the proof in the case
of a half space with a flat boundary.

Now we are ready to prove Theorem 4.1.
Proof. From Lemma 4.2,

∥∥fk
∥∥
C1 is bounded uniformly in k, and it suffices to

show that the iterated sequence fk defined in (4.5) is indeed uniformly bounded in
C1,α. Now we pick two points (t, x, v) and

(
t̃, x̃, ṽ

)
. Consider the back-time cycles

through the two points. Let ε =
(∣∣t− t̃

∣∣+ |x− x̃| + |v − ṽ|
)
. We keep track of the

difference of these two points case by case.
Case 1. Both of the trajectories emanate from {t = 0}.
This reduces to the Cauchy problem and the theory of ordinary differential equa-

tions.
Case 2. One trajectory emanates from {t = 0}, and the other one emanates from

the boundary ∂Ω.
We first note that ξ2 (x)+ (v ·∇ξ (x))2 ≥ ω > 0 and ξ2 (x̃)+ (ṽ ·∇ξ (x̃))2 ≥ ω > 0

from the velocity lemma, Lemma 2.1, since otherwise fk ≡ constant. In this case, we
have

v0 = v +

∫ 0

t

E (τ) dτ, x = x0 + vt +

∫ t

0

∫ s

t

E (τ) dτds,

ṽ1 = ṽ +

∫ t̃1

t̃

E (τ) dτ, x̃ =

∫ t̃

t̃1

[
ṽ +

∫ s

t̃

E (τ) dτ

]
ds.

We choose a third point
(
t̂, x̂, v̂

)
such that

(
t̂, x̂, v̂

)
connects with

(
0, x̃1, v0

)
through

a trajectory and satisfies∣∣t− t̂
∣∣+ ∣∣t̂− t̃

∣∣ ≤ 2
∣∣t− t̃

∣∣ , |x− x̂| + |x̂− x̃| ≤ 2 |x− x̃| ,
|v − v̂| + |v̂ − ṽ| ≤ 2 |v − ṽ| .

We can apply Lemmas 2.9 and 2.10 and the mean value theorem through the third
point

(
t̂, x̂, v̂

)
to get∣∣t̃1∣∣+ ∣∣x0 − x̃1

∣∣+ ∣∣v0 − ṽ1
∣∣ ≤ C

[∣∣t− t̃
∣∣+ |x− x̃| + |v − ṽ|

]
= Cε,

where C depends on ‖E‖C1 , δ, ω. From the fact that
∣∣∇ξ

(
x̃1
)
· ṽ1

∗
∣∣ ≥ ω > 0 and

∇ξ
(
x̃1
)
· ṽ1

∗ < 0, we know that ∇ξ
(
x̃1
)
· ṽ1

∗ < −ω < 0. Since
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∣∣[∇ξ (X (τ)) · V (τ)]
•∣∣ = ∣∣V · ∇2ξ · V + ∇ξ · E

∣∣ ≤ C,

we have

∇ξ (X (τ)) · V (τ) = ∇ξ
(
x̃1
)
· ṽ1

∗ +

∫ τ

t̃1

d

ds
[∇ξ (X (s)) · V (s)] ds

≤ ∇ξ
(
x̃1
)
· ṽ1

∗ + O
(
t̃1 − τ

)
≤ −c (ω) + O (ε) < 0

for 0 ≤ τ ≤ t̃1. This means that the trajectory from
(
t̃1, x̃1, ṽ1

)
hits {t = 0} directly

and does not hit γ+. Now we express ∇(t,x,v)f
k (t, x, v) and ∇(t,x,v)f

k
(
t̃, x̃, ṽ

)
in

terms of the initial value ∇(x,v)f0. It will turn out that the compatibility condition
(4.2) exactly guarantees our theorem in this case.

For computational simplicity, we flatten out the boundary near
(
t̃1, x̃1, ṽ1

)
and

(0, x0, v0). We choose
(
t
′
, x

′
, v

′)
and

(
t̃
′
, x̃

′
, ṽ

′)
near ∂Ω such that

(
t
′
, x

′
, v

′)
is on the

trajectory from (t, x, v) to (0, x0, v0), between (t, x, v) and (0, x0, v0), and
(
t̃
′
, x̃

′
, ṽ

′)
is on the trajectory from

(
t̃, x̃, ṽ

)
to
(
t̃1, x̃1, ṽ1

)
, between

(
t̃, x̃, ṽ

)
and

(
t̃1, x̃1, ṽ1

)
,

respectively. Hence we have

∣∣∣t′ − t̃
′
∣∣∣+ ∣∣∣x′ − x̃

′
∣∣∣+ ∣∣∣v′ − ṽ

′
∣∣∣ ≤ Cε.

Since

∣∣∣t′t − t̃
′

t̃

∣∣∣+ ∣∣∣x′

t − x̃
′

t̃

∣∣∣+ ∣∣∣v′

t − ṽ
′

t̃

∣∣∣ ≤ Cε,∣∣∣t′t∣∣∣+ ∣∣∣t̃′t̃∣∣∣+ ∣∣∣x′

t

∣∣∣+ ∣∣∣x̃′

t̃

∣∣∣+ ∣∣∣v′

t

∣∣∣+ ∣∣∣ṽ′

t̃

∣∣∣ ≤ C,

and
∣∣∇fk

∣∣ ≤ C, it reduces to the case when (t, x, v) and
(
t̃, x̃, ṽ

)
are all near the

boundary. Recall that in the flat coordinates, the Vlasov equation is transformed to
fk
t + v · ∇xf

k + (E + J) · ∇vf
k = 0, where J1 = v · ∂2Φ · v ≤ 0, J2 = J3 = 0.

We first consider fk
t (t, x, v). Since the back-time trajectory emanates from t = 0

directly, we have

fk
t (t, x, v)

= ∇xf0 (x0, v0) ·
[
−v + t (E + J) (t, x, v) −

∫ t

0

∫ s

t

{∇x (E + J) ·Xt + ∇vJ · Vt} dτds
]

+ ∇vf0 (x0, v0) ·
[
− (E + J) (t, x, v) +

∫ 0

t

{∇x (E + J) ·Xt + ∇vJ · Vt} dτ
]
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= ∇xf0

(
x̃1, v0

)
·
[
−ṽ +

(
t̃− t̃1

)
(E + J)

(
t̃, x̃, ṽ

)

−
∫ t̃

t̃1

∫ s

t̃

{∇x (E + J) ·Xt + ∇vJ · Vt} dτds
]

+ ∇vf0

(
x̃1, v0

)
·
[
− (E + J)

(
t̃, x̃, ṽ

)
+

∫ t̃1

t̃

{∇x (E + J) ·Xt + ∇vJ · Vt} dτ
]

+ O (εη) ,

where we have used
(
t̃, x̃, ṽ

)
= (t, x, v) + O (ε), x̃1 = x0 + O (ε), E ∈ C1,η, and

f0 ∈ C1,η. Notice that

−ṽ1 +
(
t̃− t̃1

)
(E1 + J1) −

∫ t̃

t̃1

∫ s

t̃

{∇x (E1 + J1) ·Xt + ∇vJ1 · Vt} dτds

= −t̃1t̃ ṽ
1
1 = −t̃1t̃ v01,

since ṽ1 = v0 + O (ε). Therefore, we get

fk
t (t, x, v)

(4.7)

=
(
−t̃1t̃ v01

)
f0x1

(
x̃1, v0

)
+

3∑
j=2

f0xj

(
x̃1, v0

) [
−ṽj +

(
t̃− t̃1

)
Ej

(
t̃, x̃
)
−
∫ t̃

t̃1

∫ s

t̃

∇xEj ·Xtdτds

]

+ f0v1

(
x̃1, v0

) [
− (E1 + J1)

(
t̃, x̃, ṽ

)
+

∫ t̃1

t̃

{∇x (E1 + J1) ·Xt + ∇vJ1 · Vt} dτ
]

+

3∑
j=2

f0vj

(
x̃1, v0

) [
−Ej

(
t̃, x̃
)

+

∫ t̃1

t̃

∇xEj ·Xtdτ

]
+ O (εη) ,

where we have used that t̃1
t̃
≤ C (ω) and

∣∣∇fk
∣∣ ≤ C.

Now we treat fk
t

(
t̃, x̃, ṽ

)
. The trajectory first hits

(
t̃1, x̃1, ṽ1

)
, reflects

(
t̃1, x̃1, P ṽ1

)
with P ṽ1 =

(
−ṽ1

1 , ṽ
1
2 , ṽ

1
3

)
, and then hits (0, x̃0, ṽ0). We have

fk
t

(
t̃, x̃, ṽ

)
= fk

t̃1

(
t̃1t̃
)

+ fk
x̃1
2
∂tx̃

1
2 + fk

x̃1
3
∂tx̃

1
3 +

3∑
j=1

fk
ṽ1
j
∂tṽ

1
j

at
(
t̃1, x̃1, ṽ1

)
. From the specular reflection condition on f , we have

fk
t̃1

(
t̃1, x̃1, ṽ1

)
= fk−1

t̃1

(
t̃1, x̃1, P ṽ1

)
, fk

x̃1
j

(
t̃1, x̃1, ṽ1

)
= fk−1

x̃1
j

(
t̃1, x̃1, P ṽ1

)
, j = 2, 3,

fk
ṽ1
1

(
t̃1, x̃1, ṽ1

)
= −fk−1

ṽ1
1

(
t̃1, x̃1, P ṽ1

)
, fk

ṽ1
j

(
t̃1, x̃1, ṽ1

)
= fk−1

ṽ1
j

(
t̃1, x̃1, ṽ1

)
, j = 2, 3.

Since the trajectory finally hits (0, x̃0, ṽ0) directly, we have that

fk
t

(
t̃, x̃, ṽ

)
=

{
∇xf0 ·

[
−P ṽ1 + t̃1 (E + J) (t̃1, x̃1, ṽ1)

−
∫ t̃1

0

∫ s

t̃1
{∇x (E + J) ·Xt + ∇vJ · Vt} dτds

]
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+ ∇vf0 ·
[
− (E + J)

(
t̃1, x̃1, ṽ1

)
+

∫ 0

t̃1
{∇x (E + J) ·Xt + ∇vJ · Vt} dτ

]}
t̃1t̃

+

{
∇xf0 ·

[
δij +

∫ 0

t̃1

∫ s

t̃1
{∇x (E + J) ∇xX + ∇vJ ∇xV } dτds

]

+ ∇vf0 ·
[∫ 0

t̃1
{∇x (E + J) ∇xX + ∇vJ ∇xV } dτ

]}
· ∂t̃x̃1

+

{
∇xf0 ·

[
−t̃1δij −

∫ t̃1

0

∫ s

t̃1
{∇x (E + J) ∇xX + ∇vJ ∇xV } dτds

]

+ ∇vf0 ·
[
δij +

∫ 0

t̃1
{∇x (E + J) ∇xX + ∇vJ ∇xV } dτ

]}
· ∂t̃P ṽ1

at (0, x̃0, ṽ0). Notice that t̃1 = O (ε) to deduce

ft
(
t̃, x̃, ṽ

)
= t̃1t̃

[
−∇xf0 · P ṽ1 −∇vf0 · (E + J)

(
t̃1, x̃1, ṽ1

)]
+

3∑
j=2

∂t̃x̃
1
jf0xj

− f0v1
∂t̃ṽ

1
1 +

3∑
j=2

f0vj
∂t̃ṽ

1
j + O (ε) ,

evaluated at (0, x0, v0). By using (0, x̃0, ṽ0) =
(
0, x̃1, P ṽ1

)
+ O (ε) =

(
0, x̃1, Pv0

)
+

O (ε), we get, at
(
0, x̃1, Pv0

)
,

fk
t

(
t̃, x̃, ṽ

)
= t̃1t̃

[
−Pv0 · ∇xf0

(
x̃1, Pv0

)
− (E + J)

(
0, x̃1, v0

)
· ∇vf0

]
+

3∑
j=2

∂t̃x̃
1
jf0xj

− ∂t̃ṽ
1
1f0v1 +

3∑
j=2

∂t̃ṽ
1
j f0vj + O (εη) ,

where we used f0 ∈ C1,η. Hence, we have, by Lemma 2.10,

fk
t

(
t̃, x̃, ṽ

)(4.8)

= t̃1t̃ v01f0x1

(
x̃1, Pv0

)
−

3∑
j=2

t̃1t̃ v0jf0xj

(
x̃1, v0

)
+ t̃1t̃ (E1 + J1)

(
0, x̃1, v0

)
f0v1

(
x̃1, v0

)

−
3∑

j=2

t̃1t̃Ej

(
0, x̃1

)
f0vj

(
x̃1, v0

)
+

3∑
j=2

t̃1t̃ v0jf0xj

(
x̃1, v0

)

+

3∑
j=2

[
−ṽj +

(
t̃− t̃1

)
Ej

(
t̃, x̃
)
−
∫ t̃

t̃1

∫ s

t̃

∇xEj ·Xtdτds

]
f0xj

(
x̃1, v0

)
+ t̃1t̃ (E1 + J1)

(
0, x̃1, v0

)
f0v1

(
x̃1, v0

)
+

[
− (E1 + J1)

(
t̃, x̃
)

+

∫ t̃1

t̃

{∇x (E1 + J1) ·Xt + ∇vJ · Vt} dτ
]
f0v1

(
x̃1, v0

)

+
3∑

j=2

t̃1t̃Ej

(
0, x̃1

)
f0vj

(
x̃1, v0

)
+

3∑
j=2

[
−Ej

(
t̃, x̃
)

+

∫ t̃1

t̃

∇xEj ·Xtdτ

]
f0vj

(
x̃1, v0

)
+ O (εη) .
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Now we estimate the difference of (4.8) and (4.7) as∣∣fk
t (t, x, v) − fk

t

(
t̃, x̃, ṽ

)∣∣(4.9)

=
∣∣t̃1t̃ [v01f0x1

(
x̃1,−v01, v02, v03

)
+ v01f0x1

(
x̃1, v01, v02, v03

)
+ 2 (E1 + J1)

(
0, x̃1, v0

)
f0v1

(
x̃1, v0

)]∣∣+ O (εη) .

By our compatibility condition (4.2), the first term exactly vanishes. Similar com-
putations hold for x- and v-derivatives. Therefore, in Case 2, we obtain from (4.9)
that ∣∣∇(t,x,v)f

k (t, x, v) −∇(t,x,v)f
k
(
t̃, x̃, ṽ

)∣∣ ≤ C
[∣∣t− t̃

∣∣+ |x− x̃| + |v − ṽ|
]η

.

Case 3. The trajectories emanate from
(
tl−1, xl−1, vl−1

)
and

(
t̃l−1, x̃l−1, ṽl−1

)
.

In this case, we also have∣∣tl−1 − t̃l−1
∣∣+ ∣∣xl−1 − x̃l−1

∣∣+ ∣∣vl−1 − ṽl−1
∣∣ ≤ Cε, C = C (ω) .(4.10)

Consider the back-time trajectories from
(
tl−1, xl−1, vl−1

)
and

(
t̃l−1, x̃l−1, ṽl−1

)
. As-

sume that they are
(
ti−1, xi−1, vi−1

)
and

(
t̃i−1, x̃i−1, ṽi−1

)
. Without loss of generality,

we may assume that the first trajectory hits {t = 0} after l bounces. We have then

∇fk−j
(
tj , xj , vj

)
= Jj

j−1∇fk−j−1
(
tj−1, xj−1, vj−1

)
,

∇fk−j
(
t̃j , x̃j , ṽj

)
= Jj

j−1∇fk−j−1
(
t̃j−1, x̃j−1, ṽj−1

)
.

Taking the difference, we get

∇fk−j
(
tj , xj , vj

)
−∇fk−j

(
t̃j , x̃j , ṽj

)
= Jj

j−1∆∇fk−j−1 + ∆Jj
j−1∇fk−j−1

(
tj−1, xj−1, vj−1

)
.

By induction on j,∣∣∇fk
(
tl−1, xl−1, vl−1

)
−∇fk

(
t̃l−1, x̃l−1, ṽl−1

)∣∣
≤
∣∣∣∣∣

l∏
j=1

Jj
j−1

[
∇fk−l−1

(
t1, x1, v1

)
−∇fk−l−1

(
t̃1, x̃1, ṽ1

)]∣∣∣∣∣
+

l∑
j=1

∣∣∣∆Jj
j−1

[
∇fk−j−1

(
tl−j+1, xl−j+1, vl−j+1

)

−∇fk−j−1
(
t̃l−j+1, x̃l−j+1, ṽl−j+1

)]∣∣∣ .
Notice that the number of bounces is uniformly bounded as in Lemma 4.2, and thus∣∣∏l

j=1 J
j
j−1

∣∣ ≤ C. We thus get∣∣∇fk
(
tl−1, xl−1, vl−1

)
−∇fk

(
t̃l−1, x̃l−1, ṽl−1

)∣∣(4.11)

≤ C
∣∣∇fk−l−1

(
t1, x1, v1

)
−∇fk−l−1

(
t̃1, x̃1, ṽ1

)∣∣+ C

l∑
j=1

∣∣∣∆Jj
j−1

∣∣∣ .
Since E ∈ C1,η and by Lemma 2.10, (4.10), and applying the mean value theorem,
we obtain ∣∣∣∆Jj

j−1

∣∣∣ ≤ Cεη.(4.12)
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Similarly, by using f0 ∈ C1,η, we get∣∣∇fk−l−1
(
t1, x1, v1

)
−∇fk−l−1

(
t̃1, x̃1, ṽ1

)∣∣ ≤ Cεη.(4.13)

Hence by plugging (4.12), (4.13) into (4.11), we finally obtain∣∣∇fk
(
tl−1, xl−1, vl−1

)
−∇fk

(
t̃l−1, x̃l−1, ṽl−1

)∣∣ ≤ Cεη.

Since
∣∣t1 − t̃1

∣∣+ ∣∣x1 − x̃1
∣∣+ ∣∣v1 − ṽ1

∣∣ ≤ Cε, the second cycle hits t = 0 after at most
one bounce, as in Case 2. Applying Case 2 yields∣∣∇(t,x,v)f

k (t, x, v) −∇(t,x,v)f
k
(
t̃, x̃, ṽ

)∣∣ ≤ Cεη.

This completes part (b) of the theorem.
For part (a), we construct fn

0 smooth such that fn
0 → f0 a.e., ‖fn

0 ‖C1 is uniformly
bounded (depending on ‖f0‖C1), and fn

0 satisfies (4.3) and (4.4). By the result of
part (b), there is a unique solution fn of (4.1) with data fn

0 such that ‖fn‖C1 ≤
C ‖fn

0 ‖C1 ≤ C. Hence part (a) follows by letting n → ∞. For part (c), we refer the
reader to [8].

5. Regularity for the Vlasov–Poisson system with the absorbing bound-
ary condition. In this section, we consider the fully nonlinear Vlasov–Poisson sys-
tem with the absorbing boundary condition for the Vlasov and the Dirichlet boundary
condition for the Poisson equation:

ft + v · ∇xf + ∇ϕ · ∇vf = 0,

f |t=0 = f0, f |γ+ = g,

∆ϕ = ρ = 4π

∫
fdv,

ϕ|∂Ω = 0.

Theorem 5.1. Let k ≥ 1, 3 < p ≤ ∞. Let f0 ∈ W k,p (Π0) and g ∈ W k,p (γ+)
have compact support and f0 ≥ 0, g ≥ 0. Assume the compatibility condition (3.10)
holds for x ∈ ∂Ω and v with nx · v < 0 and for |α| ≤ k − 1. Moreover, assume the
vanishing condition:

g (t, x, v) ≡ 0 on γ0,

|∂αg (t, x, v)| ≤ C |nx · v||α| on γ+, |α| = k,

where α is a multi-index. Then there exists a unique solution f ∈ W k,p (Π) and
ϕ ∈ W k+2,p, where f has compact support in v.

We shall construct approximate solutions by establishing an iterating system. Let
f0 be a suitable smooth extension of f0 to Π and satisfy the corresponding compati-
bility condition (3.10). Let the iterating sequence be

∂tf
n+1 + v · ∇xf

n+1 + ∇ϕn · ∇vf
n+1 = 0,(5.1)

fn+1|t=0 = f0, fn+1|γ+ = g,

∆ϕn = ρn = 4π

∫
fndv, ϕn|∂Ω = 0.(5.2)
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Since f0 ≥ 0, g ≥ 0, and ϕn|∂Ω = 0, by the Vlasov equation (5.1), we have

∆ϕn = 4πρn = 4π

∫
fndv ≥ 0.

By the strong maximal principle and since f0 is not identically zero,

ϕn < 0 on Ω.

We then apply the Hopf boundary principle to get

En (t, x) · nx =
∂ϕn

∂n
(t, x) ≥ δn > 0

on ∂Ω ∩ {support of fn}. From Theorem 3.6, fn+1 is well defined in W k,p for every
fixed n.

We shall use the idea which was in [18] for the Cauchy problem without boundary.
The key step is to represent the macrocharge density ρn in the presence of the complex
particle path, along the straight-line trajectory

dX

dt
= V,

dV

dt
= 0.(5.3)

We consider the back-time trajectory of dX/dt = V , dV/dt = 0 from a generic point
(t, x, v). We denote by B (t, x, v) = (t0, x0, v) the possible boundary point when the
trajectory hits ∂Ω. We first note that for v = 0, there exists a unique x0 = x0 (x, v) ∈
∂Ω along the straight-line trajectory from (t, x, v) since Ω is convex. Let t0 be the
time when the trajectory from (t, x, v) hits the boundary. Then x0 = x + v (t0 − t)

and t0 − t = [(x0 − x) · v] / |v|2. We define

a (x, v) = − [(x0 − x) · v] / |v|2

to see that the function a (x, v) is locally differentiable as follows: Let ξ be the function
which defines the boundary (2.8). Then we have

0 = ξ (x0) = ξ (x + v (t0 − t)) .

Set s = t0 − t to get that 0 = ξ (x + sv) = ξ (s;x, v) and ∂ξ/∂s = ∇ξ (x0) · v =
nx0 · v < 0 since Ω is convex. By the implicit function theory, s = t0 − t = −a (x, v) is
a locally differentiable function of x and v. Before giving the representation formula
for the macrocharge density, we present two preliminary lemmas.

Lemma 5.2. a · ∇xa + ∇va = 0 for v = 0, x ∈ Ω.
Proof. Let ξ be the function which defines the boundary (2.8). Since x0 =

x− va (x, v), we have

0 = ξ (x0) = ξ (x− va (x, v)) .(5.4)

Differentiate (5.4) with respect to x to get

∇ξ − (∇ξ · v)∇xa = 0.(5.5)

We now differentiate (5.4) with respect to v to get

−a∇ξ − (∇ξ · v)∇va = 0.(5.6)



REGULARITY FOR THE VLASOV–POISSON SYSTEM 149

By multiplying (5.5) with a and adding it to (5.6), we get

(∇ξ (x0) · v) [a∇xa + ∇va] = 0.

Since ∇ξ (x0) · v = 0 from the convexity of Ω, the lemma follows.

First we note that for fixed x and t, a (x, v) = t defines a smooth surface except
for the origin and a (x, v) < t defines the three-dimensional unbounded set outside of
the surface while a (x, v) > t defines the object inside of the surface. We shall use the
spherical coordinates (r, φ, θ) instead of the usual rectangular coordinates (v1, v2, v3)
for the moment. We denote by ν =

(
νr, νφ, νθ

)
the outward normal in the spherical

coordinates to the surface defined by a (x, r, φ, θ) = t for fixed x. We also denote by
dS (r, φ, θ) the surface infinitesimal increment for the surface a (x, r, φ, θ) = t.

Lemma 5.3. Let Γ (x, v) be the C1-vector-valued function in x, v. Then for
fixed t, we have

divx

∫
a(x,v)≤t

Γ (x, v) dv =

∫
a(x,v)≤t

divx Γ (x, v) dv

−
∫
a(x,r,φ,θ)=t

Γ (x, r, φ, θ) r2 sinφ · ∇xa
νr

ar
dS (r, φ, θ) ,

divx

∫
a(x,v)≥t

Γ (x, v) dv =

∫
a(x,v)≥t

divx Γ (x, v) dv

+

∫
a(x,r,φ,θ)=t

Γ (x, r, φ, θ) r2 sinφ · ∇xa
νr

ar
dS (r, φ, θ) .

Proof. Note, by multiplying (5.6) with v, that v · ∇va = 0 if x /∈ ∂Ω and v = 0
since a = t0 − t = 0, ∇ξ = 0, and ∇ξ · v = 0. By using the spherical coordinates, we
get r∂ra = 0 and so ∂ra = 0. We first consider a C1-scalar function h (r, φ, θ) without
x-variables. We change variables as follows:

(r, φ, θ) �−→ (η1, η2, η3) ,

where for fixed x,

η1 = a (x, r, φ, θ) , η2 = φ, η3 = θ.(5.7)

We find the Jacobian of (η1, η2, η3) with respect to (r, φ, θ):

J

(
η1, η2, η3

r , φ , θ

)
= det

⎡
⎣ ∂a

∂r
∂a
∂φ

∂a
∂θ

0 1 0
0 0 1

⎤
⎦ =

∂a

∂r
.

For fixed η1, we differentiate with respect to x the equation η1 = a (x, r, φ, θ) to get

0 = ∇xη1 = ∇xa + ar∇xr(5.8)

or
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∇xr = −∇xa

ar
.

We now consider, using the change of variables (5.7) back and forth and by changing
the orders of the integration,

∂

∂xi

∫
a(x,r,φ,θ)≤t

h (r, φ, θ) drdφdθ

=
∂

∂xi

∫
η1≤t

h (r (η1, η2, η3) , η2, η3)
1

ar
dη1dη2dη3

=

∫
η1≤t

∂h

∂r

∂r

∂xi

1

ar
dη1dη2dη3 −

∫
η1≤t

h
arxi

+ arrrxi

a2
r

dη1dη2dη3

=

∫ t

−∞

∫ ∞

−∞

∫ ∞

−∞

[
−hraxi

a2
r

− harxi

a2
r

+
haxi

arr
a3
r

]
dη2dη3dη1(5.9)

=

∫
η1≤t

[
− (haxi

)r
a2
r

+
haxi

arr
a3
r

]
dη

=

∫
a(x,r,φ,θ)≤t

[
− (haxi)r

a2
r

+
haxiarr

a3
r

]
ardrdφdθ

=

∫
a(x,r,φ,θ)≤t

[
− (haxi

)r
ar

+
haxi

arr
a2
r

]
drdφdθ

= −
∫
a(x,r,φ,θ)≤t

(
haxi

ar

)
r

drdφdθ

= −
∫
a(x,r,φ,θ)=t

haxi

ar
νrdS (r, φ, θ) ,(5.10)

where we have used (5.8) in (5.9) and the Gauss theorem in (5.10). We now consider
a C1-scalar function h (v1, v2, v3). We then take the xi-derivative (i = 1, 2, 3) of the
integration of h with respect to v over a (x, v) ≤ t for fixed t. By changing variables
from (v1, v2, v3) to (r, φ, θ), we have, by (5.10),

∂

∂xi

∫
a(x,v)≤t

h (v1, v2, v3) dv1dv2dv3(5.11)

=
∂

∂xi

∫
a(s,r,φ,θ)≤t

h (r, φ, θ) r2 sinφdrdφdθ

= −
∫
a(x,r,φ,θ)=t

hr2 sinφaxi

ar
νrdS (r, φ, θ) .

Now we consider the integration in our lemma

divx

∫
a(x,v)≤t

Γ (x, v) dv

=
3∑

i=1

∂

∂xi

∫
a(x,v)≤t

Γi (x, v) dv

=

3∑
i=1

[∫
a(x,v)≤t

∂xi
Γi (x, v) dv −

∫
a(x,r,φ,θ)=t

Γir2 sinφ
axi

ar
νrdS

]
,
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where we have used the product rule of the differentiation and (5.11). This leads to
the conclusion of the first part of the lemma. Similarly, we get the second part, and
the lemma thus follows.

We present the representation formula for the macrocharge density in the following
lemma.

Lemma 5.4 (charge density). Let fn+1 and ϕn be defined in (5.1) and (5.2). Let

B (t, x, v) = (t− a (x, v) , x− a (x, v) v, v) ∈ γ.

Then

ρn+1 (t, x) =

∫
a(x,v)≥t

f0 (x− tv, v) dv +

∫
a(x,v)≤t

g ◦B (t, x, v) dv

(5.12)

− divx

∫
a(x,v)≥t

∫ t

0

(t− τ)
(
∇xϕ

nfn+1
)
(τ, x− (t− τ) v, v) dτdv

− divx

∫
a(x,v)≤t

∫ t

t−a(x,v)

(t− τ)
(
∇xϕ

nfn+1
)
(τ, x− (t− τ) v, v) dτdv.

Proof. We fix x and t and consider the back-time straight-line trajectory from
a generic point (t, x, v). If t ≤ a (x, v), then the back-time trajectory of (5.1) hits
{t = 0} directly. From the transport equation (5.1), we have

fn+1 (t, x, v) = f0 (x− tv, v) +

∫ t

0

d

dτ
fn+1 (τ, x− (t− τ) v, v) dτ(5.13)

= f0 (x− tv, v) +

∫ t

0

[
∂tf

n+1 (τ, x− (t− τ) v, v)

+ v · ∇xf
n+1 (τ, x− (t− τ) v, v)

]
dτ

= f0 (x− tv, v) −
∫ t

0

[
divv

(
∇xϕ

nfn+1
)]

(τ, x− (t− τ) v, v) dτ

= f0 (x− tv, v) −
∫ t

0

divv

[(
∇xϕ

nfn+1
)
(τ, x− (t− τ) v, v)

]
dτ

−
∫ t

0

(t− τ) divx

(
∇xϕ

nfn+1
)
(τ, x− (t− τ) v, v) dτ

= f0 (x− tv, v) − divv

∫ t

0

(
∇xϕ

nfn+1
)
(τ, x− (t− τ) v, v) dτ

− divx

∫ t

0

(t− τ)
(
∇xϕ

nfn+1
)
(τ, x− (t− τ) v, v) dτ.

On the other hand, if t ≥ a (x, v), then the backward trajectory hits the boundary
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∂Ω. Hence we have

(5.14)

fn+1 (t, x, v) = g ◦B (t, x, v) +

∫ t

t−a(x,v)

d

dτ
fn+1 (τ, x− (t− τ) v, v) dτ

= g ◦B (t, x, v) +

∫ t

t−a(x,v)

[
∂tf

n+1 (τ, x− (t− τ) v, v)

+ v · ∇xf
n+1 (τ, x− (t− τ) v, v)

]
dτ

= g ◦B −
∫ t

t−a(x,v)

[
divv

(
∇xϕ

nfn+1
)]

(τ, x− (t− τ) v, v) dτ

= g ◦B −
∫ t

t−a(x,v)

divv

[(
∇xϕ

nfn+1
)
(τ, x− (t− τ) v, v)

]
dτ

−
∫ t

t−a(x,v)

(t− τ) divx

(
∇xϕ

nfn+1
)
(τ, x− (t− τ) v, v) dτ

= g ◦B − divv

∫ t

t−a(x,v)

(
∇xϕ

nfn+1
)
(τ, x− (t− τ) v, v) dτ

− divx

∫ t

t−a(x,v)

(t− τ)
(
∇xϕ

nfn+1
)
(τ, x− (t− τ) v, v) dτ

+
(
∇xϕ

nfn+1
)
(t− a (x, v) , x− a (x, v) v, v) · ∇va

+
(
∇xϕ

nfn+1
)
(t− a (x, v) , x− a (x, v) v, v) · a∇xa

= g ◦B − divv

∫ t

t−a(x,v)

(
∇xϕ

nfn+1
)
(τ, x− (t− τ) v, v) dτ

− divx

∫ t

t−a(x,v)

(t− τ)
(
∇xϕ

nfn+1
)
(τ, x− (t− τ) v, v) dτ,

since we apply Lemma 5.2 to get, for v = 0, x /∈ ∂Ω,

(
∇xϕ

nfn+1
)
(t− a (x, v) , x− a (x, v) v, v) · ∇va

+
(
∇xϕ

nfn+1
)
(t− a (x, v) , x− a (x, v) v, v) · a∇xa

=
(
∇xϕ

nfn+1
)
(t0, x0, v) · [∇va + a∇xa] = 0.

For fixed t and x, we now integrate v over R
3. By dividing v by the region {a (x, v) ≥ t}

and the region {a (x, v) ≤ t}, we get

ρn+1 (t, x) =

∫
a(x,v)≥t

fn+1 (t, x, v) dv +

∫
a(x,v)≤t

fn+1 (t, x, v) dv

= I1 + I2.
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For I1, we use (5.13), Lemma 5.3, and the Gauss theorem to get

∫
a(x,v)≥t

fn+1 (t, x, v) dv

=

∫
a(x,v)≥t

f0 (x− tv, v) dv

+

∫
a(x,v)=t

∫ t

0

(∇xϕ
n · nv) f

n+1 (τ, x− (t− τ) v, v) dτdS (v)

−
∫
a(x,v)≥t

divx

∫ t

0

(t− τ)
(
∇xϕ

nfn+1
)
(τ, x− (t− τ) v, v) dτdv

=

∫
a(x,v)≥t

f0 (x− tv, v) dv

+

∫
a(x,v)=t

∫ t

0

(∇xϕ
n · nv) f

n+1 (τ, x− (t− τ) v, v) dτdS (v)

− divx

∫
a(x,v)≥t

∫ t

0

(t− τ)
(
∇xϕ

nfn+1
)
(τ, x− (t− τ) v, v) dτdv

+

∫
a(x,r,φ,θ)=t

∫ t

0

(t− τ)
(
∇xϕ

nfn+1
)
r2 sinφ · ∇xa

νr

ar
dS (r, φ, θ) ,

where nv is the outward normal to the surface {a (x, v) = t} which contains inside
the region {a (x, v) ≤ t}. For I2, using (5.15), Lemma 5.3, and the Gauss theorem,
we have ∫

a(x,v)≤t

fn+1 (t, x, v) dv

=

∫
a(x,v)≤t

g ◦B (t, x, v) dv

−
∫
a(x,v)=t

∫ t

0

(∇xϕ
n · nv) f

n+1 (τ, x− (t− τ) v, v) dτdS (v)

−
∫
a(x,v)≤t

divx

∫ t

0

(t− τ)
(
∇xϕ

nfn+1
)
(τ, x− (t− τ) v, v) dτdv

=

∫
a(x,v)≤t

g ◦B (t, x, v) dv

−
∫
a(x,v)=t

∫ t

0

(∇xϕ
n · nv) f

n+1 (τ, x− (t− τ) v, v) dτdS (v)

− divx

∫
a(x,v)≤t

∫ t

0

(t− τ)
(
∇xϕ

nfn+1
)
(τ, x− (t− τ) v, v) dτdv

−
∫
a(x,r,φ,θ)=t

∫ t

0

(t− τ)
(
∇xϕ

nfn+1
)
r2 sinφ · ∇xa

νr

ar
dS (r, φ, θ) .

Therefore, by all the cancellations out of I1 and I2, we obtain our lemma.

In the following, we shall give some estimates on the sequences of fn and ϕn,
uniformly in n.
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Lemma 5.5. We have ‖fnt‖Lp ≤ C for 1 ≤ p ≤ ∞ and∥∥∇xϕ
n+1
∥∥
Lp(Ω)

(t)

≤
∥∥∥∥
∫

R3

∫ t

0

1{a(x,v)≥t} (v) (t− τ)
∣∣(∇ϕnfn+1

)
(τ, x− (t− τ) v, v)

∣∣ dτdv∥∥∥∥
Lp(Ω)

+

∥∥∥∥
∫

R3

∫ t

0

1{a≤t} (v)1(t−a,t) (τ) (t− τ)
∣∣(∇ϕnfn+1

)
(τ, x− (t− τ) v, v)

∣∣ dτdv∥∥∥∥
Lp(Ω)

+ C,

where 1 ≤ p < ∞, and C is a constant independent of n, depending only on the data
f0 and g.

Proof. The first estimate on fn easily follows from standard estimates for the
transport equation (5.1). For the second estimate, we employ the elliptic equation
∆ϕn+1 = ρn+1 and the representation formula for ϕn+1 (5.12). We note that since Ω
is bounded and the v-support of f0 is compact, we get

1

|x|2
∗
[∫

f0 (x− tv, v)1{a(x,v)≥t} (v) dv

]
≤ C.(5.15)

Similarly, we have

1

|x|2
∗
[∫

f (B (t, x, v))1{a(x,v)≤t} (v) dv

]
≤ C.(5.16)

By standard elliptic estimates for a bounded domain [15] and by (5.15), (5.16), our
lemma follows.

Now we give the lemma which is a major step for the global bound on the velocity.
Lemma 5.6 (high moments bound). Let fn and ϕn be defined in (5.1), (5.2).

Then for a fixed m > 3, we have

sup
n

∫
Ω×R3

|v|m fn (t, x, v) dxdv < ∞

for all 0 ≤ t ≤ T . In particular, there is a uniform bound (independent of n) for the
support of fn.

Proof. We shall closely follow the method given in [18]. We first define

Mm (fn) (s) = sup
0≤t≤s

∫
Ω×R3

|v|m fn (t, x, v) dxdv.

Then note that

d

dt

∫
Ω×R3

|v|m fn (t, x, v) dxdv = −
∫

∇x · (|v|m vfn) dxdv(5.17)

−
∫

|v|m ∇v ·
(
∇xϕ

n−1fn
)
dxdv.

By the Gauss theorem, the first integral on the RHS of (5.17) becomes

−
∫
∂Ω×R3

|v|m fnv · nxdS (x) dv = −
∫
v·nx≤0

−
∫
v·nx≥0

≤ −
∫
γ+
t

|v|m g (t, x, v) v · nxdSdv

≤ C
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since g has compact support. For the second integral on the RHS of (5.17), we first
use the integration by parts to get

−
∫

∇v ·
(
|v|m ∇xϕ

n−1fn
)
dxdv + m

∫
|v|m fn∇xϕ

n−1 · ∇v (|v|) dxdv

= m

∫
|v|m fn∇xϕ

n−1 · ∇v (|v|) dxdv,

where the first integral vanishes. Now, by using the interpolation method, we get∣∣∣∣−
∫

|v|m ∇v ·
(
∇xϕ

n−1fn
)
dxdv

∣∣∣∣
≤
∣∣∣∣m
∫

|v|m fn∇xϕ
n−1 · ∇v (|v|) dxdv

∣∣∣∣
≤ C

∫
Ω

∣∣∇xϕ
n−1 (t, x)

∣∣(∫
|v|≥R

|v|m−1
fndv +

∫
|v|≤R

|v|m−1
fndv

)
dx

≤ C

∫
Ω

∣∣∇xϕ
n−1 (t, x)

∣∣ (R−1

∫
|v|m fndv + CRm+2

)
dx

≤ C

∫
Ω

∣∣∇xϕ
n−1 (t, x)

∣∣ (∫ |v|m fndv

)m+2
m+3

dx

≤ C
∥∥∇xϕ

n−1 (t)
∥∥
Lm+3(Ω)

Mm (fn)
m+2
m+3 ,

where R =
(∫

|v|m fndv
)1/(m+3)

was used for the optimal inequality, and we used the
Hölder inequality. Thus we get

d

ds
Mm (fn) (s) ≤ C1 + C sup

0≤t≤s

∥∥∇xϕ
n−1 (t)

∥∥
Lm+3(Ω)

Mm (fn) (s)
(m+2)/(m+3)

,

(5.18)

where C1 depends on f0 and g. We shall estimate
∥∥∇xϕ

n−1 (t)
∥∥
Lm+3(Ω)

. From

Lemma 5.4, we have

∥∥∇xϕ
n−1
∥∥
m+3

(t)

(5.19)

≤
∥∥∥∥
∫

R3

∫ t

0

1{a(x,v)≥t} (v) (t− τ)
∣∣(∇ϕn−2fn−1

)
(τ, x− (t− τ) v, v)

∣∣ dτdv∥∥∥∥
m+3

+

∥∥∥∥
∫

R3

∫ t

0

1{a(x,v)≤t} (v)1(t−a,t) (τ) (t− τ)

×
∣∣(∇ϕn−2fn−1

)
(τ, x− (t− τ) v, v)

∣∣ dτdv∥∥∥∥
m+3

+ C.

We shall estimate the two terms in the RHS by the sum of the long-time integral and
the short-time integral: ∥∥∥∥

∫ t

t0

· · ·
∥∥∥∥
m+3

+

∥∥∥∥
∫ t0

0

· · ·
∥∥∥∥
m+3

,(5.20)
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where t0 is some small time to be chosen later. We first do the long-time estimate
which is the first term in (5.20). Choose r

′
= 3, r = 3/2. By the Hölder inequality,∥∥∥∥

∫ t

t0

· · ·
∥∥∥∥
m+3

≤ C

∫ t

t0

1

τ
dτ

[
sup

τ∈(0,T )

‖E (τ)‖3/2 Mm (fn)
1/(m+3)

]
(τ)(5.21)

≤ C log t0 sup
τ∈(0,T )

‖E (τ)‖3/2 Mm (fn)
1/(m+3)

(t)

≤ C log t0Mm (fn)
1/(m+3)

(t) .

For the short-time integral over (0, t0), we use the standard interpolation estimate
for ρn−2,

ρn−2 =

∫
R3

fn−2dv =

∫
|v|≤R

+

∫
|v|≥R

(5.22)

≤ CR3
∥∥fn−2

∥∥
∞ + CR−m

∫
|v|m fn−2dv

≤ C

(∫
|v|m fn−2dv

)3/(m+3)

for any R,

where we have chosen R so as to optimize the last inequality. Since
∣∣∇xϕ

n−2
∣∣ ≤

1
|x|2 ∗ ρn−2 (x), we apply the Hardy–Littlewood–Sobolev inequality to get

sup
τ∈(0,t)

∥∥∇xϕ
n−2
∥∥
r
≤ C sup

τ∈(0,t)

∥∥ρn−2
∥∥

3r
3+r

(5.23)

≤ C sup
τ∈(0,t)

∥∥ρn−2
∥∥

m+3
3

≤ CMα
m

(
fn−2

)
(t) ,

where α = 3/ (m + 3) < 1, and we have used that 3r
3+r < m+3

3 and Ω is bounded. By
the same argument as in (5.22), we have

sup
τ∈(0,t)

∥∥∥∥∥
[∫

R3

1{a(x,v)≥t}f
n−1 (t− τ, x− τv, v) dv

]1/r′∥∥∥∥∥
m+3

(5.24)

= sup
τ∈(0,t)

∥∥∥∥
∫

R3

1{a(x,v)≥t}f
n−1 (t− τ, x− τv, v) dv

∥∥∥∥
1

r
′

m+3

r
′

≤ CM
1/(m+3)
k

(
fn−1

)
(t)

≤ C + C sup
τ∈(0,t)

∥∥∇xϕ
n−1
∥∥(k+3)/(m+3)

k+3

≤ C + C sup
τ∈(0,t)

∥∥∇xϕ
n−1
∥∥(k+3)/(m+3)

q

≤ C + C sup
τ∈(0,t)

∥∥ρn−1 (τ)
∥∥(k+3)/(m+3)

(m+3)/3

≤ C + CMβ
m

(
fn−1

)
(t) ,

where m+3
r′

= k+3
3 , β = 3(k+3)

(m+3)2 , we have chosen q, k such that 1
q = 3

m+3 − 1
3 , m+ 3 �

k + 3 ≤ q, and we have used Mk (t) ≤ C
{
Mk (0) + supτ∈(0,t)

∥∥∇xϕ
n−1 (τ)

∥∥k+3

k+3

}
.
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Therefore, by (5.23), (5.24),

∥∥∥∥
∫ t0

0

· · ·
∥∥∥∥
m+3

(5.25)

≤ Ct
2−3/r
0 sup

τ∈(0,t)

∥∥∇xϕ
n−2
∥∥
r

× sup
τ∈(0,t)

∥∥∥∥∥
[∫

R3

1{a(x,v)≥t}f
n−1 (t− τ, x− τv, v) dv

]1/r′∥∥∥∥∥
m+3

+ Ct
2−3/r
0 sup

τ∈(0,t)

∥∥∇xϕ
n−2
∥∥
r

× sup
τ∈(0,t)

∥∥∥∥∥
[∫

R3

1{a(x,v)≤t}1(t−a(x,v),t)f
n−1 (t− τ, x− τv, v) dv

]1/r′∥∥∥∥∥
m+3

≤ Ct
2−3/r
0 Mα

m

(
fn−1

)
(t)
[
C + CMβ

m

(
fn−1

)
(t)
]

≤ Ct
2−3/r
0 Mα+β

m

(
fn−1

)
(t) .

Hence we have from (5.19), (5.21), and (5.25)

sup
0≤t≤s

∥∥∇xϕ
n−1
∥∥
m+3

(t) ≤ C + C log t0Mm (fn)
1/(m+3)

(t) + Ct
2−3/r
0 Mα+β

m

(
fn−1

)
(t) .

Setting M̄n,m = max1≤i≤n Mm

(
f i
)
, we get, by (5.18),

d

dt
M̄n,m (t) ≤ C + C log t0M̄n,m (t) + Ct

2−3/r
0 M̄α+β+(m+2)/(m+3)

n,m (t) .

Choosing t
2−3/r
0 = M̄

1−α−β−(m+2)/(m+3)
n,m , we deduce our lemma. By choosing m > 6,

we have ‖∇xϕ
n‖L∞ uniformly bounded and get a uniform upper bound for the

v-support of fn.

Now we shall prove the main theorem of this section, Theorem 5.1.

Proof of Theorem 5.1. We first show that

∥∥fn+1
∥∥
W 1,p < ∞,

uniformly in n, for fixed 3 < p ≤ ∞. It suffices to show it in W 1,∞. In doing so, we
shall prove that ‖∇ϕn‖W 1,∞ does not grow faster than log ‖fn‖W 1,∞ in time. Since
∆ϕn = ρn, ϕn|∂Ω = 0, we have

ϕn (t, x) =

∫
Ω

ρn (t, y)G (x, y) dy,

where G (x, y) is Green’s function for the Laplacian, associated with the domain Ω.
Then we find in [6] or [17] that

|∇xG (x, y)| ≤ C

|x− y|2
,
∣∣∇2

xG (x, y)
∣∣ ≤ C

|x− y|3
.
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Assuming that the v-support of fn is uniformly bounded in n, we have

∂xixj
ϕn (t, x)

= ∂xixj

∫
Ω

G (x, y) ρn (t, y) dy

= ∂xi

∫
Ω

∂xj
G (x, y) ρn (t, y) dy

= ∂xi

∫
Ω

∂xj
G (x, y) [ρn (t, y) − ρn (t, x)] dy + ∂xi

∫
Ω

∂xj
G (x, y) ρn (t, x) dy

=

∫
Ω

∂xixj
G (x, y) [ρn (t, y) − ρn (t, x)] dy −

∫
Ω

∂xjG (x, y) ∂xi
ρn (t, x) dy

+ ∂xiρ
n (t, x)

∫
Ω

∂xjG (x, y) dy + ρn (t, x) ∂xixj

∫
Ω

G (x, y) dy

= ρn (t, x) ∂xixj

∫
Ω

G (x, y) dy +

∫
|x−y|≥a

∂xixjG (x, y) [ρn (t, y) − ρn (t, x)] dy

+

∫
|x−y|≤a

∂xixjG (x, y) [ρn (t, y) − ρn (t, x)] dy.

Hence we get

∣∣∂xixjϕ
n (t, x)

∣∣(5.26)

≤ C + C

∫
|x−y|≥a

1

|x− y|3
dy + C

∫
|x−y|≤a

1

|x− y|3
‖ρn‖W 1,∞(Ω) |x− y| dy

≤ C + C |log a| + Ca ‖fn‖W 1,∞(Ω)

≤ C
[
1 + log

(
1 + ‖fn‖W 1,∞(Ω)

)]
.

Here we have chosen a with a = ‖fn‖−1
W 1,∞(Ω). For ∂t∇ϕn, we employ from (5.1)

ρnt + divx j
n = 0,

where jn (t, x) =
∫
vfn (t, x, v) dv, to get

∂txi
ϕn (t, x)

= ∂xi

∫
Ω

divy j
n (t, y)G (x, y) dy

=

∫
|x−y|≤a

divy j
n (t, y) ∂xiG (x, y) dy +

∫
|x−y|≥a

divy j
n (t, y) ∂xiG (x, y) dy

=

∫
|x−y|≤a

divy j
n (t, y) ∂xiG (x, y) dy +

∫
|x−y|≥a

divy (jn (t, y) ∂xiG (x, y)) dy

−
∫
|x−y|≥a

jn (t, y)∇y∂xi
G (x, y) dy.



REGULARITY FOR THE VLASOV–POISSON SYSTEM 159

Therefore, by the same choice of a, we have

|∂txiϕ
n (t, x)|

≤ Ca ‖fn‖W 1,∞(Ω) +

∣∣∣∣∣
∫
|x−y|=a

x− y

a
· jn (t, y) ∂xi

G (x, y) dSa (y)

∣∣∣∣∣
+

∫
|x−y|≥a

|jn (t, y)|
|x− y|3

dy

≤ Ca ‖fn‖W 1,∞(Ω) + C + C |log a|

≤ C
[
1 + log

(
1 + ‖fn‖W 1,∞(Ω)

)]
.

Now we start with the first derivatives of fn. By taking v-derivatives of (5.1), we get

∂t (∂vf
n) + v · ∇x (∂vf

n) + ∇xϕ
n−1 · ∇v (∂vf

n) = −∂xf
n.

Along the trajectory given by d
dsX

n−1 = V n−1, d
dsV

n−1 = ∇xϕ
n−1, we have

∂s
[
∂vf

n
(
s,Xn−1 (s) , V n−1 (s)

)]
= −∂xf

n,

and thus

|∂vfn (t, x, v)| ≤ C +

∫ t

0

|∂xfn (s)| ds.

For ∂xf
n, we have

∂s
[
∂xf

n
(
s,Xn−1 (s) , V n−1 (s)

)]
= −

(
∇x∂xϕ

n−1
)
· ∇vf

n
(
s,Xn−1 (s) , V n−1 (s)

)
,

which implies, upon integrating over time,

∂xf
n (t, x, v) =

{
∂xf0 (x0, v0) −

∫ t

0

(
∂2
xϕ

n−1
)
· (∇vf

n) (s) ds,

lims→t0(t,x,v) ∂xf
n (s) −

∫ t

t0

(
∂2
xϕ

n−1
)
· (∇vf

n) (s) ds,

depending on the back trajectory from (t, x, v) to either (0, x0, v0) or (t0, x0, v0)
with x0 ∈ ∂Ω. To compute lims→t0(t,x,v) ∂xf

n (s), we look at ∇xf
n (t0, x0, v0) =

∇T g (t0, x0, v0)+lims→t0 ∇⊥fn
(
s,Xn−1 (s) , V n−1 (s)

)
. From the transport equation

fn
t + vT · ∇T fn + (v · nx)∇⊥fn + ∇xϕ

n−1 · ∇vf
n = 0,

we get, by the assumption |∇g (t0, x0, v0)| ≤ C |v0 · nx0 |,∣∣∣∣ lim
s→t0(t,x,v)

∂xf
n (s)

∣∣∣∣ = ∣∣∣− (v · nx)
−1 [

gt + vT0 · ∇T g + ∇xϕ
n−1 · ∇vg

]
|(t0,x0,v0)

∣∣∣
≤ C,

since the support of g is bounded and
∥∥∇xϕ

n−1
∥∥
∞ is uniformly bounded. Therefore,

we have, by (5.26),

∥∥∂(x,v)f
n (t)

∥∥
∞ ≤ C +

∫ t

0

(
1 +
∥∥∇xϕ

n−1 (s)
∥∥
W 1,∞

) ∥∥∂(x,v)f
n (s)

∥∥
∞ ds

≤ C +

∫ t

0

log
(
1 +
∥∥fn−1 (s)

∥∥
W 1,∞

) ∥∥∂(x,v)f
n (s)

∥∥
∞ ds,
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where C depends on ‖f0‖W 1,∞ , ‖g‖W 1,∞ , the support of f0 and g,
∥∥∇ϕn−1

∥∥
∞, and

the constant C which appears in the vanishing condition on g. We thus get a uniform
bound on ‖fn (t) ‖W 1,∞ by the Gronwall inequality. For the t-derivative, we employ

fn
t + v · ∇xf

n + ∇xϕ
n−1 · ∇vf

n = 0

to get a uniform bound on ‖∂tfn‖∞. It follows that ‖fn‖W 1,p is uniformly bounded
in n. For higher derivatives, for general i ≤ k, we can take the derivatives repeatedly
in (5.1). The only term involving

∥∥∇xϕ
n−1
∥∥
W 1,p is that ∂α∇ϕn−1∂vf

n, where |α| = i.
Since ‖∂vfn‖∞ ≤ C, we then have∥∥∂α∇ϕn−1∂vf

n
∥∥
p
≤
∥∥∂α∇ϕn−1

∥∥
p
‖∂vfn‖∞ ≤

∥∥∂α∇ϕn−1
∥∥
p
.

We know, by elliptic theory, that

‖∇ϕn‖W i,p ≤ C ‖fn‖W i−1,p .

Thus,
∥∥fn+1

∥∥
Wk,p is unformly bounded in n, and the uniform boundedness of

‖ϕn‖Wk+2,p is also established from elliptic theory again. Once we have shown that∥∥fn+1
∥∥
Wk,p and ‖ϕn‖Wk+2,p are uniformly bounded in n, we obtain their weak limits

f and ϕ, respectively, in W k,p and W k+2,p by a standard compactness argument.
Last, since ∇ϕn converges strongly to ∇ϕ by compact embedding (p > 3), we can
pass to the limits in (5.1) and (5.2). The uniqueness of solution for (5.1) and (5.2) can
be attained by considering the difference between two solutions with the same initial
and boundary conditions. It reduces to looking at the solution for the same (Vlasov–
Poisson) system (5.1) and (5.2) with vanishing initial and boundary data. Integrating
(5.1) over all x, v leads to the decrease of the L1 norm in time. Together with the
positivity of solution, we obtain the uniqueness. Hence, our theorem follows.

6. Regularity for the Vlasov–Poisson system with the purely specular
boundary condition. In this section, we assume the purely specular boundary con-
dition for the Vlasov equation with the Dirichlet boundary condition on the electric
potential. The Vlasov–Poisson system takes the form

ft + v · ∇xf + ∇ϕ · ∇vf = 0, f |t=0 = f0 (x, v) ,(6.1)

f (t, x, v) = f (t, x, v∗) , x ∈ ∂Ω,

∆ϕ = ρ = 4π

∫
fdv,

ϕ|∂Ω = 0,

where f0 is a given initial datum. We now restrict ourselves to the case when Ω = B
and f0 is spherically symmetric, where B is the unit ball in R

3. Then we look for a
spherically symmetric solution of (6.1) with datum f0. Our main result in this section
is the following.

Theorem 6.1. Assume that there is an ω0 > 0 such that f0 (x, v) is constant for(
1 − |x|2

)2
+ (2v · x)2 ≤ ω0.

(a) Assume f0 ∈ C1. Let f0 have compact support and satisfy the compatibility
conditions (4.3). Let f0 be spherically symmetric. Then there exists a unique spheri-
cally symmetric solution (f, ϕ) of (6.1) such that f ∈ W 1,∞ with compact support.

(b) Assume f0 ∈ C1,η for some η > 0. Let f0 have compact support and satisfy
the compatibility conditions (4.3) and (4.4). Let f0 be spherically symmetric. Then
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there exists a unique spherically symmetric solution (f, ϕ) of (6.1) such that f ∈ C1,µ,
ϕ ∈ C3,µ for some 0 < µ < η, with compact support.

We first give a preliminary lemma on some conserved quantities in a bounded
domain without the spherically symmetric assumption.

Lemma 6.2. Let f be a classical solution of (6.1) on some time interval (0, T ]
with a nonnegative compactly supported datum f0 ∈ C1

(
Ω × R

3
)
. Then we have the

following:

(a) The total mass is conserved, i.e.,

∫
Ω

∫
R3

fdvdx ≡ constant = M0.

(b) The total energy is conserved, i.e.,

∫
Ω

[∫
R3

|v|2 fdv + |E|2
]
dx ≡ constant = ε0.

(c) ‖ρ (t)‖L5/3 ≤ C for 0 ≤ t ≤ T , C = C (‖f0‖∞, ε0).

Proof. For (a), notice that from the specular boundary condition f |γ is an even
function of the normal component x ·v of v. Hence by integrating the Vlasov equation
over x and v, we get

0 = −
∫
∂B

∫
R3

x · vf (t, x, v) dvdSx =

∫
B

ρ (t, x) dx−
∫

ρ0 (x) dx.

Therefore, the total mass is conserved. For (b), by multiplying the Vlasov equa-
tion (6.1) with |v|2 and then integrating over x and v, we get

0 = ∂t

∫
Ω

∫
R3

|v|2 fdvdx +

∫
R3

∫
Ω

∇x ·
(
|v|2 vf

)
dxdv

− 2

∫∫
vf · Edvdx

= ∂t

∫
Ω

∫
R3

|v|2 fdvdx +

∫
R3

∫
∂Ω

v · nx |v|2 fdSxdv

− 2

∫∫
vf · Edvdx

= ∂t

∫
Ω

∫
R3

|v|2 fdvdx− 2

∫
Ω

j · Edx.

Here we have used the specular reflection condition at the boundary. Now we integrate
(6.1) over x and v to get

ρt + ∇x · j = 0,
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where j (t, x) =
∫
vfdv. Next we observe that

1

2

d

dt

∫
Ω

|E|2 dx =

∫
Ω

E · Etdx =

∫
Ω

∇ϕ · ∇ϕtdx

=

∫
∂Ω

ϕnx · ∇ϕtdSx −
∫

Ω

ϕ∆ϕtdx

= −
∫

Ω

ϕρtdx

=

∫
Ω

ϕ∇x · jdx

=

∫
∂Ω

ϕ

[∫
nx · vfdv

]
dSx −

∫
Ω

∇ϕ · jdx

= −
∫

Ω

j · Edx,

since ϕ|∂Ω = 0. Hence we obtain part (b). Since |E (t, x)| ≤ Cr−2 ∗ ρ (t, x), we have,
by the Hardy–Littlewood–Sobolev lemma,

‖E (t)‖L2 ≤ C
∥∥r−2 ∗ ρ (t, ·)

∥∥
L2 ≤ C ‖ρ (t)‖L6/5

≤ C ‖ρ‖7/12
L1 ‖ρ (t)‖5/12

L5/3 ≤ C ‖ρ (t)‖5/12

L5/3 .

By a standard interpolation method, we get∫
Ω

ρ5/3dx ≤ C

∫
|v|2 fdv ≤ C.

Now we construct approximate solutions for (6.1) through an iterating sequence.
Let f0 be a suitable smooth extension of f0 to Π, which satisfies the compatibility
conditions (4.3), (4.4). Consider the following iterating sequences:

fn+1
t + v · ∇xf

n+1 + ∇ϕn · ∇vf
n+1 = 0, fn+1|t=0 = f0,(6.2)

fn+1 (t, x, v) = fn+1 (t, x, v∗) , x ∈ ∂B,

∆ϕn = ρn = 4π

∫
fndv, ϕ|∂B = 0.

In contrast to the absorbing boundary case, we shall adopt the idea in [14] in
order to get a global bound for the velocity in the spherically symmetric case. The
key point is to employ the invariance of the angular momentum in order to control
the particles with small tangential angles near the boundary.

We assume that f0 is spherically symmetric; i.e., f0 (Λx,Λv) = f0 (x, v) for every
proper rotation Λ on R

3. It is known that the solution f (t, x, v) satisfies the same
property in x and v, and therefore depends only on r ≡ |x|, u ≡ |v|, α, and t, where
α is the angle between x and v. The density ρ depends then only on r and t and has
the following representation:

ρ (t, r) = 2π

∫ ∞

0

∫ π

0

f (t, r, u, α)u2 sinαdαdu.

Thus ϕ is also radial and has the following relation with ρ:

ϕ (t, r) = −1

r

∫ r

0

λ2ρ (t, λ) dλ−
∫ 1

r

λρ (t, λ) dλ + M0/4π,

lim
r→0

r2ϕr (t, r) = 0.
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To see this relation, we use the harmonic operator ∆x in the spherical coordinates,
∂rr + 2

r∂r. Hence the corresponding Poisson equation in these spherical coordinates
is

ϕrr +
2

r
ϕr = ρ.(6.3)

By multiplying (6.3) with r and r2, respectively, we get

(rϕr + ϕ)r = rρ,(6.4) (
r2ϕr

)
r

= r2ρ.(6.5)

We integrate (6.4) from r to 1 and (6.5) from 0 to r to get

ϕr (t, 1) − rϕr − ϕ =

∫ 1

r

λρ (t, λ) dλ,(6.6)

rϕr =
1

r

∫ r

0

λ2ρ (t, λ) dλ,(6.7)

where we used the Dirichlet boundary condition. Plugging (6.7) into (6.6) yields

ϕ (t, r) = −1

r

∫ r

0

λ2ρ (t, λ) dλ−
∫ 1

r

λρ (t, λ) dλ + ϕr (t, 1) ,

E (t, x) = ∇xϕ (t, r) =
x

r3

∫ r

0

λ2ρ (t, λ) dλ = r−2M (t, r)
x

r
,

where M (t, r) =
∫ r

0
λ2ρ (t, λ) dλ. Note that |E| = r−2M (t, r) and M (t, 1) = M0/4π

for all t. Note also that for x ∈ ∂B, nx · E (t, x) = x · E (t, x) = M (t, 1) = M0/4π ≡
constant. Hence, ϕr (t, 1) = x

r · ∇xϕ (t, x) |r=1 = M (t, 1) = M0/4π. Moreover, the
normal component of the electric field at the boundary is unchanged over time. This
satisfies the condition for Corollaries 2.3 and 2.8.

Spherical symmetry also leads to a simplification of the trajectory equations:

dR

dτ
= U cosA,(6.8)

dU

dτ
=

cosA

R2
M (τ,R) ,

dA

dτ
= −

(
M (τ,R)

R2U
+

U

R

)
sinA,

where R (t; t, r, u, α) = r, U (t; t, r, u, α) = u, A (t; t, r, u, α) = α. Notice from (6.8)
that we have the invariance of angular momentum, i.e.,

RU sinA = ru sinα for all τ.(6.9)

This is a crucial fact which will be used to treat such trajectories with small tangential
angles near the boundary and lead to the velocity bounds. We now define, for t ≥ 0,

P (t) = sup
{
U (s; 0, r, u, α)

∣∣0 ≤ s ≤ t, (r, u, α) ∈ {support of f0}
}

and note that P is nondecreasing.
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Lemma 6.3. There exists a constant C1 such that for r ≥ 0 and 0 ≤ t ≤ T ,

|E (t, x)| =
M (t, r)

r2
≤ min

(
M0r

−2, C1P
4/3 (t)

)
,

where C1 depends only on ‖f0‖∞ and ‖ρ (t)‖L5/3 and M0 is the total mass.

Proof. Clearly |E (t, x)| ≤ M0r
−2. We employ the Poisson equation ∆ϕ = ρ with

the Dirichlet boundary condition for ϕ and E = ∇xϕ. Let 0 < R0 < 2, and note that

|E (t, x)| ≤
∫

ρ (t, y)

|x− y|2
dy

=

∫
|x−y|<R0

ρ (t, y)

|x− y|2
dy +

∫
|x−y|>R0

ρ (t, y)

|x− y|2
dy

≤ ‖ρ (t)‖∞
∫
|x−y|<R0

|x− y|−2
dy

+ ‖ρ (t)‖L5/3

[∫
|x−y|>R0

(
|x− y|−2

)5/2

dy

]2/5

= ‖ρ (t)‖∞ 4πR0 + ‖ρ (t)‖L5/3

[
2π
(
R−2

0 − 2−2
)]2/5

≤ ‖ρ (t)‖∞ 4πR0 + ‖ρ (t)‖L5/3 (2π)
2/5

R
−4/5
0 ,

where we have used that |∇G (x, y)| ≤ C/ |x− y|2 for Green’s function G (x, y) for

the unit ball. Now we choose R0 > 0 such that R0 ‖ρ (t)‖∞ = ‖ρ (t)‖L5/3 R
−4/5
0 or

R0 = (‖ρ (t)‖L5/3 / ‖ρ (t)‖∞)5/9. Here we may assume that R0 < 2 because otherwise
we would have ‖ρ (t)‖∞ ≤ C, and so ‖E (t, x)‖∞ ≤ 8π ‖ρ (t)‖∞ ≤ C. Then we have

|E (t, x)| ≤ C ‖ρ (t)‖5/9

L5/3 ‖ρ (t)‖4/9
∞

≤ C ‖ρ (t)‖5/9

L5/3 ‖f0‖4/9
∞ P 4/3 (t)

≤ C1P
4/3 (t) .

This completes the proof of the lemma.

Now consider a trajectory through some point (r0, u0, α0) with a positive angular
momentum r0u0 sinα0 > 0. Then L = R (s)U (s) sinA (s) is a positive invariant along
the trajectory. We define

K (t, r) = −
∫ 1

r

min
(
M0λ

−2, C1P
4/3 (t)

)
dλ

for 0 ≤ r ≤ 1 and t ≥ 0. Note that K is continuously differentiable in r and increasing

in r. We also let R0 = M
1/2
0

(
C1P

4/3 (t)
)−1/2

. If 0 ≤ λ ≤ R0, then C1P
4/3 (t) ≤

M0λ
−2, and if R0 ≤ λ ≤ 1, then M0λ

−2 ≤ C1P
4/3 (t). Here again we may assume

without loss of generality that R0 < 1, since otherwise M
1/2
0

(
C1P

4/3 (t)
)−1/2 ≥ 1
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would imply the bound for P (t). We compute

K (t, 0) = −
∫ 1

0

min
(
M0λ

−2, C1P
4/3 (t)

)
dλ

= −
∫ R0

0

C1P
4/3 (t) dλ−

∫ 1

R0

M0λ
−2dλ

= −C1P
4/3 (t)R0 + M0 −M

1/2
0

(
C1P

4/3 (t)
)1/2

= −M
1/2
0

(
C1P

4/3 (t)
)1/2

+ M0 −M
1/2
0

(
C1P

4/3 (t)
)1/2

≥ −2M
1/2
0

(
C1P

4/3 (t)
)1/2

.

Therefore

|K (t, r1) −K (t, r2)| ≤ |K (t, 0)| ≤ 2M
1/2
0

(
C1P

4/3 (t)
)1/2

= C2P
4/6 (t) , C2 = 2M

1/2
0 C

1/2
1 .

Lemma 6.4. Assume that either Ṙ ≥ 0 on [t1, t2] or Ṙ ≤ 0 on [t1, t2]. Then∣∣∣∣12U2 (t2) −
1

2
U2 (t1)

∣∣∣∣ ≤ |K (R (t2) , t2) −K (R (t1) , t2)| .

Proof. Note that

|K (R (t2) , t2) −K (R (t1) , t2)| =

∣∣∣∣
∫ t2

t1

∂K

∂r
(R (s) , t2) Ṙ (s) ds

∣∣∣∣
=

∫ t2

t1

∣∣∣∣∂K∂r (R (s) , t2) Ṙ (s)

∣∣∣∣ ds,
since Ṙ is of one sign on [t1, t2] and ∂K/∂r ≥ 0. We also note that for t2 ≥ s,

∂K

∂r
(R (s) , t2) = min

(
M0λ

−2, C1P
4/3 (t2)

)
≥ min

(
M0λ

−2, C1P
4/3 (s)

)
=

∂K

∂r
(R (s) , s) .

Since |E (t, x)| = r−2M (t, r) ≤ ∂K/∂r (t, r) and by the trajectory equations (6.8), we
have ∣∣∣∣∂K∂r (R (s) , t2) Ṙ (s)

∣∣∣∣ ≥
∣∣∣∣∂K∂r (R (s) , s) Ṙ (s)

∣∣∣∣
≥
∣∣∣∣M (R (s) , s)

R2 (s)
U (s) cosA (s)

∣∣∣∣ = ∣∣∣U (s) U̇ (s)
∣∣∣

=

∣∣∣∣ dds 1

2
U2 (s)

∣∣∣∣ .
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Therefore

|K (R (t2) , t2) −K (R (t1) , t2)| ≥
∫ t2

t1

∣∣∣∣ dds 1

2
U2 (s)

∣∣∣∣ ds
≥
∣∣∣∣
∫ t2

t1

d

ds

1

2
U2 (s) ds

∣∣∣∣
=

∣∣∣∣12U2 (t2) −
1

2
U2 (t1)

∣∣∣∣ .
Thus the proof of the lemma is complete.

Lemma 6.5. On each interval where the trajectory is smooth, Ṙ can be zero at
most one value of s. If Ṙ (t1) = 0, then R has an absolute minimum at t1 on the
interval.

Proof. Recall that R (s)U (s) sinA (s) = r0u0 sinα0 = 0 by hypothesis. So
R (s) = 0, U (s) = 0, and sinA (s) = 0 for all s. From (6.8),

Ṙ (s) = U (s) cosA (s) ;

thus Ṙ = 0 only if A (s) = π/2. However, also from (6.8),

Ȧ (s) = −
(
M (R (s) , s)

R2 (s)U (s)
+

U (s)

R (s)

)
sinA (s) < 0

for all s. A (s) is thus strictly decreasing for s on the interval and hence can attain
the value of π/2 at most once. So Ṙ can be zero at most once as long as the trajectory
is smooth on the interval. Now suppose that Ṙ (t1) = 0; then A (s) > π/2 for s < t1,
A (t1) = π/2, and A (s) < π/2 for s > t1. From (6.8), Ṙ < 0 for s < t1, Ṙ (t1) = 0,
and Ṙ > 0 for s > t1. Therefore R has an absolute minimum at t1 on the smooth
interval.

Now we consider the trajectory from a generic point (t, x, v), and we compute the
lower bound on the time spent travelling from one boundary point to another along
the trajectory.

Lemma 6.6. Let
(
t0, x0, v0

)
and

(
t1, x1, v1

)
be two points on the trajectory, where

x0, x1 ∈ ∂B, t0 < t1. Suppose that the trajectory stays inside the unit ball B on the
interval

(
t0, t1

)
. Then

t1 − t0 ≥ min

(
−

∣∣v0
∣∣ cosα0

3 sup0≤s≤t ‖E (s)‖∞
,−cosα0

3 |v0| ,
1[

sup0≤s≤t ‖E (s)‖∞
]1/2

)
,

where α0 is the angle between x0 and v0.
Proof. Since

x1 = x0 +

∫ t1

t0
V (τ) dτ, V (τ) = v0 +

∫ τ

t0
E (s) ds,

we have

1 =
∣∣x1
∣∣2 =

(
x0 +

∫ t1

t0
V (τ) dτ

)
·
(
x0 +

∫ t1

t0
V (τ) dτ

)

= 1 + 2x0 ·
∫ t1

t0

[
v0 +

∫ τ

t0
E (s) ds

]
dτ +

∣∣∣∣∣
∫ t1

t0
V (τ) dτ

∣∣∣∣∣
2

.
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So, if t1 − t0 ≤ 1
[sup0≤s≤t ‖E(s)‖∞]1/2 , then

0 ≤ 2x0 · v0
(
t1 − t0

)
+ 2 sup

0≤s≤t
‖E (s)‖∞

(
t1 − t0

)2
+ 2
∣∣v0
∣∣2 (t1 − t0

)2
+ 2

(
sup

0≤s≤t
‖E (s)‖∞

)2 (
t1 − t0

)4
,

0 ≤ x0 · v0 + sup
0≤s≤t

‖E (s)‖∞
(
t1 − t0

)
+
∣∣v0
∣∣2 (t1 − t0

)
+ sup

0≤s≤t
‖E (s)‖∞

(
t1 − t0

)
.

Thus we get

t1 − t0 ≥ −x0 · v0

|v0|2 + 2 sup0≤s≤t ‖E (s)‖∞
.

Note that −x0 · v0 > 0. If sup0≤s≤t ‖E (s)‖∞ ≤
∣∣v0
∣∣2,

t1 − t0 ≥ −
∣∣v0
∣∣ cosα0

3 sup0≤s≤t ‖E (s)‖∞
,

and if sup0≤s≤t ‖E (s)‖∞ ≥
∣∣v0
∣∣2,
t1 − t0 ≥ −cosα0

3 |v0| .

We thus obtain the lemma.
In the presence of the boundary, the central obstacle comes from the particles near

the boundary with so many bounces or with small tangential angles, in addition to
the difficulty of controlling the particles with high velocity. However, the invariance
of the angular momentum enables us to overcome this main barrier. The angular
momentum of the particles near the boundary with small tangential angle amounts
approximately to the full velocity. This observation suggests that the initial control
on the invariant angular momentum would reduce to the concern only on the high
velocities and thus lead to resolving our difficulty.

Now fix M1 > 0. Suppose that f0 (x, v) ≡ 0 when the angular momentum

� = ru sinα = |x| |v| sinα ≥ M1.

Note that if (t, x, v) connects with an initial point in the support of f0, x ∈ ∂B, and
|α− π/2| ≤ π/6, then

1

2
|v| ≤ |v| sinα = � ≤ M1,

and therefore

|v| ≤ 2M1.(6.10)

Let
(
t0, x0, v0

)
be the first point at the boundary on the back-time cycle from (t, x, v)

such that |v0| ≤ 2M1, and, if it does not happen through the whole cycle, then let
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t0 = 0. Let the back-time cycle from the time t to the time t0 be (t, x, v) = (tn, xn, vn),(
tn−1, xn−1, vn−1

)
, . . . ,

(
t0, x0, v0

)
. We compute ∆ti = ti+1 − ti for 0 ≤ i ≤ n − 2.

By the definition of the time t0, we have, for all i,
∣∣αi − π/2

∣∣ > π/6 and
∣∣vi∣∣ ≥ 2M1

from (6.10). We then apply Lemma 6.6 to compute the time spent for each bounce,
and we have

−
∣∣vi∣∣ cosαi

3 sup0≤s≤t ‖E (s)‖∞
≥

2M1

√
3

2

3C1P 4/3 (t)
=

M1√
3C1

P−4/3 (t) ,(6.11)

−cosαi

3 |vi| ≥
√

3/2

3P (t)
=

1

2
√

3
P−1 (t) ,

1[
sup0≤s≤t ‖E (s)‖∞

]1/2 ≥ C
−1/2
1 P−4/6 (t) .

Since we are concerned only with large P (t), we may assume that the minimum
among (6.11) is M1√

3C1
P−4/3 (t), and thus ∆ti ≥ M1√

3C1
P−4/3 (t). Therefore the number

of bounces on the cycle through (t, x, v) until the time t0 is at most

√
3TC1

M1
P 4/3 (t) + 2.(6.12)

Now we assert the control on the increase in velocity.

Lemma 6.7. Let f be a classical solution of (6.1) on [0, T ) with a smooth, non-
negative, spherically symmetric data f0 which has compact support and vanishes for
(r, u, α) /∈ (0, 1] × (0,∞) × (0, π), ru sinα ≥ M1, where M1 is a fixed constant such

that M1 > 8
√

3M
1/2
0 C

3/2
1 T , M0 is the total mass, and C1 = C ‖ρ (t)‖5/9

L5/3 ‖f0‖4/9
∞ .

Then P (t) is uniformly bounded on [0, T ).

Proof. Let t ∈ [0, T ). Consider the back-time cycle from a generic point (t, x, v)
with 0 < ru sinα ≤ M1. Suppose 0 ≤ t1 ≤ t2 ≤ t and the trajectory remains smooth
on [t1, t2], i.e., [t1, t2] is between the two jump times, and suppose that Ṙ ≥ 0 on
[t1, t2] or Ṙ ≤ 0 on [t1, t2]. Then, by Lemma 6.4,

1

2
U2 (t2) ≤

1

2
U2 (t1) + |K (R (t2) , t2) −K (R (t1) , t2)|(6.13)

≤ 1

2
U2 (t1) + C2P

4/6 (t2)

≤ 1

2
U2 (t1) + C2P

4/6 (t) ,

where C2 = 2M
1/2
0 C

1/2
1 . Now we consider the back-time cycle from (t, x, v) until the

point
(
t0, x0, v0

)
with

∣∣v0
∣∣ ≤ 2M1. Suppose that Ṙ vanishes somewhere on

[
ti, ti+1

]
.

By Lemma 6.5, there is only one such point where Ṙ vanishes; call it t̂i ∈
[
ti, ti+1

]
.

Then Ṙ cannot change sign on
[
ti, t̂i

]
or on

[
t̂i, ti+1

]
. Hence applying (6.13) twice

yields

1

2
U2
(
ti+1
)
≤ 1

2
U2
(
t̂i
)

+ C2P
4/6 (t)

≤ 1

2
U2
(
ti
)

+ 2C2P
4/6 (t) .



REGULARITY FOR THE VLASOV–POISSON SYSTEM 169

Thus by (6.12), we have through the back-time cycle until t0,

1

2
U2 (t) ≤ 1

2
U2
(
t0
)

+ 2NC2P
4/6 (t)

≤ 1

2
U2
(
t0
)

+ 2C2

(√
3TC1

M1
P 4/3 (t) + 2

)
P 4/6 (t)

≤ 1

2
(2M1)

2
+

2
√

3C1C2T

M1
P 2 (t) + 4C2P

4/6 (t) ,

where N is the number of bounces through the cycle. Applying this argument to all
possible (t, x, v), we deduce

P 2 (t) ≤ (2M1)
2

+ 8C2P
4/6 (t) +

4
√

3C1C2T

M1
P 2 (t) .

Since 4
√

3C1C2T = 8
√

3M
1/2
0 C

3/2
1 T < M1, we have

P 2 (t) ≤ (2M1)
2

+ 8C2P
4/6 (t) + C3P

2 (t) ,

where C3 = 4
√

3C1C2T
M1

< 1. This implies that P (t) is bounded by a constant depend-
ing on C1, C2, T , and M1 or a constant depending only on the total mass M0, the
total energy ε0, T , ‖f0‖∞, and M1. Thus this completes the proof of the lemma.

We consider our iterated scheme (6.2). Lemma 6.7 yields the uniform and global
bound on the support of fn.

Now we are ready to establish our main theorem in this section, Theorem 6.1.

Proof of Theorem 6.1. Uniqueness can be proven by using a standard Gronwall-
type argument, since now the solutions are regular. We consider only the existence.
By Lemma 6.7, ρn is uniformly bounded in L∞. Therefore, ϕn is uniformly bounded
in W 2,p for 1 ≤ p < ∞. Hence ϕn is uniformly bounded in C1,η. We claim that

|∇ϕn (t, x) −∇ϕn (t, y)| ≤ −L |x− y| log |x− y| ,

where L is independent of n, and |x− y| is small.

Proof of the claim. By the representation formula for the Poisson equation with
the Dirichlet boundary condition for ϕ, we have

∇ϕn (t, x) =

∫
B

ρn (t, z)

[
x− z

|x− z|3
− x− z̄

|z| |x− z̄|3

]
dz,

where | · | is the Euclidean distance in R
3 and z̄ = z/|z|2. Therefore,

|∇ [ϕn (t, x) − ϕn (t, y)]| ≤
∣∣∣∣∣
∫
B

ρn (t, z)

[
x− z

|x− z|3
− y − z

|y − z|3

]
dz

∣∣∣∣∣(6.14)

+

∣∣∣∣∣
∫
B

ρn (t, z)

[
x− z̄

|z| |x− z̄|3
− y − z̄

|z| |y − z̄|3

]
dz

∣∣∣∣∣ .
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We first estimate the first term of (6.14) by splitting it as∣∣∣∣∣
∫
B

ρn (t, z)

[
x− z

|x− z|3
− y − z

|y − z|3

]
dz

∣∣∣∣∣
=

∫
{z:min[|x−z|,|y−z|]≥|x−y|/2}

+

∫
{z:min[|x−z|,|y−z|]≤|x−y|/2}

= I1 + I2.

For I1, we apply the mean value theorem to get∣∣∣∣∣ x− z

|x− z|3
− y − z

|y − z|3

∣∣∣∣∣ ≤ C |x− y|
[

1

|x− z|3
+

1

|y − z|3

]
.

Thus

I1 ≤ C |x− y|
∫ C

|x−y|/2

1

r
dr ≤ −L |x− y| log |x− y| ,

where L is a constant, independent of n. For I2, without loss of generality, we may
assume that |x− z| ≤ |x− y| /2 and |y − z| ≥ |x− y| /2. Then we have∣∣∣∣∣ x− z

|x− z|3
− y − z

|y − z|3

∣∣∣∣∣ =
∣∣∣∣∣ x− z

|x− z|3
− x− z

|y − z|3
+

x− z

|y − z|3
− y − z

|y − z|3

∣∣∣∣∣
≤ 2

|x− z|2
+

|x− y|
|y − z|3

.

Hence,

I2 ≤ C

∫ |x−y|/2

0

1dr + C |x− y|
∫ C

|x−y|/2

1

r
dr ≤ −L |x− y| log |x− y| .

Now we estimate the second term of (6.14). By the change of coordinates z �−→ z̄ =
z/|z|2,∣∣∣∣∣
∫
B

ρn (t, z)

[
x− z̄

|z| |x− z̄|3
− y − z̄

|z| |y − z̄|3

]
dz

∣∣∣∣∣ ≤ C

∫
|z̄|≥1

∣∣∣∣∣ x− z̄

|x− z̄|3
− y − z̄

|y − z̄|3

∣∣∣∣∣ |z| dz̄
≤ C

∫ ∣∣∣∣∣ x− z̄

|x− z̄|3
− y − z̄

|y − z̄|3

∣∣∣∣∣ dz̄,
which reduces to the first case. Thus our claim holds.

By Lemma 4.4, fn is uniformly bounded in C0,η for some η > 0. Hence, from
the Poisson equation ∆ϕn = ρn, sup1≤τ≤t ‖∇xϕ

n‖C1,η and ‖∇xϕ
n‖C0,η are uniformly

bounded. Applying Theorem 4.1 to fn yields that fn is uniformly bounded in C1,µ,
µ > 0. Let f and ϕ be the limits of fn and ϕn, respectively, such that

sup
0≤τ≤t

‖∇xϕ‖C1,µ + ‖∇xϕ‖C0,µ + ‖f‖C1,µ < ∞.

Therefore, our theorem follows by letting n → ∞ in (6.2).
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Abstract. We investigate the uniqueness of limit solutions for a free boundary problem in heat
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1. Introduction. In this paper we consider the following problem arising in
combustion theory: {

∆uε − uε
t = Y εfε(u

ε) in D,

∆Y ε − Y ε
t = Y εfε(u

ε) in D,
(1.1)

where D ⊂ R
N+1.

This model appears in combustion theory in the analysis of the propagation of
curved flames. It is derived in the framework of the theory of equidiffusional premixed
flames analyzed in the relevant limit of high activation energy for Lewis number 1. In
this application, Y ε represents the fraction of some reactant (and hence it is assumed
to be nonnegative), and uε is minus the temperature (more precisely, uε = λ(Tf−T ε),
where Tf is the flame temperature and λ is a normalization factor). Observe that
the term Y εfε(u

ε) acts as an absorption term in (1.1). Since T ε = Tf − (uε/λ),
it is in fact a reaction term for the temperature. In the flame model, such a term
represents the effect of the exothermic chemical reaction and f has, accordingly, a
number of properties: it is a nonnegative Lipschitz continuous function which is pos-
itive in an interval (−∞, ε) and vanishes otherwise (i.e., reaction occurs only when
T > Tf − ε

λ ). The parameter ε is essentially the inverse of the activation energy of
the chemical reaction. For the sake of simplicity we will assume that fε(s) = 1

ε2 f( sε ),
where f is a Lipschitz continuous function with f(s) > 0 if s < 1 and f(s) = 0
if s ≥ 1.

For the derivation of the model, we cite [1].
Here we are interested in high activation energy limits (i.e., ε → 0). These limits

are currently the subject of active investigation, especially in the case uε = Y ε. This
is a natural assumption in the case of traveling waves.

In a previous paper [5] we have studied this problem in the case in which the
initial values for uε and Y ε, both converging to the same function u0, satisfy the
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condition

Y ε
0 (x) − uε

0(x)

ε
→ w0(x) uniformly in R

N(1.2)

with w0 > −1.
Problem (1.1) reduces to a single equation, namely,

(Pε) ∆uε − uε
t = (uε + wε)fε(u

ε),

where the function wε(x, t) is the solution of the heat equation with initial datum
Y ε

0 (x) − uε
0(x). Observe that uε + wε = Y ε ≥ 0.

By (1.2) there exists the limit

lim
ε→0

wε(x, t)

ε
= w0(x, t),(1.3)

and w0(x, t) is the solution of the heat equation with initial datum w0(x).
In this way, at least formally, the reaction term converges to a delta function, and

a free boundary problem appears. In fact, we have proved in [5] that every sequence
of uniformly bounded solutions to (1.1), {uεn}, with εn → 0 has a subsequence {uεnk }
converging to a limit function u ≥ 0 which is a solution of the following free boundary
problem:

(P)

{
∆u− ut = 0 in {u > 0},
|∇u+| =

√
2M(x, t) on ∂{u > 0},

where M(x, t) =
∫ 1

−w0(x,t)

(
s + w0(x, t)

)
f(s)ds.

We see that the free boundary condition strongly depends on the approximation
uε

0, Y ε
0 of the initial datum u0. In particular, the limit function u is different for

different approximations of the initial datum u0.
It is therefore natural to wonder whether the only condition that determines the

limit function u is condition (1.2).
The purpose of this paper is to prove that this is indeed the case, at least under

some monotonicity assumption on the initial value u0. This monotonicity assumption
is similar to that used to prove uniqueness of the limit for the case uε = Y ε in [9].

In fact, we follow here some of the ideas of [9] which are based on the fact that any
limit function is a supersolution to (P). This is still true in our case. Unfortunately,
the simple construction in [9] of supersolutions of (Pε) that approximate a strict
classical supersolution of (P), when wε = 0, does not work in the general case unless
one asks for a lot of complementary conditions on the reaction function f .

Therefore, we follow here the construction done in [7]. The proof that this con-
struction works is based on blow up of the constructed functions. This technique was
already seen to work very well for (Pε), under condition (1.2), in [5].

Our result can be summarized as saying that under suitable assumptions on the
domain and on the initial datum u0, there exists at most one limit solution to the free
boundary problem (P) with nonvanishing gradient near its free boundary, as long as
the approximate initial data, converging uniformly to u0 with supports that converge
to the support of u0, satisfy (1.2).

Moreover, under the same geometric assumptions, if there exists a classical solu-
tion to (P), this is the only limit of solutions to (Pε) with initial data satisfying the
conditions above. In particular, it is the only classical solution to (P).
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As already stated, in the case uε = Y ε, uniqueness results for limit solutions
under geometric hypotheses similar to the ones made here can be found in [9]. Also,
in [7] the authors study the uniqueness and agreement between different concepts of
solutions of problem (P) (again in the case uε = Y ε) under the assumption of the
existence of a classical solution and under different geometric assumptions. See also
[8] for a similar result in the two-phase case.

Notation. Throughout the paper N will denote the spatial dimension. In addi-
tion, the following notation will be used:

For any x0 ∈ R
N , t0 ∈ R, and τ > 0, Bτ (x0) := {x ∈ R

N/|x − x0| < τ} and
Bτ (x0, t0) := {(x, t) ∈ R

N+1/|x− x0|2 + |t− t0|2 < τ2}.
When necessary, we will denote points in R

N by x = (x1, x
′), with x′ ∈ R

N−1.
Given a function v, we will denote v+ = max(v, 0).

The symbols ∆ and ∇ will denote the corresponding operators in the space vari-
ables; the symbol ∂p applied to a domain will denote parabolic boundary.

Finally, we will say that u is supercaloric if ∆u − ut ≤ 0, and u is subcaloric if
∆u− ut ≥ 0.

Outline of the paper. An outline of the contents is as follows. In section 2 we
give precise definitions of classical sub- and supersolutions and prove a comparison
result for problem (P) (Lemma 2.1). In section 3 we state some auxiliary results. In
section 4 we prove that a strict classical supersolution to problem (P) is the uniform
limit of a family of supersolutions to problem (Pε) (Theorem 4.1), and as a conse-
quence we obtain the boundedness of the support for limit solutions in the geometry
under consideration (Proposition 4.1). Finally, in section 5 we prove our main result
(Theorem 5.1). We discuss in a final section (section 6) the results proved in the
paper as well as other possible geometries that can be considered.

2. Preliminaries. Following [9] we will define what we will understand by a
classical supersolution of problem (P). Note that the meaning of classical here differs
from the usual one since we are not assuming that the function is C1 up to the free
boundary or that the free boundary is C1.

Definition 2.1. A continuous nonnegative function u in QT = R
N × [0, T ], T >

0, is called a classical supersolution of (P) if u ∈ C1({u > 0}) and
(i) ∆u− ut ≤ 0 in Ω = {u > 0};
(ii) lim supΩ�(y,s)→(x,t) |∇u(y, s)| ≤

√
2M(x, t) for every (x, t) ∈ ∂Ω ∩QT ;

(iii) u(·, 0) ≥ u0.
Respectively, u is a classical subsolution of (P) if conditions (i), (ii), and (iii) are
satisfied with reversed inequalities and lim inf instead of lim sup in (ii).

A function u is a classical solution of (P) if it is both a classical subsolution and
a classical supersolution of (P).

Next, a classical supersolution u of (P) is a strict classical supersolution of (P) if
there is a δ > 0 such that the stronger inequalities

(ii’) lim supΩ�(y,s)→(x,t) |∇u(y, s)| ≤
√

2M(x, t) − δ for every (x, t) ∈ ∂Ω ∩QT ,
(iii’) u(·, 0) ≥ u0 + δ on Ω0 = {u0 > 0}

hold. Analogously, a strict classical subsolution is defined.
As a consequence of the results in [5], one can check that every limit solution

u = limj→∞ uεj of (P) is a classical supersolution in the sense of Definition 2.1.
Proposition 2.1. Let uεj be solutions to (Pεj

), with wεj satisfying (1.3) and
w0 > −1, such that uεj → u uniformly on compact sets and εj → 0. Assume that
the initial datum u0 is Lipschitz continuous and that the approximations of the initial
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datum verify |uε
0(x)|, |∇uε

0(x)| ≤ C, and uε
0 ∈ C1({uε

0 > 0}). Then u is a classical
supersolution of (P).

Proof. We have to verify conditions (i)–(iii) of Definition 2.1.
From our assumptions on the initial datum u0, by Proposition 5.2.1 of [6], we

have that uε → u uniformly on compact sets of QT so that u is continuous up to t = 0
and (iii) holds.

Now (i) is proved in [5].
Finally, (ii) is a straightforward modification of Theorem 6.1 of [2] using Lem-

mas 2.1, 2.2, and 2.3 of [5] instead of Lemma 3.2 and Propositions 5.2 and 5.3 of [2],
respectively.

Let us suppose that the initial datum u0 of problem (P) is starshaped with respect
to a point x0, which we always assume to be 0, in the following sense: For every
λ ∈ (0, 1) and x ∈ R

N ,

u0(λx) ≥ u0(x), λΩ0 ⊂⊂ Ω0,(2.1)

where Ω0 = {u0 > 0}.
Also, assume that

w0(λx, 0) ≤ w0(x, 0) if x ∈ R
N , 0 < λ < 1.(2.2)

Let u be a classical supersolution of (P). Let λ and λ′ be two real numbers with
0 < λ < λ′ < 1. Define

uλ(x, t) =
1

λ′u(λx, λ2t)(2.3)

in QT/λ2 . The rescaling is taken so that uλ is a supersolution of the heat equation in

Ωλ = {(x, t) : (λx, λ2t) ∈ Ω}.(2.4)

Moreover, the fact that 0 < λ < λ′ < 1 makes uλ a strict classical supersolution of
(P).

In fact, let us first see that

M(λx, λ2t) ≤ M(x, t) if 0 < λ < 1.

This is a consequence of the fact that the function

a −→
∫ 1

−a

(s + a)f(s) ds

is nondecreasing and

w0(λx, λ
2t) ≤ w0(x, t) if 0 < λ < 1.(2.5)

In fact, the function wλ(x, t) = w0(λx, λ
2t) is caloric, and wλ(x, 0) ≤ w0(x, 0) if

0 < λ < 1 by hypothesis. Thus, by the comparison principle, wλ(x, t) ≤ w0(x, t) in
R

N × (0, T ).
Now let (x0, t0) ∈ ∂{uλ > 0}. Then

lim sup
Ωλ�(x,t)→(x0,t0)

|∇uλ(x, t)| = lim sup
Ω�(λx,λ2t)→(λx0,λ2t0)

∣∣∣∣ λλ′∇u(λx, λ2t)

∣∣∣∣
≤ λ

λ′

√
2M(λx0, λ2t0) ≤

√
2M(x0, t0) −

(
1 − λ

λ′

)√
2M0,

where 0 < M0 < M(x, t) in R
N × (0, T ).
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On the other hand, since λΩ0 ⊂⊂ Ω0, there holds that

u0(λx) ≥ γ > 0 if x ∈ Ω0.

Thus, for x ∈ Ω0,

uλ(x, 0) =
1

λ′u0(λx) = u0(λx) +
( 1

λ′ − 1
)
u0(λx)

≥ u0(x) +
( 1

λ′ − 1
)
γ.

The following comparison lemma for problem (P) can be proved as Lemma 2.4 in
[9]. We omit the proof.

Lemma 2.1. Let u0 satisfy (2.1) and w0 satisfy (2.2). Then every classical sub-
solution of (P) with bounded support is smaller than every classical supersolution of
(P); i.e., if u′ is a classical subsolution such that Ω′ is bounded and u is a classical
supersolution, then

Ω′ ⊂ Ω and u′ ≤ u,

where Ω′ = {u′ > 0} and Ω = {u > 0}.
3. Auxiliary results. This section contains results on the following problem:

(P0) ∆u− ut = (u + ω0)f(u),

where the function f is as in section 1 and ω0 is a constant, ω0 > −1. The results
will be used in the next sections where (P0) appears as a blow-up limit. The proofs
are very similar to those of Lemmas 4.1, 4.3, and 4.4 in [7]. We leave the details to
the reader.

Lemma 3.1. Let a, b ≥ 0, and let ψ be the classical solution to

ψss = (ψ + ω0)f(ψ) for s > 0,

ψ(0) = a, ψs(0) = −
√

2b.
(3.1)

Let B(τ) =
∫ τ

−ω0
(ρ + ω0)f(ρ) dρ.

If b = 0 and a ∈ {−ω0} ∪ [1,+∞), then ψ ≡ a.(3.2)

If b = 0 and a ∈ (−ω0, 1), then lims→+∞ ψ(s) = +∞.(3.3)

If b ∈
(
0, B(a)

)
, then lims→+∞ ψ(s) = +∞.(3.4)

If 0 < b = B(a), then ψs < 0 and lims→+∞ ψ(s) = −ω0.(3.5)

If b ∈
(
B(a), +∞

)
, then ψs < 0 and lims→+∞ ψ(s) = −∞.(3.6)

Lemma 3.2. Let B(τ) be as in the previous lemma, let Rγ =
{
(x, t) ∈ R

N+1/x1 >

0 , −∞ < t ≤ γ
}
, 0 ≤ θ < 1 + ω0, and let U ∈ C2+α,1+α

2 (Rγ) be such that

∆U − Ut = (U + ω0)f(U) in Rγ ,

U = 1 − θ on {x1 = 0},
−ω0 ≤U ≤ 1 − θ in Rγ .

(1) If θ = 0, then |∇U | ≤
√

2B(1) on {x1 = 0}.
(2) If 0 < θ < 1 + ω0 and 0 < σ < B(1) are such that

∫ 1−θ

−ω0
(ρ + ω0)f(ρ) dρ =

B(1) − σ, then |∇U | =
√

2(B(1) − σ) on {x1 = 0}.
Finally, we state a compactness result.
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Lemma 3.3. Let εj, γεj , and τεj be sequences such that εj > 0, εj → 0, γεj > 0,
γεj → γ, with 0 ≤ γ ≤ +∞, τεj > 0, τεj → τ with 0 ≤ τ ≤ +∞, and such that
τ < +∞ implies that γ = +∞. Assume that wεj/εj converge to w0 uniformly in
compact sets of R

N × [0, T ]. Let ρ > 0 and

Aεj =

{
(x, t) / |x| < ρ

εj
, −min

(
τεj ,

ρ2

ε2
j

)
< t < min

(
γεj ,

ρ2

ε2
j

)}
.

Let (x0, t0) ∈ R
N × [0, T ]. Assume that 0 ≤ θ < 1 + w0(x0, t0), and let ūεj be weak

solutions to

∆ūεj − ū
εj
t =

(
ūεj +

wεj (εjx + xεj , ε
2
j t + tεj )

εj

)
f(ūεj ) in {x1 > h̄εj (x

′, t)} ∩ Aεj ,

ūεj = 1 − θ on {x1 = h̄εj (x
′, t)} ∩ Aεj ,

−
wεj (εjx + xεj , ε

2
j t + tεj )

εj
≤ ūεj ≤ 1 − θ in {x1 ≥ h̄εj (x

′, t)} ∩ Aεj ,

where (xεj , tεj ) → (x0, t0), with ūεj ∈ C({x1 ≥ h̄εj (x
′, t)} ∩ Aεj ), and ∇ūεj ∈ L2.

Here h̄εj are continuous functions such that h̄εj (0, 0) = 0 with h̄εj → 0 uniformly
on compact subsets of R

N−1 × (−τ, γ). Moreover, we assume that ‖h̄εj‖C1(K) +
‖∇x′ h̄εj‖Cα, α

2 (K)
are uniformly bounded for every compact set K ⊂ R

N−1 × (−τ, γ).

Then there exists a function ū such that, for a subsequence,

ū ∈ C2+α,1+α
2

(
{x1 ≥ 0, γ > t > −τ}

)
,

ūεj → ū uniformly on compact subsets of {x1 > 0, γ > t > −τ},
∆ū− ūt = (ū + w0(x0, t0))f(ū) in {x1 > 0, γ > t > −τ},
ū = 1 − θ on {x1 = 0, γ > t > −τ},

−w0(x0, t0) ≤ ū ≤ 1 − θ in {x1 ≥ 0, γ > t > −τ}.

If γ < +∞, we require, in addition, that

‖h̄εj (x
′, t + γεj − γ)‖C1(K) + ‖∇x′ h̄εj (x

′, t + γεj − γ)‖
Cα, α

2 (K)

be uniformly bounded for every compact set K ⊂ R
N−1 × (−∞, γ]. We deduce that

u ∈ C2+α,1+α
2

(
{x1 ≥ 0, t ≤ γ}

)
.

If τ < +∞, we let

Bεj =

{
x / |x| < ρ

εj
, x1 > h̄εj (x

′,−τεj )

}
,

and we require, in addition, that for every R > 0,

‖ūεj (x,−τεj )‖Cα(Bεj
∩BR(0)) ≤ CR,

and that there exists r > 0 such that

‖ūεj (x,−τεj )‖C1+α(Bεj
∩Br(0)) ≤ Cr.
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Moreover, we assume that ‖h̄εj (x
′, t−τεj +τ)‖C1(K)+‖∇x′ h̄εj (x

′, t−τεj +τ)‖
Cα, α

2 (K)

are uniformly bounded for every compact set K ⊂ R
N−1 × [−τ,+∞).

Then there holds that

ū ∈ Cα,α2
(
{x1 ≥ 0, t ≥ −τ}

)
, ∇u ∈ C

(
{0 ≤ x1 < r, t ≥ −τ}

)
,

ūεj (x,−τεj ) → ū(x,−τ) uniformly on compact subsets of {x1 > 0}.

In any case (τ, γ be infinite or finite)

|∇ūεj (0, 0)| → |∇ū(0, 0)|.

4. Approximation result. In this section we prove that, under certain as-
sumptions, a classical supersolution to problem (P) is the uniform limit of a family
of supersolutions to problem (Pε) (Theorem 4.1), and we prove an analogous result
for subsolutions (Theorem 4.2). Also, we prove that for compactly supported initial
data, limit solutions have bounded support (Proposition 4.1).

The following construction follows the lines of Theorem 5.2 in [7]. In our case we
have to be more careful with the construction of the initial data.

Theorem 4.1. Let ũ be a classical supersolution to (P) in QT with ũ∈C1({ũ> 0})
and such that {ũ > 0} is bounded. Assume, in addition, that there exist δ0, s0 > 0
such that

|∇ũ+| ≤
√

2M(x, t) − δ0 on Q ∩ ∂{ũ > 0},
|∇ũ| > δ0 in Q ∩ {0 < ũ < s0}.

Let wε be a solution of the heat equation in R
N×(0, T ) such that wε(x,t)

ε → w0(x, t)
uniformly in R

N × [0, T ] with w0 ∈ C(RN × [0, T ]) and w0 ≥ −1 + δ1 for a certain
positive constant δ1.

Then there exists a family uε ∈ C(QT ), with ∇uε ∈ L2
loc(QT ), of weak supersolu-

tions to (Pε) in QT such that, as ε → 0, uε → ũ uniformly in QT .
Proof.
Step 1. Construction of the family uε. Let 0 < θ < δ1 be such that∫ 1

1−θ

(s + W )f(s) ds =
δ0
8
,

where W is a suitable uniform bound of ‖wε/ε‖
L∞({ũ>0}). For every ε > 0 small, we

define the domain Dε = {ũ < (1 − θ)ε} ⊂ QT .
Let zε be the bounded solution to

∆zε − zεt = (zε + wε)fε(z
ε) in Dε,

with boundary data

zε(x, t) =

{
(1 − θ)ε on ∂Dε ∩ t > 0,

zε0(x) in Dε ∩ {t = 0}.

In order to give the initial data zε0, we let ψε(s, x) be the solution to (3.1) with

a = 1 − θ, b =

∫ 1−θ

−wε(x,0)/ε

(
s +

wε(x, 0)

ε

)
f(s) ds, ω0 =

wε(x, 0)

ε
.
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Assume first that |∇ũ| is smooth. Then, by extending |∇ũ(x, 0)| to the whole R
N as

a positive function, we let

ϕε(ξ, x) = ψε

(
1 − θ − ξ

|∇ũ(x, 0)| , x
)
,

and we define

zε0(x) = εϕε

(
1

ε
ũ(x, 0), x

)
.

If ũ is not regular enough, we can replace |∇ũ(x, 0)| by a smooth approximation
Fε(x) so that the initial datum zε0 is C1+α. We leave the details to the reader.

Finally, we define the family uε as follows:

uε =

{
ũ in {ũ ≥ (1 − θ)ε},
zε in Dε.

Step 2. Passage to the limit. If (x, 0) ∈ Dε, then we have 0 ≤ 1
ε ũ(x, 0) ≤ 1 − θ.

Since, from Lemma 3.1, we know that −wε(x, 0)/ε ≤ ψε(s, x) ≤ 1 − θ for s ≥ 0,
it follows that −wε(x, 0) ≤ zε(x, 0) ≤ (1 − θ)ε. Since fε(s) ≥ 0, constant functions
larger than −wε(x, t) are supersolutions to (Pε). Therefore, (1−θ)ε is a supersolution
if ε < ε1, for some ε1 > 0, and we may apply the comparison principle for bounded
super- and subsolutions of (Pε) to conclude that −wε ≤ zε ≤ (1 − θ)ε.

Hence,

sup
QT

|uε − ũ| = sup
Dε

|zε − ũ| ≤ Cε,

and therefore the convergence of the family uε follows.
Step 3. Let us show that there exists ε0 > 0 such that the functions uε are

supersolutions to (Pε) for ε < ε0.
If uε > (1−θ)ε, then uε = ũ, which by hypothesis is supercaloric. Since fε(s) ≥ 0

and (1 − θ)ε ≥ −wε if ε < ε1, it follows that uε are supersolutions to (Pε) here.
If uε < (1−θ)ε, then we are in Dε, and therefore, by construction, uε are solutions

to (Pε).
That is, the uε’s are continuous functions, and they are piecewise supersolutions

to (Pε). In order to see that uε are globally supersolutions to (Pε), it suffices to see
that the jumps of the gradients (which occur at smooth surfaces) have the right sign.

To this effect, we will show that there exists ε0 > 0 such that

|∇uε| ≥
√

2M(x, t) − δ0/2 on ∂{ũ < (1 − θ)ε} for ε < ε0.(4.1)

Assume that (4.1) does not hold. Then, for every j ∈ N, there exist εj > 0 and
(xεj , tεj ) ∈ Q, with

εj → 0 and (xεj , tεj ) → (x0, t0) ∈ ∂{ũ > 0},

such that

uεj (xεj , tεj ) = (1 − θ)εj and |∇uεj (xεj , tεj )| <
√

2M(xεj , tεj ) − δ0/2.(4.2)
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From now on we will drop the subscript j when referring to the sequences defined
above, and ε → 0 will mean j → ∞.

We can assume (performing a rotation in the space variables if necessary) that
there exists a family gε of smooth functions such that, in a neighborhood of (xε, tε),

{uε = (1 − θ)ε} = {(x, t) / x1 − xε1 = gε(x
′ − xε

′, t− tε)},
{uε < (1 − θ)ε} = {(x, t) / x1 − xε1 > gε(x

′ − xε
′, t− tε)},

(4.3)

where there holds that

gε(0, 0) = 0, |∇x′gε(0, 0)| → 0, ε → 0.

We can assume that (4.3) holds in
(
Bρ(xε)× (tε−ρ2, tε +ρ2)

)
∩{0 ≤ t ≤ T} for some

ρ > 0.
Let us now define

ūε(x, t) =
1

ε
uε(xε + εx, tε + ε2t), ḡε(x

′, t) =
1

ε
gε(εx

′, ε2t),

and let

τε =
tε
ε2

, γε =
T − tε
ε2

.

We have, for a subsequence,

τε → τ, γε → γ,

where 0 ≤ τ, γ ≤ +∞, and τ and γ cannot be both finite.
We now let

Aε =

{
(x, t) / |x| < ρ

ε
, −min

(
τε,

ρ2

ε2

)
< t < min

(
γε,

ρ2

ε2

)}
.

Then the functions ūε are weak solutions to

∆ūε − ūε
t =

(
ūε +

wε(xε + εx, tε + ε2t)

ε

)
f(ūε) in {x1 > ḡε(x

′, t)} ∩ Aε,

ūε = 1 − θ on {x1 = ḡε(x
′, t)} ∩ Aε,

−wε(xε + εx, tε + ε2t)

ε
≤ ūε ≤ 1 − θ in {x1 ≥ ḡε(x

′, t)} ∩ Aε.

Note that we are under the hypotheses of Lemma 3.3. Then there exists a func-
tion ū such that, for a subsequence,

ū ∈ C2+α,1+α
2

(
{x1 ≥ 0, −τ < t < γ}

)
,

ūε → ū uniformly on compact subsets of {x1 > 0, −τ < t < γ},
∆ū− ūt = (ū + w0(x0, t0))f(ū) in {x1 > 0, −τ < t < γ},
ū = 1 − θ on {x1 = 0, −τ < t < γ},

−w0(x0, t0) ≤ ū ≤ 1 − θ in {x1 ≥ 0, −τ < t < γ}.

We will divide the remainder of the proof into two cases, depending on whether
τ = +∞ or τ < +∞.
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Case 1. Assume τ = +∞.
In this case, Lemma 3.3 also gives

|∇ūε(0, 0)| → |∇ū(0, 0)|.

On the other hand, ū satisfies the hypotheses of Lemma 3.2, and therefore

|∇ū| ≥
√

2M(x0, t0) − δ0/4 on {x1 = 0},

which yields

|∇ūε(0, 0)| ≥
√

2M(x0, t0) − 3δ0/8

for ε small. But this gives

|∇uε(xε, tε)| ≥
√

2M(xε, tε) − δ0/2

for ε small. This contradicts (4.2) and completes the proof in case τ = +∞.
Case 2. Assume τ < +∞. (In this case γ = +∞.)
There holds that ūε(x,−τε) = 1

εu
ε(xε + εx, 0); then

ūε(x,−τε) = ϕε

(
1

ε
ũ(xε + εx, 0), xε + εx

)
.(4.4)

Here we want to apply the result of Lemma 3.3 corresponding to τ < +∞. In
fact, we can see that there exist C, r > 0 such that ‖ūε(·,−τε)‖C1+α(Br(0)) ≤ C.

Now Lemma 3.3 gives, for a subsequence,

ū ∈ Cα,α2
(
{x1 ≥ 0, t ≥ −τ}

)
,

ūε(x,−τε) → ū(x,−τ) uniformly on compact subsets of {x1 > 0}.

Therefore, we get that (recall that in the case we are considering t0 = 0)

ū(x,−τ) = ϕ̄
(
1 − θ − |∇ũ+(x0, t0)|x1, x0

)
,

where ϕ̄(s, x) = ψ( 1−θ−s

|∇ũ(x,0)|
, x) and ψ(s, x) is the solution of (3.1) with

a = 1 − θ, b =

∫ 1−θ

−w0(x,0)

(s + w0(x, 0))f(s) ds, ω0 = w0(x, 0).

Thus,

ū(x,−τ) = ψ(x1, x0).

Since the function ψ(x1, x0) is a stationary solution to equation (P0), bounded
for x1 ≥ 0, and ū = ψ on the parabolic boundary of the domain

{
x1 > 0, t > −τ

}
,

we conclude that

ū(x, t) = ψ(x1, x0) in
{
x1 ≥ 0, t ≥ −τ

}
.

It follows from Lemma 3.1 and the choice of θ that

1

2
|∇ū(0, 0)|2 =

1

2

(
ψs(0, x0)

)2
=

∫ 1−θ

−w0(x0,t0)

(s + w0(x0, t0))f(s) ds ≥ M(x0, t0) −
δ0
8
.
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That is,

|∇ū| ≥
√

2M(x0, t0) − δ0/4 on {x1 = 0, t ≥ −τ}.

But Lemma 3.3 gives

|∇ūε(0, 0)| → |∇ū(0, 0)|,

which yields

|∇ūε(0, 0)| ≥
√

2M(x0, t0) − 3δ0/8

for ε small. Then

|∇uε(xε, tε)| ≥
√

2M(xε, tε) − δ0/2

for ε small. This contradicts (4.2) and completes the proof in case τ < +∞.
Remark 4.1. Observe that from the construction of uε done in the previous proof

it follows that

uε ≡ ũ in {ũ > (1 − θ)ε}.

Theorem 4.2. Let ũ be a classical subsolution to (P) in QT with ũ ∈ C1({ũ > 0})
such that {ũ > 0} is bounded. Assume, in addition, that there exist δ0 > 0 such that

|∇ũ+| ≥
√

2M(x, t) + δ0 on Q ∩ ∂{ũ > 0}.

Let wε be a solution of the heat equation in R
N × (0, T ) such that wε(x,t)

ε →
w0(x, t) uniformly in R

N × [0, T ]. Assume, moreover, that w0 ∈ C(RN × [0, T ]) and
w0(x, t) ≥ −1 + δ1 for a certain positive constant δ1.

Then there exists a family uε ∈ C(QT ), with ∇uε ∈ L2
loc(QT ), of weak subsolu-

tions to (Pε) in QT such that, as ε → 0, uε → ũ uniformly in QT .
Proof. The proof is analogous to Theorem 4.1. See [7] for a similar result in the

case wε = 0.
Finally, we end this section by showing that, for compactly supported initial data,

the support of a limit solution of problem (P) is bounded.
Proposition 4.1. Let u0 ∈ C(RN ) with compact support. Let uε

0 converge
uniformly to u0 with supports converging to the support of u0, and let wε be a solution

of the heat equation in R
N × (0, T ) such that wε(x,t)

ε → w0(x, t) uniformly in R
N ×

[0, T ]. Assume, moreover, that w0 ∈ C(RN × [0, T ]) and w0(x, t) ≥ −1 + δ1 for a
certain positive constant δ1. Finally, let uε be the solution to (Pε) with function wε

and initial condition uε
0.

Let u = limuεj . Then {u > 0} is bounded. Moreover, u vanishes in finite time.
Proof. Let −1 < ω0 < wε(x, t)/ε. Then it is easy to check that

Mω0
=

∫ 1

−ω0

(s + ω0)f(s) ds < M(x, t) =

∫ 1

−w0(x,t)

(s + w0(x, t))f(s) ds.(4.5)

Let us now consider the following self-similar function:

V (x, t;T ) = (T − t)1/2h(|x|(T − t)−1/2),
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where h = h(r) is a solution of

h′′ +

(
N − 1

r
+

1

2
r

)
h′ +

1

2
h = 0, 0 < r < R,

h′(0) = 0, h(r) > 0, 0 ≤ r < R,

h(R) = 0, h′(R) = −
√

2Mω0 .

(4.6)

It is proved in [4, Proposition 1.1] that there exists a unique R > 0 and a unique h
solution of (4.6).

Moreover, it can be checked that if one picks T sufficiently large, then

V (x, 0;T ) ≥ u0 + 1 in {u0 > 0},

and so V (x, t;T ) is a strict classical supersolution of (P) with bounded support and
a positive gradient near its free boundary.

Now let uεj be solutions to (Pεj ), with initial data u
εj
0 converging uniformly to

u0 such that support u
εj
0 → support u0 such that u = limuεj .

By Theorem 4.1, there exists a family vεj of supersolutions of (Pεj ) such that
vεj → V uniformly on compact sets, and vεj (x, 0) ≥ uεj (x, 0). Therefore, by the com-
parison principle, we obtain uεj ≤ vεj and, passing to the limit, u(x, t) ≤ V (x, t;T );
the result follows.

5. Uniqueness of the limit solution. In this section we arrive at the main
point of the article: we prove that, under certain assumptions, there exists at most
one limit solution to the initial and boundary value problem associated with (P) as
long as condition (1.2) is satisfied.

Let us begin with the following proposition, which is the key ingredient in the
proof of our main result.

Proposition 5.1. Let ũ be a strict classical supersolution to (P) with bounded
support in R

N × (0, T ) such that there exists s0 > 0 so that |∇ũ| > 0 in {0 < ũ < s0},
and let wε/ε be solutions to the heat equation in R

N×(0, T ) converging to w0 uniformly
with w0 ∈ C(RN × [0, T ]) and w0 ≥ −1 + δ1 for a certain positive constant δ1.

Let uε be solutions to (Pε) with function wε and initial condition uε
0, where uε

0

are uniform approximations of u0 with support uε
0 → support u0. Then

lim sup
ε→0+

uε(x, t) ≤ ũ(x, t)

for every (x, t) ∈ QT .
Proof. Let ũ be a strict classical supersolution of (P). Let us first define the

following regularization:

u(x, t) = (ũ(x, t + h) − η)+

for h, η > 0 small so that u is a strict classical supersolution of (P) with C1
x free

boundary, C1({u > 0}), and |∇u| > δ0 > 0 in a neighborhood of its free boundary.
So, by Theorem 4.1, there exists a vε supersolution of (Pε) such that vε → u uniformly
in QT−h.

Now, using the comparison principle, we conclude that uε ≤ vε in QT−h, and the
proposition now follows letting first ε → 0+ and then h, η → 0+.

Finally, we arrive at the main point of the paper: the uniqueness of limit solutions
of (P).
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Theorem 5.1. Let the initial datum u0 be Lipschitz continuous with compact
support and satisfy condition (2.1). Then there exists at most one limit solution such
that its gradient does not vanish near its free boundary as long as the function wε in
problem (Pε) satisfies condition (1.3).

More precisely, let u
εj
0 , ũεk

0 be uniformly Lipschitz continuous in R
N with uni-

formly bounded Lipschitz norms and εj , εk → 0. Assume that u
εj
0 ∈ C1({uεj

0 > 0}),
ũεk

0 ∈ C1({ũεk
0 > 0}), u

εj
0 , ũεk

0 → u0 uniformly and support u
εj
0 , support ũεk

0 →
support u0. Let wεj/εj and w̃εk/εk be solutions of the heat equation converging to the
same function w0 ∈ C(QT ), uniformly bounded from below by −1 + δ1 for a certain
positive constant δ1. Also, assume that w0 satisfies the monotonicity condition (2.2).

Let uεj (resp., ũεk) be the solution to (Pεj
) with function wεj and initial datum u

εj
0

(resp., the solution to (Pεk
) with function w̃εk and initial datum ũεk

0 ). Let u = limuεj

and ũ = lim ũεk . If there exists s0 > 0 such that |∇ũ| > 0 in {0 < ũ < s0}, then
u ≤ ũ.

Proof. Since ũ is a classical supersolution of (P), ũ ∈ C1({ũ > 0}), and, by
Proposition 4.1, its support is bounded, the function ũλ as defined in (2.3) satisfies
the hypotheses of Proposition 5.1 in QT/λ2 ⊃ QT . So by letting λ → 1− we arrive at

u(x, t) ≤ ũ(x, t).(5.1)

This finishes the proof.
Theorem 5.2. Let the initial datum u0 be as in Theorem 5.1. Assume that there

exists a classical solution v to (P) with initial datum u0, and let u
εj
0 be uniformly

Lipschitz continuous in R
N with εj → 0 such that u

εj
0 ∈ C1({uεj

0 > 0}), u
εj
0 → u0

uniformly, and support u
εj
0 → support u0. Assume wεj/εj is a solution of the heat

equation converging to w0 uniformly with w0 ∈ C(RN × [0, T ]) and w0 ≥ −1 + δ1 in
R

N × (0, T ) for a certain δ1 > 0. Also, assume that w0 satisfies the monotonicity
condition (2.2).

Let uεj be the solution to (Pεj
) with function wεj and initial datum u

εj
0 , and let

u = limuεj . Then u = v.
In particular, there exists at most one classical solution to (P).
Proof. Since u is a classical supersolution to (P) and v is a classical subsolution,

Lemma 2.1 applies, and we get that v ≤ u.
On the other hand, if we define vλ as in (2.3), with 0 < λ < λ′ < 1, we have that vλ

is a strict classical supersolution. Since vλ has compact support (see Proposition 4.1)
it satisfies the hypotheses of Proposition 5.1. Thus,

u = limuεj ≤ vλ.

Letting λ → 1− we obtain the desired result.

6. Conclusions. In this paper we have proved that the limits of sequences of
solutions to (Pε) with different constitutive functions wε and initial data uε

0 coincide,
as long as certain monotonicity assumptions are made, if the limits of wε/ε and of uε

0

are prescribed.
The monotonicity assumptions are necessary to provide strict classical supersolu-

tions as close as we want to any classical supersolution. This kind of condition was also
used with the same purpose, in the case in which wε = 0, in [9] and [7]. In the latter,
a different geometry was considered; namely, the domain was a cylinder, Neumann
boundary conditions were given on the boundary of the cylinder, and monotonicity in
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the direction of the cylinder axis was assumed. In [7] it was proved that, if a classical
solution exists and wε = 0, then it is equal to any limit of solutions to (Pε).

In our case, this is with wε �= 0 satisfying (1.3) and nondecreasing in the direction
of the cylinder axis; the uniqueness result in the presence of a classical solution still
holds.

The cylindrical geometry has the advantage of giving the condition of nonvanish-
ing gradient in the positivity set of any limit solution. Since in dimension 2 one can
prove that limit solutions are classical supersolutions up to the fixed boundary, the
uniqueness of limit solutions follows in this case without further assumptions.
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Abstract. We study a sufficient geometric condition for the existence of a W 1,∞(Ω) viscosity
solution of the Hamilton–Jacobi equation{

F (Du) = 0 in Ω,

u = ϕ on ∂Ω,

where Ω ⊂ R
n and F : R

n → R are not necessarily convex.
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1. Introduction. In this paper we consider the Dirichlet problem{
F (Du) = 0 in Ω,

u = ϕ on ∂Ω,
(1.1)

where Ω ⊂ R
n is a bounded open set, F : R

n → R is continuous, and ϕ ∈ Lip(∂Ω)
(by the notation ϕ ∈ Lip(∂Ω) we mean that there exists a constant C ≥ 0 such that
|ϕ(x) − ϕ(y)| ≤ C|x − y| for all x, y ∈ ∂Ω). In particular, we are interested in the
existence of viscosity solutions u ∈ W 1,∞(Ω) ∩ C(Ω) of problem (1.1).

The study of Hamilton–Jacobi equations arises from classical problems in calculus
of variations, and the notion of viscosity solution has aroused much interest since its
introduction by Crandall and Lions in [11]. In particular, the interest of finding
viscosity solutions of problem (1.1) is well known and studied in optimal control
theory, differential games theory, etc. (see [1, 2, 9, 10, 21] for further details).

We should remark that the notion of viscosity solution is stronger than that of
the almost everywhere solution: indeed, the viscosity method, when it establishes the
existence of solutions, at the same time, gives a criterion of selection among them.
Moreover, under appropriate hypotheses, we have uniqueness, maximality, stability,
and explicit formulas (see [9, 10, 21]).

Here we want to investigate some sufficient geometrical conditions for the exis-
tence of W 1,∞(Ω) ∩ C(Ω) viscosity solutions of (1.1).

This study has been motivated by a recent paper of Cardaliaguet et al. [6], where
they gave a necessary and sufficient geometric condition for the problem (1.1) to admit
a W 1,∞(Ω) viscosity solution, under some restrictive hypotheses on Ω and ϕ. In
particular, they showed that if Ω is convex, ϕ ∈ C1(Ω), and verifies the compatibility
condition

Dϕ(x) ∈ E ∪ int coE ∀x ∈ Ω,(1.2)
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where E = {ξ ∈ R
n | F (ξ) = 0} and int coE is the interior of the convex envelope of

E, then the condition

• (G1) ∀ y ∈ ∂Ω, where the inward normal, ν(y), is uniquely defined, there
exists λ(y) > 0 such that

Dϕ(y) + λ(y)ν(y) ∈ E

is necessary and sufficient for the existence of W 1,∞(Ω) viscosity solution of (1.1).

We should remark that, as shown in [15], the compatibility condition (1.2) is
sufficient for the existence of infinitely many W 1,∞(Ω) almost everywhere solutions
of problem (1.1); in fact, the aim of [6] was to compare the theory for existence of
almost everywhere solutions of implicit partial differential equations developed by
Dacorogna and Marcellini (see [12, 13, 14, 15]) with the classical method of viscosity
and to investigate the existence of W 1,∞ viscosity solutions under assumption (1.2)
only.

Our aim goes in a different direction: we want to show that the same type of
techniques used in [6] can be refined to obtain a more general result in a more general
framework. Moreover, we will see that the compatibility condition (1.2) can also be
weakened in order to obtain a condition for the existence of viscosity solutions of
equation (1.1).

We will prove that if Ω is bounded and connected, not necessarily convex, ϕ ∈
Lip(∂Ω), and verifies a compatibility condition like (1.2) only on the boundary ∂Ω
(the precise meaning of this condition will also be clarified in what follows), then the
geometrical condition (G1) can be replaced by

• (G2) ∀ y ∈ ∂Ω, where NN
Rn\Ω(y) 	= ∅ there exists h ∈ D+ϕ(y) such that

∀ν ∈ NN
Rn\Ω(y) there exists a unique λν,h > 0 such that

h + λν,hν ∈ E,

where NN
Rn\Ω(y) is the normal cone to the set R

n \ Ω and D+ϕ(y) is the

superdifferential of ϕ in y (see Definitions 2.1 and 2.5).

In particular, we will see that (G2) is a sufficient condition for the existence of
W 1,∞(Ω) viscosity solutions of (1.1).

We should remark that (G2) strictly extends (G1): indeed, if Ω is convex, ∀ y ∈
∂Ω, where the inward normal, ν(y), is uniquely defined, we have NN

Rn\Ω(y) = {ν(y)},
and if ϕ ∈ C1, then D+ϕ(y) = {Dϕ(y)} (see Remark 2.2 and Proposition 2.6).

Remark 1.1. If ϕ is an affine function, then the condition (G2) is also necessary
for the existence of viscosity solutions, as it can be deduced by the last section of [6].

To better understand the conditions (G1) and (G2) one should keep in mind the
following examples.

Example 1.2. Let

F1(ξ1, ξ2) = −(ξ2
1 − 1)2 − (ξ2

2 − 1)2 ; ϕ = 0.

Clearly, ⎧⎪⎨
⎪⎩

E1 = {ξ ∈ R
2 : ξ2

1 = ξ2
2 = 1} = {ξ ∈ R

2 : F1(ξ) = 0},
coE1 = {ξ ∈ R

2 : |ξ1| ≤ 1 , |ξ2| ≤ 1},
E1 ⊂ ∂(coE1) and E1 	= ∂(coE1).
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Fig. 1. Partition of the plane in the definition of f .

For this classical example the condition (G1) allows us to say that the only convex Ω
for which there exists a W 1,∞(Ω) viscosity solution of{

F1(Du) = 0 in Ω,

u = 0 on ∂Ω
(1.3)

are rectangles whose normals are in E1. The condition (G2) instead allows us to
make this selection among all the sets Ω, convex and not; in particular, there are no
W 1,∞(Ω) viscosity solutions of problem (1.3) if Ω is a nonconvex domain.

Example 1.3. Let f : R
2 → R be a positive continuous function which is zero

only on the vertical segment S = {(ξ1, ξ2) : ξ1 = 1, ξ2 ∈ [−1, 1]}; for instance, we
can consider

f(ξ1, ξ2) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ξ2 − 1 if (ξ1, ξ2) ∈ Q1,

ξ1 − 1 if (ξ1, ξ2) ∈ Q2,

−ξ1 + 1 if (ξ1, ξ2) ∈ Q3,

−ξ2 − 1 if (ξ1, ξ2) ∈ Q4,

where Qi, i = 1, . . . , 4, is a partition of the plane as in Figure 1.
Let

F2(ξ1, ξ2) = f(ξ1, ξ2)F1(ξ1, ξ2) = f(ξ1, ξ2)[−(ξ2
1 − 1)2 − (ξ2

2 − 1)2],

where F1(ξ1, ξ2) is the function defined in the previous example and ϕ = 0.
Clearly, we have⎧⎪⎨

⎪⎩
E2 = E1 ∪ S = {ξ ∈ R

2 : F2(ξ) = 0},
coE2 = {ξ ∈ R

2 : |ξ1| ≤ 1 , |ξ2| ≤ 1},
E2 ⊂ ∂(coE2) and E2 	= ∂(coE2).

If we consider the problem {
F2(Du) = 0 in Ω,

u = 0 on ∂Ω,
(1.4)

where Ω is the nonconvex domain as in Figure 2, we can easily verify the condition
(G2) that ensures the existence of viscosity solutions. Indeed, since ϕ = 0, to verify
(G2) it is sufficient to show that the sets of directions of the internal normal cone to
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Fig. 2. Domain of problem (1.4).

∂Ω at y, NN
Rn\Ω(y), are contained in E2 for every y ∈ ∂Ω. In order to see this, we

start by observing that in the points of regularity of ∂Ω the inward unit normal is in
E1. Then we have to consider NN

Rn\Ω(yi) for i = 0, . . . , 5. The only point at which

NN
Rn\Ω(yi) 	= ∅ is y3, since at the other points Ω is convex and NN

Rn\Ω(yi) is empty;
moreover, we can see that

NN
Rn\Ω(y3) = S,

and this proves (G2).

2. Preliminaries. This section is divided into two parts. In the first part we
recall several definitions of normal and tangent cones to a compact set that gen-
eralize the notions of normal and tangent vectors in the case where the set is not
regular. In the second part, after recalling the definition of a viscosity solution of
a Hamilton–Jacobi equation, we state some preliminary results on the existence of
viscosity solutions of a Dirichlet problem with a convex Hamiltonian.

2.1. Normal and tangent cones. We start by giving some definitions.
Definition 2.1. Let K be a locally compact subset of R

n and x ∈ K. A vector
v ∈ R

n is a generalized tangent to K at x if there are hn → 0+, vn → v such that
x+hnvn ∈ K ∀ n ∈ N. The set of all generalized tangent vectors to K at x is denoted
by TK(x), that is,

TK(x) :=
{
v ∈ R

n | ∃hn → 0+ , vn → v : x + hnvn ∈ K
}
.

A vector ν ∈ R
n is a generalized outward normal to K at x if, for every generalized

tangent v to K at x, 〈v, ν〉 ≤ 0. We denote by NK(x) the set of generalized normals
to K at x. That is,

NK(x) := {ν ∈ R
n | 〈v, ν〉 ≤ 0 ∀ v ∈ TK(x)} .
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Fig. 3. Different tangent cones.

The set TK(x) is a closed cone containing the origin, and we will refer to it as
tangent cone1 to K at x; by duality we will call NK(x) the normal cone to K at x.
Moreover, we denote by NN

K (x) the set of directions of the normal cone to K at x,
that is,

NN
K (x) :=

{
ν

|ν| , ν ∈ NK(x) \ {0}
}
.

Remark 2.2. Let K be a locally compact subset of R
n and x ∈ K.

(i) If the boundary of K is piecewise C1, then NN
K (x) reduces to a single vector

νx, where νx is the usual outward normal at any x ∈ ∂K, where the normal exists.
(ii) If Ω is an open subset of R

n and x ∈ ∂Ω, then a generalized normal ν ∈
NRn\Ω(x) can be regarded as an interior normal to Ω at x.

Another useful set that can be defined is Clarke’s tangent cone to K at x (see
[8, 22]). It is defined by2

CK(x) :=
{
v ∈ R

n | ∀xn → x ,∀tn → 0+ ,∃ vn → v : xn + tnvn ∈ K ,∀n ∈ N
}
.

Definition 2.3. A set K is said to be regular in the sense of Clarke at x,
provided TK(x) = CK(x).

To have an idea of the relations between the two definitions of tangent cones
TK(x) and CK(x) we can take a look at Figure 3.

1The set TK(x) was introduced in 1932 by Bouligand [4] with the name of contingent cone and it
was studied for the theory of derivations of functions on R

2. Later, in the theory of optimal control
it was called simply tangent cone (see, for example, [19, 23, 24]).

2The original definition of CK(x) was given by Clarke in a slightly different way, more indirectly,
but the two definitions are equivalent (see [7]).
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Remark 2.4. Let K be a locally compact subset of R
n and x ∈ K.

(i) CK(x) is always a closed convex cone contained in TK(x); for this reason
some authors prefer CK(x) instead of TK(x) as definition of tangent cone in many
applications (see, for example, [22]).

(ii) If TK(x) is convex, then NK(x) is, in fact, the polar cone of TK(x) in the
sense of convex analysis. It is the case, for example, of a set K regular in Clarke’s
sense at x for which we have

NK(x) = T 0
K(x) = C0

K(x),(2.1)

where C0
K(x) and T 0

K(x) denote the polar cones of CK(x) and TK(x) in the sense of
convex analysis.

(iii) Any convex set is regular in the sense of Clarke.

2.2. Viscosity solutions and convex Hamiltonians. Let us start by giving
the definition of subdifferential and superdifferential of continuous functions defined
on an open set Ω ⊆ R

n (see [1, 2, 11, 17]).
Definition 2.5. Let u ∈ C(Ω); we define for x ∈ Ω the following sets:

D+u(x) =

{
p ∈ R

n : lim sup
y→x,y∈Ω

u(y) − u(x) − 〈p, y − x〉
|x− y| ≤ 0

}
,

D−u(x) =

{
p ∈ R

n : lim inf
y→x,y∈Ω

u(y) − u(x) − 〈p, y − x〉
|x− y| ≥ 0

}
.

D+u(x) (D−u(x)) is called the superdifferential (subdifferential) of u at x.
In the following proposition we recall some useful properties of D+u(x) and

D−u(x) that we will need in what follows.
Proposition 2.6. Let u ∈ C(Ω) and x ∈ Ω. Then we have the following.

(i) D+u(x) and D−u(x) are closed, convex (possibly empty) subsets of R
n.

(ii) If u is differentiable at x, then

D+u(x) = D−u(x) = {Du(x)}.(2.2)

(iii) If for some x both D+u(x) and D−u(x) are nonempty, then (2.2) holds.
(iv) If u ∈ W 1,∞(Ω), then

D+u(x) ∪D−u(x) ⊆ co
{
p ∈ R

n | p = lim
n→∞

Du(xn) , xn → x
}
,(2.3)

where the limit is taken over all the sequence xn → x such that Du(xn) exists and the
sequence {Du(xn)} converges.

There are many ways to define the W 1,∞ viscosity solution of a differential equa-
tion (see [1, 11, 17]). Here we give a definition of such a solution in terms of sub- and
superdifferential. We use this definition since it is more convenient for our purposes.

Definition 2.7.

(i) u ∈ C(Ω) is a viscosity subsolution of F (Du(x)) = 0 in Ω if and only if
F (p) ≤ 0 for every x ∈ Ω ∀ p ∈ D+u(x).

(ii) u ∈ C(Ω) is a viscosity supersolution of F (Du(x)) = 0 in Ω if and only if
F (p) ≥ 0 for every x ∈ Ω ∀ p ∈ D−u(x).

A function u ∈ C(Ω) is a viscosity solution of F (Du(x)) = 0 if u is a viscosity
subsolution and supersolution.
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Remark 2.8. The definition of viscosity solution was originally given in terms
of test functions (see, for example, [21]). The equivalence of the two definitions can
be found in [1] or [21].

For stating the main result we need to recall some preliminary results on viscosity
solutions of Hamilton–Jacobi equations with convex Hamiltonians (cf. [18, 21] for
further details).

We focus our attention on the problem{
H(Du) = n(x) in Ω,

u(x) = ϕ(x) on ∂Ω,
(2.4)

where H : R
n → R is convex, continuous, and satisfies

H(p) → ∞ as |p| → ∞,

and n ∈ C(Ω) is such that n ≥ infRn H(p) in Ω.
We first define the function L(x, y) ∀ (x, y) ∈ Ω × Ω as

L(x, y) := inf
ξ∈Sx,y

{∫ 1

0

max
p∈Pξ,t

〈
−dξ

dt
, p

〉
dt

}
,(2.5)

where

Pξ,t :=
{
p ∈ R

n | H(p) = n
(
ξ(t)

)}
,

Sx,y :=

{
ξ : [0, 1] → Ω̄ | ξ(0) = x , ξ(1) = y ,

dξ

dt
∈ L∞(0, 1)

}
.

Remark 2.9. We should point out that L can be written also in terms of the
Lagrangian (i.e., the dual convex function) of H (see [21, section 5.3]).

Remark 2.10. Many authors refer to the function L as optical length; let us
point out why. For an admissible path ξ (i.e., a function ξ : [0, 1] → Ω such that
ξ(0) = x and ξ(1) = y) we define the optical length of ξ as

L(ξ) =

∫ 1

0

max
p∈Pξ,t

〈
−dξ

dt
, p

〉
dt,

and this denomination introduced by Kružkov in [20] is motivated by the fact that in
the very special case H(p) = |p|2, n(x) = const, this coincides with the optical length
introduced by Born and Wolf in [5].

Now we can state the classical (cf. [21, Theorem 5.2]).
Theorem 2.11 (Hopf–Lax formula). Let Ω be a bounded, connected domain of

R
n with Lipschitz boundary ∂Ω. Let ϕ ∈ Lip(∂Ω). If ϕ verifies the compatibility

condition

ϕ(x) − ϕ(y) ≤ L(x, y) ∀x, y ∈ ∂Ω,(2.6)

then the function

u(x) = inf
y∈∂Ω

{ϕ(y) + L(x, y)}

is the unique W 1,∞(Ω) viscosity solution of the problem (2.4).
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In section 3 we will apply Theorem 2.11 in the particular case where the Hamil-
tonian H is the gauge function of a convex set. For this reason we now want to
investigate how L can be rewritten in the special case where n(x) = 1 and H is a
gauge function; that is, H is convex and{

H(ξ) > 0 ∀ ξ 	= 0,

H(tξ) = tH(ξ) ∀ ξ ∈ R
n, ∀ t > 0.

Under these assumptions the function L can be rewritten as

L(x, y) := inf
Sx,y

{∫ 1

0

max
H(p)=1

〈
−dξ

dt
, p

〉
dt

}
,(2.7)

and, by the definition of the polar3 function of a gauge, (2.7) is equivalent to

L(x, y) := inf
Sx,y

{∫ 1

0

H0

(
−dξ

dt

)
dt

}
,(2.8)

where H0 is the polar function of H.
In the last part of this section we recall a Mac–Shane-type extension lemma

which is, in fact, a consequence of the Hopf–Lax formula (for more details see, for
example, [15]).

Lemma 2.12. Let Ω ⊂ R
n be a bounded closed set. Let H : R

n → R be a gauge
function, that is, a positively homogeneous convex function, and let H0 be its polar.
If ϕ : ∂Ω → R satisfies

ϕ(x) − ϕ(y) ≤ H0(x− y) ∀x, y ∈ ∂Ω,(2.9)

then the function

ϕ̃(x) = inf
y∈∂Ω

{
ϕ(y) + H0(x− y)

}
is a Lipschitz extension of ϕ to the whole R

n, and, moreover, it satisfies

ϕ̃(x) − ϕ̃(y) ≤ H0(x− y) ∀x, y ∈ R
n

and

H0(Dϕ̃(x)) ≤ 1 a.e. in R
n.(2.10)

Remark 2.13. The condition (2.9) is more restrictive than (2.6) since using
Jensen’s inequality we can easily prove that

L(x, y) ≥ H0(x− y).

Moreover, we should note that if the segment [x, y] is an admissible path for the defi-
nition of L (that is, it is completely contained in Ω), then L(x, y) = H0(x − y); this
is the case, for example, when Ω is convex.

3The polar of a gauge H is defined as

H0(ξ∗) = inf {λ ≥ 0 : 〈ξ, ξ∗〉 ≤ λH(ξ) ∀ ξ ∈ R
n}

and is characterized by

H0(ξ∗) = sup
ξ �=0

{ 〈ξ, ξ∗〉
H(ξ)

}
.
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3. Main result. In this section we establish a sufficient condition for the ex-
istence of a W 1,∞(Ω) viscosity solution of the problem (1.1) under the following
hypotheses:

• (H1) Let F : R
n −→ R be continuous and such that

E = {ξ ∈ R
n : F (ξ) = 0} ⊂ ∂(coE),

with E bounded, 0 ∈ int coE, and F (ξ) < 0 for every ξ ∈ int coE.
Remark 3.1. If F is convex and coercive, as in the classical literature, then

coE := {ξ ∈ R
n : F (ξ) ≤ 0} ,

and (H1) is satisfied with E = ∂(coE).
Following an idea used in [6], we want to compare the solution of (1.1) with the

viscosity solution of the equation{
ρ(Du) = 1 in Ω,

u = ϕ on ∂Ω,
(3.1)

where ρ is the gauge associated with coE defined as

ρ(ξ) = inf{λ ≥ 0 | ξ ∈ λ coE}.

We start by observing that ρ is well defined since by (H1) 0 ∈ int coE and coE is
compact; moreover, ρ is, by definition, convex and positively homogeneous of degree
1. Therefore we have the right hypotheses to apply the preliminary work done in the
previous section for the convex Hamiltonian; in particular, we can write the “optical
length” L(x, y) related to problem (3.1) as follows:

L(x, y) := inf
Sx,y

{∫ 1

0

ρ0

(
−dξ

dt

)
dt

}
,(3.2)

where ρ0 is the polar function of ρ in the sense of convex analysis and, therefore, ρ0

is convex and positively homogeneous.
Before stating the main result, we need to set our hypotheses on ϕ.
• (H2) Let ϕ ∈ Lip(∂Ω), with

∅ 	= D+ϕ(x) ⊆ E ∪ int coE ∀ x ∈ ∂Ω(3.3)

and satisfying the compatibility condition

ϕ(x) − ϕ(y) ≤ ρ0(x, y) ∀x, y ∈ ∂Ω.(3.4)

Remark 3.2. We should note that in condition (H2) we refer to D+ϕ(x) as the
superdifferential of the Lipschitz extension of ϕ given by Lemma 2.12. Moreover, we
can prove that D+ϕ(x) ⊆ coE ∀x ∈ Ω (see the proof of Theorem 3.3).

Finally, Theorem 2.11, Remark 2.13, and (H2) allow us to write the W 1,∞(Ω)
viscosity solution of (3.1) as follows:

u(x) = inf
y∈∂Ω

{ϕ(y) + L(x, y)} , x ∈ Ω.(3.5)

Now we are in the position to state the main theorem of this section.
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Theorem 3.3. Let Ω ⊂ R
n be a bounded connected set. Let F and ϕ satisfy

(H1) and (H2). If ∀ y ∈ ∂Ω, where NN
Rn\Ω(y) 	= ∅, there exists h ∈ D+ϕ(y) such that

∀ν ∈ NN
Rn\Ω(y) there exists a unique λν,h > 0 that verifies

h + λν,hν ∈ E,

then there exists u ∈ W 1,∞(Ω) viscosity solution of (1.1).
Remark 3.4. Let h ∈ D+ϕ(y) be as in Theorem 3.3 and ν ∈ NN

Rn\Ω(y); then,

since E ⊂ ∂(coE), the unique λν,h > 0 such that h+ λν,hν ∈ E is determined by the
equality

ρ(h + λν,hν) = 1.

We will prove that, under the hypotheses of Theorem 3.3, the function u : Ω → R

defined by (3.5) is actually the viscosity solution of (1.1). Before starting the proof
we need to investigate the properties of u. Let us start by proving the following key
lemma and making some remarks.

Lemma 3.5. Let Ω be a bounded connected open set of R
n with Lipschitz boundary

∂Ω, and let ϕ ∈ Lip(∂Ω) verify (H2). Let u be defined by (3.5) and y(x) ∈ ∂Ω be such
that u(x) = ϕ(y(x)) + L(x, y(x)). Then ∀ p ∈ D−u(x) and ∀h ∈ D+ϕ(y(x)),

〈p− h, q〉 ≤ 0 ∀ q ∈ TRn\Ω(y(x)),

that is, p− h ∈ NRn\Ω(y(x)).
Proof. Let x0 ∈ Ω, y0 ∈ ∂Ω such that u(x0) = ϕ(y0)+L(x0, y0) and q ∈ TRn\Ω(y0).

Let qk → q, as in Definition 2.1, such that y0 + εkqk 	∈ Ω and x0 + εkqk ∈ Ω. By
definition of L(x0, y0) for every ε > 0 we can find ξ0 ∈ Sx0,y0 (that is, ξ0 : [0, 1] →
Ω | ξ(0) = x0 , ξ(1) = y0 ,

dξ0
dt ∈ L∞(0, 1)) such that

L(x0, y0) + ε ≥
∫ 1

0

ρ0

(
−dξ0

dt
(t)

)
dt.(3.6)

Next we define, for every k ∈ N, ξk(t) = ξ0(t)+εkqk; clearly, we have ξk(0) = x0+εkqk,
ξk(1) = y0 + εkqk, and dξk

dt = dξ0
dt .

Since ξk and ∂Ω are continuous, there exist tk ∈ (0, 1) and yk ∈ ∂Ω such that
ξk(tk) = yk and ξk(t) ∈ Ω ∀ t < tk (see Figure 4).

Using (3.6), the properties of ξk, and the definition (3.5) of u, we have

u(x0) = ϕ(y0) + L(x0, y0)

≥ ϕ(y0) +

∫ 1

0

ρ0

(
−dξ0

dt
(t)

)
dt− ε

= ϕ(y0) − ϕ(y0 + εkqk)

+ ϕ(y0 + εkqk) − ϕ(yk) +

∫ 1

tk

ρ0

(
−dξ0

dt
(t)

)
dt

+ ϕ(yk) +

∫ tk

0

ρ0

(
−dξ0

dt
(t)

)
dt− ε

≥ ϕ(y0) − ϕ(y0 + εkqk) + u(x0 + εkqk)

+ ϕ(y0 + εkqk) − ϕ(yk) +

∫ 1

tk

ρ0

(
−dξ0

dt
(t)

)
dt− ε,

(3.7)
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Fig. 4. Geometrical construction of path ξk.

where we have used the homogeneity of ρ0 to establish∫ tk

0

ρ0

(
−dξ0

dt
(t)

)
dt =

∫ 1

0

ρ0

(
−d(ξk(tks))

ds

)
ds ≥ L(x0 + εkqk, yk).

We claim that

ϕ(y0 + εkqk) − ϕ(yk) +

∫ 1

tk

ρ0

(
−dξ0

dt
(t)

)
dt ≥ 0.(3.8)

Indeed, Lemma 2.12 ensures us that

ϕ(y0 + εkqk) − ϕ(yk) ≥ −ρ0(yk − y0 − εkqk);(3.9)

moreover, by Jensen’s inequality we have∫ 1

tk

ρ0

(
−dξ0

dt
(t)

)
dt =

∫ 1

0

ρ0

(
−dξk((1 − tk)s + tk)

ds

)
ds

≥ ρ0(yk − y0 − εkqk).

(3.10)

Combining (3.9) and (3.10) we obtain the claim.
Now using (3.7) and (3.8) we can write, letting ε → 0,

u(x0) ≥ u(x0 + εkqk) −
(
ϕ(y0 + εkqk) − ϕ(y0)

)
.(3.11)

Therefore, taking h ∈ D+ϕ(y0) and p ∈ D−u(x0), we have by definition that

ϕ(y0 + εkqk) − ϕ(y0) ≤ 〈h, εkqk〉 + o(εk),

u(x0 + εkqk) − u(x0) ≥ 〈p, εkqk〉 + o(εk),

and in light of (3.11), we can say that

〈p, εkqk〉 ≤ u(x0 + εkqk) − u(x0) + o(εk)

≤ ϕ(y0 + εkqk) − ϕ(y0) + o(εk)

≤ 〈p, εkqk〉 + o(εk).
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Finally, dividing both sides of the last inequality by εk and taking the limit for k → ∞,
we obtain

〈p− h, q〉 ≤ 0.

This proves the lemma.

Remark 3.6. If we fix p ∈ D−u(x) and h ∈ D+ϕ(y(x)) with h 	= p, then there
exist νp,h ∈ NN

Rn\Ω(y(x)) and a unique λp,h > 0 such that p = h + λp,hνp,h.

We now give the proof of the main theorem.

Proof of Theorem 3.3. Let u be defined as in (3.5); by definition, u is a viscosity
solution of (3.1). We claim that u is also a viscosity solution of (1.1). We divide the
proof into two steps: first, we show that u is in fact a supersolution of (1.1) and then
show that u is also a subsolution.

• We start by observing that ∀x ∈ Ω and ∀ p ∈ D−u(x) we have ρ(p) = 1 (see
also [3]). Indeed, since u is a supersolution of (3.1), we have that ∀x ∈ Ω and
∀ p ∈ D−u(x), ρ(p) ≥ 1. Moreover, since u is also a viscosity subsolution of
(3.1), in particular we have ρ(Du(x)) ≤ 1 (i.e., Du(x) ∈ coE) ∀x ∈ Ω, where
Du(x) exists, since in such points D+u(x) = {Du(x)}. The continuity of ρ
ensures us that

ρ
(

lim
n→∞

Du(xn)
)
≤ 1

∀xn → x such that Du(xn) is well defined and Du(xn) converges; that is,
the following inclusion holds:

{
p ∈ R

n | p = lim
n→∞

Du(xn) : xn → x
}
⊆ coE.(3.12)

Therefore, by Proposition 2.6(iv) and (3.12) we can say that

D−u(x) ⊆ co
{
p ∈ R

n | p = lim
n→∞

Du(xn) : xn → x
}
⊆ coE,

that is, ρ(p) ≤ 1 ∀ p ∈ D−u(x), and this proves the claim.
Now let y(x) ∈ ∂Ω be such that u(x) = ϕ(y(x)) + L(x, y(x)) and h ∈
D+ϕ(y(x)) as in the hypotheses. We distinguish two cases.

(1) If h = p, then ρ(h) = 1; since h ∈ E ∪ int coE, we have h ∈ E, and
so p ∈ E, that is, F (p) = 0.

(2) If h 	= p, by Remark 3.6, there exist νp,h ∈ NN
Rn\Ω(y(x)) and a

unique λp,h > 0 such that

p = h + λp,hνp,h;(3.13)

moreover, λp,h is uniquely determined by ρ(h+λp,hνp,h) = 1. The hypothesis
made on h and (3.13) imply p ∈ E; that is, as before, F (p) = 0.
In particular, u is a viscosity supersolution of (1.1).

• Since u is also a viscosity subsolution of (3.1), then for every x ∈ Ω and
p ∈ D+u(x) we have p ∈ coE (i.e., ρ(p) ≤ 1). As (H1) is satisfied and F is
continuous, it follows that F (p) ≤ 0. So u is a viscosity subsolution of (1.1).

The two above observations complete the proof.
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4. Corollaries. This section is divided into two parts. In the first part we focus
our attention on the differentiability properties of Lipschitz and semiconcave functions
with the aim of relating the notions of normal and tangent cones to the sets described
by such types of functions (e.g., epigraphs or level-sets) to their generalized gradients.
In the second part we state two corollaries of Theorem 3.3 in which the hypotheses on
the geometry of the domain Ω can be written in a nicer way in terms of the differential
property of the functions that represent the boundary ∂Ω.

4.1. Lipschitz continuity and semiconcavity. Let us recall briefly some def-
initions and relevant differential properties of locally Lipschitz continuous functions
that we will use in what follows. By the Rademacher theorem such functions are
almost everywhere differentiable with locally bounded gradients (see [16]). Hence, if
u ∈ Liploc(Ω), we can consider the set

D∗u(x) :=
{
p ∈ R

n : p = lim
n→∞

Du(xn), xn → x
}
,

where xn is a sequence of points of differentiability for u. We note that D∗u(x) is
nonempty and closed for any x ∈ Ω.

Let u : Ω → R be Lipschitz in a neighborhood of a given point x, and let q ∈ Sn−1

be a direction in R
n. We define

• the one-sided directional derivative of u at x in the direction q as

u′(x, q) = lim
t→0+

u(x + tq) − u(x)

t
,

• the generalized directional derivatives of u at x in the direction q as

u0(x, q) = lim sup
y→x,t→0+

u(y + tq) − u(y)

t
,

u0(x, q) = lim inf
y→x,t→0+

u(y + tq) − u(y)

t
,

• the generalized gradient (or Clarke’s gradient) of u at x as

∂u(x) = {p ∈ R
n : u0(x, q) ≥ p · q ∀q ∈ R

n}
= {p ∈ R

n : u0(x, q) ≤ p · q ∀q ∈ R
n}.

In the following proposition we collect some well-known properties of Lipschitz
functions (see [1, 8]).

Proposition 4.1. Let u : Ω → R be locally Lipschitz continuous in the open set
Ω; then

(i) u0(x, q) = −u0(x,−q) ∀x ∈ Ω, q ∈ R
n;

(ii) ∀x ∈ Ω the function q �→ u0(x, q) is finite, positively homogeneous, subad-
ditive, and convex (and locally Lipschitz continuous);

(iii) the map (x, q) �→ u0(x, q) is upper semicontinuous;
(iv) ∀x ∈ Ω we have coD∗u(x) = ∂u(x);
(v) D+u(x) and D−u(x) are bounded ∀x ∈ Ω and

D+u(x) ∪D−u(x) ⊆ ∂u(x);
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(vi) ∀ q ∈ Sn−1 there exists the classical one-sided directional derivative u′(x, q)
at any x ∈ Ω, where D+u(x) = ∂u(x) and the following equality holds:

u′(x, q) = min
p∈D+u(x)

p · q = u0(x, q).(4.1)

Remark 4.2. Looking at the definition of D∗u(x) and Proposition 4.1(iv), one
can observe that Proposition 4.1(v) is just a reformulation of Proposition 2.6(iv).

Now we introduce a definition of regularity of functions that is in some way related
to regularity of sets in Clarke’s sense (from which the name derives). It will be useful
for stating some hypotheses that allow us to write the normal cone of a set in a nicer
way.

Definition 4.3. A function u : Ω → R is said to be regular at x (in the sense
of Clarke), provided

(i) ∀ q ∈ R
n the one-sided directional derivative u′(x, q) exists;

(ii) ∀ q ∈ R
n the equality u′(x, q) = u0(x, q) holds.

The following theorem (a proof of which can be found in [8]) and its corollaries
give us a useful characterization of normal cone to the level sets of regular functions.

Theorem 4.4. Let f : R
n → R be Lipschitz near a given point x, and suppose

that 0 	∈ ∂f(x). If K is defined as

K := {y ∈ R
n : f(y) ≤ f(x)},

then

C0
K(x) ⊂

⋃
λ≥0

λ∂f(x).

If, in addition, f is regular in the sense of Clarke at x, then equality holds, and K is
Clarke regular at x, that is,

NK(x) = C0
K(x) =

⋃
λ≥0

λ∂f(x).(4.2)

Remark 4.5. The first equality in (4.2) follows by (2.1) of Remark 2.4(iii), since
K is regular.

Remark 4.6. The above proposition holds also in a more general framework,
that is, for functions defined in a general Banach space, as stated in [8].

Corollary 4.7. Let Ω := {y ∈ R
n : f(y) > 0}, where f is a Lipschitz continu-

ous function. Let y0 ∈ ∂Ω, and suppose that f verifies the following properties:
(i) f is regular in Clarke’s sense at y0;
(ii) 0 	∈ ∂f(y0) = D−f(y0) ∪D+f(y0);

then

NN
Rn\Ω(y0) =

(
D−f(y0) ∪D+f(y0)

)N
.(4.3)

Proof. We note first that ∂Ω ⊆ {y ∈ R
n : f(y) = 0}; then y0 ∈ ∂Ω imply

f(y0) = 0. So we can write

R
n \ Ω := {y ∈ R

n : f(y) ≤ f(y0)}.

Hence we can apply Theorem 4.4, and, in particular, since f is Clarke regular, by
(4.2) we have

NRn\Ω(y0) =
⋃
λ≥0

λ∂f(y0).
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Finally, we can conclude, using hypothesis (ii) of Corollary 4.7, that

NN
Rn\Ω(y0) =

⎛
⎝⋃

λ≥0

λ∂f(y0)

⎞
⎠

N

= (∂f(y0))
N =

(
D−f(y0) ∪D+f(y0)

)N
.

In order to prove a second corollary of Theorem 4.4 that is equally useful, we need
to recall the definition and some relevant properties of semiconcave and semiconvex
functions (see [1] for further details).

Definition 4.8. We say that u : Ω → R is semiconcave on an open convex set
Ω if there exists a constant C > 0 such that

λu(x) + (1 − λ)u(y) ≤ u (λx + (1 − λ)y) +
1

2
Cλ(1 − λ)|x− y|2(4.4)

or, equivalently, if the application x �→ u(x) − 1
2C|x|2 is concave.

We say that u : Ω → R is semiconvex if −u is semiconcave.
If u is continuous, an equivalent way to express condition (4.4) is to require that

u(x + h) − 2u(x) + u(x− h) ≤ C|h|2

for any x ∈ Ω and h ∈ R
n with sufficiently small |h|.

Remark 4.9. It can be proved (see, for example, [1]) that a semiconcave function
u in Ω is in fact locally Lipschitz continuous and ∀x ∈ Ω we have

D+u(x) = ∂u(x) = coD∗u(x),

while

D−u(x) 	= 0 ⇒ u is differentiable in x.

Now we can prove the following corollary.
Corollary 4.10. Let Ω := {y ∈ R

n : f(y) ≤ 0}, where f is a semiconcave
function, if y0 ∈ ∂Ω and 0 	∈ D+f(y0); then

NN
Rn\Ω(y0) = −(D+f(y0))

N .

Proof. We first note that from Remark 4.9 f is locally Lipschitz continuous and
D+f(y0) = ∂f(y0). So we can say, by Proposition 4.1(vi), that

f ′(y0, q) = f0(y0, q) ∀ q ∈ Sn−1.

Moreover, using the definition of generalized derivatives we have

− (−f ′(y0, q)) = f ′(y0, q) = f0(y0, q) = −
(
−f0(y0, q)

)
∀ q ∈ Sn−1;

that is, −f is regular at y0 in the sense of Clarke. We now observe that, since

−D−(−f)(y0) = D+f(y0) = ∂f(y0) = −∂(−f)(y0),

f verifies the hypothesis of Corollary 4.7 with Ω := {y ∈ R
n : −f(y) > 0}, and so we

have

NN
Rn\Ω(y0) =

(
D−(−f)(y0)

)N
= −(D+f(y0))

N .
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Remark 4.11. The two above corollaries hold also if the hypotheses are verified
only locally, that is, if for y0 ∈ ∂Ω there exists a ball B(y0, r) centered in y0 such that
Ω ∩ B(y0, r) can be represented as the sublevel or superlevel set of a function defined
on B(y0, r) satisfying the hypotheses required.

The last result that we want to recall can be found in [8], and it gives us a useful
relation between the generalized gradient of a locally Lipschitz function f and Clarke’s
normal cone C0

epi f to its epigraph.
Proposition 4.12. Let f : Ω ⊆ R

n → R be Lipschitz continuous near a given
point x; then ξ ∈ R

n belongs to ∂f(x) if and only if (ξ,−1) belongs to C0
epi f (x, f(x)).

4.2. Corollaries. In the two following corollaries we consider some hypotheses
on the geometry of the domain Ω that allow us to write Theorem 3.3 in a nicer way.

Let Ω be a Lipschitz domain, and we have that Ω can be locally represented as
the epigraph of a Lipschitz function; that is, ∀y ∈ ∂Ω there exists a direction νy and a
function ωy defined on the hyperplane orthogonal to νy such that in a neighborhood
of y, Ω is the epigraph of ωy.

Definition 4.13. We will say that Ω is convex (concave) at y ∈ ∂Ω if there
exists a νy ∈ Sn−1 such that the function ωy, which represents Ω in the direction νy,
is convex (concave).

Corollary 4.14. Let Ω be a locally Lipschitz domain, and denote by J the set
of the points of nondifferentiability of ∂Ω. Suppose that Ω is convex or concave at
y ∀ y ∈ J . Let F and ϕ satisfy (H1) and (H2).

If ∀y ∈ ∂Ω, where D+ωy(y) 	= ∅, there exists h ∈ D+ϕ(y) such that ∀ξ ∈
D+(ωy)(y) there exists a unique λh,ξ that verify

h− λh,ξ(ξ + νy) ∈ E,(4.5)

then there exists a u ∈ W 1,∞(Ω) viscosity solution of (1.1).
Remark 4.15. We have to note that in (4.5) ξ has to be considered as a point of

R
n using the classical immersion in R

n of the hyperplane orthogonal to νy to which ξ
belongs by definitions.

Remark 4.16. In the statement of Corollary 4.14 we have used the functions ωy;
with this notation it seems that we have to change ωy ∀ y ∈ ∂Ω, but we can simply
observe that the compactness of ∂Ω ensures us that we need only a finite number of
ωy. In fact, we can consider for every y ∈ ∂Ω a neighborhood Ωy of y in which Ω is
represented by the function ωy. From this cover we can extract a finite one ∪k

i=1Ωyi ,
where ωy = ωyi for every y ∈ Ωyi ∩ ∂Ω.

Remark 4.17. If we consider an orthogonal basis {e1, . . . , en} for R
n, with

en = νy, we note that ξ lives in the space spanned by {e1, . . . , en−1}, and (4.5) can be
rewritten as

h− λh,ξ(ξ, 1) ∈ E ∀ξ ∈ D+(fy)(y).

Proof of Corollary 4.14. Looking at the proof of Theorem 3.3 we need only to
work with the points on ∂Ω that realize the minimum in definition (3.5). Now let
x ∈ Ω and y ∈ ∂Ω be such that u(x) = ϕ(y) + L(x, y). If D+ωy(y) 	= ∅, then Ω is
convex in y, and we can prove, using the same argument of Lemma 2.9 in [6], that y
must be a point of differentiability for ∂Ω, and this is a contradiction. Hence we have
that all the points that realize the minimum in (3.5) have D+ωy 	= ∅.

Now we want to identify the set NRn\Ω(y) and write it in terms of the superdif-
ferential of ωy in order to apply Theorem 3.3.
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We first observe that if ωy is differentiable in y, then NRn\Ω(y) reduces to the
classic interior normal to ∂Ω given by (Dω(y) + νy), and there is nothing to prove.

The last case that we have to consider is if Ω is concave at y and D+ωy(y) does
not reduce to a single vector. In this case we have that −ωy is convex near y, and it
represents R

n \ Ω in the direction −νy. Hence R
n \ Ω is convex near y, and so, by

Remark 2.4(iii), is Clarke regular, and we have

NRn\Ω(y) = C0
Rn\Ω(y) = C0

epi (−ωy)(y).(4.6)

Moreover, by Proposition 4.12 we can write

C0
epi (−ωy)(y) = {(ξ,−1) : ξ ∈ ∂(−ωy(y))(y)}.(4.7)

We now observe that, since −ωy is convex, we have

∂(−ωy(y))(y) = D−(−ωy)(y) = −D+ωy(y),(4.8)

and, finally, by (4.6), (4.7), and (4.8) we have

NN
Rn\Ω(y) = {(ξ,−1) : ξ ∈ −D+ωy(y)}N .

The conclusion follows by Theorem 3.3.
Another way to represent a domain is like a sublevel- or superlevel-set of a given

function. Also in such a case, we have an appropriate version of Theorem 3.3. It is
clear that if ∂Ω is regular in a neighborhood of a point y ∈ ∂Ω, we can locally (near
y) write Ω as the sublevel-set of a regular function fΩ

y ; suppose, moreover, that Ω
verifies the following hypothesis:

• (H3) Let Ω be a locally Lipschitz domain, and denote by J the set of the
points of nondifferentiability of ∂Ω. Suppose that if for y ∈ J there exists
an x ∈ Ω such that u(x) = ϕ(y) + L(x, y) (that is, y realizes the minimum
in definition (3.5)), then Ω can be represented near y as the sublevel-set of a
semiconcave function fΩ

y (see Remark 4.9).
The following corollary is an easy consequence of Theorem 3.3 and Corollary 4.10.
Corollary 4.18. Let Ω, F , and ϕ satisfy (H1), (H2), and (H3).
If ∀y ∈ ∂Ω, where D+fΩ

y (y) 	= ∅, there exists h ∈ D+ϕ(y) such that ∀ξ ∈
D+fΩ

y (y) there exists a unique λh,ξ that verify

h− λh,ξξ ∈ E,(4.9)

then there exists a u ∈ W 1,∞(Ω) viscosity solution of (1.1).
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ON SQUIRT SINGULARITIES IN HYDRODYNAMICS∗
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Abstract. We consider certain singularities of hydrodynamic equations that have been proposed
in the literature. We present a kinematic argument that shows that if a volume preserving field
presents these singularities, certain integrals related to the vector field have to diverge. We also show
that if the vector fields satisfy certain partial differential equations (Navier–Stokes, Boussinesq), then
the integrals have to be finite. As a consequence, these singularities are absent in the solutions of
the above equations.
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1. Introduction. One way to make progress towards settling the question of
existence of singularities in incompressible fluid motion is to conjecture plausible sce-
narios for the formation of singularities supported by numerical evidence. Then, it
becomes a natural object to develop mathematically rigorous arguments that derive
quantitative consequences of the different scenarios and possibly show that these sin-
gularities cannot occur in solutions of hydrodynamic equations.

In this note we introduce some classes of singularities which we call “squirt”
singularities in which some portion of material is ejected from a set of positive measure.
These squirt singularities include as particular cases several other singularities that
had been considered in the literature (for example, the “potato chip” singularities,
the “saddle collapse,” and the “tube collapse”; see section 2 for precise definitions).

In section 3 we present a very simple argument that shows that if a volume
preserving vector field u presents a squirt singularity at time T , then∫ T

0

||u||L∞ dt = ∞.(1.1)

In section 4 we show that if the vector field satisfies certain partial differential
equations (e.g., Navier–Stokes in two and three dimensions, Boussinesq equations in
two and three dimensions with positive viscosity), then∫ T

0

||u||L∞ dt < ∞.(1.2)

As a consequence of the results in sections 3 and 4, we conclude that volume pre-
serving vector fields satisfying the partial differential equations considered in section
4 do not experience any of the squirt singularities.
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The above results include as a particular case a partial answer to a question
proposed by Moffatt in [20]. We show that if a two-dimensional fluid satisfies the
Boussinesq equation describing a fluid moving under buoyancy forces with positive
fluid viscosity ν > 0, but possibly with zero molecular diffusivity κ = 0, then it cannot
have a saddle collapse.

Even if the arguments presented here exclude that the singularities happen, they
give little information on how fast the singular terms may grow. In some of the cases
discussed here, these more quantitative arguments are available in the literature (see
[8]). They, of course, require using more heavily the details of the equation and the
singularity.

2. Squirt singularities. In this section we collect the definitions of the different
types of singularities that we will be considering in this paper.

2.1. Notation. We denote the Lebesgue measure of a set A by |A| and the ball
centered at x0 with radius r by Br(x

0).

Let Ω ⊂ R
n be an open set. We consider a C1 time dependent vector field

u : Ω×[0, T ) → R
n.

This vector field defines an evolution for trajectories Φt(x), where Φt(x) denotes
the position at time t of the trajectory with initial condition x at time t = 0. More
generally, we denote by Φt,a(x) the position at time t of the trajectory which at time
t = a is in x. Note that, when both sides of the formulas make sense, Φt(x) = Φt,0(x),
Φt,a = Φt ◦ Φ−1

a (x), Φt,a ◦ Φa,b(x) = Φt,b(x).

For S ⊂ Ω, we denote by

ΦΩ
t,aS = {x ∈ Ω | x = Φt(y), y ∈ S, Φs(y) ∈ Ω, 0 ≤ s ≤ t}.

That is, ΦΩ
t,a is the evolution of the set S, starting at time a, after we eliminate the

trajectories which step out of Ω at some time.

We will henceforth assume that u is divergence free. Given the fact that u has
zero divergence, we have that |Φt,sS| is independent of t and |ΦΩ

t,aS| is nonincreasing
in t.

2.2. Definition of singularities.

2.2.1. Squirt singularities. The following definition will be the hypothesis of
the main kinematic result of this paper, Theorem 3.1.

Definition 1. Let Ω−,Ω+ be open and bounded sets. Ω− ⊂ Ω+. Therefore,
dist(Ω−,R

d − Ω+) ≥ r > 0.

We say that u experiences a squirt singularity in Ω−, at time T > 0, when for
every 0 ≤ s < T , we can find a set Ss ⊂ Ω+ such that

• Ss ∩ Ω− has positive measure, 0 ≤ s < T ,

• limt→T |ΦΩ+

t,s Ss| = 0.

The physical intuition is that there is a region of positive volume so that all the
fluid occupying it gets ejected from a slightly bigger region in a finite time.

As we see in the following subsections, Definition 1 includes as particular cases
other singularities that have been considered in the literature. Of course the con-
clusions of Theorem 3.1, which uses only Definition 1 as hypothesis, are a fortiori
valid when we use as hypothesis the existence of the other singularities that we now
formulate.
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2.2.2. Potato chip singularities.
Definition 2. We say that u experiences a potato chip singularity when we can

find continuous functions

f± : R
n−1 × [0, T ) → R

such that

f+(x1, . . . , xn−1, t) ≥ f−(x1, . . . , xn−1, t), t ∈ [0, T ], x1, . . . , xn−1 ∈ B2r(Πx0),

f+(x1, . . . , xn−1, 0) > f−(x1, . . . , xn−1, 0), x1, . . . , xn−1 ∈ Br(Πx0),

lim
t→T−

(f+(x1, . . . , xn−1, t) − f−(x1, . . . , xn−1, t)) = 0 ∀ x1, . . . , xn−1 ∈ B2r(Πx0)

and such that the surfaces

Σ±,t = {xn = f±(x1, . . . , xn−1, t)} ⊂ Ω

are transformed into each other by the flow

Φt(Σ±,0) ⊃ Σ±,t .

Note that in Definition 2 we are not requiring that the functions are C1 as was
done in [12]. For us, it suffices that f± are continuous. That is, we allow the singu-
larities to be ruffled potato chips. Since the arguments we will present in section 3 do
not depend on calculus identities, there is no need for the boundaries of the sets to
be differentiable.

If we denote by S(f)
t = {x | f−(x1, t) ≤ xn ≤ f+(x1, t)}, we have, by the interme-

diate value theorem and the continuity of the trajectories

Φ
Br(x0)
t,s (S(f)

s ) ⊂ St.(2.1)

In particular, if f± verify Definition 2, then S(f)
s verifies the assumptions of Definition

1.
Hence, if a system satisfies Definition 2, it also satisfies Definition 1.
Potato chip singularities were introduced as a conjectural mechanism (see [17]

and [19]) of singularities for a three-dimensional ideal magnetohydrodymamic flow
in which two linked flux rings approach each other forming two-dimensional current
sheets. In two-dimensional cases, similar singularities were proposed by [21], [22].

The two-dimensional potato chip singularities were considered in [9], where they
were called “sharp fronts.” Using calculus identities and the fact that the fluid admits
a stream function representation, it was shown that if a sharp front exits, then (1.1)
holds. This result was generalized to three dimensions in [12]. Both of these results
follow from Theorem 3.1.

2.2.3. Tube collapse singularities. The following definition appears for the
case n = 3 in [11]. In the case d = 2 the concept was introduced in [9], [10].

Let Ii ⊂ R, i = 1, . . . , n, be bounded intervals. Let Q = ×iIi ⊂ R
n be a cube.

Definition 3. A regular tube is a relatively open set S ⊂ Q, characterized as

S = {x ∈ Q | f(x) < 0},(2.2)
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where f : Q → R is a C1 function that satisfies

f(x) = 0 =⇒ ∇x1,... ,xn−1
f = 0.

For every xn ∈ In, the set

S(xn) = S ∩ I1 × · · · × In−1 × {xn}

is nonempty, and its closure is contained in the interior of I1 × · · · × In−1 × {xn}.
We will also consider the situation when ft is a family of functions indexed by

time t ∈ [0, T ).
Definition 4. We say that the vector field u experiences a tube collapse singu-

larity at time T when the boundaries of the tube evolve with the velocity field u and
lim inft→T |St| = 0.

An example worth keeping in mind is when ft(x) = dist(x, γ) + r(t), where γ is a
curve, dist denotes the distance, and r(t) → 0 as t → 0. St is the set of points which
are at a distance less than r(t) from the curve γ. (Of course, we could let the curve
γ depend on time, provided that it does not become too pathological.)

Again, we point out that Definition 4 implies Definition 1. We can take Ω− =
×i=1,...,n−1Ii × J , Ω− = ×i=1,...,n−1Ii × Id, where J ⊂ Id is an interval contained in
the interior of Id.

2.2.4. Saddle collapse singularity. This singularity is specific for two-dimen-
sional flows. We follow the definition in [8]. We refer to that paper for a comparison
with alternative definitions in the literature.

Definition 5. We consider foliations of a neighborhood of the origin (with co-
ordinates x1, x2) whose leaves are given by equations of the form

ρ ≡ (y1β(t) + y2) · (y1δ(t) + y2) = cte(2.3)

and (y1, y2) = Ft(x1, x2), where β, δ : [0, T ) → R
+ are C1 functions, F is a C2

function of x, t, for a fixed t, and Ft is an orientation preserving diffeomorphism.
We say that the foliation experiences a saddle collapse when

lim inf
t→T

β(t) + δ(t) = 0.

If the leaves of the foliation are transported by a vector field u, we say that the
vector field u experiences a saddle collapse.

If we take as Ω± balls centered at F (0, 0, T ) and as the set Ss a connected com-
ponent of the set ρ < 0, we see that Definition 5 implies Definition 1.

3. Kinematic arguments. The main result of this section follows.
Theorem 3.1. If u as before has a squirt singularity, then∫ T

s

sup
x
|u(x, t)| dt = ∞ ∀s ∈ (0, T ).(3.1)

Moreover, if u has a potato chip singularity, then∫ T

s

sup
x
|Πu(x, t)| dt = ∞,(3.2)
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where Π is the projection on the first n− 1 coordinates.
Remark 1. We note that in the argument for Theorem 3.1, some of the hypothe-

ses can be somewhat weakened.
For example, using the theory of [13], the hypothesis that u ∈ C1 can be weakened

to u ∈ H1.
We also note that strict volume preservation is not needed. It suffices that the

volume contraction remains bounded. That is, for some constant C ≥ 1 and all
M ⊂ R

n measurable, C−1|M | ≤ |Φt(M)| ≤ C|M |.
Remark 2. We note that if u(x, t) experiences a squirt singularity at t = T and

Γ : [0, T ) ←↩ [0, T ) is a reparameterization, then

ũ(x, t) = u(x,Γ(t))Γ′(t)

also has a potato chip singularity.
It is reassuring to note that the conclusions of Theorem 3.1 remain true for ũ.

But the observation that the existence of potato chip singularities is invariant under
time reparameterizations shows that, with the present assumptions, one cannot obtain
more precise rates of the blow-up of supx|u(x, t)| than (3.1).

In case we assume that singularities are somewhat more uniform, it is possible to
develop more quantitative information about the rates of collapse.

Roughly speaking, we just need to assume that the exit area of the set Ss controls
the volume of the set.

For example, in potato chip singularities (Definition 2), we say that the collapse
is uniform when

max
x1,x2

(f+(x1, x2, t) − f−(x1, x2, t)) ≤ M min
x1,x2

(f+(x1, x2, t) − f−(x1, x2, t)),

where M is a constant independent of time.
In tube collapse singularities (Definitions 4 and 3) we say that the collapse is

uniform when

max |S(xn)|n−1 ≤ M min |S(xn)|,

where M is a constant independent of time and | · |n−1 denotes the n− 1 dimensional
area.

Given a St a C1 set, we denote by ∂̃St the portion of the boundary which is not
evolving with the fluid.

We note that by zero divergence of the fluid the change of volume is the integral
of u over ∂̃St. Hence, we always have

d

dt
|St| ≥ −||u||L∞ |∂̃St|n−1.

In the uniform cases, we have

d

dt
|St| ≥ −M ||u||L∞ |St|.

Integrating the above equation we have

|St| ≥ |S0| exp

(
−M

∫ t

0

||u(s)||L∞ ds

)

so that uniform collapses cannot happen too fast.
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3.1. Proof of Theorem 3.1. From the assumption that |ΦΩ+

T,sSs| → 0, we
conclude that almost all the trajectories starting in Ss at time s leave the set Ω+ at
a time τ ∈ (s, T ).

Therefore, we conclude that for any trajectory x(t) starting in Ω− ∩ Ss at time s
we have ∣∣∣∣

∫ τ

s

u(Φt(x), t) dt

∣∣∣∣ ≥ r > 0.(3.3)

Therefore,

∫ T

s

sup
x
|u(x, t)| dt ≥ r > 0.(3.4)

Since (3.4) holds for every s ∈ (0, T ) we conclude that (3.1) holds.
To establish (3.2) we observe that in the classical potato chip singularity, since

the escape can happen only by increasing the n− 1 first components, we can sharpen
(3.3) to ∣∣∣∣∣

∫ T

s

Πu(Φt(x), t) dt

∣∣∣∣∣ ≥ r/2

again for all s ∈ [0, T ).

4. A priori bounds. In this section, we show how if the vector field u satisfies
certain partial differential equations, then (1.2) holds. By Theorem 3.1, we conclude
immediately that these equations do not exhibit any of the singularities considered in
Definition 1.

We consider two- and three-dimensional Boussinesq equations and Navier–Stokes
equations in three dimensions.

We note that the results on two-dimensional Boussinesq equations are closely
related to the problem proposed by Moffatt [20]:

XXI Century Problem 3: The problem is to examine the evolution of the θ-field
for Boussinesq equations (see [1]) in the neighborhood of its saddle points, to deter-
mine whether singularities of ∇θ can develop, and to examine the influence of weak
molecular diffusivity k in controlling the approach to such singularities.

We show that the saddle collapse singularities and similar ones cannot occur. We
do not exclude the possibility that singularities other than squirt singularities could
also occur. For example, the argument presented here does not exclude singularities
in which the surfaces evolve until they touch at just one point other than the origin.

The proof of (1.2) for the case of Navier–Stokes equations has been in the liter-
ature for a long time. See, for example, [16], [23] and the exposition in [14], where it
is called the “second FN ladder.” Hence, we will present only the proof in the case of
the Boussinesq equation in two and three dimensions.

The proofs are based on very elementary arguments, basically, integration by
parts without boundary terms, Sobolev inequalities and interpolation inequalities.
Hence, they remain valid for all the boundary conditions that allow us to carry out
these operations. These include problems defined in the whole space and in a bounded
domain with periodic as well as Neumann and Dirichlet conditions with respect to
appropriate fields or their gradients. We will henceforth assume that the boundary
conditions are such that they allow integration by parts without boundary terms.
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4.1. Two-dimensional Boussinesq equations. The Boussinesq equations are

∂u

∂t
+ u · ∇u = −∇p + ν∆u + (0, θ),(4.1)

∇ · u = 0,(4.2)

(∂t + u · ∇) θ = κ∆θ,(4.3)

with u = (u1, u2), x = (x1, x2) ∈ R
2 or R

2/Z
2, and finite energy at initial time.

The Cauchy problem for the system (4.1), (4.2), and (4.3) has been extensively
studied in the literature; see [5], [18], and [24]. In the case κ > 0 it is known that the
equation does not develop singularities in finite time. In order to study the evolution
of the level sets of θ it is reasonable to take κ = 0, where the collapse of the saddle
would produce a singularity on ∇θ. This is a two-dimensional potato chip singularity;
for more details, see [9].

In [6], [7], and [15] the two-dimensional Boussinesq convection in the absence of
viscous effects was studied numerically and analytically.

Theorem 4.1. If u satisfies the two-dimensional Boussinesq equation with ν > 0
and ||θ(0)||L2 ≤ A < ∞, then (1.2) holds.

In particular, using Theorem 3.1, u does not exhibit any singularity satisfying
Definition 1.

Proof. We denote by C1, C2 constants that depend only on ν,A and the initial
conditions. In particular, they can change the meaning from line to line.

From (4.3) we obtain that the Lp norms p ≥ 1 are nonincreasing—they are
conserved if κ = 0:

‖θ(·, t)‖Lp ≤ ‖θ(·, 0)‖Lp for 1 ≤ p ≤ ∞ ∀t ≥ 0.

Taking the curl of (4.1) of the velocity field we get

(∂t + u · ∇)ω = θx1 + ν∆ω,(4.4)

where ω = curl(u).
We multiply (4.4) by ω and integrate by parts to obtain

1

2

d

dt

∫
|ω|2 dx + ν

∫
|∇ω|2dx =

∫
ωθx1

dx.(4.5)

Integration by parts and the Hölder inequality gives

1

2

d

dt

∫
|ω|2 dx + ν||∇ω||2L2 ≤ ||∇ω||L2 ||θ||L2 .

This implies that

d

dt

∫
|ω|2 dx ≤ C1,

and therefore ||ω||L2 ≤ C1t + C2.
Substituting this into (4.5) gives

ν||∇ω||2L2 ≤ A||∇ω||L2 − 1

2

d

dt
||ω||L2 .
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An integration with respect to time and a Hölder inequality for the integration with
respect to time yields

ν

∫ t

0

ds ||∇ω(s)||2L2 ≤ A

∫ t

0

ds ||∇ω(s)||L2 − 1

2
||ω(t)||2L2 +

1

2
||ω(0)||2L2

≤ At1/2
(∫ t

0

ds ||∇ω(s)||2L2

)1/2

+
1

2
||ω(0)||2L2 .

This yields ∫ t

0

ds ||∇ω(s)||2L2 ≤ C1t + C2,(4.6)

and, using Hölder inequality again,∫ t

0

ds ||∇ω(s)||L2 ≤ C1t + C2.(4.7)

The well-known Biot–Savart law recovers the velocity field from the vorticity by
the integral operator

u(x, t) =
1

2π

∫
K(x− y)ω(y, t)dy,

with K(x) = (− x2

x2
1+x2

2
, x1

x2
1+x2

2
) for x ∈ R

2, and a similar formula holds for R
2/Z

2.

Furthermore, ∇u is a singular integral operator of ω, and ∆u is a singular integral
operator of ∇ω (for details, see [3]). From the classical Calderon–Zygmund theory we
have

‖∇u‖L2 ≤ C‖ω‖L2 , ‖∆u‖L2 ≤ C‖∇ω‖L2 .(4.8)

Combining estimates (4.6), (4.7), and (4.8) and using Sobolev inequalities we
finally get ∫ t

0

‖u‖L∞ds ≤ C

∫ t

0

(‖u‖L2 + ‖∆u‖L2)ds

≤ C1t + C2.

Remark 3. The argument above works for ν > 0. For ν = 0 we do not have
control on any norm of the derivatives of the vorticity.

4.2. Three-dimensional Boussinesq equations. In this section we adapt
Theorem 4.1 to three dimensions.

Theorem 4.2. If u satisfies the three-dimensional Boussinesq equation with ν > 0
and ||θ0||L2 < ∞, then (1.2) holds.

In particular, using Theorem 3.1, u does not exhibit any singularity satisfying
Definition 1.

Compared with the proof of Theorem 4.1, the proof of Theorem 4.2 requires an
extra estimate on the nonlinear term that appears on the vorticity equation. Below
we give the argument which is based on the argument in [16] for Navier–Stokes.

By the usual integration by parts

1

2

d

dt

∫
|u|2 dx + ν

∫
|∇u|2dx ≤ C

∫
|uθ|dx.
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Therefore, proceeding as before,

‖u‖2
L2 ≤ C1t + C2,∫ t

0

‖∇u‖2
L2ds ≤ C̃1t + C̃2.(4.9)

The vorticity equation is

(∂t + u · ∇)ω = ω · ∇u + θx1
− θx2

+ ν∆ω.

Multiply the vorticity equation by ω and integrate by parts

1

2

d

dt

∫
|ω|2 dx + ν

∫
|∇ω|2dx ≤

∫
|(ω · ∇u)ω|dx +

1

2ν

∫
|θ|2 dx +

ν

2

∫
|∇ω|2dx.

The nonlinear term can be bounded by (see [16])

∫
|(ω · ∇u)ω|dx ≤ C‖ω‖

3
2

L2‖∇ω‖
3
2

L2

≤ C̃‖ω‖6
L2 +

ν

4
‖∇ω‖2

L2 ;

then

1

2

d

dt

∫
|ω|2 dx +

ν

4

∫
|∇ω|2dx ≤ C̃(1 + ‖ω‖6

L2)

and

1
2

d
dt‖ω‖2

L2

(1 + ‖ω‖2
L2)2

+ ν
‖∇ω‖2

L2

(1 + ‖ω‖2
L2)2

≤ C̃(1 + ‖ω‖2
L2),

and we get

∫ t

0

‖∇ω‖2
L2

(1 + ‖ω‖2
L2)2

ds ≤ ˜̃C(1 + t).(4.10)

Finally, we estimate
∫ t

0
‖u‖L∞ds applying Sobolev inequalities, Calderon–Zygmund

theory, (4.9), and (4.10):

∫ t

0

‖u‖L∞ds ≤ C

∫ t

0

‖∇u‖
1
2

L2‖∆u‖
1
2

L2ds

≤ C

(∫ t

0

‖∇u‖2
L2ds +

∫ t

0

‖∆u‖
2
3

L2ds

)

≤ C

[∫ t

0

‖ω‖2
L2ds +

(∫ t

0

‖∇ω‖2
L2

(1 + ‖ω‖2
L2)2

ds

) 1
3
(∫ t

0

(1 + ‖ω‖2
L2)ds

) 2
3

]

≤ C(1 + t),

where C depends on the initial data and on the viscosity.
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[10] D. Córdoba and C. Fefferman, Behavior of several 2D fluid equations in singular scenarios,
Proc. Natl. Acad. Sci. USA, 98 (2001), pp. 4311–4312.
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Abstract. We state a kinetic formulation of weak entropy solutions of a general multidimensional
scalar conservation law with initial and boundary conditions. We first associate with any weak
entropy solution an entropy defect measure; the analysis of this measure at the boundary of the
domain relies on the study of weak entropy sub- and supersolutions and implies the introduction
of the notion of sided boundary defect measures. As a first application, we prove that any weak
entropy subsolution of the initial-boundary value problem is bounded above by any weak entropy
supersolution (comparison theorem). We next study a Bhatnagar–Gross–Krook-like kinetic model
that approximates the scalar conservation law. We prove that such a model converges by adapting
the proof of the comparison theorem.
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1. Introduction. Let Ω be a strong Lipschitz open subset of R
d. Let ∂Ω denote

its boundary, n(x) denote the outward unit normal to Ω at a point x ∈ Ω, Q =
(0,+∞) × Ω, and Σ = (0,+∞) × ∂Ω. We consider the following multidimensional
scalar conservation law:

∂tu + divx A(u) = 0 in Q,(1.1a)

with the initial condition

u(0, x) = u0(x) ∀x ∈ Ω(1.1b)

and the boundary condition

u(s, y) = ub(s, y) ∀(s, y) ∈ Σ.(1.1c)

The first step in the understanding of (1.1c) is the work of Bardos, Le Roux, and
Nédélec [1]: they show that if the initial datum u0 is BV and the boundary datum
is C2-regular, there exists a unique (weak entropy) solution of (1.1). In particular,
they show that an inequality must hold at the boundary. This inequality is known
as the Bardos–Le Roux–Nédélec (BLN) condition (see (3.19)). Note that the BLN
condition makes sense only if the solution u admits a trace on ∂Ω. In the case of
the Cauchy problem with merely essentially bounded (L∞) data, some notions of a
generalized solution have been defined. The measure-valued entropy solutions were
introduced by DiPerna [9] and the entropy process solutions by Eymard, Gallouët,
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and Herbin [11]. These notions of a very weak solution are well adapted to the study
of the convergence of numerical schemes, and error estimates are also available. In
the case of the Cauchy–Dirichlet problem with L∞ data, Otto [25] proposed a notion
of weak entropy solution u ∈ L∞(Q), relying on the notion of boundary entropy-flux
pairs. An equivalent definition can be given by using “Kružkov semientropies” (see
[8, 30, 34, 17]). An accurate notion of an entropy process solution can be given in
order to prove the convergence of certain numerical methods [34], but it does not
seem possible to get an error estimate with respect to the approximation by vanishing
viscosity, for example. In order to fill this gap, we follow the ideas developed by Lions,
Perthame, and Tadmor [18]. Their heuristic idea, which is, in part, a continuation
of the works of Brenier [7] and Di Perna [9], is to take into account the decrease of
the entropy by introducing an “entropy defect” measure. More precisely, a kinetic
function f is associated with the macroscopic function u by setting

f(t, x, ξ) =

⎧⎨
⎩

1 if 0 < ξ < u(t, x),
−1 if u(t, x) < ξ < 0,

0 otherwise.
(1.2)

Such a kinetic function is a so-called equilibrium function. The kinetic formulation
of Lions, Perthame, and Tadmor states that u is a weak entropy solution of the
conservation law if and only if there exists a bounded nonnegative measure m such that

(∂t + a.∇x)f = ∂ξm in D′((0, T ) × R
d × R).(1.3)

Next, Perthame [27] showed that these techniques supply a good technical framework
to easily prove, for instance, the L1-contraction property and the error estimate with
respect to the parabolic approximation, without relying on the dedoubling variable
technique.

We start from [27] and develop analogous techniques for a conservation law with
boundary conditions. The main difficulty is to study how the weak entropy solution
u and the defect measure m behave at the boundary of the domain. We handle this
difficulty by considering the space kinetic trace fτ of the kinetic function f [32, 33].
As far as the defect measure is concerned, two nonnegative measures mb

± supported
by Σ × Rξ must therefore be considered. They are characterized by the formula

(−a · n)fτ = Mf b + (−a · n)sgn∓ + ∂ξm
b
±,(1.4)

where the constant M is a Lipschitz constant of the flux A on a compact subset of R

in which the data u0 and ub, which are supposed to be measurable essentially bounded
functions, take a.e. their values (see section 2). Relation (1.4) can be understood as a
kinetic analogue of the BLN condition.1 Why do we need two nonnegative measures
to describe the behavior of the entropy defect measure at the boundary? It is because
the notion of weak entropy solution is “sided.” Let us be more specific. We define
weak entropy sub- and supersolutions for the initial-boundary value problem and give
a kinetic formulation of them. Hence two different defect measures m± are a priori
associated with each weak entropy solution. But, eventually, we prove they coincide
in Q × Rξ and can be different at the boundary. Notions of weak entropy sub- and
supersolutions for the Cauchy problem were previously considered [2, 15, 16, 26, 3, 4],

1It is a generalization of it in the sense that no strong traces are required; thus merely L∞ data
can be treated.
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and comparison principles were established: any weak entropy subsolution of the
Cauchy problem is bounded above by any weak entropy supersolution. Such results
have also been proved by Terracina [31] for the initial-boundary value problem in
the context of BV solutions. We state and prove an analogous result for the initial-
boundary value problem in the context of L∞ solutions. The L1-contraction property
and the maximum principle follow from it.

We then use our results to study an approximation of the conservation law, namely
a kinetic model “à la Bhatnagar, Gross, and Krook” (BGK-like kinetic model for
short). It was first introduced by Perthame and Tadmor [29] for the Cauchy problem
and adapted by Nouri, Omrane, and Vila [22, 23, 24] to the initial-boundary value
problem. Nouri, Omrane, and Vila prove the convergence of the BGK-like kinetic
model whenever the data are at equilibrium or not. Here, we restrict our study to
the case where the data are at equilibrium and show how, in this framework, the
concept of a generalized kinetic solution can be used to prove the convergence of the
BGK-like kinetic model. Such very weak solutions were introduced by Perthame [28]
for the Cauchy problem. They can be viewed as the analogue of the measure-valued
solutions of DiPerna [9] or the entropy process solutions of Eymard, Gallouët, and
Herbin [11]. The definition of a generalized kinetic solution is based on the following
kinetic formulation: instead of considering an equilibrium function, a solution can be
a general kinetic function (see sections 2 and 5 for precise definitions). The proof of
the comparison theorem is slightly modified in order to prove that there is at most
one generalized kinetic solution of (1.1) and that it is in fact a weak entropy solution.
Hence, it permits us to easily pass to the limit in the kinetic model.

To conclude this introduction, let us mention the recent work of Ben Moussa and
Szepessy [6] in which the concept of measure-valued solution to deal with “very weak
solutions” is used, and let us state some other occurrences of “kinetic methods” in the
study of first-order problems with boundary conditions [5, 20]; see also [21, 13, 14].

The paper is organized as follows. Section 2 is devoted to notations and assump-
tions. In section 3, kinetic formulations of weak entropy solutions (Theorem 3.1) and
entropy semisolutions (Proposition 3.3) are stated and proved. In particular, kinetic
traces and boundary defect measures are constructed and characterized (Proposi-
tion 3.4). In section 4, the comparison theorem (Theorem 4.1) is proved. Section 5 is
devoted to the study of the BGK-like kinetic model.

Finally, let us mention that in a forthcoming paper [10] we study another ap-
proximation of the initial-boundary value problem: the parabolic regularization of
the conservation law by an artificial viscosity. We get an error estimate between the
entropy solution of the conservation law and the regular solution of the parabolic equa-
tion. Even if we adapt once again the proof of the comparison theorem, additional
difficulties arise, and the proof is rather long and technical.

2. Preliminaries. We give here some notations, assumptions, and basic prop-
erties that are used throughout the paper.

The space R
d is endowed with its usual Euclidean structure. The scalar product

is denoted by x · y and the Euclidean norm by |x|. For the sake of clarity, Rt and Rξ

denote the lines of reals, respectively, related to the t and ξ variables.
Data. We assume u0 and ub to be essentially bounded measurable functions. Let

K > 0 be a positive constant such that

−K ≤ u0(x) ≤ K for a.e. x ∈ Ω and −K ≤ ub(t, x) ≤ K for a.e. (t, x) ∈ Σ .

The flux function A is assumed to be locally Lipschitz continuous. Let M be the
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Lipschitz constant of the function A restricted to [−K,K], and let a(ξ) = A′(ξ).
Remark 1. We could as well consider the equation ∂tu+ divx(A(t, x, u)) = 0. All

the results presented in this paper remain valid under the assumption that the function
A is locally Lipschitz continuous with respect to (t, x) ∈ [0, T ] × Ω uniformly with
respect to the u variable, while for every u ∈ R, (t, x) �→ A(t, x, u) is in C1([0, T ]×Ω).

Kružkov semientropies. Define

sgn+(ξ) =

{
1 if ξ > 0,
0 if ξ ≤ 0

and sgn−(ξ) =

{
−1 if ξ < 0,
0 if ξ ≥ 0

and ξ± = sgn±(ξ)ξ. Let a	b denote max{a, b}, and let a⊥b denote min{a, b}. The
Kružkov semientropies are the convex functions u �→ (u − κ)± for κ ∈ R. The
corresponding entropy fluxes are given by the formula

F±(u, κ) = sgn±(u− κ)(A(u) −A(κ)).

Kinetic and equilibrium functions. We previously recalled what an equilibrium
function is (see (1.2)). More generally, a kinetic function is a function f(t, x, ξ) such
that

0 ≤ f(t, x, ξ)sgn(ξ) ≤ 1,
∂ξf(t, x, ξ) = δ(ξ) − νt,x(ξ),

(2.1)

where ν is a Young measure. For an equilibrium function, νt,x(ξ) = δ(ξ − u(t, x)). In
the following, we also consider two functions associated with any kinetic one:

f+(t, x, ξ) = f(t, x, ξ) − sgn−(ξ),

f−(t, x, ξ) = f(t, x, ξ) − sgn+(ξ).

Notice that ∂ξf± = −νt,x(ξ) and that these functions no longer have a bounded
support with respect to the kinetic variable ξ. Nevertheless, and it is essential, there
exists κ ∈ Rξ such that f+(t, x, ξ) = 0 if ξ ≥ κ, and there exists κ′ ∈ Rξ such that
f−(t, x, ξ) = 0 if ξ ≤ κ′. We simply say that f+ vanishes for ξ � 1 and f+ vanishes
for ξ � −1. For equilibrium functions, if (t, x) is fixed, then for a.e. ξ ∈ Rξ,

f+(t, x, ξ) = sgn+(u(t, x) − ξ),

f−(t, x, ξ) = sgn−(u(t, x) − ξ).

Localization. The set Ω is assumed to be a strong Lipschitz open subset of R
d,

which means that, locally, Ω can be represented as the epigraph of a Lipschitz con-
tinuous function. More precisely, there exists a locally finite open cover {Bλi}i∈I of
Ω and a partition of unity {λi}i∈I of Ω subordinate to {Bλi

}i∈I such that for any λ,

Ωλ := Ω ∩Bλ = {x ∈ Bλ ; (Aλ x)d > hλ(Aλ x)},
∂Ωλ := ∂Ω ∩Bλ = {x ∈ Bλ ; (Aλ x)d = hλ(Aλ x)},

where x �→ Aλ x is a change of coordinates of R
d (i.e., the composition of a translation

and a rotation of R
d) and where y stands for (y1, . . . , yd−1) if y ∈ R

d. In the following,
we also use the notations Qλ = (0,+∞)×Ωλ and Σλ = (0,+∞)×∂Ωλ. When proving
the comparison theorem and the error estimate, the problem is localized with the help
of the functions λi. For the sake of clarity, we drop the index i and suppose that the
change of coordinates is trivial: A = Id. The open set Πλ = {x ; x ∈ Bλ} ⊂ R

d−1 is
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used to parametrize ∂Ωλ. As a matter of fact, we even identify ∂Ωλ with the graph
of h restricted to Πλ and Ωλ with its epigraph. The outward unit normal to Ωλ at
any point (x, h(x)) of ∂Ωλ is given by

n(x) := n(x, h(x)) =
1√

1 + |∇xh(x)|2
(∇xh(x),−1).

Eventually, in order to make clearer integrations on ∂Ωλ, we use the notation

dσ(x) =
√

1 + |∇xh(x)|2dx .

Regularization. Functions that are defined locally, i.e., that are defined on Ωλ

and ∂Ωλ, are regularized in the following way. Fix δ ∈]0, 1[ and consider a smooth
function θ : R → R

+ whose support is a subset of [δ, 1] and such that
∫
θ = 1. Then

define a (right-decentered) regularizing kernel θε := 1
εθ(

·
ε ) and set γα,ε(t, x̄, xd) =

θα(t) × Πd−1
i=1 θε(xi) × θεd(xd). The space regularizing kernel Πd−1

i=1 θε(xi) × θεd(xd) is
denoted by γε. Consider now a function H defined on Qλ and a function H defined
on Σλ. Their (local) regularized functions are (both) defined on Qλ by the following
formulae:{

Hα,ε(t, x) := (H × 1Q) 
 γα,ε(t, x) =
∫
Q
H(r, z)γα,ε(t− r, x− z) dr dz,

H
α,ε

(t, x) := (H × 1Σ) 
 γα,ε(t, x) =
∫
Σ
H(r, z)γα,ε(t− r, x− z) dr dσ(z).

These two functions equal zero out of Qλ as soon as δ εd ≥
√
dLiph ε, which is always

assumed. Of course, if a function ψ is defined both on Qλ and Σλ, then the two means
of regularization described above do not lead to the same functions ψα,ε; nevertheless,
there will be no risk of confusion in the forthcoming proofs. Let us also point out the
fact that this regularization is local and in fact depends on the map Aλ, even if it is
hidden in computations in order to make them more readable.

3. A kinetic formulation of the Cauchy–Dirichlet problem. The main
result of the paper is the following kinetic formulation of generalized entropy solutions.
For any smooth test function φ ∈ C∞

c (Rd+2), φ(t=0) and φ denote, respectively, the
restriction of φ to {0} × Ω × Rξ and to Σ × Rξ.

Theorem 3.1. Consider a bounded function u ∈ L∞(Q). Let f0 and f b be the
equilibrium functions associated with u0 and ub. Then u is a weak entropy solution of
(1.1) if and only if there exists a bounded nonnegative measure m ∈ M+(Q×Rξ) and
two nonnegative measurable functions mb

+,m
b
− ∈ L∞

loc(Σ × Rξ) such that the function
mb

+ vanishes for ξ � 1 (resp., the function mb
− vanishes for ξ � −1) and such that

the equilibrium function f associated with u satisfies for any φ ∈ C∞
c (Rd+2)

(3.1)

∫
Q×Rξ

f(∂t + a · ∇x)φ +

∫
Ω×Rξ

f0φ(t=0) +

∫
Σ×Rξ

(Mf b
± + (−a · n)sgn∓)φ

=

∫
Q×Rξ

∂ξφdm +

∫
Σ×Rξ

∂ξφdm
b
±,

where M is the Lipschitz constant of the flux function A on Q× [−K,K].
In order to prove and understand this formulation, we define weak entropy sub-

and supersolutions of the initial-boundary value problem (1.1) and exhibit a kinetic
formulation for these semisolutions.
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3.1. Weak entropy sub- and supersolutions. Let us define weak entropy
sub- and supersolutions for the initial-boundary value problem (1.1).

Definition 3.2. Consider a bounded function u ∈ L∞(Q).
1. The function u is a weak entropy subsolution (resp., weak entropy superso-

lution) of (1.1) if for any κ ∈ R and any φ ∈ C∞
c (Rt × R

d), φ ≥ 0,

(3.2)

∫
Q

[
(u(t, x) − κ)±∂tφ(t, x) + F±(u(t, x), κ).∇xφ(t, x)

]
dt dx

+

∫
Ω

(u0(x) − κ)±φ(0, x)dx + M

∫
Σ

(ub(s, y) − κ)±φ(s, y)ds dσ(y) ≥ 0.

2. The function u is a weak entropy solution of (1.1) if it is both a weak entropy
subsolution and a supersolution.

Proposition 3.3. Let f0 and f b be the equilibrium functions associated with u0

and ub. Consider a bounded function u ∈ L∞(Q). Then u is a weak entropy subsolution
(resp., weak entropy supersolution) of (1.1) if and only if there exists m± ∈ C(Rξ;w−
M+(Q)) such that mξ vanishes for ξ � 1 (resp., for ξ � −1) and such that for any
φ ∈ C∞

c (Rd+2),

(3.3)

∫
Q×Rξ

f(∂t + a · ∇x)φ +

∫
Ω×Rξ

f0φ(t=0) +

∫
Σ×Rξ

(Mf b
± + (−a · n)sgn∓)φ

=

∫
Q×Rξ

∂ξφdm±.

Remark 2. The function f satisfies (3.3) if and only if the function f± satisfies

∫
Q×Rξ

f±(∂t + a · ∇x)φ +

∫
Ω×Rξ

f0
±φ

(t=0) + M

∫
Σ×Rξ

f b
±φ =

∫
Q×Rξ

∂ξφdm±.(3.4)

Notice that here the expression of the boundary term is simplified. Moreover, (3.4)
is the kinetic equation that appears in the construction m±, and it is also the one we
consider when proving the comparison theorem.

Proof of Proposition 3.3. Consider a weak entropy subsolution (resp., weak en-
tropy supersolution) u of (1.1). Let us fix κ ∈ R, and define a linear form mκ

± on
C∞

c (Q̄) by

mκ
±(φ) =

∫
Q

(u− κ)±∂tφ + F±(u, κ) · ∇xφ +

∫
Ω

(u0 − κ)±φ(t=0) + M

∫
Σ

(ub − κ)±φ.

(3.5)

Since u is a weak entropy subsolution (resp., weak entropy supersolution), we know
that mκ

±(φ) is nonnegative for any κ and any φ. We conclude that for any κ, mκ
±

is a nonnegative measure on Q, and m± ∈ C(Rξ, w − M+(Q)). Since m± ≥ 0, we
have ||m±|| = m±(1) < +∞ by (3.5), and m± is bounded; moreover, m± vanishes for



220 C. IMBERT AND J. VOVELLE

κ � 1 (resp., κ � 1). Next, we compute

∫
Q̄×Rξ

∂ξφ(t, x, ξ)dm±(t, x, ξ)

=

∫
Q×Rξ

(u−ξ)±∂t∂ξφ+F±(u, ξ)·∇x∂ξφ+

∫
Ω×Rξ

(u0−ξ)±∂ξφ
(t=0)+M

∫
Σ

(ub−ξ)±∂ξφ

=

∫
Q×Rξ

sgn±(u−ξ)(∂tφ+a ·∇xφ)+

∫
Ω×Rξ

sgn±(u0−ξ)φ(t=0) +M

∫
Σ

sgn±(ub−ξ)φ

=

∫
Q×Rξ

f±(∂tφ + a · ∇xφ) +

∫
Ω×Rξ

f0
±φ

(t=0) + M

∫
Σ

f b
±φ

=

∫
Q×Rξ

f(∂tφ + a · ∇xφ) +

∫
Ω×Rξ

f0φ(t=0) +

∫
Σ

(Mf b
± + (−a · n)sgn∓)φ.

Hence (3.3) is proved.
Conversely, consider u ∈ L∞(Q) and g ∈ C∞

c (Rt × R
d). Let ξ �→ En(ξ) be a

smooth approximation of ξ �→ (ξ − κ)± such that |E′
n(ξ)| ≤ 1 for any positive integer

n. Let Ψ be a smooth function with support in [−2, 2], with values in [0, 1], and that
equals 1 on [−1, 1]. Next, define Ψn(ξ) = Ψ(ξ/n). Now apply (3.4) to the test function
φ(t, x, ξ) = g(t, x)Ψn(ξ)E′

n(ξ):

∫
Q

[∫
Rξ

ΨnE
′
nf±

]
∂tg +

[∫
Rξ

aΨnE
′
nf±

]
.∇xg +

∫
Ω

[∫
Rξ

ΨnE
′
nf

0
±

]
g(t=0)

+ M

∫
Σ

[∫
Rξ

ΨnE
′
nf

b
±

]
g =

∫
Q̄×Rξ

g[Ψ′
nE

′
n + ΨnE

′′
n]dm±.

Letting n → +∞, we get

(3.6)∫
Q

(u(t, x)−κ)±∂tg(t, x)+F±(u(t, x), κ) ·∇xg(t, x)dtdx+

∫
Ω

(u0(x)−κ)±g(0, x)dx

+ M

∫
Σ

(ub(s, y) − κ)±g(s, y)ds dσ(y) =

∫
Q

g(t, x)dm±(t, x, κ).

If, moreover, g is assumed to be nonnegative, (3.6) yields (3.2).

3.2. Kinetic traces. In this subsection, we prove the following proposition. See
[32, 33] and [19, Lemma 7.34, p. 115].

Proposition 3.4. Consider a function f ∈ L∞(Q× Rξ) satisfying (3.3).
1. There exist two kinetic functions fτ0 ∈ L∞(Q × Rξ) and fτ ∈ L∞(Σ × Rξ)

such that

lim
α→0+

∫
Ω×Rξ

[∫ +∞

0

f(t)θα(t)dt

]
φ =

∫
Ω×Rξ

fτ0φ,(3.7)

lim
εd→0+

∫
[0;+∞)×Πλ×Rξ

(−a · n)

[∫ +∞

0

f(h(x) + r)θεd(r)λ(h(x) + r)dr

]
ψ

=

∫
[0;+∞)×Πλ×Rξ

(−a · n) fτ λψ(3.8)
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for any φ ∈ L1(Ω × Rξ) and any ψ ∈ L1(Σ × Rξ) and any function λ, the
element of the partition of unity {λi}i∈I .

2. The time kinetic trace fτ0 is bounded above (resp., bounded below) by f0, and
the space kinetic trace fτ satisfies (1.4), where mb

± denotes the restriction of
m± to Σ × Rξ.

Proof. The proof of the existence of fτ0 and of fτ such that (3.7), (3.8) hold true
can be found in [32, 33]. Let us prove that for any test function φ ∈ C∞

c (Rd+2),

(3.9)

∫
Q×Rξ

f(∂t + a · ∇x)φ +

∫
Ω×Rξ

fτ0φ(t=0) +

∫
Σ×Rξ

(−a · n)fτφ =

∫
Q×Rξ

∂ξφdm±.

Let φ ∈ C∞
c ([0; +∞)×Ω×Rξ); consider a right-decentered regularizing kernel θα(r);

define a cut-off function wα(r) =
∫ r

0
θα(τ)dτ and apply (3.3) to the test function

wα(t)φ(t, x, ξ):∫
Q×Rξ

wα(t)f(∂t + a · ∇x)φ(t, x, ξ)dtdxdξ +

∫
Q×Rξ

θα(t)f(t, x, ξ)φ(t, x, ξ)dtdxdξ

=

∫
Q×Rξ

wα(t)∂ξφ(t, x, ξ)dm(t, x, ξ).

Letting α → 0+ and using the Lebesgue dominated convergence theorem and (3.7),
we obtain ∫

Q×Rξ

f(∂t + a · ∇x)φ +

∫
Ω×Rξ

fτ0φ(t=0) =

∫
Q×Rξ

∂ξφdm.(3.10)

Next, φλ denotes the function φλ, and we define a cut-off function

Wεd(x) =

∫ xd−h(x̄)

0

θεd(s) ds .

We apply (3.10) to the test function φλWεd :

(3.11)

∫
Q×Rξ

Wεd(x)f(∂t + a · ∇x)φλ(t, x, ξ)dtdxdξ +

∫
Q×Rξ

fφλa · ∇xWεd

+

∫
Ω×Rξ

fτ0(x, ξ)φλ(t=0)
Wεd(x)dxdξ =

∫
Q×Rξ

∂ξφ
λ(t, x, ξ)Wεd(x)dm(t, x, ξ).

In (3.11), we can pass to the limit in each term, except from
∫
Q×Rξ

fφλa(ξ) · ∇xWεd .

Let us study it. Notice that

∇xWεd(x) = θεd(xd − h(x))(−∇xh(x), 1) = −θεd(xd − h(x))
√

1 + |∇xh(x)|2 n(x).

Hence,∫
Q×Rξ

φλfa(ξ) · ∇xWεddtdxdξ

=

∫
Q×Rξ

φλ(t, x, ξ)(−a · n)f(t, x, ξ)θεd(xd − h(x))
√

1 + |∇xh(x)|2dtdxdξ

=

∫
[0;+∞)×Πλ×Rξ

(−a · n)

[∫ +∞

xd=h(x)

f(xd)θεd(xd − h(x))λ(xd)dxd

]
φλ dtdσdξ.
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Using (3.8), we get (3.9) with φλ instead of φ as a test function. Recalling that the
function λ is an element of the partition of unit {λi}i∈I and summing this previous
inequality over i ∈ I yields (3.9). We then deduce from (3.2) and (3.9) that (1.4)
holds true and that fτ0 = f0 + ∂ξm

0
±, where m0

± stands for the restriction of m± to
{0} × Ω × Rξ. It follows that∫

fτ0
± (x, ξ)sgn±(ξ − κ)dξ ≤ (u0(x) − κ)±.

Since fτ0 is a kinetic function and fτ0(ξ) = 0 for ξ � 1, we conclude that it can be
written under the following form:

fτ0(x, ξ) = ντ0x (ξ,+∞) + sgn−
(resp. fτ0(x, ξ) = ντ0x (−∞; ξ) + sgn+).

(3.12)

Next, replace κ with u0(x) and conclude that the support of ντ0x lies in (−∞, u0(x)]
(resp., in [u0(x),+∞)). Finally, fτ0 satisfies

fτ0
+ (x, ξ) = ντ0x (ξ⊥u0(x), u0(x)] ≤ sgn+(u0(x) − ξ)(3.13)

(resp. fτ0
− (x, ξ) = −ντ0x [u0(x), ξ	u0(x)) ≥ sgn−(u0(x) − ξ)).(3.14)

This achieves the proof.
Proof of Theorem 3.1. From Proposition 3.3, we get two measures m±. If u is

a weak entropy solution of the initial-boundary value problem, then m+ and m−
coincide in Q× Rξ. Indeed, from (3.5) we get

m±(t, x, κ) = −∂t(u− κ)± − divx F±(u, κ) in D′(Q× Rξ).(3.15)

Choosing κ large enough and −κ large enough, respectively, we obtain that u is a
weak solution of (1.1); i.e., ∂tu + divx A(u) = 0 in D′(Q). Next, we conclude that
m+ = m− in Q× Rξ:

m±(t, x, κ) = −1

2
∂t|u− κ| − 1

2
divx F(u, κ) in D′(Q× Rξ),(3.16)

where F = F+ +F−. Moreover, we proved in Proposition 3.4 that fτ0 = f0 + ∂ξm
0
±

and that fτ0 is bounded above and below by f0. We then conclude that ∂ξm
0
± = 0,

and hence that m0
± is constant in ξ. Since it equals 0 for large ξ, we conclude that

m0
± = 0. Eventually, the two measures mb

± are functions: indeed, since they satisfy
(1.4) and vanish for ξ � 1 and ξ � −1, respectively, we have

mb
+(s, y, κ) := M(ub(s, y) − κ)+ −

∫ +∞

κ

(−a · n)fτ
+(s, y, ξ)dξ ≥ 0,(3.17)

mb
−(s, y, κ) := M(ub(s, y) − κ)− +

∫ κ

−∞
(−a · n)fτ

−(s, y, ξ)dξ ≥ 0 .(3.18)

The proof of Theorem 3.1 is therefore achieved.
Remark 3. Formula (3.16) appears in [18, p. 173]. Additional properties of m

can be derived. See [18].
Link with the BLN condition. We detail here the link between the kinetic formula-

tion of weak entropy solutions given in Theorem 3.1 and the BLN condition. Suppose
that the function u is a weak entropy solution of problem (1.1) such that u ∈ BV(Q).
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x

t

2T

T

0

1

u(t,x)

Fig. 3.1. Weak entropy solution.

Let uτ denote the (strong) trace of the function u on Σ. Obviously, the space kinetic
trace is the associated equilibrium function: fτ = χuτ (see Proposition 3.4). Next,
remark that ∫ +∞

κ

a(ξ) · n(y)fτ
+(s, y, ξ)dξ = F+(uτ (s, y), κ) · n(y)

and combine with (3.17) in order to get

mb
+(s, y, κ) = M(ub(s, y) − κ)+ + F+(uτ (s, y), κ) · n(y).

The fact that the function mb
+ is nonnegative is equivalent to the following condition:

∀κ ∈ [ub, uτ ], sgn+(uτ − ub)[A(uτ ) −A(κ)] · n ≥ 0.

Similarly, mb
− ≥ 0 if and only if the previous condition holds true replacing sgn+ with

sgn−. Summing these two inequalities yields the well-known BLN condition [1]

∀κ ∈ [ub, uτ ], sgn(uτ − ub)[A(uτ ) −A(κ)] · n ≥ 0.(3.19)

3.3. An example. Let us detail the expressions of the entropy defect measure
m and the boundary defect measures mb

± for the Burgers equation ∂tu+∂x(u2/2) = 0
considered on the domain (0, 2T ) × (0,+∞) with data u0(x) = 0 and

ub(t) =

{
1 if 0 < t < T,
−1 if T < t < 2T.

A shock occurs at the time t = 0, and a rarefaction wave appears at the time t = T.
It collides with the shock at time t = 2T . The corresponding weak entropy solution
u is represented in Figure 3.1. Then the entropy defect measure is

m =
1

2

(
1

2
[|u− ξ|]01 − [sgn(u− ξ)(u2/2 − ξ2/2)]01

)
δL,

where L is the line t = 2x in the (x, t)-plane and where [G(u)]01 := G(0) − G(1). In
particular, the measure m is concentrated on the line of discontinuity of u, and the
entropy criterion ensures that it is nonnegative. On the other hand, the boundary
defect measures are given by

mb
+(t, ξ) = (M(1 − ξ)+ − sgn+(1 − ξ)(1/2 − ξ2/2))1(0,T )(t)

+ (M(1 + ξ)− − sgn−(ξ)ξ2/2)1(T,2T )(t)
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and

mb
−(t, ξ) = (M(1 − ξ)− − sgn−(1 − ξ)(1/2 − ξ2/2))1(0,T )(t)

+ (M(1 + ξ)+ − sgn+(ξ)ξ2/2)1(T,2T )(t),

where M is a constant greater than 1. The identity a2 − b2 = (a + b)(a− b) ensures
that the two functions are nonnegative. The reader can check that the expressions of
m and mb

± are consistent with the formula (3.16) and (3.18)–(3.17), respectively.

4. A comparison theorem.
Theorem 4.1. Let u ∈ L∞(Q) be a weak entropy subsolution of (1.1) with data

(u0, ub), and let v ∈ L∞(Q) be a weak entropy supersolution of (1.1) with data (v0, vb).
Then

(4.1)
1

T

∫ T

0

∫
Ω

(u(t, x) − v(t, x))+dx dt ≤
∫

Ω

(u0(x) − v0(x))+dx

+ M

∫ T

0

∫
∂Ω

(ub(t, x) − vb(t, x))+dtdσ .

In particular, u ≤ v as soon as u0 ≤ v0 and ub ≤ vb (comparison principle).
Before proving Theorem 4.1, we state that the L1-contraction property and the

maximum principle follow from it.
Corollary 4.2.

1. Let u, v ∈ L∞(Q) be two weak entropy solutions of (1.1). Then

1

T

∫ T

0

∫
Ω

|u(t, x) − v(t, x)|dx dt ≤
∫

Ω

|u0(x) − v0(x)|dx

+ M

∫
(0;T )×∂Ω

|ub(t, y) − vb(t, y)|dtdσ(y)

( L1-contraction property).
2. Let u be a weak entropy solution of (1.1), and suppose that there exists two

constants Um, UM ∈ R such that

Um ≤ u0 ≤ UM a.e. in Ω and Um ≤ ub ≤ UM a.e. in Σ;

then Um ≤ u ≤ UM a.e. in Q (maximum principle).
Proof. The L1-contraction property is obtained by combining the equations as

(4.1) obtained successively with u as a weak entropy subsolution and v as a weak
entropy supersolution and with v as a weak entropy subsolution and u as a weak
entropy supersolution. In order to prove the maximum principle, one may remark
that the constant function Um is a weak entropy subsolution for data u0, ub and that
the constant function UM is a weak entropy supersolution for data u0, ub.

Proof of Theorem 4.1. In order to prove Theorem 4.1, we show that

∫
Q

(u− v)+∂tφ + F+(u, v) · ∇xφ +

∫
Ω

(u0 − v0)
+φ(t=0) + M

∫
Σ

(ub − vb)
+φ ≥ 0

(4.2)

holds true for any test function φ ∈ C∞
c (Rt × R

d). Passing from (4.2) to (4.1) is
classical. Let f, f0, and f b (resp., g, g0, and gb) denote the equilibrium functions
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associated with u, u0, and ub (resp., with v, v0, and vb). The kinetic traces associated
with u (resp., with v) are denoted by fτ0 and fτ (resp., gτ0 and gτ ). Eventually, let
m (resp., q) denote the entropy defect measure associated with u (resp., v) and set,
for (s, y, ξ) ∈ Σ × Rξ,

F+(s, y, ξ) = (−a(ξ) · n(y))fτ
+(s, y, ξ) and G−(s, y, ξ) = (−a(ξ) · n(y))gτ−(s, y, ξ).

Since u is a weak entropy subsolution of (1.1), the following kinetic equation holds
true: ∫

Q×Rξ

f+(∂t + a · ∇x)φ +

∫
Ω×Rξ

fτ0
+ φ(t=0) +

∫
Σ×Rξ

F+φ =

∫
Q×Rξ

∂ξφdm(4.3)

for any φ ∈ C∞
c (Rd+2). Let us fix a test function φ ∈ C∞

c (Rd+2) and apply (4.3) to
the test function φλ 
 γ̌α,ε, where γα,ε denotes a right-decentered regularizing kernel
and φλ denotes φλ:∫

Rd+2

fα,ε
+ (∂t + a · ∇x)φλ + fτ0

+
εθαφ

λ + F+
α,ε

φλ =

∫
Rd+2

∂ξφ
λ dmα,ε,(4.4)

where fα,ε
+ = (f+ × 1Q) 
t,x γα,ε, f

τ0
+

ε = (fτ0
+ × 1Ωλ

) 
x γε, m
α,ε = (m× 1Q) 
t,x γα,ε,

and F+
α,ε

= (F+ × 1Σλ
) 
t,x γα,ε. Now, let us also regularize the kinetic equation

satisfied by g but with different parameters:∫
Rd+2

gβ,ν− (∂t + a · ∇x)φλ + gτ0−
νθβφ

λ + G−
β,ν

φλ =

∫
Rd+2

∂ξφ
λ dqβ,ν .(4.5)

Now apply (4.4) to −gβ,ν− (t, x, ξ)φλ(t, x) and (4.5) to −fα,ε
+ (t, x, ξ)φλ(t, x) and sum

the two equations:

(4.6)

∫
Rd+2

−φλ(∂t + a · ∇x)(fα,ε
+ gβ,ν− ) + 2

∫
Rd+2

(−fα,ε
+ gβ,ν− )(∂t + a · ∇x)φλ

−
∫

Rd+2

[
fτ0
+

εgβ,ν− θα + gτ0−
νfα,ε

+ θβ

]
φλ −

∫
Rd+2

[
F+

α,ε
gβ,ν− + G−

β,ν
fα,ε
+

]
φλ

=

∫
Rd+2

φλ[δβ,νv dmα,ε + δα,εu dqβ,ν ],

where δα,εu = (δ(ξ − u(t, x)) × 1Q) 
 γα,ε and δβ,νv = (δ(ξ − v(t, x)) × 1Q) 
 γβ,ν . Use
the fact that the right-hand side of (4.6) is nonnegative and make an integration by
parts in the first line:

∫
Rd+2

(−fα,ε
+ gβ,ν− )(∂t + a · ∇x)φλ

−
∫

Rd+2

[
fτ0
+

εgβ,ν− θα + gτ0−
νfα,ε

+ θβ

]
φλ −

∫
Rd+2

[
F+

α,ε
gβ,ν− + G−

β,ν
fα,ε
+

]
φλ ≥ 0.

Now let successively β, ν̄, and νd go to 0+:

∫
Qλ×Rξ

(−fα,ε
+ g−)(∂t + a · ∇x)φλ −

∫
Qλ×Rξ

fτ0
+

εg−θαφ
λ −

∫
Qλ×Rξ

F+
α,ε

g− φλ ≥ 0.

(4.7)
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We used the fact that regularized functions equal zero at t = 0 and at the boundary.
Next, let successively α, ε, and εd go to 0+. The first limit is easy to compute:

(4.8)

lim
εd→0+

lim
ε→0+

lim
α→0+

∫
Qλ×Rξ

(−fα,ε
+ g−)(∂t + a ·∇x)φλ =

∫
Q×Rξ

(−f+g−)(∂t + a ·∇x)φλ

=

∫
Q

(u− v)+∂tφ
λ + F+(u, v) · ∇φλ.

Use (3.7) for g, (3.13) for f , and (3.14) for g:

(4.9)

lim
εd→0+

lim
ε→0+

lim
α→0+

−
∫
Qλ×Rξ

fτ0
+

εg−θαφ
λ = lim

εd→0+
lim

ε→0+
−
∫

Ωλ×Rξ

fτ0
+

εgτ0−
(
φλ

)(t=0)

= −
∫

Ωλ×Rξ

fτ0
+ gτ0−

(
φλ

)(t=0) ≤ −
∫

Ωλ×Rξ

f0
+g

0
−
(
φλ

)(t=0)
=

∫
Ω

(u0 − v0)
+
(
φλ

)(t=0)
.

We proceed analogously with the boundary term:

lim
εd→0+

lim
ε→0+

lim
α→0+

−
∫
Qλ×Rξ

F+
α,ε

g− φλ =

∫
Σ×Rξ

(−a · n)fτ
+ gτ−φ

λ

≤ M

∫
Σ

(ub − vb)
+φλ.(4.10)

Let us now justify the inequality in (4.10). In order to do so, we use (1.4) and represent
fτ and gτ with their Young measures as in (3.12):

∫
Rξ

(−a · n)fτ
+ gτ− = −

∫ vb

−∞
ντ (ξ; +∞)∂ξq

b
−

+

∫ vb�ub

vb

(−a · n)ντ (ξ; +∞)µτ (−∞; ξ) +

∫ +∞

vb�ub

µτ (−∞; ξ)∂ξm
b
+

≤ −
∫ vb

−∞
qb−dν

τ −
[
qb−ν

τ (ξ; +∞)
]vb
−∞ + M(ub − vb)

+

−
∫ +∞

vb�ub

mb
+dµ

τ +
[
mb

+µ
τ (−∞; ξ)

]+∞
vb�ub

≤ M(ub − vb)
+.

Hence, we can pass to the limit in (4.7). By using (4.8), (4.9), and (4.10) and by
summing over i ∈ I, (4.1) follows, and the proof of Theorem 4.1 is complete.

5. Convergence of a BGK-like model. In this section, we present the first
application of the kinetic formulation we introduced above. Let us consider the fol-
lowing BGK-like model:

(∂t + a · ∇x)fε =
χuε − fε

ε
in Q× Rξ,(5.1a)

uε(t, x) =

∫
R

fε(t, x, ξ)dξ, (t, x) ∈ Q,(5.1b)
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fε(0, x, ξ) = f0(x, ξ), (x, ξ) ∈ Ω × Rξ,(5.1c)

fε(t, y, ξ) = f b(y, ξ), (t, y, ξ) ∈ Σ+,(5.1d)

where f0 and f b are the equilibrium functions, respectively, associated with the initial
and the boundary data and where Σ+ = {(t, y, ξ) ∈ Σ × Rξ : −a(ξ) · n(y) > 0}. The
approximation (5.1a)–(5.1c) for the Cauchy problem (i.e., when Ω = R

n) was first
considered by Perthame and Tadmor [29]. They proved that the “hydrodynamic limit”
as ε → 0 is precisely the entropy solution of the initial value problem (1.1a)–(1.1b).
Their study relies on the fact that the right-hand side of (5.1a) can be written as the
derivative of a measure: ∂ξmε. This is a consequence of the following observation.

Lemma 5.1 (see [18]). Let g ∈ L1(R) satisfy 0 ≤ sgn(ξ)g(ξ) ≤ 1 a.e. Then the

function mg : ξ �→
∫ ξ

−∞(χug − g)(ζ)dζ is nonnegative.
As ε goes to 0, the measure mε converges to the entropy defect measure m.

This kinetic model has been adapted by Nouri, Omrane, and Vila [22, 23] to take
into account boundary conditions. In [22, 23], data at equilibrium as well as general
kinetic ones are considered. The convergence of the kinetic model is proved and,
particularly in the nonequilibrium case, the boundary conditions satisfied by the limit
so obtained are discussed and compared to the BLN condition. In the present paper,
we restrict ourselves to the case of data at equilibrium and show how the concept of
boundary defect measures can help in the understanding of the “hydrodynamic limit”;
more precisely, we define approximate boundary defect measures and prove that they
converge to mb

± (see subsection 3.2). As in [28], we intend to show how a concept
of a generalized kinetic solution can be used to prove the convergence of the kinetic
model associated with (1.1) without “strong” (for instance BV) a priori estimates.

5.1. Solution of the kinetic model. We suppose that Ω is convex. The prob-
lem (5.1) admits an integral representation and is therefore solved by a fixed point
method. The characteristic of the partial differential operator ∂t + a(ξ)∂x arriving at
(t, x) ∈ Q is the line of equation X(τ) = a(ξ)(τ − t) + x. If uε ∈ C(0, T ; L1(Ω)), the
solution fε of the linear equation ∂tfε + a(ξ) · ∇fε + 1

εfε = 1
εχuε

satisfies

fε(t, x, ξ) = fε(τ,X(τ), ξ)e
τ−t
ε +

∫ t

τ

1

ε
χuε(s,X(s))(ξ)e

s−t
ε ds(5.2)

for any τ < t such that X([τ, t]) ⊂ Ω. Using the boundary condition (5.1d), we see
that the computation of the value fε(t, x, ξ) depends on the point of intersection of
the characteristic line with the parabolic boundary:

• if X([0, t]) ⊂ Ω, the characteristic starts from {0} × Ω at τ = 0, and we put
fε(τ,X(τ), ξ) = f0(x− ta(ξ), ξ) in (5.2);

• if there exists τ∗ ∈ [0, t] such that X([τ∗, t]) ⊂ Ω and X(τ∗−0) /∈ Ω, the char-
acteristic starts from the boundary Σ at τ = τ∗, and we put fε(τ,X(τ), ξ) =
f b(τ∗, X(τ∗), ξ) in (5.2).

Thanks to the integral representation (5.2), it is therefore possible to build an operator
T from C(0, T ; L1(Ω)) to itself which maps u on v : (t, x) �→

∫
R
fε(t, x, ξ)dξ. We then

show that this operator is a contracting map, and the existence and the uniqueness of
the solution fε of (5.1) follows [29, 22, 28]. This solution satisfies additional properties.

Proposition 5.2 (see [29, 22, 28]). Suppose that Ω is convex. Let ε > 0, and let
fε ∈ C(0, T ; L1(Ω × Rξ)) be the solution of (5.1). Under the hypotheses of section 2,
we have that



228 C. IMBERT AND J. VOVELLE

1. fε satisfies

0 ≤ sgn(ξ)fε(t, x, ξ) ≤ 1 for a.e. (t, x, ξ) ∈ Q× Rξ;

2. there exists a nonnegative function mε such that

χuε
− fε
ε

= ∂ξmε;(5.3)

3. for every convex function η ∈ C2(R,R) with a bounded derivative η′ satisfying
η′(0) = 0,

(5.4)

∫
Q×Rξ

mε(t, x, ξ)η
′′(ξ)dξdxdt ≤

∫
Ω×Rξ

f0(ξ)η′(ξ)dξdx

+

∫
Σ×Rξ

(−a · n)+(s, y, ξ)f b(ξ)η′(ξ)dξdt;

4. there exists µ ∈ L∞(R) independent of ε and such that µ(ξ) = 0 if |ξ| � 1
and ∫

Q

mε(t, x, ξ)dxdt ≤ µ(ξ);(5.5)

5. for a.e. (t, x, ξ) ∈ Q× Rξ : fε(t, x, ξ) = 0 as soon as |ξ| > K and∣∣∣∣∣
∫

Rξ

fε(t, x, ξ)dξ

∣∣∣∣∣ ≤ K for a.e. (t, x) ∈ Q.(5.6)

Sketch of the proof. The fact that fε is a kinetic function follows from (5.2).
We previously mentioned that (5.3) is a consequence of Lemma 5.1. A rigorous
proof of (5.4) relies on the integral representation (5.2). Here is a formal argument:
multiply the equation ∂tfε + a(ξ)∂xfε = ∂ξmε by η′(ξ), integrate the result with
respect to (t, x, ξ), and use the fact that η′(ξ)fε(t, x, ξ) ≥ 0 (for sgn(η′(ξ)) = sgn(ξ)).
Estimate (5.5) is a consequence of (5.4) with η(ξ) = (ξ − ξ0)

+ if ξ0 > 0 and η(ξ) =
(ξ − ξ0)

− if ξ0 < 0. It leads to the expression µ = µ+ + µ− with

µ±(ξ) = |sgn±(ξ)| (||(u0 − ξ)±||L1(Ω) + M ||(ub(t, y) − ξ)±||L1(Σ)).

Since fε is a kinetic function, (5.6) is a consequence of the fact that fε(·, ξ) vanishes
for |ξ| > K. This argument also shows that the operator T maps{

u ∈ C(0, T ; L1(Ω)) , |u(t, x)| ≤ K ∀(t, x)
}

into itself: (5.6) follows from the uniqueness of the fixed point.

5.2. Generalized kinetic solutions. In order to prove the convergence of the
model, we need to introduce a very weak notion of solution of (1.1).

Definition 5.3. Consider a kinetic function f ∈ L∞(Q× Rξ). We say that f is
a generalized kinetic solution of (1.1) if there exists a bounded nonnegative measure
m ∈ M+(Q× Rξ) and two nonnegative measurable functions mb

+,m
b
− ∈ L∞

loc(Σ× Rξ)
such that the function mb

+ vanishes for ξ � 1 (resp., the function mb
− vanishes for

ξ � −1) and such that (3.1) holds true.
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The kinetic formulation can therefore be stated in the following terms: a function
u is an entropy solution of (1.1) if and only if its associated equilibrium function is a
generalized kinetic solution of (1.1).

Theorem 5.4. Any generalized kinetic solution of (1.1) is in fact an equilibrium
function associated with an entropy solution of the initial-boundary value problem.

Proof. We just adapt the proof of the comparison theorem. Consider a generalized
kinetic solution f of the initial-boundary value problem. We can therefore easily prove
that for a.e. t > 0: ∫

Ω×Rξ

(−f+f−)(t, x, ξ)dxdξ ≤ 0.

Now use the fact that f is a kinetic function to get that for a.e. (t, x) ∈ Q:

f−(t, x, ξ) = νt,x(−∞; ξ) and f+(t, x, ξ) = νt,x(ξ; +∞).

Consequently, νt,x(−∞; ξ) = 0 or νt,x(ξ; +∞) = 0. It follows that νt,x is a Dirac mass.
The proof is therefore complete.

5.3. Proof of the convergence. We now state and prove a precise convergence
result.

Theorem 5.5. Suppose that Ω is convex. Under the hypotheses of section 2, if
fε denotes the solution of (5.1), then the sequence of function uε defined by uε(t, x) =∫

R
fε(t, x, ξ)dξ converges as ε → 0 to the entropy solution u of (1.1) in any Lp((0, T )×

Ω), 1 ≤ p < +∞.
Proof. Let fε denote the space kinetic trace of fε, and consider ϕ ∈ C∞

c (Q̄×Rξ).
By integrating the equation ∂tfε + a(ξ) · ∂xfε = ∂ξmε against ϕ we get

(5.7)

∫
Q×Rξ

fε(∂tϕ + a · ∇xϕ) +

∫
Ω×Rξ

f0ϕ(t=0) +

∫
Σ×Rξ

(−a · n)fεϕ

=

∫
Q×Rξ

∂ξϕdmε.

By analogy with (3.17), define the function mb,ε
+ by

mb,ε
+ (t, y, ξ) := M(ub(t, y) − ξ)+ −

∫ +∞

ξ

(−a · n)(fε − sgn−)(κ)dκ

and get from (5.7)

(5.8)

∫
Q×Rξ

fε(∂tϕ + a · ∇xϕ) +

∫
Ω×Rξ

f0ϕ(t=0) +

∫
Σ×Rξ

(Mf b
+ + (−a · n)sgn−)ϕ

=

∫
Q×Rξ

∂ξϕdmε +

∫
Σ×Rξ

∂ξϕdm
b,ε
+ .

Let us check that mb,ε
+ (t, y, ξ) is a nonnegative function. Since fε is a kinetic function,

fε − sgn− is nonnegative; hence,

mb,ε
+ (t, y, ξ) ≥ M(ub(t, y) − ξ)+ −

∫ +∞

ξ

(−a · n)+(fε(t, y, κ) − sgn−(κ))dκ

= M(ub(t, y) − ξ)+ −
∫ +∞

ξ

(−a · n)+(f b(t, y, κ) − sgn−(κ))dκ
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=

∫ +∞

ξ

(M − (−a · n)+)(f b(t, y, κ) − sgn−(κ))dκ

≥ 0.

Since fε is bounded in the L∞-norm and mε is bounded in mass by (5.5), we have,
up to subsequences,

fε ⇀ f in w − ∗ − L∞(Q× Rξ),

fε ⇀ f̃ in w − ∗ − L∞(Σ × Rξ),
mε ⇀ m in w − ∗ −M+(Q× Rξ),

where f and f̃ are, respectively, functions of L∞(Q × Rξ) and L∞(Σ × Rξ) such
that (this property is preserved at the w − ∗−limit) 0 ≤ f(·, ξ)sgn(ξ) ≤ 1 and

0 ≤ f̃(·, ξ)sgn(ξ) ≤ 1. We first deduce from Proposition 5.2 that

∫ +∞

ξ

(−a · n)(fε(t, y, κ) − sgn−(κ))dκ =

∫ K

ξ

(−a · n)(fε(t, y, κ) − sgn−(κ))dκ.

It follows that mb,ε
+ (t, y, ξ) ⇀ mb

+, where

mb
+(t, y, ξ) := M(ub(t, y) − ξ)+ −

∫ K

ξ

(−a · n)(fτ − sgn−(κ))dκ(5.9)

so that, at the limit ε → 0 in (5.8), we have

(5.10)

∫
Q×Rξ

f(∂tϕ + a · ∇xϕ) +

∫
Ω×Rξ

f0ϕ(t=0) +

∫
Σ×Rξ

(Mf b
+ + (−a · n)sgn−)ϕ

=

∫
Q×Rξ

∂ξϕdm +

∫
Σ×Rξ

∂ξϕdm
b
+ .

Besides, it is clear from (5.9) that mb
+(t, y, ξ) vanishes for ξ � 1; moreover, (5.5)

remains true at the limit. Derivating (5.1a) with respect to ξ gives

∂ξfε = ∂ξχuε
+ αε = δ0(ξ) − δuε

(ξ) + αε,

where αε = ε (∂ξtfε + a(ξ)∂ξxfε) tends to zero in D′(Q×Rξ). We then define a Young
measure νt,x(ξ) as an adherence value of δ(ξ − uε(t, x)), and we obtain that

∂ξf = δ0(ξ) − νt,x(ξ) in D′(Q× Rξ).

Of course, the same arguments remain valid for mb
−, and, consequently, f is a general-

ized kinetic solution of (1.1). By virtue of Theorem 5.4, it is therefore the equilibrium
function associated with the unique entropy solution of (1.1). Since f is an equilib-
rium function, the weak-∗ convergence of fε to f in L∞(Q × Rξ) implies the strong
convergence of uε to u in Lp(Q), 1 ≤ p < +∞. The proof is therefore complete.
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Abstract. In this paper we give a normal form for reversible systems and then prove the
persistence of lower dimensional invariant tori for integrable reversible systems under small pertur-
bations with weaker nonresonance conditions than have previously been imposed. Our nonresonance
conditions correspond to the first Melnikov’s conditions in the case of Hamiltonian systems.
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1. Introduction. Reversible systems form a class of special conservative systems
with an involution structure. In studying persistence of invariant tori for reversible
systems, there is a small divisor problem reminiscent of the case of Hamiltonian sys-
tems. Since reversible systems have many similar properties to Hamiltonian systems,
we can apply some of the technique developed for Hamiltonian systems to them. Re-
cently, there has been progress in the theory of invariant tori for Hamiltonian systems
(see [1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 14, 19, 20]). In particular, under weaker and fewer
nonresonance conditions, many KAM results have been improved for persistence of
invariant tori of integrable Hamiltonian systems [1, 2, 3, 6, 21, 22]. Using the mo-
tivation of KAM theorems for Hamiltonian systems, we consider the persistence of
invariant tori for reversible systems under weaker and fewer nonresonance conditions.

Consider the following dynamical system:⎧⎪⎨
⎪⎩

ẋ = ω + f(x, u, v;ω),

u̇ = A(ω)v + g1(x, u, v;ω),

v̇ = −B(ω)u + g2(x, u, v;ω),

(1.1)

where the variables x = (x1, . . . , xn)T , u = (u1, . . . , up)
T , and v = (v1, . . . , vq)

T are
all column vectors and (x, u, v) ∈ Tn × Rp × Rq, (p ≤ q). Note that here and below
the superscript “T” always indicates the transpose of matrix. ω = (ω1, . . . , ωn)T ∈
O ⊂ Rn is the frequency parameter. A(ω) and B(ω) are p × q and q × p matrices
depending on ω, respectively. The corresponding involution G which characterizes
the class of reversible systems is defined by

G : (x, u, v) → (−x,−u, v).

Denote the vector field of the dynamical system (1.1) by

F = ((ω + f)T , (Av + g1)
T , (−Bu + g2)

T )T .
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System (1.1) is called reversible if DG · F = −F ◦G. System (1.1) is reversible with
respect to G when ⎧⎪⎨

⎪⎩
f(−x,−u, v;ω) = f(x, u, v;ω),

g1(−x,−u, v;ω) = g1(x, u, v;ω),

g2(−x,−u, v;ω) = −g2(x, u, v;ω).

(1.2)

A mapping Φ : (x, u, v) → (x+, u+, v+) is called a compatible transformation with
respect to the involution G if Φ ◦ G = G ◦ Φ. Under compatible transformations,
reversible systems are transformed to reversible systems.

For reversible systems, there are already many well-known results on the per-
sistence of invariant tori. In [15, 16, 17, 18], Sevryuk studied the persistence of n-
dimensional invariant tori for reversible systems of the form (1.1) under the following
assumptions:

(i) det(Ω) �= 0.
(ii) Every eigenvalue of the matrix Ω is simple, where

Ω =

(
0 A

−B 0

)
.

The assumption (i) means that the matrix Ω has no zero-eigenvalue and, (ii) implies
that the matrix Ω is diagonalizable.

Recently, in [7] Liu weakened Sevryuk’s assumptions and allowed Ω to have
the eigenvalue zero or multiple eigenvalues. In the proof, he supposed the following
nonresonance conditions: for all k �= 0,

|〈ω, k〉| ≥ α|k|−τ ,(1.3)

|det(i〈ω, k〉I(p+q) − Ω)| ≥ α|k|−τ ,(1.4)

|det(i〈ω, k〉I(p+q)2 + I(p+q)2 ⊗ Ω − Ω ⊗ I(p+q)2)| ≥ α|k|−τ ,(1.5)

where i =
√
−1 , IN indicates the Nth-order unit matrix, and ⊗ is the notation of

tensor product of matrices (see [7]).
In this paper we want to prove that conditions (1.3) and (1.4) alone are sufficient

for Liu’s result. To state our results, we first give some definitions and assumptions.
Denote a complex neighborhood of Tn × {0} × {0} by

D(s, r) = {(x, u, v) | |Im x| ≤ s, |u| ≤ r, |v| ≤ r},

where |Im x| = max1≤i≤n |Im xi|, |u| = max1≤i≤p |ui|, and |v| = max1≤i≤q |vi|.
Let O be a bounded closed simply connected domain of Rn with positive Lebesgue

measure. Let CL(O) be the space of the Lth continuously differentiable function on
O in Whitney’s sense (see [23]). For f(ω) ∈ CL(O), define a norm by ‖f‖L =
max|α|≤L supω∈O |Dαf(ω)|.

If f is analytic in (x, u, v;ω) ∈ D(s, r) ×O, then we can write

f =
∑
k,l,m

fk,l,m(ω)ei〈k,x〉ulvm.

Define

‖f‖LD(s,r) = sup
(x,u,v)∈D(s,r)

∣∣∣∣ ∑
k,l,m

‖fk,l,m(ω)‖Les|k|ulvm
∣∣∣∣.
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It is a stronger norm than the usual supremum-norm. If f depends only on x and ω,
we write ‖f‖Ls := ‖f‖LD(s,r).

Assume that A(ω) and B(ω) are analytic with respect to ω on O. Also assume
that f, g1, and g2 are analytic on D(s, r) ×O.

Theorem 1.1. Assume that

(A.1) p = q and rank (A) = p;

(A.2) there are λ1(ω), . . . , λq(ω), which are analytic in ω, such that λ2
1, . . . , λ

2
q are

the eigenvalues of the matrix AB and the following nonresonance conditions hold:

〈ω, k〉 �= 0 ∀k �= 0,(1.6)

〈ω, k〉 − λj �= 0 ∀k �= 0, j = 1, . . . , q.(1.7)

Then, for sufficiently small α > 0, there exists an ε > 0 depending on λ1, . . . , λq, α,O,
n,m such that if

‖f‖LD(s,r) ≤ ε,
1

r
‖g1‖LD(s,r) ≤ ε,

1

r
‖g2‖LD(s,r) ≤ ε(1.8)

with L ≥ q2, the following holds true: There exists a nonempty subset Oα of O such
that, for all ω ∈ Oα, there exists an analytic compatible transformation

Φ∗(·;ω) : D(s/2, r/2) → D(s, r)

which transforms the reversible system (1.1) into the form

ẋ = ω∗ + f∗, u̇ = A∗(ω)v + g∗1, v̇ = −B∗(ω)u + g∗2,(1.9)

where f∗, g∗1, and g∗2 satisfy

f∗(x, 0, 0;ω) = 0, g∗1(x, 0, 0;ω) = 0, g∗2(x, 0, 0;ω) = 0.

Hence, for ω ∈ Oα, Φ∗(T
n × {0} × {0};ω) is an invariant torus of the reversible

system (1.1) with the frequency ω∗ satisfying ‖ω∗(ω) − ω‖L ≤ 2ε. Moreover, we have
meas(O \Oα) → 0 as α → 0.

Theorem 1.2. Assume that

(A.3) p < q and rank (A) = p;

(A.4) there are λ1, . . . , λq, which are analytic in ω, such that λ2
1, . . . , λ

2
q are the

eigenvalues of the square matrix (Q−1BP, 01) and conditions (1.6) and (1.7) hold.
Here P is a nonsingular p× p-matrix and Q is a nonsingular q × q-matrix such that
PAQ = (Ip, 02), where 01 and 02 are p × (q − p) and (q − p) × q zero matrices,
respectively. Then, for sufficiently small α > 0, there exists an ε > 0 depending on
λj(1 ≤ j ≤ q), α,O, n,m such that if (1.8) holds, then there exists a nonempty subset
Oα of O such that for all ω ∈ Oα, the reversible system (1.1) has an invariant torus.

Below we first consider the case p = q. As preparation for the proof of these two
theorems, we reduce a linear reversible system to a normal form, which is necessary
to our KAM steps, and we construct a special compatible transformation, which is
used to deal with certain resonant relations. Then we prove Theorem 1.1 by KAM
iteration. The case p < q we reduce to the special case p = q in Theorem 1.1 and
then prove Theorem 1.2.
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2. Normal forms for linear reversible systems. In this section we consider
the reversible system of the form

ẋ = ω, u̇ = Av, v̇ = −Bu,(2.1)

where (x, u, v) ∈ Tn × Rp × Rp, A and B being p-order square matrices. Moreover,
we take A to be nonsingular. We want to transform the reversible system (2.1) to a
simple, symmetrical form, which we call normal form.

At first we consider a special class of compatible transformations. Let a mapping
Φ : (x, u, v) → (x+, u+, v+), defined by

x+ = x, u+ = φ11(x)u + φ12(x)v, v+ = φ21(x)u + φ22(x)v,(2.2)

where φij (i, j = 1, 2) are p× p matrices. By definition, Φ is compatible if and only if

φ11(x) = φ11(−x), φ12(x) = −φ12(−x),

φ22(x) = φ22(−x), φ21(x) = −φ21(−x)

and the matrix (φij)1≤i,j≤2 is nonsingular. In particular, if φ12 = φ21 = 0 and φ11 and
φ22 are nonsingular constant matrices, then Φ is a linear compatible transformation.
Under this compatible transformation, the reversible system (2.1) is changed to

ẋ = ω, u̇ = A+v, v̇ = −B+u,(2.3)

where A+ = φ11Aφ−1
22 and B+ = φ22Bφ−1

11 . Note that for simplicity we always
use (x, u, v) instead of the new variables (x+, u+, v+) in the transformed equations.
Taking φ11 = Ip and φ22 = A, we have A+ = Ip, B+ = AB.

From hypothesis (A.2) there exists a nonsingular matrix S such that

SB+S
−1 = diag(B+1, . . . , B+d) with B+j = λ2

jIpj + Jj ,

where λ2
j (j = 1, . . . , d) are all different eigenvalues of B+, and Jj = diag(Jj1, . . . , Jjdj

)
is a pj-order matrix, where Jjj′ is a zero-matrix or a Jordan form (blm) satisfying
blm = 1 for m = l + 1 and blm = 0 for m �= l + 1.

It is easy to see that for λj �= 0, Ipj
+λ−2

j Jj and (Ipj
+Jj)

2 are similar . Thus, there

exists a nonsingular matrix S̃j such that S̃j(λ
2
jIpj

+Jj)S̃
−1
j = [λj(Ipj

+Jj)]
2. Suppose

λj �= 0 for j = 1, . . . , d − 1 and λd = 0. Let S̃ = diag(S̃1, S̃2, . . . , S̃d−1, Ipd
). Under a

compatible transformation of the form (2.2) with φ12 = φ21 = 0 and φ11 = φ22 = S̃S,
the reversible system (2.3) becomes

ẋ = ω, u̇ = Ipv, v̇ = −B̃u,(2.4)

where B̃ = diag(B̃1, . . . , B̃d) with B̃j = λ2
j (Ipj + Jj)

2 for j ≤ d− 1 and B̃d = Jd.
Taking a compatible transformation of the form (2.2) with

φ11 = diag(λ1E1, . . . , λd−1Ed−1, Ipd
), φ22 = Ip, φ12 = φ21 = 0,

where Ej = Ipj
+ Jj , system (2.4) is changed to

ẋ = ω, u̇ = A∗v, v̇ = −B∗u,(2.5)

where

A∗ = diag(λ1E1, . . . , λd−1Ed−1, Ipd
), B∗ = diag(λ1E1, . . . , λd−1Ed−1, Jd).
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We call the form (2.5) a normal form for the reversible system. This result is stated
concisely in the following lemma.

Lemma 2.1. The reversible system (2.1) can always be changed to the normal
form (2.5) by compatible transformation. Moreover, if all the eigenvalues of AB are
not zero, we have λj �= 0, j = 1, 2, . . . , d, and A∗ = B∗ = diag(λ1E1, . . . , λdEd).

Now we consider a small perturbation of normal form (2.5), namely the following
reversible systems:

ẋ = ω, u̇ = (A + g1)v, v̇ = −(B + g2)u,(2.6)

where A = A∗, B = B∗.
Lemma 2.2. There exists a compatible transformation Φ satisfying ‖Φ−Id‖L ≤

cε by which (2.6) is changed to

ẋ = ω, u̇ = A+v, v̇ = −B+u,(2.7)

where A+ = diag(A+1, . . . , A+d) and B+ = diag(B+1, . . . , B+d), with A+j = Aj +

Âj , B+j = A+j for j = 1, 2, . . . , d − 1, and A+d = Ipd
, B+d = Jd + B̂d. Moreover,

‖A+ −A‖L, ‖B+ −B‖L ≤ cε.
Proof. Since A has the eigenvalues λ1, . . . , λd−1, 1 satisfying |λj | ≥ δ > 0 for 1 ≤

j ≤ d− 1, we have

A + g1 = A(Ip + A−1g1) with ‖A−1g1‖ ≤ cε,

where c depends on δ and p. If ε is sufficiently small, Ip + A−1g1 is nonsingular, and

(Ip + A−1g1)
−1 = Ip −A−1g1 + (A−1g1)

2 − . . . = Ip + P.

It follows that ‖P‖ ≤ cε. So A + g1 is also nonsingular. With the compatible trans-
formation Φ1 : (x, u, v) → (x+, u+, v+), defined by

x+ = x, u+ = (A + g1)
−1u, v+ = Ipv,

the reversible system (2.6) is changed to

ẋ = ω, u̇ = Ipv, v̇ = −B̃u,(2.8)

where B̃ = AB + P ′, with P ′ = g2A + Bg1 + g2g1 and ‖P ′‖ ≤ cε. Since

AB = diag
(
(λ1E1)

2, . . . , (λd−1Ed−1)
2, Jd

)
,

by Lemmas 6.2 and 6.3, if ε is sufficiently small, we have a nonsingular matrix S
satisfying ‖S − Ip‖ ≤ |P ′‖ ≤ cε such that

SB̃S−1 = AB + diag(P1, . . . , Pd),

where the Pj are pj × pj-matrices with ‖Pj‖ ≤ c‖P ′‖ ≤ cε.
Define a compatible transformation Φ2 : (x, u, v) → (x+, u+, v+) by

x+ = x, u+ = Su, v+ = Sv.

Then the reversible system (2.8) is changed to

ẋ = ω, u̇ = Ipv, v̇ = −(AB + P ′′)u,(2.9)

where P ′′ = diag(P1, . . . , Pd).
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By Lemma 6.4, for sufficiently small ε, there exist Âj such that

(λjEj)
2 + Pj = (λjEj + Âj)

2, 1 ≤ j ≤ d− 1, and ‖Âj‖ ≤ cε.

Let Â = diag(Â1, . . . , Âd−1, 0) and A+ = A + Â = diag(A+1, . . . , A+d). We have
A+j = λjEj + Âj (j ≤ d − 1) and A+d = Ipd

. Let B+j = A+j (j ≤ d − 1) and
B+d = Jd + Pd. Set B+ = diag(B+1, . . . , B+d).

Define a compatible transformation

Φ3 : (x, u, v) → (x+, u+, v+) by x+ = x, u+ = A+u, v+ = Ipv.

Thus, the reversible system (2.9) is changed to (2.7). By the compatible transforma-
tion Φ = Φ3Φ2Φ1, the reversible system (2.6) is changed to the normal form (2.7).
Moreover, Φ is given by x+ = x and w+ = φw, where

w = (u, v)T, w+ = (u+, v+)T, and φ = diag(A+S(A + g1)
−1, S).

Write the term

A+S(A + g1)
−1 = (A + Â)S(A + g1)

−1 = Ip + P ′′′.

It follows easily that ‖P ′′′‖ ≤ cε. Thus we have ‖φ− I2p‖ ≤ cε. Moreover,

‖φ− I2p‖L ≤ cε, ‖A+ −A‖L ≤ cε, ‖B+ −B‖L ≤ cε,

where c indicates constants independent of ε. Thus, Lemma 2.2 is proved.

3. A compatible transformation. Define a transformation Φ : (x, u, v) →
(x+, u+, v+) by ⎧⎪⎨

⎪⎩
x+ = x,

u+ = (ei〈k,x〉 + e−i〈k,x〉)u− i(ei〈k,x〉 − e−i〈k,x〉)v,

v+ = i(ei〈k,x〉 − e−i〈k,x〉)u + (ei〈k,x〉 + e−i〈k,x〉)v,

(3.1)

where k ∈ Zn is fixed. Obviously, this transformation is compatible.
For simplicity, let

E =

(
Ip −iIp
iIp Ip

)
, Ē =

(
Ip iIp

−iIp Ip

)
,

so that (3.1) can be written in the more compact form

x+ = x, w+ = φw,(3.2)

where φ = ei〈k,x〉E + e−i〈k,x〉Ē. It follows that EĒ = 0, E2 = 2E, E + Ē = 2I2p,
and so φ is invertible with

φ−1 =
1

4
(ei〈k,x〉Ē + e−i〈k,x〉E).(3.3)

By means of this compatible transformation, we have the following result.
Lemma 3.1. Consider the reversible system

ẋ = ω, u̇ = λ(I + J)v, v̇ = −λ(I + J)u,(3.4)
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where for simplicity I = Ipj and J = Jj . If λ �= 0 and λ+ 〈k, ω〉 �= 0, then there is a
compatible transformation which carries over the system (3.4) to the system

ẋ = ω, u̇ = (λ + 〈k, ω〉)(I + J)v, v̇ = −(λ + 〈k, ω〉)(I + J)u.(3.5)

Proof. Let

Ω =

(
0 A

−B 0

)
, A = B = λ(I + J).

Then (3.4) can be written as ẋ = ω, ẇ = Ωw. Under the transformation (3.2) the
reversible system (3.4) is changed to

x+ = ω, ẇ+ = (∂ωφφ
−1 + φΩφ−1)w+ = Ω+w+.(3.6)

By direct calculation, we have

Ω+ =

(
0 A + 〈k, ω〉I

−B − 〈k, ω〉I 0

)
.

Since λ + 〈k, ω〉 �= 0, in the same way as in section 2, we have a compatible transfor-
mation that changes the reversible system (3.6) to (3.5).

In the normal form (2.5), if λi and λj satisfy

λj − λi = 〈k, ω〉, k �= 0 and λi �= 〈k, ω〉,

the normal form can be changed by a compatible transformation to another normal
form with λj = λi. This means that the resonant case λj −λi = 〈k, ω〉 is equivalent to
the multiple case λj = λi by a compatible transformation. Thus, in the proof of our
results, we can always suppose that λi and λj satisfy λj − λi �= 〈k, ω〉 for all k ∈ Zn.

4. Proof of Theorem 1.1. Below we use the KAM iteration to prove Theo-
rem 1.1. By Lemma 2.1, without loss of generality, we suppose that Ω = Ω0 has the
form

Ω0 =

(
0 A0

−B0 0

)
,

where A0 and B0 have the same form as A∗ and B∗ in (2.5). Let λd = 0. By condition
(1.7) and Lemma 3.1 we suppose that on the set O the nonresonance conditions hold:

〈ω, k〉 �= 0 ∀k ∈ Zn \ {0},(4.1)

〈ω, k〉 + λj(ω) �= 0 ∀k ∈ Zn,∀j = 1, . . . , d− 1,(4.2)

〈ω, k〉 + λi(ω) − λj(ω) �= 0 ∀k ∈ Zn, ∀i �= j.(4.3)

Moreover, suppose that there exist the following resonant relations:

2λj(ω) = 〈ω, kj〉 ∀ω ∈ O, kj �= 0, j = 1, . . . , d− 1.(4.4)

Remark. The nonresonant condition (4.3) is the second Melnikov’s condition. By
Lemma 3.1, the second Melnikov’s condition can hold automatically by compatible
transformation, so we need not give them as an additional condition.
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Remark. Because of the resonant relations (4.4), in the KAM steps we have to
retain some x-dependent terms from terms which are linear in u and v; this makes
the KAM iteration more complicated.

A. Outline of the iteration. At each step we consider the reversible system{
ẋ = ω̃ + f(x,w;ω),

ẇ = Ωw + G(x)w + g(x,w;ω),
(4.5)

where

Ω =

(
0 A

−B 0

)
,

A = diag(A1, . . . , Ad), Aj = λjEj + Âj , 1 ≤ j ≤ d− 1, Ad = Ipd
,

B = diag(B1, . . . , Bd), Bj = Aj , 1 ≤ j ≤ d− 1, Bd = Jd + B̂d.

Moreover, we have ‖Âj‖L ≤ cε0 for 1 ≤ j ≤ d − 1 and ‖B̂d‖L ≤ cε0. The
matrix G depends on x and satisfies ‖G‖L ≤ cε0. Write as G = (Glm)1≤l,m≤2 in block
form, where Gij = diag(G1

ij , . . . , G
d
ij) with Gd

ij = 0 for i, j = 1, 2, and Gl
ij being a

pl × pl-matrix. Let Gj = (Gj
lm)1≤l,m≤2 with

Gj
11 =

i

2

(
Gj

kj
ei〈kj ,x〉 + Gj

−kj
e−i〈kj ,x〉

)
, Gj

22 = −Gj
11,

Gj
12 = −1

2

(
Gj

kj
ei〈kj ,x〉 −Gj

−kj
e−i〈kj ,x〉

)
, Gj

21 = Gj
12.

Let

Sj =

(
Ipj

Ipj

iIpj
−iIpj

)
for 1 ≤ j ≤ d− 1, Sd = Ipd

.(4.6)

It is easy to verify that

(Sj)−1GjSj = i

(
0 Gj

kj
ei〈kj ,x〉

Gj
−kj

e−i〈kj ,x〉 0

)

and

(Sj)−1

(
0 Aj

−Bj 0

)
Sj = i

(
Aj 0

0 −Bj

)
.

Remark. Gw consists of some special x-dependent terms which cannot be killed in
KAM steps because of the resonant relations (4.4). These terms are retained through
the iteration step.

Considering small perturbations, suppose that f and g are analytic on D(s, r) in
(x,w) and belong to CL(O) in ω with

‖f‖LD(s,r) ≤ ε, ‖g‖LD(s,r) ≤ rε.(4.7)



PERSISTENCE OF INVARIANT TORI FOR REVERSIBLE SYSTEMS 241

The idea of our KAM iteration is to find a compatible transformation such that
the system (4.5) can be changed to{

ẋ = ω̃+ + f+(x,w;ω),

ẇ = Ω+w + G+(x)w + g+(x,w;ω)
(4.8)

with f+ and g+ being a much smaller perturbation and ω̃+,Ω+, G+(x) being the
corrections of ω̃,Ω, G(x), respectively. If this correction can be carried out at each
step of the iteration, then, after infinitely many steps, the system converges to the
form in Theorem 1.1.

B. Normalization. We first normalize the first order constant terms of w. Let
f0 = f(x,w)|w=0, [f0] being the average of f0 with respect to x on Tn, and Ω̂ =
[Dwg(x,w) |w=0]. Since the system is reversible, we have

Ω̂ =

(
0 Dvg1(x, u, v) |u,v=0

Dug2(x, u, v) |u,v=0 0

)
.

By Lemma 2.2, we have a linear compatible transformation Φ1 defined by x+ =
x,w+ = Sw satisfying

‖S − I2p‖L ≤ cε(4.9)

such that the system (4.5) is changed to{
ẋ = ˜̃ω +

(
f(x, S−1w;ω) − [f0]

)
,

ẇ = Ω̃w + SG(x)S−1w + Sg(x, S−1w;ω) − SΩ̂S−1w,
(4.10)

where ˜̃ω = ω̃ + [f0] and Ω̃ = ( 0
−B̃

Ã
0 ) with

Ã = diag(Ã1, . . . , Ad), Ãj = λjEj + ˆ̃Aj , 1 ≤ j ≤ d− 1, Ãd = Ipd
,

B̃ = diag(B̃1, . . . , B̃d), B̃j = Ãj , 1 ≤ j ≤ d− 1, B̃d = Jd + ˆ̃Bd .

Moreover, we have the estimates

‖ ˆ̃Aj − Âj‖L ≤ cε for 1 ≤ j ≤ d− 1, ‖ ˆ̃Bd − B̂d‖L ≤ cε.(4.11)

Write SG(x)S−1 = G + (S − I2p)GS−1 + SG(S−1 − I2p). Let

f̃ =
(
f(x, S−1w;ω) − [f0]

)
,

ḡ = S
(
g(x, S−1w;ω) − Ω̂S−1w

)
+
[
(S − I2p)GS−1 + SG(S−1 − I2p)

]
w.

It is easy to see that

‖f̃‖LD(s,r/2) ≤ 2ε, ‖ḡ‖LD(s,r/2) ≤ crε.(4.12)

Note that in the KAM steps we use c to indicate constants which are independent of
the iteration process.

Let

ḡ1 =
∂ḡ

∂w

∣∣∣∣
w=0

=

(
ḡ11 ḡ12

ḡ21 ḡ22

)
.
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Write ḡij = (ḡlmij )1≤l,m≤d, where ḡlmij is a pl × pm-matrix. Take

Ĝj
11 = − 1

4

{
− ḡjj11kj

ei〈kj ,x〉− ḡjj11−kj
e−i〈kj ,x〉+ ḡjj22kj

ei〈kj ,x〉+ ḡjj22−kj
e−i〈kj ,x〉

+ i
[
ḡjj12kj

ei〈kj ,x〉− ḡjj12−kj
e−i〈kj ,x〉+ ḡjj21kj

ei〈kj ,x〉− ḡjj21−kj
e−i〈kj ,x〉]},

Ĝj
21 = − 1

4

{
− i
[
ḡjj11kj

ei〈kj ,x〉 − ḡjj11−kj
e−i〈kj ,x〉]

+ i
[
ḡjj22kj

ei〈kj ,x〉 − ḡjj22−kj
e−i〈kj ,x〉]

− ḡjj12kj
ei〈kj ,x〉 − ḡjj12−kj

e−i〈kj ,x〉 − ḡjj21kj
ei〈kj ,x〉 − ḡjj21−kj

e−i〈kj ,x〉
}
,

Ĝj
22 = − Ĝj

11, Ĝj
12 = Ĝj

21 for j = 1, . . . , d− 1, Ĝd
ij = 0,

Ĝij =diag
(
Ĝ1

ij , . . . , Ĝ
d−1
ij , 0

)
, Ĝ =

(
Ĝij

)
1≤i,j≤2

, Ĝj =

(
Ĝj

11 Ĝj
12

Ĝj
21 Ĝj

22

)
.

In addition, set

G̃ = G + Ĝ, g̃ = ḡ − Ĝw, and g̃1 =
∂g̃

∂w

∣∣∣∣
w=0

= ḡ1 − Ĝ.(4.13)

It follows easily that ‖g̃‖LD(s,r/2) ≤ crε. The system (4.10) becomes{
ẋ = ˜̃ω + f̃ ,

ẇ = Ω̃w + G̃(x)w + g̃.
(4.14)

By the above discussion, we have [f̃ |w=0] = 0 and [g̃w |w=0] = 0. In particular, we
take the terms g̃llij from g̃1 in the same way as ḡllij from ḡ1 and let

(g̃lij)1≤i,j≤2 = (Sl)−1(g̃llij)1≤i,j≤2S
l.

Then for the Fourier coefficients of g̃lij,k we have

g̃l12,kl
= 0 and g̃l21,−kl

= 0.(4.15)

C. Constructing compatible transformation. Define Φ2 : (x+, w+) → (x,w) by

x = x+ + h(x+), w =
(
I2p + a(x+)

)
w+ + b(x+),

where h(x), b(x) are vector functions, respectively, and a(x) is a 2p × 2p-matrix
function. Write a and b in the block form

a =

(
a11 a12

a21 a22

)
, b =

(
b1
b2

)
,

where aij are p× p-matrices and b1, b2 are p-dimensional vectors. By definition, it is
easy to see that Φ2 is compatible if and only if⎧⎪⎪⎪⎨

⎪⎪⎪⎩

h(−x) = −h(x),

b1(−x) = −b1(x), b2(−x) = b2(x),

a11(−x) = a11(x), a12(−x) = −a12(x),

a21(−x) = −a21(x), a22(−x) = a22(x).

(4.16)
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Before doing the transformation, we first consider the composition function G̃(x+
h(x)). Suppose that ‖h(x)‖LD(s−ρ,r/2) ≤ 1. By series expansion, it follows that

ei〈kj ,h(x)〉 = 1 + i〈kj , h(x)〉 + Oj(h
2),

where Oj(h
2) satisfies ‖Oj(h

2)‖ ≤ c‖h‖2 as h → 0. Let

G̃j
∗(x) = −i(Sj)−1G̃jSj =

(
0 G̃j

kj
ei〈kj ,x〉

G̃j
−kj

e−i〈kj ,x〉 0

)
.

Then we have

G̃j
∗(x + h) = G̃j

∗ + G̃j
∗ diag

(
− i〈kj , h〉, i〈kj , h〉

)
+ G̃j

∗ diag
(
Oj(−h2), Oj(h

2))
)
.

With

G̃j
h(x) = iSjG̃j

∗(x) diag
(
− i〈kj , h〉, i〈kj , h〉

)
(Sj)−1,

G̃j
h2(x) = iSjG̃j

∗(x) diag
(
Oj(−h2), Oj(h

2)
)
(Sj)−1

we obtain

G̃j(x + h(x)) = G̃j(x) + G̃j
h(x) + G̃j

h2(x).

In the same way as defining G from Gj , we define G̃(x + h(x)), G̃(x), G̃h(x), and
G̃h2(x). It is easy to see that

G̃(x + h(x)) = G̃(x) + G̃h(x) + G̃h2(x).

Moreover, we have

‖G̃h‖LD(s−ρ,r/2) ≤ c‖h‖LD(s−ρ,r/2), ‖G̃h2‖LD(s−ρ,r/2) ≤ c(‖h‖LD(s−ρ,r/2))
2.

In particular, if [h(x)] = 0, G̃h has the same property as (4.15) for g̃1.
Under the transformation Φ2 the system (4.14) is changed to⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ẋ = ˜̃ω + (In + Dxh)−1(f̃0 − ∂ ˜̃ωh) + R0 = ˜̃ω + f+,

ẇ = (Ω̃ + G̃)w + (I2p + a)−1[(Ω̃ + G̃)b− ∂ ˜̃ωb + g̃0

+ (Ω̃ + G̃)aw − a(Ω̃ + G̃)w − ∂ ˜̃ωaw + (g̃1 + G̃h)w] + R

= (Ω̃ + G̃)w + g+,

(4.17)

where

f̃0 = f̃(x, 0), g̃0 = g̃(x, 0), g̃1 = g̃w(x, 0), ∂ ˜̃ωh =
∑
k

i〈k, ˜̃ω〉hke
i〈k,x〉,

R0 = (In + Dxh)−1

(
f̃ − f̃0 +

∫ 1

0

< ∇z f̃(z + tδz), δz > dt

)
(4.18)

with Dxh the Jacobian matrix of h with respect to x, z = (x,w), and δz = (h, aw+b),

R = (I2p + a)−1
[
(G̃h + G̃h2)(aw + b) + Gh2w − (∂f+aw + ∂f+b)

]
+ (I2p + a)−1

[
g̃ − g̃0 − g̃1w +

∫ 1

0

< ∇z g̃(z + tδz), δz > dt

]
.(4.19)

Here ∂fa = (∂faij)ij is also a matrix.
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We want to find h, a, b such that

−∂ ˜̃ωh + f̃0 = 0,(4.20)

(Ω̃ + G̃)b− ∂ ˜̃ωb + g̃0 = 0,(4.21)

(Ω̃ + G̃)a− a(Ω̃ + G̃) − ∂ ˜̃ωa + g̃1 + G̃h = 0.(4.22)

Thus, the system (4.17) becomes{
ẋ = ω̃+ + f+,

ẇ = (Ω++G+)w + g+,
(4.23)

where ω̃+ = ˜̃ω, Ω+ = Ω̃, G+ = G̃, f+ = R0, g+ = R.
D. Solving linear homological equations. As usual, the first equation (4.20) is easy

to solve. By condition (4.1) and Lemma 6.5, there exists a subset O+ of O such that
for ω ∈ O+, we have |〈 ˜̃ω, k〉| ≥ α/|k|τ for all 0 �= k ∈ Zn, and τ > n− 1. By [f̃0] = 0,
for ω ∈ O+ we obtain hk = f̃0

k/i〈 ˜̃ω, k〉 for all k �= 0, where hk and f̃0
k are the Fourier

coefficients of h and f̃0. Since ‖f̃0‖LD(s,r/2) ≤ ‖f̃‖LD(s,r/2) ≤ ε, it follows that

‖h‖LD(s−ρ,r/2) ≤ cε α−L−1ρ−κ, κ = 2τ + n + 1.(4.24)

Note that the measure of the set O \O+ will be estimated later.
Remark. In this paper, we can also use Rüssmann’s nondegeneracy condition and

Bruno’s small divisor condition; for this case we refer the reader to [12, 13].
To solve (4.21), let b = (bT1 , . . . , b

T
d , b

T
d+1, . . . , b

T
2d)

T , where bj and bd+j are pj-

dimensional column vectors. Let y = g̃0 = g̃(x, 0). Similarly, write y = (yT1 , . . . , y
T
d ,

yTd+1, . . . , y
T
2d)

T . It follows easily that

‖y‖LD(s,r/2) ≤ ‖g̃‖LD(s,r/2) ≤ crε.

Let

Ω̃j =

(
0 Ãj

−B̃j 0

)
.

By the special form of Ω̃ and G̃, (4.21) is equivalent to(
∂ ˜̃ωbj

∂ ˜̃ωbd+j

)
−
(
Ω̃j + G̃j

)( bj
bd+j

)
=

(
yj

yd+j

)
, j = 1, 2, . . . , d.

Let

(b̃Tj , b̃
T
d+j)

T = (Sj)−1(bTj , b
T
d+j)

TSj , (ỹTj , ỹ
T
d+j)

T = (Sj)−1(yTj , y
T
d+j)

TSj ,

where Sj is defined in (4.6). Set Ω̃j
∗ = −i(Sj)−1Ω̃jSj. Then we have

i

(
∂ ˜̃ω b̃j

∂ ˜̃ω b̃d+j

)
+ Ω̃j

∗

(
b̃j

b̃d+j

)
+ G̃j

∗

(
b̃j

b̃d+j

)
= i

(
ỹj

ỹd+j

)
;

that is,

−i∂ ˜̃ω b̃j − Ãj b̃j − G̃j
kj
ei〈kj ,x〉b̃d+j = −iỹj ,

−i∂ ˜̃ω b̃d+j + B̃j b̃d+j − G̃j
−kj

e−i〈kj ,x〉b̃j = −iỹd+j .
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Let b̃j =
∑

k∈Zn b̃j,ke
i〈k,x〉. Then we obtain the following linear equations for the

Fourier coefficients {b̃j,k}:

[〈k, ˜̃ω〉Ipj
− Ãj ]b̃j,k − G̃j

kj
b̃d+j,k−kj

= −iỹj,k,

[〈k − kj , ˜̃ω〉Ipj + B̃j ]b̃d+j,k−kj
− G̃j

−kj
b̃j,k = −iỹd+j,k−kj .

Using (4.4), the coefficient matrix for b̃j,k, and b̃d+j,k−kj ,

M̃ = 〈k, ˜̃ω〉I2p − diag(λj(Ipj
+ Jj), λj(Ipj − Jj)) + O(ε0) = M + O(ε0).

Obviously, M has only the eigenvalue 〈k, ˜̃ω〉−λj , and O(ε0) is a small matrix. Suppose
that

‖ ˜̃ω − ω̃‖L, ‖Ãj −Aj‖L, ‖B̃j −Bj‖L, ‖G̃j
±kj

‖L ≤ cε0.(4.25)

Then we have ‖O(ε0)‖L ≤ cε0. By condition (4.2) and Lemmas 6.6 and 6.7, there
exists a subset O+ of O such that, for ω ∈ O+, M̃ is nonsingular and, for its inverse
M̃−1, we have

‖M̃−1‖L ≤ c(|k| + 1)τα−L−1.

Thus, we solve b̃j,k and b̃d+j,k−kj and have the following estimates:

‖(b̃Tj,k, b̃Td+j,k−kj
)T ‖L ≤ c(|k| + 1)τα−L−1‖(ỹTj,k, ỹTd+j,k−kj

)T ‖L(4.26)

for j = 1, . . . , d− 1 and for all k ∈ Zn.
For j = d, we need to solve the following equations:{

i〈k, ˜̃ω〉b̃d,k − b̃2d,k = ỹd,k,

i〈k, ˜̃ω〉b̃2d,k + (Jd + ˆ̃Bd)b̃d,k = ỹ2d,k.
(4.27)

If k �= 0, similarly to the above, we can find b̃d,k and b̃2d,k for ω ∈ O+ and have

‖(b̃Td,k, b̃T2d,k)T ‖LD(s−ρ,r/2) ≤ c(1 + |k|)τα−L−1‖(ỹTd,k, ỹT2d,k)T ‖L.(4.28)

For k = 0, (4.27) becomes b̃2d,0 = −ỹd,0 and (Jd + Ĵd)b̃d,0 = ỹ2d,0. Since ỹ2d,0 = 0 by

the special structure of reversible systems, we take b̃d,0 = 0. Thus, (4.28) still holds
for k = 0. Combining the above estimates, for all k ∈ Zn, we have

‖bk‖L ≤ c‖b̃k‖L ≤ c(|k| + 1)τα−L−1‖yk‖L.

Hence,

‖b(x)‖LD(s−ρ,r/2) ≤ crεα−L−1ρ−κ.(4.29)

Now we consider the last equation, (4.22), which is the most difficult one. Let
a = (aij)1≤i,j≤2 and y = g̃1 + G̃h = (yij)1≤i,j≤2 , where aij and yij are p×p-matrices.
By (4.24), we have

‖y(x)‖LD(s−ρ,r/2) ≤ cεα−L−1ρ−κ.(4.30)
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Write the matrices aij = (almij )1≤l,m≤d and yij = (ylmij )1≤l,m≤d in block form with

almij and ylmij being pl × pm-matrices. Define two 2pl × 2pm-matrices xlm and ylm by

xlm = (almij )1≤i,j≤2 and ylm = (ylmij )1≤i,j≤2. Let

Ω̃j =

(
0 Ãj

−B̃j 0

)
for 1 ≤ j ≤ d− 1 and Ω̃d =

(
0 Ipd

Jd + ˆ̃Bd 0

)
.

Then (4.22) becomes

∂ ˜̃ωx
ij + xij(Ω̃j + G̃j) − (Ω̃i + G̃i)xij = yij .(4.31)

Let X = (Si)−1xijSj = (X lm)1≤l,m≤2, Y = (Si)−1yijSj = (Y lm)1≤l,m≤2, with
X lm, Y lm being pi × pj-matrices. Then (4.31) changes to

∂ ˜̃ωX + X(Sj)−1(Ω̃j + G̃j)Sj − (Si)−1(Ω̃i + G̃i)SiX = Y.(4.32)

In the case of i = j = d, G̃d = 0, so (4.32) becomes

∂ ˜̃ωX − Ω̃dX + XΩ̃d = Y.(4.33)

Hence, using Lemma 6.1, the equation for the Fourier coefficient {Xk} is

M̃{Xk} =
(
〈k, ˜̃ω〉I2p + M + O(ε0)

)
{Xk} = −i{Yk},

where M has the only eigenvalue zero and O(ε0) depends on ˆ̃Bd with the same esti-
mates as before. For the notation {Xk}, see Lemma 6.1. In the same way as above,
by Lemmas 6.6 and 6.7, there exists a subset O+ of O such that, for ω ∈ O+, we can
find {Xk} for the above equation and obtain ‖Xk‖L ≤ c|k|τα−L−1‖Yk‖L for all k �= 0.
If k = 0, we take X0 = 0 because of Y0 = 0.

If i = d and 1 ≤ j < d, (4.32) becomes

∂ ˜̃ωX + X(Sj)−1(Ω̃j + G̃j)Sj − Ω̃dX = Y.(4.34)

Then

−i∂ ˜̃ωX
11 + X11Ãj + e−i〈kj ,x〉X12G̃j

−kj
+ iX21 = − iY 11,

−i∂ ˜̃ωX
12 −X12B̃j + ei〈kj ,x〉X11G̃j

kj
+ iX22 = − iY 12,

−i∂ ˜̃ωX
21 + X21Ãj + e−i〈kj ,x〉X22G̃j

−kj
− iB̃dX

11= − iY 21,

−i∂ ˜̃ωX
22 −X22B̃j + ei〈kj ,x〉X21G̃j

kj
− iB̃dX

12 = − iY 22.

Comparing the Fourier coefficients on both sides of these equations and replacing k
by k|j = k + kj in the second and the fourth equation, we obtain

〈k, ˜̃ω〉X11
k + X11

k Ãj + X12
k|j G̃

j
−kj

+ iX21
k = − iY 11

k ,

〈k|j , ˜̃ω〉X12
k|j − X12

k|j B̃j + X11
k G̃j

kj
+ iX22

kj
= − iY 12

k|j ,

〈k, ˜̃ω〉X21
k + X21

k Ãj + X22
k|j G̃

j
−kj

− iB̃dX
11
k = − iY 21

k ,

〈k|j , ˜̃ω〉X22
k|j − X22

k|j B̃j + X21
k G̃j

kj
− iB̃dX

12
k|j = − iY 22

k|j .



PERSISTENCE OF INVARIANT TORI FOR REVERSIBLE SYSTEMS 247

Set

X̃k =

(
X11

k X12
k|j

X21
k X22

k|j

)
, Ỹk =

(
Y 11
k Y 12

k|j
Y 21
k Y 22

k|j

)
, G̃j

∗∗ =

(
0 G̃j

kj

G̃j
−kj

0

)
.

Then we find

〈k, ˜̃ω〉X̃k + X̃k

[
diag

(
Ãj ,−B̃j + 〈kj , ˜̃ω〉Ipj

)
+ G̃j

∗∗

]
− iΩ̃dX̃k = −iỸk.

By Lemma 6.1, we consider the above matrix equation for X̃k as a linear equation for
{X̃k}. Denote the coefficient matrix for {X̃k} by

M̃ = 〈k, ˜̃ω〉I4pjpd
+ M + O(ε0),

where M has the only eigenvalue λj and O(ε0) is a small matrix with the same
estimates as before. By Lemma 6.6, there exists a subset O+ of O such that, for
ω ∈ O+, we can find X̃k with ‖X̃k‖L ≤ c(|k| + 1)τα−L−1‖Ỹk‖L.

If 1 ≤ i, j < d, (4.32) becomes

−i∂ ˜̃ωX − (Ω̃i
∗ + G̃i

∗∗)X + X(Ω̃j
∗ + G̃j

∗∗) = −iY.

Using the abbreviation G̃x,α
kα

= ei〈kα,x〉G̃α
kα
, we have

−i∂ ˜̃ωX
11 − ÃiX

11 − G̃x,i
ki

X21 +X11Ãj + X12G̃x,j
−kj

= − iY 11,

−i∂ ˜̃ωX
12 − ÃiX

12 − G̃x,i
ki

X22 − X12B̃j + X11G̃x,j
kj

= − iY 12,

−i∂ ˜̃ωX
21 + B̃iX

21 − G̃x,i
−ki

X11+X21Ãj + X22G̃x,j
−kj

= − iY 21,

−i∂ ˜̃ωX
22 + B̃iX

22 − G̃x,i
−ki

X12− X22B̃j + X21G̃x,j
kj

= − iY 22.

Comparing the Fourier coefficients and replacing k by k|j = k + kj , k|i = k − ki, and
k|ji = k+kj −ki in the last three equations of the above system, respectively, we find

〈k, ˜̃ω〉X11
k − ÃiX

11
k − G̃i

ki
X21

k|i + X11
k Ãj + X12

k|j G̃
j
−kj

= − iY 11
k ,

〈k|j , ˜̃ω〉X12
k|j − ÃiX

12
k|j − G̃i

ki
X22

k|ji − X12
k|j B̃j + X11

k G̃j
kj

= − iY 12
k|j ,

〈k|i, ˜̃ω〉X21
k|i + B̃iX

21
k|i − G̃i

−ki
X11

k + X21
k|iÃj + X22

k|jiG̃
j
−kj

= − iY 21
k|i ,

〈k|ji, ˜̃ω〉X22
k|ji + B̃iX

22
k|ji − G̃i

−ki
X12

k|j−X22
k|jiB̃j + X21

k|iG̃
j
kj

= − iY 22
k|ji .

Set

X̃k =

(
X11

k X12
k|j

X21
k|i X22

k|ij

)
, Ỹk =

(
Y 11
k Y 12

k|j
Y 21
k|i Y 22

k|ij

)
.

Then we have

〈k, ˜̃ω〉X̃k + X̃k[diag(Ãj ,−B̃j + 〈kj , ˜̃ω〉Ipj ) + G̃j
∗∗]

−[diag(Ãi,−B̃i + 〈ki, ˜̃ω〉Ipi
) + G̃i

∗∗]X̃k = −iỸk.

Using the resonant relations (4.4) in the same way as before, the above matrix equation
is equivalent to a linear equation for {X̃k}:

(〈k, ˜̃ω〉I4pipj + M + O(ε0)){X̃k} = −i{Ỹk},
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where M has the eigenvalue λj − λi and O(ε0) has the same estimates as stated
previously.

If i �= j or i = j, k �= 0, by Lemmas 6.6 and 6.7, there exists a subset O+ of O
such that, for ω ∈ O+, the above linear equation for {X̃k} is solvable, and we have

‖X̃k‖L ≤ c(|k| + 1)τα−L−1‖Ỹk‖L.

If i = j and k = 0, by our choice of Ĝ and (4.15), it follows that Ỹ0 = 0, and,
consequently, we have X̃0 = 0.

Thus, for ω ∈ O+ we can find all Xk satisfying

‖Xk‖L ≤ c(|k| + 1)τα−L−1‖Yk‖L.

So

‖ak‖L ≤ c(|k| + 1)τα−L−1‖yk‖L.(4.35)

By (4.30) it follows that

‖a(x)‖LD(s−2ρ,r/2) ≤ cεα−2L−2ρ−2κ.(4.36)

By (4.24), (4.29), and (4.36), there exists a subset O+ of O such that, for ω ∈ O+,
we can solve (4.20), (4.21), and (4.22) for h, b, a with the estimates

‖h‖LD(s−ρ,r/2),
1

r
‖b‖LD(s−ρ,r/2) ≤

cε

αL+1ρκ
, ‖a‖LD(s−2ρ,r/2) ≤

cε

α2(L+1)ρ2κ
.

By Cauchy’s estimate it follows that

‖Dxh‖LD(s−2ρ,r/2),
1

r
‖Dxb‖LD(s−2ρ,r/2) ≤

cε

αL+1ρκ+1
,

‖Dxa‖LD(s−3ρ,r/2) ≤
cε

α2(L+1)ρ2κ+1
.

Now we consider the Lebesgue measure of O+. For simplicity, denote by M̃k the
matrices of coefficients for the linear equations in the above discussion. Thus

O+ = {ω ∈ O | ∀k, ‖M̃−1
k ‖ ≤ (1 + |k|)τ/α},

where M̃−1
k is the inverse of M̃k. We divide the set O+ into two parts, O1

+ and O2
+,

where

O1
+ = {ω ∈ O | ∀|k| ≤ K, ‖M̃−1

k ‖ ≤ (1 + |k|)τ/α}

and O2
+ = O+ \O1

+. By Lemma 6.6, if τ ≥ nL+1 and K is sufficiently large, we have

meas(O −O2
+) ≤ cα

1
L

∑
k �=0

(|k| + 1)
L−τ
L ≤ cα

1
L .(4.37)

For |k| ≤ K, by the remark for Lemma 6.6, we need only consider Mk = M̃k|ε0=0. By
the assumption of analyticity and conditions (4.1), (4.2), and (4.3), the set
{ω |det(Mk) = 0} has zero-measure. Let

O1 = {ω ∈ O | ∀|k| ≤ K, ‖M−1
k ‖ ≤ (1 + |k|)τ/(2α0)},
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where α0 is the α at the first step with α ≤ α0. We have meas(O \ O1) tends to
zero as α0 → 0. Since M̃k is a small perturbation of Mk with ‖M̃k −Mk‖ ≤ cε0, if
ε0 is sufficiently small, we always have O1 ⊆ O1

+. Thus, we can take O1
+ = O1 and

O+ = O1 ∪O2
+, where O1 is independent of the KAM step.

Below we verify the symmetry of (4.16). The symmetry of h holds by its definition.
So we need only to consider b and a. Let Q = diag(−Ip, Ip). Then it follows easily
that

Qg̃0(−x) = −g̃0(x), QG̃(−x)Q = −G̃(x), and Qg̃1(−x)Q = −g̃1(x).

By (4.21), we have

(Ω̃ + G̃(−x))b(−x) + ∂ ˜̃ωb(−x) + g̃0(−x) = 0.

Multiplying the above equation by Q from the left and using the properties of g̃0 and
G̃, we have

−(Ω̃ + G̃(x))Qb(−x) + ∂ ˜̃ωQb(−x) + Qg̃0(−x) = 0.

By (4.21) it follows that

(Ω̃ + G̃(x))(b(x) −Qb(−x)) − ∂ ˜̃ω(b(x) −Qb(−x)) = 0.

Because the solution of b in the above equation is unique, we have b(x) = Qb(−x),
which exhibits the symmetry of b in (4.16). Let X = Qa(−x)Q− a. By (4.22) and in
the same way, we obtain

(Ω̃ + G̃(x))X −X(Ω̃ + G̃(x)) − ∂ ˜̃ωX = 0.

So X = 0 and a = Qa(−x)Q, which is equivalent to the symmetry of a.
E. Estimates for the transformation. By means of our construction, if

ω ∈ O+ and
cε

α2(L+1)ρ2κ+1
≤ η < ρ <

1

8
,

we have a compatible transformation

Φ2 : (x+, w+) ∈ D(s− 3ρ, ηr) → (x,w) ∈ D(s− ρ, 2ηr) ⊂ D(s, r/2)

such that

‖x− x+‖LD+
,

1

r
‖w − w+‖LD+

≤ cε

α2(L+1)ρ2κ
,(4.38)

‖Dx+x− In‖LD+
,

1

r
‖Dx+w‖LD+

≤ cε

α2(L+1)ρ2κ+1
,(4.39)

‖Dw+w − I2p‖LD+
≤ cε

α2(L+1)ρ2κ
,(4.40)

where D+ = D(s− 3ρ, ηr).
Define the compatible transformation Φ = Φ2 ◦ Φ1 : (x+, w+) → (x,w). By (4.9)

it follows easily that Φ has the same structure and satisfies the same estimates as Φ2,
with possibly different constants. So we may regard Φ2 as Φ for simplicity.
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F. Estimates of the perturbation after transformation. Let

η =

(
ε

α2(L+1)ρ2κ+1

) 1
2

, r+ = rη, s+ = s− 3ρ.

By (4.18) and (4.19), using the procedure of [7] and [21], it follows that

‖f+‖LD(s+,r+) ≤ cεη = ε+,(4.41)

‖g+‖LD(s+,r+) ≤ cεηr+ = ε+r+(4.42)

with ε+ = cεη. Here we omit the details of estimating, as they are very similar to
those of [7] and [21].

G. Convergence of the iteration. For given s, ε, r in the theorems, we define several
sequences, which depend inductively on s, ε, r:

ε0 = ε, r0 = r, s0 = s, α0 = α, ρ0 =
s0

12
, η0 =

ε
1
2
0

αL+1
0 ρ

κ+ 1
2

0

,

A0 = A, B0 = B, G0 = 0, Ω0 =

(
0 A0

−B0 0

)
= normal form (2.5),

εν+1 = cηνεν , rν+1 = ηνrν , sν+1 = sν − 3ρν , ρν+1 =
1

2
ρν ,

ην =
ε

1
2
ν

αL+1
ν ρ

κ+ 1
2

ν

, Dν = D(sν , rν), αν+1 = αν/2, ν = 0, 1, . . . .

At the νth step, there exists a subset Oν = O1 ∩O2
ν of O. For ω ∈ Oν , there exists a

compatible transformation Φν : (xν+1, wν+1) → (xν , wν) satisfying

‖xν+1 − xν‖LDν
≤ cη2

ν , ‖wν+1 − wν‖LDν
≤ crνη

2
ν .(4.43)

Moreover, we have meas(O −O2
ν) ≤ cα

1
L
ν .

Let Φν+1 = Φν ◦ Φν+1 with Φ0 = Id and f0 = f, g0 = g, ω̃0 = ω. By the
compatible transformation Φν , system (1.1) is changed to{

ẋ = ω̃ν + fν(x,w;ω),

ẇ = (Ων + Gν)w + gν(x, u, v;ω).
(4.44)

Moreover,

‖ω̃ν+1 − ω̃ν‖L ≤ εν , ‖Ων+1 − Ων‖L ≤ cεν ,(4.45)

‖Gν+1 −Gν‖L ≤ cεν , ‖fν‖LDν
≤ εν , ‖gν‖LDν

≤ rνεν .(4.46)

By definition, we have ην+1 ≤ c
1
2 (ην)

3
2 ; hence, cην+1 ≤ (cην)

3
2 . If cη0 =

cε0
1
2α−L−1

0 ρ
−κ− 1

2
0 ≤ 2−1, then ην+1 ≤ c−12−( 3

2 )ν . Thus, we have εν+1 ≤ 2−1εν , and
so εν ≤ 2−νε0. By the above estimates, assumption (4.25) obviously holds.

Let Oα = ∩ν≥1Oν . For (x,w;ω) ∈ D(s/2, r/2) × Oα, we can prove that the
transformation Φν is convergent to Φ∗. The proof is the same as in the case of
Hamiltonian systems (in fact simpler), so we omit the details and refer the reader to
[10]. For ν → ∞ let ω̃ν → ω∗, Ων → Ω∗, Gν → G∗, fν → f∗, gν → g∗. By (4.45)
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and (4.46), it follows that ‖ω∗ −ω‖L ≤ cε, ‖Ω∗ −Ω‖L ≤ cε, ‖G∗‖L ≤ cε. Moreover,
by (4.46) we have

f∗(x,w) |w=0= 0, g∗(x,w) |w=0= 0, and g∗w(x,w) |w=0= 0.

H. Measure estimate. It remains to estimate the measure of Oα. By the previous
discussion, Oα = O1 ∩O2, where O2 = ∩∞

ν=1O
2
ν . It follows that

meas(O \O2) ≤
∑
ν≥1

meas(O \O2
ν) ≤ cα

1
L .

Thus,

meas(O \Oα) ≤ meas(O \O1) + meas(O \O2) → 0 (α → 0).

For ω ∈ Oα, by the compatible transformation Φ∗, the reversible system (1.1) is
changed to (1.9). Thus, the proof of Theorem 1.1 is complete .

5. Proof of Theorem 1.2. Take the matrices P and Q as in Theorem 1.2. By
the compatible map Φ : (x,w) → (x+, w+) defined by x+ = x,w+ = diag(P,Q)w, the
reversible system (1.1) is changed to⎧⎪⎨

⎪⎩
ẋ = ω + f(x, u, v;ω),

u̇ = (Ip, 02)v + g1(x, u, v;ω),

v̇ = PBQu + g2(x, u, v;ω).

(5.1)

Note that here f, g1, g2 may be different from those in (1.1). Let ũ = (u1, . . . , up,
up+1, . . . , uq)

T = (uT , uT
∗ )T and v∗ = (vp+1, . . . , vq)

T , where u∗ = (up+1, . . . , uq)
T .

We consider the reversible system⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ẋ = ω + f(x, u, v;ω),

u̇ = (Ip, 02)v + g1(x, u, v;ω),

u̇∗ = Iq−pv∗,

v̇ = (PBQ, 01)ũ + g2(x, u, v;ω),

(5.2)

where (PBQ, 01) is a q× q-matrix. Using Theorem 1.1 we obtain a nonempty subset
Oα of O. For ω ∈ Oα, we have a compatible transformation Φ(x, ũ, v;ω) such that
Φ(Tn, 0, 0;ω) is an invariant torus of the reversible system (5.2). Taking projec-
tion maps Pu∗ : (x, u, u∗, v) → (x, u, 0, v) and P0 : (x, u, 0, v) → (x, u, v), then
P0 ◦ Pu∗(Φ(Tn, 0, 0;ω)) is an invariant torus of the reversible system (5.1).

Remark. Here we show that condition (A.1) and (1.3) are necessary for the result.
If rank(A) = γ < p, there exists a compatible transformation such that the reversible
system (1.1) is changed to⎧⎪⎨

⎪⎩
ẋ = ω + f(x, u, v;ω),

u̇ = Ĩv + g1(x, u, v;ω),

v̇ = PBQu + g2(x, u, v;ω),

Ĩ =

(
Iγ 0
0 0

)
.(5.3)

Let g1 = (0, 0, . . . , ε). Then for all ε > 0 the reversible system (5.3) has no invariant
torus. From section 3, we know that if there are λj �= 0 and λj = 〈ω, k〉, then, by
a compatible transformation, we arrive at the case λj = 0 and rank(A) < p. This
means that condition (1.7) is necessary.
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6. Appendix.
Lemma 6.1. Let A and B be an m ×m and n × n-matrix, respectively, and let

C and X = (xij) be m × n-matrices. Then the matrix equation AX + XB = C is
equivalent to the following linear equation D{X} = {C}, where

{X} = (x11, x12, . . . , x1n, x21, x22, . . . , x2n, . . . , xm1, xm2, . . . , xmn)T ,

{C} = (c11, c12, . . . , c1n, c21, c22, . . . , c2n, . . . , cm1, cm2, . . . , cmn)T

are mn-columns and the coefficient matrix

D =

⎛
⎜⎜⎜⎝
a11In + BT a12In · · · a1mIn

a21In a22In + BT · · · a2mIn
...

... · · ·
...

am1In am2In · · · amnIn + BT

⎞
⎟⎟⎟⎠

is an mn ×mn-matrix with the eigenvalues {λi + µj | i = 1, . . . ,m, j = 1, . . . , n}, if
A has the eigenvalues λ1, . . . , λm and B has the eigenvalues µ1, . . . , µn.

This lemma has a straightforward proof, which we will omit.
Lemma 6.2. Let A and B be an m × m and an n × n-matrix, respectively,

let λ1, . . . , λm be the eigenvalues of A and µ1, . . . , µn the eigenvalues of B, and let
P = (Pij) be an (m + n) × (m + n)-matrix. If

|λi − µj | ≥ α > 0 for i = 1, . . . ,m, j = 1, . . . , n,

where α is constant, then there exists an ε > 0 such that, if ‖P‖ ≤ ε, diag(A,B) + P
is similar to a diagonal block form diag(A′, B′). Moreover, there is a nonsingular
matrix S = Im+n + Ŝ satisfying ‖Ŝ‖ ≤ c‖P‖ such that

S−1
(
diag(A,B) + P

)
S = diag(A′, B′) = diag(A + Â, B + B̂)

with ‖Â‖ ≤ c‖P‖ and ‖B̂‖ ≤ c‖P‖.
Proof. Write

P =

(
P11 P12

P21 P22

)
, S =

(
Im S12

S21 In

)
, diag(A′, B′) =

(
A + Q11 0

0 B + Q22

)
.

We solve the following equation for S12, S21, Q11, and Q22:(
A + P11 P12

P21 B + P22

)
×
(
Im S12

S21 In

)
=

(
Im S12

S21 In

)
×
(
A + Q11 0

0 B + Q22

)
.

This equation is equivalent to⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(A + P11)S12 − S12B − S12Q22 = −P12,

(B + P22)S21 − S21A− S21Q11 = −P21,

Q11 − P12S21 = P11,

Q22 − P21S12 = P22.

(6.1)

Using the last two equations in (6.1), the first two equations become

(A + P11)S12 − S12(B + P22) + S12P21S12 = −P12,(6.2)

(B + P22)S21 − S21(A + P11) + S21P12S21 = −P21.(6.3)
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Instead of (6.2) for S12, we now consider the equivalent equation for the column {S12};
see Lemma 6.1. Let λ′

1, . . . , λ
′
m be the eigenvalues of A + P11 and µ′

1, . . . , µ
′
n be the

eigenvalues of B + P22. At first, we take ε sufficiently small such that

|λ′
i − µ′

j | ≥
α

2
> 0 for i = 1, . . . ,m, j = 1, . . . , n.

By Lemma 6.1 the coefficient matrix for the linear part of {S12} has eigenvalues
λ′
i − µ′

j for i = 1, . . . ,m, j = 1, . . . , n. Thus, the coefficient matrix is nonsingular.
The equation for {S12} is nonlinear. But by the implicit function theorem we can
solve this equation near {P12} = 0. Thus if {P12} is sufficiently small, there exists
a unique solution {S12}. Moreover, we have ‖S12‖ ≤ c‖P‖. Similarly, we can solve
(6.3) with the same estimate ‖S21‖ ≤ c‖P‖. From the last two equations in (6.1) we
can get Q11 and Q22 with ‖Q11‖ ≤ c‖P‖ and ‖Q22‖ ≤ c‖P‖.

By induction we can easily obtain the following result.
Lemma 6.3. Let Ãj be an nj × nj-matrix and λj

1, . . . , λ
j
mj

be the eigenvalues of

Ãj . Let P = (Pij) be a
∑

j nj ×
∑

j nj-matrix. If

|λl
i − λm

j | ≥ α > 0 for i = 1, . . . , nl, j = 1, . . . , nm, l �= m,

where α is a constant, then there exists an ε > 0 such that, if ‖P‖ ≤ ε, there is a
nonsingular matrix S = I∑

j nj
+ Ŝ, satisfying ‖Ŝ‖ ≤ c‖P‖, with

S−1
(
diag(A1, . . . , Ad) + P

)
S = diag(A1 + Â1, . . . , Ad + Âd).

Moreover, we have ‖Âj‖ ≤ c‖P‖ for j = 1, . . . , d.
Lemma 6.4. Let A and P be as in Lemma 6.2. Let {λj} be the eigenvalues of

the matrix A. Suppose that λj = λ + εj, where λ �= 0 and |εj | ≤ 1
2 |λ| for all j.

Suppose ‖P‖ ≤ ε. If ε is sufficiently small, then there exists a matrix X such that
(A + X)2 = A2 + P with ‖X‖ ≤ cε.

Proof. We consider the following equivalent equation AX + XA + X2 = P .
The coefficient matrix of the linear part AX + XA for {X} has all eigenvalues of
{λi + λj = 2λ+ εi + εj}. Because |λi + λj | ≥ 2|λ| − |εi| − |εj | ≥ |λ|, it is nonsingular.
Using the same method as in the proof of Lemma 6.2 and by the implicit function
theorem, we can obtain the solution of the above equation for {X} with an estimate
for small ε.

Lemma 6.5. Let D be an N × N -matrix depending on ω and ‖D‖L ≤ M .
Let P be an N × N -matrix with ‖P‖ ≤ 1. Then det(D + εP ) = det(D) + εF with
‖F‖L ≤ cMN−1, where c is a constant depending on N .

Proof. Let f(ε) = det(D + εP ). Then f(ε) = f0 + f1ε + f2ε
2 + · · · + fnε

N , where

fj = 1
j!

djf
dεj |ε=0. Obviously, f0 = det(D). By the properties of determinants with

respect to differentiation, it is easy to obtain ‖fj‖L ≤ cMN−j , where c depends only
on N .

Lemma 6.6. Suppose that ‖ω̃ − ω‖L ≤ ε, where fj(ω) is an Lth continuously
differentiable function with ‖fj(ω)‖L ≤ M (1 ≤ j ≤ L). Let P (ω) = (pij(ω))
be an L × L-matrix, Lth continuously differentiable with respect to ω ∈ O, with

‖P‖L = max|β|≤L max1≤i,j≤L supω∈O |∂
βpij

∂ωβ | ≤ ε. Let Rk(α) be the subset of O such

that ‖D−1‖ > c|k|τ
α , where D = 〈ω̃, k〉I+diag(f1(ω), f2(ω), . . . , fL(ω))+P (ω), τ > nL.

Then, if ε > 0 is sufficiently small, there is a constant K > 0 depending on M such
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that, for α > 0 and |k| > K,

meas(Rk(α)) ≤
(

cα

|k|τ−L

) 1
L

,

where c is a constant depending on ε,M .
Proof. Since ‖D‖ = O(|k|), we know that the norm of the inverse of a matrix is

controlled by |k|L times of the lower bound of its determinant. In fact,

Rk(α) ⊆
{
ω ∈ O

∣∣∣∣ detD| < c
α

|k|τ−L

}
.

Note that

g(k, ω) = det(D) =

L∏
j=1

(〈ω̃, k〉 + fj(ω)) +

L−1∑
l=0

al

L∏
j=1

(〈ω̃, k〉 + fj(ω))lj ,

where ‖al‖L ≤ cε and l = (l1, l2, . . . , lL), lj = 0 or 1 and
∑L

j=1 lj ≤ L − 1. Also note
that there exists a sufficiently large K > 0 such that, if |k| ≥ K and ε is sufficiently
small,

∣∣∣∣ ∂L

∂νL
g(k, ω)

∣∣∣∣ ≥
∣∣∣∣∣∣

L∏
j=1

(〈
∂

∂ν
ω̃, k

〉
+

∂

∂ν
fj(ω)

)∣∣∣∣∣∣− cε|k|L ≥ [(1− cε)|k| −M ]L − cε|k|L,

where ∂L

∂νL is the Lth direction derivative along the direction ν = k
|k| at ω. Thus, if ε

is sufficiently small, it follows that |∂
Lg(ω)
∂νL | ≥ 1

4 |k|L, which implies

meas(Rk(α) ≤ c

(
α

|k|τ−L

) 1
L

diam(O)n−1,

where c is a constant depending only on M, ε, n,K, and, in particular, it is independent
of α, k.

Remark. If fj(ω) is analytic and 〈ω, k〉 + fj(ω) �= 0, then {ω | 〈ω, k〉 + fj(ω) =
0} ⊂ O has zero-measure. Let O1 = {ω ∈ O | |〈ω, k〉 + fj(ω)| ≥ α for all |k| ≤ K}.
We have meas(O \ O1) → 0 as α > 0 → 0. Therefore, |〈ω, k〉 + fj(ω)| ≥ α > 0 holds
on a nonempty subset O1 of O. Then, for sufficiently small ε > 0 depending on α, if
‖P‖ ≤ ε , the matrix D is invertible for all ω ∈ O1 ⊂ O and |k| ≤ K with ‖D−1‖ ≤ c

α .
Lemma 6.7. Let D be a matrix depending on ω and ‖D‖L ≤ M . If D is invertible

with ‖D−1‖ ≤ N , then ‖D−1‖L ≤ cMLNL+1, where c is a constant depending on L.
Proof. By differentiating the two sides of the equation D−1D = I, we have

(D−1)′ = D−1D′D−1. So

‖(D−1)′‖ ≤ ‖D′‖ · ‖D−1‖2 ≤ MN2.

Inductively it follows that ‖D−1‖L ≤ cMLNL+1.
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1. Introduction. In this work we will study the partial differential equation
(PDE) for a scalar function v(x, y),

div

(
Rα

∇v

|∇v|

)
= 0 ,(1.1)

where Rα is a rotation counterclockwise by an angle 0 < α < π/4,

Rα =

[
cosα − sinα
sinα cosα

]
.

Throughout the paper we consider only functions v such that ∇v �= 0, which avoids
the singularity of (1.1). As will be discussed more fully in the appendix, this equation
represents the steady state of a kind of granular flow problem studied in [12], [11].

The domain Ω on which we consider this equation is approximately rectangular,
with one free boundary along the topmost edge (see Figure 1.1(a)). Even though,
as we will show below, (1.1) is hyperbolic, we will impose Dirichlet-type boundary
conditions: specifically,

v(0, y) = φ0(y), 0 < y < L0,
v(1, y) = φ1(y), 0 < y < L1,
v(x, 0) = 0, 0 < x < 1,

v(x, s(x)) = V, 0 < x < 1,

(1.2)

where the function s = s(x) defined on 0 < x < 1 describes the free boundary and V
is a constant. Naturally, s must satisfy

s(0) = L0, s(1) = L1.
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L1

v = φ 1

L0

0 1

y

x

(a) (b)

0 1

Ω

y

x

v = φ 0

v = 0

y = s(x)

v = V

Fig. 1.1. Two portraits of the domain Ω, (a) showing the boundary data and the free boundary
and (b) illustrating straight-line characteristics along which v may have a discontinuity in its third
derivative.

We also impose the obvious compatibility conditions at the corners of the domain,

φ0(0) = 0, φ1(0) = 0,
φ0(L0) = V, φ1(L1) = V.

Finally, to ensure that a solution v is differentiable on Ω, we will need to impose the
nonlocal compatibility conditions

φ′
0(0) = φ′

1(0) and(1.3a)

φ′′
0(0) = φ′′

1(0).(1.3b)

Nonlocal compatibility conditions for the boundary data arise in this problem
because (1.1) is hyperbolic. Even when (1.3a), (1.3b) are satisfied, a possible dis-
continuity in third-order derivatives of v propagates along a sequence of straight-line
characteristics starting at the lower left corner of Ω (see Figure 1.1(b)). (Note that,
even though Dirichlet boundary conditions are imposed, singularity information flows
from the fixed boundary to the free boundary.) By imposing additional compatibility
conditions like (1.3a), (1.3b), one could increase the order of the derivative of v that
may suffer a discontinuity. If one or both conditions (1.3a), (1.3b) were omitted, one
could study weak solutions of (1.1), (1.2). We do not pursue this idea here.

In a rectangular domain (as opposed to the quasi-rectangular domain Ω) with
boundary data given by φ0 = φ1 = y, the equation (1.1) admits the simple solution
v(x, y) = y. The problem we consider may be regarded as perturbing the data on
the left and right, necessitating the incorporation of the free surface along the top
boundary. For the perturbed problem, we will show the following.

Theorem 1.1. There exists an ε > 0 such that if φ0, φ1 ∈ C2 satisfy (1.3a),
(1.3b), and ‖φ0 − y‖2 < ε, ‖φ1 − y‖2 < ε, then there exists a unique C2 solution v in
Ω to (1.1) and (1.2).

Here and throughout, ‖g‖k denotes the Ck-norm of the function g:

‖g‖k = max
x∈D(g)

{
|g(x)|, |g′(x)|, . . . , |g(k)(x)|

}
.
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If 0 < ε < 1, then both of the φi are monotone. Below we shall in fact assume that

ε <
1

2
.(1.4)

Thus, for such ε, monotonicity is an implicit assumption. Incidentally, the hypothesis
that ‖φi − y‖2 < ε implies that |L1 −L0| = O(ε); however, we shall not make explicit
use of this fact. The ε that we derive below depends on L0, L1; indeed, it decreases
geometrically as L0, L1 → ∞. We are not sure whether this limitation could be avoided
through a different argument.

As we shall see below, the free boundary is a characteristic curve. The well-
posedness of (1.1), (1.2) depends crucially on this fact: because of it, (1.1), (1.2)
resemble a Goursat problem [5].

In section 2 we analyze the characteristics of (1.1) and without loss of generality
simplify the boundary data. In section 3, the original BVP for v is reduced to solving
a functional equation along the left boundary of the domain; also, limitations on the
regularity of the solution are explained. The existence of solutions to the functional
equation is proven in section 4, thereby establishing the existence of solutions to the
original BVP. Uniqueness is obtained in section 5. Finally, in the appendix we discuss
the physical interpretation of (1.1) and describe connections with similar equations
from mathematical modeling of granular flow.

2. Preliminaries.

2.1. Analysis by characteristics. We begin our analysis of (1.1) by converting
it into an equivalent first-order system. We define

τ = Rα
∇v

|∇v|

such that (1.1) becomes

div τ = 0,
|τ | = 1,

R−1
α τ ×∇v = 0,

(2.1)

where × denotes the cross product in two dimensions, interpreted as a scalar. This
equation implies that R−1

α τ and ∇v are parallel vectors. Note that the middle equation
involves no derivatives; thus (2.1) is a differential-algebraic system. However, (2.1)
is easily reduced to a purely differential system. Since τ is a unit vector, we may
represent it as

τ =

[
− sin (θ + α)
cos (θ + α)

]
,

for some angle θ = θ(x, y). This representation of τ , while unusual, simplifies the
analysis of characteristics below. Then the three equations in (2.1) are equivalent to
the 2 × 2 quasi-linear system of differential equations,

∂x

[
θ
v

]
+

[
tan (θ + α) 0

0 tan θ

]
∂y

[
θ
v

]
= 0,(2.2)

which is clearly hyperbolic, but not in conservation form.
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v

stress characteristic

α

θ

τ

tangent to v. char.

velocity characteristic

Fig. 2.1. The orientation of τ, ∇v, and the stress and velocity characteristics. Velocity char-
acteristics are inclined at an angle θ relative to the x-axis, and stress characteristics are inclined at
an angle θ + α. (The angle θ in the figure is negative.)

Observe that the first equation in (2.2) completely decouples from the second.
The characteristics of this equation, along which θ is constant, are straight lines of
slope

dy

dx
= tan (θ + α) .(2.3)

Although this equation is decoupled from the other, we cannot solve it separately
because no explicit data for θ is given on the boundary of the domain.1

The equation for v is not independent of θ, but if we regard θ as known, then the
v equation is linear. Characteristics for this equation, along which v is constant, are
curves y = y(x) that satisfy the differential equation

dy

dx
= tan θ.(2.4)

Boundary data for v—Dirichlet data—is given by (1.2), but we cannot solve the v
equation without knowing θ. Based on the interpretation of (2.1) discussed in the
appendix, we shall refer to the θ-characteristics and v-characteristics, described by
(2.3) and (2.4), as stress and velocity characteristics, respectively.

Comparing (2.3) and (2.4), we see that the velocity characteristics intersect the
stress characteristics at an angle α. To be more precise, the unit tangent along a stress
characteristic at a point (x, y) equals the unit tangent at the same point along the
velocity characteristic, rotated by an angle α counterclockwise (see Figure 2.1).

Recall our assumption that both φ0, φ1 are strictly monotonic and onto a common
range. Therefore, given a point yr in [0, L1] along the right boundary of the domain,
{x = 1}, there exists a unique point y� in [0, L0] along the left boundary such that

φ0(y�) = φ1(yr).(2.5)

(See Figure 2.2.) Velocity characteristics are level curves for the velocity, and we shall
see that y� and yr are connected by a velocity characteristic. However, this association
of boundary points can be made without knowing the function v on the interior of Ω.

1While it is not obvious from the analysis thus far, data for θ actually is determined along the
bottom edge of Ω, {(x, y) : 0 < x < 1, y = 0}. Indeed, it will be shown in the next section that θ ≡ 0
there.
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Fig. 2.2. Connecting boundaries with characteristics: θ is constant along stress characteristics
and v is constant along velocity characteristics.

2.2. Simplification of the boundary data. Suppose that Φ is a C2 function
on the real line such that Φ′ > 0. If v satisfies the PDE (1.1) and boundary conditions
(1.2) then the function Φ(v) also satisfies the same PDE,

div

(
Rα

∇Φ(v)

|∇Φ(v)|

)
= div

(
Rα

Φ′(v)∇v

|Φ′(v)∇v|

)
= div

(
Rα

∇v

|∇v|

)
= 0,

with the modified boundary data

φ̃0 = Φ ◦ φ0,

φ̃1 = Φ ◦ φ1.

In the following, we use Φ = φ−1
1 to simplify the boundary data and the subsequent

analysis. Because of this transformation, it suffices to solve (1.1) with the boundary
data on the sides

φ̃0(y�) = φ−1
1 ◦ φ0(y�), 0 < y� < L0,

φ̃1(yr) = yr, 0 < yr < L1,
(2.6)

provided that ‖φ̃0 − y‖2 is sufficiently small. As regards estimates, note that given
(1.4) there is a constant C such that

‖φ̃0 − y‖2 ≤ C max {‖φ0 − y‖2, ‖φ1 − y‖2} .

Henceforth, we drop the tilde notation but assume that the boundary data is given
as in (2.6). On the left boundary, let us introduce the notation

φ0(y�) = y� + β(y�), 0 < y� < L0.(2.7)

Note that after the reduction in (2.6), equations (1.3a), (1.3b) become

φ′
0(0) = 1, or equivalently, β′(0) = 0 and(2.8a)

φ′′
0(0) = 0, or equivalently, β′′(0) = 0.(2.8b)

For convenient reference below, we list the boundary data on the top and bottom of
Ω:

v(x, 0) = 0, 0 < x < 1,
v(x, s(x)) = L1, 0 < x < 1,

(2.9)

where the transformation φ−1
1 in (2.6) has modified the data on the top of Ω.
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3. Reduction of the BVP to a functional equation on the boundary.
For a solution v of (1.1), θ(x, y) represents the angle of inclination of the velocity
characteristic at the point (x, y) (see Figure 2.1). The θ equation in (2.2) can be
rewritten as

∂xθ + ∂y ln

(
1

cos(θ + α)

)
= 0,(3.1)

a scalar hyperbolic equation in conservation form. In the following we will consider x
as a time-like variable, as its placement in this equation suggests.

We shall derive an initial condition for (3.1) along {(x, y) : x = 0}. To do so,
however, we will need the following result about certain special solutions of (1.1) and
their properties.2

Lemma 3.1. If θ(x, y) is a C1 solution of (3.1) such that |θ| ≤ α/2, then there
exists a C2 function T (x, y) such that

∇T = e(cotα)θ

[
− sin θ
cos θ

]
,(3.2)

and T is a solution of (1.1). If θ is derived from a solution v of (1.1), then T is a
function of v, say T = Φ(v), and Φ is invertible; in particular, T is constant along
velocity characteristics.

Proof. Given a solution θ(x, y) of (3.1), define a vector field

H =

[
H1

H2

]
= e(cotα)θ

[
− sin θ
cos θ

]
.(3.3)

By (3.1), it is easy to verify that

∂yH1 = ∂xH2.

Since the domain is simply connected, H is conservative. That is, there exists a C2

function T such that ∇T = H.
Recall that τ is given by

τ =

[
− sin(θ + α)
cos(θ + α)

]
.

Then by (3.1), div τ = 0, and of course |τ | = 1. Also,

R−1
α τ ×∇T = cos θ ∂xT + sin θ ∂yT = 0.

Thus the pair τ, T satisfy (2.1), which means that T satisfies (1.1).
Suppose θ(x, y) is the angle of inclination of the velocity characteristics of a

solution v of (1.1). The directional derivative of T along a velocity characteristic
equals cos θ ∂xT + sin θ ∂yT, and by (3.3) this vanishes. Thus, T is constant along
velocity characteristics, and it follows that T = Φ(v). Moreover, since neither ∇T nor
∇v vanishes, Φ is invertible.

2The idea for this step in the proof is due to Robert Bryant. Using Darboux’s method [1], [2],
he obtained this result as an affirmative answer to the question, Are there coordinates in which
the general solution of (1.1) be can represented explicitly in terms of two arbitrary functions (as in
d’Alembert’s solution of the wave equation)?
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π/2 − α
π/2−π/2

θ

α−α

H 2

Fig. 3.1. Graph of the function H2. This function is invertible on the interval [−α, α], for
0 < α < π/4.

Only the second component of ∇T = H will be used below. Slightly changing
the notation from (3.3), we shall let H2 denote the function of one real variable,

H2(θ) = e(cotα)θ cos θ.(3.4)

The profile of a typical H2 is shown in Figure 3.1.
Remark 1. We observe that H2 is strictly positive on [−α, α], a fact which follows

from α < π/4 and the definition of H2.
Let v(x, y) be a solution of (1.1) with boundary data on the sides of Ω as in (2.6),

and let θ(x, y) be the angle of inclination of the corresponding velocity characteristics.
As illustrated in Figure 2.2, given a starting point ys on the y-axis, define

yr = ys + tan [θ(0, ys) + α](3.5)

such that (1, yr) is connected to (0, ys) by a stress characteristic, and define

y� = φ−1
0 (yr)(3.6)

such that (0, y�) is connected to (1, yr) by a velocity characteristic. We claim that

H2 ◦ θ(0, y�) = φ′
0(y�)H2 ◦ θ(0, ys).(3.7)

With this relation we will be able to determine boundary conditions for θ from the
given boundary conditions for v.

Proof of (3.7). By the above lemma, the function T is constant along velocity
level lines. Therefore,

T
(
0, φ−1

0 (yr)
)

= T (1, yr) .

Temporarily treating yr as an independent variable, we differentiate T with respect
to its second argument on both sides of the above equation to obtain

∂2T
(
0, φ−1

0 (yr)
) (

φ−1
0

)′
(yr) = ∂2T (1, yr) .(3.8)

Recalling (3.2), (3.4), and (3.6), we can rewrite (3.8) as

H2 ◦ θ (0, y�)φ
−1
0 (yr) = H2 ◦ θ (1, yr) .(3.9)
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As noted above, stress characteristics are straight lines along which θ is constant.
Since (0, ys) and (1, yr) lie on the same stress characteristic,

θ (0, ys) = θ (1, yr) .(3.10)

Finally, from (2.5) and (2.6) one can derive

(
φ−1

0

)′
(yr) =

1

φ′
0

(
φ−1

0 (yr)
) =

1

φ′
0 (y�)

.(3.11)

Then equation (3.7) follows immediately from the substitution of (3.10) and (3.11) into
(3.9).

Below it will be useful to rewrite (3.7) in a more systematic notation. First, we
abbreviate θ(0, y) to θ0(y). Let f be the mapping

ys → yr → y�

as given by (3.5), (3.6) (see Figure 2.2). In this notation, (3.7) becomes

H2 ◦ θ0(f(y)) = φ′
0(f(y))H2 ◦ θ0(y).(3.12)

The above derivation, in which θ is determined from a solution v of (1.1), (2.6),
shows that (3.12) holds for all y such that

0 ≤ y < f(y) ≤ L0.

We now show that if v also satisfies (2.9), then in fact (3.12) holds for a slightly larger
range of y.

If follows from (2.9) that the bottom edge of Ω is a velocity characteristic and,
since it has zero slope, we conclude that

θ(x, 0) = 0, 0 < x < 1.(3.13)

If we regard (3.13) as initial data, then (3.1) has the unique solution θ ≡ 0 in the par-
allelogram B indicated in Figure 3.2, the parallelogram with vertices (0, 0), (1, tanα),
(1, 0), (− tanα, 0). This construction shows that if θ is the slope of the velocity char-
acteristics of a solution v of (1.1), (2.6), (2.9), then

(i) θ ≡ 0 on the triangle B ∩ Ω, and
(ii) θ has a natural extension from its original domain Ω to B ∪ Ω, where θ ≡ 0

on B.
Let v be a solution of (1.1), (2.6), (2.9), and let θ be the angle of inclination of

the corresponding velocity characteristics, extended as in (ii). We claim that (3.12)
holds for all y such that

− tanα ≤ y < f(y) ≤ L0.(3.14)

Indeed, this claim follows from the above proof of (3.7).
With these ideas, we can now explain why θ and v may fail to have higher-order

derivatives. Let us consider the continuity of θ0 at y = 0. Of course, for the limit
from below, limy→0− θ0(y) = 0. For the limit y → 0+, we let y → − tanα from above
in (3.12), observing that f(− tanα) = 0; thus

H2

(
lim

y→0+
θ0(y)

)
= φ′

0(0)H2(0).
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1

y

x0 B

A

Fig. 3.2. How θ is determined in Ω from its boundary data θ0. The region A along with the
function θ in A are determined by θ0 on {y ≥ 0}. Note that the stress characteristics pass out of the
top of the domain, through the free boundary. Likewise θ in region B is determined by θ ≡ 0 along
y = 0.

Since H2(0) = 1, we conclude that limy→0+ θ0(y) = 0 if and only if φ′
0(0) = 1,

as required in (2.8a). Thus θ0 is continuous at y = 0 if and only if (2.8a) holds.
Similarly, θ′ is continuous at y = 0 if and only if (2.8b) holds. However, without
further restrictions on φ0, second- or higher-order derivatives of θ0 may jump at
y = 0.

According to (3.1), a jump in θ′′0 propagates into the interior of Ω along a stress
characteristic at the origin. Also, according to (3.12), the jump in θ′′0 at the origin
creates other jumps at points f(0), f ◦ f(0), . . . higher on the y-axis, which in turn
also propagate into Ω. As in (3.3), jumps in the second-order derivatives of θ(x, y)
lead to jumps in the third derivatives of v. In this way, v may exhibit singularities
along a set of straight-line characteristics, as illustrated in Figure 1.1(b).

We derived (3.12) for θ0 by assuming that a solution v existed in the domain Ω.
In the following theorem, we assume that (3.12) has a solution θ0 along the boundary
and construct the related solution v in Ω.

Theorem 3.2. Suppose θ0 is a C1 function on [− tanα,L0] such that
(i) θ0 ≡ 0 on [− tanα, 0],
(ii) θ0 satisfies (3.12) for all y such that (3.14) holds, and
(iii) ‖θ0‖0 < α

2 and ‖θ′0‖0 < 1
2 cos2( 3

2α).
Then there exists a C2 solution v to (1.1) that satisfies the boundary conditions (2.6),
(2.9).

Proof. Consider the IVP for (3.1) with the initial condition θ0 given in the hy-
pothesis of the theorem: in symbols,

θ(0, y) = θ0(y), − tanα ≤ y ≤ L0.(3.15)

The theory of scalar conservation laws [4] indicates that this problem has a C1 solution
in a portion of some narrow strip

{(x, y) : 0 < x < ζ}
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that is bounded above and below by characteristics. This solution extends to larger
values of x provided the characteristics of (3.1) do not cross. If the initial condition
satisfies

1 + sec2 (θ0(y) + α) θ′0(y) > 0(3.16)

for all y ∈ [− tanα,L0], then the characteristics do not cross in the larger strip
{(x, y) : 0 < x < 1}. For convenience below, we have assumed a stronger estimate on
θ0 that bounds the left-hand side of (3.16) from below by 1/2. Therefore, this initial
value problem has a C1 solution θ in a quadrilateral domain A ∪ B as sketched in
Figure 3.2. Further, by the theory of hyperbolic conservation laws, that solution on
A ∪B satisfies |θ| < α/2 since the boundary data satisfies (iii).

Having constructed θ(x, y), we now define T (x, y) as in Lemma 3.1. We construct
Ω such that its top boundary is a level curve of T :

Ω = {(x, y) : 0 < x < 1, 0 < y, T (x, y) < T (0, L0)} .

Since the stress characteristics arising in the solution of (3.1) are inclined at the
positive angle α with respect to level curves of T, we have Ω ⊂ A ∪B.

To construct v from T, we define

Φ(y) = T (1, y), y > 0.(3.17)

We may compute a first derivative of Φ using (3.8), (3.9),

Φ′(y) = H2 ◦ θ(1, y) �= 0,(3.18)

since |θ| < α/2 on Ω and H2 is strictly positive for such θ, as we noted in Remark 1;
therefore, Φ is invertible. Let us define

v = Φ−1 ◦ T.(3.19)

By the discussion in section 2, we know that v satisfies (1.1). By construction,
v(1, y) = y along the right boundary of Ω as required in (2.6). Examining the
derivation of (3.7), we see that v = φ0 along the left boundary. Finally, also by
the construction, the remaining boundary conditions (2.9) are satisfied.

Remark 2. Let fstr be the mapping ys → yr as given by (3.5). The derivative
of this map is given by the left-hand side of (3.16). Therefore, condition (iii) of the
theorem guarantees that

f ′
str(y) ≥

1

2
;(3.20)

in particular fstr is one-to-one.

4. Solution of the functional equation. In the next three lemmas, we sup-
pose that θ0 is a C1 function defined for y in a subinterval of the y-axis

I = [− tanα, y∗] ,(4.1)

where

f(y∗) ≤ L0.(4.2)
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We assume that θ0 ≡ 0 for y ≤ 0 and that θ0 satisfies the functional equation (3.12)
for all y such that both y and f(y) are in I. We propose to use (3.12) to extend θ0 to
the larger interval

I+ = [− tanα, f(y∗)] .(4.3)

Formally, we may apply H−1
2 to (3.12) and obtain

θ0 (f(y)) = H−1
2 [φ′

0 (f(y)) H2 ◦ θ0(y)] ,(4.4)

a formula which relates θ0 at f(y) to the boundary data φ0 at f(y) and θ0 at y.
However, care must be taken to ensure that (4.4) represents a meaningful definition.
Below, by iterating this basic step, we shall obtain a function θ0 defined on the entire
interval [− tanα,L0] as needed in Theorem 3.2.

In these lemmas we explicitly indicate the precise domain over which certain
norms are to be evaluated: e.g.,

‖θ0 : I‖0 = max
x∈I

|θ0(x)|.

The norms ‖β‖k are to be evaluated over [0, L0]; although I+ ∩ [0, L0] would suffice,
enlarging to [0, L0] simplifies the notation.

Lemma 4.1. There exists δ > 0 such that if
(i) ‖β‖1 < δ and
(ii) ‖θ0 : I‖0 < α

2 and ‖θ′0 : I‖0 < 1
2 cos2( 3

2α),
then (4.4) supplies a well-defined extension of θ0 from I to I+ that satisfies the func-
tional equation (3.12) for all y such that y and f(y) belong to I+.

Proof. For (4.4) to be a valid definition, we need the argument of H−1
2 on the

right-hand side of (4.4) to belong to the domain of H−1
2 and we need f to be one-to-

one. Regarding the latter point, we recorded in Remark 2 that if θ0 satisfies condition
(ii), then the map fstr, and hence f = φ−1

0 ◦ fstr, is one-to-one. Regarding the former
point, observe that by (i), H2 ◦ θ0(y) belongs to the set H2([−α/2, α/2]). However,
since α < π/4, the function H2 is monotone on the larger interval [−α, α]. Thus H−1

2

is defined and smooth on H2([−α, α]), and H2([−α, α]) contains H2([−α/2, α/2]) in
its interior. Provided δ is sufficiently small, if (i) and (ii) hold, then for any y ∈ I

φ′
0(f(y))H2 ◦ θ0(y) = [1 + β′(f(y))] H2 ◦ θ0(y) ∈ H2([−α, α]).(4.5)

Then (4.4) gives an unambiguous extension of θ0 on I+, and by construction (3.12) is
satisfied on the extended interval.

For subsequent arguments we need to be more quantitative about the monotonic-
ity of H2 in this proof: let

m = min
θ∈[−α,α]

H ′
2(θ) > 0,(4.6)

the positivity following from the fact that [−α, α] is compact.
Lemma 4.2. If β and θ0 satisfy conditions (i) and (ii) of Lemma 4.1, then there

are positive constants C1 and C2 such that

‖θ0 : I+‖0 ≤ ‖θ0 : I‖0 + C1 ‖β‖1(4.7)

and

‖θ′0 : I+‖0 ≤ C2 ‖θ′0 : I‖0 + C1 ‖β‖2 .(4.8)
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Proof. In proving this result, it is convenient to introduce the inverse function
g = f−1 and rewrite (4.4) as

θ0(y) = H−1
2 [φ′

0(y)H2 ◦ θ0 (g(y))] .(4.9)

Applying H2 to both sides of (4.9), subtracting H2 ◦ θ0(g(y)) from both sides, and
recalling the definition (2.7) of β, we see that

H2 ◦ θ0(y) −H2 ◦ θ0(g(y)) = β′(y)H2 ◦ θ0(g(y)).(4.10)

Regarding the left-hand side of (4.10), since H2 is monotone and satisfies (4.6) on
[−α, α], we deduce by the mean-value theorem that

m |θ0(y) − θ0(g(y))| ≤ |H2 ◦ θ0(y) −H2 ◦ θ0(g(y))| .(4.11)

Combining (4.10) and (4.11) with the triangle inequality

|θ0 (y)| ≤ |θ0(g(y))| + |θ0 (y) − θ0(g(y))| ,

we obtain (4.7) with

C1 = m−1 max
θ∈[−α,α]

|H2(θ)|.(4.12)

Turning to (4.8), by differentiating (4.9), we obtain

θ′0(y) =
[φ′

0(y)]
2
H ′

2 ◦ θ0(g(y))

H ′
2 ◦ θ0(y)f ′

str(g(y))
θ′0(g(y)) +

H2 ◦ θ0(g(y))

H ′
2 ◦ θ0(y)

φ′′
0(y).(4.13)

The second term in (4.13) is no greater than C1‖β‖2, where C1 is given by (4.12).
The first term is no greater than C2‖θ′0 : I‖0, where to obtain C2 we invoke condition
(i) of Lemma 4.1 to estimate φ′

0, (4.6) to estimate H ′
2, and (3.20) to estimate f ′

str.
This proves (4.8).

In the next lemma, we show that a single application of Lemma 4.1 extends the
domain of θ0 by a distance of at least h, where

h =
1

2
tan

(α
2

)
.(4.14)

Lemma 4.3. If β and θ0 satisfy conditions (i) and (ii) of Lemma 4.1, where in
condition (ii) we have δ ≤ h, then

f(y∗) > y∗ + h.

Proof. Recall that f(y∗) = φ−1
0 ◦ fstr(y∗) and that

fstr(y
∗) = y∗ + tan [θ0(y

∗) + α] .

By condition (ii), θ0(y
∗) ≥ −α/2, so

fstr(y
∗) ≥ y∗ + tan

(α
2

)
= y∗ + 2h.(4.15)

Regarding φ−1
0 , the other factor in f, first observe that for any y

|φ0(y) − y| = |β(y)| < δ ≤ h.
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Substituting z = φ0(y) we deduce∣∣φ−1
0 (z) − z

∣∣ < h,

from which it follows that

φ−1
0 (z) > z − h.

Taking z = fstr(y
∗) and recalling (4.15), we see that

f(y∗) > fstr(y
∗) − h ≥ y∗ + h,

as claimed.

Given the boundary data (2.6), (2.9) for (1.1), we want to construct a function
θ0 on [− tanα,L0] as in Theorem 3.2. Starting from θ0 ≡ 0 on

I0 = [− tanα, 0],

we propose to apply Lemma 4.1 iteratively on an increasing sequence of intervals

I1 = [− tanα, y1], I2 = [− tanα, y2], . . .

where y0 = 0 and for k = 1, 2, . . .

yk = f(yk−1).

Provided ‖β‖1 < δ, it follows from Lemma 4.1 that extension from I0 to I1 is possible.
By Lemma 4.2, provided

C1‖β‖1 <
α

2
and C1‖β‖2 <

1

2
cos2

(
3

2
α

)
,

extension from I1 to I2 is also possible. More generally, provided

N · C1‖β‖1 <
α

2
and

CN
2 − 1

C2 − 1
C1 ‖β‖2 <

1

2
cos2

(
3

2
α

)
,

the estimates of Lemma 4.1 will remain valid for N iterations. Thus for any positive
integer N, if ‖β‖2 is sufficiently small, we can extend θ0 to IN , provided yk ≤ L0 for
k = 1, 2, . . . , N.

According to Lemma 4.3, after some number N iterations, where N ≤ L0/h, we
shall arrive at a point where

yN ≤ L0 but fstr(yN ) > L1

so that f(yN ) is undefined. In this case, there is some ỹ < yN such that f(ỹ) = L0,
and Lemma 4.1 may be applied one more time to extend θ0 from [− tanα, ỹ] to the
entire interval [− tanα,L0]. (This modification of the process also handles the “short
domain” case in which fstr(0) > L1.) In this way, provided ‖β‖2 is sufficiently small,
we may obtain θ0 as in Theorem 3.2 and then invoke that theorem to solve (1.1),
(2.6), and (2.9).
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5. Proof of uniqueness. Briefly, the uniqueness proof proceeds by checking
that each step of the existence proof, which is constructive, has a unique outcome.
Specifically, let v and v̂ be two solutions of (1.1) on domains Ω and Ω̂ and satisfying
the reduced boundary conditions (2.6), (2.9). We assume that (i) neither ∇v nor ∇v̂
vanishes and (ii) the boundary-data function φ0(y) = y+β(y) satisfies ‖β‖2 < ε where
ε is the constant of Theorem 1.1: i.e., ε is sufficiently small to guarantee existence
through the above construction.

• Define θ = arg(∇v) − π/2 to be the angle of inclination of the level curves,

or characteristics, of this solution, and define θ̂ likewise. Both θ and θ̂ satisfy
(3.1), vanish identically on the triangle B ∩ Ω of Figure 3.2, and extend as
solutions of (3.1) to be identically zero on all of B. In particular for the

extended functions, θ0(y) = θ̂0(y) = 0 for − tanα ≤ y ≤ 0.

• Both θ and θ̂ satisfy the functional equation (3.12). It follows from the
estimates in section 3 that f is one-to-one and that θ0(f(y)) belongs to the

domain of H−1
2 , and likewise for f̂ and θ̂0(f̂(y)). Therefore, (3.12) may be

rewritten in the form (4.9), which shows that θ0(y) = θ̂0(y) for the entire
interval − tanα ≤ y ≤ L0.

• By solving (3.1) with the initial condition (3.15), we obtain identical exten-

sions of θ and θ̂ on the quadrilateral domain A ∪ B of Figure 3.2 (the same
domain for both functions).

• Thus the characteristic equation (2.4) for the two solutions, v and v̂, is the
same. Integrating this equation with the initial condition y(0) = L0 to obtain

the upper boundary of Ω we conclude that Ω = Ω̂. More generally, all the
level curves or characteristics of v and v̂ in Ω coincide. Since v and v̂ are
equal on the left boundary of Ω, they are equal throughout Ω.

Appendix: Connection to granular flow. Equation (1.1), or the equivalent
first-order system (2.1), arises from a model [12] for steady-state antiplane shearing of
a granular medium. The term antiplane shear refers to a special class of deformation
of a three-dimensional solid in which: (i) all motion is in the z-direction,

−→v = (0, 0, v),

where v is the scalar velocity in (2.1); (ii) the stress tensor has the reduced form

T =

⎛
⎝ σ 0 τ1

0 σ τ2
τ1 τ2 σ

⎞
⎠ ,

where σ is a uniform confining pressure and τ is the vector in (2.1); and (iii) the
velocity and the stress depend on x and y but are independent of z. (The confining
pressure σ is independent of all three coordinates.) The three equations in (2.1) rep-
resent the following, respectively: (a) Force balance or Newton’s second law of motion
with inertia neglected (appropriate for slow flow). (b) Coulomb’s law of friction—for
motion to occur, the shearing stress must equal a threshold. In general, this threshold
depends on the confining pressure σ and on the internal friction of the material, but
we have nondimensionalized the equations. (c) The nonassociative constitutive law
proposed in [12]. More accurately, the constitutive law should read as follows: there
exists a nonnegative function λ(x, y) such that

∇v = λR−1
α τ.
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In (2.1) the function λ has been eliminated, but the condition λ ≥ 0—that friction
acts dissipatively—needs to be checked a posteriori in order to verify that a solution
of (2.1) is physical.3

Physically, (2.1) may be viewed as describing the continuum limit of a collection
of infinitely long, thin rods. These rods are parallel to the z-axis, their cross sections
fill the domain Ω, and they slide over one another along their axes, subject to the
constitutive law proposed in [12]. On physical grounds, one would expect to be able
to control the velocity of all the rods at the boundary of Ω—in mathematical terms
Dirichlet boundary conditions are suggested. Similarly, it would seem impossible to
control both velocity and stress on any portion of ∂Ω—again in mathematical terms,
Cauchy data are excluded.

The model (2.1) was proposed as a technically simpler analogue of the equations
of slow, two-dimensional flow of an incompressible Coulomb material [3], [8], [7]. The
physical unknowns for such flow consist of a 2-component velocity v and a 2×2 stress
tensor T (three scalars, since T is symmetric). These unknowns satisfy

2∑
j=1

∂jTij = ρgi, i = 1, 2,

2∑
i,j=1

(Tij − σδij)
2

= kσ,

λ (Tij − σδij) = − 1
2 (∂ivj + ∂jvi) , i, j = 1, 2

(5.1)

where ρ is the (constant) density, g is the acceleration of gravity, k is a constant
describing internal friction, σ is the mean stress

σ =
1

2

2∑
i=1

Tii,

and λ(x1, x2) ≥ 0 is an auxiliary function that arises in the mathematical formulation
of plasticity.

The close analogy in form between (5.1) and (2.1) is readily apparent, even though
the number of equations is different. However, the analogy is far closer than a super-
ficial appearance. Specifically, as with (2.1), we have the following: (i) The algebraic
constraint may be eliminated by an appropriate reparameterization of the stress (the
Sokolovskii variables [13]). (ii) The two remaining stress variables satisfy a strictly
hyperbolic system that is uncoupled from the velocity. (iii) If λ is eliminated from the
third equation in (5.1), the two velocity equations—with T regarded as known—are
a linear, strictly hyperbolic system in v.

The present work originated from an attempt to use the three-dimensional ana-
logue of (5.1) to model slow, steady flow in a hopper [6], [9]. Although boundary
conditions along the walls of the hopper are natural and easy to formulate, the sit-
uation at the top and bottom is very unclear: e.g., how many conditions should be
imposed at the top and how many at the bottom? Exactly where should they be
imposed? Since the equations are hyperbolic, one might seek a Cauchy problem. The
stress and velocity equations decouple, and therefore there are various ways of posing

3This positivity is readily checked for the problem in the present paper: the coefficient λ is
identically +1 for the unperturbed solution v(x, y) = y, and the perturbation is too small to change
the sign of λ.
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different Cauchy problems. However, in [9] all ways of prescribing Cauchy data led to
unphysical solutions in which the constraint λ ≥ 0 was violated. In such a solution,
friction is adding energy to the flow.

This paper identifies a well-posed, Dirichlet-type boundary value problem for the
analogous, but technically simpler system (2.1). The appearance of a free boundary,
which is crucial for the result, was suggested by hopper flow: there is some evidence
that exit boundary conditions should be posed along a velocity characteristic, and for
a nonlinear equation the location of characteristics is unknown a priori.

While answering one question, this paper raises many others: e.g., finding larger
classes of well-posed boundary problems for (1.1) and extending understanding of the
model problem to (5.1) and its three-dimensional analogue.

Acknowledgment. We are grateful to Robert Bryant for helpful discussions of
the geometry of (1.1) that culminated in the crucial result of Lemma 3.1.
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1. Introduction. In this paper, we study the periodic Hunter–Saxton equa-
tion [9] ⎧⎪⎨

⎪⎩
utxx = −2uxuxx − uuxxx, t > 0, x ∈ R,

u(0, x) = u0(x), x ∈ R,

u(t, x + 1) = u(t, x), t ≥ 0, x ∈ R,

(1.1)

which describes the propagation of weakly nonlinear orientation waves in a massive
nematic liquid crystal director field. Here, u(t, x) describes the director field of a
nematic liquid crystal, x is a space variable in a reference frame moving with the
linearized wave velocity, and t is a slow time variable. Nematic liquid crystals are
fluids consisting of long rigid molecules. The orientation of the molecules is described
by the field of unit vectors

(cos(u(t, x)), sin(u(t, x))),

where u(t, x) is a perturbation about some constant value. Equation (1.1) describes
the weakly nonlinear dynamics of the director field of a nematic liquid crystal in the
simplest possible setting which includes the effects of the inertia of the director field;
cf. [9].

Equation (1.1) also arises in a different physical context as the high-frequency
limit [7, 10] of the Camassa–Holm equation—a model equation for shallow water
waves [2, 11] and a re-expression of the geodesic flow on the diffeomorphism group
of the circle [5] with a bi-Hamiltonian structure [8] which is completely integrable
[6]. The Hunter–Saxton equation also has a bi-Hamiltonian structure [9, 16] and is
completely integrable [1, 10].

The initial value problem for the Hunter–Saxton equation on the line (nonperiodic
case) has been studied by Hunter and Saxton in [9]. Using the method of character-
istics, they show that smooth solutions exist locally and break down in finite time;
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cf. [9]. The occurrence of blow-up can be interpreted physically as the phenomenon
by which waves that propagate away from the perturbation “knock” the director field
out of its unperturbed state (see [9]).

However, the Cauchy problem of the periodic Hunter–Saxton seems not yet to
have been discussed. The aim of this paper is to prove the local existence of strong
solutions to (1.1) for a large class of initial data and to show that all strong solutions
except space-independent solutions to (1.1) blow-up in finite time. Our methods are
different from the ones used in [9] and the behavior of the solutions exhibits different
features, for example regarding uniqueness (see Theorem 2.12).

Our paper is organized as follows. In section 2, we prove the local existence of the
initial value problem associated with (1.1). In section 3, we investigate the blow-up
phenomenon of strong solutions to (1.1).

Let us conclude the introduction with a short summary of the mathematical
methodology that will be used in our approach. The existence of solutions to the
nonlinear partial differential equation (1.1) is established by investigating an equiva-
lent problem. We eliminate two spatial derivatives in (1.1) at the cost of obtaining
a nonlocal nonlinear partial differential equation of order 1. Methods of functional
analysis are then used to show the local existence of solutions and to address regular-
ity issues. Finally, by looking at the time evolution of the minimum of the slope of
a solution, we prove that all solutions of (1.1) with initial data that are not constant
functions develop singularities in finite time.

2. Local well-posedness. In this section, we will apply Kato’s theory to estab-
lish local existence for strong solutions to (1.1) in Hr(S), r > 3

2 with S = R/Z (the
circle of unit length).

Let us first introduce some notation. Let A denote an unbounded operator and
let D(A) denote the domain of the operator A. [A,B] denotes the commutator of
the linear operators A and B. ‖ · ‖X denotes the norm of the Banach space X. In
particular, ‖ · ‖r and (·, ·)r denote the norm and the inner product of Hr(S), r ≥ 0,
respectively.

For convenience, we state here Kato’s theorem in the form suitable for our pur-
pose.

Consider the abstract quasi-linear evolution equation:

dv

dt
+ A(v)v = f(t, v), t ≥ 0, v(0) = v0.(2.1)

Let X and Y be Hilbert spaces such that Y is continuously and densely embedded
in X and let Q : Y → X be a topological isomorphism. L(Y,X) denotes the space of
all bounded linear operators from Y to X (L(X), if X = Y ). Assume the following.

(i) A(y) ∈ L(Y,X) for y ∈ X with

‖(A(y) −A(z))w‖X ≤ µ1‖y − z‖X‖w‖Y , y, z, w ∈ Y,

and A(y) ∈ G(X, 1, β) (i.e., A(y) is quasi-m-accretive), uniformly on bounded sets
in Y .

(ii) QA(y)Q−1 = A(y) + B(y), where B(y) ∈ L(X) is bounded, uniformly on
bounded sets in Y . Moreover,

‖(B(y) −B(z))w‖X ≤ µ2‖y − z‖Y ‖w‖X , y, z ∈ Y, w ∈ X.
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(iii) For each y ∈ Y , t → f(t, y) is continuous on [0,∞) to X. For each t ∈ [0,∞),
f(t, y) : Y → Y and extends also to a map from X into X. For all t ∈ [0,∞), f is
uniformly bounded on bounded sets in Y , and

‖f(t, y) − f(t, z)‖Y ≤ µ3‖y − z‖Y , t ∈ [0,∞), y, z ∈ Y,

‖f(t, y) − f(t, z)‖X ≤ µ4‖y − z‖X , t ∈ [0,∞), y, z ∈ X.

Here µ1, µ2, µ3, and µ4 depend only on max{‖y‖Y , ‖z‖Y }.
Theorem 2.1 (Kato [12]). Assume that (i), (ii), and (iii) hold. Given v0 ∈ Y ,

there is a maximal T > 0 depending only on ‖v0‖Y and a unique solution v to (2.1)
such that

v = v(·, v0) ∈ C([0, T );Y )
⋂

C1([0, T );X).

Moreover, the map v0 �→ v(·, v0) is continuous from Y to C([0, T );Y )
⋂

C1([0, T );X).

We provide now the framework in which we shall reformulate problem (1.1). In
order to obtain an equation describing the evolution of u rather than that of uxx, we
observe that

−2uxuxx − uuxxx = −
(
uuxx +

1

2
u2
x

)
x

.

Integrating both sides of (1.1) with respect to x, we obtain⎧⎪⎪⎨
⎪⎪⎩
utx = −uuxx − 1

2
u2
x + a, t > 0, x ∈ R,

u(0, x) = u0(x), x ∈ R,

u(t, x + 1) = u(t, x), t ≥ 0, x ∈ R,

(2.2)

where a = − 1
2

∫
S
u2
x dx = − 1

2

∫
S
u2

0,x dx is a constant (see Lemma 3.2 later in the
paper). Then integrating both sides of (2.2) with respect to x, we have

⎧⎪⎪⎨
⎪⎪⎩
ut + uux = ∂−1

x

(
1

2
u2
x + a

)
+ h(t), t > 0, x ∈ R,

u(0, x) = u0(x), x ∈ R,

u(t, x + 1) = u(t, x), t ≥ 0, x ∈ R,

(2.3)

where a = − 1
2

∫
S
u2
x dx, ∂−1

x f(x) =
∫ x

0
f(x) dx and h(t) : [0,+∞) → R is an arbitrary

continuous function.
Theorem 2.2. Given h(t) ∈ C([0,+∞); R) and u0 ∈ Hr(S), r > 3

2 . Then there
exists a maximal T = T (a, h(t), u0) > 0, and a unique solution u to (2.3), such that

u = u(·, u0) ∈ C([0, T );Hr(S))
⋂

C1([0, T );Hr−1(S)).

Moreover, the solution depends continuously on the initial data, i.e., the mapping
u0 → u(·, u0) : Hr(S) → C([0, T );Hr(S))

⋂
C1([0, T );Hr−1(S)) is continuous.

Set A(u) = u∂x, f(t, u) = ∂−1
x ( 1

2u
2
x + a) + h(t), Y = Hr(S), X = Hr−1(S), and

Q = Λ = (1−∂2
x)

1
2 . Obviously, Q is an isomorphism of Hr(S) onto Hr−1(S). In order

to prove Theorem 2.2, by applying Theorem 2.1, we only need to verify that A(u)
and f(t, u) satisfy the conditions (i)–(iii).

The following three lemmas are useful for our approach.
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Lemma 2.3 (see [12]). Let s, t be real numbers such that −s < t ≤ s. Then

‖fg‖t ≤ c‖f‖s‖g‖t if s >
1

2
,

‖fg‖s+t− 1
2
≤ c‖f‖s‖g‖t if s <

1

2
,

where c is a positive constant depending on s, t.
Lemma 2.4 (see [13]). Let f ∈ Hr, r > 3

2 . Then,

‖Λ−s[Λs+t+1,Mf ]Λ−t‖L(L2(S)) ≤ c‖f‖r, |s|, |t| ≤ r − 1,

where Mf is the operator of multiplication by f , c is a constant depending only on r,
t.

Lemma 2.5 (see [17]). Let X and Y be two Banach spaces such that Y is con-
tinuously and densely embedded in X. Let −A be the infinitesimal generator of the
C0-semigroup T (t) on X and let S be an isomorphism from Y onto X. Then Y is
−A-admissible (i.e., T (t)Y ⊂ Y for all t ≥ 0, and the restriction of T (t) to Y is a
C0-semigroup on Y ) if and only if −A1 = −SAS−1 is the infinitesimal generator of
the C0-semigroup T1(t) = ST (t)S−1 on X. Moreover, if Y is −A-admissible, then
the part of −A in Y is the infinitesimal generator of the restriction of T (t) to Y .

The proof of Lemma 2.5 is given in section 4.5 (Theorems 5.5 and 5.8) in [17].
Next, we prove the following lemma.
Lemma 2.6. The operator A(u) = u∂x, with u ∈ Hr(S), r > 3

2 , belongs to
G(L2(S), 1, β).

Proof. Due to L2(S) being a Hilbert space, A(u) ∈ G(L2(S), 1, β) [14] if and only
if there is a real number β such that

(1) (A(u)y, y)0 ≥ −β‖y‖2
0,

(2) the range of A + λ is all of X for some (or all) λ > β.
First, let us prove (1). Due to u ∈ Hr(S), r > 3

2 , it follows that u and ux belong
to L∞(S). Note that ‖ux‖L∞(S) ≤ ‖u‖r. Then we have

(A(u)y, y)0 = (u∂xy, y)0 = −1

2
(uxy, y)0

≤ 1

2
‖ux‖L∞(S)‖y‖2

0 ≤ c‖u‖r‖y‖2
0.

Setting β = c‖u‖s, we have (A(u)y, y)0 ≥ −β‖y‖2
0.

Next, we prove (2). Because A(u) is a closed operator and satisfies (1), it follows
that (λI + A) has closed range in L2(S) for all λ > β. Thus, it suffices to prove that
(λI + A) has dense range in L2(S) for all λ > β.

Given u ∈ Hr(S), r > 3
2 , y ∈ L2(S). Then we have the generalized Leibnitz

formula,

∂x(uy) = uxy + u∂xy in H−1(S).

Due to ux ∈ L∞(S), we obtain

D(A) = D(u∂x) = {y ∈ L2(S), u∂xy ∈ L2(S)}
= {z ∈ L2(S), −∂x(uz) ∈ L2(S)} = D((u∂x)∗) = D(A∗).

Assume that the range of (A+λ) is not all of L2(S). Then there exists z ∈ L2(S),
z 	= 0, such that ((λI + A)y, z)0 = 0 for all y ∈ D(A). Since H1(S) ⊂ D(A), we have
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that D(A) is dense in L2(S). So, it follows that z ∈ D(A∗) and λz +A∗ = 0 in L2(S).
Note that D(A) = D(A∗). Multiplying by z and then integrating by parts, we obtain

0 = ((λI + A∗)z, z)0 = (λz, z) + (z,Az) ≥ (λ− β)‖z‖2
0 ∀λ > β.

Thus, we obtain z = 0. This contradicts the previous assumption z 	= 0 and completes
the proof of Lemma 2.6.

Lemma 2.7. The operator A(u) = u∂x, with u ∈ Hr(S), r > 3
2 , belongs to

G(Hr−1(S), 1, β).

Proof. Due to Hr−1(S) being a Hilbert space, A(u) belongs to G(Hr−1(S), 1, β)
[14] if and only if there is a real number β such that

(1) (A(u)y, y)r−1 ≥ −β‖y‖2
r−1,

(2) −A(u) is the infinitesimal generator of a C0-semigroup on Hr−1(S), for some
(or all) λ > β.

First, let us prove (1). Due to u ∈ Hr(S), r > 3
2 , it follows that u and ux belong

to L∞(S) and ‖ux‖L∞(S) ≤ ‖u‖r. Note that

Λr−1(u∂xy) = [Λr−1, u]∂xy + uΛr−1(∂xy) = [Λr−1, u]∂xy + u∂xΛr−1y.

Then we have

(A(u)y, y)r−1 = (Λr−1(u∂xy),Λ
r−1y)0

= ([Λr−1, u]∂xy,Λ
r−1y)0 −

1

2
(uxΛr−1y,Λr−1y)0

≤ ‖[Λr−1, u]Λ2−r‖L(L2(S))‖Λr−1y‖2
0 + ‖ux‖L∞(S)‖Λr−1y‖2

0

≤ c‖u‖r‖y‖2
r−1,

where we applied Lemma 2.4 with s = 0, t = r − 2. Setting β = c‖u‖r, we have
(A(u)y, y)r−1 ≥ −β‖y‖2

r−1.

Next, we prove (2). Let S = Λr−1. Note that S is an isomorphism of Hr−1(S)
onto L2(S) and that Hr−1(S) is continuously and densely embedded in L2(S) as r > 3

2 .
Define

A1(u) := SA(u)S−1 = Λr−1A(u)Λ1−r, B1(u) = A1(u) −A(u).

Let y ∈ L2(S) and u ∈ Hr(S), r > 3
2 . Then we have

‖B1(u)y‖0 = ‖[Λr−1, u∂x]Λ1−ry‖0

≤ ‖[Λr−1, u]Λ2−r‖L(L2(S))‖Λ−1∂xy‖0

≤ c‖u‖r‖y‖0,

where we applied Lemma 2.4 with s = 0, t = r − 2. Therefore, we obtain B1(u) ∈
L(L2(S)).

Note that A1(u) = A(u) + B1(u) and A(u) ∈ G(L2(S), 1, β) in Lemma 2.6. By
a perturbation theorem for semigroups (cf. Section 5.2, Theorem 2.3 in [17]), we
obtain A1(u) ∈ G(L2(S), 1, β

′
). Applying Lemma 2.5 with Y = Hr−1(S), X = L2(S),

and S = Λr−1, we conclude that Hr−1(S) is A-admissible. Therefore, −A(u) is the
infinitesimal generator of a C0-semigroup on Hr−1(S). This completes the proof of
Lemma 2.7.
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Lemma 2.8. Let the operator A(u) = u∂x with u ∈ Hr(S), r > 3
2 . Then A(u) ∈

L(Hr(S), Hr−1(S)) for u ∈ Hr(S). Moreover,

‖(A(u) −A(z))w‖r−1 ≤ µ1‖u− z‖r−1‖w‖r, u, z, w ∈ Hr(S).

Proof. Let u, z, w ∈ Hr(S), r > 3
2 . Note that Hr−1(S) is a Banach algebra. Then

we have

‖(A(u) −A(z))w‖r−1 ≤ c‖u− z‖r−1‖∂xw‖r−1

≤ µ1‖u− z‖r−1‖w‖r.

Taking z = 0 in the above inequality, we obtain A(u) ∈ L(Hr(S), Hr−1(S)). This
completes the proof of Lemma 2.8.

Lemma 2.9. B(u) = [Λ1, u∂x]Λ−1 ∈ L(Hr−1(S)) for u ∈ Hr(S). Moreover,

‖(B(u) −B(z))w‖r−1 ≤ µ2‖u− z‖r‖w‖r−1.

Proof. Let u, z ∈ Hr(S), r > 3
2 , w ∈ Hr−1(S). Then

‖(B(u) −B(z))w‖r−1 = ‖Λr−1[Λ1, (u− v)∂x]Λ−1w‖0

≤ ‖Λr−1[Λ, (u− v)]Λ1−r‖L(L2(S))‖Λr−2∂xw‖0

≤ µ2‖y − z‖r‖w‖r−1,

where we applied Lemma 2.4 with s = 1− r, t = r− 1. Taking z = 0 in the above in-
equality, we obtain B(u) ∈ L(Hr−1(S)). This completes the proof of Lemma 2.9.

Lemma 2.10. Let f(t, u) = ∂−1
x ( 1

2u
2
x + a) + h(t), where a = − 1

2

∫
S
u2
x dx. Then

for each y ∈ Y , t → f(t, y) is continuous on [0,∞) to Hr−1(S), f(t, u) is uniformly
bounded on bounded sets in Hr(S) for all t ∈ [0,∞), and satisfies

(1) ‖f(t, y) − f(t, z)‖r ≤ µ3‖y − z‖s, t ∈ [0,∞), y, z ∈ Hr(S),

(2) ‖f(t, y) − f(t, z)‖r−1 ≤ µ4‖y − z‖r−1, t ∈ [0,∞), y, z ∈ Hr(S).

Proof. Due to h(t) ∈ C([0,∞); R), it follows that for each y ∈ Y , t → f(t, y) is
continuous on [0,∞) to Hr−1(S). Therefore, we only need to prove f(t, u) satisfies
(1) and (2). Let y, z ∈ Hr(S), r > 3

2 . Note that Hr−1(S) is a Banach algebra. Then
we have

‖f(t, y) − f(t, z)‖r =

∥∥∥∥∂−1
x

(
1

2
(y2

x − z2
x)

)∥∥∥∥
r

≤ 1

2
‖(yx − zx)(yx + zx)‖r−1

≤ 1

2
‖∂x(y − z)‖r−1‖yx + zx‖r−1

≤ 1

2
(‖y‖r + ‖z‖r)‖y − z‖r.

This proves (1). Taking z = 0 in the above inequality, we obtain that f is uniformly
bounded on bounded set in Hr(S) for all t ∈ [0,∞).
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Next, we prove (2). Let y, z ∈ Hr−1(S), r > 3
2 . Note that Hr(S) is a Banach

algebra. Then we have

‖f(t, y) − f(t, z)‖r−1 =

∥∥∥∥∂−1
x

(
1

2
(y2

x − z2
x)

)∥∥∥∥
r−1

≤ 1

2
‖(yx − zx)(yx + zx)‖r−2

≤ 1

2
‖∂x(y − z)‖r−2‖yx + zx‖r−1

≤ 1

2
(‖y‖r + ‖z‖r)‖y − z‖r−1,

where we applied Lemma 2.3 with s = r − 1, t = r − 2. This completes the proof of
Lemma 2.10.

Proof of Theorem 2.2. Combining Theorem 2.1 and Lemmas 2.7–2.10, we can get
the statement of Theorem 2.2.

Theorem 2.11. The maximal time T in Theorem 2.2 may be chosen independent
of r in the following sense. If u = u(·, u0) ∈ C([0, T );Hr(S))

⋂
C1([0, T );Hr−1(S))

to (2.3), and if u0 ∈ Hr′(S) for some r′ 	= r, r′ > 3
2 , then

u ∈ C([0, T );Hr′(S))
⋂

C1([0, T );Hr′−1(S))

and with the same T . In particular, u0 ∈ H∞(S) =
⋂

r≥0 H
r(S), then u ∈ C([0, T );

H∞(S)).
Proof. It suffices to consider the case r′ > r, since the case r′ < r is obvious from

uniqueness which is guaranteed by Theorem 2.2. In order to prove that Theorem 2.11
is true for the case r′ > r, let us return to (1.1). By setting y(t) = ∂2

xu(t), we have

dy

dt
+ A(t)y + B(t)y = 0, y(0) = ∂2

xu(0).(2.4)

Here, A(t)y = ∂x(u y) and B(t)y = uxy.
Because u ∈ C([0, T );Hr(S)) and u0 ∈ Hr′(S), we have y ∈ C([0, T );Hr−2(S))

and y(0) = ∂2
xu(0) ∈ C([0, T );Hr′−2(S)). It is our purpose to deduce y ∈ C([0, T );

Hr′−2(S)), which imply u ∈ C([0, T );Hr′(S)), because ∂2
x is an isomorphism from

Hr′(S) to Hr′−2(S). This will complete the proof of Theorem 2.11.
Note that u ∈ C([0, T );Hr(S)), ux ∈ Hr−1(S), and Hr−1(S) is a Banach algebra.

Then we obtain B(t) ∈ L(Hr−1(S)).
To this end, (see Lemmas 3.1–3.3 in [13]) we first need to prove that the family

A(t) has a unique evolution operator {U(t, τ)} associated with the spaces X = Hh(S)
and Y = Hk(S), where −r ≤ h ≤ r− 2, 1− r ≤ k ≤ r− 1, and k ≥ h+ 1. Therefore,
according to the proof of Lemma 3.1 in [13], we need to verify the following three
conditions.

(i) A(t) ∈ G(Hh(S), 1, β) for all y ∈ Hr(S).
(ii) Λh∂x[Λk−h, u]Λ−k is uniformly bounded on L2(S).
(iii) A(t) ∈ L(Hk(S), Hh(S)) is strongly continuous in t.
Let us begin by verifying condition (i). Due to Hh(S) being a Hilbert space,

A(t) ∈ G(Hh(S), 1, β) [14] if and only if there is a real number β such that
(1) (A(t)y, y)h ≥ −β‖y‖2

h,
(2) −A(t) is the infinitesimal generator of a C0-semigroup on Hh(S), for some

(or all) λ > β.
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First, we prove (1). Take y ∈ Hh(S). Note that

Λh∂x(u y) = Λh∂x(−[Λ−h, u]Λhy + Λ−h(uΛhy))

= −Λh∂x[Λ−h, u]Λhy + ∂x(uΛhy).

Then we have

(A(t)y, y)h = (−Λh∂x[Λ−h, u]Λhy + ∂x(uΛhy),Λhy)0

= (Λh+1[Λ−h, u]Λhy, ∂xΛh−1y)0 +
1

2
(uxΛhy,Λhy)0

≤ ‖Λh+1[Λ−h, u]‖L(L2(S))‖Λhy‖2
0 +

1

2
‖ux‖L∞(S)‖Λhy‖2

0

≤ c‖u‖r‖y‖2
h,

where we applied Lemma 2.4 with s = −(h + 1), t = 0. Setting β = c‖u‖r, we have
(A(t)y, y)h ≥ −β‖y‖2

h.
Second, we prove (2). Let S = Λr−1−h. Note that S is an isomorphism of

Hr−1(S) onto Hh(S) and that Hr−1(S) is continuously and densely embedded in
Hh(S) as −r ≤ h ≤ r − 2. Define

A1(t) := SA(t)S−1 = Λr−1−hA(t)Λh+1−r,

B1(t) := A1(t) −A(t) = [S,A(t)]S−1.

Let y ∈ Hh(S) and u ∈ Hr(S), r > 3
2 . Then we have

‖B1(t)y‖h = ‖Λh∂x[Λr−1−h, u]Λh+1−ry‖0

≤ ‖Λh∂x[Λr−1−h, u]Λ1−r‖L(L2(S))‖Λhy‖0

≤ c‖u‖r‖y‖h,

where we applied Lemma 2.4 with s = −(h + 1), t = r − 1. Therefore, we obtain
B1(t) ∈ L(Hh(S)). Note that

A(t)y = ∂x(uy) = uxy + u∂xy and ux ∈ L(Hr−1(S)).

By applying Lemma 2.7 and a perturbation theorem for semigroups, we obtain that
Hr−1(S) is A(t)-admissible. Then, by applying Lemma 2.5 with Y = Hr−1(S), X =
Hh(S), and S = Λr−1−h, we get that −A1(t) is the infinitesimal generator of a
C0-semigroup on Hh(S). Note that A1(t) = A(t) + B1(t) and B1(t) ∈ L(Hh(S)).
By a perturbation theorem for semigroups, we have that −A(t) is the infinitesimal
generator of a C0-semigroup on Hh(S). This proves (b).

Next, we verify (ii). Take y ∈ L2(S). Then

‖Λh∂x[Λk−h, u]Λ−ky‖0 ≤ c‖u‖s‖y‖0,

where we applied Lemma 2.4 with s = −(h + 1), t = k.
Finally, we verify (iii). Take y ∈ Hk(S). Then

‖(A(t + τ) −A(t))y‖h = ‖∂x((u(t + τ) − u(t))y)‖h
≤ ‖(u(t + τ) − u(t))y‖h+1

≤ c‖u(t + τ) − u(t)‖s−1‖y‖h+1

≤ c‖u(t + τ) − u(t)‖s‖y‖k,
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where we applied Lemma 2.3 with s = r− 1, t = h+ 1. So, by the continuity of u, we
prove (iii). Thus, the above three conditions imply the existence and uniqueness of
evolution operator U(t, τ) for the family A(t). In particular U(t, τ) maps Hs(S) into
itself for −r ≤ s ≤ r − 1.

Next, choosing Y = Hr−2(S), X = Hr−3(S), note that

y ∈ C([0, T );Hr−1(S))
⋂

C1([0, T );Hr−2(S)),

and by the properties of evolution operator U(t, τ), we can obtain

d

dτ
(U(t, τ)y(τ)) = −U(t, τ)B(τ)y(τ).

An integration in τ ∈ [0, t] yields

y(t) = U(t, 0)y(0) −
∫ t

0

U(t, τ)B(τ)y(τ)dτ.(2.5)

If r < r′ ≤ r+1, then we have that B(t) = ux(t) ∈ L(Hr′−2(S)) is strongly continuous
in [0, t), and

Hr−1(S)Hr′−2(S) ⊂ Hr′−2(S)

by r − 1 > 1
2 . Due to −r < r − 2 < r′ − 2 ≤ r − 1, the family {U(t, τ)} is strongly

continuous on Hr′−2(S) to itself. Note that y(0) ∈ Hr′−2(S). Let us regard (2.5)
as an integral equation of Volterra type which can be solved for y by successive
approximation. Then the result of Theorem 2.11 is obtained.

If r′ > r + 1, then we obtain the result of Theorem 2.11 by repeating the appli-
cation of the above argument. This completes the proof of Theorem 2.11.

From (2.3), we see that if h1(t) 	≡ h2(t), then the corresponding solutions to (2.3)
with the same initial data satisfy uh1(t) 	≡ uh2(t). Thus, for each initial data u0 ∈ Hr,
r > 3

2 , there exists an entire corresponding family of solutions to (1.1).
As a consequence of Theorems 2.2 and 2.11, we have the following.
Theorem 2.12. Given u0 ∈ Hr(S), r > 3

2 . Then there exists locally a family
of solutions to (1.1). Moreover, the maximal existence time T of each solution in the
family can be chosen independent of r.

Remark 2.13. If u0(x) is a constant, then the solution to equation (1.1) is of the
form u(t, x) = H(t) with H ∈ C1([0, T )) for some T > 0 and H(0) = u0. Because∫

S
u2
x(t, x)dx = 0, it follows that ux(t, x) ≡ 0.

3. Blow-up. In this section, we discuss the question of finite time blow-up of
solutions to (1.1) with arbitrary initial data.

In our investigation we will use the following result.
Lemma 3.1 (see [4]). Let T > 0 and v ∈ C1([0, T );H2(R)). Then for every

t ∈ [0, T ), there exists at least one point ξ(t) ∈ R with

m(t) := inf
x∈R

[vx(t, x)] = vx(t, ξ(t)).

The function m(t) is absolutely continuous on (0, T ) with

dm

dt
= vtx(t, ξ(t)) a.e. on (0, T ).

Let us now prove the following lemma.
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Lemma 3.2. If u0 ∈ Hr, r ≥ 3, then as long as the solution u(t, x) given by
Theorem 2.12 exists, we have∫

S

u2
x(t, x)dx =

∫
S

u2
0,x(x)dx.

Proof. Multiplying (1.1) by u and integrating with respect to x, in view of the
periodicity of u, we get

−1

2

d

dt

∫
S

u2
xdx = −

∫
S

utxux dx =

∫
S

utxxu dx

= −
∫

S

2uxuxxu dx−
∫

S

u2uxxxdx

= −
∫

S

2uxuxxu dx +

∫
S

2uxuxxu dx = 0.

Thus, we have ∫
S

u2
x(t, x) dx =

∫
S

u2
x(0, x) dx.

This completes the proof of Lemma 3.2.
We now present the following blow-up theorem.
Theorem 3.3. Assume that u0 ∈ Hr, r ≥ 3, and u0 is not a constant. Then the

corresponding solution to (2.3) blows up in finite time.
Proof. Let T > 0 be the maximal existence time of the solution u(t, ·) of (2.3)

with initial data u0 ∈ H3(S). By (2.2) and Lemma 3.2, we have

utx = −uuxx − 1

2
u2
x − 1

2

∫
S

u2
0,x(x)dx a.e. t > 0.(3.1)

Definem(t)=ux(t, ξ(t))=infx∈R{ux(t, x)}. Since we deal with a minimum,uxx(t, ξ(t))=
0 for all t ∈ [0, T ). We obtain

m′(t) = −1

2
m2(t) − 1

2

∫
S

u2
0,x(x)dx a.e. t > 0.(3.2)

By the above equality, we can get

m(t) ≤ m(0) − t
1

2

∫
S

u2
0,x(x)dx, t ≥ 0.

Since u0(x) is not a constant, it follows that 1
2

∫
S
u2

0,x(x)dx > 0. Therefore, there is
some t0 ≥ 0 such that m(t) < 0 for t ≥ t0. On the other hand, by (3.2) we have

m′(t) ≤ −1

2
m2(t) a.e. t ≥ t0.

Thus, it follows that

0 >
1

m(t)
≥ t− t0

2
+

1

m(t0)
, t ≥ t0.

This forces T < ∞ and completes the proof of Theorem 3.3.
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To describe the blow-up mechanism, let us observe that the H1-norm of the solu-
tion does not blow up in finite time. Indeed, multiplying (2.3) by 2u and integrating
over the unit circle, we obtain that for all t ∈ (0, T ), where T > 0 is the maximal
existence time of a solution to (2.3) with the initial data u0 ∈ Hr, r ≥ 3,

d

dt

∫
S

u2 dx = 2

∫
S

u∂−1
x

(
1

2
u2
x + a

)
dx + 2h(t)

∫
S

u dx

≤
∫

S

u2 dx +

∫
S

[
∂−1
x

(
1

2
u2
x + a

)]2

dx + |h(t)|
[
1 +

∫
S

u2 dx

]

≤ |h(t)| + (1 + |h(t)|)
∫

S

u2 dx +

∫ 1

0

(
1

2
u2
x + |a|

)
dx

= |h(t)| + (1 + |h(t)|)
∫

S

u2 dx + |a| + 1

2

∫ 1

0

u2
0,x dx, t ∈ (0, T ),

where we use Lemma 3.2 in the last step. By Gronwall’s inequality, we infer that
the L2-norm of the solution does not blow up in finite time. Considering this in
combination with Lemma 3.2, we see that the H1-norm of any solution to (2.3) with
initial data u0 ∈ Hr, r ≥ 3, does not blow up in finite time. However, if u0 is not a
constant, then the proof of Theorem 3.3 shows that inf ux(t, ·) → −∞ in finite time.
We have therefore a weak type of singularity, similar to the case of the Camassa–Holm
equation (see [3]) of which (1.1) is the high-frequency limit. As pointed out in the
introduction, the blow-up can be interpreted as an altering of the director field from
its original state.

As a consequence of Theorem 3.3, and in view of the connection between the
family of solutions to (1.1) and the solution to (2.3), we have the following result.

Theorem 3.4. Assume that u0 ∈ Hr, r ≥ 3, and u0 is not a constant. Then the
corresponding solutions to (1.1) blow up in finite time.

Remark 3.5. Although the Hunter–Saxton equation is the high-frequency limit
[7, 10] of the Camassa–Holm equation [2], the structure of its solutions is different.
While there are global smooth solutions of the periodic Camassa–Holm [3] with a
genuine dependence on the spatial variable, Theorem 3.4 and Remark 2.13 show that
the only global solutions of (1.1) are those independent of the spatial variable.
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Abstract. Error estimates for scattered-data interpolation via radial basis functions (RBFs)
for target functions in the associated reproducing kernel Hilbert space (RKHS) have been known
for a long time. However, apart from settings where data is gridded, these estimates do not apply
when the target functions generating the data are outside of the associated RKHS, and, in fact, no
estimates were known in such situations. In this paper, we deal with these cases, obtaining Sobolev-
type error estimates on compact regions of R

n when the RBFs have Fourier transforms that decay
algebraically. In addition, we show that it is possible to construct band-limited interpolants that are
also near-best approximants to such functions, with the band size being inversely proportional to the
minimal separation of the data sites.

Key words. interpolation, scattered data, radial basis functions, band-limited functions, error
estimates
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1. Introduction. The problem of effectively representing an underlying function
based on its values sampled at finitely many distinct scattered sites X = {x1, . . . , xN}
lying in a compact region Ω ⊂ R

n is important and arises in many applications—
neural networks, computer aided geometric design, and gridless methods for solving
partial differential equations, to name a few. A good example of the type of problem
we have in mind is addressed in a recent paper by Carr et al. [6]. There, the au-
thors used radial basis function (RBF) interpolation to reconstruct three-dimensional
objects from “clouds” of points. Handling the large numbers of points was aided by
new, fast evaluation techniques for RBFs [3].

The problem of representing a multivariate function by interpolating at scattered
values is a difficult one. RBFs were introduced as a means to attack this problem.
An RBF is a radial function Φ(x) = Φ(|x|) that is either positive definite or condi-
tionally positive definite on R

n. Interpolants for multivariate functions sampled at
scattered sites are constructed from translates of RBFs, with the possible addition of
a polynomial term (see section 4 for details).

It was Duchon [7, 8] who introduced a type of RBF, the thin-plate spline, which
he constructed via a variational technique similar to those used to obtain ordinary
splines. The error analysis he provided for thin-plate splines involved reproducing
kernel Hilbert space (RKHS) methods. Later, there were important contributions by
Madych and Nelson [13] and Wu and Schaback [24], who also used RKHS methods to
obtain scattered-data interpolation error estimates for a wide class of RBFs, including
the Hardy multiquadrics and the Gaussians.

Important as these results are, they do suffer from a common difficulty. In all
cases, convergence is proved only for functions in an RKHS that depends on Φ: the
smoother the function Φ, the smaller the RKHS for which convergence estimates
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apply. This restriction has seemed artificial, especially in light of both the lattice-
based least-squares theory, which was completely and satisfactorily solved in [4], and
the work of Schaback [19] dealing with pure approximation by RBFs. Indeed, Yoon
[25] also noted this problem and introduced scaled RBFs in which a parameter λ
is required to depend on the spacing of the data. In effect, the radial function is
changing with the data.

In a recent paper [17], we dealt with these issues when the domain of the un-
derlying function is the n-sphere, rather than R

n, and the interpolants were derived
from selected “translates” of spherical basis functions (SBFs). In particular, inter-
polatory error estimates were established for functions lying outside the RKHS for a
wide variety of SBFs.

In this paper, we turn to the historically more important (and more difficult) R
n

case, with the interpolants being derived from RBFs whose “centers” come from X.
We start with samples f |X of a function f ∈ Ck(Rn) ∩W k

2 (Rn) that decays to 0 at
infinity but that may not be smooth enough to be in the RKHS associated with the
RBF Φ. (If the target function f is defined only on Ω, then it may be necessary to
extend it to all of R

n. See the comments at the end of section 4.2.) For algebraic
decay, i.e., Φ̂(ξ) ∼ |ξ|−2r, the RKHS is essentially W r

2 (Rn), so we assume that k ≤ r.
Let IXf be the RBF interpolant for f . We show that

‖Dαf −Dαf‖L∞(Ω) ≤ Chk−|α|−n
2 ‖f‖Ck

0∩Wk
2
,

provided the sites X cover Ω in an approximately uniform manner and the multi-index
satisfies |α| < k− n

2 . (The parameter h is a mesh norm.) The precise results are given
in section 4.2. Prior to this, no estimates were known for k ≤ r. Our results apply to
both the thin-plate splines and to Wendland’s class of compactly supported RBFs.

The first step to orchestrating this “escape” from the RKHS setting is showing
that it is possible to use band-limited functions simultaneously to approximate and to
interpolate an unknown, continuous, square-integrable function f that decays to 0 at
infinity. This step is in a sense connected with irregular sampling theory [2]; of course,
it differs in that samples f |X of f are taken on a finite set rather than an infinite one.
In section 3.1, using functional analytic techniques, we show that there is a band-
limited function fσ, where supp f̂σ is contained in a ball of radius σ, that satisfies
fσ|X = fX and that approximates f nearly optimally. The only requirement is that
the size of the band or “Nyquist frequency” be inversely proportional to the minimal
separation of points in X. The second step, taken in section 3.2, is obtaining Jackson-
type estimates on distances to spaces of band-limited functions for f ∈ Ck

0 ∩W k
2 and

then applying them (section 3.3) to bound the difference f − fσ in the appropriate
norm. The last step makes use of these facts: both f and fσ have the same RBF
interpolant, because f |X = fσ|X , and they have a comparable W k

2 norm. This allows
us to deal with ‖Dαfσ −DαIXfσ‖ in place of ‖Dαf −DαIXf‖ and thus permits us to
employ known RKHS estimates.

The main results of this paper may be viewed in two ways. From the theoretical
point of view, they provide a much larger class of functions for which interpolation
error estimates apply. From a practical point of view, they allow more flexibility
in the choice of RBFs when applied for collocation purposes and faster convergence
rates of interpolants away from singularities of the target function. This may even
make possible using RBF methods for singularity detection. In addition, with a
little more work, our methods should yield error estimates for discrete least-squares
approximation by scattered shifts. We remark that in the situation of continuous least
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squares over a domain without boundary, the least-squares approximation problem
by shifts of Φ can be recast as an interpolation problem involving shifts of Φ ∗ Φ̄.

The remainder of the paper is organized as follows. In the next section, we pro-
vide the notation and set forth conventions we use throughout the paper. In section
3, we construct a band-limited function that both interpolates and is a near-best ap-
proximant to a given continuous L2 function sampled on X. In addition, we use the
Calderón formula to obtain Jackson-type estimates for this interpolant/approximant,
provided the target function is in Ck

0 ∩W k
2 . Finally, in the last section, we establish er-

ror estimates for interpolation via RBFs whose Fourier transforms decay algebraically.

2. Notation.
The set of centers. Let X = {xj}Nj=1 be a finite subset of R

n, with the points all
assumed to be distinct. There are two useful lengths associated with X. The first
is the diameter of X, diam(X) = maxj,k ‖xj − xk‖2, which is the maximum distance
between points in X. Throughout the paper, we will assume that diam(X) ≤ 1. The
other length is the separation radius,

q = qX :=
1

2
min
j �=k

‖xj − xk‖2 ,

which is half of the smallest distance between any two distinct points in X. Clearly,
q ≤ 1

2 diam(X) ≤ 1
2 . The set X is itself contained in an n-cube with sides of length

diam(X) ≤ 1. The union of X, together with the closed balls B(xj , q) having centers
xj ∈ X and radius q, can be enclosed in an n-cube with sides of length diam(X)+2q ≤
2. The number of points in X, N can be estimated in terms of the volume of this
second cube:

N ≤ 2n

vol(B(0, q))
=

Γ(n+2
2 )2n

π
n
2 qn

.(1)

The region Ω. We take Ω to be a compact, connected region in R
n that satisfies

the uniform interior cone condition [11]; i.e., there exists a fixed (open) cone K ⊂ R
n

such that each x ∈ ∂Ω is the vertex of a cone Kx ⊂ Ω that is congruent to K. The
mesh norm for X relative to Ω is

h = hX,Ω := sup
x∈Ω

inf
xj∈X

‖x− xj‖2 ;

it measures the maximum distance any point in Ω can be from X. It is easy to see
that hX,Ω ≥ qX ; equality can hold only for a uniform distribution of points on an
interval in R

1. The mesh ratio

ρ = ρX,Ω := h/q ≥ 1

provides a measure of how uniformly points in X are distributed in Ω. When Ω is an
interval (n = 1), ρ = 1 means that the points are uniformly distributed. In all other
cases, ρ > 1.

Conventions. Our conventions for the Fourier transform and its inverse are

f̂(ξ) :=

∫
Rn

f(x)e−iξ·xdnx and f̌(x) =
1

(2π)n

∫
Rn

f(ξ)eiξ·xdnξ.

We will make use of the Sobolev space W k
2 = W k

2 (Rn), which is defined to be all
f ∈ L2 having distributional derivatives Dαf , |α| ≤ k, in L2. The norm that we will
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use here is

‖f‖Wk
2

=

(∫
Rn

(1 + |ξ|2)k|f̂(ξ)|2dnξ
) 1

2

.

We will denote by Ck
0 = Ck

0 (Rn) the set of all functions that are continuously
differentiable through order k, that vanish at infinity, and that have all derivatives of
order k or less bounded. Of course, C0

0 = C0 and Ck
0 = C0(R

n) ∩ Ck
B(Rn). We will

use S to denote Schwartz space and S ′ to denote the space of tempered distributions.
Frequently, we will deal with the intersection of two function spaces, for example

C0∩L2 or Ck
0 ∩W k

2 . In these cases, the norm on the intersection will be the maximum
of the norm on each space: if X and Y are normed spaces of functions, then on the
intersection space X ∩ Y we will always use the norm

‖f‖X∩Y := max (‖f‖X , ‖f‖Y) .

Finally, for an integer k ≥ 0, we will denote the polynomials of total degree k on
R

n by πk(R
n). For k = −1, we will let π−1(R

n) = {0}.
3. Band-limited functions. We discuss interpolation and approximation in

the Paley–Wiener class of band-limited functions. Since we are dealing with a multi-
dimensional space, we will interpret the transform variable ξ as a wavenumber having
units of reciprocal length. Let σ > 0. We then define Bσ to be

Bσ := {f ∈ L2(Rn) : supp(f̂) ⊆ B(0, σ)},

where B(0, σ) is the (closed) ball in R
n having center 0 and radius σ. (In optics, σ

denotes the spectroscopic wavenumber and is the reciprocal of the wavelength.)
Functions in Bσ are, of course, in L2 and are continuous. Moreover, they decay

to 0 as |x| → ∞. A natural class of functions that includes all Bσ is C0 ∩ L2 :=
C0(R

n) ∩ L2(Rn). We can make this a Banach space by employing the norm

‖f‖C0∩L2 = max(‖f‖∞ , ‖f‖2).

3.1. Approximation and interpolation from Bσ. The main goal of this sec-
tion is to show that we can both approximate and interpolate functions in C0 ∩ L2 on
X by means of band-limited functions in Bσ if we take σ ∼ 1/q. In finite-dimensional
settings, similar problems for interpolation and approximation by polynomials go back
to the work of Erdös [9], and problems for trigonometric polynomials on the circle
and spherical harmonics on the n-sphere were discussed in [14, 17]. The case of Bσ,
which is infinite dimensional, is dealt with here.

We begin with the proposition below, which is stated in terms of Banach spaces;
in it we show that the problem of finding interpolants that are also near-best approx-
imants can be solved if we can uniformly bound the ratio of the norm of a linear
functional to the norm of its restriction to a smaller space.

Proposition 3.1. Let Y be a (possibly complex) Banach space, V be a subspace
of Y, and Z∗ be a finite-dimensional subspace of Y∗, the dual of Y. If, for every
z∗ ∈ Z∗ and some β > 1, β independent of z∗,

‖z∗‖Y∗ ≤ β‖z∗|V‖V∗ ,(2)

then for y ∈ Y there exists v ∈ V such that v interpolates y on Z∗; that is, z∗(y) =
z∗(v) for all z∗ ∈ Z∗. In addition, v approximates y in the sense that ‖y − v‖Y ≤
(1 + 2β) dist(y,V).
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Proof. Given ε > 0, we can find u ∈ V for which

‖y − u‖Y = (1 + ε)dist(y,V).

Set x := y − u. Let the restriction map S : Z∗ → Z∗|V be given by S(z∗) = z∗|V for
every z∗ ∈ Z∗. By (2), S is both one-to-one and onto the image space S(Z∗) ⊂ V∗.
Moreover, ‖S−1‖ ≤ β, where S−1 : S(Z∗) → Z∗. Viewing x as an element of Z∗∗ (i.e.,
as a functional on Z∗), we have

〈x, z∗〉 = 〈x, S−1Sz∗〉 = 〈(S∗)−1x, Sz∗〉 ,

where we used the fact that (S−1)∗ = (S∗)−1. Note that (S∗)−1x is in (S(Z∗))∗, where
S(Z∗) is a finite-dimensional subspace of V∗. By the Hahn–Banach theorem, (S∗)−1x
extends in a norm preserving manner to v∗∗x ∈ V∗∗. Thus 〈x, z∗〉 = 〈y − u, z∗〉 =
〈v∗∗x , Sz∗〉 for all z∗ ∈ Z∗, and

‖v∗∗x ‖V ∗∗ = ‖(S∗)−1x‖V ∗∗ ≤ ‖S−1‖ ‖x‖Y ≤ β‖y − u‖Y
= β(1 + ε) dist(y,V).

We would be done if the spaces involved were reflexive, because then we would have
v∗∗x in V, and we could simply set v = u + v∗∗x . Unfortunately, the spaces of interest
are not reflexive. However, the fact that Z∗ is finite dimensional allows us to apply
the principle of local reflexivity [12, p. 53], which states that for δ > 0 we can find
vx ∈ V such that both 〈v∗∗x , z∗〉 = 〈z∗, vx〉 for all z∗ ∈ Z∗ and ‖vx‖ ≤ (1 + δ)‖v∗∗x ‖.
Setting v := u + vx gives an element in V that interpolates y on Z∗ and satisfies

‖y − v‖Y ≤ ‖y − u‖Y + ‖vx‖Y ≤ ‖y − u‖Y + (1 + δ)‖v∗∗x ‖V∗∗

≤ (1 + (1 + δ)β)‖y − u‖Y
≤ (1 + (1 + δ)β)(1 + ε)dist(y,V).

To complete the proof, take δ < 1/5 and ε < 1/4 and note that, because β > 1, we
have (1 + (1 + δ)β)(1 + ε) < 5

4 + 6
4β < 1 + 2β.

We are interested in the case in which Y = C0 ∩ L2, Z∗ = span{δxj
: xj ∈ X},

and V = Bσ. To employ the proposition, the first thing that we need to do is find
‖z∗‖C0∩L2∗ when z∗ :=

∑
xj∈X cjδxj ∈ Z∗.

We will use “bump” functions to do this. Let gR(x) = (1−|x|/R)+. The support
of gR is the closed ball of radius R and center 0. It is easy to show that ‖gR‖2 =
CnR

n/2 and ‖gR‖∞ = 1. Next, we choose R < min{q, (NC2
n)−1/n}, where q is

the separation radius of X. Also, take dj = c̄j/|cj | if cj �= 0 and set dj = 1 if
cj = 0. The supports of the gR(x − xj)’s, xj ∈ X, are then all disjoint and for
f(x) =

∑
j dj gR(x− xj) we have

〈z∗, f〉 =
∑
j,k

ckdjgR(xk − xj) =
∑
j

cjdj =
∑
j

|cj |.

In addition, we have ‖f‖∞ = 1 and ‖f‖2 = N1/2‖gR‖2 = CnR
n/2N1/2 < 1. Con-

sequently, ‖f‖C0∩L2 = 1, and 〈z∗, f〉 =
∑

j |cj | = (
∑

j |cj |)‖f‖C0∩L2 . It follows that
‖z∗‖C0∩L2∗ ≥

∑
j |cj |. On other hand, we have that |〈z∗, f〉| ≤ (

∑
j |cj |)‖f‖∞ ≤

(
∑

j |cj |)‖f‖C0∩L2 . We arrive at the following lemma.
Lemma 3.2. If z∗ :=

∑
xj∈X cjδxj ∈ Z∗, then

‖z∗‖C0∩L2∗ =
∑
j

|cj |.(3)
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The next step in showing that we can both interpolate and approximate with
band-limited functions is to estimate ‖z∗|B∗

σ
‖B∗

σ
. The approach we take runs parallel

to the one above but is technically more difficult because we must work with functions
in Bσ, all of which are analytic and thus not compactly supported. Fortunately, many
of the computations required were done in [16, section 3]. Indeed, we summarize what
we need below, with appropriate adaptations to our current notation.

We begin by noting that if χσ
2
(ξ) is the characteristic function for the ball

B(0, σ/2), then its inverse Fourier transform is given by [16, eq. (3.9)]

χ̌σ
2
(x) =

(
σ

4π|x|

)n
2

Jn
2

(
|x|σ
2

)
,

where one also has [16, eq. (3.10)]

χ̌σ
2
(0) =

(
σ

(4
√
π)

)n
Γ(n+2

2 )
.

We define ϕσ via

ϕσ := χ̌2
σ
2

= (2π)−n(χσ
2
∗ χσ

2
)̌ ,(4)

where the second equality follows from the convolution theorem. We also have from
the expression for χ̌(0) that

ϕσ(0) =

(
σ

(4
√
π)

)2n
Γ(n+2

2 )2
.(5)

Because the support of χσ
2

is B(0, σ/2), we have supp(χσ
2
∗ χσ

2
) ⊂ B(0, σ). This, of

course, implies that ϕσ ∈ Bσ and that

Υ(x) :=
N∑
j=1

ϕσ(x− xj) ∈ Bσ.(6)

Lemma 3.3. If z∗ :=
∑

xj∈X cjδxj ∈ Z∗, then

‖z∗|Bσ‖B∗
σ
≥

(
ϕσ(0) − maxk

∑
j �=k ϕσ(xj − xk)

‖Υ‖C0∩L2

)
‖z∗‖C0∩L2∗ .(7)

Proof. Set dj = c̄j/|cj | if cj �= 0 and dj = 1 if cj = 0. If we let

bσ =
∑
xj∈X

djϕ(x− xj),

then we can compute 〈z∗, bσ〉 using z∗ =
∑

xj∈X cjδxj
and the definition of bσ. What

we obtain is 〈z∗, bσ〉 =
∑

j,k cj dkϕσ(xj − xk). We can then use this together with
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∑
j cjdj =

∑
j |cj | to obtain the following:

|〈z∗, bσ〉| =

∣∣∣∣∑
j

cj djϕσ(0) +
∑
j �=k

cj dkϕσ(xj − xk)

∣∣∣∣
≥

(∑
j

|cj |
)
ϕσ(0) −

∣∣∣∣∑
j �=k

cj dkϕσ(xj − xk)

∣∣∣∣
≥

(∑
j

|cj |
)(

ϕσ(0) − max
k

∑
j �=k

ϕσ(xj − xk)

)

≥ ‖z∗‖C0∩L2∗

(
ϕσ(0) − max

k

∑
j �=k

ϕσ(xj − xk)

)
,(8)

where the last inequality uses Lemma 3.2. Next, since |dj | = 1, we have that bσ
satisfies

|bσ(x)| ≤
∑
xj∈X

ϕ(x− xj) = Υ(x).

Thus, ‖bσ‖∞ ≤ ‖Υ‖∞ and ‖bσ‖2 ≤ ‖Υ‖2, and, consequently,

‖bσ‖C0∩L2 ≤ ‖Υ‖C0∩L2 .(9)

Dividing both sides of (8) by ‖bσ‖C0∩L2 and then using (9) results in

|〈z∗, bσ〉|
‖bσ‖C0∩L2

≥
(
ϕσ(0) − maxk

∑
j �=k ϕσ(xj − xk)

‖Υ‖C0∩L2

)
‖z∗‖C0∩L2∗ .

Since bσ ∈ Bσ, the left-hand side above is bounded by ‖z∗|Bσ
‖B∗

σ
. Using this bound

in the last inequality results in (7).
We will need estimates on sums of translates of ϕσ. This is the object of our next

result.
Proposition 3.4. If X = {x1, x2, . . . , xN} ⊂ R

n is a set of N distinct points
having separation radius q and satisfying diam(X) ≤ 1, then

max
k

∑
j �=k

ϕσ(xj − xk) ≤ ϕσ(0)
πΓ2(n+2

2 )

18

(σq
24

)−n−1

.(10)

In addition, if Υ(x) :=
∑N

j=1 ϕσ(x− xj), then we have

‖Υ‖C0∩L2 ≤ ϕσ(0) max

(
Γ(n+2

2 )8
n
2

(σq)
n
2

, 1

)(
1 +

πΓ2(n+2
2 )

18

(σq
48

)−n−1
)
.(11)

Proof. The bound in (10) was actually established in [16, section III] and in [15,
section IV] but with different notation. In [16], β corresponds to σ/2 and χ(x)/K to
ϕσ. From [15, eqs. (4.4) and (4.11)],

max
k

∑
j �=k

ϕσ(xj − xk) ≤ 3n
∞∑
k=1

kn−1κk := 3nΣ .
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The quantity Σ is estimated on [16, p. 96]. Adjusting the formula there by dividing
by K and replacing β by σ/2, we obtain the bound in (10). To bound Υ(x), we first
choose the point in {x1, x2, . . . , xN} nearest to x. After renumbering, we may take
this to be x1, and we may rewrite the sum in Υ as

Υ(x) = ϕσ(x− x1) +

N∑
j=2

ϕσ(x− xj).

The function ϕσ is a positive definite function, because χσ
2
∗ χσ

2
is nonnegative.

Consequently, ϕσ(x−x1) ≤ ϕσ(0). To bound the remaining terms in Υ, we first note
that the separation radius for the set {x, x2, . . . , xN} is at least 1

2q. Applying the
bound in (10) to the remaining terms in Υ, while replacing q by 1

2q, we obtain

‖Υ‖∞ ≤ ϕσ(0)

(
1 +

πΓ2(n+2
2 )

18

(σq
48

)−n−1
)
.(12)

Given this bound, we can get the bound on ‖Υ‖2 this way. Note that ‖Υ‖1 =∑N
j=1 ‖ϕσ(x− xj)‖1 = N‖ϕσ‖1. Since ϕσ = χ̌2

σ
2

= (2π)−n(χσ
2
∗χσ

2
)̂ ≥ 0, we see that

‖ϕσ‖1 = ϕ̂σ(0) = (2π)−nχσ
2
∗ χσ

2
(0) = (2π)−n‖χσ

2
‖2
2.

Moreover, χσ
2

is a characteristic function; hence, χ2
σ
2

= χσ
2

and

(2π)−n‖χσ
2
‖2
2 = (2π)−n‖χσ

2
‖1 = χ̌σ

2
(0) = ϕσ(0)

1
2 .

Finally, we obtain

‖ϕσ‖1 = ϕσ(0)
1
2 and ‖Υ‖1 = Nϕσ(0)

1
2 .(13)

Applying the standard inequality ‖Υ‖2 ≤
(
‖Υ‖1‖Υ‖∞

) 1
2 in conjunction with (12)

and (13), we have that

‖Υ‖2 ≤
√

N

ϕσ(0)
1
2

ϕσ(0)

(
1 +

πΓ2(n+2
2 )

18

(σq
48

)−n−1
)1

2

≤
Γ(n+2

2 )8
n
2

(σq)
n
2

ϕσ(0)

(
1 +

πΓ2(n+2
2 )

18

(σq
48

)−n−1
)1

2

,(14)

where in the last step we have used (1) and (5) to bound
√
N/ϕσ(0)

1
2 . The final

estimate (11) follows from taking the maximum of the right-hand sides of (12) and

(14) and then using the fact that x
1
2 ≤ x when x ≥ 1.

We now come to the main result of this section.
Theorem 3.5. Let X = {x1, x2, . . . , xN} ⊂ R

n be a set of N distinct points
having separation radius q and satisfying diam(X) ≤ 1, and choose σ so that

σ ≥ σ0 :=
24

q

{√
π

3
Γ

(
n + 2

2

)} 2
n+1

.(15)

If f ∈ C0 ∩ L2, there exists fσ ∈ Bσ such that

f |X = fσ|X and ‖f − fσ‖C0∩L2 ≤ (5 + 2n+3) distC0∩L2(f,Bσ).(16)
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Proof. We made this choice of σ0 so that

πΓ2(n+2
2 )

18

(
24

σq

)n+1

≤
πΓ2(n+2

2 )

18

(
24

σ0q

)n+1

=
1

2
.(17)

Thus, the inequality in (10) becomes

max
k

∑
j �=k

ϕσ(xj − xk) ≤
1

2
ϕσ(0).

Inserting this on the right-hand side in (7) yields

‖z∗|Bσ‖B∗
σ
≥

(
ϕσ(0)

2‖Υ‖C0∩L2

)
‖z∗‖C0∩L2∗ .(18)

We now need to estimate ‖Υ‖C0∩L2 . First note that, since σ0 satisfies the equation
on the right-hand side in (17), we have

Γ(n+2
2 )8

n
2

(σq)
n
2

≤
Γ(n+2

2 )8
n
2

(σ0q)
n
2

=

√
σ0q

8π3n−1
.

With this and (17), the inequality in (11) becomes

‖Υ‖C0∩L2 ≤ ϕσ(0)(1 + 2n) max

{√
σ0q

8π3n−1
, 1

}
.(19)

Using n = 1 in (15), we have σ0q = 4π and σ0q/(8π31−1) = 1
2 < 1. To treat n ≥ 2,

consider the expression below for Γ(x) [23, p. 253], which holds for x > 0:

Γ(x) = xx− 1
2 e−x(2π)

1
2 e

θ
12x , where 0 < θ = θ(x) < 1.

Let x = n+2
2 . Since n ≥ 2, we have x ≥ 2 and θ

12x < 1
24 < 1

2 . Consequently,√
2π

e

(
n + 2

2e

)n+1
2

< Γ

(
n + 2

2

)
<

√
2π

(
n + 2

2e

)n+1
2

.

Coupling this with (15) gives us

12e−1

(√
2π

3
√
e

) 2
n+1

(n + 2) < σ0q < 12e−1

(√
2π

3

) 2
n+1

(n + 2).(20)

Using a little calculus along with the upper bound in (20), it is easy to show that
σ0q/(8π3n−1) < 1. Thus, we arrive at our final bound on ‖Υ‖C0∩L2 ,

‖Υ‖C0∩L2 ≤ ϕσ(0)(1 + 2n).(21)

Employing the bound above in (18) yields

‖z∗|Bσ‖B∗
σ
≥

(
1

2 + 2n+1

)
‖z∗‖C0∩L2∗ .(22)

Equivalently, ‖z∗‖C0∩L2∗ ≤ (2 + 2n+1)‖z∗|Bσ‖B∗
σ
. Applying Proposition 3.1 then

completes the proof.
Remark. It is interesting to note that the connection between σ0 and q given in

(15) is asymptotically linear in the dimension n. Indeed, from (20), we easily derive
this asymptotic formula. As n → ∞, σ0 ∼ 12e−1(n + 2)q−1.



SCATTERED-DATA INTERPOLATION ON R
n 293

3.2. Jackson-type estimates for Bσ. The purpose of this section is to provide
estimates on distC0∩L2(f,Bσ) when f has certain smoothness properties. Nikolskii
[18, section 5.2] obtains many of the results that we need, albeit implicitly and,
unfortunately, less than transparently. For the convenience of the reader, we will
obtain the results that we need here, employing methods1 considerably different from
those in [18].

The approach we take is based on the Calderón decomposition formula [5, 10],
which essentially states that if f ∈ L2(Rn), then

f =

∫ ∞

0

ψ̄t ∗ ψt ∗ f
dt

t
, ψt(x) := t−nψ

(
x

t

)
,(23)

where ψ ∈ L1 is an arbitrary radial function with a (radial) Fourier transform that

satisfies
∫∞
0

|ψ̂(t|ξ|)|2 dt
t = 1 if ξ ∈ R

n \ {0}. The integral in (23), which is improper,

is understood as an L2 limit of
∫ T

ε
ψ̄t ∗ψt ∗ f dt

t as T → ∞ and ε → 0+ independently
[10, Theorem 1.2].

We are interested in approximating f with

gσ :=

∫ ∞

1
σ

ψ̄t ∗ ψt ∗ f
dt

t
,(24)

where on ψ we make the additional assumptions that ψ is in S and that supp(ψ̂) ⊂
B(0, 1) and that

∫∞
0

|ψ̂(t|ξ|)|2 dt
t1+r < ∞ for all r ≥ 0 and all ξ ∈ R

n \ {0}. The first
assumption implies that ψ ∈ B1 and the second that all moments of ψ vanish. From

ĝσ(ξ) = f̂(ξ)

∫ ∞

1
σ

|ψ̂(t|ξ|)|2 dt
t

= f̂(ξ)

{
0 if |ξ| ≥ σ,∫ 1

|ξ|
σ
|ψ̂(t)|2 dt

t if |ξ| < σ,
(25)

it follows that supp(ĝσ) ⊂ B(0, σ), and so gσ ∈ Bσ. Since
∫∞
0

|ψ̂(t|ξ|)|2 dt
t = 1, we also

have

f̂ − ĝσ = f̂(ξ)

{
1 if |ξ| ≥ σ,∫ |ξ|

σ

0
|ψ̂(t)|2 dt

t if |ξ| < σ.
(26)

This leads to useful Sobolev norm estimates.
Proposition 3.6. Let r ≥ 0 and s ≥ 0. If f ∈ W s+r

2 (Rn), then

‖f − gσ‖W s
2
≤ crσ

−r‖f‖W r+s
2

,(27)

where cr :=
∫ 1

0
|ψ̂(t)|2 dt

t1+r .
Proof. Note that

∫ |ξ|
σ

0

|ψ̂(t)|2 dt
t

=

∫ |ξ|
σ

0

tr|ψ̂(t)|2 dt

t1+r
≤

(
|ξ|
σ

)r ∫ 1

0

|ψ̂(t)|2 dt

t1+r
.

Since cr ≥ c0 = 1, from (26) and the previous inequality we have

(1 + |ξ|2) s
2 |f̂ − ĝσ| ≤ crσ

−r(1 + |ξ|2) s
2 |ξ|r|f̂(ξ)|

≤ crσ
−r(1 + |ξ|2)

s+r
2 |f̂(ξ)|.

1The authors wish to thank Professor W. R. Madych for pointing these methods out to us.
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Taking the L2 norms of both sides above yields (27).
We now require L∞ bounds on derivatives Dαf−Dαgσ, where α is a multi-index of

nonnegative integers and Dα = ( ∂
∂x1

)α1 · · · ( ∂
∂xn

)αn . These we will use in conjunction
with our bounds above to estimate ‖f − gσ‖C0∩L2 and, eventually, ‖f − fσ‖C0∩L2 ,
where fσ both interpolates and approximates f .

Suppose that f is in Ck
0 (Rn), where k > 0 is an integer. For x fixed, we can use

Taylor’s theorem with remainder to obtain

Dαf(x− ty) =
∑

|β|≤k−1−|α|

(−t)|β|yβ

β!
Dα+βf(x) +

∑
|β|=k−|α|

(−t)k−|α|yβ

β!
Dα+βf(x̃),

where x̃ is on the line between x and x− ty. Next, note that

ψt ∗Dαf(x) =

∫
Rn

t−nψ(y/t)Dαf(x− y)dny

=

∫
Rn

ψ(y)Dαf(x− ty)dny.

Inserting the expression for Dαf(x− ty) into the bottom integral and noting that all
of the moments of ψ are 0, we see that

ψt ∗Dαf(x) =
∑

|β|=k−|α|

(−t)k−|α|

β!

∫
Rn

ψ(y)yβDα+βf(x̃)dny.

Taking absolute values and using the boundedness of the derivatives, we have

‖ψt ∗Dαf‖L∞ ≤ tk−|α|∥∥|y|k−|α|ψ
∥∥
L1

( ∑
|β|=k−|α|

‖Dα+βf‖L∞

β!

)

≤ tk−|α|∥∥|y|k−|α|ψ
∥∥
L1‖Dαf‖

C
k−|α|
0

≤ tk−|α|∥∥|y|k−|α|ψ
∥∥
L1‖f‖Ck

0
.

From this, the fact that ‖ψ̄t

∥∥
L1 = ‖ψ

∥∥
L1 , and Young’s inequality, we see that

‖ψ̄t ∗ ψt ∗Dαf‖L∞ ≤ tk−|α|∥∥ψ∥∥
L1

∥∥|y|k−|α|ψ
∥∥
L1‖f‖Ck

0
.(28)

Next, recall that from (23) and (24) the difference Dαf −Dαgσ is

Dαf −Dαgσ =

∫ 1
σ

0

ψ̄t ∗ ψt ∗Dαf
dt

t
.(29)

Taking the L∞ norm of Dαf −Dαgσ, using the bound in (28) above, and doing the
simple integral involved, we have proven the following result.

Proposition 3.7. Let k > 0 be an integer, and let α be a multi-index satisfying
k > |α|. If f ∈ Ck

0 ∩W k
2 , then

‖Dαf −Dαgσ‖L∞ ≤ σ|α|−kc′k−|α|‖f‖Ck
0
,

where c′k−|α| = (k − |α|)−1
∥∥|y|k−|α|ψ

∥∥
L1

∥∥ψ∥∥
L1 .

Combining Propositions 3.6 and 3.7 immediately yields these distance estimates.
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Theorem 3.8. Let k > 0 be an integer, and let σ > 0. If f ∈ Ck
0 ∩ W k

2 , then
there is a constant C = C(k, n) such that

distC0∩L2(f,Bσ) ≤ Cσ−k‖f‖Ck
0∩Wk

2
.

Proof. From Proposition 3.6, with s = 0 and r = k, we have ‖f − gσ‖L2 ≤
ckσ

−k‖f‖Wk
2
. In addition, from Proposition 3.7, with α = 0, we have that ‖f −

gσ‖C0
≤ c′kσ

−k‖f‖Ck
0
. Consequently, we obtain

‖f − gσ‖C0∩L2 ≤ max(ck, c
′
k)σ

−k max
(
‖f‖Ck

0
, ‖f‖Wk

2

)
≤ Cσ−k‖f‖Ck

0∩Wk
2
,

where C = max(ck, c
′
k). Since distC0∩L2(f,Bσ) ≤ ‖f − gσ‖C0∩L2 , the result follows

immediately.

3.3. Error estimates for Bσ interpolants. We will conclude our discus-
sion of band-limited functions by proving error estimates for the interpolant fσ for
f ∈ C0 ∩ L2, whose existence was shown in Theorem 3.5. The first is an immediate
corollary to Theorems 3.5 and 3.8.

Corollary 3.9. Let f ∈ Ck
0 ∩W k

2 , and let fσ be as in Theorem 3.5. Then

‖f − fσ‖C0∩L2 ≤ Cσ−k‖f‖Ck
0∩Wk

2
,

where C = C(k, n).
We turn to obtaining estimates on ‖Dαf −Dαfσ‖L∞ . To do this, we will make

use of Bernstein’s theorem for functions of exponential type [18, section 3.2.2, eq. (8)]:
If hσ ∈ Bσ, then

‖Dαhσ‖Lp ≤ σ|α|‖hσ‖Lp , 1 ≤ p ≤ ∞.(30)

Our result is the following theorem.
Theorem 3.10. Let k > 0 be an integer and α be a multi-index with |α| < k,

σ > 0, and f ∈ Ck
0 ∩W k

2 . If fσ ∈ Bσ is the interpolant to f from Theorem 3.5, then
there is a constant C = C(|α|, k, n) for which

‖Dαf −Dαfσ‖L∞ ≤ Cσ|α|−k‖f‖Ck
0∩Wk

2
.(31)

Proof. Let gσ be defined by (24). Then we have

‖Dαf −Dαfσ‖L∞ ≤ ‖Dαf −Dαgσ‖L∞ + ‖Dαgσ −Dαfσ‖L∞ .

By Proposition 3.7, we can bound the first term on the right-hand side by σ|α|−kC1‖f‖Ck
0
.

Using Bernstein’s inequality (30) for p = ∞, with hσ = gσ − fσ, we may bound the
second term by σ|α|‖gσ − fσ‖L∞ . Putting these two together yields

‖Dαf −Dαfσ‖L∞ ≤ σ|α|−kC1‖f‖Ck
0

+ σ|α|‖gσ − fσ‖L∞ .

Next, observe that ‖gσ − fσ‖L∞ ≤ ‖f − fσ‖L∞ +‖gσ − f‖L∞ . By Proposition 3.7 and
Corollary 3.9, we have

‖gσ − fσ‖L∞ ≤ C2σ
−k‖f‖Ck

0∩Wk
2

+ C3σ
−k‖f‖Ck

0

≤ (C2 + C3)σ
−k‖f‖Ck

0∩Wk
2
.
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Finally, inserting this bound on the right-hand side in the previous one gives us (31),
with C = C1 + C2 + C3.

It is easy to obtain bounds in W r
2 similar to the ones above. We do not need

them, however, except in the following case.
Proposition 3.11. Let f ∈ Ck

0 ∩W k
2 , and let fσ be as in Theorem 3.5. Assume

that σ ≥ 1. Then there is a constant C ′ = C ′(k, n) such that

‖fσ‖Wk
2
≤ C ′‖f‖Ck

0∩Wk
2
.(32)

Proof. To bound ‖fσ‖Wk
2
, we begin with the inequality

‖fσ‖Wk
2
≤ ‖fσ − gσ‖Wk

2
+ ‖f − gσ‖Wk

2
+ ‖f‖Wk

2
.

Proposition 3.6, with s = k and r = 0, gives us ‖fσ − gσ‖Wk
2
≤ c0‖f‖Wk

2
. In addition,

Bernstein’s inequality (30) in conjunction with the definition of the Sobolev norm for
W k

2 yields

‖fσ − gσ‖Wk
2
≤ (1 + σk)‖fσ − gσ‖L2 .

Thus, we have that

‖fσ‖Wk
2
≤ (1 + σk)‖fσ − gσ‖L2 + (c0 + 1)‖f‖Wk

2
.

Next, by Corollary 3.9 and Proposition 3.6, we also have

‖fσ − gσ‖L2 ≤ ‖fσ − f‖C0∩L2 + ‖f − gσ‖L2

≤ Cσ−k‖f‖Ck
0∩Wk

2
+ ckσ

−k‖f‖Wk
2

≤ (C + ck)σ
−k‖f‖Ck

0∩Wk
2
.

Combining this with the inequality previous to it yields

‖fσ‖Wk
2
≤

(
(1 + σ−k)(C + ck) + (c0 + 1)

)
‖f‖Ck

0∩Wk
2
≤ C ′‖f‖Ck

0∩Wk
2
,

which completes the proof.

4. RBFs. Let m be a nonnegative integer, and let Φ(x) = Φ(|x|) be continuous.
We say Φ is an order m ≥ 0 RBF if for every subset X = {x1, . . . , xn} comprising

distinct points in R
n and for every c ∈ C

N \ {0} satisfying
∑N

j=1 cjp(xj) = 0 for all
p ∈ πm−1(R

n) we have that

cHAc =

N∑
j,k=1

c̄jckΦ(xk − xj) > 0.

That is, the function Φ is strictly conditionally positive definite of order m. Inter-
polants are formed from an order m RBF Φ in the following way. When X is a
unisolvent set for πm−1(R

n) and data is generated by a continuous function f , then

there is a unique c ∈ C
N satisfying

∑N
j=1 cjp(xj) = 0 for every p ∈ πm−1(R

n) and a
unique q ∈ πm−1(R

n) such that

IXf(x) =
∑
xj∈X

cjΦ(x− xj) + q(x)

satisfies IXf |X = f |X . Moreover, if f is a polynomial in πm−1(R
n), then IXf = q.

That is, the method reproduces polynomials of degree less than m.
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4.1. RKHS and RBFs. An order m RBF Φ has O(|x|2m) growth as |x| → ∞
[13, Corollary 2.3]. Consequently, we may view it as being a tempered distribution. As
such, it has a (radial) Fourier transform Φ̂ ∈ S ′. In all cases of practical interest, Φ̂(ξ)
in R

n is a positive, continuous function for ξ ∈ R
n \ {0} that may have a singularity

of the form |ξ|−τ as |ξ| → 0. With these RBFs, we can associate a RKHS, the native
space of Φ,

NΦ :=

{
f ∈ L2(Rn) : ‖f‖2

Φ :=

∫
Rn

|f̂(ξ)|2Φ̂(ξ)−1dnξ < ∞
}
.(33)

We will mention two important classes of RBFs. Duchon’s thin-plate splines

ΦTPS
ν (x) =

{
(−1)
ν�+1|x|2ν , ν > 0, ν �∈ N,

(−1)ν+1|x|2ν log(|x|), ν ∈ N,

are of order mν = �ν� + 1 and have distributional Fourier transforms (in R
n) given

by [20, Table 1]

Φ̂TPS
ν (ξ) = Cν,n|ξ|−n−2ν .

Wendland’s compactly supported RBFs [21, 22] also display similar behavior in their
Fourier transforms. The functions themselves are all (order 0) RBFs but only on R

d,
d ≤ n. Each has the form

ΦWEN
n,k (x) =

{
pn,k(|x|), 0 ≤ |x| ≤ 1,
0, |x| > 1,

where pn,k is a univariate polynomial of degree �n
2 �+3k+1; also, Φn,k is in C2k(Rn).

Their Fourier transforms satisfy the bounds [22, Theorem 2.1]

cn,k(1 + |ξ|2)−n
2 −k− 1

2 ≤ Φ̂WEN
n,k (ξ) ≤ Cn,k(1 + |ξ|2)−n

2 −k− 1
2 .

Error estimates on IXf and DαIXf , where α is a standard multi-index, are known
in the case where f belongs to a native space NΦ [13, 24] stemming from an order m
RBF.

Theorem 4.1. Let α be a multi-index, r, s ∈ R, with n
2 + |α| < r and s+ n

2 < m,

and suppose that Φ̂(ξ) is positive and continuous on ξ ∈ R
n \ {0} and satisfies

Φ̂(ξ)−1 = O(|ξ|2s) as |ξ| → 0 and Φ̂(ξ)−1 = O(|ξ|2r) as |ξ| → ∞.(34)

If Ω ⊃ X is a compact region satisfying a uniform interior cone condition and if
f ∈ NΦ, then

‖Dαf −DαIXf‖L∞(Ω) ≤ Chr−n
2 −|α|‖f‖Φ, C = C(|α|,Ω,Φ),(35)

where h = hX,Ω is the mesh norm.
Various versions of these estimates are found in Madych and Nelson [13, Theorem

4.4] and in Wu and Schaback [24, Theorems 4.5 and 5.14]. A cone condition on Ω is
alluded to in [13] and explicitly incorporated in the estimates in [19, p. 333].
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4.2. Extended error estimates for RBF interpolants. We are now ready to
obtain the RBF interpolation error estimates discussed in section 1. Let f ∈ Ck

0 ∩W k
2 ,

σ, and fσ be as in Theorem 3.5, and let α be a multi-index with n
2 + |α| < k. We will

assume that Ω satisfies a uniform interior cone condition and that diam(Ω) ≤ 1. Of
course, Ω ⊃ X implies that diam(X) ≤ 1. Next, we will take σ = σ0 in (15). This
choice of σ implies two things: first, since q ≤ diam(X) ≤ 1, σ > 1; and, second, σh
has the form

σh = γn ρ, where ρ :=
h

q
and γn := 24

{√
π

3
Γ

(
n + 2

2

)} 2
n+1

.(36)

Since the ratio ρ = h/q ≥ 1, we also see that the product σh > 1 and that σ > 1.
The idea for obtaining new bounds is to write the difference Dαf −DαIXf as the

sum of three pieces:

Dαf −DαIXf = (Dαf −Dαfσ) + (Dαfσ −DαIXfσ) + Dα(IXfσ − IXf).

Now, (fσ − f)|X = 0, and so the uniqueness of the RBF interpolant implies that
IXfσ − IXf ≡ 0. The third term above is thus 0. Our error then becomes

‖Dαf −DαIXf‖L∞(Ω) ≤ ‖Dαf −Dαfσ‖L∞(Ω) + ‖Dαfσ −DαIXfσ‖L∞(Ω) .

We can replace the first term on the right-hand side above by its bound from The-
orem 3.10 and the second term by its RKHS bound from (35), since Ω satisfies the
requisite cone condition. Doing so yields

‖Dαf −DαIXf‖L∞(Ω) ≤ C1σ
|α|−k‖f‖Ck

0∩Wk
2

+ C2h
r−n

2 −|α|‖fσ‖Φ,(37)

provided Φ̂ satisfies the conditions in Theorem 4.1. The norm ‖ · ‖Φ is given in (33).
Under these assumptions on Φ, plus the additional assumption that k ≤ r, the norm
‖fσ‖Φ can be estimated as follows:

‖fσ‖2
Φ =

∫
|ξ|≤σ

|f̂σ|2

Φ̂
dnξ

≤ C2
3

∫
|ξ|≤σ

(1 + |ξ|2r)|f̂σ|2dnξ

≤ C2
3

∫
|ξ|≤σ

1 + |ξ|2r
(1 + |ξ|2)k (1 + |ξ|2)k|f̂σ|2dnξ

≤ C2
3σ

2r−2k‖fσ‖2
Wk

2
.

Taking square roots and employing Proposition 3.11, which holds since σ > 1, then
gives us

‖fσ‖Φ ≤ C4σ
r−k‖f‖Ck

0∩Wk
2
.

Inserting this in (37) yields

‖Dαf −DαIXf‖L∞(Ω) ≤
(
C1σ

|α|−k + C5h
r−n

2 −|α|σr−k
)
‖f‖Ck

0∩Wk
2
.

Factoring hk−|α|−n
2 from the right-hand side and manipulating the resulting expres-

sion, we have

‖Dαf −DαIXf‖L∞(Ω) ≤ hk−|α|−n
2

(
C1(σh)|α|−kh

n
2 + C5(σh)r−k

)
‖f‖Ck

0∩Wk
2
.
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From |α|+ n
2 < k ≤ r, h ≤ 1, and σh > 1, it follows that (σh)|α|−kh

n
2 < (σh)r−k, and

so the coefficient on the right-hand side above is less than a multiple of hk−|α|−n
2 (σh)r−k.

From (36), σh = γnρ, and the final bound is Chk−|α|−n
2 ρr−k. In summary, we have

obtained this result.
Theorem 4.2. Let the notation and assumptions of Theorem 4.1 hold. In addi-

tion, suppose that diam(Ω) ≤ 1. If k is an integer satisfying |α| + n
2 < k ≤ r and if

f ∈ Ck
0 ∩W k

2 , then there is a constant C = C(k, |α|, n,Ω,Φ) such that

‖Dαf −DαIXf‖L∞(Ω) ≤ Chk−|α|−n
2 ρr−k‖f‖Ck

0∩Wk
2

holds. Here, ρ = ρX,Ω is the mesh ratio, and h = hX,Ω is the mesh norm.
Note that if we require a uniform bound on the mesh ratio, we immediately get

uniform bounds on the error.
Corollary 4.3. For any set of centers X ⊂ Ω for which ρX,Ω ≤ R, with R

fixed, we have

‖Dαf −DαIXf‖L∞(Ω)

‖f‖Ck
0∩Wk

2

= O(hk−|α|−n
2 ).

We have assumed throughout the paper that f is in C0 ∩ L2, and so it is defined
and, at the very least, continuous on all of R

n. In many applications, for example
solving a partial differential equation, this is not the case. The function f is then only
defined on Ω. To deal with this situation, one can appeal to one of the many extension
theorems available (cf. [1, Chapter IV] or [11, section 6.9]) and again have a function
defined on R

n. This will usually require some additional assumptions concerning the
smoothness of the boundary.

REFERENCES

[1] R. A. Adams, Sobolev Spaces, Academic Press, New York, 1975.
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Abstract. The global existence of a nonnegative weak solution to a multidimensional parabolic
strongly coupled model for two competing species is proved. The main feature of the model is that
the diffusion matrix is nonsymmetric and generally not positive definite and that the nondiagonal
matrix elements (the cross-diffusion terms) are allowed to be “large.” The ideas of the existence
proof are a careful approximation of the cross-diffusion terms using finite differences and the use of
an entropy inequality yielding a priori estimates.

Key words. cross-diffusion system, entropy functional, existence of weak solutions, Orlicz space
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1. Introduction. For the time evolution of two competing species with homo-
geneous population density, usually the Lotka–Volterra differential equations are used
as an appropriate mathematical model. In the case of nonhomogeneous densities,
diffusion effects have to be taken into account leading to reaction-diffusion equations.
Shigesada, Kawasaki, and Teramoto proposed in their pioneering work [25] to intro-
duce further so-called cross-diffusion terms modeling segregation phenomena of the
competing species. Denoting by ui(x, t) the population density of the ith species and
by Ji(x, t) the corresponding population flows, the time-dependent equations can be
written as

∂tui − divJi = fi(u1, u2), Ji = ∇(ciui + aiu
2
i + u1u2) + diuiq,(1.1)

where i = 1, 2. The equations are solved in the bounded domain Ω ⊂ R
N (N ≤ 3)

with time t > 0. The function q is given by q = ∇U , and U = U(x, t) is a prescribed
environmental potential, modeling areas where the environmental conditions are more
or less favorable [20, 25]. The diffusion coefficients ci and ai are nonnegative, and
di ∈ R (i = 1, 2). The source terms are in Lotka–Volterra form:

fi(u1, u2) = (Ri − βi1u1 − βi2u2)ui, i = 1, 2,(1.2)

where Ri ≥ 0 is the intrinsic growth rate of the ith species, βii > 0 are the coefficients
of intraspecific competition, and β12 ≥ 0 and β21 ≥ 0 are those of interspecific compe-
tition. The above system of equations is supplemented with (biologically motivated)
homogeneous Neumann boundary conditions and initial conditions:

Ji · γ = 0 on ∂Ω × (0,∞),(1.3)

ui(·, 0) = u0
i in Ω, i = 1, 2,(1.4)
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and γ denotes the exterior unit normal to ∂Ω, which is assumed to exist almost
everywhere.

Notice that the above system is scaled in such a way that the coefficient of the
cross-diffusion term ∇(u1u2) is equal to one (see [8] for details).

The problem (1.1)–(1.4) is strongly coupled with full diffusion matrix

A(u1, u2) =

(
c1 + 2a1u1 + u2 u1

u2 c2 + 2a2u2 + u1

)
.

Nonlinear problems of this kind are quite difficult to deal with since the usual idea
of applying maximum principle arguments to get a priori estimates cannot be used
here. Furthermore, the diffusion matrix is not symmetric and of degenerate type if
c1 = c2 = 0.

Until now, only partial results were available in the literature concerning the well
posedness of the above problem. We summarize some of the available results for the
time-dependent equations (see [28] for a review) and refer the reader to [16, 17, 23, 24]
for the stationary problem. Global existence of solutions and their qualitative behavior
for a1 = a2 = 0 and no cross-diffusion for the second species have been proved in, e.g.,
[3, 18, 21, 22, 27]. In this case, (1.1) for i = 2 is only weakly coupled. The existence
of an attractor has been studied in [15, 22]. Notice that in chemotaxis, related models
appear [7, 9, 19].

For sufficiently small cross-diffusion terms (or “small” initial data) and vanishing
self-diffusion coefficients a1 = a2 = 0, Deuring proved the global existence of solutions
in [6]. For the case c1 = c2, a global existence result in one space dimension has been
obtained by Kim [12]. Furthermore, under the condition

2a1 > 1, 2a2 > 1,(1.5)

Yagi [29] has shown the global existence of solutions in two space dimensions. A
global existence result for weak solutions in any space dimension under assumption
(1.5) can be found in [8]. Condition (1.5) can be easily understood by observing that
in this case, the diffusion matrix is positive definite:

ξTA(u1, u2)ξ ≥ min{c1, c2}|ξ|2 for all ξ ∈ R
2,

hence yielding an elliptic operator. If the condition (1.5) does not hold, there are
choices of ci, ai, ui ≥ 0 for which the matrix A(u1, u2) is not positive definite. Finally,
Galiano, Garzòn, and Jüngel [8] proved the existence of global weak solutions for any
a1, a2 > 0. However, the proof uses the embedding H1(Ω) ⊂ L∞(Ω) in a crucial way
such that the result is restricted to one space dimension only.

In this paper we solve the problem (1.1)–(1.4) for (up to) three space dimensions
without any restriction on the diffusion coefficients. More precisely, we prove the
following result.

Theorem 1.1. Let T > 0, and assume that
• Ω ⊂ R

N (N ≤ 3) is a bounded domain with boundary ∂Ω ∈ C0,1;
• the parameters satisfy ci ≥ 0, ai > 0; Ri ≥ 0, βii > 0 (i = 1, 2), β12 = β21 ≥

0; q ∈ (L2(QT ))N , where QT = Ω × (0, T );
• the initial data satisfy u0

i ∈ LΨ(Ω) and u0
i ≥ 0 in QT (i = 1, 2).

Then problem (1.1)–(1.4) has a weak solution (u1, u2) satisfying ui ≥ 0 in QT and

ui ∈ L2(0, T ;H1(Ω)) ∩ L∞(0, T ;LΨ(Ω)) ∩W 1,r(0, T ; (W 1,r′(Ω))′), i = 1, 2,
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where r = (2N + 2)/(2N + 1) and r′ = r/(r − 1) = 2N + 2, in the sense that for all
ϕ ∈ Lr′(0, T ;W 1,r′(Ω)), i = 1, 2,

∫ T

0

〈∂tui, ϕ〉 dt +

∫
QT

(ci∇ui + 2aiui∇ui + ∇(u1u2) + diuiq) · ∇ϕdxdt

=

∫
QT

fi(u1, u2)ϕdxdt,

and 〈·, ·〉 denotes the dual product between W 1,r′(Ω) and its dual (W 1,r′(Ω))′.
Here, LΨ(Ω) denotes the Orlicz space for Ψ(s) = (1 + s) ln(1 + s) − s, s ≥ 0.

Orlicz space techniques for a related parabolic system have already been employed in
[13]. We refer the reader to the appendix for its definition and some properties.

In order to explain the method of our proof it is convenient to recall the ideas of
[8]. By using the exponential transformation of variables u1 = exp(w1), u2 = exp(w2),
(1.1) transform into

∂t

(
ew1

ew2

)
− div

(
B(w1, w2)∇

(
w1

w2

)
+

(
d1e

w1

d2ew2

)
q

)
=

(
f1

f2

)
,

and the new diffusion matrix

B(w1, w2) =

(
c1e

w1 + 2a1e
2w1 + ew1+w2 ew1+w2

ew1+w2 c2e
w2 + 2a2e

2w2 + ew1+w2

)

is symmetric and positive definite:

detB(w1, w2) ≥ (c1e
w1 + 2a1e

2w1)(c2e
w2 + 2a2e

2w2) > 0.

In this formulation the matrix B provides an elliptic operator for all ci > 0, ai ≥ 0
or ci ≥ 0, ai > 0 (i = 1, 2). In this sense, the system (1.1)–(1.2) is called parabolic.
We remark that exponential transformations of variables have also been used in other
applications, such as chemotaxis [19] and semiconductor modeling [10].

The above change of unknowns symmetrizing the problem implies the existence
of an entropy functional

E(t) =

2∑
i=1

∫
Ω

(ui(lnui − 1) + 1)dx ≥ 0,

with the corresponding entropy inequality

E(t) + 2

∫ t

0

∫
Ω

( 2∑
i=1

(2ci|∇
√
ui|2 + ai|∇ui|2) + 2|∇√

u1u2|2
)
dxdt ≤ E(0) + C(1.6)

for 0 < t < T and any T > 0, where the constant C > 0 depends on T , q, and the
source terms. It can be formally derived by using lnui as a test function in the weak
formulation of (1.1)–(1.4). This inequality provides an L2(0, T ;H1(Ω)) estimate for u1

and u2 if a1, a2 > 0. The existence of a symmetric formulation of the problem is even
equivalent to the existence of an entropy functional [5, 11]. We notice that the above
entropy functional has also been employed in angiogenesis-chemotactic applications
as an analytical tool [4].
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However, the entropy inequality can be made rigorous only if ui ≥ 0, which cannot
be easily obtained from the minimum principle. The nonnegativity of the solutions is
obtained in [8] by proving that the transformed variable satisfies wi ∈ L2(0, T ;H1(Ω)).
As H1(Ω) embeds continuously into L∞(Ω) in one space dimension, this implies
wi(·, t) ∈ L∞(Ω) for almost every t > 0, and hence ui(·, t) = exp(wi(·, t)) > 0 in
Ω. Clearly, this method cannot be used in several space dimensions.

The main idea of our proof is to discretize the cross-diffusion term ∇(u1u2) by
finite differences and first to prove the existence of solutions to the approximate prob-
lem, which is now only weakly coupled. The precise approximation has to be chosen
in such a way that the above entropy inequality also holds for the approximate prob-
lem. This provides the a priori estimates necessary to perform the limit of vanishing
approximation parameters. The idea is inspired from [13], where a different problem
is studied.

One possibility is to approximate the cross-diffusion term ∆(u1u2) = div(u1u2

∇ ln(u1u2)) by the finite differences

D−h[χhu1u2D
h(ln(u1u2))],

where Dh is an approximation of the gradient,

Dhf = (Dh
1 f, . . . ,D

h
Nf) and Dh

j f(x, t) =
f(x + hej , t) − f(x, t)

h
,(1.7)

D−h is an approximation of the divergence,

D−hF (x, t) =

N∑
j=1

Fj(x− hej , t) − Fj(x, t)

−h
,(1.8)

with the jth unit vector ej of R
N , j = 1, . . . , N , and χh is the characteristic function

of {x ∈ Ω : dist(x, ∂Ω) > h}. It can be shown formally that the problem with this
discrete cross-diffusion term possesses the entropy inequality

E(t)+

∫ t

0

∫
Ω

( 2∑
i=1

(4ci|∇
√
ui|2 +2ai|∇ui|2)+χhu1u2|Dh ln(u1u2)|2

)
dtdx ≤ E(0)+C

for some constant C > 0.
However, this estimate is valid only for positive population densities ui. In order

to deal with this difficulty, we employ Stampacchia’s truncation method; i.e., we
replace ui by (ui)+ +η, where (ui)+ = max{0, ui} and η > 0. This allows us to define
the expression ln

(
((u1)+ + η)((u2)+ + η)

)
, for instance.

The above estimate is formally derived by employing ln((ui)+ + η) as a test
function in the weak formulation. Therefore, we obtain only estimates for (ui)+.
In order to derive estimates also for (ui)− = min{0, ui}, we employ (ui)− as a test
function. This yields, for instance, an estimate of the type ‖(ui)−‖L∞(0,T ;L2(Ω)) ≤
C/| ln η| for some constant C > 0 which is independent of η. In the limit η → 0 this
gives (ui)− = 0 in QT , and hence the nonnegativity of the population densities.

We notice that our strategy can also be applied to general systems of the type

∂tu− div(A(u)∇u) = f(u),

where u = u(x, t) ∈ R
n, f(u) ∈ R

n satisfies some growth condition, and A(u) ∈ R
n×n

is a diffusion matrix, maybe nonsymmetric and not positive definite, provided that
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the system is symmetrizable in the sense given above and that the a priori estimates
derived from the entropy inequality (which exists due to the symmetrizability) are
sufficient to define a weak solution.

Let us summarize the main features of the presented method of proof:

• No restrictions on the diffusion coefficients ci and ai are needed.
• The global existence result holds in up to three space dimensions.
• The method provides the nonnegativity of the solutions.
• The degenerate case ci = 0 can also be treated.

The idea of discretizing the cross-diffusion term by finite differences can be used
for numerical purposes. We will exploit this idea in [2].

The paper is organized as follows. In section 2 we define and solve an approximate
problem yielding an discrete entropy inequality. The key estimates are contained in
Lemma 2.5. The limit of vanishing approximation parameters is then performed in
section 3. Finally, in the appendix we recall the definition of Orlicz spaces and some
of its properties.

2. Existence of solutions to an approximate problem. We use semidis-
cretization in time to construct the approximate problem. Moreover, as explained
in the introduction, we also discretize the cross-diffusion terms by finite differences.
For this, we decompose (0, T ] = ∪K

k=1((k − 1)τ, kτ ] for some τ > 0 such that τ =
T/K. Furthermore, let h > 0, and let χh be the characteristic function of {x ∈ Ω :
dist(x, ∂Ω) > h}. Finally, let 0 < η < 1, and set s = s/(1 + η(s)+).

As the proof of Theorem 1.1 is highly technical, it is convenient, for the sake
of a smoother presentation, to assume in this section the regularity u0

i ∈ L2(Ω) and
q ∈ (L∞(QT ))N instead of the weaker conditions u0

i ∈ LΨ(Ω) and q ∈ (L2(QT ))N .
The general result can be proved by using appropriate smooth approximations and
passing to the limit. Details are left to the reader. In fact, we simplify further
and assume that q ∈ (L∞(Ω))N . The time-dependence can be treated as in [5], for
instance, by averaging q(x, t) over ((k− 1)τ, kτ ]. Moreover, we assume that c1, c2 are
positive numbers. We refer the reader to Remark 3.5 for the case c1 = 0 or c2 = 0.

For given uk−1
1 , uk−1

2 ∈ L2(Ω), we solve recursively the problem

uk
i − uk−1

i

τ
− div

(
ci∇uk

i + 2ai((u
k
i )+ + η)∇uk

i + di(u
k
i )+q

)
= D−h

[
χhuk

1 uk
2D

h ln
(
((uk

1)+ + η)((uk
2)+ + η)

)]
+ fi

(
(uk

1)+ + η, (uk
2)+ + η

)
in Ω,(

ci∇uk
i + 2ai((u

k
i )+ + η)∇uk

i + di(u
k
i )+q

)
· γ = 0 on ∂Ω,

(2.1)

where i = 1, 2. The finite difference operators are defined in (1.7) and (1.8).

The existence of solutions to the approximate system (2.1) is proved in two steps.
In order to apply Lax–Milgram’s lemma we need bounded diffusion coefficients. There-
fore, we approximate the diffusion coefficients 2ai((u

k
i )+ + η) by

2ai
(uk

i )+ + η

1 + ν((uk
i )+ + η)

for some ν > 0 and prove the existence of solutions to the resulting system. Then we
derive uniform bounds with respect to ν which allows us to pass to the limit ν → 0.
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The second approximate system reads as follows:

uk
i − uk−1

i

τ
− div

(
ci∇uk

i + 2ai
(uk

i )+ + η

1 + ν((uk
i )+ + η)

∇uk
i + di(u

k
i )+q

)
= D−h

[
χhuk

1 uk
2D

h ln
(
((uk

1)+ + η)((uk
2)+ + η)

)]
+ fi

(
(uk

1)+ + η, (uk
2)+ + η

)
in Ω,

(
ci∇uk

i + 2ai
(uk

i )+ + η

1 + ν((uk
i )+ + η)

∇uk
i + di(u

k
i )+q

)
· γ = 0 on ∂Ω, i = 1, 2.(2.2)

In subsection 2.1 we prove some bounds uniform in ν and the existence of weak
solutions to (2.2). Then by letting ν → 0 in subsection 2.2 we conclude the solvability
of (2.1).

In the following, C and C(· · · ) denote positive constants with values varying from
occurrence to occurrence and depending on the quantities indicated in the brackets.

2.1. Existence of solutions to the second approximate problem (2.2).
Lemma 2.1. Assume that the time discretization parameter τ > 0 is so small

that

3

16τ
≥ max

i=1,2

{ d2
i

2ci
‖q‖2

L∞(Ω) + 2(Ri + βi1 + βi2)
}

and 32τ ≤ h2η2.(2.3)

Then there exists a solution (u1, u2) ∈ (H1(Ω))2 of problem (2.2) satisfying the fol-
lowing estimate:

∫
Ω

2∑
i=1

(
ci
2
|∇ui|2 +

u2
i

4τ
+ 2ai

(ui)+ + η

1 + ν((ui)+ + η)
|∇ui|2

)
dx ≤ C(τ),(2.4)

where the constant C(τ) > 0 depends on τ but not on ν.
The above estimate is used only to pass to the limit ν → 0 for fixed parameters

τ , h, and η. For the limits τ, h → 0 and η → 0 we need other estimates.
Remark 2.2. The second restriction on the time discretization parameter τ in

(2.3) is similar to the well-known condition τ/h2 ≤ const needed for explicit finite
difference approximations of parabolic equations since we treat the discrete cross-
diffusion term in an “explicit” way. Clearly, this condition has no importance for the
existence result.

Proof. Construct a mapping

T : (σ, v1, v2) ∈ [0, 1] × (L4(Ω))2 → (L4(Ω))2

by solving the following linear problem:

− div(ci∇ui) +
ui

τ
− σdiv

(
2ai

(vi)+ + η

1 + ν((vi)+ + η)
∇ui

)
− σdiv(di(vi)+q)

= σ
uk−1
i

τ
+ σFi(v1, v2) in Ω,(2.5) (

ci∇ui + 2σai
(vi)+ + η

1 + ν((vi)+ + η)
∇ui + σdi(vi)+q

)
· γ = 0 on ∂Ω,

where

Fi(v1, v2) = D−h
[
χhv1 v2D

h ln
(
((v1)+ + η)((v2)+ + η)

)]
+ fi((v1)+ + η, (v2)+ + η)
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and v1, v2 ∈ L4(Ω), i = 1, 2. The functionals Fi satisfy the estimate ‖Fi(v1, v2)‖L2(Ω)

≤ C(1+ ‖v1‖2
L4(Ω) + ‖v2‖2

L4(Ω)) for i = 1, 2. The above problem has a unique solution

(by Lax–Milgram’s lemma) since the diffusion coefficients are bounded. Thus, the
mapping T is well defined. It is not difficult to prove the continuity of T . Moreover,
since the embedding H1(Ω) ↪→ L4(Ω) is compact, for every σ ∈ [0, 1], the mapping T is
compact. Here, we use the restriction N ≤ 3 of the space dimension (see Remark 2.3).
When σ = 0, the equation T (0, u1, u2) = (u1, u2) immediately yields u1 = u2 = 0 in
Ω.

It remains to establish uniform estimates for every fixed point of T . Any fixed
point (u1, u2) satisfies the equation

− div(ci∇ui) +
ui

τ
− σdiv

(
2ai

(ui)+ + η

1 + ν((ui)+ + η)
∇ui

)
− σdiv(di(ui)+q)

= σ
uk−1
i

τ
+ σFi(u1, u2) in Ω, i = 1, 2,(2.6)

together with homogeneous Neumann boundary conditions. We use ui ∈ H1(Ω) as
a test function in the weak formulation of (2.6) for i = 1, 2 and add the resulting
equations:

2∑
i=1

∫
Ω

(
ci|∇ui|2 +

u2
i

τ
+ 2σai

(ui)+ + η

1 + ν((ui)+ + η)
|∇ui|2

)
dx

= −
2∑

i=1

∫
Ω

σdi(ui)+q · ∇uidx +
σ

τ

2∑
i=1

∫
Ω

uiu
k−1
i dx

+

2∑
i=1

∫
Ω

σD−h
[
χhu1 u2D

h ln
(
((u1)+ + η)((u2)+ + η)

)]
uidx

+

2∑
i=1

∫
Ω

σ
[
Ri − βi1((u1)+ + η) − βi2((u2)+ + η)

]
((ui)+ + η)uidx.(2.7)

The terms on the right-hand side are estimated by Young’s inequality. For the third
term we also use the elementary inequalities |ui| ≤ 1/η and | ln(x + η)| ≤ x + | ln η|
for all x ≥ 0 and 0 < η < 1. This yields after some computations

2∑
i=1

∫
Ω

(ci
2
|∇ui|2 +

u2
i

4τ
+ 2σai

(ui)+ + η

1 + ν((ui)+ + η)
|∇ui|2

)
dx

≤ 1

τ

2∑
i=1

∫
Ω

(uk−1
i )2dx + 2|Ω|

2∑
i=1

(Ri + βi1 + βi2) +
128τ

h4η4
| ln η|2|Ω|

+

2∑
i=1

∫
Ω

u2
i

(
− 1

4τ
+

d2
i

2ci
‖q‖2

L∞ +
64τ

h4η4
+ 2(Ri + βi1 + βi2)

)
dx,

where |Ω| is the measure of Ω. By choosing τ so small that (2.3) is satisfied, in
particular 64τ/(h4η4) ≤ 1/16τ , we obtain

2∑
i=1

∫
Ω

(ci
2
|∇ui|2 +

u2
i

4τ
+ 2σai

(ui)+ + η

1 + ν((ui)+ + η)
|∇ui|2

)
dx
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≤ 1

τ

2∑
i=1

∫
Ω

(uk−1
i )2dx +

2∑
i=1

∫
Ω

u2
i

(
− 3

16τ
+

d2
i

2ci
‖q‖2

L∞ + 2(Ri + βi1 + βi2)
)
dx

+ C(τ)

≤ 1

τ

2∑
i=1

∫
Ω

(uk−1
i )2dx + C(τ) ≤ C(τ).

By the Leray–Schauder theorem, T (1, ·) has a fixed point. Thus we conclude the
existence of a weak solution of problem (2.2). The inequality (2.4) follows from the
above estimate with σ = 1.

Remark 2.3. From the proof of the above lemma we see that if βij = 0 for all
i, j = 1, 2, then the fixed-point mapping T can be defined on [0, 1] × (L2(Ω))2. This
allows us to prove the above result for any space dimension N (see Remark 3.6).

2.2. The limit ν → 0. We show in the following that the limit ν → 0 can be
performed in (2.2).

Lemma 2.4. There exists a weak solution (u1, u2) ∈ (H1(Ω))2 of problem (2.1)
in the sense that for all ϕ ∈ W 1,2·2∗/(2∗−2)(Ω),

∫
Ω

ui − uk−1
i

τ
ϕdx +

∫
Ω

(ci∇ui + 2ai((ui)+ + η)∇ui + di(ui)+q) · ∇ϕdx

−
∫

Ω

D−h
[
χhu1 u2D

h ln
(
((u1)+ + η)((u2)+ + η)

)]
ϕdx(2.8)

=

∫
Ω

fi
(
(u1)+ + η, (u2)+ + η

)
ϕdx,

where 2∗ = ∞ if N = 1, 2∗ can be any real number if N = 2, and 2∗ = 2N/(N − 2)
if N ≥ 3.

Proof. Let (uν
1 , u

ν
2) ∈ (H1(Ω))2 be a weak solution of (2.2). From the uniform

estimate (2.4) we conclude the existence of a subsequence of (uν
1 , u

ν
2) (not relabeled)

such that, as ν → 0,

∇uν
i ⇀ ∇ui weakly in (L2(Ω))N ,

uν
i → ui strongly in Lr(Ω), 1 ≤ r < 2∗, i = 1, 2.(2.9)

The last convergence result follows from the compactness of the embedding H1(Ω) ↪→
Lr(Ω) for all r < 2∗. In particular, we have (uν

i )+ → (ui)+ strongly in Lr(Ω) and

((uν
i )+ + η)∇uν

i ⇀ ((ui)+ + η)∇ui weakly in (Ls(Ω))N for all 1 ≤ s ≤ 2r

r + 2
.

Here, we used the fact that the product of a strongly convergent and a weakly conver-
gent sequence is weakly convergent (in an appropriate space). Since (uν

i ) is uniformly
bounded in H1(Ω), Hölder’s inequality implies

‖((uν
i )+ + η)∇uν

i ‖L2·2∗/(2+2∗)(Ω) ≤ ‖(uν
i )+ + η‖L2∗ (Ω)‖∇uν

i ‖L2(Ω) ≤ C,

where C > 0 is independent of ν. Thus, the above weak convergence also holds for
s = 2 · 2∗/(2 + 2∗).

Now we use the following result: Let (vν) ⊂ L∞(Ω) and (wν) ⊂ Ls(Ω) with
s ≥ 1 be two sequences such that (vν) is bounded in L∞(Ω), vν → v pointwise
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almost everywhere in Ω as ν → 0, and wν ⇀ w weakly in Ls(Ω). Then, as ν → 0,
vνwν ⇀ vw weakly in Ls(Ω). Applying this result to vν = 1/(1 + ν((uν

i )+ + η)) and
wν = ((uν

i )+ + η)∇uν
i with s = 2 · 2∗/(2 + 2∗) yields

(uν
i )+ + η

1 + ν((uν
i )+ + η)

∇uν
i ⇀ ((ui)+ + η)∇ui weakly in (Ls(Ω))N , s =

2 · 2∗
2 + 2∗

.

Moreover, by similar arguments as above, as ν → 0,

fi((u
ν
1)+ + η, (uν

2)+ + η) =
(
Ri − βi1((u

ν
1)+ + η) − βi2((u

ν
2)+ + η)

)
((uν

i )+ + η)

⇀
(
Ri − βi1((u1)+ + η) − βi2((u2)+ + η)

]
((ui)+ + η) weakly in L2∗/2(Ω),

D−h
[
χhuν

1 uν
2D

h ln (((uν
1)+ + η)((uν

2)+ + η))
]

⇀ D−h
[
χhu1 u2D

h ln (((u1)+ + η)((u2)+ + η))
]

weakly in Ls(Ω)

for all 1 < s < ∞. These convergence results allow us to pass to the limit ν → 0 in
the weak formulation of (2.2) which yields (2.8), and hence the conclusion.

2.3. Uniform estimates with respect to τ and h. The following entropy
inequality is the key estimate of this paper providing uniform bounds in τ , h, and η.

Lemma 2.5. Let (u1, u2) ∈ (H1(Ω))2 be a solution of (2.1). Then the following
estimates hold:

∫
Ω

[
2∑

i=1

(
ci
|∇(ui)+|2
(ui)+ + η

+ ai|∇(ui)+|2
)

+ χhu1 u2

∣∣Dh ln (((u1)+ + η)((u2)+ + η))
∣∣2 ]dx(2.10)

+
1

τ

2∑
i=1

∫
Ω

[((ui)+ + η) (ln((ui)+ + η) − 1) + (ui)− ln η] dx

≤ 1

τ

2∑
i=1

∫
Ω

[
((uk−1

i )+ + η)
(
ln((uk−1

i )+ + η) − 1
)

+ (uk−1
i )− ln η

]
dx + C

and

2∑
i=1

∫
Ω

(ci
2
|∇(ui)−|2 + 2aiη|∇(ui)−|2

)
dx +

1

2τ

2∑
i=1

∫
Ω

|(ui)−|2dx

≤ 1

2τ

2∑
i=1

∫
Ω

|(uk−1
i )−|2dx + ηC

∫
Ω

2∑
i=1

(|(ui)+|2 + |(ui)−|2)dx(2.11)

+
C(c1, c2)

η2

∫
Ω

χhu1 u2

∣∣Dh ln (((u1)+ + η)((u2)+ + η))
∣∣2 dx + C,

where C > 0 depends only on Ri, βij (i, j = 1, 2), and ‖q‖L2(Ω).

Proof. Let (u1, u2) be a solution of (2.1); i.e., ui ∈ H1(Ω) satisfies (2.8), i = 1, 2.
As ln((ui)+ + η) �∈ W 1,2·2∗/(2∗−2)(Ω) in general, we cannot use this function as a
test function in the weak formulation (2.8). Therefore, we choose a sequence (vε) of
smooth functions satisfying vε → (ui)+ in H1(Ω) (for some fixed i) and vε ≥ 0 in Ω
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and use ϕ = ln(vε + η) as a test function in (2.8):∫
Ω

ui − uk−1
i

τ
ln(vε + η)dx

+

∫
Ω

(
ci∇ui + 2ai((ui)+ + η)∇ui + di(ui)+q

)
· ∇ ln(vε + η)dx(2.12)

−
∫

Ω

D−h
[
χhu1 u2D

h ln (((u1)+ + η)((u2)+ + η))
]
ln(vε + η)dx

=

∫
Ω

[
Ri − βi1((u1)+ + η) − βi2((u2)+ + η)

]
((ui)+ + η) ln(vε + η)dx.

We claim that, as ε → 0,∫
Ω

((ui)+ + η)∇ui · ∇ ln(vε + η)dx →
∫

Ω

|∇(ui)+|2dx.(2.13)

In order to prove this claim we observe that

((ui)+ + η)∇ ln(vε + η) ⇀ ((ui)+ + η)∇ ln((ui)+ + η) = ∇(ui)+

weakly in L2·2∗/(2+2∗)(Ω) and

‖((ui)+ + η)∇ ln(vε + η)‖L2(Ω) ≤
∥∥∥∥ (ui)+ + η

vε + η

∥∥∥∥
L∞(Ω)

‖∇vε‖L2(Ω) ≤ C,

where C > 0 is a constant independent of ε. Therefore, the above weak convergence
holds also in L2(Ω). Since ∇ui ∈ L2(Ω), the claim follows.

As ln(vε + η) → ln((ui)+ + η) in H1(Ω), we can pass to the limit ε → 0 in (2.12).
Adding (2.12) for i = 1 and i = 2 and using (2.13) then gives in the limit ε → 0

∫
Ω

[ 2∑
i=1

(
ci
|∇(ui)+|2
(ui)+ + η

+ 2ai|∇(ui)+|2
)

+ χhu1 u2

∣∣Dh ln (((u1)+ + η)((u2)+ + η))
∣∣2 ]dx(2.14)

+
2∑

i=1

∫
Ω

ui − uk−1
i

τ
ln((ui)+ + η)dx−

2∑
i=1

∫
Ω

|diq∇(ui)+|dx

≤
2∑

i=1

∫
Ω

[
Ri − βi1((u1)+ + η) − βi2((u2)+ + η)

]
((ui)+ + η) ln((ui)+ + η)dx.

In the following we estimate the terms of the above inequality. With the elementary
inequality x(lnx−ln y) ≥ x−y for all x, y > 0 (which is a consequence of the convexity
of x �→ lnx), we obtain∫

Ω

ui − uk−1
i

τ
ln((ui)+ + η)dx

=
1

τ

∫
Ω

[
((ui)+ + η) ln((ui)+ + η) − ((uk−1

i )+ + η) ln((uk−1
i )+ + η)

+ ((uk−1
i )+ + η)(ln((uk−1

i )+ + η) − ln((ui)+ + η))
]
dx

+
1

τ

∫
Ω

((ui)− − (uk−1
i )−) ln((ui)+ + η)dx(2.15)
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≥ 1

τ

∫
Ω

[((ui)+ + η)(ln((ui)+ + η) − 1) + (ui)− ln η]dx

− 1

τ

∫
Ω

[((uk−1
i )+ + η)(ln((uk−1

i )+ + η) − 1) + (uk−1
i )− ln η]dx.

The last term on the left-hand side in (2.14) is estimated by employing Young’s
inequality:

2∑
i=1

∫
Ω

|diq∇(ui)+|dx ≤
2∑

i=1

ai

∫
Ω

|∇(ui)+|2dx + C(a1, a2, d1, d2, ‖q‖L2(Ω)).(2.16)

Finally, by the assumptions βii > 0 and β12 = β21, the right-hand side of (2.14)
is uniformly bounded. Putting the above estimates (2.15)–(2.16) together, the first
inequality (2.10) follows from (2.14).

In order to derive the second inequality (2.11), we take a sequence (vε) of smooth
functions satisfying vε → (ui)− in H1(Ω) and vε = 0 in {ui ≥ 0}, and we choose
ϕ = vε as a test function in the weak formulation (2.8):

2∑
i=1

∫
Ω

(
ci∇(ui)− · ∇vε + 2aiη∇(ui)− · ∇vε

)
dx +

2∑
i=1

∫
Ω

ui − uk−1
i

τ
vεdx

≤ −
2∑

i=1

∫
Ω

χhu1 u2D
h ln

(
((u1)+ + η)((u2)+ + η)

)
·Dhvεdx

+

2∑
i=1

∫
Ω

[
Ri − βi1((u1)+ + η) − βi2((u2)+ + η)

]
ηvεdx.

As above we can let ε → 0 to obtain

2∑
i=1

∫
Ω

(
ci|∇(ui)−|2 + 2aiη|∇(ui)−|2

)
dx +

2∑
i=1

∫
Ω

ui − uk−1
i

τ
(ui)−dx

≤ −
2∑

i=1

∫
Ω

χhu1 u2D
h ln

(
((u1)+ + η)((u2)+ + η)

)
·Dh(ui)−dx(2.17)

+

2∑
i=1

∫
Ω

[
Ri − βi1((u1)+ + η) − βi2((u2)+ + η)

]
η(ui)−dx.

The second term on the left-hand side can be estimated as follows:∫
Ω

ui − uk−1
i

τ
(ui)−dx =

1

τ

∫
Ω

(
|(ui)−|2 − (uk−1

i )+(ui)− − (uk−1
i )−(ui)−

)
dx

≥ 1

2τ

∫
Ω

(
|(ui)−|2 − |(uk−1

i )−|2
)
dx.(2.18)

For the first term on the right-hand side of (2.17) we employ Young’s inequality:

(2.19)

−
∫

Ω

χhu1 u2D
h ln

(
((u1)+ + η)((u2)+ + η)

)
·Dh(ui)−dx

≤ ci
2

∫
Ω

|∇(ui)−|2dx +
C(ci)

η2

∫
Ω

χhu1 u2

∣∣Dh ln
(
((u1)+ + η)((u2)+ + η)

)∣∣2 dx + C.
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Finally, for the last term on the right-hand side of (2.17) follows

2∑
i=1

∫
Ω

[
Ri − βi1((u1)+ + η) − βi2((u2)+ + η)

]
η(ui)−dx

≤ ηC

2∑
i=1

∫
Ω

(|(ui)+|2 + |(ui)−|2)dx.(2.20)

Hence, (2.11) is a consequence of (2.17)–(2.20).

3. Proof of Theorem 1.1. Let (uk
1 , u

k
2) ∈ (H1(Ω))2 be a solution to (2.1). We

set u
(τ)
i (x, t) = uk

i (x) if (x, t) ∈ Ω × ((k − 1)τ, kτ ]. With the discrete time derivative

Dτ
t v(x, t) :=

v(x, t + τ) − v(x, t)

τ
, (x, t) ∈ Ω × [0,∞),

we can rewrite the approximate problem (2.1) as

Dτ
t u

(τ)
i − div

(
ci∇u

(τ)
i + 2ai((u

(τ)
i )+ + η)∇u

(τ)
i + di(u

(τ)
i )+q

)
−D−h

[
χhu

(τ)
1 u

(τ)
2 Dh ln

(
((u

(τ)
1 )+ + η)((u

(τ)
2 )+ + η)

)]
(3.1)

= fi
(
(u

(τ)
1 )+ + η, (u

(τ)
2 )+ + η

)
in Ω,(

ci∇u
(τ)
i + 2ai((u

(τ)
i )+ + η)∇u

(τ)
i + di(u

(τ)
i )+q

)
· γ = 0 on ∂Ω,

together with the initial conditions corresponding to (1.4).
The proof of Theorem 1.1 is divided into two parts. In subsection 3.1, we assume

that η > 0 is fixed and perform the limit τ, h → 0. In subsection 3.2, we prove the
limit η → 0. At this step we show the nonnegativity of the solution.

3.1. The limit τ, h → 0. The problem (2.1) has a solution under the condition
that the parameters τ and h are related by the inequality 32τ ≤ h2η2. Therefore we
let τ and h tend to zero simultaneously in such a way that the inequality 32τ ≤ h2η2

is satisfied (for fixed η > 0).
Lemma 3.1. Let T > 0. The following estimates hold for i = 1, 2:

‖∇(u
(τ)
i )+‖L2(QT ) + ‖(u(τ)

i )+‖L∞(0,T ;LΨ(Ω)) ≤ C,(3.2) ∥∥∥χh

√
u

(τ)
1 u

(τ)
2 Dh ln

(
(u

(τ)
1 )+ + η)((u

(τ)
2 )+ + η)

)∥∥∥
L2(QT )

≤ C,(3.3)

‖∇(u
(τ)
i )−‖L2(QT ) + ‖(u(τ)

i )−‖L∞(0,T ;L2(Ω)) ≤ C/η,(3.4)

where C > 0 is independent of c1, c2, h, τ , and η. Furthermore,

‖u(τ)
i ‖L2(0,T ;H1(Ω)) + ‖u(τ)

i ‖Lp(QT ) ≤ C(η),(3.5)

‖Dτ
t u

(τ)
i ‖Lr(0,T ;(W 1,r′ (Ω))′) ≤ C(η),(3.6)

where p = (2N +2)/N , r = (2N +2)/(2N +1), r′ = r/(r−1) = 2N +2, and C(η) > 0
does not depend on τ or h.

Proof. The estimates (3.2)–(3.5) are consequences of the key inequalities (2.10)
and (2.11). First, we prove (3.2) and (3.3). Let K ∈ N, and set τ = T/K. The
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estimate (2.10) can be rewritten at tk = kτ as

∫ tk

0

∫
Ω

[ 2∑
i=1

(
4ci

∣∣∣∇√
(u

(τ)
i )+ + η

∣∣∣2 + ai|∇(u
(τ)
i )+|2

)

+ χhu
(τ)
1 u

(τ)
2

∣∣∣Dh ln
(
((u

(τ)
1 )+ + η)((u

(τ)
2 )+ + η)

)∣∣∣2 ]dxdt
+

2∑
i=1

∫
Ω

(
((u

(τ)
i )+ + η)(ln((u

(τ)
i )+ + η) − 1) + ln η(u

(τ)
i )−

) ∣∣∣
t=tk

dx

≤ C(T, ‖u0
i ‖LΨ(Ω)).

From the elementary inequalities x ≤ x(lnx − 1) + C and (1 + x) ln(1 + x) − x ≤
x(lnx− 1) + x + C for all x ≥ 0 for some C > 0 and from (4.1) we obtain at t = tk∫

Ω

(u
(τ)
i )+dx ≤

∫
Ω

((u
(τ)
i )+ + η)(ln((u

(τ)
i )+ + η) − 1)dx + C|Ω| ≤ C,(3.7)

‖(u(τ)
i )+‖LΨ(Ω) ≤ 1 +

∫
Ω

Ψ
(
(u

(τ)
i )+

)
dx ≤ C.

Since the functions u
(τ)
i are piecewise constant with respect to t, we have

∫ T

0

∫
Ω

[ 2∑
i=1

(
4ci

∣∣∣∇√
(u

(τ)
i )+ + η

∣∣∣2 + ai|∇(u
(τ)
i )+|2

)

+ χhu
(τ)
1 u

(τ)
2

∣∣∣Dh(ln
(
((u

(τ)
1 )+ + η)((u

(τ)
2 )+ + η)

)∣∣∣2 ]dxdt(3.8)

+
2∑

i=1

sup
0<t<T

(
‖(u(τ)

i )+(·, t)‖LΨ(Ω) + ‖ ln η(u
(τ)
i )−(·, t)‖L1(Ω)

)
≤ C.

This gives a uniform bound for ‖∇(u
(τ)
i )+‖L2(QT ) and shows (3.2)–(3.3). An L2 bound

for (u
(τ)
i )+ can be derived from this estimate, the Poincaré inequality, and (3.7):

∫ T

0

‖(u(τ)
i )+‖2

L2(Ω)dt ≤ C(|Ω|, T )

∫ T

0

‖∇(u
(τ)
i )+‖2

L2(Ω)dt + C(|Ω|, T ).(3.9)

For the proof of (3.4) we employ the estimate (2.11), rewritten at tk = kτ as

∫ tk

0

∫
Ω

2∑
i=1

(ci
2
|∇(u

(τ)
i )−|2 + 2aiη|∇(u

(τ)
i )−|2

)
dxdt +

1

2

2∑
i=1

∫
Ω

|(u(τ)
i )−(·, tk)|2dx

≤ C + ηC

2∑
i=1

∫ tk

0

∫
Ω

(|(u(τ)
i )+|2 + |(u(τ)

i )−|2)dxdt

+
C

η2

∫ tk

0

∫
Ω

χhu
(τ)
1 u

(τ)
2

∣∣∣Dh ln
(
((u

(τ)
1 )+ + η)((u

(τ)
2 )+ + η)

)∣∣∣2 dxdt.
Taking into account (3.3) and (3.9) and applying Gronwall’s inequality, this proves
(3.4).
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Next we show the estimate (3.5). As the functions u
(τ)
i are piecewise constant

with respect to t, we obtain, with the help of (3.8) and (3.9),

∫ t

0

∫
Ω

2∑
i=1

(ci
2
|∇(u

(τ)
i )−|2 + 2aiη|∇(u

(τ)
i )−|2

)
dxdt +

1

2

2∑
i=1

∫
Ω

|(u(τ)
i )−(·, t)|2dx

≤ C(|Ω|, T, ‖u0
i ‖LΨ(Ω), η) + C

∫ t

0

∫
Ω

2∑
i=1

|(u(τ)
i )−|2dxdt.

Thus, by Gronwall’s inequality,

2∑
i=1

∫ T

0

∫
Ω

(ci
2
|∇(u

(τ)
i )−|2 + 2aiη|∇(u

(τ)
i )−|2

)
dxdt

+
1

2

2∑
i=1

sup
0<t<T

∫
Ω

|(u(τ)
i )−(·, t)|2dx ≤ C(η).(3.10)

This provides a uniform bound for (u
(τ)
i )− in L2(0, T ;H1(Ω)), and from (3.2), (3.8),

(3.9), and (3.10) we infer

‖u(τ)
i ‖L2(0,T ;H1(Ω)) + ‖u(τ)

i ‖L∞(0,T ;L1(Ω)) ≤ C(η).

Applying the Gagliardo–Nirenberg inequality with p = (2N + 2)/N and θ = 2N(p−
1)/(p(N + 2)) (and thus θp = 2) yields

‖u(τ)
i ‖Lp(QT ) ≤

(∫ T

0

‖u(τ)
i ‖(1−θ)p

L1(Ω) ‖u
(τ)
i ‖θpH1(Ω)dt

)1/p

≤ ‖u(τ)
i ‖1−θ

L∞(0,T ;L1(Ω))

(∫ T

0

‖u(τ)
i ‖θpH1(Ω)dt

)1/p

≤ C(η).

Finally, we derive a bound for the discrete time derivative Dτ
t u

(τ)
i . Using (3.1),

we obtain, for r = (2N + 2)/(2N + 1), since p > r,

‖Dτ
t u

(τ)
i ‖Lr(0,T ;(W 1,r′ (Ω))′)

≤ ‖ci∇u
(τ)
i + 2ai((u

(τ)
i )+ + η)∇u

(τ)
i ‖Lr(QT )

+
∥∥∥χhu

(τ)
1 u

(τ)
2 Dh ln

(
((u

(τ)
1 )+ + η)((u

(τ)
2 )+ + η)

)
+ di(u

(τ)
i )+q

∥∥∥
Lr(QT )

+
∥∥fi((u(τ)

1 )+ + η, (u
(τ)
2 )+ + η

)∥∥
Lr(QT )

≤ C(|Ω|, T )‖∇u
(τ)
i ‖L2(QT ) + 2ai‖u(τ)

i + η‖Lp(QT )‖∇u
(τ)
i ‖L2(QT )

+
1

2
(‖u(τ)

1 ‖Lp(QT ) + ‖u(τ)
2 ‖Lp(QT ))

×
∥∥∥∥χh

√
u

(τ)
1 u

(τ)
2 Dh ln

(
((u

(τ)
1 )+ + η)((u

(τ)
2 )+ + η)

)∥∥∥∥
L2(QT )

+ |di| ‖u(τ)
i ‖Lp(QT )‖q‖L2(QT ) + C(T, |Ω|)(‖u(τ)

i ‖Lp(QT ) + ‖u(τ)
i ‖Lp(QT )).

Then (3.6) follows from (3.3) and (3.5).
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Now we are able to perform the limit τ , h → 0.
Lemma 3.2. As τ, h → 0 such that 32τ ≤ h2η2, there exists a pair (uη

1 , u
η
2)

satisfying (up to a subsequence which is not relabeled), for i = 1, 2,

∇u
(τ)
i ⇀ ∇uη

i weakly in (L2(QT ))N ,(3.11)

((u
(τ)
i )+ + η)∇u

(τ)
i ⇀ ((uη

i )+ + η)∇uη
i weakly in (Lr(QT ))N ,(3.12)

χhu
(τ)
1 u

(τ)
2 Dh ln

(
((u

(τ)
1 )+ + η)((u

(τ)
2 )+ + η)

)
⇀ uη

1 uη
2∇ ln

(
((uη

1)+ + η)((uη
2)+ + η)

)
weakly in (L2(QT ))N ,(3.13)

di(u
(τ)
i )+q ⇀ di(u

η
i )+q weakly in (Lr(QT ))N ,(3.14)

fi
(
(u

(τ)
1 )+ + η, (u

(τ)
2 )+ + η

)
⇀ fi

(
(uη

1)+ + η, (uη
2)+ + η

)
weakly in Lp/2(Ω),(3.15)

Dτ
t u

(τ)
i ⇀ ∂tu

η
i weakly in Lr(0, T ; (W 1,r′(Ω))′),

where p = (2N + 2)/N , r = (2N + 2)/(2N + 1), and r′ = 2N + 2.
Proof. The first and last convergences are direct consequences of (3.2) and (3.5).

In order to treat the nonlinear terms, we need a strong convergence result. Taking
into account (3.5) and (3.6), we can apply the version of Aubin’s lemma in [26, Thm.
6] to obtain, for a subsequence which is not relabeled, as τ, h → 0,

u
(τ)
i → uη

i strongly in Lq(0, T ;L2(Ω)), 1 < q < 2.(3.16)

In particular, (a subsequence of) (u
(τ)
i ) converges pointwise almost everywhere in QT

to uη
i . This, together with the bound ‖u(τ)

i ‖Lp(QT ) ≤ C (which comes from (3.5)),
implies

u
(τ)
i → uη

i strongly in Lα(QT ), 2 < α < p,(3.17)

and (u
(τ)
i )+ → (uη

i )+ strongly in Lα(QT ). By (3.11) we obtain for s = 2α/(2+α) < r

(u
(τ)
i )+∇u

(τ)
i ⇀ (uη

i )+∇uη
i weakly in (Ls(QT ))N .

Since

‖(u(τ)
i )+∇u

(τ)
i ‖Lr(QT ) ≤ ‖u(τ)

i ‖Lp(QT )‖∇u
(τ)
i ‖L2(QT ) ≤ C,

the above weak convergence also holds for s = r. In a similar way, since q ∈
(L2(QT ))N , the convergences (3.14) and (3.15) can be proved.

Finally, we show (3.13). Using

‖ ln((u
(τ)
i )+ + η)‖L2(QT ) ≤ | ln η| + ‖(u(τ)

i )+ + η‖L2(QT ) ≤ C(η),

‖Dh ln((u
(τ)
i )+ + η)‖L2(QT ) ≤

C

η
‖∇(u

(τ)
i )+‖L2(QT ) ≤ C(η),

and (u
(τ)
i )+ → (uη

i )+ almost everywhere in QT , we conclude that

Dh ln((u
(τ)
i )+ + η) ⇀ ∇ ln((uη

i )+ + η) weakly in (L2(QT ))N .
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Then (3.13) follows from ∥∥∥χhu
(τ)
1 u

(τ)
2

∥∥∥
L∞(QT )

≤ 1

η2
.

This proves Lemma 3.2.
Letting τ, h → 0 in the weak version of (3.1) such that 32τ ≤ h2η2, we obtain for

all ϕ ∈ Lr′(0, T ;W 1,r′(Ω))∫ T

0

〈∂tuη
i , ϕ〉(W 1,r′ (Ω))′,W 1,r′ (Ω) dt +

∫
QT

(ci∇uη
i + 2ai((u

η
i )+ + η)∇uη

i ) · ∇ϕdxdt

+

∫
QT

[
uη

1 uη
2∇ ln

(
((uη

1)+ + η)((uη
2)+ + η)

)
+ di(ui)+q

]
· ∇ϕdxdt(3.18)

=

∫
QT

fi
(
(uη

1)+ + η, (uη
2)+ + η

)
ϕdxdt.

By Lemma 3.2, the functions uη
1 and uη

2 are satisfying the properties

uη
i ∈ L2(0, T ;H1(Ω)) ∩ Lp(QT ),

(uη
i )+ ∈ L∞(0, T ;LΨ(Ω)), (uη

i )− ∈ L∞(0, T ;L2(Ω)), i = 1, 2.(3.19)

3.2. The limit η → 0. The last step in the proof of Theorem 1.1 is to perform
the limit η → 0. First, we need some a priori estimates.

Lemma 3.3. Let T > 0. The following estimates hold for i = 1, 2:

‖∇(uη
i )+‖L2(QT ) + ‖(uη

i )+‖L∞(0,T ;LΨ(Ω)) ≤ C,(3.20)

‖ ln η(uη
i )−‖L∞(0,T ;L1(Ω)) ≤ C,(3.21) ∥∥∥√uη

1 uη
2∇ ln

(
((uη

1)+ + η)((uη
2)+ + η)

)∥∥∥
L2(QT )

≤ C,(3.22)

‖∇(uη
i )−‖L2(QT ) + ‖(uη

i )−‖L∞(0,T ;L2(Ω)) ≤ C,(3.23)

‖uη
i ‖L2(0,T ;H1(Ω)) + ‖uη

i ‖Lp(QT ) ≤ C,(3.24)

‖∂tuη
i ‖Lr(0,T ;(W 1,r′ (Ω))′) ≤ C,(3.25)

where p = (2N +2)/N , r = (2N +2)/(2N +1), r′ = 2N +2, and C > 0 is a constant
independent of c1, c2, and η.

Proof. Let i ∈ {1, 2}. Choose a sequence (vε) of smooth functions such that, as
ε → 0,

vε → (uη
i )+ in L2(0, T ;H1(Ω)) ∩ L∞(0, T ;LΨ(Ω)) ∩ Lp(QT )(3.26)

and vε = 0 on {ui ≤ 0}. Such a choice is possible in view of the regularity (3.19). We
claim that∫ t

0

〈∂tuη
i , ln(vε + η)〉dt →

∫
Ω

(
(uη

i )+ + η)(ln(uη
i )+ + η) − 1) + ln η(uη

i )−
)
dx

−
∫

Ω

(u0
i + η)(ln(u0

i + η) − 1)dx(3.27)

and ∫
QT

ai((u
η
i )+ + η)∇uη

i · ∇ ln(vε + η)dxdt →
∫
QT

ai|∇(uη
i )+|2dxdt.(3.28)
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In fact, in order to show the second claim (3.28), we need only to show

((uη
i )+ + η)∇ ln(vε + η) ⇀ ∇(uη

i )+ weakly in (L2(QT ))N .

This convergence follows from ((uη
i )+ +η)/(vε +η) → 1 almost everywhere in QT and

∇vε → ∇(uη
i )+ in (L2(QT ))N .

The proof of the first claim (3.27) is more delicate. By integration by parts, we
have

(3.29)∫ t

0

〈∂tuη
i , ln(vε + η)〉dt =

∫ t

0

〈∂t(uη
i )+, ln(vε + η)〉dt +

∫ t

0

〈∂t(uη
i )−, ln η〉dt

=

∫
Ω

[((uη
i )+ + η) ln(vε + η)]

t
0 dx−

∫
Qt

(uη
i )+ + η

vε + η
∂tv

εdxdt + ln η

∫
Ω

[(uη
i )−]

t
0 dx.

We consider the first term on the right-hand side. It holds for all t ∈ (0, T )\N , where
N is a set of measure zero, that

‖ ln(vε(·, t) + η) − ln((uη
i )+(·, t) + η)‖L∞(Ω) =

∥∥∥ ln
vε(·, t) + η

(uη
i )+(·, t) + η

∥∥∥
L∞(Ω)

≤ C

for some C > 0 and, as ε → 0,

ln(vε(·, t) + η) − ln((uη
i )+(·, t) + η) → 0 strongly in L1(Ω),

uniformly in t ∈ (0, T )\N . In particular, this sequence converges in measure. Now
let Φ(s) = es − s− 1 be the complementary Young function to Ψ, and define Φ2(s) =
exp(s2) − 1, s ≥ 0. Then Φ2 is a Young function, and

lim
t→∞

Φ(kt)

Φ2(t)
= 0 for all k > 0.

Thus, by Theorem 4.1 of the appendix,

ln(vε(·, t) + η) − ln((uη
i )+(·, t) + η) → 0 strongly in LΦ(Ω),

uniformly in t ∈ (0, T )\N . Therefore, as (uη
i )+ + η ∈ L∞(0, T ;LΨ(Ω)), Young’s

inequality (4.2) implies, for t ∈ (0, T )\N ,∫
Ω

((uη
i )+(·, t) + η)

(
ln(vε(·, t) + η) − ln((uη

i )+(·, t) + η)
)
dx

≤ 2‖(uη
i )+(·, t) + η‖LΨ(Ω)‖ ln(vε(·, t) + η) − ln((uη

i )+(·, t) + η)‖LΦ(Ω) → 0.

We conclude that, for almost every t ∈ (0, T ), as ε → 0,∫
Ω

[((uη
i )+ + η) ln(vε + η)]t0dx →

∫
Ω

[((uη
i )+ + η) ln((uη

i )+ + η)]
t
0 dx.

It remains to treat the second term in (3.29). Let (0, t] = ∪K−1
k=0 (tk, tk+1], where

tk ∈ (0, t]\N and tK := t, be a partition of the interval (0, t]. Then we can write the
term as follows:

lim
ε→0

∫
Qt

(uη
i )+ + η

vε + η
∂tv

εdxdt

= lim
ε→0

lim
K→∞

K−1∑
k=0

∫
Ω

(uη
i )+(x, tk) + η

vε(x, tk) + η
(vε(x, tk+1) − vε(x, tk))dx.
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The sequence ((uη
i )+(·, tk) + η)/(vε(·, tk) + η) converges to one weakly* in L∞(Ω) as

ε → 0 and vε(·, tk+1) − vε(·, tk) converges to (uη
i )+(·, tk+1) − −(uη

i )+(·, tk) strongly
in L1(Ω), uniformly in t ∈ (0, T )\N . Hence, we can exchange the limits ε → 0 and
K → ∞ to obtain

lim
ε→0

∫
Qt

(uη
i )+ + η

vε + η
∂tv

εdxdt

= lim
K→∞

lim
ε→0

K−1∑
k=0

∫
Ω

(uη
i )+(x, tk) + η

vε(x, tk) + η
(vε(x, tk+1) − vε(x, tk))dx

= lim
K→∞

K−1∑
k=0

∫
Ω

((uη
i )+(x, tk+1) − (uη

i )+(x, tk))dx

=

∫
Ω

((uη
i )+(x, t) − u0

i (x))dx.

This proves (3.27).
Now we use ϕ = ln(vε + η) as a test function in (3.18) and perform the limit

ε → 0 by employing the above claims (3.27) and (3.28). This implies, after addition
of the two equations for i = 1, 2 and estimating as above,

2∑
i=1

∫
Ω

(
(uη

i )+ + η)(ln(uη
i )+ + η) − 1) + ln η(uη

i )−
)
dx

+

∫
QT

2∑
i=1

(
ci
|∇(uη

i )+|2
(uη

i )+ + η
+ ai|∇(uη

i )+|2
)
dxdt(3.30)

+

∫
QT

uη
1 uη

2

∣∣∇ ln
(
((uη

1)+ + η)((uη
2)+ + η)

)∣∣2 dxdt ≤ C,

where C > 0 depends only on a1, a2, ‖q‖L2(QT ), and ‖u0
i ‖LΨ(Ω). This shows (3.20)–

(3.22).
In the next step, we choose ϕ = wε as a test function in (3.18), where (wε) is a

smooth sequence such that, as ε → 0,

wε → (uη
i )− in L2(0, T ;H1(Ω)) ∩ L∞(0, T ;L2(Ω))(3.31)

and wε = 0 in {uη
i ≥ 0}. Then we have∫ t

0

〈∂t(uη
i )−, w

ε〉dt +

∫
Qt

(ci∇(uη
i )− · ∇wε + 2aiη∇(uη

i )− · ∇wε)dxdt

=

∫
Qt

[
Ri − βi1((u

η
1)+ + η) − βi2((u

η
2)+ + η)

]
ηwεdxdt.(3.32)

We infer from (3.31) that

lim
ε→0

∫ t

0

〈∂t(uη
i )−, w

ε〉dt = lim
ε→0

1

2

∫
Ω

[|wε|2]t0dx + lim
ε→0

∫ t

0

〈∂t((uη
i )− − wε), wε〉dt

=
1

2

∫
Ω

[|(uη
i )−|2]t0dx + lim

ε→0

∫
Ω

[((uη
i )− − wε)wε]t0dx + lim

ε→0

∫
Qt

∂tw
ε((uη

i )− − wε)dxdt

=
1

2

∫
Ω

[|(uη
i )−|2]t0dx
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+ lim
ε→0

lim
K→∞

K−1∑
k=0

∫
Ω

(wε(x, tk+1) − wε(x, tk))((u
η
i )−(x, tk) − wε(x, tk))dx

=
1

2

∫
Ω

[|(uη
i )−|2]t0dx,

where similarly as above (0, t] = ∪K−1
k=0 (tk, tk+1]. The convergence of the other terms

in (3.32) as ε → 0 follows directly from (3.31). This yields

1

2

2∑
i=1

∫
Ω

|(uη
i )−(·, t)|2dx +

2∑
i=1

∫
Qt

(ci|∇(uη
i )−|2 + 2aiη|∇(uη

i )−|2)dxdt

=

2∑
i=1

∫
Qt

[
Ri − βi1((u

η
1)+ + η) − βi2((u

η
2)+ + η)

]
η(uη

i )−dxdt(3.33)

≤ C

2∑
i=1

∫
Qt

(|(uη
i )+|2 + |(uη

i )−|2) + C,

where C > 0 is independent of η. The estimate (3.20) and Gronwall’s inequality then
imply (3.23). Finally, the inequalities (3.24) and (3.25) can be derived similarly as in
the proof of Lemma 3.1.

Lemma 3.4. As η → 0, there exist functions u1, u2 ≥ 0 such that the following
convergences hold (up to subsequences which are not relabeled), for i = 1, 2:

ci∇uη
i ⇀ ci∇ui weakly in (L2(QT ))N ,

2ai((u
η
i )+ + η)∇uη

i ⇀ 2aiui∇ui weakly in (Lr(QT ))N ,

uη
1 uη

2∇ ln((uη
1)+ + η)((uη

2)+ + η) ⇀ ∇(u1u2) weakly in (Lr(QT ))N ,

di(u
η
i )+q ⇀ diuiq weakly in (Lr(QT ))N ,

fi
(
(uη

1)+ + η, (uη
2)+ + η

)
⇀ fi(u1, u2) weakly in Lp/2(QT ),

∂tu
η
i ⇀ ∂tui weakly in Lr(0, T ; (W 1,r′(Ω))′).

Proof. Similar to the discussion in the proof of Lemma 3.2, we conclude that
there exist functions u1 and u2 such that uη

i → ui in Lα(QT ) for all 2 ≤ α < p. The
estimate (3.21) implies

‖(uη
i )−‖L∞(0,T ;L1(Ω)) ≤

C

| ln η| → 0,

from which we obtain ui ≥ 0 in QT , i = 1, 2.

Except for the third convergence, the discussion of the remaining convergence
results are similar to those in the proof of Lemma 3.2. Observe that

uη
1 uη

2∇ ln((uη
1)+ + η) =

1

1 + η(uη
2)+

1

1 + η(uη
1)+

(uη
1)+

(uη
1)+ + η

(uη
2)+∇(uη

1)+.

By similar arguments as above, it holds that
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(uη
2)+∇(uη

1)+ ⇀ u2∇u1 weakly in (Lr(QT ))N .

Taking into account

1

1 + η(uη
2)+

1

1 + η(uη
1)+

(uη
1)+

(uη
1)+ + η

≤ 1,

we infer the desired convergence.

Now, Theorem 1.1 is a consequence of the convergence results of Lemma 3.4
applied to (3.18).

Remark 3.5. Since the estimates in Lemma 3.3 are independent of c1 and c2, we
obtain the existence of a weak solution even in the case c1 = 0 or c2 = 0. Indeed, we
first obtain a weak solution for c1 > 0, c2 > 0, respectively. The a priori estimates of
Lemma 3.3 allow us to perform the limit c1, c2 → 0.

Remark 3.6. All the above estimates are true in any space dimension. The
restriction N ≤ 3 is used only in the proof of Lemma 2.1. As mentioned in Remark
2.3, Lemma 2.1 holds in any space dimension if βij = 0 for all i, j = 1, 2. Therefore,
Theorem 1.1 is true in any space dimension, provided that βij = 0 for all i, j = 1, 2.

4. Appendix. We recall the definition of an Orlicz space and some of its prop-
erties. For details, we refer the reader, e.g., to [1, 14].

A real-valued function Ψ : [0,∞) → R is called a Young function if Ψ(t) =∫ t

0
ψ(s)ds and ψ : [0,∞) → [0,∞) has the following properties:

• ψ(0) = 0, ψ > 0 on (0,∞), ψ(t) → ∞ as t → ∞;
• ψ is nondecreasing and right continuous at any point s ≥ 0.

The function Φ(t) =
∫ t

0
φ(s)ds with φ(s) = supψ(t)≤s t is called the complementary

Young function of Ψ. For instance, Ψ(s) = (1 + s) ln(1 + s)− s and Φ(s) = es − s− 1
are a pair of complementary Young functions.

Let Ψ be a Young function. The Orlicz class KΨ(Ω) is the set of (equivalence
classes of) real-valued measurable functions u on Ω satisfying

∫
Ω

Ψ(|u(x)|)dx < ∞.
Then the Orlicz space LΨ(Ω) is the linear hull of KΨ(Ω) supplemented with the
Luxemburg norm

‖u‖LΨ(Ω) := inf

{
k > 0 :

∫
Ω

Ψ
( |u(x)|

k

)
≤ 1

}
.

With this norm, the Orlicz space LΨ(Ω) is a Banach space.

We need some properties of Orlicz spaces. The first is the inequality [14, sections
3.6.3 and 3.8.5]

‖u‖LΨ(Ω) ≤ 1 +

∫
Ω

Ψ(|u(x)|)dx, u ∈ LΨ.(4.1)

The second property is the Hölder inequality [14, sections 3.8.5 and 3.8.6]: Let Ψ and
Φ be a pair of complementary Young functions and u ∈ LΨ(Ω), v ∈ LΦ(Ω). Then

∣∣∣∣
∫

Ω

uvdx

∣∣∣∣ ≤ 2‖u‖LΨ(Ω)‖v‖LΦ(Ω).(4.2)

Finally, we need the following theorem [1, Thm. 8.22].
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Theorem 4.1. Let Ω ∈ R
N be bounded, and let Φ1 and Φ2 be two Young functions

such that for all k > 0,

lim
t→∞

Φ1(kt)

Φ2(t)
= 0.

Then, any (un) sequence which is bounded in LΦ2
(Ω) and convergent in measure is

convergent in LΦ1
(Ω).

REFERENCES

[1] R. A. Adams, Sobolev Spaces, Academic Press, New York, 1975.
[2] L. Chen and A. Jüngel, work in preparation, 2004.
[3] Y. S. Choi, R. Lui, and Y. Yamada, Existence of global solutions for the Shigesada-Kawasaki-

Teramoto model with weak cross-diffusion, Discrete Contin. Dynam. Systems, 9 (2003),
pp. 1193–1200.

[4] L. Corrias, B. Perthame, and H. Zaag, A chemotaxis model motivated by angiogenesis,
C. R. Acad. Sci. Paris Sér. I Math., 336 (2003), pp. 141–146.
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Abstract. The Gaussian function G(x) = 1√
2π

e−x2/2, which has been a classical choice for

multiscale representation, is the solution of the scaling equation

G(x) =

∫

R

αG(αx− y)dg(y), x ∈ R,

with scale α > 1 and absolutely continuous measure

dg(y) =
1√

2π(α2 − 1)
e−y2/2(α2−1)dy.

It is known that the sequence of normalized B-splines (Bn), where Bn is the solution of the scaling
equation

φ(x) =

n∑

j=0

1

2n−1

(n

j

)
φ(2x− j), x ∈ R,

converges uniformly to G. The classical results on normal approximation of binomial distributions
and the uniform B-splines are studied in the broader context of normal approximation of probability
measures mn, n = 1, 2, . . . , and the corresponding solutions φn of the scaling equations

φn(x) =

∫

R

αφn(αx− y)dmn(y), x ∈ R.

Various forms of convergence are considered and orders of convergence obtained. A class of prob-
ability densities are constructed that converge to the Gaussian function faster than the uniform
B-splines.

Key words. normal approximation, probability measures, scaling functions, uniform B-splines,
asymptotic normality
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1. Introduction. The Gaussian function, G(x) = 1√
2π

e−x2/2, and its derivatives

have been widely used in scale-space representation (see [1], [11], [18]). The uniform
B-spline, Bn, which is the solution of the scaling equation

φ(x) =
n∑

j=0

1

2n−1

(
n

j

)
φ(2x− j), x ∈ R,(1.1)

associated with the binomial distribution 1
2n

(
n
j

)
, j = 0, 1, . . . , n, approximates the

Gaussian and provides fast computational algorithms for practical implementation of
Gaussian scale-space representation (see [15], [16]). The B-spline, Bn, is the proba-
bility density function of the sum of n copies of independent identically distributed
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uniform random variables on the interval [0, 1). It is well known that the binomial
distributions converge to the normal distribution in the sense that

lim
n→∞

[xn]∑
k=0

1

2n

(
n

k

)
=

1√
2π

∫ x

−∞
e−t2/2 dt,(1.2)

where xn =
√
nx/2 + n/2, and it is also known that

lim
n→∞

∫ x′
n

−∞
Bn(t)dt =

1√
2π

∫ x

−∞
e−t2/2 dt,(1.3)

where x′
n :=

√
nx/2

√
3 + n/2. Further, the normalized B-splines converge uniformly

on R to the Gaussian function (see [5] and [13]). In fact, Curry and Schoenberg [5]
considered the more general class of Polya frequency functions as limits of nonuniform
B-splines with arbitrary knots. The Gaussian function satisfies the integral scaling
equation

G(x) =

∫
R

αG(αx− y)dg(y), x ∈ R,

where α > 1 is a scaling constant and g is the absolutely continuous measure given
by

dg(y) =
1√

2π(α2 − 1)
e−y2/2(α2−1)dy.

The Gaussian function and its derivatives and the modulated Gaussian have been
used extensively in many applications such as scale-space analysis and computer vi-
sion (see [1], [11], [18]). The normal approximation of the binomial distributions
and the uniform B-splines enables the binomial coefficients and B-splines to replace
the Gaussian function in the Gaussian scale-space representation and vice versa (see
[11], [15], [16]). The Gaussian function is optimal in time-frequency localization,
amenable to statistical analysis, and provides an accurate model of human vision (see
[18]). While inheriting approximately many of the rich properties of the Gaussian,
the binomial distributions and B-splines have the added advantage of providing fast
algorithms for practical computations.

We shall consider a sequence of scaling equations

φn(x) =

∫
R

αφn(αx− y)dmn(y), x ∈ R, n = 1, 2, . . . ,(1.4)

where α > 1 and (mn) is a sequence of probability measures with finite first and
second moments. It will be shown in the next section that for each n, (1.4) has a
unique solution, which is also a probability measure. We shall call φn the mn-scaling
function and mn its filter. If mn is a discrete measure concentrated on the integers Z

with mass hn(j) at j ∈ Z, then (1.4) becomes the discrete scaling equation

φn(x) =
∑
j∈Z

αhn(j)φn(αx− j), x ∈ R.(1.5)

In particular, if mn is the discrete measure concentrated on the set {0, 1, . . . , n} with
mass 1

2n

(
n
j

)
at j = 0, 1, . . . , n and scale α = 2, then (1.5) reduces to (1.1). The
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object of this paper is to investigate the approximation of the Gaussian function
by probability measures and the corresponding scaling functions in the same way as
the normal approximation by binomial and B-spline distributions and to construct
sequences of distributions that converge to the Gaussian faster than the binomial and
B-spline distributions.

Suppose that (mn) is a sequence of probability measures on R with mean µ(mn) =
µn and standard deviation σ(mn) = σn, and define

m̃n(S) = mn(σnS + µn) for measurable S ⊂ R,

or, equivalently,

̂̃mn(u) = eiuµn/σnm̂n(u/σn), u ∈ R.(1.6)

We say that (mn) is asymptotically normal if for all x ∈ R,

lim
n→∞

∫ x

−∞
dm̃n(t) =

∫ x

−∞
G(t)dt.(1.7)

If mn is absolutely continuous, then by the Radon–Nikodym theorem, dmn(t) =

fn(t)dt for a probability density function fn, and then dm̃n(t) = f̃n(t)dt, where

f̃n(t) = σnfn(σnt + µn).

The central limit theorem tells us that if mn is the probability distribution for the
sum of n independent, identically distributed random variables, then (mn) is asymp-
totically normal. In the case that each such random variable is uniformly distributed
on the interval [0, 1), mn has density function Bn, and the asymptotic normality is
also implied by the convergence of the normalized B-splines discussed earlier. Now
it is well known that asymptotic normality can be stated in terms of convergence of
characteristic functions, i.e., Fourier transforms of the probability density functions.
To be precise, (1.7) is equivalent to

̂̃mn(u) → e−u2/2 locally uniformly on R,(1.8)

where local uniform convergence means convergence that is uniform on compact sub-
sets. This result is given in [7, p. 249], and more modern expositions are given in [10]
and [17].

In section 2, we show that if m is a probability measure on R with finite first
moment, then the solution of the scaling equation

φ(x) =

∫
R

αφ(αx− y)dm(y), x ∈ R,(1.9)

is also a probability measure. In (1.9), and throughout the paper, α is a number larger
than 1, which we call the scale. We remark that if the solution is absolutely contin-
uous, then its probability density satisfies (1.9). If the solution φ is not absolutely
continuous, then it satisfies (1.9) in the weak sense, i.e.,

φ̂(u) = m̂(u/α)φ̂(u/α), u ∈ R.(1.10)

The following result puts in perspective the asymptotic normality exhibited by the
binomial coefficients and the uniform B-splines.
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Theorem 1.1. Let (mn) be a sequence of probability measures on R with finite

first and second moments and ( ̂̃mn
′) be uniformly bounded in a neighborhood of the

origin. Then (mn) is asymptotically normal if and only if the corresponding sequence
of mn-scaling functions is asymptotically normal.

In order to study the asymptotic normality of scaling functions, we need only to
study the asymptotic normality of their filters, because of Theorem 1.1. The binomial
coefficients, which are the filters for the uniform B-splines, define a sequence of discrete
probability measures that is asymptotically normal. It follows from Theorem 1.1 that
the coefficients bn,k in the expansion

(
1 + z + · · · + zα−1

α

)n

=

n(α−1)∑
k=0

bn,kz
k,(1.11)

where the scale α is here an integer, also define a sequence of probability measures
that is asymptotically normal. This is because the uniform B-splines are also the
solution of the scaling equations with measures mn(k) = bn,k, k = 0, 1, . . . , n(α− 1),
for any integer scale α > 1. For such α, the roots of the polynomials on the left of
(1.11) that generate bn,k are the complex αth roots of unity that are not equal to 1.
The next theorem gives a general result that holds for a large class of polynomials
including those with negative roots as well as those in (1.11).

Theorem 1.2. Let γ ∈ [0, π/2), and define Dγ = {z ∈ C : satisfies (1.12)}:∣∣∣∣Im
{

z

(1 + z)2

}∣∣∣∣ ≤ tan γ Re

{
z

(1 + z)2

}
.(1.12)

For n = 1, 2, . . . , take rn,1, . . . , rn,n in Dγ and define

n∑
k=0

an,kz
k =

n∏
j=1

(z + rn,j)/(1 + rn,j).(1.13)

We also assume that the rn,j , n = 1, 2, . . . , j = 1, . . . , n, are bounded away from −1,
that the coefficients an,k, n = 1, 2, . . . , k = 0, . . . n, are real, and that

σ2
n =

n∑
j=1

rn,j/(1 + rn,j)
2 → ∞ as n → ∞.(1.14)

If mn, n = 1, 2, . . . , denote the discrete measures defined by mn({k}) = an,k, k =

0, 1, . . . , n, it follows that ̂̃mn(u) → e−u2/2 locally uniformly as n → ∞. If, in addition,
an,k ≥ 0, k = 0, 1, . . . , n, for all sufficiently large n, then (mn) is asymptotically
normal.

Remark 1. We remark that the first part of Theorem 1.2 does not require mn to
be a probability measure; i.e., some of the coefficients an,k could be negative.

After some preliminary results in the next section, we shall prove Theorem 1.1 in
section 3. A proof of Theorem 1.2 is given in section 4. We note that a special case
of this result, when all rn,j > 0, was proved earlier using probabilistic techniques [3].
The completely different analytic techniques, which we employ here, give considerably
more general results. These techniques also allow us to analyze, in the remainder of
section 4, the order of convergence in the frequency domain for both the measures mn

and the corresponding scaling functions. In particular we shall prove the following
theorem.
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Theorem 1.3. We assume the conditions of Theorem 1.2 and that an,k ≥ 0,
k = 0, 1, . . . , n.

(a) Then ∣∣∣∣
∣∣∣∣̂̃φn − e−(·)2/2

∣∣∣∣
∣∣∣∣
∞

= O(σ−1
n ).

(b) If
∑n

k=0 an,kz
k is a reciprocal polynomial, i.e., an,0 �= 0 and an,k = an,n−k,

k = 0, 1, . . . , n, then ∣∣∣∣
∣∣∣∣̂̃φn − e−(·)2/2

∣∣∣∣
∣∣∣∣
∞

= O(σ−2
n ).

(c) If, in addition to the condition in (b),

σ−1
n

n∑
j=1

rn,j(r
2
n,j − 4rn,j + 1)/(1 + rn,j)

4 is bounded,(1.15)

then ∣∣∣∣
∣∣∣∣̂̃φn − e−(·)2/2

∣∣∣∣
∣∣∣∣
∞

= O(σ−3
n ).

Asymptotic normality entails weak convergence in the time domain. We show in
section 5 that, under mild conditions on the shape of the filters and the scaling func-
tions, both the measures and the corresponding scaling functions converge uniformly
in the time domain. The shape conditions are satisfied if rn,j are restricted to certain
sectors of the complex plane, reminiscent of total positivity. It is noted that for a
special case of the choice, when all rn,j > 0, Chui and Wang [4] consider convergence
of the scaling functions. However, their approach is different, and they do not consider
the related convergence of the measures mn. Finally, in the same section, we consider
the order of convergence in the time domain and prove the following results.

Theorem 1.4. We assume the conditions of Theorem 1.2 and that all rn,j lie in
the sector | arg z| ≤ π

3 . Then as n → ∞,

max
k=0,...,n

∣∣∣∣σnan,k −G

(
k − µn

σn

)∣∣∣∣ = O(σ
− 1

2
n ),

and if
∑n

k=0 an,kz
k is reciprocal,

max
k=0,...,n

∣∣∣∣σnan,k −G

(
k − µn

σn

)∣∣∣∣ = O(σ
− 2

3
n ).

We remark that in [3], this problem is considered, using probabilistic techniques,
for the special case when an,0, . . . , an,n are the Eulerian numbers. In this case σn =√
π(n + 1)/6. Thus our result gives order of convergence O(σ

− 2
3

n ) = O(n− 1
3 ), while

[3] shows only convergence O(n− 1
4 ).

Theorem 1.5. We assume the conditions of Theorem 1.2, that rn,j include 1 and
all Re(rn,j) ≥ 0. For n = 1, 2, . . . , let φn denote the scaling function corresponding to
the measure mn({k}) = an,k, k = 0, 1, . . . , n, with scale 2, and define

φ̃n(x) = σ(φn)φn(σ(φn)x + µ(φn)), x ∈ R.
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Then

‖φ̃n −G‖∞ = O(σ
− 1

2
n ).

If
∑n

n=0 an,kz
k is reciprocal for large enough n, then

‖φ̃n −G‖∞ = O(σ−1
n ).

If, in addition, (1.15) is satisfied, then

‖φ̃n −G‖∞ = O(σ
− 3

2
n ).

It is noted that certain sequences of scaling functions give a faster rate of conver-
gence to the Gaussian than the uniform B-splines. Also on considering Theorems 1.3
and 1.5, it might be expected that the second part of Theorem 1.4 should give order

of convergence O(σ−1
n ) instead of O(σ

−2/3
n ) and that under the additional condition

(1.15) we should obtain order O(σ
−3/2
n ). We have been unable to prove orders bet-

ter than O(σ
−2/3
n ) due to a technical restriction in Lemma 5.4, and we do not know

whether this restriction can be removed.

2. Probability measures and scaling equations. Consider the scaling equa-
tion (1.9) where m is a probability measure and, as before, α is a number (not nec-
essarily an integer) satisfying α > 1. We shall show that (1.9) has a unique solution,
which is a probability measure. Further, if m has finite first and second moments,
then the solution of (1.9) also has finite first and second moments. Equation (1.10)

suggests that, when φ̂(0) = 1, φ̂(u) is given by the infinite product (2.1) below but
with n replaced by ∞. We remark that products of the form (2.1) occur in the study
of groups of transformations in Hilbert space (see, for example, [6, section 38]). For
the case when φ is the B-spline Bn and α = 2, this reduces to the classical formula
of Viète:

sinx/x =

∞∏
j=1

cos(x/2j).

So as a preliminary result we need to consider the convergence of (2.1) in Lemma 2.1
below.

Lemma 2.1. Suppose that m is a probability measure with finite first moment.
Then the products

n∏
j=1

m̂(u/αj), u ∈ R,(2.1)

converge locally uniformly as n → ∞.
Proof. Since m is a probability measure, |m̂(u)| ≤ 1 for all u ∈ R. Then for every

nonnegative integer n and all u,∣∣∣∣∣∣
n∏

j=1

m̂(u/αj)

∣∣∣∣∣∣ ≤ 1 for all u ∈ R.

Also, since m has finite first moment, m̂′ is bounded, and so∣∣m̂(u/αj) − 1
∣∣ ≤ C|u|/αj , j = 1, 2, . . . ,
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for a constant C > 0. Thus for integers n > �,∣∣∣∣∣∣
�∏

j=1

m̂(u/αj) −
n∏

j=1

m̂(u/αj)

∣∣∣∣∣∣ ≤
n−�∑
j=1

|1 − m̂(u/α�+j)|

≤ C|u|(α−� − α−n)/(α− 1),

which tends to zero uniformly on compact subsets of R as �, n → ∞. Therefore, the
product

∏n
j=1 m̂(u/αj) converges uniformly on compact sets as n → ∞.

Proposition 2.2. If m is a probability measure with finite first and second
moments, then the scaling equation (1.9) has a unique solution φ, which is also a
probability measure with finite first and second moments. Further,

µ(φ) = (α− 1)−1µ(m) and σ(φ)2 = (α2 − 1)−1σ(m)2.(2.2)

Proof. Choose a nonnegative initial function f0 ∈ C(R) with compact support

and f̂0(0) = 1, and for n = 1, 2, . . . define

fn(x) =

∫
R

αfn−1(αx− y)dm(y), x ∈ R.(2.3)

Then

f̂n(u) = f̂n−1(u/α)m̂(u/α) =

n∏
j=1

m̂(u/αj)f̂0(u/α
n), u ∈ R.(2.4)

Further, fn is nonnegative, and f̂n(0) = 1 for n = 0, 1, . . . . Therefore, fn defines a
sequence of probability measures µn ∈ C0(R)∗, where dµn(x) = fn(x)dx and C0(R)∗ is
the dual of the space C0(R) of continuous functions that vanish at infinity. Therefore,

µ̂n = f̂n, n = 0, 1, . . . . Since the unit ball in C0(R)∗ is weak* compact, there exist a
subsequence µn�

and a probability measure φ on R such that µn�
→ φ as � → ∞ in

the weak* topology. It follows (see [7, p. 249]) that µ̂n�
converges locally uniformly

to φ̂ as n → ∞. By Lemma 2.1 and (2.4),

φ̂(u) =
∞∏
j=1

m̂(u/αj), u ∈ R,

which satisfies (1.10).
Define

Πn(u) :=

n∏
j=1

m̂(u/αj), u ∈ R.(2.5)

Then

Πn(u) → φ̂(u) locally uniformly on R,(2.6)

where φ is the solution of (1.9). We shall show that Πn
′ converges uniformly in a

neighborhood of the origin. Since m̂(0) = 1, there exists a closed disc D centered at
the origin such that m̂(u) �= 0 for all u ∈ D. Differentiating (2.5) gives

Πn
′(u) =

n∏
j=1

m̂(u/αj)

n∑
j=1

1

αj

m̂ ′(u/αj)

m̂(u/αj)
,(2.7)
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which shows that Πn
′ is uniformly convergent on D. It follows that φ̂ ′ exists and Πn

′

converges uniformly to φ̂ ′ on D. Hence φ̂ ′ is continuous on D, and

φ̂ ′(0) = (α− 1)−1m̂ ′(0).(2.8)

Differentiating (2.7) gives

Πn
′′(u) =

n∏
j=1

m̂(u/αj)

⎛
⎝ n∑

j=1

1

αj

m̂ ′(u/αj)

m̂(u/αj)

⎞
⎠

2

(2.9)

+

n∏
j=1

m̂(u/αj)

n∑
j=1

1

α2j

m̂ ′′(u/αj)m̂(u/αj) − m̂ ′(u/αj)2

m̂(u/αj)2
,

which shows that Πn
′′ is uniformly convergent on D. Thus φ̂ ′′ exists and is continuous

on D. A straightforward computation using (2.9) leads to

φ̂ ′′(0) =
1

(α2 − 1)

{
m̂ ′′(0) +

2m̂ ′(0)2

(α− 1)

}
.(2.10)

It follows that φ has finite first and second moments, and the relationships (2.2) follow
from (2.8) and (2.10).

3. Proof of Theorem 1.1. We shall prove a slightly stronger result than that
of Theorem 1.1. This result is contained in Theorem 3.1.

Theorem 3.1. Let (mn) be a sequence of probability measures on R with finite

first and second moments, and ( ̂̃mn
′) is uniformly bounded in a neighborhood of 0.

Then the following are equivalent:

(a) ̂̃mn(u) → e−u2/2 locally uniformly on R as n → ∞.

(b)
̂̃
φn(u) → e−u2/2 locally uniformly on R as n → ∞.

(c) (mn) is asymptotically normal.
(d) (φn) is asymptotically normal.

Further, if (a) holds locally uniformly on R, then (b) holds uniformly on R.

Proof. By Proposition 2.2, for each n = 0, 1, . . . , (1.4) has a unique solution φn,
which is also a probability measure with finite first and second order moments, and

µ(mn) = (α− 1)µ(φn) and σ(mn)2 = (α2 − 1)σ(φn)2.(3.1)

By (1.6), (1.10), and (3.1),

̂̃
φn(u) = ̂̃mn(α−1

√
α2 − 1 u)

̂̃
φn(α−1u), u ∈ R.(3.2)

Iterating (3.2) leads to

̂̃
φn(u) =

∞∏
j=1

̂̃mn(α−j
√
α2 − 1 u), u ∈ R,(3.3)

where the infinite product on the right converges locally uniformly on R and uniformly

in n, since ( ̂̃mn
′) is uniformly bounded in a neighborhood of 0.
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If (a) holds, then by (3.3) we have

lim
n→∞

̂̃
φn(u) = lim

n→∞

∞∏
j=1

̂̃mn(α−j
√
α2 − 1 u)

=

∞∏
j=1

e−(α2−1)u2/2α2j

= e−u2/2, u ∈ R.

Conversely, if limn→∞
̂̃
φn(u) = e−u2/2, then by (3.2)

̂̃mn(u) =
̂̃
φn(α u/

√
α2 − 1)̂̃

φn(u/
√
α2 − 1)

, u ∈ R,

for sufficiently large n. It follows that

lim
n→∞

̂̃mn(u) =
e−α2u2/2(α2−1)

e−u2/2(α2−1)
= e−u2/2, u ∈ R.

A similar argument shows that (a) holds locally uniformly on R if and only if (b)
holds locally uniformly on R.

Now suppose that (a) holds uniformly on compact subsets of R. Note that for any
u ∈ R and n ≥ 1,

| ̂̃mn(u)| =

∣∣∣∣
∫ −∞

−∞
e−iuxdmn(x)

∣∣∣∣ ≤
∫ −∞

−∞
dmn(x) = 1.

So for any k ≥ 1, ∣∣∣∣̂̃φn(u)

∣∣∣∣ =

∞∏
j=1

∣∣∣∣ ̂̃mn(α−j
√
α2 − 1 u)

∣∣∣∣
≤

∞∏
j=k+1

∣∣∣∣ ̂̃mn(α−j
√
α2 − 1 u)

∣∣∣∣
=

∣∣∣∣̂̃φn(α−k u)

∣∣∣∣, u ∈ R.(3.4)

For any ε > 0, we choose A > 0 and integer N so that e−A2/2 < ε and∣∣∣∣̂̃φn(u) − e−u2/2

∣∣∣∣ < ε, |u| ≤ αA, n > N.

Take any u with |u| > A. Then there is a nonnegative integer k such that A <
α−k|u| ≤ αA, and so

e−(α−ku)2/2 < e−A2/2 < ε.

Also for n > N, |̂̃φn(α−ku) − e−(α−ku)2/2| < ε, and so∣∣∣∣̂̃φn(u)

∣∣∣∣ ≤
∣∣∣∣̂̃φn(α−k u)

∣∣∣∣ < 2ε.
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Since e−u2/2 < e−A2/2 < ε, it follows that |̂̃φn(u) − e−u2/2| < 3ε. Thus for all n > N

and u ∈ R, |̂̃φn(u) − e−u2/2| < 3ε, and hence (b) holds uniformly on R.
Recall that the asymptotic normality of a sequence of distribution functions is

equivalent to the local uniform convergence of their characteristic functions (see, for
instance, [7, p. 249]).

We remark that if (mn) is a sequence of discrete probability measures on Z with

finite first and second moments, then the condition that ( ̂̃mn
′) be uniformly bounded

in a neighborhood of 0 is automatically satisfied. The following lemma gives a slightly
stronger result.

Lemma 3.2. If (mn) is a sequence of discrete probability measures on Z with

finite first and second moments, then ( ̂̃mn
′) is uniformly bounded on any compact

subset of R.
Proof. Let mn({k}) = bn,k ≥ 0, n = 1, 2, . . . , k ∈ Z, where

∑∞
k=−∞ bn,k = 1. As

before, we write

µn :=

∞∑
k=−∞

kbn,k and σ2
n :=

∞∑
k=−∞

(k − µn)2bn,k.

Then

̂̃mn(u) =

∞∑
k=−∞

bn,ke
i(µn−k)u/σn ,

and so

̂̃mn
′(u) =

i

σn

∞∑
k=−∞

bn,k(µn − k)ei(µn−k)u/σn

=
i

σn

∞∑
k=−∞

bn,k(µn − k)(ei(µn−k)u/σn − 1).

Since |eiu − 1| ≤ 2|u| for all u ∈ R,

∣∣∣∣ ̂̃mn
′(u)

∣∣∣∣ ≤ 2|u|
σ2
n

∞∑
k=−∞

(k − µn)2bn,k = 2|u|.

Corollary 3.3. Let (mn) be a sequence of discrete probability measures on Z

with finite first and second moments. Then (mn) is asymptotically normal if and only
if the corresponding sequence of mn-scaling functions with scale α is asymptotically
normal.

4. Convergence in the frequency domain. In order to apply Theorem 1.1
to study the asymptotic normality of scaling functions, we need first to study the
asymptotic normality of their filters. We begin with a proof of Theorem 1.2.
Proof of Theorem 1.2. Let

n∑
k=0

an,kz
k =

n∏
j=1

(pn,jz + qn,j),(4.1)
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where qn,j = 1 − pn,j . Then

m̂n(u) =

n∏
j=1

(pn,je
−iu + qn,j)

and

̂̃mn(u) = eiuµn/σn

n∏
j=1

(pn,je
−iu/σn + qn,j),

where

µn = µ(mn) =

n∑
j=1

pn,j ,(4.2)

and

σ2
n = σ(mn)2 =

n∑
j=1

pn,jqn,j .(4.3)

Therefore,

log ̂̃mn(u) =
iuµn

σn
+

n∑
j=1

F

(
pn,j ,

−iu

σn

)
,(4.4)

where

F (p, t) = log(pet + q), q = 1 − p.

By induction, for n = 2, 3, . . . ,

F (n)(p, t) :=
∂n

∂tn
F (p, t) = (pet + q)−npq

n−2∑
j=0

(−1)jcn(j)pjqn−2−je(j+1)t,(4.5)

where c2(j) = δ0(j), j ∈ Z, and for n = 2, 3, . . . , cn satisfies the recursive relation

cn+1(j) = (j + 1)cn(j) + (n− j)cn(j − 1), j ∈ Z.(4.6)

From (4.6) we have
∑∞

j=−∞ cn+1(j) = n
∑∞

j=−∞ cn(j), and since
∑∞

j=−∞ c2(j) = 1,
we have

∞∑
j=−∞

cn(j) = (n− 1)!, n = 2, 3. . . . .(4.7)

By (4.5) the Taylor series of F (p, t) is given by

F (p, t) =
∞∑
ν=0

aν(p)t
ν ,(4.8)

where

a0(p) = 0, a1(p) = p, a2(p) =
1

2
pq,(4.9)
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and for ν = 3, 4, . . . ,

aν(p) =
pq

ν!

ν−2∑
k=0

(−1)kcν(k)pkqν−2−k.(4.10)

By (4.4) and (4.8),

log ̂̃mn(u) =
iuµn

σn
+

n∑
j=1

∞∑
ν=0

aν(pn,j)σ
−ν
n (−iu)ν .(4.11)

By (4.2), (4.3), and (4.9),

n∑
j=1

a1(pn,j)σ
−1
n (−iu) = − iuµn

σn
,

n∑
j=1

a2(pn,j)σ
−2
n (−iu)2 = −u2

2
,

so that (4.11) becomes

log ̂̃mn(u) = −u2

2
+

∞∑
ν=3

σ−ν
n (−iu)ν

n∑
j=1

aν(pn,j).(4.12)

Now rn,j ∈ Dγ if and only if∣∣∣∣Im
{

rn,j
(1 + rn,j)2

}∣∣∣∣ ≤ tanγ Re

{
rn,j

(1 + rn,j)2

}
or

|Im (pn,jqn,j)| ≤ tanγ Re (pn,jqn,j) .

Therefore,

|pn,jqn,j | ≤ secγ Re (pn,jqn,j) .(4.13)

On the other hand, rn,j being bounded away from −1 is equivalent to

|pn,j | ≤ A− 1, n = 1, 2, . . . , j = 1, 2, . . . , n,(4.14)

for some constant A. By (4.10), (4.13), and (4.14),

|aν(pn,j)| ≤
|pn,jqn,j |

ν!

ν−2∑
k=0

cν(k)|pn,j |k|qn,j |ν−2−k

≤ sec γ Re(pn,jqn,j)A
ν−2/ν.(4.15)

By (4.12) and (4.15),∣∣∣∣log ̂̃mn(u) +
u2

2

∣∣∣∣ ≤ sec γ
∞∑
ν=3

σ−ν
n |u|ν
ν

n∑
j=1

Re(pn,jqn,j)A
ν−2

≤ sec γ

∞∑
ν=3

|u|ν
ν

(
A

σn

)ν−2

≤ sec γ
A|u|3
σn

(
1 − A|u|

σn

)−1

(4.16)
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whenever A|u| < σn. Since σn → ∞ as n → ∞, taking the limits as n → ∞, (4.16)

gives limn→∞ ̂̃mn(u) = e−u2/2 locally uniformly.
Recall that the region Dγ in Theorem 1.2 comprises all z ∈ C satisfying∣∣∣∣Im

{
z

(1 + z)2

}∣∣∣∣ ≤ tan γ Re

{
z

(1 + z)2

}
.

It can be seen that Dγ contains the sector | arg z| ≤ γ, and for z = ±reiθ, r > 0,
γ ≤ θ ≤ π, (1.12) is equivalent to

sin( θ−γ
2 )

sin( θ+γ
2 )

≤ r ≤
sin( θ+γ

2 )

sin( θ−γ
2 )

.

In particular Dγ contains the unit circle r = 1.
For the special case of Theorem 1.2, when all rn,j > 0, the result was proved using

probabilistic methods in [3] and [12]. Our analytic techniques allow us not only to
prove asymptotic normality for a much larger class of measures but also, in the next
result, to give information on the order of convergence in the frequency domain.

Proposition 4.1. We assume the conditions of Theorem 1.2 (except that we do
not require an,k ≥ 0, k = 0, 1, . . . , n). As before,

σ2
n =

n∑
j=1

rn,j
(1 + rn,j)2

.

Then there is a constant K > 0 so that for Sn := {u : |u| ≤ Kσn} the following hold.
(a) There is a constant B such that∣∣∣∣ ̂̃mn(u) − e−u2/2

∣∣∣∣ ≤ Bσ−1
n , u ∈ Sn, n = 1, 2, . . . .(4.17)

(b) If
∑n

k=0 an,kz
k is a reciprocal polynomial, then there is a constant C such

that ∣∣∣∣ ̂̃mn(u) − e−u2/2

∣∣∣∣ ≤ Cσ−2
n , u ∈ Sn, n = 1, 2, . . . .(4.18)

(c) Finally, if in addition to the condition in (b), (1.15) is satisfied, then there is
a constant D such that∣∣∣∣ ̂̃mn(u) − e−u2/2

∣∣∣∣ ≤ Dσ−3
n , u ∈ Sn, n = 1, 2, . . . .(4.19)

Proof. (a) From (4.16) we see that for |u| ≤ 1
4A

−1 cos γ σn,

log ̂̃mn(u) +
u2

2
≤ sec γ

4A|u|3
3σn

≤ 1

3
u2,

and so log ̂̃mn(u) ≤ −1
6u

2. By the mean value theorem,∣∣∣∣ ̂̃mn(u) − e−u2/2

∣∣∣∣ ≤ e−u2/6

∣∣∣∣ log ̂̃mn(u) +
u2

2

∣∣∣∣
≤ sec γ

(
4A|u|3
3σn

)
e−u2/6

≤ Bσ−1
n
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for a constant B, which gives (4.17).
(b) We note from (4.6) and (4.10) that

a3(p) =
pq

3!
(q − p),(4.20)

a4(p) =
pq

4!
(q2 − 4pq + p2).(4.21)

Suppose that Pn(z) =
∑n

k=0 an,kz
k is a reciprocal polynomial. Then Pn(z) = 0 if and

only if Pn(z−1) = 0. Noting that if rn,j = r−1
n,k, then pn,j = qn,k and qn,j = pn,k, it

follows that

n∑
j=1

a3(pn,j) = 0.(4.22)

So from (4.12) and (4.15),∣∣∣∣ log ̂̃mn(u) +
u2

2

∣∣∣∣ ≤ sec γ
A2|u|4
σ2
n

(
1 − A|u|

σn

)−1

whenever A|u| < σn. Then (4.18) follows in a similar manner as before.

(c) Finally, we assume (1.15). Then (4.12), (4.21), (4.22), and (4.15) give
(4.19).

We note that r2 − 4r + 1 = 0 when r = 2 ±
√

3, and so (1.15) requires that in
some sense the roots of Pn(z) :=

∑n
k=0 an,kz

k are close to −2 ±
√

3. In particular,
(1.15) will be satisfied if

Pn(z) = Q�n(z)(z2 + 4z + 1)kn ,

where Q�n is a reciprocal polynomial of degree �n = n− 2kn and n−1/2�n is bounded
over n. In this case (4.19) takes the form∣∣∣ ̂̃mn(u) − e−u2/2

∣∣∣ ≤ Cn−3/2, u ∈ Sn, n = 1, 2, . . . .

We now consider the order of convergence of the normalized mn-scaling functions
φ̃n as in Theorem 1.1, again in the frequency domain. From (3.3) it follows as in (4.4)
that

log
̂̃
φn(u) =

iuµn

σn
+

∞∑
j=1

n∑
k=1

F

(
pn,k,−

iu

αjσn

)

and as in (4.12) that

log
̂̃
φn(u) = −u2

2
+

∞∑
ν=3

(−iu)ν

(α2 − 1)σν
n

n∑
j=1

aν(pn,j).

So as in (4.16) there is a constant A with∣∣∣∣log
̂̃
φn(u) +

u2

2

∣∣∣∣ ≤ A|u|3
σn

(
1 − A|u|

σn

)−1
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whenever A|u| < σn. By the mean value theorem, for A|u| < 1
2σn,∣∣∣∣̂̃φn(u) − e−u2/2

∣∣∣∣ ≤
{
e−u2/2 +

∣∣∣∣̂̃φ(u) − e−u2/2

∣∣∣∣
}

2A|u|3
σn

,

and so ∣∣∣∣̂̃φ(u) − e−u2/2

∣∣∣∣ ≤ e−u2/2 2A|u|3
σn

(
1 − 2A|u|3

σn

)−1

≤ e−u2/2 4A|u|3
σn

≤ Bσ−1
n

if |u|3 < σn/4A for some constant B.
Similarly, if Pn is a reciprocal polynomial, then as in the derivation of (4.18),

there are constants A,B > 0 such that∣∣∣∣̂̃φn(u) − e−u2/2

∣∣∣∣ ≤ Bσ−2
n

whenever |u| < Aσ
1/2
n . Finally, if (1.15) is satisfied, then there are constants A,B > 0

with ∣∣∣∣̂̃φn(u) − e−u2/2

∣∣∣∣ ≤ Bσ−3
n

whenever |u| < Aσ
3/5
n .

To extend these estimates to all of R we need the following result.
Lemma 4.2. Suppose that mn is a probability measure, n = 1, 2, . . . , and there

is a sequence (βn) with limβn = 0 so that∣∣∣∣̂̃φn(u) − e−u2/2

∣∣∣∣ < βn

whenever |u| ≤ A| log βn| for some A > 0. Then

limn→∞ β−1
n ‖̂̃φn − e−(·)2/2‖∞ ≤ 1.

Proof. Take 0 < ε < 1. Choose n large enough so that

2| log(βnε)| < α−2A2 | log βn|2.

Take any u in R with |u| > A| log βn|. Then for some integer k ≥ 1,

α−1A| log βn| < α−k|u| ≤ A| log βn|.

Putting v = α−k|u|, we have

v2 > α−2A2| log βn|2 > 2| log(βnε)|,

and so

e−v2/2 < βnε.
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Since |̂̃φn(v) − e−v2/2| < βn, recalling (3.4) gives∣∣∣∣̂̃φn(u)

∣∣∣∣ ≤
∣∣∣∣̂̃φ(v)

∣∣∣∣ < βn(1 + ε).

Also e−u2/2 < e−v2/2 < βnε, and so∣∣∣∣̂̃φn(u) − e−u2/2

∣∣∣∣ < βn(1 + 2ε).

For any u with |u| ≤ A| log βn| we have |̂̃φn(u) − e−u2/2| < βn, and thus ‖̂̃φn −
e−(·)2/2‖∞ ≤ βn(1 + 2ε) for all u ∈ R. The result follows.

Proof of Theorem 1.3. Theorem 1.3 follows from Lemma 4.2 and the preceding
discussions.

5. Convergence in the time domain. From Theorems 1.1 and 1.2 we can
deduce the convergence of m̃n and φ̃n to the Gaussian function G in the time do-
main only in the weak sense of (1.7). In this section we shall show that under mild

assumptions on (rn,j) in Theorem 1.2, both m̃n and φ̃n have a “nice” shape, which
ensures that the convergence is uniform. We consider two possibilities for the shape.
For a continuous function ψ, we say ψ is bell-shaped if ψ ≥ 0, limx→±∞ ψ(x) = 0, and
there are two points α < β such that ψ is convex on (−∞, α] and [β,∞) and concave
on [α, β]. We say that ψ is logconcave if it is supported on a closed interval, ψ > 0,
and logψ is concave on its interior. Neither of these properties implies the other. We
note that in both cases there is a point γ such that ψ is increasing on (−∞, γ] and
decreasing on [γ,∞). We also note that logconcavity is equivalent to total positivity
of order 2, which says that for any x1 < x2 and y1 < y2,∣∣∣∣ ψ(x1 − y1) ψ(x1 − y2)

ψ(x2 − y1) ψ(x2 − y2)

∣∣∣∣ ≥ 0.

The following lemma shows that for a sequence of bell-shaped or logconcave functions,
asymptotic normality implies uniform convergence. The result was stated in [5] for
the case of logconcave functions, but no proof was given.

Lemma 5.1. Suppose that (gn) is a sequence of continuous functions with
∫∞
−∞ gn =

1, which are either bell-shaped or logconcave, and for each x ∈ R,

lim
n→∞

∫ x

−∞
gn =

∫ x

−∞
G.(5.1)

Then gn converges to G uniformly on R.
Proof. By (5.1), for any interval I ⊂ R,

lim
n→∞

∫
I

gn =

∫
I

G.(5.2)

Take ε > 0. Then

lim
n→∞

∫ −ε

−3ε

gn =

∫ −ε

−3ε

G, lim
n→∞

∫ ε

−ε

gn =

∫ ε

−ε

G.

Since
∫ −ε

−3ε
G <

∫ ε

−ε
G, we have

∫ −ε

−3ε
gn <

∫ ε

−ε
G for large enough n. Similarly, for large

enough n,
∫ 3ε

ε
gn <

∫ ε

−ε
G. So for large enough n, there are points −3ε < an < −ε <
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bn < ε < cn < 3ε with gn(an) < gn(bn) > gn(cn). For any such n, maxx∈R gn(x)
occurs only for x ∈ (−3ε, 3ε). For if maxx∈R gn(x) = gn(α) for α ≤ −3ε, then
gn(α) > gn(an) < gn(bn) > gn(cn), which contradicts the shape of gn. Similarly,
maxx∈R gn(x) cannot occur for x ≥ 3ε.

Again take ε > 0. Choose δ > 0 such that |G(x)−G(y)| < ε whenever |x− y| < δ.

Take a function B ≥ 0 with support in [0, δ],
∫ δ

0
B = 1, and ||B̂||1 < ∞. Then

lim
n→∞

∫ ∞

−∞
B(x− a)gn(x)dx =

∫ ∞

−∞
B(x− a)G(x)dx

uniformly in a ∈ R. To see this, choose A > 0 so that
∫
|u|>A

|B̂(u)|du < ε, and choose

N so that

|ĝn(u) − Ĝ(u)| < ε for all n > N, u ∈ [−A,A].

Then for all n > N,∣∣∣∣
∫ ∞

−∞
B(x− a)gn(x)dx−

∫ ∞

−∞
B(x− a)G(x)dx

∣∣∣∣
=

∣∣∣∣
∫ ∞

−∞
e−iauB̂(u)ĝn(u)du−

∫ ∞

−∞
e−iauB̂(u)Ĝ(u)du

∣∣∣∣
≤

∫
|u|>A

|B̂(u)| |ĝn(u)|du +

∫ A

−A

|ĝn(u) − Ĝ(u)| |B̂(u)|du

+

∫
|x|>A

|B̂(u)| |Ĝ(u)|du < ε(2 + ||B̂||1),

on noting that |ĝn(u)| ≤
∫∞
−∞ gn(u)du = 1.

Take z < 0. Choose N so that for all n > N, gn is increasing on (−∞, z] and∣∣∣∣
∫ ∞

−∞
B(x− a)gn(x)dx−

∫ ∞

−∞
B(x− a)G(x)dx

∣∣∣∣ < ε

for all a ∈ R. For y ≤ z, n > N ,∫ ∞

−∞
B(x− y + δ)gn(x)dx =

∫ y

y−δ

B(x− y + δ)gn(x)dx

≤
∫ y

y−δ

B(x− y + δ)gn(y)dx

= gn(y)

∫ ∞

−∞
B = gn(y).

Also for n > N,∫ ∞

−∞
B(x− y + δ)gn(x)dx >

∫ ∞

−∞
B(x− y + δ)G(x)dx− ε

>

∫ ∞

−∞
B(x− y + δ)G(y)dx− 2ε

= G(y) − 2ε.
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Thus gn(y) > G(y)−2ε for all n > N. Similarly, for y+δ ≤ z, gn(y) < G(y)+2ε for all
n > N. Thus gn converges to G uniformly on (−∞, z − δ]. A similar argument holds
for z > 0, and so gn converges to G uniformly outside any open interval containing 0.

Once again take ε > 0 and choose δ > 0 so that |G(x)−G(y)| < ε
2 for |x−y| ≤ 2δ.

Choose N so that for n > N , |gn(x)−G(x)| < ε
2 for all |x| ≥ δ, and max gn(x) occurs

only for x in (−δ, δ). Take any n > N and x in (−δ, δ). Then either gn(x) ≥ gn(−δ)
or gn(x) ≥ gn(δ). Now gn(δ) > G(δ)− ε

2 > G(x)− ε and similarly gn(−δ) > G(x)− ε.
Thus gn(x) > G(x) − ε. So we have shown that for any ε > 0, there exists an integer
N such that for all n > N and all x ∈ R, gn(x) > G(x) − ε.

Now suppose that gn does not converge uniformly to G on R. Then there is a
number k > 0 and a sequence (xn) with limxn = 0 so that for arbitrarily large n,

gn(xn) > G(xn) + k and log gn(xn) > logG(xn) + k.(5.3)

Choose points 0 < a < a+ h < a+ 2h < 1. Then 2G(a+ h) > G(a) +G(a+ 2h) and
2G(−a− h) > G(−a) + G(−a− 2h). So for large enough n,

2gn(a + h) > gn(a) + gn(a + 2h),(5.4)

2gn(−a− h) > gn(−a) + gn(−a− 2h).(5.5)

Next choose 0 < 2δ < a so that |G(x) −G(y)| < k/3 whenever |x− y| ≤ δ. For large
enough n, xn + 2δ < a and xn + δ/2 > 0. Since gn → G uniformly on [δ/2,∞) and
|G(xn + δ) −G(xn + 2δ)| < k/3, we have for large enough n,

|gn(xn + δ) − gn(xn + 2δ)| < k

2
.(5.6)

Also we have G(xn + δ) < G(xn) + k/3, and so for large enough n,

gn(xn + δ) < G(xn) +
k

2
.(5.7)

Hence for large enough n, by (5.6) and (5.7),

2gn(xn + δ) < gn(xn + 2δ) + G(xn) + k.

Therefore, by (5.3), we see that for arbitrarily large n,

2gn(xn + δ) < gn(xn) + gn(xn + 2δ).(5.8)

Now suppose gn is bell-shaped. Choose n so that xn > −a, xn + 2δ < a, and
(5.4), (5.5), and (5.8) are satisfied. Let α, β be such that gn is convex on (−∞, α] and
[β,∞) and concave on [α, β]. By (5.4) and (5.5), β > a and α < −a. So gn is concave
on [−a, a], which contradicts (5.8).

Next suppose that gn is logconcave. A similar (but simpler) argument to that
above shows that (5.8) can be replaced by

2 log gn(x + δ) < log gn(xn) + log gn(xn + 2δ),

which again gives a contradiction.
We remark that the uniform convergence of gn to G on R and the condition∫∞

−∞ gn = 1 =
∫∞
−∞ G imply that gn → G in Lp(R) as n → ∞ for all p, 1 ≤ p ≤

∞. Since convergence in L1(R) implies (5.1), the converse of Lemma 5.1 also holds.
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From Lemma 5.1 we now derive the uniform convergence of m̃n to G under an extra
condition on the numbers (rn,j) as in Theorem 1.4.

Theorem 5.2. We assume the conditions of Theorem 1.4. Then

lim
n→∞

{
σnan,k −G

(
k − µn

σn

)}
= 0(5.9)

uniformly over k in Z.
Proof. Since all rn,j lie in the sector | arg z| ≤ π

3 , it follows that the matrix (an,i−j)
is totally positive of order 2. Hence an,k ≥ 0 and

a2
n,k ≥ an,k−1an,k+1, k = 1, . . . , n− 1, n = 1, 2, . . . .(5.10)

For n = 1, 2, . . . , we define ψn as follows. Without loss of generality we may
assume an,0an,n �= 0, and it follows from (5.10) that an,k > 0, k = 0, . . . , n. We
define ψn on [−µn/σn, (n− µn)/σn] to be the piecewise linear function with knots
(j − µn)/σn, j = 0, . . . , n, satisfying

ψn

(
j − µn

σn

)
= log(σnan,j), j = 0, 1, . . . , n.

From (5.10), ψn is concave on [−µn/σn, (n− µn)/σn] . We now extend ψn to a con-
tinuous concave function on (α, β), where α = −(µn + 1)/σn, β = (n− µn + 1)/σn,
and

lim
x→α+

ψn(x) = lim
x→β−

ψn(x) = −∞.

For n = 1, 2, . . . , we define

gn(x) =

{
eψn(x), α < x < β,
0 otherwise.

Clearly, gn is logconcave, and

gn

(
j − µn

σn

)
= σnan,j , j = 0, 1, . . . , n.

As in Theorem 1.2, we define measures mn, n = 1, 2, . . . , by

mn({k}) = an,k, k = 0, 1, . . . , n,

and it follows that (mn) is asymptotically normal. We note that for k ∈ Z,

∫ k−µn
σn

−∞
dm̃n =

k∑
j=0

an,j ,

where we put an,j = 0 for j > n. It follows from (5.15) that as n → ∞,∫ x

−∞
gn −

∫ x

−∞
dm̃n = O(σ−1

n )

uniformly in x. We can then apply Lemma 5.1 to the sequence of functions gn/
∫∞
−∞ gn

to show that this sequence converges to G on R. Hence gn converges uniformly to G
on R, which by (5.15) gives (5.9).
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We now consider the uniform convergence of the normalized mn-scaling functions
φ̃n to G.

Theorem 5.3. Assume the conditions of Theorem 1.5. Then φ̃n → G as n → ∞
uniformly on R.

Proof. It follows from the work of Goodman and Micchelli (see [8]) and the

properties of totally positive matrices (see [2]) that the functions φn, and hence φ̃n,
are bell-shaped. The result then follows from Theorem 1.1, Theorem 1.2, and Lemma
5.1.

We remark that if the set of all rn,j lies in Re z ≥ 0, then the condition that it
also lies in Dγ for some γ ∈ [0, π

2 ) is equivalent to requiring that for some β ∈ [0, π
2 )

the set of all rn,j lying outside the sector | arg z| ≤ β is bounded and bounded away

from zero. In [4], Chui and Wang consider convergence of the sequence (φ̃n) as in
Theorem 5.3 under the assumption that the polynomial

∑n
k=0 an,kz

k is reciprocal and
all rn,j are real and positive. They also assume that for n = 1, 2, . . . , rn,j = 1 for at
least Kn values of j for some fixed K > 0. They prove convergence in Lp, 1 ≤ p < ∞,
which we have noted is weaker than uniform convergence.

We shall finish the paper by considering the order of uniform convergence for both
the measures and the corresponding scaling functions. We first need to extend con-
cepts of bell-shaped and logconcave to discrete measures. Suppose m is a probability
measure on Z with m({j}) = aj , j ∈ Z. We say m is bell-shaped if there are integers
k ≤ � such that

2aj ≤ aj−1 + aj+1, j ≤ k − 1 and j ≥ � + 1,

2aj ≥ aj−1 + aj+1, k ≤ j ≤ �.

We say m in logconcave if

a2
j ≥ aj−1aj+1, j ∈ Z.

Lemma 5.4. For n = 1, 2, . . . , let mn be a probability measure on {0, 1, . . . , n}
given by mn({k}) = an,k, k = 0, 1, . . . , n, which is either bell-shaped or logconcave,
with mean µn and standard derivation σn. Suppose that for some K > 0 and r ≥ 1,∣∣∣∣ ̂̃mn(u) − e−u2/2

∣∣∣∣ ≤ Kσ−r
n for |u| ≤ Kσn.(5.11)

Then as n → ∞,

max
k=0,... ,n

∣∣∣∣σnan,k −G

(
k − µn

σn

)∣∣∣∣ = O(σ−s
n ),(5.12)

where s = min{ r
2 ,

2
3}.

Proof. Take a nonnegative function N with support in [−1, 1],
∫∞
−∞ N = 1,

‖N̂‖1 < ∞, and for some A > 0,

|N̂(u)| ≤ A(1 + |u|)−3r−1, u ∈ R.

Take 0 < δ < 1/2. Let B1(x) := δ−1N(x/δ) and B2(x) := δ−1N(x/δ − 4). Then B1

and B2 have supports on [−δ, δ] and [3δ, 5δ], respectively, and
∫∞
−∞ B1 =

∫∞
−∞ B2 = 1.

So ∫ ∞

−∞
B1G > G(δ),

∫ ∞

−∞
B2G < G(3δ).
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and hence

∫ ∞

−∞
B1G−

∫ ∞

−∞
B2G > G(δ) −G(3δ)

> |G′(δ)|2δ
> |G′′(δ)|2δ2

> |G′′(1/2)|2δ2.

Also for j = 1, 2,

∣∣∣∣
∫ ∞

−∞
Bjdm̃n −

∫ ∞

−∞
BjG

∣∣∣∣ =

∣∣∣∣
∫ ∞

−∞
B̂j(−u)( ̂̃mn(u) − Ĝ(u))du

∣∣∣∣
≤

∫
|u|≥Kσn

(| ̂̃mn(u)| + Ĝ(u))|B̂j(−u)|du

+
K

σr
n

∫ Kσn

−Kσn

|B̂j(u)|du

≤ 2

∫
|u|>Kσn

|N̂(δu)|du +
K

σr
n

∫ ∞

−∞
|N̂(δu)|du

=
2

δ

∫
|u|≥Kδσn

|N̂(u)|du +
K

δσr
n

∫ ∞

−∞
|N̂(u)|du

≤ C

δ(Kδσn)3r
+

C

δσr
n

for some C > 0. Choosing δ = cσβ−1
n for some 1

3 ≤ β < 1, and c > 1, gives∣∣∣∣
∫ ∞

−∞
Bjdm̃n −

∫ ∞

−∞
BjG

∣∣∣∣ ≤ D

cσr+β−1
n

(5.13)

for some D > 0. Then∫ ∞

−∞
B1dm̃n >

∫ ∞

−∞
B1G− D

cσr+β−1
n

>

∫ ∞

−∞
B2G +

∣∣∣G′′
(1

2

)∣∣∣2δ2 − D

cσr+β−1
n

>

∫ ∞

−∞
B2dm̃n +

|G′′( 1
2 )|2c2

σ2−2β
n

− 2D

cσr+β−1
n

.(5.14)

Now for n = 1, 2, . . . , choose a continuous function gn, which is bell-shaped or
logconcave as mn is bell-shaped or logconcave, respectively, and satisfies

gn

(
j − µ

σn

)
= σnan,j , j = 0, 1, . . . , n.(5.15)

If mn is logconcave, then this can be done as in the proof of Theorem 5.2, while
if mn is bell-shaped we can take gn to be simply the piecewise linear interpolant.
Note that if, for some constant b, gn ≥ b on the support of Bj , j = 1 or 2, then∫∞
−∞ Bjdm̃n bounds the product of b and a Riemann sum for Bj over its support with
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interval length σ−1
n . This Riemann sum equals a Riemann sum for N over [0, 1] with

interval length δ−1σ−1
n , which differs from

∫ 1

0
N by O(δ−2σ−2

n ). Thus, by the uniform
boundedness of gn, we have ∫

Bjdm̃n ≥ b + O(δ−2σ−2
n ),

and similarly the result holds with ≥ replaced by ≤ . Thus if gn(x) ≤ gn(y) for all
x ∈ [−δ, δ], y ∈ [3δ, 5δ], we have∫ ∞

−∞
B1dm̃n ≤

∫ ∞

−∞
B2dm̃n +

a

δ2σ2
n

=

∫ ∞

−∞
B2dm̃n +

a

c2σ2β
n

for a fixed constant a. Choosing β = 2/3 and c large enough, this would contradict
(5.14), and so there are points −δ < bn < δ, 3δ < cn < 5δ with gn(bn) > gn(cn).
Similarly, we can choose bn so that there is a point an in (−5δ,−3δ) with gn(an) <
gn(bn). As in the proof of Lemma 5.1, it follows from the shape of gn that the maximum
of gn(x) occurs only for x in (−5δ, 5δ). So we have shown that for a constant a,

maximum of gn(x) occurs for x in (−aσ
−1/3
n , aσ

1/3
n ) for n = 1, 2, . . . .

Now take δ = σβ−1
n for some 1/3 ≤ β < 1 and γ ≥ aσ

−1/3
n + δ. Let B(x) =

δ−1N(δ−1(x− γ)) so that B has support on [γ − δ, γ + δ]. As in (5.13)∣∣∣∣
∫ ∞

−∞
Bdm̃n −

∫ ∞

−∞
BG

∣∣∣∣ ≤ D

σr+β−1
n

for some D > 0. Since gn is decreasing on [aσ
−1/3
n ,∞), for a constant b > 0,

gn(γ − δ) ≥
∫ ∞

−∞
Bdm̃n − b

δ2σ2
n

≥
∫ ∞

−∞
BG− b

δ2σ2
n

− D

σr+β−1
n

≥ G(γ + δ) − b

σ2β
n

− D

σr+β−1
n

.

Since |G′(τ)| < 1 for all τ in R, |G(x)−G(y)| ≤ |x− y| for all x, y ∈ R. So G(γ+ δ) ≥
G(γ − δ) − 2δ, and so

gn(γ − δ) ≥ G(γ − δ) − b

σ2β
n

− D

σr+β−1
n

− 2δ.

Similarly,

gn(γ + δ) ≤ G(γ + δ) +
b

σ2β
n

+
D

σr+β−1
n

+ 2δ.

Thus for all x ≥ aσ
−1/3
n + 2δ,

|gn(x) −G(x)| ≤ b

σ2β
n

+
D

σr+β−1
n

+
2

σ1−β
n

.

For r ≥ 4/3, put β = 1/3 to give

|gn(x) −G(x)| = 0(σ
− 2

3
n ).
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For 1 ≤ r ≤ 4/3, put β = 1 − r/2 to give

|gn(x) −G(x)| = 0(σ
− r

2
n ).

Similarly, the result holds for x ≤ −aσ
− 1

3
n − 2δ. Thus for a constant b > a,

sup{|gn(x) −G(x)| : |x| ≥ bσ
− 1

3
n } = O(σ−s

n )(5.16)

for s as in the statement of Lemma 5.4. Note that for any δ > 0 and x, y ∈ (−δ, δ),

|G(x) −G(y)| ≤ |G′′(0)|δ|x− y| ≤ δ|x− y|.(5.17)

Take any x ∈ (−bσ
− 1

3
n , bσ

−1
3

n ). Then either

gn(x) ≥ gn(bσ
− 1

3
n ) or gn(x) ≥ gn(−bσ

− 1
3

n ).

Suppose the former. Then

gn(x) ≥ gn(bσ
− 1

3
n ) > G(bσ

− 1
3

n ) −O(σ−s
n )

> G(x) −O(σ−s
n ) − 2(bσ

− 1
3

n )2.

The same holds similarly for the latter case. Thus

sup{gn(x) −G(x) : |x| ≤ bσ
− 1

3
n } = O(σ−s

n ).(5.18)

Now note, as in the proof of Lemma 5.1, that if gn is bell-shaped, then for all
large enough n, gn is concave on [− 2

3 ,
2
3 ]. Since concavity implies logconcavity, gn is

logconcave on [− 2
3 ,

2
3 ] for all large enough n. By (5.16) and the mean value theorem,

sup

{
| log gn(x) − logG(x)| : bσ

− 1
3

n ≤ |x| ≤ 2

3

}
= O(σ−s

n ).

Take 0 ≤ x ≤ bσ
− 1

3
n and n so large that bσ

− 1
3

n ≤ 2
9 . Then

log gn(x) ≤ 2 log gn(x + bσ
− 1

3
n ) − log gn(x + 2bσ

− 1
3

n )

≤ 2 logG(x + bσ
− 1

3
n ) − logG(x + 2bσ

− 1
3

n ) + O(σ−s
n )

≤ logG(x) + | logG(x + bσ
− 1

3
n ) − logG(x)|

+| logG(x + bσ
− 1

3
n ) − logG(x + 2bσ

− 1
3

n )| + O(σ−s
n )

≤ logG(x) + O(σ
− 2

3
n ) + O(σ−s

n ).

A similar argument holds for −bσ
− 1

3
n ≤ x ≤ 0, and applying the mean value theorem

gives

sup{G(x) − gn(x) : |x| ≤ bσ
− 1

3
n } = O(σ−3

n ).(5.19)

Combining (5.16), (5.18), and (5.19) and recalling (5.15) then gives the result.
Proof of Theorem 1.4. Theorem 1.4 follows from Proposition 4.1 and Lemma

5.4.
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To consider the order of uniform convergence for the scaling functions, we need
the following analogue of Lemma 5.4. This can be proved in a similar manner to
Lemma 5.4, but the proof is simpler, in particular because there is no restriction on
the range of u as in (5.11).

Lemma 5.5. Suppose that (gn) is a sequence of continuous functions, which are

either bell-shaped or logconcave with
∫∞
−∞ gn = 1 and ‖ĝn(u) − e−u2/2‖∞ < αn for

n = 1, 2, . . . , where limn→∞ αn = 0. Then as n → ∞,

‖gn −G‖∞ = O(α
1
2
n ).

Proof of Theorem 1.5. Theorem 1.5 follows from Theorem 1.3 and Lemma
5.5.
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[5] H. B. Curry and I. J. Schoenberg, On Pólya frequency functions IV. The fundamental spline
functions and their limits, J. Analyse Math., 17 (1966), pp. 71–107.

[6] W. F. Donoghue, Jr., Distributions and Fourier Transforms, Academic Press, New York,
1969.

[7] W. Feller, An Introduction to Probability and Its Applications, Vol. II, John Wiley, New
York, 1971.

[8] T. N. T. Goodman and C. A. Micchelli, On refinement equations determined by Pólya
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Abstract. The goal of this article is to determine how the oscillation and concentration effects
developed by a sequence of functions in R

d are modified by the action of sampling and reconstruction
operators on regular grids. Our analysis is performed in terms of Wigner and defect measures,
which provide a quantitative description of the high-frequency behavior of bounded sequences in
L2(Rd). We actually present explicit formulas that make possible the computation of such measures
for sampled/reconstructed sequences. As a consequence, we are able to characterize sampling and
reconstruction operators that preserve or filter the high-frequency behavior of specific classes of
sequences. The proofs of our results rely on the construction and manipulation of Wigner measures
associated to sequences of discrete functions.
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1. Introduction.

1.1. Statement of the problem: Oscillation and concentration under
the effect of sampling and reconstruction. A central problem in numerical anal-
ysis and signal theory is that of reconstructing a function u(x) defined in R

d from a
discrete set of measurements taken on an uniform grid of step size h. These discrete
values are typically obtained by applying to the function u a sampling operator Sh

ϕ of
the type

Sh
ϕu(n) :=

1

hd

∫
Rd

u(x)ϕ
(x
h
− n
)
dx

for some sampling function ϕ. One then tries to recover u by means of a reconstruction
(or interpolation) operator Th

ψ , which associates to a sequence of discrete values U :=
(Un) a function

Th
ψU(x) :=

∑
n∈Zd

Unψ
(x
h
− n
)

;

here ψ is some fixed reconstruction function. This process usually provides only
an approximation uh := Th

ψS
h
ϕu of the original function u, with an error that van-

ishes as h tends to zero. Such reconstruction schemes have been the subject of
intensive study from the point of view of both approximation theory and numeri-
cal analysis.
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Here we shall be concerned with the high-frequency approximation properties of
those operators; that is, we shall study how the scheme Th

ψS
h
ϕ is able to capture (or

filter) oscillation and concentration-like phenomena on the functions it is intended
to approximate. More generally, we shall be interested in clarifying how the high-
frequency behavior of a sequence of reconstructed functions depends on the profiles
ϕ, ψ and the sampling rate h chosen.

Before giving a more precise statement of our objectives, let us first illustrate the
above discussion with two specific examples: consider fk(x) := kd/2ρ(k(x− x0)) and

gk(x) := ρ(x)eikx·ξ
0

with ρ ∈ L2(Rd); the sequence (fk) concentrates around the point
x0 as k → ∞, whereas (gk) oscillates in the direction ξ0. The results we shall present
in this paper are aimed at understanding to what extent the sequences (Thk

ψ Shk
ϕ fk)

and (Thk

ψ Shk
ϕ gk) reproduce the same behavior as (fk) and (gk) (i.e., if concentration

and oscillation persist) for a given sequence (hk) of positive reals that tends to zero
(the sampling steps) and some choice of ϕ and ψ.

Perhaps the simplest convenient setting in which to formulate our results is pro-
vided by the notion of defect measure, an object that gives a quantitative description of
what we shall understand by concentration and oscillation effects and whose definition
we next recall. Let (uk) be a weakly converging sequence in the space L2(Rd); denote
by u its weak limit and remark that the densities |uk − u|2 are uniformly bounded in
L1(Rd). Helly’s compactness theorem then ensures that some subsequence (|ukn

−u|2)
weakly converges in the set of positive Radon measures,1 or, in other words, that there
exists a positive measure ν on R

d such that

∫
Rd

φ(x)|ukn
(x) − u(x)|2dx →

∫
Rd

φ(x)dν(x) as n → ∞

for every φ ∈ Cc(R
d). When the above convergence takes place without extracting a

subsequence we say that ν is the defect measure of the sequence (uk).

Immediately from this definition one deduces the following general principle: if ν
is the defect measure of a sequence (uk) and ω ⊂ R

d is an open subset, then there
is an equivalence between ν(ω) = 0 and the fact that uk|ω converges strongly to u|ω
in L2

loc(ω). Thus, the support of ν is precisely the set where strong convergence fails,
that is, the set where oscillations and concentrations take place.

But defect measures are also able to detect concentration and oscillatory phe-
nomena and give quantitative information about them. Consider the sequences (fk),
(gk) previously defined; they both weakly converge to zero in L2(Rd), and it is easy
to check that their respective defect measures are ‖ρ‖2

L2(Rd)δx0 and |ρ(x)|2dx. Notice

that, in the first case, the defect measure actually captures the concentration of the
sequence around the point x = x0. In the complementary of that point, where the
sequence converges strongly to zero, the measure vanishes. In the second example,
the defect measure is uniformly distributed on R

d, this being consistent with the fact
that strong convergence does not take place in any subset of R

d.

Let us point out that the analysis of concentration and oscillation effects devel-
oped by a sequence of functions is a central issue in many problems of the calculus
of variations and partial differential equations. A number of applications of defect

1From now on, we shall use the term measure as an abbreviation of the longer Radon measure.
Recall that the space of Radon measures M(Rd) is identified, by Riesz’s theorem, with the space of
continuous linear functionals on Cc(Rd).
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measures may be found in the analysis of variational problems with loss of compact-
ness performed by Lions in [11, 12].2

Consider a sequence (uk), weakly converging to zero in L2(Rd); sample it using a
profile ϕ and form the reconstructed sequence

vk := Thk

ψ Shk
ϕ uk

for some given ψ and some sequence (hk) of positive reals tending to zero. The
functions vk are bounded in L2(Rd) and tend weakly to zero, provided ϕ and ψ
satisfy suitable hypotheses (see Lemma 3.1 in section 3 below). Suppose furthermore
that the densities |vk|2 weakly converge to the defect measure νϕ,ψ.

One of the main issues addressed in this article is that of understanding the
relations existing between the defect measure νϕ,ψ, the profiles ϕ, ψ, and the sequences
(uk), (hk). Among these, we point out the following:

A. Is there a formula, valid for any sequence (uk), relating νϕ,ψ to the defect
measure ν only in terms of the profiles ϕ and ψ?

B. Given (uk), characterize the profiles ϕ and ψ such that νϕ,ψ = 0. This is the
problem of filtering since, as we have discussed before, νϕ,ψ = 0 is equivalent to the

strong local convergence to zero of the sequence (Thk

ψ Shk
ϕ uk).

C. Similarly, characterize the profiles ϕ and ψ such that νϕ,ψ = ν for a given
(uk).

D. Finally, characterize the profiles that give νϕ,ψ = ν for every (uk).
We shall prove that the answer to question A is negative. This is due to the fact

that the measure νϕ,ψ is sensitive to the characteristic directions of oscillation of the
sequence (uk), whereas ν is unable to distinguish them. As we have seen above, the
defect measure of the oscillating sequence (gk) equals |ρ(x)|2dx independently of the
vector ξ0; that is not the case for νϕ,ψ. Indeed, under additional assumptions on ϕ
and ψ we prove (see Theorem 1.3 and Corollary 1.4) that

νϕ,ψ(x) =
∑
k∈Zd

|ψ̂(ξ0 + 2πk)|2|ϕ̂(ξ0)|2|ρ(x)|2dx.

Thus the measure νϕ,ψ is ξ0-dependent and cannot be expressed solely in terms of ν,

ϕ, and ψ. Note that νϕ,ψ is identically zero as soon as any of
∑

k∈Zd |ψ̂(ξ0 + 2πk)|2
or ϕ̂(ξ0) is null. Analogously, the profiles that give νϕ,ψ = ν are precisely those which
satisfy ∑

k∈Zd

|ψ̂(ξ0 + 2πk)|2|ϕ̂(ξ0)|2 = 1.

Therefore, in order to understand how νϕ,ψ is built, we must have at our dis-
posal an object that is able to distinguish between oscillatory phenomena at different
directions.

1.2. Wigner measures. This refinement is provided by the theory of Wigner
measures.3 Given a bounded sequence in L2(Rd) one associates to it a measure µ(x, ξ)

2We also refer to Evans’s notes [4] for an exposition of some additional applications as well as a
discussion of other measure-theoretical objects (such as, for example, Young measures) designed to
study the failure of strong convergence.

3This object is present in the work of Wigner on semiclassical quantum mechanics [20]. Recently,
Wigner measures have gained interest since the works of, for example, Gérard [6], Lions and Paul
[13], and Markowich, Mauser, and Poupaud [14]. Related objects are the microlocal defect measures
or H-measures, introduced independently by Gérard [5] and Tartar [18].
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on R
d × R

d which describes the concentration and oscillation effects (these are the
respective roles of the variables x and ξ) occurring at some characteristic length-scale.
This measure takes into account the characteristic speeds as well as the directions of
propagation of oscillations. One way of defining them consists in replacing the density
|u(x)|2 involved in the definition of the defect measure by the phase space (microlocal)
density,

mε[u](x, ξ) :=
1

(2πε)d
u(x)û(ξ/ε)eix·ξ/ε,(1.1)

where û is the Fourier transform of u and ε is a positive constant. The (2π)−d factor
in the definition of mε[u] is placed to have∫

Rd

mε[u](x, ξ)dξ = |u(x)|2,
∫

Rd

mε[u](x, ξ)dx =
|û(ξ/ε)|2
(2πε)d

.(1.2)

Thus, the function mε[u] may be looked at as a joint physical space–Fourier space
“density,” in spite of the fact that mε[u] is not positive in general. However, limits of
these quantities are positive measures.

Theorem 1.1. Let (uk) be a bounded sequence in L2(Rd) and let (εk) be a se-
quence of positive numbers tending to zero. Then it is possible to extract a subsequence
(ukn) such that, for every test function a ∈ S(Rd × R

d),

lim
n→∞

∫
Rd×Rd

a(x, ξ)mεkn [ukn
](x, ξ)dxdξ =

∫
Rd×Rd

a(x, ξ)dµ(x, ξ),(1.3)

where µ is a finite positive measure on R
d × R

d.
A measure µ ∈ M+(Rd×R

d) is called the Wigner measure of the sequence (uk) at
scale (εk) whenever the limit (1.3) holds without extracting a subsequence. Different
proofs of Theorem 1.1 may be found in [8, 13, 7]. Let us point out that other quadratic
densities may be used to define Wigner measures. For instance, in [13] µ is obtained
by replacing mε[u] in the limit (1.3) by the more familiar Wigner transform:

wε[u](x, ξ) :=

∫
Rd

u
(
x− ε

p

2

)
u
(
x + ε

p

2

)
eip·ξ

dp

(2π)d
.(1.4)

It is also possible to consider wave-packet (Husimi) transforms. Of course, all of these
methods are equivalent (the same limit is obtained); see the discussion in [8].

The Wigner measure encodes all the information contained in the defect measure,
provided the sequence (uk) oscillates at frequencies of the order of ε−1

k . We state this
more precisely in the following proposition (see [8, 13]).

Proposition 1.2. If µ is the Wigner measure at scale (εk) of a sequence (uk)
and ν is the measure obtained as the weak limit in M+(Rd) of the densities |uk|2dx,
then the identity

ν(x) =

∫
Rd

µ(x, dξ)

holds, provided (uk) is εk-oscillatory:

lim sup
k→∞

∫
|ξ|>R/εk

|ûk(ξ)|2dξ → 0 as R → ∞.(1.5)
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Notice that condition (1.5) actually expresses that the energy of the Fourier trans-
form of uk is concentrated in a ball of radius R/εk, which should be understood as the
requirement that the sequence (uk) does not oscillate at length scales finer than εk.

To illustrate this discussion it may be helpful to look at explicit computations.
The Wigner measure at scale (εk) of the concentrating sequence (fk) defined at the
beginning of this section is given by

µ(x, ξ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
‖ρ‖2

L2(Rd)δx0(x) ⊗ δ0(ξ) if εkk → 0,

δx0(x) ⊗ |ρ̂(ξ)|2 dξ

(2π)d
if εk = k−1,

0 if εkk → ∞,

(1.6)

while for the oscillating sequence (gk) it can be checked to be

µ(x, ξ) =

⎧⎪⎪⎨
⎪⎪⎩
|ρ(x)|2dx⊗ δ0(ξ) if εkk → 0,

|ρ(x)|2dx⊗ δξ0(ξ) if εk = k−1,

0 if εkk → ∞.

(1.7)

These examples show the importance of the choice of the scale (εk). When this scale
is taken to be coarser than the characteristic length-scale k−1 of oscillation/concen-
tration, it is no longer true that the projection on the first component of their Wigner
measures coincides with the defect measure. On the other hand, in the case εkk →
0 (the scale chosen is much smaller than the actual oscillation scale) the Wigner
measure is not able to capture the direction of oscillation. Hence, to obtain a complete
description, the scale (εk) must be taken of the same order as that of the oscillations.

Wigner measures turn out to be the correct tools for comparing the high-frequency
behavior of the sequences (uk) and (Thk

ψ Shk
ϕ uk).

1.3. Computation of Wigner and defect measures. Given a sequence of
sampling steps (hk), it seems clear that the functions Thk

ψ Shk
ϕ uk will not develop oscil-

lation and concentration effects of characteristic sizes asymptotically smaller than hk.
Most commonly, these functions will form an hk-oscillatory sequence;4 consequently,
only Wigner measures at scales coarser than or of the same order as (hk) will be
considered.

In order to establish explicit formulas, we shall require additional hypotheses on
ϕ, ψ and on the Wigner measures involved. Nevertheless, in order to simplify the
statement of our results, in this introduction we shall impose the following (more
restrictive) condition on the admissible profiles:

|γ(x)| ≤ C(1 + |x|)−d−ε for every x ∈ R
d and some C, ε > 0.(1.8)

More general results may be found in section 7.
We prove the following.
Theorem 1.3. Let ϕ, ψ satisfy (1.8). Suppose (uk) is a bounded sequence in

L2(Rd) and that µ is its Wigner measure at scale (hk). Suppose, moreover, that the
measures

|ϕ̂(ξ + 2πn)|2µ(x, ξ + 2πn)(1.9)

4However, this may fail for some pathological examples (see section 5.3).
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are mutually singular for n ∈ Z
d.

Then the Wigner measure at scale (hk) of the sequence (Thk

ψ Shk
ϕ uk) is given by

µϕ,ψ(x, ξ) = |ψ̂(ξ)|2
∑
k∈Zd

|ϕ̂(ξ + 2πn)|2µ(x, ξ + 2πn).

From this, one deduces the following corollary.
Corollary 1.4. If, moreover, |Thk

ψ Shk
ϕ uk|2dx weakly converges to a measure

νϕ,ψ, then

νϕ,ψ(x) =

∫
Rd

∑
k∈Zd

|ψ̂(ξ + 2πk)|2|ϕ̂(ξ)|2µ(x, dξ).

This shows, in particular, that a formula relating νϕ,ψ and the weak limit ν of
|uk|2dx does not exist unless (uk) is hk-oscillatory and µ is of the form ν(x) ⊗ σ(ξ).

It also shows that ν = νϕ,ψ if and only if
∑

k∈Zd |ψ̂(ξ+2πk)|2|ϕ̂(ξ)|2 = 1 for µ̃-almost

every ξ ∈ R
d, where µ̃ :=

∫
µ(·, dξ). Consequently, there do not exist profiles ϕ, ψ

satisfying (1.8) such that ν equals νϕ,ψ for every hk-oscillatory sequence (uk).
On the other hand, Theorem 1.3 implies that question A above does have a pos-

itive answer in terms of Wigner measures, at least when restricted to the class of
sequences which satisfy (1.9). That condition, roughly speaking, imposes a restric-
tion on the size of the region in frequency space where an admissible sequence fails
to converge strongly to zero. Below, we shall compare it with that appearing in
Shannon’s sampling theorem.

The above results will be obtained as corollaries of the more general Theorems 7.1
and 7.3. Profiles that belong to negative-order Sobolev spaces or that fail to satisfy
the localization hypothesis (1.8) are allowed. However, this will require us to impose
compatibility conditions on the Wigner measure µ.

As an illustration of the range of results that will be obtained in this more general
setting, we present an asymptotic version of Shannon’s sampling theorem.5 It corre-
sponds to taking as sampling profile ϕ = δ0, the Dirac delta at the origin, and as recon-
struction function ψ̂ := 1Q, where Q := [−π, π)d. Notice that Sh

δ0
u(n) = u(hn) is the

discretization operator, whereas the Th
ψ corresponds to band-limited reconstruction.

Theorem 1.5. Let (uk) be a bounded sequence in L2(Rd) and denote by µ its
Wigner measure at scale (hk). Suppose, in addition, that uk ∈ Hs(Rd) for some
s > d/2 and

(i) (1 − h2
k∆x)s/2uk are uniformly bounded in L2(Rd).

(ii) µ(Rd × (∂Q + 2πn)) = 0 for n ∈ Z
d.

(iii) µ(x, ξ + 2πn), n ∈ Z
d, are mutually singular measures.

(1.10)

Then the Wigner measure at scale (hk) of (Thk

ψ Shk

δ0
uk) is

µδ0,ψ(x, ξ) = 1Q(ξ)
∑
n∈Zd

µ(x, ξ + 2πn).(1.11)

Moreover, if |Thk

ψ Shk

δ0
uk|2dx and |uk|2dx weakly converge to νS and ν, respectively,

then

νS(x) =

∫
Rd

µ(x, dξ) = ν(x).

5See section 3.1 for a statement of Shannon’s original sampling theorem.



WIGNER MEASURES IN THE DISCRETE SETTING 353

Thus, unlike the operators considered in Theorem 1.3, the composition of dis-
cretization and band-limited reconstruction preserves the defect measure for a large
class of sequences.

Notice that, by the Sobolev imbedding theorem, Shk

δ0
uk is well-defined. Actu-

ally, (1.10.i) ensures that the sequence of discretizations is square-summable and,
consequently, that (Thk

ψ Shk

δ0
uk) is bounded in L2(Rd) and hk-oscillatory (for a more

complete result, we refer to Lemma 3.1). Condition (1.10.ii) appears because ψ̂ is
not continuous; we shall discuss its necessity in section 4.4. Finally, (1.10.iii) should
be understood as the analogue of Shannon’s original band-limited condition in this
context.

To conclude this short description, let us present how the above results may be
refined when the sequence (uk) is known to be εk-oscillatory and the sampling rate
(hk) is taken to satisfy hk/εk → 0. As can be expected, much more precision is gained.

Theorem 1.6. Suppose ϕ, ψ satisfy (1.8) and (uk) is an εk-oscillatory, bounded
sequence in L2(Rd). If µ is its Wigner measure at scale (εk), then the corresponding
measure of the sequence (Thk

ψ Shk
ϕ uk) is

µϕ,ψ = |ψ̂(0)|2|ϕ̂(0)|2µ.

Moreover, if the densities a |Thk

ψ Shk
ϕ uk|2dx and |uk|2dx weakly converge to νϕ,ψ and

ν, respectively, then

νϕ,ψ(x) =
∑
n∈Zd

|ψ̂(2πn)|2|ϕ̂(0)|2ν(x).

This theorem holds under much more general conditions on ϕ and ψ (see The-
orem 7.6) and gives a positive answer to question A, provided we consider only εk-
oscillatory sequences.

An immediate consequence of the above result is that zero-mean sampling profiles
ϕ (i.e., with ϕ̂(0) = 0, as a wavelet, for instance) completely filter any oscillations that
occur at scales much coarser than the sampling rate hk. For such a profile, νϕ,ψ = 0
for every εk-oscillatory sequence. An analogous phenomenon occurs for reconstruction
profiles satisfying ψ̂(2πn) = 0 for every n ∈ Z

d.
On the other hand, a sufficient condition to have equality between νϕ,ψ and ν is

that |ϕ̂(0)| = |ψ̂(0)| = 1 and |ψ̂(2πn)| = 0 for n �= 0.

1.4. Strategy of proof: Wigner measures in the discrete setting. The
proof of the results we have presented above will be achieved by analyzing sepa-
rately the sampling and reconstruction operators Sh

ϕ and Th
ψ . In order to develop this

strategy, it is necessary to deal with the concept of Wigner measure associated to a
sequence of discrete functions. We shall introduce it by means of a discrete analogue
of the transform mε[·]. We detail this in the following paragraph.

To a discrete square-summable function U ∈ L2(hZ
d), where L2(hZ

d) stands for
the space of the functions U defined on Z

d with values in C such that the norm

‖U‖h :=

⎛
⎝hd

∑
n∈Zd

|Un|2
⎞
⎠

1/2

is finite, we associate

Mε[U ](x, ξ) :=
h2d

(2πε)d

∑
m∈Zd

UmÛ

(
h

ε
ξ

)
eim·(h/ε)ξδhm(x).(1.12)
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Here, δhm is the Dirac mass centered at the point hm, and Û denotes the discrete
Fourier transform

Û(ξ) :=
∑
n∈Zd

Une
−in·ξ,

which, as is well known, is a 2πZ
d-periodic function in L2

loc(R
d). The discrete trans-

form Mε[U ] may be related to the continuous mε[u] by noticing that

Mε[U ] = mε[Th
δ0U ], where Th

δ0U(x) = hd
∑
n∈Zd

Uh
nδhn(x).(1.13)

This is meaningful, since mε[u] is well-defined for any tempered distribution u ∈
S ′(Rd).

In order to simplify our language we make the following definition.
Definition 1.7. Let h = (hk) be a scale. We shall call a sequence (Uhk) hk-

bounded if and only if Uhk ∈ L2(hkZ
d) and ‖Uhk‖hk

≤ C for every k ∈ N.
One has the following convergence result (which is not a direct consequence of

Theorem 1.1).
Proposition 1.8. Let (hk), (εk) be scales such that (hk/εk) is bounded and let

(Uhk) be an hk-bounded sequence of discrete functions. Then (Mεk [Uhk ]) is bounded
in S ′(Rd × R

d), and given any of its convergent subsequences (Uhkn ), there exists a
positive measure µ such that

lim
n→∞

〈Mεkn [Uhkn ], a〉S′×S =

∫
Rd×Rd

a(x, ξ)dµ(x, ξ)(1.14)

for every a ∈ S(Rd × R
d).

This will be proved as a corollary of the more general Proposition 3.4, which in
turn follows from the analysis of Wigner measures associated to functions in negative-
order Sobolev spaces that is performed in section 8. As in the continuous setting, we
say that a measure µ is the Wigner measure at scale (εk) of a sequence of discrete
functions (Uhk) if the limit (1.14) holds for the whole sequence.

Remark 1.9. (i) When (hk/εk) is unbounded, it may happen that Mεk [Uhk ] is
not bounded in S ′(Rd × R

d).
(ii) If hk/εk → c > 0, then µ is not finite. Indeed, it is periodic (with respect to

the lattice (2π/c)Zd) in the ξ variable.
(iii) However, when hk/εk → 0, the Wigner measure µ is finite, as in the contin-

uous case.
With this tool at our disposal, we are able to compare the Wigner measure of a

sequence of discrete functions (Uhk) with that of a reconstructed sequence (Thk

ψ Uhk).
Analogously, we may compute Wigner measures of sequences of sampled discrete
functions (Shk

ϕ uk) in terms of those corresponding to the original sequence (uk). These
are, respectively, the contents of Theorems 4.6 and 4.2.

1.5. Plan of the article. Results and assumptions concerning the operators Sh
ϕ

and Th
ψ are collected in section 3.

In section 4, the problem of computing Wigner measures for sequences of sampled
or reconstructed functions is addressed. Formulas for Wigner measures at scales of the
same order as the sampling/reconstruction step (hk) are presented in Theorems 4.6
and 4.2. Theorems 1.3 and 1.5 then easily follow from those two results. We also
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point out the relationships existing between these Wigner measures and the concept
of Wigner series introduced in [14, 9].

The problem of the computation of defect measures of sequences of the form
(Thk

ψ Uhk) is considered in section 5; the main results are presented in Proposition 5.8
and Corollary 5.9.

In section 6 we investigate Wigner measures at scales (εk) satisfying hk/εk → 0.
Explicit formulas are presented in Theorems 6.1 and 6.2, from which Theorem 1.6
immediately follows.

The composition of sampling and reconstruction is studied in section 7, where the
main results of this article are proved.

Finally, section 8 contains the elements from the theory of Wigner measures on
which the proofs of most of the results of this article are based. Propositions 8.1 and
8.3, which extend the theory of Wigner measures to sequences in Sobolev spaces of
negative order, are systematically used throughout this paper.

2. Notation and conventions. We briefly present some notation that will be
used throughout this article.

B(x;R) will denote the open ball with radius R of R
d centered at the point x.

1A will denote the characteristic function of a set A ⊆ R
d.

We write Γ to denote the lattice 2πZ
d. A function f defined on R

d is Γ-periodic
if f(x + γ) = f(x) for every γ ∈ Γ and every x ∈ R

d.
We adopt the following convention for the Fourier transform:

û(ξ) :=

∫
Rd

u(x)e−ix·ξdx.

Given a measurable function ϕ(ξ), the Fourier multiplier of symbol ϕ is the
operator ϕ(Dx) formally defined by

ϕ(Dx)u(x) :=

∫
Rd

ϕ(ξ)û(ξ)eix·ξ
dξ

(2π)d
= ϕ̌ ∗ u(x),

ϕ̌ being the inverse Fourier transform of ϕ.
A particularly important Fourier multiplier is the Bessel potential 〈Dx〉 of symbol

〈ξ〉 := (1 + |ξ|2)1/2.

Next, we recall the definition of some function spaces.
As usual, S(Rd) denotes the space of rapidly decreasing functions and S ′(Rd)

stands for its dual, the space of tempered distributions.
Given r ∈ R, Hr(Rd), the Sobolev space of order r, consists of the distributions

u ∈ S ′(Rd) such that 〈Dx〉ru ∈ L2(Rd).
The weighted space L2(Rd; 〈x〉r) is that of the functions u ∈ L1

loc(R
d) such that

‖u‖L2(Rd;〈x〉r) :=

(∫
Rd

|u(x)|2〈x〉rdx
)1/2

< ∞.

The analogous definition is understood for L∞(Rd; 〈x〉r).
By C∞(Rd; 〈x〉r) we intend the space of functions u ∈ C∞(Rd) such that

‖∂α
x u‖L∞(Rd;〈x〉r) < ∞ for every multi-index α ∈ N

d.

C0(R
d) denotes the spaces of continuous functions on R

d vanishing at infinity.
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Given an open set Ω ⊆ R
d, M+(Ω) is the set of positive Radon measures on Ω,

which can be identified through Riesz’s theorem to the set of positive functionals on
Cc(Ω), the space of continuous functions on Ω with compact support.

In order to lighten our writing, we shall write S and S ′ instead of S(Rd
x × R

d
ξ)

and S ′(Rd
x × R

d
ξ), respectively.

For a measurable function f : R
d → C, we use the notation

Df := {x ∈ R
d : f is not continuous at x}.

An important, perhaps nonstandard, definition is that of a scale.
Definition 2.1. A scale (εk) is a sequence of positive numbers that tends to zero

as k → ∞.
Given two scales (hk) and (εk), the notation hk  εk and hk ∼ εk will be used

to indicate that limk→∞ hk/εk = 0 and limk→∞ hk/εk = c > 0, respectively.
Finally, we shall always denote

Q := [−π, π)d.

3. Sampling and reconstruction.

3.1. Definitions and examples. We now describe the sampling and recon-
struction operators we are going to consider. Given a distribution ϕ ∈ S ′(Rd) we set,
for every n ∈ Z

d and h > 0,

ϕh
n(x) := ϕ

(x
h
− n
)
.

The reconstruction (or synthesis) operator Th
ϕ , acting on discrete functions U of Z

d,
is defined to be

Th
ϕU(x) :=

∑
n∈Zd

Unϕ
h
n(x).(3.1)

This expression is well-defined for finitely supported discrete functions. When ϕ is
a continuous function such that ϕ(0) = 1 and ϕ(k) = 0 for k ∈ Z

d \ {0}, then Th
ϕU

is actually a function that interpolates the discrete values Un on the grid hZ
d, i.e.,

Th
ϕU(hn) = Un for all n ∈ Z

d.

Analogously, the sampling (or analysis) operator Sh
ϕ, a priori only acting on func-

tions u ∈ S(Rd), is defined as follows: Sh
ϕu is the discrete function given by

Sh
ϕu(n) := h−d〈ϕh

n, u〉S′(Rd)×S(Rd).

When ϕ = δ0, we obtain the usual discretization operator: Sh
δ0
u(n) = u(hn) for every

n ∈ Z
d.

Indeed, these sampling/reconstruction schemes include several well-known proce-
dures on regular grids. Among many others we may cite the following:

• Cardinal B-splines. The B-spline of order zero is the function ϕ(x) :=
1[−1/2,1/2]d(x); the function Th

ϕU is just the piecewise constant interpolation of the

discrete function U on the grid hZ
d. The B-spline of order 1,

ϕ(x) = 1[−1/2,1/2]d ∗ 1[−1/2,1/2]d =

d∏
j=1

(1 − |xj |)+,
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gives rise to the piecewise linear interpolation operator. Analogously, B-splines of
order r ∈ N are defined iterating this convolution r times. These are Cr−1(Rd)
functions supported in [−r/2, r/2]d, taking the value 1 at the origin. More details
may be found, for instance, in [2].

• Band-limited sampling/reconstruction. This corresponds to the profile

ϕ(ξ) :=

d∏
j=1

sinc(ξj),

where the cardinal sine function is defined by

sinc(t) :=
sinπt

πt
.

It is easy to check that ϕ̂(ξ) = 1Q(ξ). This profile is relevant because of Shannon’s
sampling theorem: a function u belongs to the space

V h := {u ∈ L2(Rd) : supp û ⊂ [−π/h, π/h)d} = range(Th
ϕ )

if and only if

u =
∑
n∈Zd

u(hn)ϕh
n.

In particular, such functions are determined by their values on the grid hZ
d.

• Wavelets. Take hk := 2−k for every k ∈ Z. A function ψ ∈ L2(Rd) is a
wavelet, provided {ψhk

n : n ∈ Z
d, k ∈ Z} is an orthonormal basis of L2(Rd). For more

details on wavelets and the closely related multiresolution analyses, the reader may
see [10, 16].

Additional examples and references (from the viewpoint of signal theory) may be
found in the survey [19].

3.2. Boundedness properties. In order to ensure that the sampling and re-
construction operators are bounded, we shall make the assumption (BPs) below:

ϕ ∈ Hs(R) and, for some B > 0,

τ〈Dx〉sϕ(ξ) :=
∑
k∈Zd

|〈ξ + 2πk〉sϕ̂(ξ + 2πk)|2 ≤ B for a.e. ξ ∈ R
d.(BPs)

Lemma 3.1. Suppose ϕ ∈ S ′(Rd). Then the following are equivalent:
(i) ϕ satisfies (BPs).
(ii) There exists B > 0 such that

‖〈hDx〉sTh
ϕU‖L2(Rd) ≤

√
B‖U‖L2(hZd)(3.2)

holds uniformly for h > 0 and U ∈ L2(hZ
d).

(iii) There exists B > 0 such that

‖Sh
ϕu‖L2(hZd) ≤

√
B‖〈hDx〉−su‖L2(Rd)(3.3)

holds uniformly for h > 0 and u ∈ H−s(Rd).
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Moreover, whenever (i), (ii), or (iii) is fulfilled, the smallest constant B for which
any of the above assertions holds is precisely ‖τ〈Dx〉sϕ‖L∞(Q).

Proof. To see why (i) and (ii) are equivalent, first observe that, given any ϕ ∈
Hs(Rd), the following identity holds:

Th
ϕ = 〈hDx〉−sTh

〈Dx〉sϕ.(3.4)

To check this, simply notice that

T̂h
ϕU(ξ) = hdϕ̂(hξ)

∑
n∈Zd

Une
−ihn·ξ = ϕ̂(hξ)hdÛ(hξ),

and hence

T̂h
ϕU(ξ) = 〈hξ〉−s〈hξ〉sϕ̂(hξ)hdÛ(hξ) = ̂〈hDx〉−sTh

〈Dx〉sϕU(ξ).

Since 〈Dx〉sϕ ∈ L2(Rd) and

‖〈hDx〉sTh
ϕU‖L2(Rd) = ‖Th

〈Dx〉−sϕU‖L2(Rd)

it suffices to deal with the case s = 0. But it is a well-known result (see, for instance,
[3, 17]) that for ϕ ∈ L2(Rd), (i) and (ii) are equivalent and that ‖Th

ϕ‖ = ‖τϕ‖L∞(Rd)

whenever Th
ϕ is bounded.

Statements (ii) and (iii) are equivalent because of the following duality relation:

(〈hDx〉sTh
ϕU, 〈hDx〉−su)L2(Rd) = (U, Sh

ϕu)L2(hZd),

which holds for every u ∈ H−s(Rd) and U ∈ L2(hZ
d). This is simple to check:

(〈hDx〉sTh
ϕU, 〈hDx〉−su)L2(Rd) =

∑
n∈Zd

Un

∫
Rd

〈hDx〉sϕh
n(x)〈hDx〉−su(x)dx

=
∑
n∈Zd

Un〈ϕh
n, u〉Hs(Rd)×H−s(Rd)

= hd
∑
n∈Zd

Uh
nS

h
ϕu(n).

Remark 3.2. For s ≤ 0, estimate (3.2) implies that

‖〈εDx〉sTh
ϕU

h‖L2(Rd) ≤
√
B‖Uh‖L2(hZd),(3.5)

as soon as h/ε ≤ 1, as can be easily checked by taking Fourier transforms.
A sufficient condition for (BPs) in terms of decay on ϕ is given next.
Lemma 3.3. Suppose ϕ ∈ Hs(Rd) satisfies, for some ε > 0,∫

Rd

|〈Dx〉sϕ(x)|2(1 + |x|)d+εdx < ∞.(3.6)

Then ϕ̂ and τ〈Dx〉sϕ are continuous functions. In particular, (BPs) always holds for
such a ϕ.

Proof. It follows along the lines of [16, Lemma II.7]. Under condition (3.6),
〈ξ〉sϕ̂ ∈ Hd/2+ε/2(Rd); Sobolev’s imbedding theorem then ensures that 〈ξ〉sϕ̂ is a
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continuous function, and hence so is ϕ̂. The continuity of τ〈Dx〉sϕ is a consequence of

the fact that, whenever χ ∈ C∞
c (Rd) satisfies

∑
n∈Zd |χ(ξ + 2πn)| ≥ 1, the expression

⎡
⎣∑
n∈Zd

‖uχ(· + 2πn)‖2
Hs(Rd)

⎤
⎦

1/2

defines an equivalent norm in Hs(Rd), s ≥ 0. This actually proves that∑
n∈Zd

sup
ξ∈Rd

|〈ξ〉sϕ̂(ξ)χ(ξ + 2πn)|2 < ∞.

In particular, the series defining τ〈Dx〉sϕ is uniformly convergent and the claim then
follows.

Condition (3.6) automatically holds for profiles ϕ such that

|〈Dx〉sϕ(x)| ≤ C(1 + |x|)−d−ε for every x ∈ R
d and some C, ε > 0;(3.7)

in particular, the hypothesis (1.8) we assumed in the introduction implies (BPs) for
s = 0.

Now we can prove a general result from which Proposition 1.8 immediately follows.
Proposition 3.4. Suppose ϕ satisfies (BPs) and we are given scales (hk), (εk)

such that (hk/εk) is bounded. If (Uhk) is an hk-bounded sequence of discrete functions,
then the distributions mεk [Thk

ϕ Uhk ] are uniformly bounded in S ′. Moreover, the limit
of any weakly convergent subsequence is a positive measure.

The proof of this is a direct consequence of Remark 3.2 and the general result
established in Proposition 8.1.

3.3. Bases and projections. Below, we recall some results from approximation
theory that will be needed in what follows. These results deal with the range in Hs(Rd)
of the reconstruction operator Th

ϕ ; we denote this space by V h
ϕ and assume that it is

equipped with the (equivalent) norm ‖〈hDx〉s · ‖L2(Rd).

The space V h
ϕ is a principal shift invariant (PSI) space. When any of the con-

ditions of Lemma 3.1 are satisfied, the family {h−d/2ϕh
n : n ∈ Z

d} is said to form a
Bessel system for V h

ϕ .
The next lemma clarifies how the function τ〈Dx〉sϕ characterizes further basis

properties of the functions ϕh
n.

Lemma 3.5. Let ϕ ∈ S ′(Rd) satisfy (BPs). Then
(i) {h−d/2ϕh

n : n ∈ Z
d} is an orthonormal basis of V h

ϕ if and only if

τ〈Dx〉sϕ(ξ) = 1 for a.e. ξ ∈ R
d;

(ii) {h−d/2ϕh
n : n ∈ Z

d} is a Riesz basis6 of V h
ϕ if and only if there exist constants

A, B > 0 such that

A ≤ τ〈Dx〉sϕ(ξ) ≤ B for a.e. ξ ∈ R
d.

6This means that there exist constants A,B > 0 such that

A‖U‖2
L2(hZd)

≤ ‖Th
ϕU‖2

Hs(Rd)
≤ B‖U‖2

L2(hZd)

for all U ∈ L2(hZ
d). This is equivalent to the existence of a linear isomorphism R : V h → V h such

that {h−d/2Rϕh
n : n ∈ Z

d} forms an orthonormal basis of Hs(Rd). This property is sometimes also
referred to as (ϕh

n)n∈Zd forming a stable frame in Hs(Rd).
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Proof. It follows from (3.4) that the operator 〈hDx〉s is a unitary isomorphism
from V h

ϕ onto the range of Th
〈Dx〉sϕ. Hence {h−d/2ϕh

n : n ∈ Z
d} is an orthonormal

(resp., Riesz) basis of V h
ϕ if and only if {h−d/2(〈Dx〉sϕ)hn : n ∈ Z

d} is an orthonormal

(resp., Riesz) basis of V h
〈Dx〉sϕ. Thus, the lemma need only be proved for profiles

ϕ ∈ L2(Rd); this is a well-known result (see, for instance, [17]).
We shall also need the following expression for the orthogonal projection onto V h

ϕ .

Lemma 3.6. Let ϕ ∈ S ′(Rd) satisfy (BPs). The orthogonal projection Ph
ϕ :

Hs(Rd) → V h
ϕ equals Ph

ϕ = Th
ϕS

h
˜〈Dx〉sϕ

〈hDx〉s, where, for f ∈ L2(Rd), f̃ ∈ L2(Rd) is

defined by

̂̃
f(ξ) :=

⎧⎪⎨
⎪⎩

f̂(ξ)

τf (ξ)
if τf (ξ) �= 0,

0 otherwise.

Proof. The proof of the result for s = 0 may be found in [3, Theorem 2.9]. We
limit ourselves to this case by noticing that

Ph
ϕ = 〈hDx〉−sPh

〈hDx〉sϕ〈hDx〉s,

since, as we have seen in (3.4), the range of Th
ϕ equals that of 〈hDx〉−sTh

〈hDx〉sϕ, and

〈hDx〉s is an orthogonal mapping. Using the L2-result we obtain

Ph
ϕ = 〈hDx〉−sTh

〈hDx〉sϕS
h
˜〈Dx〉sϕ

〈hDx〉s = Th
ϕS

h
˜〈Dx〉sϕ

〈hDx〉s,

as claimed.

4. High-frequency analysis: h ∼ ε.

4.1. Reduction to the case h = ε. In this section we analyze the effect of
sampling and reconstruction on Wigner measures at scales (εk) of the same order of
the sampling/reconstruction rate (hk) (i.e., such that (hk/εk) is bounded).

First notice that it suffices to treat the case εk = hk; the more general case can
be obtained by a proper rescaling. This is due to the identity

mε[u](x, ξ) = (h/ε)dmh[u](x, (h/ε)ξ),

which clearly implies the following lemma.
Lemma 4.1. Suppose hk/εk → c > 0. Then mεk [uk] converges in S ′ if and only

if mhk [uk] does. Their respective limits µc and µ are related through

µc(x, ξ) = cdµ(x, cξ).(4.1)

When hk = εk, the transforms Mhk [Uhk ] are Γ-periodic in the variable ξ; hence,
so are their limiting Wigner measures.

4.2. Sampling. We start by exploring the effect of sampling on the structure of
Wigner measures. The computation of the Wigner measure at scale (hk) of a sequence
of samples (Shk

ϕ uk) is done in the following theorem; it is applicable whenever the
hypothesis (D) below is fulfilled:

essup
ξ∈Q

∑
|n|≥R

|〈ξ + 2πn〉sϕ̂(ξ + 2πn)|2 → 0 as R → ∞.(D)
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Notice that profiles with the property (3.6) immediately verify (D).
Before stating our result, it is important to notice that the Fourier transform of a

profile ϕ satisfying condition (BPs) is an element of L2
loc(R

d). In particular, it is only
defined modulo sets of zero Lebesgue measure. Thus, when dealing with pointwise
properties of ϕ̂, we shall systematically assume that a precise representative of the
class of ϕ̂ has, once and for all, been chosen.

For instance, the Wigner measures µ of the sequences (uk) in Theorem 4.2 below
will be assumed to satisfy conditions (MS) and (ND):

|ϕ̂(ξ + 2πn)|2µ(x, ξ + 2πn), n ∈ Z
d, are mutually singular measures.(MS)

µ(Rd ×Dϕ̂) = 0,(ND)

where, recall, Dϕ̂ stands for the set of discontinuity points of ϕ̂. These conditions
must be understood to hold for the same representative of ϕ̂.

Theorem 4.2. Let (hk) be a scale and take ϕ satisfying (BPs) and (D). Let
(uk) be a sequence in H−s(Rd) such that (〈hkDx〉−suk) is bounded, and suppose that
mhk [uk] converges to a Wigner measure µ that fulfills (ND), (MS).

Then Mhk [Shk
ϕ uk] converges to the Wigner measure µϕ given by

µϕ(x, ξ) =
∑
n∈Zd

|ϕ̂(ξ + 2πn)|2µ(x, ξ + 2πn).(4.2)

Remark 4.3. (i) As pointed out above, formula (4.6) holds for the same precise
representative of the Fourier transform ϕ̂ which was chosen in (ND) and (MS).

(ii) The necessity of hypotheses (ND) and (MS) will be discussed in section 4.4.
(iii) Condition (D) may be replaced by the assumption that (〈hkDx〉−suk) is

hk-oscillatory. This will be made clear in the proof of the theorem.
The proof of this theorem is postponed to the end of this section.
The expression (4.2) may be related to the concept of Wigner series introduced

in [14, 9]. Recall that given u ∈ S ′(Rd), the Wigner series of u at scale ε is defined
by

wε
S [u](x, ξ) :=

1

(2π)d

∑
n∈Zd

u(x− επn)u(x + επn)ein·ξ.

It is easy to check that wε
S [u](x, ξ) =

∑
n∈Zd wε[u](x, ξ + 2πn).7

When (uk) is bounded in L2(Rd), is εk-oscillatory, and possesses a Wigner measure
at scale (εk), then the following relation holds:

lim
k→∞

∫
Rd×Rd

a(x, ξ)wεk
S [uk](x, ξ)dxdξ =

∫
Rd×Rd

∑
n∈Zd

a(x, ξ + 2πn)dµ(x, ξ)(4.3)

for a ∈ S; see [1].
Theorem 4.2 has a simple interpretation in terms of Wigner series: the measure

µϕ may be obtained as the limit of the Wigner series

whk

S [ϕ̂(hkDx)uk].

7See (1.4) for the definition of the Wigner transform wε[u].
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This is due to the fact that, under any of the hypotheses (D), (ϕ̂(hkDx)uk) is hk-
oscillatory. Besides, as a consequence of Proposition 8.3, the Wigner measure at scale
(hk) of (ϕ̂(hkDx)uk) is given by |ϕ̂(ξ)|2µ(x, ξ). The assertion then follows from (4.3).

As was already mentioned in the introduction, condition (MS) is a restriction on
the support of the measure |ϕ̂(ξ)|2µ(x, ξ). Two extremal cases in which it is trivially
satisfied are the following:

(i) ϕ̂|Rd\Q ≡ 0; in this case (MS) holds independently of what µ is.
(ii) The sequence (uk) is asymptotically band-limited ; i.e., its Wigner measures

at scale (hk) are concentrated on the cube Q. For those sequences, condition (MS)
only involves the behavior of µ on the boundary ∂Q: it essentially expresses that the
restrictions of µ to parallel sides of ∂Q do not overlap (i.e., are mutually singular). A
sufficient condition for this is, for instance,

lim sup
k→∞

∫
Rd\QR

∣∣∣∣ûk

(
ξ

hk

)∣∣∣∣
2

dξ

(2πhk)d
→ 0 as R → ∞,(4.4)

where QR := [−π, π − 1/R)d.

Remark 4.4. In any of the above cases, we have

1Q(ξ)µϕ(x, ξ) = |ϕ̂(ξ)|2µ(x, ξ).

Hence, the restriction of µϕ to R
d ×Q coincides with µ if and only if |ϕ̂(ξ)|2 = 1 for

µ-almost every ξ ∈ Q.

The specific choice ϕ = δ0 corresponds to the analysis of discretization, for then
Sh
δ0
u(n) = u(hn). Theorem 4.2 takes the following simple form.

Corollary 4.5. Let (hk) be a scale and let (uk) be a sequence in Hs(Rd), for
some s > d/2, such that (〈hkDx〉suk) is bounded. If µ is its Wigner measure at scale
(hk) and the measures µ(x, ξ + 2πn) are mutually singular, then Wigner measure µδ0

corresponding to the sequence of discretizations is the periodization:

µδ0(x, ξ) =
∑
n∈Zd

µ(x, ξ + 2πn).

In other words, µδ0 is the limit of the Wigner series whk

S [uk].

This corollary is particularly useful in the explicit computation of Wigner mea-
sures for discrete functions. As an example, consider the concentrating and os-
cillating sequences we defined in the introduction, fk(x) = kd/2ρ(k(x − x0)) and

gk(x) := ρ(x)eikx·ξ
0

with ρ ∈ L2(Rd). Using identities (1.6) and (1.7) we obtain, for
(fk) and (gk), respectively,

µδ0(x, ξ) = δx0(x) ⊗
∑
n∈Z

|ρ̂(ξ + 2πn)|2 dξ

(2π)d

if, for instance, supp ρ̂ ⊂ Q, and

|ρ(x)|2dx⊗
∑
n∈Zd

δξ0+2πn(ξ),(4.5)

with no assumption on ρ.
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4.3. Reconstruction. Now we deal with the reconstruction operator Th
ϕ ; it

modifies the high-frequency behavior of a sequence of discrete functions in the follow-
ing way.

Theorem 4.6. Let (hk) be a scale and (Uhk) an hk-bounded sequence; take
ϕ satisfying (BPs). If Mhk [Uhk ] converges to the Wigner measure µ which verifies
(ND), then mhk [Thk

ϕ Uhk ] converges to a Wigner measure µϕ given by

µϕ(x, ξ) = |ϕ̂(ξ)|2µ(x, ξ).(4.6)

The proof of Theorem 4.6 is based on explicit formulas for the Fourier transforms
of Th

ϕU . As we have already seen,

T̂h
ϕU(ξ) = ϕ̂(hξ)hdÛ(hξ)(4.7)

for any U ∈ L2(hZ
d). The following remark ensures that Proposition 8.3 can be

applied in the proof below.
Remark 4.7. If ϕ ∈ Hs(Rd) satisfies (BPs), then ϕ̂ ∈ L∞(Rd; 〈ξ〉s).
Proof of Theorem 4.6. Just notice that (4.7) can be rewritten as

Th
ϕU

h = ϕ̂(hDx)Th
δ0U

h.

The hypotheses made on ϕ and µ allow us to apply Proposition 8.3 (see Remark 4.7)
and conclude the proof.

Identity (4.6) expresses how the measure µ is modulated by the profile ϕ; the
necessity of the hypothesis (ND) for this result is discussed in section 4.4 as well.

Since µ is Γ-periodic in ξ, formula (4.6) suggests that µ may be compared to the
periodization of µϕ with respect to the variable ξ.

Corollary 4.8. Let ϕ, (Uhk), µ, and µϕ be as in Theorem 4.6. Then the
periodization

µϕ,s(x, ξ) :=
∑
n∈Zd

〈ξ + 2πn〉2sµϕ(x, ξ + 2πn)(4.8)

is a well-defined8 measure, Γ-periodic in ξ, that satisfies

µϕ,s(x, ξ) = τ〈Dx〉sϕ(ξ)µ(x, ξ).(4.9)

In particular,
(i) if τ〈Dx〉sϕ(ξ) = 1 except for ξ in a set of zero µ-measure, then µϕ,s = µ;
(ii) τ〈Dx〉sϕ ≡ 1 if and only if the identity µϕ,s = µ holds for every sequence

(Uhk).
Proof. Since |〈ξ〉sϕ̂(ξ)|2 is a nonnegative continuous function, the series defining

τ〈Dx〉sϕ(ξ) converges absolutely for every ξ on the support of µ (which consists of
continuity points for ϕ̂(ξ)). Thus, by the dominated convergence theorem,∫

Rd×Rd

a(x, ξ)τϕ,s(ξ)dµ(x, ξ) =
∑
n∈Zd

∫
Rd×Rd

a(x, ξ)|〈ξ + 2πn〉sϕ̂(ξ + 2πn)|2dµ(x, ξ)

8The limit defining the sum (4.8) is understood to exist for the weak convergence of measures in
M+(Rd × R

d).
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for every a ∈ Cc(R
d × R

d). Now, taking into account (4.6) and the fact that µ is
Γ-periodic in ξ, we find that∫

Rd×Rd

a(x, ξ)τϕ,s(ξ)dµ(x, ξ) =
∑
n∈Zd

∫
Rd×Rd

a(x, ξ)〈ξ + 2πn〉2sdµϕ(x, ξ + 2πn),

and the first part of the result follows.
Statement (i) as well as the “only if” part of (ii) are trivial. To obtain the necessity

in (ii), just consider sequences of discrete functions whose Wigner measures are of the
form µ(x, ξ) = ν(x)⊗

∑
n∈Zd δξ0+2πn (as (4.5), for instance). Clearly, for µϕ,s = µ to

hold for such a measure, we must have τ〈Dx〉sϕ(ξ0) = 1.
Remark 4.9. (i) Because of Lemma 3.5, if relation µϕ,s = µ holds for every hk-

bounded sequence of discrete functions, then the profile ϕ has the following property:
{h−d/2ϕh

n : n ∈ Z
d} is an orthonormal family in Hs(Rd) for every h > 0.

(ii) However, the converse is not true: if ϕ gives rise to an orthonormal family,
then τ〈Dx〉sϕ(ξ) = 1 holds outside a set of null Lebesgue measure. If µ is supported
on that set, identity µϕ,s = µ may not hold.

As in the preceding section, our result has an interpretation in terms of Wigner
series. Under the conditions of Theorem 4.6, the measure µϕ,s may be obtained as
the limit of the functions

whk

S [〈hkDx〉sThk
ϕ Uhk ],

as k → ∞, provided (〈hkDx〉sThk
ϕ Uhk) is hk-oscillatory. Note, however, that this may

not be the case for certain profiles ϕ (see section 5.3).
In particular, Corollary 4.8 shows that the limits of whk

S [Thk
ϕ Uhk ] and Mhk [Uhk ]

coincide if we choose, for instance, ϕ := 1[−1/2,1/2)d .

4.4. The necessity of the hypotheses of Theorems 4.2 and 4.6. Formulas
(4.6) and (4.2) may not hold when ϕ̂ is not continuous and the Wigner measure µ
does not vanish on the closure of the set of discontinuity points Dϕ̂. We illustrate
this with two one-dimensional examples where

ϕ(x) =
sinπx

πx
.

We will chose 1Q as the representative of ϕ̂ for which the counterexamples will be
built.

1. Necessity of condition (ND) in Theorem 4.6. Take Uh to be the sequence
discrete function of L2(hZ

d) given by their Fourier transforms:

Ûh(ξ) :=
1

h

∑
n∈Z

1(−1,1)

(
ξ − (2n + 1)π

h

)
.

Then, denoting by µ the Wigner measure at scale h of (Uh),

|ϕ̂(ξ)|2µ(x, ξ) =
sin2(x)

π2x2
dx⊗ δ−π(ξ).

This measure differs from µϕ, which is given by

µϕ(x, ξ) =
sin2(x/2)

π2x2
dx⊗ [δπ(ξ) + δ−π(ξ)].
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Remark 4.10. (i) The particular choice of the representative of ϕ̂ does not play
a role. Theorem 4.6 still fails if we take as representative of ϕ̂ the characteristic
functions of (−π, π)d or [−π, π]d.

(ii) In particular, this example shows that even the two projections on x and ξ of
the measures µ and µϕ may differ.

(iii) This also shows that the periodization in ξ of µϕ does not necessarily coincide
with µ, even when τϕ = 1, as is the case here. Thus the conclusion of Corollary 4.8
may fail when ϕ̂ is not continuous.

Our following counterexample to Theorem 4.2 is based on the same principle.
2. Necessity of condition (ND) in Theorem 4.2. Define

v̂h(ξ) := 1(−1,1)(ξ + π/h).

Then, denoting by µ the Wigner measure at scale h of (vh),

∑
n∈Z

|ϕ̂(ξ + 2πn)|2µ(x, ξ + 2πn) =
sin2(x)

π2x2
dx⊗

∑
n∈Z

δ(2n+1)π(ξ),

and this is different from µϕ, which is precisely

µϕ(x, ξ) =
sin2(x/2)

π2x2
dx⊗

∑
n∈Z

δ(2n+1)π(ξ).

Finally, we investigate hypothesis (MS). Now we set ϕ := δ0.
3. Necessity of condition (MS) in Theorem 4.2. Define

v̂h(ξ) := 1Q(hξ)
∑
n∈Z

1(−1,1)(ξ − (2n + 1)π).

Clearly, as in our first example, the periodization of the Wigner measure of (vh) is

∑
k∈Zd

µ(x, ξ + 2πn) =
sin2(x/2)

π2x2
dx⊗

∑
k∈Z

δ(2n+1)π(ξ).

However, the sequence of discretizations (Sh
δ0
vh) has the following one:

µδ0(x, ξ) =
sin2(x)

π2x2
dx⊗

∑
n∈Z

δ(2n+1)π(ξ).

The verification of these statements easily follows from (1.6), identity (8.5), and
Lemma 8.13.

4.5. A Poisson summation formula and proof of Theorem 4.2. The com-
putation of the Fourier transform of Sh

ϕu is given by the following identity.

Lemma 4.11. Let ϕ satisfy (BPs) and let u ∈ H−s(Rd). Then the Fourier
transform of Sh

ϕu is

hd
∑
n∈Zd

Sh
ϕu(n)e−ihn·ξ =

∑
n∈Zd

ϕ̂(hξ + 2πn)û

(
ξ +

2π

h
n

)
,(4.10)
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the convergence of the first series being in L2
loc(R

d), while the second takes place in
L1
loc(R

d).

Proof. Begin by noticing that ϕ̂û ∈ L1(Rd), and thus

Πh(ξ) :=
∑
n∈Zd

ϕ̂(hξ + 2πn)û(ξ + 2π/hn)

is a well-defined (2π/h)Zd-periodic L1
loc(R

d) function, the series defining it being
absolutely convergent in L1

loc(R
d). We can compute its Fourier coefficients:∫

[−π/h,π/h)d
Πh(ξ)eihn·ξ

hddξ

(2π)d
=
∑
k∈Zd

∫
Q

ϕ̂(ξ + 2πk)û

(
ξ + 2πk

h

)
ein·ξ

dξ

(2π)d

=

∫
Rd

ϕ̂(ξ)û

(
ξ

h

)
ein·ξ

dξ

(2π)d

=

∫
Rd

hdϕ̂(hξ)e−ihn·ξû(ξ)
dξ

(2π)d

= 〈ϕh
n, u〉S′×S = hdSh

ϕu(n).

Lemma 3.1 proves that Sh
ϕu is square-summable and, consequently,

Πh(ξ) =
∑
n∈Zd

hdSh
ϕu(n)e−ihn·ξ,

the sum being understood in the L2-sense. This is precisely formula (4.10).
Remark 4.12. Identity (4.10) may be viewed as a generalization of the Poisson

summation formula. Taking as ϕ the Dirac delta δ0, we obtain

hd
∑
n∈Zd

u(hn)e−ihn·ξ =
∑
n∈Zd

û

(
ξ +

2π

h
n

)

for every u ∈ Hs(Rd) with s > d/2.
Proof of Theorem 4.2. The proof will be done in two steps.
Step 1. We first establish the result for sequences such that ϕ̂(ξ)ûk(ξ/hk) has

support in a ball B(0;R) for every k ∈ N. We claim that the following formula holds:

Thk

δ0
Shk
ϕ uk(x) =

∑
|n|≤R+π

√
d

e−2πin·x/hk ϕ̂(hkDx)uk(x).

This is obtained by applying the inverse Fourier transform to both sides of identity
(4.10) and remarking that only summands satisfying |n| ≤ R+π

√
d must be considered

because of the condition on the support of ϕ̂ ûk(·/hk). The Wigner measures of the
functions

e−2πin·x/hk ϕ̂(hkDx)uk(x)

are precisely (cf. Proposition 8.3 and Remark 4.7)

|ϕ̂(ξ + 2πn)|2µ(x, ξ + 2πn).

By hypothesis, they are mutually singular so, by Lemma 8.13, we deduce that the
measure µϕ obtained as the limit of mhk [Thk

δ0
Shk
ϕ uk] is given by (4.2).
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Step 2. We prove the result in the general case by taking advantage of hypothesis
(D). Let χ ∈ C∞

c (Rd) be a cut-off function identically equal to one in the unit ball
B(0; 1). Denote by Shk

ϕ,Ruk the truncation given by

̂Shk

ϕ,Ruk(ξ) :=
̂

Shk
ϕ χ

(
hkDx

R

)
uk(ξ)

=
1

(hk)d

∑
n∈Zd

ϕ̂(ξ + 2πn)χ

(
ξ + 2πn

R

)
ûk

(
ξ + 2πn

hk

)
.

Then, by the first step we have just proved, Mhk [Shk

ϕ,Ru] converges to

µϕ
R(x, ξ) :=

∑
n∈Zd

∣∣∣∣ϕ̂(ξ + 2πn)χ

(
ξ + 2πn

R

)∣∣∣∣
2

µ(x, ξ + 2πn).(4.11)

We claim that (D) implies the following:

lim sup
k→∞

‖Shk
ϕ uk − Shk

ϕ,Ruk‖2
L2(hkZd) → 0 as R → ∞.(4.12)

It is sufficient to realize that

Shk
ϕ uk − Shk

ϕ,Ruk = Shk

ψR
uk

for ψ̂R := χ(·/R)ϕ̂. The norm of Shk

ψR
is precisely (cf. Lemma 3.1)

essup
ξ∈Q

∑
n∈Zd

∣∣∣∣〈ξ + 2πn〉sϕ̂(ξ + 2πn)χ

(
ξ + 2πn

R

)∣∣∣∣
2

,

which tends to zero as R → 0.

Lemma 8.12 then ensures that µϕ
R weakly converge to µϕ. Identity (4.11) means

that ∫
Rd×Rd

a(x, ξ)dµϕ
R(x, ξ) =

∫
Rd×Rd

∑
k∈Zd

a(x, ξ + 2πn)|ϕ̂(ξ)|2|χ(ξ/R)|2dµ(x, ξ)

for every test function a ∈ S. Passing to limits as R → ∞ in the above identity, we
obtain the claimed result.

Notice that the same argument may be applied if, instead of condition (D), we
have that (〈hkDx〉−suk) is hk-oscillatory. This is because (4.12) may be estimated
from above by

lim sup
k→∞

∥∥∥∥〈hkDx〉−s

(
1 − χ

(
hkDx

R

))
uk

∥∥∥∥
2

L2(Rd)

→ 0 as R → ∞

because of Lemma 3.1 and the hk-oscillation hypothesis.
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5. Computation of defect measures.

5.1. Relations between defect and Wigner measures in the discrete
setting. In this paragraph, we establish the analogue of Proposition 1.2 in the discrete
setting. In particular, we present conditions that ensure that the projection on the
x-component of a Wigner measure may be obtained as the limit of quadratic densities
of the type

Eh[Uh](x) := hd
∑
n∈Zd

|Uh
n |2δhn(x).

Proposition 5.1. Let (hk) be a scale and (Uhk) an hk-bounded sequence. Sup-
pose that (Mhk [Uhk ]) converges to µ as k → ∞. Then, for every φ ∈ Cc(R

d),∫
Rd×Q

φ(x)dµ(x, ξ) = lim
k→∞

(hk)
d
∑
n∈Zd

φ(hkn)|Uhk
n |2.(5.1)

If (εk) is a scale such that hk  εk and the transforms Mεk [Uhk ] converge to µ, then
(5.1) holds, provided (Uhk) is εk-oscillatory, i.e.,

lim sup
k→∞

(hk)
d

∫
Q\B(0;hk/εkR)

|Ûhk(ξ)|2dξ → 0 as R → ∞.(5.2)

In view of Proposition 5.1, one might think that Wigner measures at scales coarser
than hk are unnecessary. However, as the next result shows, if (Uhk) is εk-oscillatory
for such a scale, then the Wigner measure at scale (hk) does not give any information
about the oscillation effects.

Proposition 5.2. Let (hk) and (εk) be scales such that hk  εk. For every
εk-oscillatory, hk-bounded sequence (Uhk) such that Mhk [Uhk ] ⇀ µ as k → ∞, we
have

µ(x, ξ) = ν(x) ⊗
∑
k∈Zd

δ2πk(ξ),

where ν is the weak limit in M+(Rd) of the measures Ehk [Uhk ].
The Wigner measure also gathers the information on the densities |FεkUhk(ξ)|2;

indeed, these converge to the projection on ξ of the Wigner measure, provided that
no energy is lost at infinity.

Proposition 5.3. Let (hk) and (εk) be scales such that hk/εk is bounded. Sup-
pose that (Uhk) is compact at infinity,

lim sup
k→∞

(hk)
d
∑

|hkn|>R

|Uhk
n |2 → 0 as R → ∞,(5.3)

and that Mεk [Uhk ] ⇀ µ as k → ∞. Then∫
Rd×Rd

ψ(ξ)dµ(x, ξ) = lim
k→∞

∫
Rd

ψ(ξ)|FεkUhk(ξ)|2dξ

for every ψ ∈ Cc(R
d).

The proof of Propositions 5.1 and 5.3 requires the following preliminary result,
which explains how the transform Mε[Uh] of a discrete function Uh can be localized.



WIGNER MEASURES IN THE DISCRETE SETTING 369

Lemma 5.4. Let Uh ∈ L2(hZ
d) and let ϕ, φ ∈ C∞

c (Rd). Then for every a ∈
S(Rd × R

d) the following holds:

lim
k→∞

∣∣∣∣〈Mεk [Uhk ], |φ(x)|2ϕ(ξ)〉S′×S − (hk)
d

∫
Rd

|φ̂Uhk(ξ)|2ϕ
(
εk
hk

ξ

)
dξ

(2π)d

∣∣∣∣ = 0.

Proof. First note that, as a consequence of relation (1.13) and Lemma 8.5, we
have

lim
k→∞

|〈Mεk [Uhk ], |φ(x)|2ϕ(ξ)〉S′×S − 〈Mεk [φUhk ], ψ(x)ϕ(ξ)〉S′×S | = 0(5.4)

for every test function ψ ∈ C∞
c (Rd) such that ψ(x) = 1 for x ∈ suppφ. Now, (8.2.i)

and (1.13), together with Plancherel’s formula for the discrete Fourier transform, yield

〈Mεk [φUhk ], ψ(x)ϕ(ξ)〉S′×S = 〈φ(x)Thk

δ0
Uhk , ϕ(εkDx)φ(x)Thk

δ0
Uhk〉S′×S

= (hk)
2d

∫
Rd

|φ̂Uhk(hkξ)|2ϕ(εkξ)
dξ

(2π)d
,

and the result follows.
Proof of Proposition 5.1. Identity (5.1) in the case hk = εk is a direct consequence

of the identity ∫
Q

Mh[U ](x, ξ)dξ = Eh[Uh](x)

and the fact that, due to the Γ-periodicity in ξ of Mhk [Uhk ] and µ, one has

lim
k→∞

∫
Rd×Q

φ(x)Mhk [Uhk ](x, ξ)dxdξ =

∫
Rd×Q

φ(x)dµ(x, ξ)

for every φ ∈ C∞
c (Rd).

Next we analyze the case hk/εk → 0. Given functions φ, χ ∈ C∞
c (Rd), and using

Lemma 5.4 and periodization in the variable ξ, we find

∫
Rd×Rd

|φ(x)|2χ(ξ)dµ(x, ξ) = lim
k→∞

(hk)
d

∫
Q

|φ̂Uhk(ξ)|2
∑
n∈Zd

χ

(
εk
hk

(ξ + 2πn)

)
dξ

(2π)d
.

(5.5)

Choose a function χ ∈ C∞
c (Rd) such that

χ(ξ) = 1 for |ξ| ≤ 1,

χ(ξ) = 0 for |ξ| ≥ 2,

0 ≤ χ(ξ) ≤ 1 for ξ ∈ R
d,

and set χR(ξ) := χ(ξ/R) for every R > 0. With such a test function and hk/εk < π/R
we have χR( εk

hk
(ξ + 2πn)) = χR( εk

hk
ξ) ≤ 1 for every ξ ∈ Q. Then, taking this into

account in (5.5) and using Plancherel’s formula, the following is obtained:

lim
k→∞

∣∣∣∣(hk)
d

∫
Q

|φ̂Uhk(ξ)|2 dξ

(2π)d
−
∫

Rd×Rd

|φ(x)|2χR(ξ)dµ(x, ξ)

∣∣∣∣ ≤ M(R),
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where

M(R) := lim sup
k→∞

(hk)
d

∫
Rd

(
1 − χR

(
εk
hk

(ξ + 2πn)

))
|φ̂Uhk(ξ)|2 dξ

(2π)d
.

Identity (5.1) is obtained by letting R tend to ∞, noticing that (5.2) implies that
M(R) → 0 as R → ∞.

Proof of Proposition 5.2. Since (Uhk)k∈N is εk-oscillatory, we have

lim sup
k→∞

∫
Q\B(0;δ)

|φ̂Uhk(ξ)|2dξ = 0

for every δ > 0 and φ ∈ C∞
c (Rd). Using Lemma 5.4 below, we obtain, for every

ϕ ∈ C∞
c (Q \ {0}),

0 = lim
k→∞

∫
Q

ϕ(ξ)|φ̂Uhk(ξ)|2 dξ

(2π)d
=

∫
Rd×Q

|φ(x)|2ϕ(ξ)dµ(x, ξ).

In particular, µ is concentrated on the set R
d ×{0}. Since µ(· ×Q) = ν(x) by Propo-

sition 5.1, we find that, because of the periodicity, µ(Rd × ·) = ν(Rd)
∑

k∈Zd δ2πk(ξ),
and this restricts µ to being equal to ν ⊗

∑
k∈Zd δ2πk.

Proof of Proposition 5.3. Since the densities |FεkUhk |2 are uniformly bounded in
L1(Rd) (and consequently in M(Rd)) it suffices to prove the result for test functions
ψ ∈ C∞

c (Rd). Let χ and χR be defined as in the proof of Proposition 5.1. Because of
Lemma 5.4 the following holds for every ψ ∈ S(Rd):∫

Rd×Rd

|χR(x)|2ψ(ξ)dµ(x, ξ) = lim
k→∞

∫
Rd

ψ(ξ)|FεkχRU
hk(ξ)|2dξ.

Since |χR(x)|2 → 1 as R → ∞ for every x ∈ R
d, we have to show only that

lim
R→∞

∫
Rd×Rd

|χR(x)|2ψ(ξ)dµ(x, ξ) = lim
k→∞

∫
Rd

ψ(ξ)|FεkUhk(ξ)|2dξ.

This appears as a consequence of the identity∫
Rd

ψ(ξ)(|FεkUhk(ξ)|2 − |FεkχRU
hk(ξ)|2)dξ

=

∫
Rd

ψ(ξ)[Fεk(Uhk − χRU
hk)(ξ)]FεkUhk(ξ)dξ

+

∫
Rd

ψ(ξ)FεkχRU
hk(ξ)[Fεk(Uhk − χRUhk)(ξ)]dξ,

which implies

lim sup
k→∞

∣∣∣∣
∫

Rd

ψ(ξ)(|FεkUhk(ξ)|2 − |FεkχRU
hk(ξ)|2)dξ

∣∣∣∣
≤ Cψ lim sup

k→∞
‖Uhk − χRU

hk‖2
L2(hZd).

Since the Uhk are compact at infinity, the second term in the above estimate tends
to zero as R tends to infinity, and thus∣∣∣∣lim sup

k→∞

∫
Rd

ψ(ξ)|FεkUhk(ξ)|2 −
∫

Rd×Rd

|χR(x)|2ψ(ξ)dµ(x, ξ)

∣∣∣∣→ 0 as R → ∞.

One easily deduces from this that the measures |FεkUhk(ξ)|2dξ converge in M+(Rd)
to the measure

∫
Rd µ(dx, ·), as claimed.
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5.2. Defect measures of reconstructed sequences. Let (Uhk) be hk-bound-
ed and ϕ ∈ Hs(Rd) some profile satisfying (BPs). As a consequence of Lemma 3.1,
the sequence of densities

|〈hkDx〉sThk
ϕ Uhk |2

is uniformly bounded in L1(Rd). Hence, Helly’s compactness theorem ensures that,
extracting a subsequence if necessary, there exists a measure νϕ ∈ M+(Rd) such that

lim
k→∞

∫
Rd

φ(x)|〈hkDx〉sThk
ϕ Uhk(x)|2dx =

∫
Rd×Q

φ(x)dνϕ(x).

The main issue addressed in this section is that of clarifying how νϕ depends on the
sequence (Uhk) and the profile ϕ. We shall see that a formula relating νϕ and the limit
of Ehk [Uhk ] does not exist in general. However, such a formula may be established
in terms of the Wigner measure of (Uhk).

Suppose that Mhk [Uhk ] converges to µ. Then Theorem 4.6 may be applied to
obtain that, provided µ(Rd ×Dϕ̂) = 0, one has

mhk [Thk
ϕ Uhk ] ⇀ |ϕ̂(ξ)|2µ(x, ξ).

In general, we are only able to ensure (see Proposition 1.7 in [9])

νϕ(x) ≥
∫

Rd

|〈ξ〉sϕ̂(ξ)|2µ(x, dξ),

and equality holds whenever (〈hkDx〉sThk
ϕ Uhk) is hk-oscillatory. Note, however, that

this is not always the case. At the end of this section we provide an example of
profile ϕ and a sequence (Uhk) for which (〈hkDx〉sThk

ϕ Uhk) fails to be hk-oscillatory.
Nevertheless, the following simple sufficient condition for hk-oscillation holds.

Proposition 5.5. (〈hkDx〉sThk
ϕ Uhk) is hk-oscillatory whenever (D) holds.

This immediately follows from the following lemma.
Lemma 5.6. (〈hkDx〉sThk

ϕ Uhk) is hk-oscillatory if and only if

lim sup
k→∞

(hk)
d

∫
Q

σR
ϕ (ξ)|Ûhk(ξ)|2dξ → 0 as R → ∞,

where

σR
ϕ (ξ) :=

∑
|n|≥R

|〈ξ + 2πn〉sϕ̂(ξ + 2πn)|2.

Proof. Start by noticing that∫
|ξ|≥R/hk

| ̂〈hkDx〉sThk
ϕ Uhk(ξ)|2dξ =

∫
|ξ|≥R

(hk)
d|〈ξ〉sϕ̂(ξ)Ûhk(ξ)|2dξ.

Periodizing in ξ, we get∫
Q

σR+
√
dπ

ϕ (ξ)|Ûhk(ξ)|2dξ ≤
∫
|ξ|≥R

|〈ξ〉sϕ̂(ξ)Ûhk(ξ)|2dξ

≤
∫
Q

σR−
√
dπ

ϕ (ξ)|Ûhk(ξ)|2dξ,
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and the claim follows.
Hence, hk-oscillation is obtained if ϕ decays at infinity at a uniform rate. For more

general ϕ, it is still possible to obtain sufficient conditions; however, these depend on
the particular sequence of discrete functions to be reconstructed.

Proposition 5.7. Suppose

(i) µ(Rd ×Dτ〈Dx〉sϕ
) = 0;

(5.6)
(ii) (Uhk) is compact at infinity.

Then (〈hkDx〉sThk
ϕ Uhk) is hk-oscillatory.

Proof. For the sake of simplicity, we prove the result for s = 0, the proof in
the general case being identical. Taking into account the periodicity of the densities
involved, Proposition 5.3 ensures that

lim
k→∞

(hk)
d

∫
Q

ψ(ξ)|Ûhk(ξ)|2dξ =

∫
Rd×Q

ψ(ξ)dµ(x, ξ)(5.7)

for every ψ ∈ Cc(R
d), and the claim follows. Since µ(Rd × Dτϕ) = 0, necessarily

µ(Rd × DσR
ϕ
) is null for every R > 0. From classical results on weak convergence

of measures, one deduces that relation (5.7) also holds for ψ = σR
ϕ . Hence, by the

dominated convergence theorem,

lim
R→∞

lim
k→∞

(hk)
d

∫
Q

σR
ϕ (ξ)|Ûhk(ξ)|2dξ = lim

R→∞

∫
Rd×Q

σR
ϕ (ξ)dµ(x, ξ) = 0,

and the result follows.
Combining Propositions 5.5, 5.7, and 1.2, we obtain the following result.
Proposition 5.8. Suppose that at least one of either (D) or (5.6) is satisfied

and that µ(Rd ×Dϕ̂) = 0. Then

lim
k→∞

∫
Rd

φ(x)|〈hkDx〉sThk
ϕ Uhk |2dx =

∫
Rd×Rd

φ(x)|〈ξ〉sϕ̂(ξ)|2dµ(x, ξ)(5.8)

for every φ ∈ Cc(R
d).

As anticipated above, (5.8) shows that the knowledge of the weak limit of the
measures Ehk [Uhk ] and the profile ϕ are not enough, in general, to reconstruct the
weak limit of the densities |〈hkDx〉sThk

ϕ Uhk |2dx. However, when the sequence of
discrete functions under consideration is εk-oscillatory for some scale coarser than the
reconstruction step hk, there does exist a formula that relates both limits, as follows.

Corollary 5.9. Let (Uhk) be an hk-bounded, εk-oscillatory sequence such that
(Ehk [Uhk ]) weakly converges to a measure ν. Suppose, moreover, that ϕ̂ is continuous
at Γ and that any of (D) or (5.6) is satisfied. Then the densities |〈hkDx〉sThk

ϕ Uhk |2
weakly converge to the measure

νϕ(x) =

⎛
⎝∑

n∈Zd

|〈2πn〉sϕ̂(2πn)|2
⎞
⎠ ν(x).

Proof. Using Proposition 5.2, we find that any Wigner measure at scale hk of
(Uhk) equals

µ(x, ξ) = ν(x) ⊗
∑
n∈Zd

δ2πn(ξ).
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Since µ(Rd ×Dϕ̂) = 0, Proposition 5.8 is applicable and gives

|〈hkDx〉sThk
ϕ Uhk |2dx ⇀ τ〈Dx〉sϕ(0)ν(x) as k → ∞,

as claimed.

Note that condition (5.6.i) reduces in this setting to the requirement that τ〈Dx〉sϕ
is continuous at ξ = 0.

5.3. A counterexample to h-oscillation. Here we construct a function ϕ ∈
L2(R) satisfying (BPs) such that ϕ̂ is continuous but

‖σR
ϕ ‖L∞(Q) = 1 for every R > 0.

With such a profile, we show that theres exist a sequence of discrete functions (Uh)
such that (Th

ϕU
h) is not h-oscillatory.

To construct ϕ, define tn := e−n for n = 0, 1, 2 . . . and let ψn be the piecewise
linear function given for n ≥ 1 by

ψn(t) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

t− tn+1

tn − tn+1
if t ∈ (tn+1, tn),

t− tn−1

tn − tn−1
if t ∈ (tn, tn−1),

0 otherwise.

Clearly
∑∞

n=1 ψn(t) = 1 for t ∈ (0, t1), and the sum vanishes for t ≤ 0. Defining

ϕ̂(ξ) :=

√√√√ ∞∑
n=1

ψn(ξ − 2πn),

we obtain ϕ ∈ L2(R), ϕ̂ ∈ C(R), and τϕ(ξ) =
∑∞

n=1 ψn(ξ) for every ξ ∈ Q.

Moreover

σn
ϕ(ξ) =

{
1 if ξ ∈ (0, tn+1),

0 if ξ ≤ 0.

Thus ‖σR
ϕ ‖L∞(Q) = 1 for every R > 0.

If we choose discrete functions Uh ∈ L2(hZ) such that

Ûh(ξ) = h−1
∑
n∈Z

1(0,h)(ξ + 2πn),

then for the ϕ constructed above we obtain

lim
h→0

∫
Q

σR
ϕ (ξ)h|Ûh(ξ)|2dξ = 1 for every R > 0.

This proves that (Th
ϕU

h) is not h-oscillatory.
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6. High-frequency analysis: h � ε. Here we shall investigate the structure of
Wigner measures at scales (εk) asymptotically coarser than the sampling/reconstruc-
tion rate (hk).

In the next two theorems, we suppose that ϕ satisfies (BPs) and ϕ̂ is continuous
in a neighborhood of ξ = 0. Moreover, (hk) and (εk) will be scales such that hk  εk.

Theorem 6.1. Suppose that (Uhk) is hk-bounded and Mεk [Uhk ] converges to the
Wigner measure µ. Then mεk [Thk

ϕ Uhk ] converges to a measure µϕ given by

µϕ(x, ξ) = |ϕ̂(0)|2µ(x, ξ).(6.1)

The proof of this result is completely analogous to that of Theorem 4.6.
Concerning the sampling operators, the situation is much similar.
Theorem 6.2. Let (uk) be a sequence in H−s(Rd) such that (〈hkDx〉−suk) is

bounded in L2(Rd) and εk-oscillatory.
(i) Then (Shk

ϕ uk) is εk-oscillatory.
(ii) Suppose moreover that mεk [uk] converges to a Wigner measure µ. Then

Mεk [Shk
ϕ uk] converges to the Wigner measure µϕ given by

µϕ = |ϕ̂(0)|2µ.(6.2)

Proof. To prove the first part of the theorem, begin by noticing that, by the
Cauchy–Schwarz inequality and Lemma 4.11, for almost every ξ ∈ R

d,

|̂Shk
ϕ uk(ξ)|2 =

∣∣∣∣∣∣
1

(hk)d

∑
n∈Zd

ϕ̂(ξ + 2πn)ûk

(
ξ + 2πn

hk

)∣∣∣∣∣∣
2

≤
‖τ〈Dx〉sϕ‖L∞(Q)

(hk)2d

∑
n∈Zd

∣∣∣∣〈ξ + 2πn〉−sûk

(
ξ + 2πn

hk

)∣∣∣∣
2

.

Thus ∫
Q\B(0;hk/εkR)

(hk)
d|̂Shk

ϕ uk(ξ)|2dξ

≤ ‖τ〈Dx〉sϕ‖L∞(Q)

∫
Q\B(0;R/εk)

∑
n∈Zd

|〈hkξ + 2πn〉−s ûk(ξ + 2πn)|2dξ

≤ ‖τ〈Dx〉sϕ‖L∞(Q)

∫
Rd\B(0;R/εk)

|〈hkξ〉−s ûk(ξ)|2dξ,

and this clearly proves that (Shk
ϕ uk) is εk-oscillating as soon as (〈hkDx〉−suk) is.

The proof of identity (6.2) is essentially identical to that of Theorem 4.2. A
completely analogous argument to that used in Step 2 of that proof allows us to
consider only sequences such that ϕ̂(hk/εk·)ûk(·/εk) is supported in a ball B(0;R).
This hypothesis, together with Lemma 4.11, implies that, for hk/εk small enough,

(hk)
d ̂Shk

ϕ uk

(
hk

εk
ξ

)
= ϕ̂

(
hk

εk
ξ

)
ûk(ξ/εk);

that is, only one summand is involved. Then the result follows from Proposition 8.3
exactly as in the proof of Theorem 4.2.

We conclude with a simple remark.
Corollary 6.3. Under the assumptions and notation of Theorems 6.1 and 6.2,

the following hold:
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(i) If ϕ has zero mean (i.e., ϕ̂(0) = 0), then the Wigner measure at scale (εk)
of any sequence (Thk

ϕ Uhk) or (Shk
ϕ uk) vanishes identically. In particular, this is the

case if ϕ is a wavelet.9

(ii) µϕ = µϕ = µ always holds for profiles such that |ϕ̂(0)| = 1.

7. Wigner measures of sampled/reconstructed sequences. Now we are
able to describe Wigner measures of sequences of the form Th

ψS
h
ϕu. In its full gener-

ality, our result requires several compatibility hypotheses, which we describe below.
First of all,

(i) ψ and ϕ satisfy (BPs) with exponents s′ and s respectively;
(7.1)

(ii) ϕ satisfies (D).

The admissible sequences will be assumed to be such that

uk ∈ H−s(Rd), and (〈hkDx〉−suk) is bounded in L2(Rd),(7.2)

and their Wigner measures must satisfy the following compatibility conditions for
some precise representatives of ψ̂ and ϕ̂:

(i) µ fulfills (ND).

(ii)

∫
Rd×Rd

1D
ψ̂
(ξ + 2πn)|ϕ̂(ξ)|2dµ(x, ξ) = 0, n ∈ Z

d.(7.3)

(iii) µ satisfies (MS).

Combining Theorems 4.6 and 4.2 we obtain the following theorem.
Theorem 7.1. Let ψ and ϕ be functions satisfying (7.1); let (hk) be a scale and

let (uk) be a sequence satisfying (7.2). Suppose, moreover, that mhk [uk] converges to
a Wigner measure µ that satisfies (7.3).

Then mhk [Thk

ψ Shk
ϕ uk] converges to the measure µϕ,ψ given by

∫
Rd×Rd

a(x, ξ)dµϕ,ψ(x, ξ) =

∫
Rd×Rd

∑
n∈Zd

a(x, ξ + 2πn)|ψ̂(ξ + 2πn)|2|ϕ̂(ξ)|2dµ(x, ξ)

(7.4)

for every a ∈ Cc(R
d × R

d).
Proof. Hypothesis (7.3.ii) expresses that the closure of the set of discontinuity

points of ψ̂ is a null set for the Wigner measure of Shk
ϕ uk,∑

k∈Zd

|ϕ̂(ξ + 2πn)|2µ(x, ξ + 2πn).

Hence, Theorem 4.6 is applicable, and we conclude that the distributions mhk [Thk

ψ Shk
ϕ uk]

converge to the measure

|ψ̂(ξ)|2
∑
n∈Zd

|ϕ̂(ξ + 2πn)|2µ(x, ξ + 2πn).

Since |ψ̂(ξ)|2 is integrable with respect to the finite measure |ϕ̂|2µ (this is again due
to (7.3.ii)), its periodization is integrable as well, and formula (7.4) follows.

9See, for instance, [10, Proposition 2.1].
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Remark 7.2. (i) When ψ̂ and ϕ̂ verify (3.6), then hypotheses (7.1), (7.3.i), and
(7.3.ii) are immediately satisfied.

(ii) (7.1.ii) may be replaced by the requirement that (〈hkDx〉−suk) be hk-oscillatory.
From formula (7.4) one sees at once that, taking ψ = ϕ = δ0, one has that µϕ,ψ is

the periodization in ξ of the Wigner measure µ. Hence, µϕ,ψ coincides with the limit
of the Wigner series corresponding to (uk).

When ψ̂ and |ϕ̂|2µ vanish off Q it is easy to check that formula (7.4) takes the
simple form

µϕ,ψ(x, ξ) = |ψ̂(ξ)|2|ϕ̂(ξ)|2µ(x, ξ).

It is also clear that as soon as |ϕ̂(ξ)|2µ(x, ξ) is not null outside Q, the measures µϕ,ψ

and µ will in general differ.
Concerning defect measures, combining Proposition 5.8 and the previous theorem,

we obtain the following.
Theorem 7.3. Under the notation of Theorem 7.1 the following holds: if

|〈hkDx〉s
′
Thk

ψ Shk
ϕ uk|2dx weakly converges to a measure νϕ,ψ

and ψ verifies (D), then

νϕ,ψ(x) =

∫
R

d
ξ

∑
n∈Zd

|〈ξ + 2πn〉s′ ψ̂(ξ + 2πn)|2|ϕ̂(ξ)|2µ(x, dξ).(7.5)

Remark 7.4. (i) The conclusion of the theorem still holds if condition “ψ satisfies
(D)” is replaced by (5.6).

(ii) Theorems 1.3 and 1.5 follow immediately from Theorems 7.1 and 7.3.
With formula (7.5) at our disposal, we are now able to answer, in a quite general

way, questions A–D addressed in the introduction. Of course, the answer to A is
negative, since, in general, µ is not trivial in its ξ-component; concerning the problem
of filtering, we immediately get the necessary and sufficient condition

cϕ,ψ(ξ) := |ϕ̂(ξ)|2
∑
n∈Zd

|〈ξ + 2πn〉s′ ψ̂(ξ + 2πn)|2 = 0 for µ-a.e. ξ ∈ R
d.

Analogously, cϕ,ψ(ξ) = 1 for µ-almost every ξ ∈ R
d characterizes the profiles that

give νϕ,ψ = ν. To answer D, we must, of course, assume that ϕ̂ and τ〈Dx〉s′ ψ̂ are

continuous (which, as we know, is the case if (3.6) holds). In that case, we have the
equality νϕ,ψ = ν for every admissible sequence if and only if

|ϕ̂(ξ)|2 =
1

τ〈Dx〉s′ψ(ξ)
for every ξ ∈ R

d with τ〈Dx〉s′ψ(ξ) �= 0.

The sampling profile ϕ cannot be an L2(Rd) function, since |ϕ̂|2 is necessarily periodic.
When ϕ = δ0 and ψ generates an orthonormal basis in the sense of Lemma 3.5 we
always have νϕ,ψ = ν. If ψ merely generates a Riesz basis, Aν ≤ νϕ,ψ ≤ Bν holds
instead.

The above results may be used to compute Wigner measures of the orthogonal
projections Phk

ψ uk of a given sequence (uk) on the shift-invariant space defined by the

range of Thk

ψ . As we have seen in Lemma 3.6, Ph
ψ may be written as the composition
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of Th
ψ with Sh

ϕ〈hDx〉s for a sampling profile ϕ := ˜〈Dx〉sψ. Hence, Theorem 7.1 gives
the following.

Corollary 7.5. For ψ satisfying (3.6) and (uk) such that (7.2) and (MS) hold,
the defect measures of the sequence (Phk

ψ uk) is given by

νPψ
(x) =

∫
Rd

1ψ(ξ)

τ〈Dx〉sψ(ξ)
|〈ξ〉sψ̂(ξ)|2µ(x, dξ),

where 1ψ(ξ) denotes the characteristic function of the set of ξ ∈R
d such that τ〈Dx〉sψ(ξ)

�= 0.
In particular, when ψ gives rise to an orthonormal family, we obtain the simple

formula (cf. Lemma 3.5)

νPψ
(x) =

∫
Rd

|〈ξ〉sψ̂(ξ)|2µ(x, dξ).

To conclude, we shall see how the above results may be refined when the sequence
(〈hkDx〉−suk) is assumed to be εk-oscillatory at some scale hk  εk. The assumptions
of ϕ and ψ are weaker:

(i) ψ and ϕ satisfy (BPs) with exponents s′ and s, respectively.

(ii) ψ̂, ϕ̂ are continuous in a neighborhood of ξ = 0.(7.6)

(iii) τ〈Dx〉s′ψ is continuous at ξ = 0.

Theorems 6.1 and 6.2 and Corollary 5.9 then give the following.
Theorem 7.6. Let ψ and ϕ be functions satisfying (7.6), let (hk), (εk) be scales

with hk  εk, and let (uk) be a sequence such that (7.2) holds and (〈hkDx〉−suk) is
εk-oscillatory. Suppose, moreover, that mεk [uk] converges to a Wigner measure µ.

Then mεk [Thk

ψ Shk
ϕ uk] converges to the measure µϕ,ψ given by

µϕ,ψ(x, ξ) = |ψ̂(0)|2|ϕ̂(0)|2µ(x, ξ).

Moreover, if |〈hkDx〉s
′
Thk

ψ Shk
ϕ uk|2dx weakly converges to a measure νϕ,ψ, then

νϕ,ψ(x) =
∑
n∈Zd

|〈2πn〉s′ ψ̂(2πn)|2|ϕ̂(0)|2ν(x),

where ν is the weak limit of the densities |〈hkDx〉−suk|2dx.
Hence, when a sequence possesses a characteristic oscillation scale (εk) (that

is the meaning of the εk-oscillation condition), choosing a sampling/reconstruction
rate (hk) asymptotically finer than (εk) allows us to completely capture its oscilla-
tion/concentration behavior (modulo a constant that depends only on ψ and ϕ).

Filtering in that case can be achieved only by means of a sampling profile ϕ with
zero mean (ϕ̂(0) = 0) or a reconstruction profile such that ψ̂ vanishes at Γ.

8. Tools from the theory of Wigner measures. The main tools from the
theory of Wigner measures used in this article are Propositions 8.1 and 8.3 below.
The first of these is an extension of Theorem 1.1 to bounded sequences in Sobolev
spaces.

Proposition 8.1. Let (εk) be a scale and let (uk) be a sequence of functions in
H−s(Rd) for some s ≥ 0 satisfying

‖〈εkDx〉−suk‖L2(Rd) are uniformly bounded in k.(8.1)
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Then the sequence of distributions (mεk [uk]) is uniformly bounded in S ′. More-
over, any of its weakly converging subsequences tends to a positive measure.

As we have done so far, a measure µ ∈ M+(Rd × R
d) will be called the Wigner

measure at scale (εk) of a sequence (uk) (satisfying the hypotheses of Proposition 8.1)
provided mεk [uk] ⇀ µ in S ′ as k → ∞.

Remark 8.2. (i) When s > 0, condition (8.1) is stronger than just requiring that
(uk) is bounded in H−s(Rd).

(ii) Let (hk) be a scale such that hk  εk. If ‖〈hkDx〉−suk‖L2(Rd) ≤ C for every
k ∈ N, then ‖〈εkDx〉−suk‖L2(Rd) is uniformly bounded as well.

(iii) The same result holds if mε[·] is replaced by the Wigner transform (1.4).
The second main result of this section is a localization formula for Wigner mea-

sures which was used several times in this article.
Proposition 8.3. Let (εk), (hk) be scales and let (uk) be a sequence in H−s(Rd),

s ≥ 0, satisfying (8.1). Suppose that φ is a Borel function such that φ ∈ L∞(Rd; 〈ξ〉r),
r ∈ R

d. If mεk [uk] converges to µ, then mεk [φ(hkDx)uk] converges to a Wigner
measure µφ which has the following properties:

(i) If hk = εk and µ(Rd × Dφ) = 0, Dφ being the set of points where φ is not
continuous, then

µφ(x, ξ) = |φ(ξ)|2µ(x, ξ).

(ii) If hk  εk and φ is continuous in a neighborhood of ξ = 0, then

µφ = |φ(0)|2µ.

When applied to φ(ξ) := 〈ξ〉s, this result gives the following.
Remark 8.4. Let (εk), (hk), and (uk) be as in Proposition 8.3. Suppose mεk [uk]

converges to µ. Then mεk [〈hkDx〉−suk] converges to the measure µs given by

µs(x, ξ) = 〈ξ〉−2sµ(x, ξ) if hk = εk,
µs = µ if hk  εk.

In particular (cf. Theorem 1.1), 〈ξ〉−2sµ (resp., µ) is a finite measure when hk = εk
(resp., hk  εk).

For the convenience of the reader, we give detailed proofs of both results; they
follow the ideas present in the existing literature on the subject (see [6, 13, 8, 9]).
Proposition 8.1 will be proved in section 8.2. We shall essentially show that truncation
of the high frequencies of a sequence satisfying (8.1) implies ξ-variable localization of
the corresponding mε[·]. Then we conclude by applying Theorem 1.1 to the localized
sequence.

Proposition 8.3 is proved in section 8.3; in section 8.4, we describe two results
useful for the computation of Wigner measures (Lemmas 8.12 and 8.13).

8.1. First properties of mε[u]. We begin by discussing three alternative ways
of computing mε[u] that may be used when u is merely a tempered distribution. First
note that, given a u ∈ S ′(Rd), it makes sense to consider the distribution mε[u] given
by (1.1), since the Fourier transform of u is well-defined. Actually mε[u] ∈ S ′.

1. The action of mε[u] on a test function a ∈ S is given by any of the following
formulas (see [7]):

〈mε[u], a〉S′×S =

⎧⎪⎨
⎪⎩
〈u, a(x, εDx)u〉S′(Rd)×S(Rd), (i)∫

Rd

∫
Rd

1

εd
ka

(
x,

x− p

ε

)
u(p)u(x)dpdx, (ii)

(8.2)
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where a(x, εDx) is the semiclassical pseudodifferential operator of symbol a,

a(x, εDx)u(x) =

∫
Rd

a(x, εξ)û(ξ)eix·ξ
dξ

(2π)d
,(8.3)

and the kernel ka(x, p) is the inverse Fourier transform of a with respect to ξ,

ka(x, p) :=

∫
Rd

a(x, ξ)eip·ξ
dξ

(2π)d
.

Formula (8.2.i) makes sense because the operator a(x, εDx) continuously maps S ′(Rd)
into S(Rd) whenever a ∈ S (see, for instance, [15]). The integral in (8.2.ii) must, of
course, be understood in distributional sense.

2. The distribution mε[u] may be computed through the rescaled Fourier trans-
form

Fεu(ξ) :=
1

(2πε)d/2
û

(
ξ

ε

)
,(8.4)

using the identity

mε[u](x, ξ) = mε[Fεu](ξ,−x).(8.5)

This follows from a direct computation from the definition (1.1).
3. Now we present two localization formulas.

Lemma 8.5. Let u ∈ S ′(Rd), φ ∈ C∞(Rd; 〈x〉r) for some r ∈ R and a ∈ S. Then
there exists rσ1 , r

σ
2 ∈ S such that

〈mε[φu], a〉S′×S = 〈|φ(x)|2mε[u], a〉S′×S + ε〈mε[u], rε1〉S′×S ,

〈mε[φ(hDx)u], a〉S′×S =

〈∣∣∣∣φ
(
h

ε
ξ

)∣∣∣∣
2

mε[u], a

〉
S′×S

+ ε〈mε[u], r
h/ε
2 〉S′×S .

Moreover, the test functions rσ1 , rσ2 are uniformly bounded in S for 0 < σ ≤ 1.
This holds as a consequence of standard results on symbolic calculus for semiclas-

sical pseudodifferential operators; see, for instance, [15]. Note that Proposition 8.3
is not a consequence of this result, since the multiplier φ(hDx) there may have a
nonsmooth symbol.

8.2. Boundedness of the transforms mε[u]. The following lemmas are used
to establish the boundedness in S ′ of the sequence (mεk [uk]), provided (uk) satisfies
the hypotheses of Proposition 8.1.

Lemma 8.6. For every u ∈ L2(Rd; 〈x〉r) and a ∈ S the following estimate holds:

|〈mε[u], a〉S′×S | ≤ ‖u‖2
L2(Rd;〈x〉r)

∫
Rd

sup
x∈Rd

|ka(x, p)〈x− εp〉−r/2〈x〉−r/2|dp.

Proof. Use formula (8.2.ii) to write

〈mε[u], a〉S′×S =

∫
Rd

∫
Rd

ka(x, p)u(x− εp)u(x)dpdx,

noticing that this integral makes sense as ka ∈ S. Multiply and divide the integrand
above by 〈x− εp〉r/2〈x〉r/2 to obtain, by Hölder’s inequality,

|〈mε[u], a〉S′×S | ≤
∫

Rd

sup
x∈Rd

|ka(x, p)〈x− εp〉−r/2〈x〉−r/2|
∫

Rd

|ur(x− εp)ur(x)|dxdp,
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where we have set ur(x) := 〈x〉r/2u(x). The conclusion follows from another applica-
tion of Hölder’s inequality.

If u ∈ H−s(Rd), then Fεu ∈ L2(Rd; 〈ξ〉−2s). Clearly,

‖〈εDx〉−su‖2
L2(Rd) = ‖Fεu‖2

L2(Rd;〈ξ〉−2s).(8.6)

Thus, taking identity (8.5) into account, we obtain, using the preceding lemma,

|〈mε[u], a〉S′×S | ≤ ‖〈εDx〉−su‖2
L2(Rd)

∫
Rd

sup
ξ∈Rd

|â(q, ξ)〈ξ + εq〉s〈ξ〉s| dq

(2π)d
,(8.7)

where â(q, ξ) denotes the Fourier transform in x of the function a(x, ξ).
Lemma 8.7. For every s ≥ 0 there exists a constant Cs,d > 0 such that

|〈mε[u], a〉S′×S | ≤ Cs,d‖〈εDx〉−su‖2
L2(Rd)

∫
Rd

sup
ξ∈Rd

|â(q, ξ)〈ξ〉2s|〈εq〉sdq(8.8)

holds for every u ∈ H−s(Rd) and every a ∈ S.
Proof. This is obtained through the simple inequality 〈ξ + q〉s ≤ Cs,d〈ξ〉s〈q〉s,

which holds when s ≥ 0.
Notice that whenever a ∈ S, the integrals

∫
Rd supξ∈Rd |â(q, ξ)〈ξ〉2s|〈εq〉sdq are

uniformly bounded for 0 < ε ≤ 1. Consequently, we get the following corollary.
Corollary 8.8. Let (εk) and (uk) satisfy the hypotheses of Proposition 8.1.

Then the sequence (mεk [uk]) is bounded in S ′.
Estimate (8.8) immediately gives the following.
Remark 8.9. Lemma 8.7 shows that mε[u] acts continuously on test functions a

in the closure of S for the norm

[a]s :=

∫
Rd

sup
ξ∈Rd

|â(q, ξ)〈ξ〉2s|〈q〉sdq < ∞.(8.9)

This closure contains the space

Σs := {〈Dx〉s〈ξ〉2sa ∈ C0(R
d × R

d) : [a]s < ∞}.(8.10)

Remark 8.10. Consequently, if (uk) is as in Proposition 8.1 and (mεk [uk]) con-
verges weakly in S ′, then 〈mεk [u], a〉 converges as well for every a ∈ Σs.

Proof of Proposition 8.1. The boundedness of the sequence (mεk [uk]) was proved
in Corollary 8.8. Suppose now that the distributions mεk [uk] weakly converge to
some µ ∈ S ′. We next show by means of a localization argument that µ is a positive
distribution and thus, due to Schwartz’s theorem, a positive Radon measure.

Take φ ∈ S(Rd
ξ); Lemma 8.5 gives

lim
k→∞

〈mεk [φ(εkDx)uk], a〉S′×S =

∫
Rd×Rd

a(x, ξ)|φ(ξ)|2dµ(x, ξ)

for every a ∈ S. Since (φ(εkDx)uk) is a bounded sequence in L2(Rd), Theorem 1.1
ensures that |φ(ξ)|2µ is a positive Radon measure (and hence a positive distribu-
tion). But φ ∈ S(Rd

ξ) is arbitrary, so µ itself is positive and we obtain the desired
result.

Notice that a very similar proof would give a version of Proposition 8.1 in the
context of weighted spaces L2(Rd; 〈x〉r).
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8.3. Proof of Proposition 8.3. The key ingredient in the proof of the propo-
sition is the following auxiliary result.

Lemma 8.11. Under the assumptions of Proposition 8.3,

lim
k→∞

∣∣∣∣∣
〈
mεk [φ(hkDx)uk] −

∣∣∣∣φ
(
hk

εk
ξ

)∣∣∣∣
2

mεk [uk], a

〉∣∣∣∣∣ = 0(8.11)

holds for every a ∈ S if any of the following conditions hold:
(i) hk = εk and a vanishes on the set of discontinuity points of φ.
(ii) hk  εk and φ is continuous at ξ = 0.
Proof. Take a ∈ S and set Φk(ξ) := φ(hk/εkξ). From relations (8.5), (8.2.i), and

(8.7) we obtain∣∣∣∣∣
〈
mεk [φ(hkDx)uk] −

∣∣∣∣φ
(
hk

εk
ξ

)∣∣∣∣
2

mεk [uk], a

〉∣∣∣∣∣ ≤ Mk(a)‖〈εkDx〉−suk‖2
L2(Rd),

where

Mk(a) :=

∫
Rd

sup
ξ∈Rd

|â(q, ξ)Φk(ξ)[Φk(ξ + εkq) − Φk(ξ)]〈ξ + εkq〉s〈ξ〉s|
dq

(2π)d
;(8.12)

recall that â(q, ξ) stands for the Fourier transform of a(x, ξ) in x.
We now must prove that Mk(a) → 0 as k → ∞. First we check this for test

functions a belonging to the smaller class:

D̂ := {a ∈ S : â ∈ C∞
c (Rd × R

d)}.

Take R > 0 such that supp a is contained in B(0;R) ×B(0;R).
When k ∈ N is sufficiently large, εk ≤ 1 and

hk

εk
(ξ + εkq) ∈ B(0; 2R suphk/εk) for every q, ξ ∈ B(0;R).(8.13)

Suppose now that (i) holds. If Cφ denotes the set of points where φ is continuous,
then Φk = φ is uniformly continuous over Cφ ∩B(0;R) and, consequently,

sup
q,ξ∈B(0;R)

1Cφ
(ξ)|φ(ξ + εkq) − φ(ξ)| → 0 as k → ∞

because of (8.13).
On the other hand, when hk/εk → 0 and φ is continuous at ξ = 0, again as a

consequence of (8.13),

sup
ξ,q∈B(0;R)

∣∣∣∣φ
(
hk

εk
(ξ + εkq)

)
− φ

(
hk

εk
ξx

)∣∣∣∣ ≤ 2 sup
ξ∈B(0;2hk/εkR)

|φ(ξ) − φ(0)| → 0

as k → ∞.
Thus, in either case,

sup
ξ∈Rd

|â(q, ξ)Φk(ξ)[Φk(ξ + εkq) − Φk(ξ)]〈ξ + εkq〉s〈ξ〉s| → 0 as k → ∞

for every q ∈ R
d. Lebesgue’s dominated convergence theorem gives the convergence

to zero of the integrals (8.12). The density of D̂ in S concludes the proof of the
lemma.
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Proof of Proposition 8.3. To prove (i) and (ii) it only needs to be checked that,
for any a ∈ C∞

c (Rd × R
d) (if εk = hk, we further require that a|

Rd×Dφ
≡ 0), the

functions |φ(hk/εkξ)|2a(x, ξ) belong to the class Σs. If so, then

lim
k→∞

〈∣∣∣∣φ
(
hk

εk
ξ

)∣∣∣∣
2

mεk [uk], a

〉
S′×S

=

∫
Rd×Rd

|φ(c ξ)|2a(x, ξ)dµ

holds with c := limhk/εk because of Remark 8.10. The conclusion would then follow
from identity (8.11).

First, notice that |φ(hk/εk·)|2a are compactly supported and infinitely differen-
tiable in x. When εk = hk we must verify that |φ|2a ∈ Σs, which is clearly the case
if a|

Rd×Dφ
≡ 0, for then |φ|2a is continuous in ξ.

On the other hand, if hk  εk and φ is merely continuous in a ball B(0; δ), then,
for k large enough, supp a ⊂ B(0;hk/εkδ), and consequently φ(hk/εk·) is continuous
on supp a.

8.4. Additional properties. The next approximation result is sometimes use-
ful in the computation of Wigner measures.

Lemma 8.12. Let (uk) and (uN
k ) be sequences in H−s(Rd), s ≥ 0, satisfying (8.1)

with the same bound and

lim sup
k→∞

‖〈εkDx〉−s(uk − uN
k )‖L2(Rd) → 0 as N → ∞.

Suppose that mεk [uk] and mεk [uN
k ] converge, respectively, to µ and µN . Then

µN ⇀ µ in M+(Rd × R
d) as N → ∞.

Proof. This is a simple consequence of the identity

〈mεk [uk] −mεk [uN
k ], a〉S′×S = 〈uN

k , a(x, εkDx)(uk − uN
k )〉S′×S

+〈(uk − uN
k ), a(x, εkDx)uk〉S′×S .

This gives an estimate:

|〈mεk [uk] −mεk [uN
k ], a〉S′×S | ≤ C‖〈εkDx〉−s(uk − uN

k )‖L2(Rd);

taking limits as k → ∞, we obtain∣∣∣∣
∫

Rd×Rd

a(x, ξ)(dµ− dµN )

∣∣∣∣ ≤ C lim sup
k→∞

‖〈εkDx〉s(uk − uN
k )‖L2(Rd),

and the result follows, since the measures µN and µ are equibounded.
We conclude this section with an almost orthogonality result.
Lemma 8.13. Let (uk) and (vk) be sequences in H−s(Rd), s ≥ 0, satisfying (8.1)

for some scale (εk). Suppose that µ and ν, their Wigner measures at scale (εk), are
mutually singular. Then mεk [uk + vk] converges to µ + ν.

Proof. A proof of this result for s = 0 may be found in [6] or [13]. For the general
case, it suffices to take into account Remark 8.4 to conclude that the Wigner measures
of 〈εkDx〉−suk and 〈εkDx〉−svk are 〈ξ〉−2sµ and 〈ξ〉−2sν. These are clearly mutually
singular, and thus the aforementioned L2-version of the present result gives

mεk [〈εkDx〉−s(uk + vk)] ⇀ 〈ξ〉−2sµ + 〈ξ〉−2sν
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and finally

mεk [uk + vk] ⇀ 〈ξ〉2s(〈ξ〉−2sµ + 〈ξ〉−2sν) = µ + ν,

as claimed.
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Abstract. We consider elasto-plastic deformations of a body which is subjected to a time-
dependent loading. The model includes fully nonlinear elasticity as well as the multiplicative split
of the deformation gradient into an elastic part and a plastic part. Using the energetic formulation
for this rate-independent process we derive a time-incremental problem, which is a minimization
problem with respect to the deformation and the plastic variables. We provide assumptions on the
constitutive laws of the material which guarantee that the incremental problem can be solved for
as many time steps as desired. The methods relies on the polyconvexity of the so-called condensed
energy functional and on a priori estimates for the plastic variables using the dissipation distance.
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AMS subject classifications. Primary, 74C15, 49J40; Secondary, 74A20, 49J52

DOI. 10.1137/S0036141003429906

1. Introduction. The mathematical theory of linearized elasto-plasticity was
developed in the 1970s by Moreau [Mor74, Mor76] and subsequently developed further
up to efficient numerical implementations; see, e.g., [Joh76, HaR95]. This theory relies
on the additive decomposition

ε =
1

2
(Du + DuT) = εelast + εplast

of the linearized strain tensor ε, where u : Ω → R
d denotes the displacement. More-

over, the energy is assumed to be a quadratic functional such that the problem takes
the form of a quasi-variational inequality. More general approaches with nonlin-
ear hardening laws and viscoplastic effects can be found in [BeF96, Alb98, ACZ99,
Che01a, Che01b, Nef02].

With this work we want to start a mathematical investigation of elasto-plasticity
which allows for large strains and which is based on the multiplicative decomposi-
tion

F = Dϕ = FelastFplast.(1.1)

Here, ϕ : Ω → R
d is the deformation of the body Ω ⊂ R

d. The energy E stored
in a deformed body depends only on the elastic part Felast of the deformation ten-
sor and suitable hardening parameters p ∈ R

m, but not on the plastic part Fplast,
which is contained in SL(Rd) or another Lie group G contained in GL+(Rd) = {P ∈
R

d×d | detP > 0 }. The energy functional takes the form

E(t, ϕ, (Fplast, p)) =

∫
Ω

W (x,Dϕ(x)Fplast(x)−1, p(x))dx− 〈�(t), ϕ〉,
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where the external loading �(t) is given via

〈�(t), ϕ〉 =

∫
Ω

fext(t, x) · ϕ(x)dx +

∫
Γ

gext(t, x) · ϕ(x)da.

To model the plastic effects, one prescribes either a plastic flow law or, equivalently,
a dissipation potential ∆ : Ω × T(G × R

m) → [0,∞]. We consider ∆(x, ·, ·) as an
infinitesimal metric which defines the global dissipation distance D(x, ·, ·) on G×R

m.
Thus, the second ingredient to our material model is the dissipation distance between

two internal states zj = (F
(j)
plast, pj) : Ω → SL(Rd) × R

m:

D(z1, z2) =

∫
Ω

D(x, (F
(1)
plast(x), p1(x)), (F

(2)
plast(x), p2(x)))dx.

Allowing for finite strains, we are forced to abolish convexity assumptions on the
stored-energy density W , since it has to be frame indifferent (i.e., W (x,RF, z) =
W (x, F, z) for R ∈ SO(Rd)) and enforce local invertibility (i.e., W (F ) = ∞ for F �∈
GL+(Rd)). It was a major breakthrough in [Bal77] when it was discovered that these
conditions are compatible with quasi-convexity and polyconvexity. The aim of this
work is to show that it is possible to find constitutive functions W (being polyconvex)
and ∆ which, on the one hand, satisfy all the above-mentioned natural, physical
conditions of finite-strain elasticity as well as the multiplicative plastic decomposition
(1.1) (giving rise to the Lie group structure for P = Fplast) and, on the other hand,
allow for a mathematical existence theory.

We follow the work found in [MiT99, MTL02, Mie02, Mie03a, MiR03], which
shows that rate-independent evolution for elastic materials with internal variables
(“standard generalized materials”) can be formulated by energy principles as follows.
A pair (ϕ, z) : [0, T ]×Ω → R

d×SL(Rd)×R
m is called a solution of the elasto-plastic

process associated with E(t, ·, ·) and D if stability (S) and the energy inequality (E)
hold:

For all t ∈ [0, T ] we have(S)

E(t, ϕ(t), z(t)) ≤ E(t, ϕ̃, z̃) + D(z(t), z̃) for all admissible states (ϕ̃, z̃).

For all s, t ∈ [0, T ] with s < t we have(E)

E(s, ϕ(s), z(s)) + Diss(z, [s, t]) ≤ E(t, ϕ(t), z(t)) −
∫ t

s

〈�̇(τ, ϕ(τ)〉dτ .

So far, we are not able to provide existence results for (S)–(E) in the present
elasto-plastic setting. However, analogous models in phase transformations [MTL02,
MiR03], in delamination [KMR03], in micromagnetism [Kru02, RoK04], and in frac-
ture [FrM93, FrM98, DMT02] have been treated with mathematical success. In these
works two major restrictions had to be made: (i) E has to be convex in the strains
(leading to infinitesimal strains), and (ii) the internal variable z has to lie in a closed
convex subset of a Banach space. In finite-strain elasto-plasticity these two assump-
tions are clearly violated. For a more general nonlinear version we refer to [MaM03],
where severe compactness assumptions are used to construct solutions. So far it is
not clear how this compactness can be established in elasto-plasticity; however, in
[MiM04] the first steps are being taken by introducing a suitable regularization.

Since most of the above-mentioned existence results are based on time-incremental
approximations we devote this work to an existence theory for the following incremen-
tal problem (IP). The hope is that after having developed a suitable existence theory
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for (IP) that the methods in [MaM03] could be adjusted to pass to the limit for step
size tending to 0 and thus find solutions for (S)–(E).

For given t0 = 0 < t1 < · · · < tN = T and z0,

find incrementally, for k = 1, . . . , N ,(IP)

(ϕk, zk) ∈ Arg min
(ϕ,z)

[E(tk, ϕ, z)+D(zk−1, z)].

Here “Arg min” denotes the set of all global minimizers. Hence, (IP) consists of k
minimization problems which are coupled via the dissipation distance. The problem
in solving (IP) is that the minimization at the kth step involves the solution zk−1

from the previous step. For solving the N minimization problems in (IP) it needs a
careful bookkeeping of the properties of the solutions; in particular we have to control
the integrability conditions of Pk and P−1

k independently of k. This will be done by
the help of the dissipation distance D, whereas the elastic energy E is used to control
the Sobolev norm of ϕk.

Such incremental minimization problems are heavily used in the engineering com-
munity (cf. [OrR99, OrS99, MSS99, ORS00, MiL03, MSL02, HaH03]), which justifies
studying (IP) in its own right. In fact, existence and nonexistence for (IP) relates to
questions of formation of microstructure, localization, or failure; see the discussions in
[Mie03a, Mie04]. The failure mechanisms in elasto-plasticity are currently an active
research area. However, the aim of our work is to provide examples and to isolate
general conditions which exclude these failures. In fact, there are many commercial
codes for the numerical simulation of plastic processes (like deep drawing) which are
expected to describe nice solutions in regions where no failure arises. We want to con-
tribute to the challenging task of providing a mathematical understanding of these
models and hopefully improve the numerical simulation techniques.

The plan of the paper is as follows. In section 2 we introduce the notions of finite-
strain elasto-plasticity in detail and establish the relation between the classical flow
rules of elasto-plasticity with our energetic formulation (S)–(E). For a more extensive
and mechanical treatment we refer to [Mie03a]. In section 3 we start the mathematical
analysis by studying the incremental problem (IP) in specific function spaces F ×
Z. To start with, we establish a rather general result which says that any solution
(ϕk, zk)k=1,...,N of (IP) is stable in the sense of (S) and satisfies a two-sided discretized
energy inequality replacing (E).

The key to the analysis of (IP) is realizing that the internal variables z = (Fplast, p)
occur under the integral over the body Ω only in a local fashion. Hence, it is possible
to minimize in (IP) with respect to z pointwise in x ∈ Ω. This leads to the condensed
energy density

W cond(zold;F ) = min{W (FP, p) + D(zold, (P, p)) | (P, p) ∈ SL(Rd) × R
m}.

In [CHM02, Mie03a] it is shown that W cond has also mechanical significance, as it
contains the effective information of the interplay between energy storage through
W and the dissipation mechanism through D. The first major assumption for our
existence theory is that W cond((1, p∗); ·) : R

d×d → R∞ is polyconvex. The second
major assumption is that the condensed energy density W cond and the dissipation
distance D are coercive:

W cond((1, p∗);F ) ≥ c|F |qF−C and D((1, p∗), (P, p)) ≥ c|P |qP−C.
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If the growth exponents satisfy 1
qP

+ 1
qF

≤ 1
q < 1

d , then the existence of solutions

(ϕk, F
(k)
plast, pk) for (IP) is obtained with ϕk ∈ W1,q(Ω,Rd) and F

(k)
plast ∈ LqP (Ω,Rd×d).

In section 4 we supply a specific two-dimensional example in which all assump-
tions can be checked explicitly and are fulfilled for suitable parameter values. Thus,
we provide a first existence theory for a multidimensional elasto-plastic incremental
problem in the geometric nonlinear case.

In section 5 we treat a one-dimensional example where again the existence theory
for (IP) can be carried out explicitly. Using this example we discuss the difficulties in
proving the existence of solutions for the time-continuous problem (S)–(E) by letting
the step size of the time discretizations go to 0. In section 6, using the very specific
properties of the one-dimensional case (like divσ = 0 =⇒ σ = const.), we finally
prove a convergence result for the incremental solution which implies that the time-
continuous problem (S)–(E) has a solution as well.

2. Elasto-plasticity at finite strain. We consider an elastic body Ω ⊂ R
d

which is bounded and has a Lipschitz boundary ∂Ω. A deformation is a mapping
ϕ : Ω → R

d such that the deformation gradient F (x) = Dϕ(x) exists for a.e. x ∈ Ω
and satisfies

F (x) ∈ GL+(Rd) = {F ∈ R
d×d | detF > 0 }.

The internal plastic state at a material point x ∈ Ω is described by the plastic tensor
P = Fplast ∈ GL+(Rd) and a possibly vector-valued hardening variable p ∈ R

m. We
write the shorthand z = (P, p) to denote the set of all plastic variables. The major
assumption in finite-strain elasto-plasticity is the multiplicative decomposition of the
deformation gradient F into an elastic and a plastic part,

F = FelastFplast = FelastP.(2.1)

The point of this decomposition is that the elastic properties will depend only on
Felast, whereas previous plastic transformations through P are completely forgotten.
However, the hardening variable p will record changes in P and may influence the
elastic properties.

The deformation process is governed by two principles. First, we have energy
storage which gives rise to the equilibrium equations, and, second, we have dissipation
due to plastic transformations which give rise to the plastic flow rule. Energy storage
is described by the Gibbs energy

E(t, ϕ, z) =

∫
Ω

W (x,Dϕ(x), z(x))dx− 〈�(t), ϕ〉,(2.2)

where 〈�(t), ϕ〉 =
∫
Ω
fext(t, x)·ϕ(x)dx+

∫
ΓNeu

gext(t, x)·ϕ(x)da(x) denotes the loading

depending on the process time t ∈ [0, T ]. The major constitutive assumption is the
multiplicative decomposition

W (x, F, (P, p)) = Ŵ (x, FP−1, p).(2.3)

From now on we drop the variable x for notational convenience. However, the whole
theory and analysis works in the inhomogeneous case as well.

The dissipation effects are usually modeled by prescribing yield surfaces. For
our purpose it is more convenient and mathematically clearer to start on the other
side, namely, the dissipation metric. In mechanics this metric is called dissipation
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potential, since the dissipational friction forces are obtained from it via differentiation
with respect to the plastic rates. We emphasize that the natural setup for the plastic
transformation P ∈ GL+(Rd) is that of an element of a Lie group G ⊂ GL+(Rd). A
usual assumption is incompressibility, which gives G = SL(Rd) = {P | detP = 1 }.
However, G = GL+(Rd) or a single-slip system G = {1 + γe1 ⊗ e2 | γ ∈ R } may also
be possible. A dissipation potential is a mapping

∆ : Ω × T(G × R
m) → [0,∞],(2.4)

which is called a dissipation metric if it is continuous and ∆(x, (P, p), ·) is convex and
positively homogeneous of degree 1:

∆(x, (P, p), α(Ṗ , ṗ)) = α∆(x, (P, p), (Ṗ , ṗ)) for α ≥ 0.(2.5)

(Again we will drop the variable x for notational convenience.) This condition leads
to rate-independent material behavior. One assumes, together with the multiplicative
decomposition (2.1), plastic indifference:

∆((PP̂ , p), (Ṗ P̂ , ṗ)) = ∆((P, p), (Ṗ , ṗ)) for all P̂ ∈ G.(2.6)

This amounts in the existence of a function ∆̂ : R
m × R

m × g → [0,∞] such that

∆((P, p), (Ṗ , ṗ)) = ∆̂(p, ṗ, ṖP−1).(2.7)

Here g = T1G is the Lie algebra associated with the Lie group G, and ṖP−1 is strictly
speaking the right translation of Ṗ (t) ∈ TP (t)G to g = T1G.

An important feature of our theory is the induced dissipation distance D on
G × R

m defined via (recall z = (P, p))

D(z0, z1)= inf

{∫ 1

0

∆(z(s), ż(s))ds | z ∈ C1([0, 1],G×R
m), z(0)=z0, z(1)=z1

}
.(2.8)

It is important to note that we didn’t assume symmetry (i.e., ∆(z,−ż) �= ∆(z, ż)
is allowed), which would contradict hardening. Thus, D(·, ·) will not be symmetric
either. However, we will often use the triangle inequality

D(z1, z3) ≤ D(z1, z2) + D(z2, z3),(2.9)

which is immediate from the definition. Plastic difference implies that the dissipation
distance satisfies

D((P1, p1), (P2, p2)) = D((1, p1), (P2P
−1
1 , p2)).(2.10)

Integration over the body Ω gives the total dissipation between two internal states
zj : Ω → G×R

m via

D(z0, z1) =

∫
Ω

D(z0(x), z1(x))dx.(2.11)

To make the energetic formulation mathematically rigorous we define the set of
kinematically admissible deformations via

F = {ϕ ∈ W1,q(Ω; Rd) | ϕ|ΓDir = ϕDir },(2.12)
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where ΓDir = ∂Ω/ΓNeu is a part of the boundary with positive surface measure.
Moreover, ϕDir = ϕ̂|ΓDir , where ϕ̂ ∈ C1(Ω; Rd) with Dϕ̂(x) ∈ GL+(Rd) for all x ∈ Ω.
The integrability power q in W1,q will be chosen larger than the space dimension d
in order to apply the theory of polyconvexity. The loading can then be considered
as a function � : [0, T ] → W1,q(Ω,Rd)∗, where ∗ denotes the dual space (space of all
continuous linear forms).

The set of admissible internal states is simply

Z = { z : Ω → G × R
m | z measurable }.(2.13)

Because of the image space, which is a manifold, it is not clear whether it is reasonable
to consider Z as a subset of a Banach space like L1(Ω,Rd×d×R

m). It rather seems
natural to equip Z with the metric D and use arguments of general metric spaces. Nev-
ertheless, our analysis will be based on states z = (P, p) ∈ Z with P ∈ LqP (Ω,Rd×d)
for a suitable qP > 1. However, the topology on the set Z will not be important.

Definition 2.1. A process (ϕ, z) : [0, T ] → F × Z is called a solution of the
elasto-plastic problem defined via E(t, ·, ·) and D if the stability condition (S) and the
energy inequality (E) hold:

(S) For all t ∈ [0, T ] we have
E(t, ϕ(t), z(t)) ≤ E(t, ϕ̃, z̃)+D(z(t), z̃) for all (ϕ̃, z̃) ∈ F×Z.

(E) For all s, t ∈ [0, T ] with s < t we have

E(t, ϕ(t), z(t))+Diss(z, [s, t]) ≤ E(s, ϕ(s), z(s))−
∫ t

s

〈�̇(r), ϕ(r)〉dr.

(2.14)

Here −
∫ t

s
〈�̇, ϕ〉dr =

∫ t

s
〈�, ϕ̇〉dr − 〈�, ϕ〉|ts is called the reduced work of the exter-

nal forces, since E denotes the Gibbs energy instead of the Helmholtz energy. The
dissipation is defined as

Diss(z, [s, t]) = sup

⎧⎨
⎩

N∑
j=1

D(z(tj−1), z(tj)) |N ∈ N, s ≤ t0 < · · · < tN ≤ t

⎫⎬
⎭

for general processes, which equals Diss(z, [s, t]) =
∫ t

s

∫
Ω

∆(z(r, x), ż(r, x)) dx dt for
differentiable processes.

The major advantage of the energetic formulation via (S) and (E) is that deriva-
tives of neither the constitutive functions W and ∆ nor the solution (Dϕ, z) are
needed. Nevertheless, (S) and (E) are strong enough to determine the physically rele-
vant solutions. We refer to [MiT03] for uniqueness results under additional convexity
assumptions. Moreover, it is shown in [Mie03a] that sufficiently smooth solutions
(ϕ, z) of (S) and (E) satisfy the classical equations of elasto-plasticity, namely, the
equilibrium equation ⎧⎨

⎩
−div T (t, x) = fext(t, x) in Ω,

ϕ(t, x) = YDir(x) on ΓDir,
T (t, x)ν(x) = gext(t, x) on ΓNeu,

(2.15)

with T (t, x) = ∂
∂F W (Dϕ(t, x), z(t, x)) = ∂

∂Felast
Ŵ (Dϕ(t, x)P (t, x)−1, p(t, x))P (t, x)−T,

and the flow rule

0 ∈ ∂sub
ż ∆(z(t, x), ż(t, x)) −Q(t, x),(2.16)
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where ∂sub
ż ∆(z, ż) denotes the subgradient of the convex function ∆(z, ·) : Tz(G ×

R
m) → [0,∞] and Q is the driving force thermodynamically conjugated to z, i.e.,

Q = − ∂

∂(P, p)
W (F, (P, p)) =

(
P−TFT ∂

∂Felast
Ŵ (FP−1, p)P−T,− ∂

∂p
Ŵ (FP−1, p)

)
.

Defining the elastic domain as Q(z) = ∂sub
ż ∆(z, 0) ⊂ T∗

z(G×R
m), the Legendre–

Fenchel transform shows that (2.16) is equivalent to

ż ∈ ∂XQ(z)(Q) = NQQ(z).(2.17)

If Q(z) is given by a yield function Φ in the form

Q(z) = {Q | Φ(z,Q) ≤ 0 }

and ∂
∂QΦ(z,Q) �= 0 at Φ(z,Q) = 0, then (2.17) can be reformulated via the Karush–

Kuhn–Tucker conditions

ż = λ
∂

∂Q
Φ(z,Q), λ ≥ 0, Φ(z,Q) ≤ 0, λΦ(z,Q) = 0.

3. Incremental problems. Until now no existence theory for the time-contin-
uous problem (S)–(E) was available, except for the case d = 1 given in section 5
below. Following the abstract developments in [MiT03] and the applications of the
same energetic approach to models for shape-memory alloys [MTL02, MiR03], it is
clear that for proving existence results for the highly nonlinear problem (S)–(E) it is
essential to provide an existence theory for suitable associated time-discretized prob-
lems. Moreover, such incremental problems are the basis of all engineering simulations
and, hence, provide a first step to the mathematical understanding of elasto-plasticity.

It was realized in [OrR99, ORS00, CHM02, Mie03a, Mie04] that existence of
solutions for the incremental problem is not to be expected in general situations.
In fact, nonexistence can be connected either with failure of the material due to
localization (e.g., in shear bands) or fracture or with formation of microstructure
in material domains of positive measure. Here we present constitutive assumptions
which allow us to prove existence of solutions for each incremental step.

We now start with the mathematical analysis and recall that F and Z are defined
in (2.12) and (2.13), respectively. Consider a time discretization 0 = t0 < t1 <
· · · < tN−1 < tN = T of the interval [0, T ]. Moreover, assume that an initial state
(ϕ0, z0) ∈ F × Z is given which is stable according to (S) at t = 0.

(IP) Incremental Problem:
For k = 1, . . . , N find (ϕk, zk) ∈ F × Z such that
(ϕk, zk) ∈ Arg min{ E(tk, ϕ, z) + D(zk−1, z) | (ϕ, z) ∈ F × Z }.

(3.1)

Here “Arg min” denotes the set of global minimizers. The main point is to show that
this set is nonempty, i.e., there exists (ϕk, zk) ∈ F × Z such that

E(tk, ϕk, zk) + D(zk−1, zk) = inf{ E(tk, ϕ, z) + D(zk−1, z) | (ϕ, z) ∈ F × Z }.

We say that the minimum of E(tk, ·, ·)+D(zk−1, ·) is attained at the minimizer (ϕk, zk).
Before we start the analysis of (IP) we first establish a result which emphasizes

the fact that the given incremental problem is the most natural one. In particular, it
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illuminates the positive role of the dissipation distance D, which is difficult to charac-
terize, as it is defined only implicitly via ∆ in (2.8). However, replacing D(zk−1, z) in
(IP) by some approximation (e.g., ∆(zk−1, zk−z)) would destroy at least one of the
three estimates provided in (i) and (ii) below.

Theorem 3.1. Let (ϕk, zk)k=0,...,N be any solution of (IP). Then the following
discrete versions of (S) and (E) hold:

(i) For k = 0, . . . , N the state (ϕk, zk) is stable at tk, i.e.,

E(tk, ϕk, zk) ≤ E(tk, ϕ̃, z̃) + D(zk, z̃) for all (ϕ̃, z̃) ∈ F × Z.

(ii) For all s, t ∈ { tj | j = 0, 1, . . . , N } with s < t we have

−
∫ t

s

〈�̇(r), ϕcl(r)〉dr ≤ E(t, ϕcr(t), zcr(t)) + Diss(zcr, [s, t]) − E(s, ϕcr(s), zcr(s))

≤ −
∫ t

s

〈�̇(r), ϕcr(r)〉dr.

Here, ϕcr and ϕcl are the piecewise constant interpolants which are continuous
from the right “cr” and from the left “cl”, i.e., ϕcr(t) = ϕk−1 for t ∈ [tk−1, tk) and
ϕcl(t) = ϕk for t ∈ (tk−1, tk] with ϕcr(tN ) = ϕN and ϕcl(t0) = ϕ0. Hence,

∫ tk

tj

〈�̇(r), ϕcr(r)〉dr =

k∑
i=j+1

〈�(ti)−�(ti−1), ϕi−1〉,

and with the same notation for zcr we have Diss(zcr, [tj , tk]) =
∑k

i=j+1 D(zi−1, zi).
The proof does not need any specific assumptions on the function space F × Z

or on the functionals E and D, since it assumes the existence of a solution. Essential
to the proof are the minimization property and the triangle inequality (2.9) for D.

Proof. To simplify the proof we write yk = (ϕk, zk) and ỹ = (ϕ̃, z̃).
(i) For arbitrary ỹ ∈ F × Z and k ∈ {1, . . . , N} we have

E(tk, ỹ) + D(zk, z̃) = E(tk, ỹ) + D(zk−1, z̃) + D(zk, z̃) −D(zk−1, z̃)

≥ E(tk, yk) + D(zk−1, zk) + D(zk, z̃) −D(zk−1, z̃) ≥ E(tk, yk),

where the first estimate follows since yk is a minimizer and the second estimate follows
from the triangle inequality for D.

(ii) The lower estimate follows since yi−1 is stable at ti−1:

−
∫ ti

ti−1

〈�̇(r), ϕcl(r)〉dr = −〈�(ti), ϕi〉 + 〈�(ti−1), ϕi〉

= E(ti, yi) − E(ti−1, yi) = E(ti, yi) − E(ti−1, yi−1) + E(ti−1, yi−1) − E(ti−1, yi)

≤ E(ti, yi) − E(ti−1, yi−1) + D(zi−1, zi).

Summing over i from j+1 to k gives the lower estimate. The upper estimate follows
similarly since yi is a minimizer at ti:

E(ti, yi)−E(ti−1, yi−1)+D(zi−1, zi) ≤ E(ti, yi−1)−E(ti−1, yi−1) = −
∫ ti

ti−1

〈�̇, ϕcr〉dr.

Thus, the result is proved.
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We now study the existence of solutions to (IP). For this we need specific prop-
erties of the space F × Z and strong conditions on the functionals E and D. In
each time step we have to solve the global minimization problem for the functional
Ik : F × Z → R∞, given as

Ik(ϕ, z) :=

∫
Ω

[W (Dϕ(x), z(x)) + D(zk−1(x), z(x))]dx− 〈�(tk), ϕ〉.(3.2)

The special structure here is that z ∈ Z occurs under the integral only with its point
values and that no derivatives of z appear. We note that Ik : F×Z → R∞ is not lower
semicontinuous because of the geometric nonlinearity coming from the multiplicative
decomposition, i.e., W (F, (P, p)) = Ŵ (FP−1, p). It is shown in [FKP94, LDR00] that
lower semicontinuity of Ik implies cross-quasi-convexity of

(F, P, p) �→ W (F, (P, p)) + D(zk−1(x), (P, p)),

which in turn implies convexity in z = (P, p). However, this can only be achieved if

Felast �→ Ŵ (Felast) is convex, but this contradicts the standard axioms of finite-strain
elasto-plasticity; see [CHM02] and below.

Of course, lower semicontinuity of Ik is not necessary, and we may obtain mini-
mizers without it. The idea is that we can minimize with respect to z for each point
x ∈ Ω separately. To prepare the following result we define the condensed energy
density

W cond(zold;F ) = min{W (F, z) + D(zold, z) | z ∈ G × R
m }

and the condensed functional

Icond
k (ϕ) =

∫
Ω

W cond(zk−1(x); Dϕ(x))dx− 〈�(tk), ϕ〉.

According to [EkT76, Chap. VIII, sect. 1.6] we can choose a measurable update func-
tion

zupd : (G × R
m) × R

d×d → G × R
m with

zupd(zold;F ) ∈ Z(zold;F ) := Arg min{W (F, z) + D(zold, z) | z ∈ G × R
m },

i.e., W cond(zold;F ) = (W (F, z)+D(zold, z))|z=zupd(zold;F ).
Lemma 3.2. Let W and D be nonnegative, measurable functions, such that for

each (zold;F ) the function z �→ W (F, z) + D(zold, z) is coercive. Then W cond and
zupd as above are well defined. Moreover, we have the following:

(a) For all (ϕ, z) ∈ F×Z we have Icond
k (ϕ) ≤ Ik(ϕ, z) with equality if and only if

z(x) ∈ Z(zk−1(x); Dϕ(x)) for a.a. x ∈ Ω.
(b) A pair (ϕ, z) ∈ F×Z minimizes Ik in (3.2) if and only if ϕ is a minimizer of

Icond
k : F → R∞ and z(x) ∈ Z(zk−1(x); Dϕ(x)) for a.a. x ∈ Ω.

(c) If ϕ̃ ∈ F minimizes Icond
k and z̃ ∈ Z satisfies z̃(x) = zupd(zk−1(x); Dϕ̃(x)),

then (ϕ̃, z̃) minimizes Ik.
Proof. Part (a) is obvious, as W cond(zk−1;F ) ≤ W (F, z) + D(zk−1, z).
For part (b) first assume that (ϕ, z) ∈ F×Z minimizes Ik and let A = {x ∈

Ω | z(x) ∈ Z(zk−1(x); Dϕ(x)) }. Outside of A we can change z, while keeping ϕ
fixed, such that the integrand W+D becomes strictly smaller. However, decreasing
an integrand strictly on a set of positive measure decreases the integral Ik. Hence, A
must have measure 0.
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Assume that ϕ minimizes Icond and that z ∈ Z is given such that A has full
measure in Ω. Then W cond = W + D on A implies Icond

k (ϕ) = Ik(ϕ, z). With part
(a) we conclude that (ϕ, z) minimizes Ik.

Part (c) is obtained exactly the same way, as now A = Ω.
This simple lemma shows that each step in the incremental problem (IP) reduces

to a classical variational problem of nonlinear elasticity. Using the multiplicative de-
composition (2.3) and the plastic indifference of the dissipation (2.10) we immediately
see that W cond satisfies

W cond((Pold, pold);F ) = W cond((1, pold);FP−1
old ),(3.3)

and thus it is uniquely determined by W cond((1, ·); ·) : R
m × R

d×d → R∞. Similarly,
we may choose zupd such that it satisfies

zupd((Pold, pold);F ) = zupd((1, pold);FP−1
old )

(
Pold 0

0 1

)
.(3.4)

We now list all assumptions which are stated in terms of W cond and D. Thus, the
assumptions are quite implicit, since in practice the stored-energy density W and the
dissipation potential ∆ are given. From ∆ one has to calculate the dissipation distance
D(·, ·) and then the condensed energy density W cond. However, currently there are
no conditions on W and ∆ which are known to be sufficient for our conditions. In
the next section we provide an example where all these conditions are satisfied.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i) W cond((1, ·); ·) : R
m × R

d×d → [0,∞] and D(·, ·) : (G×R
m)2 → [0,∞]

are lower semicontinuous.

(ii) For each p ∈ R
m the function W cond((1, p), ·) : R

d×d → [0,∞]
is polyconvex.

(iii) There exist C, c > 0, p∗ ∈ R
m and exponents qF , qP ≥ 1 such that

D((1, p∗), (P, p)) ≥ c|P |qP−C

for all (P, p), and

W cond((1, p);F ) ≥ c|F |qF−C

for all (F, P, p) with D((1, p∗), (P, p)) < ∞.

(iv) zupd((1, ·); ·) : R
m × R

d×d
+ → G × R

m is Borel measurable.

(3.5)

Note that we do not need any additional assumptions on W or ∆.
Theorem 3.3. Let the assumptions (3.5) be satisfied such that additionally

1

qF
+

1

qP
≤ 1

q
<

1

d

holds, where q occurs in the definition of F in (2.12).
Then, for each z0 ∈ Z with D((1, p∗), z0) =

∫
Ω
D((1, p∗), (P0(x), p0(x))) dx < ∞

and each � ∈ C0([0, T ],W1,q(Ω,Rd)∗) the incremental problem (IP) (see (3.1)) has a
solution ((ϕk, zk))k=1,...,N with

ϕk ∈ F ⊂ W1,q(Ω,Rd) and zk = zupd(zk−1; Dϕk(·)) ∈ Z ∩ LqP (Ω,Rd×d).

Proof. Obviously, the result is proved by induction over k = 1, 2, . . . , N .
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For the kth step we assume that zk−1 ∈ Z is known to satisfy D((1, p∗), zk−1) <
∞, which certainly holds for k = 1. With (3.5)(iii) we conclude Pk−1 ∈ LqP (Ω,Rd×d).
By Lemma 3.2, the kth minimization problem for Ik (cf. (3.2)) reduces to minimiza-
tion of Icond

k : F → R∞, where Icond
k (ϕ) =

∫
Ω
Wk(x,Dϕ(x))dx− 〈�(tk), ϕ〉 with

Wk(x, F ) = W cond(zk−1(x);F ) = W cond((1, pk−1(x));FPk−1(x)−1).

Clearly, Wk : Ω × R
d×d → [0,∞] is measurable in x and lower semicontinuous in F .

Moreover, by (3.5)(iii) we have the lower bound

Wk(x, F ) ≥ c|FPk−1(x)−1|qF − C

≥ cqF
q

|F |q − c

(
qF
q
−1

)
|Pk−1(x)|qF q/(qF−q) − c,

where we have used |FP−1| ≥ |F |/|P | and |a/b|qF ≥ raqF /r − (r−1)bqF /(r−1) with
r = qF /q > 1. Using the assumption 1

qP
≤ 1

q−
1
qF

we conclude Wk(x, F ) ≥ c̃|F |q−h(x)

for c̃ > 0 and h ∈ L1(Ω). Hence, Wk is coercive.

Moreover, the minors (of order s) of the product FP−1
k−1 are in fact linear combi-

nations of products of the minors (of order s) of F and P−1
k−1. Since by (3.5)(ii) W cond

is polyconvex we conclude that F �→ Wk(x, F ) is polyconvex as well.

The existence theory of Ball [Bal76, Bal77] provides ϕk ∈ F ⊂ W1,q(Ω,Rd) such
that Icond

k (ϕk) = inf{ Icond
k (ϕ) | ϕ ∈ F }. By Lemma 3.2 we see that (ϕk, zk) with

zk = zupd(zk−1; Dϕk) ∈ Z minimizes Ik : F × Z → R∞.

To finish the induction we have to show D((1, p∗), zk) < ∞. To see this we use
the triangle inequality for D and the minimization property of (ϕk, zk) in the form of
the energy estimate as in part (ii) of Theorem 3.1. We have

D((1, p∗), zk) ≤ D((1, p∗), zk−1) + D(zk−1, zk)

≤ D((1, p∗), zk−1) + Icond
k−1 (ϕk−1) − Icond

k (ϕk) + 〈�(tk−1) − �(tk), ϕk−1〉 < ∞.

This concludes the induction step, and hence the whole proof.

4. A two-dimensional example. The purpose of this section is to supply a
multidimensional example with G = SL(Rd) where all assumptions of the previous
section can be fulfilled. Unfortunately, our example only works in d = 2, since it
depends on the fact that everything can be calculated explicitly.

We consider the isotropic elastic energy density

W :

{
R

2×2 → R∞,
F �→ 1

α (να1 +να2 ) + V (detF ),
(4.1)

where ν1, ν2 ≥ 0 are the two singular values of F (i.e., the eigenvalues of (FTF )1/2)
and V : R → [0,∞] is convex and continuous and satisfies

V (δ) = ∞ for δ ≤ 0, V (δ) ↗ ∞ for δ ↘ 0.

For the plastic variables we take z = (P, p) ∈ SL(2) × R with the dissipation metric

∆(P, p, Ṗ , ṗ) =

{
A′(p)‖ṖP−1‖ for ṗ ≥ ‖ṖP−1‖,

∞ else.
(4.2)
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Here, ‖·‖ denotes the classical Euclidean norm on g ⊂ R
2×2, i.e., ‖ξ‖2 =

∑2
i,j=1 ξ

2
ij ,

and A(p) = eβp for β > 0. The associated dissipation distance D is plastically
invariant and isotropic, i.e.,

D((RP0P̂ , p0), (RP1P̂ , p1)) = D((P0, p0), (P1, p1))

for all arguments. From the analysis in [Mie02, HMM03, Mie03a] we know that

D((1, p0), (E(s), p1)) =

{
eβ(p0+

√
2|s|) − eβp0 for p1 ≥ p0+

√
2|s|,

∞ else,
(4.3)

where E(s) = diag(es, e−s), and, for all R, R̂ ∈ SO(2),

D((1, p0), (RE(s)R̂, p1)) ≥ D((1, p0), (E(s), p1)).(4.4)

With this information, it is shown in [Mie03a] that the condensed stored-energy den-
sity takes the form

W cond((1, p);F ) = min
s∈R

1

α
((e−sν1)

α+(esν2)
α) + V (ν1ν2) + epβ(e

√
2β|s|−1).

To see this, one uses the isotropy of W and D together with (4.4) to deduce that the
minimum in W cond with F = diag(ν1, ν2) is attained for P = E(s) = diag(es, e−s) for
some s ∈ R.

The minimum over s ∈ R can be evaluated explicitly if we choose β = α/
√

2.
This gives the final form

W cond((1, p);F ) = V (ν1ν2) − eαp/
√

2 +

⎧⎪⎨
⎪⎩

2
α

√
να1 (να2 +bp) for να1 ≥ να2 + bp,

1
α (να1 +να2 +bp) for |να1 −να2 | ≤ bp,
2
α

√
να2 (να1 +bp) for να2 ≥ να1 + bp,

where bp = αeαp/
√

2. Moreover, the update functions can be given explicitly as well.
With the auxiliary function

S(ν, p) =

⎧⎪⎨
⎪⎩

− 1
2α log

να
1

να
2 +bp

for να1 ≥ να2 + bp,

0 for |να1 −να2 | ≤ bp,
1
2α log

να
2

να
1 +bp

for να2 ≥ να1 + bp,

we find the update functions (for detF = ν1ν2 > 0)

P upd((1, p0);F ) = R−1
F E(S(ν, p0))RF and pupd((1, p0);F ) = p0 +

√
2|S(ν, p0)|,

where ν1, ν2 > 0 and RF are defined via F = R̂ diag(ν1, ν2)RF with R̂, RF ∈ SO(2).
Both update functions are locally Lipschitz continuous since RF is uniquely defined
where S(ν, p) �= 0.

We summarize the properties of W cond and D in the following proposition, which
establishes the conditions (3.5).

Proposition 4.1. Let W and ∆ be defined as above with β = α/
√

2. Then the
following hold:

(i) W cond((1, ·); ·) : R × R
2×2 → R∞ is continuous and D(·, ·) : (SL(2) × R)2 →

[0,∞] is lower semicontinuous.
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(ii) For α ≥ 2 and p ∈ R the function W cond((1, p); ·) : R
2×d → R∞ is polyconvex.

(iii) For all F ∈ R
2×2, p∗, p ∈ R, and P ∈ SL(2) with D((1, p∗), (P, p)) < ∞ we

have

D((1, p∗), (P, p)) ≥
eαp∗/

√
2

2

(
‖P‖α − 1

)
,

W cond((1, p);F ) ≥ 1

α

(√
bp 21−α/2 ‖F‖α/2 − bp

)
.

(iv) The update function zupd = (P upd, pupd) is continuous.
Proof. Parts (i) and (iv) are immediate from the definitions and formulas. Part

(ii) is the most difficult part; its proof is given in [Mie03b].
To prove the lower estimates in (iii) we first note that P ∈ SL(2) has the form

P = R1 diag(g, 1/g)R2 = R1E(log g)R2. With (4.3) and (4.4) we obtain

D((1, p∗), (P, p)) ≥ eαp∗/
√

2(eα|log g|−1).

Using ‖P‖ =
√
g2 + 1/g2 ≤

√
2 max{g, 1/g} =

√
2e|log g| gives the first estimate. For

the second estimate we use the explicit form of W cond((1, p);F ) and V ≥ 0 to find
the lower estimate 2

α

√
bp(max{ν1, ν2})α/2. With ‖F‖ =

√
ν2
1+ν2

2 ≤
√

2 max{ν1, ν2}
the desired estimate follows.

Thus, we have shown that this example satisfies the assumptions (3.5) for α ≥ 2
with qF = α/2 and qP = α. Hence, Theorem 3.3 is applicable if

1

2
=

1

d
>

1

q
≥ 1

qF
+

1

qP
=

3

α

holds. We summarize the existence result for this example in the following statement.
Theorem 4.2. Let d = 2 and G = SL(2). With α > 6 and β = α/

√
2 let W :

R
2×2 → [0,∞] and ∆ : T(G×R) → [0,∞] be defined via (4.1) and (4.2), respectively.

Assume that there exists a p∗ ∈ R such that the initial condition z0 ∈ Z satisfies
D((1, p∗), z0) < ∞ and let q = α/3.

Then for each � : [0, T ] → (W1,α/3(Ω,R2))∗ the incremental problem (IP) (see
(3.1)) has a solution ((ϕk, zk))k=1,...,N ∈ (F×Z)N . Moreover, there exists a constant
C which depends only on α, �, and z0, but neither on the partition t1, . . . , tN nor on
the solution, such that

‖ϕk‖W1,α/3 + ‖Pk‖Lα + ‖eαpk/
√

2‖L1 ≤ C for k = 1, . . . , N.

5. A one-dimensional example. The one-dimensional case is quite special
and much simpler for two reasons. First, polyconvexity is equivalent to convexity,
and, second, the equilibrium equation is an ordinary differential equation which can
be solved easily. Nevertheless this case is interesting, since we will be able to discuss
the problems with convergence for step size going to 0 of the incremental solutions
towards a solution of the time-continuous problem (S)–(E); see (2.14). We will see
that general arguments, which are available in higher space dimensions as well, are
not sufficient. In section 6, using the special one-dimensional structure, we then prove
convergence (of a subsequence) and obtain finally an existence result for (S)–(E).

Again we treat a special case, but far more general constitutive laws W and ∆
could be considered. We let

W (F ) =

{
1
α (Fα+F−α) for F > 0,

∞ else,
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G = GL+(1) = (0,∞), z = (P, p) ∈ G × R, and

∆((P, p), (Ṗ , ṗ)) =

{
αeαpṗ for ṗ ≥ |Ṗ /P |,
∞ else.

As in the previous section (see also [Mie03a]), we obtain the dissipation distance

D((P0, p0), (P1, p1)) =

{
eαp1 − eαp0 for p1 ≥ p0 + |logP1/P0| ,

∞ else.

From this we find the condensed stored-energy density

W cond((1, p);F ) =
1

α

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2
√

1+bpFα − bp for Fα ≥ bp + F−α,

Fα + F−α for |Fα−F−α| ≤ bp,

2
√

1+bpF−α − bp for F−α ≥ bp + Fα,

∞ for F ≤ 0,

(5.1)

where bp = αeαp. For F > 0 the update functions read

P upd((1, p);F ) =

⎧⎪⎨
⎪⎩

F/(1+bpF
α)1/(2α) for Fα ≥ bp + F−α,

1 for |Fα−F−α| ≤ bp,

F (1+bpF
−α)1/(2α) for F−α ≥ bp + Fα;

zupd((1, p);F ) = p +
∣∣logP upd((1, p);F )

∣∣ .
As in section 4 we see that the abstract theory of section 3 applies for α > 3 since

qF = α/2 and qP = α in condition (3.5).
We consider the one-dimensional domain Ω = (0, 1) ⊂ R

1. The space Fq of
admissible deformation may be either Fq

displ = W1,q
0 (Ω) = {ϕ ∈ W1,q(Ω) | ϕ(0) =

ϕ(1) = 0 } or Fq
tract = {ϕ ∈ W1,q(Ω) | ϕ(0) = 0 }. The loading takes the form

〈�(t), ϕ〉 =

∫ 1

0

hext(t, x)ϕ(x)dx + σ1(t)ϕ(1) =

∫ 1

0

Hext(t, x)ϕ′(x)dx,

where Hext(t, x) = σ1(t) +
∫ 1

x
hext(t, x̃) dx̃ and ϕ′(x) = Dϕ(x) ∈ R

1×1. At this point

it suffices to assume Hext ∈ C0([0, T ] × Ω).
Proposition 5.1. Fix α > 3 and p∗ ∈ R. Then the above one-dimensional model

generates an incremental problem (IP) as above, and (IP) has, for each z0 ∈ Z with
D((1, p∗), z0) < ∞, a unique solution (ϕk, zk)k=1,...,N .

Moreover, there exists C > 0, which depends only on α, �, and z0, such that

‖ϕk‖W1,α/3 + ‖Pk‖Lα + ‖P−1
k ‖Lα + ‖eαpk‖L1 ≤ C for k = 1, . . . , N.(5.2)

Proof. Using Lemma 3.2 ϕk is a minimizer of the condensed functional Icond
k

which is based on W cond; see (5.1). Because of α > 3, this density, and hence the
functional Icond

k , is strictly convex. Hence, ϕk is uniquely defined for given zk−1

and tk.
For given F and zk−1, the set Arg min{W (FP )+D(zk−1, (P, p))|(P, p) ∈ (0,∞)×

R } contains just one point. Hence, zk is also uniquely defined. By induction we
conclude uniqueness of the whole solution to (IP).

Estimate (5.2) follows the standard energy estimates as given in section 3.
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Finally we want to discuss the problem of establishing convergence for the step
size max{ tk − tk−1 | k = 1, . . . , N } going to 0. In [MiT99, MTL02, MiT03, MaM03]
conditions are given which guarantee that from the sequence of the piecewise constant
interpolants

(ϕN
cr , z

N
cr ) :

{
[0, T ) → F ×Z,

t �→
∑N−1

k=0 χ[tk,tk+1)(t)(ϕ
k, zk)

(5.3)

a subsequence can be extracted which converges to a solution (ϕ, z) : [0, T ] → F ×Z
of the time-continuous problem (S)–(E); see (2.14). The dissipation D can be used to
bound possible oscillations in time yielding temporal compactness. The problem is to
control possible spatial oscillation, i.e., in x ∈ Ω.

A crucial tool developed there (see also [Efe03, MaM03, MiR03]) is the set of
stable states

S[0,T ] = { (t, ϕ, z) ∈ [0, T ]×F×Z | for all ϕ̃, z̃ : E(t, ϕ, z) ≤ E(t, ϕ̃, z̃) + D(z, z̃) }.

The important condition in the abstract theory developed in the above-mentioned
papers is that any limit (ϕ, z) : [0, T ] → F×Z of the subsequence (ϕNm(t), zNm(t)) →
(ϕ(t), z(t)) occurs in a topology in which the stable set S[0,T ] is closed. We want to
study this question in our explicit one-dimensional example now.

For simplicity, we restrict ourselves to the traction case F = Fα/3
tract, which allows

us to characterize S[0,T ] explicitly. A similar result was obtained already in [Mie03a].
Lemma 5.2. In the above one-dimensional example (t, ϕ, P, p) ∈ S[0,T ] if and only

if for a.a. x ∈ Ω we have

|(ϕ′/P )α−(ϕ′/P )−α| ≤ αeαp and ((ϕ′/P )α−1−(ϕ′/P )−α−1)/P = Hext(t, ·).(5.4)

Proof. Stability of (t, ϕ, z) is equivalent to the fact that (ϕ, z) is a global minimizer
of J : (ϕ̃, z̃) �→ E(t, ϕ̃, z̃) + D(z, z̃). Minimizing with respect to z̃ ∈ Z leads to the
condensed functional

Jcond : ϕ̃ �→
∫

Ω

W cond(z(x); ϕ̃′(x))dx− 〈�(t), ϕ̃〉.

For ϕ̃ = ϕ we know that this minimum is attained for z̃ = z, and hence we know

W cond(z(x);ϕ′(x)) = W (ϕ′(x)/P (x)) for a.a. x ∈ Ω.(5.5)

This gives the first condition in (5.4).
Since ϕ minimizes Jcond we have DJcond(ϕ) = 0, which implies the second condi-

tion in (5.4), after using (5.5) once again. Thus, we conclude that (5.4) is necessary.
The sufficiency follows from the convexity.

Defining the two-dimensional subsets M(t, x) of R
3 via

M(t, x) =
{

(F, P, p) ∈ (0,∞)2×R

∣∣∣ ∣∣(FP )α−(FP )−α
∣∣ ≤ αeαp,

(FP )α−1−(FP )−α−1 = P Hext(t, x)
}
⊂ R

3,

the stability condition (5.4) can be reformulated as

(ϕ′(x), P (x), p(x)) ∈ M(t, x) for a.a. x ∈ Ω.
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We note that the sets M(t, x) are closed but not convex in R
3. Hence, S[0,T ] is closed

in the strong topology of [0, T ] ×F ×Z ⊂ R × W1,α/3(Ω) × Lα(Ω) × Lα(Ω).
However, S[0,T ] is not closed in the weak topology of this Banach space. Yet, so

far the a priori estimate (5.2) is the only one available, and from it we obtain just
weak convergence (at fixed times t ∈ [0, T ]):

ϕNm(t) ⇀ ϕ(t) in W1,α/3(Ω),
∂

∂x
(ϕNm(t))PNm(t)−1 ⇀ Felast(t) in Lα(Ω),

PNm(t) ⇀ P (t) in Lα(Ω),
PNm(t)−1 ⇀ K(t) in Lα(Ω),

zNm(t) ⇀ p(t) in Lα(Ω).

(5.6)

However, this does not imply ϕ′(t, x)/P (t, x) = Felast(t, x) or P (t, x)−1 = K(t, x) for
a.a. x ∈ Ω, which would be needed to conclude from ((ϕNm)′, PNm , pNm) ∈ M(t, x)
the desirable condition (ϕ′, P, p) ∈ M(t, x).

Thus, the convergence of the incremental solutions can be shown only by estab-
lishing convergence in stronger topologies. Below we will show that the solutions
( d
dxϕ

k, Pk, pk) converge pointwise in [0, T ] × Ω.
Before providing this result, we want to mention another abstract approach to ob-

tain strong convergence, which is implemented in section 7 of [MiT03]. It relies on the
reduced problem where only the internal variable z is kept, whereas the deformation
ϕ is minimized out. We define

Ired(t, z) = min{ E(t, ϕ, z) | ϕ ∈ F }.

In the case of F = Fα/3
tract this minimization can be made explicit, since E contains ϕ

only via ϕ′. We denote by W ∗ the Legendre–Fenchel transform of W , i.e.,

W ∗(σ) = sup{σF −W (F ) | F ∈ R }.(5.7)

Then W ∗ : R → R is convex and satisfies W ∗(σ) ∼ 1
α+

σα+ for σ → +∞ and

W ∗(σ) ∼ − 1
α−

(−σ)α− for σ → −∞, where α± = α
α∓1 . Moreover, a simple calculation

gives

Ired(t, z) = −
∫ 1

0

W ∗(Hext(t, x)P (x))dx.

Unfortunately, this functional is concave in P . Hence, the strong convergence theory
in the uniformly convex case is not applicable.

6. Convergence in the one-dimensional case. To derive a convergence re-
sult we use the very specific structure of the one-dimensional traction problem with

F = Fα/3
tract. As already used in Lemma 5.2 the incremental problem has the spe-

cial property that it can be solved independently for each point x ∈ Ω to obtain
(Fk, Pk, pk) = ( d

dxϕk(x), Pk(x), pk(x)) as the solution of the finite-dimensional, x-
dependent minimization problem

(Fk(x), Pk(x), pk(x))

∈ Arg min
(F,P,p)∈R3

W (F/P ) −Hext(tk, x)F + D((Pk−1(x), pk−1(x)), (P, p)),

which has a unique solution.
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We now additionally assume z0 = (P0, p0) ∈ C0(Ω,R2) with P0(x) > 0 for all
x ∈ Ω. Moreover, the loading should satisfy Hext ∈ C1([0, T ] × Ω). Using energy
estimates as for Proposition 5.1, we find a constant C > 0, which is independent of
x ∈ Ω and the time discretization, such that all incremental solutions satisfy

|Fk(X)| + |Pk(x)| + |1/Pk(x)| + |pk(x)| ≤ C(6.1)

for all x ∈ Ω and k = 0, 1, . . . , N .
From now on we omit the x-dependence in most cases and use the shorthand

Hk = Hext(tk, x). Introducing the logarithm γ = logP and eliminating F , we are left
with the following incremental problem in R

2:

(γk, pk) ∈ Arg min{D((eγk−1 , pk−1), (e
γ , p)) −W ∗(eγHk) | γ, p ∈ R }.

Because of the special form of D, this reduces to a scalar problem

γk ∈ Arg min{ eα(pk−1+|γ−γk−1|) −W ∗(eγHk) | γ ∈ R },
pk = pk−1 + |γk−γk−1|.

(6.2)

This problem can be solved almost explicitly by using monotonicity arguments relying
on the total ordering of the real line.

The essential scalar variable is ζ±k−1 = γk−1 ∓ pk−1 + log(±Hk), which allows us
to write the iteration (6.2) in the form

(
γk

pk

)
=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
Γ+(ζ+

k−1)− logHk

Γ+(ζ+
k−1)−ζ+

k−1

)
if Γ+(ζ+

k−1) > γk−1+ logHk,

(
γk−1

pk−1

)
if Γ+(ζ+

k−1) ≤ γk−1+ log |Hk| ≤ Γ−(ζ−k−1),(
Γ−(ζ−

k−1)− log(−Hk)

ζ−
k−1−Γ−(ζ−

k−1)

)
if Γ−(ζ−k−1) < γk−1+ log(−Hk),

(6.3)

where Γ±(ζ) = Arg min{ e±α(γ−ζ) −W ∗(±eγ) | γ ∈ R }.
We call the first case, where γk > γk−1, plastic loading and the third case, where

γk < γk−1, plastic unloading. In the second case the plastic variables do not change.
The major observation is that if in a time interval the solution stays either always in
cases one and two or always in cases two and three, then the solution can be calculated
directly from the initial data when entering this time interval and the loading history,
but one does not need to know the solution in between. In particular, the number of
steps done in between is irrelevant. We now make this precise.

With Γ±(ζ) ∼ α±ζ for ζ → −∞, α− < 1 < α+, and the a priori estimate (6.1) we
find a constant H∗ > 0 such that |Hk| ≤ H∗ implies that the second case (no change
in the plastic variables) occurs. We now decompose the time interval [0, T ] into a
finite number of subintervals Jm = [τm−1, τm] with 0 = τ0 ≤ τ1 < τ2 < · · · < τM = T
such that H∗ + (−1)mH(t) ≥ 0 for all t ∈ Jm. For the given time discretization
0 = t0 < t1 < · · · < tN = T we define, for m = 1, . . . ,M , the exit times tjm ∈ Jm of
the subintervals Jm via

j0 = 0 and jm = max{ k | tk ≤ τm }.

On the subintervals Jm we change the loading Hk into a monotone version H̃k, which
is defined for tk ∈ Jm via

H̃k = (−1)m max{ (−1)mH(tn) | n ∈ {jm−1, . . . , k} }.(6.4)

Hence (−1)mH̃k is nondecreasing for k = jm−1, . . . , jm.
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By induction over the subintervals and by induction over the number of steps
inside each subinterval, we obtain the following representation formula.

Proposition 6.1. Let m be even and tk ∈ Jm. Then the solution takes the form

(
γk
pk

)
=

(
Γ+(γjm−1

−pjm−1
+ log H̃k) − log H̃k

Γ+(γjm−1
−pjm−1

+ log H̃k) − γjm−1
+ pjm−1

− log H̃k

)
.(6.5)

A similar formula using Γ− holds for m odd; cf. (6.3).
Finally, we obtain the desired convergence result, which is formulated in terms of

functions over x ∈ Ω = (0, 1) ⊂ R
1.

Theorem 6.2. Consider the one-dimensional traction problem of section 5
with α > 2 and Hext ∈ C1([0, T ] × Ω). Then there exists a function (ϕ, P, p) ∈
C0([0, T ],W1,∞(Ω)× L∞(Ω)2), which is a solution of (S)–(E) (cf. (2.14)). Moreover,
there exists a constant C > 0 such that for each time discretization 0 = t0 < t1 <
· · · < tN = T the unique solution (ϕk, Pk, pk)k=0,...,N of the incremental problem (3.1)
satisfies, for k = 1, . . . , N ,

‖ϕ(tk, ·)−ϕk‖W1,∞ + ‖P (tk, ·)−Pk‖L∞ + ‖p(tk, ·)−pk‖L∞

≤ C max{ tn−tn−1 | n = 1, . . . , k }.

Proof. We use the fact that Proposition 6.1 can be applied in a uniform manner
for x ∈ Ω.

First, consider the division into subintervals Jm. Since Hext is continuous, the
sets Σ+ and Σ− with

Σ± = { (t, x) ∈ [0, T ] × Ω | ±Hext(t, x) ≥ H∗ }

are strictly separated. Because of this, the only restrictions to the subintervals are
Jm(x) ⊃ Σ+ ∩ ([0, T ]×{x}) for even m and Jm(x) ⊃ Σ− ∩ ([0, T ]×{x}) for odd m.
Hence, it is possible to choose the intervals piecewise constant on a finite number
of subintervals Ωl = (xl−1, xl). In particular, the number of time intervals Jm(x),
m = 1, . . . ,Ml, is bounded from above.

Second, we apply the formula (6.5). To show convergence we define the function

H̃ext as in (6.4):

H̃ext(t, x) = (−1)m max{ (−1)mHext(s, x) | s ∈ Jm(x) ∩ [0, t] }.

By Lipschitz continuity of Hext(·, x) we obtain

|H̃k(x) − H̃ext(tk, x)| ≤ C1δk with δk = max{ tn−tn−1 | n = 1, . . . , k }

for a constant C1 independent of x ∈ Ω and the partition.
Now, we may take a sequence of partitions 0 < tNl

1 < · · · < tNl

Nl
such that the fine-

ness δ̃l := δNl

Nl
tends to 0. Now, the exit points tNl

jlm(x)
have a distance to the end points

τm(x) of the intervals Jm(x) of at most δ̃l. Moreover, by induction over m we find
that (γjlm(x)(x), pjlm(x)(x)) converges for l → ∞. The limits, called (γ̃m(x), p̃m(x)),
satisfy the recursion

(
γ̃m
p̃m

)
=

(
Γ+(γ̃m−1−p̃m−1+ log H̃ext(τm)) − log H̃ext(τm)

Γ+(γ̃m−1−p̃m−1+ log H̃ext(τm)) − γ̃m−1 + p̃m−1 − log H̃ext(τm)

)
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for even m and similarly for odd m. The error is bounded by C2δ̃l, since Γ± are
Lipschitz continuous.

Third, we define the function (γ, p) : [0, T ] × Ω → R
2 via

(
γ(t, x)
p(t, x)

)
=

(
Γ+(γ̃m−1(x)−p̃m−1(x)+ log H̃ext(t, x))− log H̃ext(t, x)

Γ+(γ̃m−1(x)− p̃m−1(x)+ log H̃ext(t, x))− γ̃m−1(x)+ p̃m−1(x)− logH̃ext(t, x)

)

for t ∈ Jm(x). By our construction the incremental solutions (tNl

k , γNl

k (x), pNl

k (x))
converge to (t, γ(t, x), p(t, x)) with an error bounded by C3δl, uniformly on [0, T ]×Ω.

Finally, it remains to show that (γ, p) define a solution of (S)–(E). Let F̂ (P,H)
be the unique minimizer of F �→ W (F/P )−HF . Then the desired function (ϕ, P, p)
is obtained from (γ, p) via

P (t, x) = eγ(t,x) and ϕ(t, x) =

∫ x

0

F̂ (P (t, ξ), Hext(t, ξ))dξ.

Since the function F̂ is also Lipschitz continuous, we obtain uniform convergence
of the (unique) incremental solutions towards this limit function. Now we use the
abstract theorem, Theorem 3.1, which guarantees that the incremental solutions are
stable and satisfy the discrete version of the energy inequality. The characterization
of the stable sets in Lemma 5.2 show that uniform limits (with pointwise convergence
almost everywhere) are stable again, i.e., (t, ϕ(t), P (t), p(t)) ∈ S[0,T ] for each t ∈ [0, T ].
Thus, (S) is established.

Similarly, we start from the discrete energy inequality (ii) in Theorem 3.1 for the
incremental solutions (ϕNl , zNl). For l → ∞ the uniform convergence guarantees that
all terms converge:

E(t, ϕ(t), z(t)) + Diss(z, [s, t]) = E(s, ϕ(s), z(s)) −
∫ t

s

∫
Ω

∂tHext(τ, ξ)∂xϕ(τ, ξ)dξdτ.

For the convergence of the dissipation, uniform convergence is not sufficient. There
we use that the piecewise constant interpolants P cr(·, x) are monotone in t when
restricted to the subintervals Jm(x) and that pcr(·, x) is always monotone. This, to-
gether with the uniform convergence, implies convergence of the dissipation as well.
This establishes (E) as an energy equality.
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Abstract. We prove the well-posedness (existence and uniqueness) of renormalized entropy
solutions to the Cauchy problem for quasi-linear anisotropic degenerate parabolic equations with L1
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1. Introduction. We consider the Cauchy problem for quasi-linear anisotropic
degenerate parabolic equations with L1 data. This convection–diffusion-type problem
is of the form

∂tu + divf(u) = ∇ · (a(u)∇u) + F, u(0, x) = u0(x),(1.1)

where (t, x) ∈ (0, T )×Rd; T > 0 is fixed; div and ∇ are with respect to x ∈ Rd; and
u = u(t, x) is the scalar unknown function that is sought. The (initial and source)
data u0(x) and F (t, x) satisfy

u0 ∈ L1(Rd), F ∈ L1((0, T ) × Rd).(1.2)

The diffusion function a(u) = (aij(u)) is a symmetric d× d matrix of the form

a(u) = σ(u)σ(u)� ≥ 0, σ ∈ (L∞
loc(R))

d×K
, 1 ≤ K ≤ d,(1.3)

and hence has entries

aij(u) =

K∑
k=1

σik(u)σjk(u), i, j = 1, . . . , d.

The inequality in (1.3) means that for all u ∈ R

d∑
i,j=1

aij(u)λiλj ≥ 0 ∀λ = (λ1, . . . , λd) ∈ Rd.

Finally, the convection flux f(u) is a vector-valued function that satisfies

f(u) = (f1(u), . . . , fd(u)) ∈ (Liploc(R))
d
.(1.4)
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It is well known that (1.1) possesses discontinuous solutions and that weak solu-
tions are not uniquely determined by their initial data (the scalar conservation law
is a special case of (1.1)). Hence (1.1) must be interpreted in the sense of entropy
solutions [16, 20, 21]. In recent years the isotropic diffusion case, for example, the
equation

∂tu + divf(u) = ∆A(u), A(u) =

∫ u

0

a(ξ) dξ, 0 ≤ a ∈ L∞
loc(R),(1.5)

has received much attention, at least when the data are regular enough (say L1∩L∞)
to ensure ∇A(u) ∈ L2. Various existence results for entropy solutions of (1.5) (and
(1.1)) can be derived from the work by Vol’pert and Hudjaev [21]. Some general
uniqueness results for entropy solutions have been proved in the one-dimensional con-
text by Wu and Yin [22] and Bénilan and Touré [2]. In the multidimensional context
a general uniqueness result is more recent and was proved by Carrillo [6, 5] using
Kružkov’s doubling-of-variables device. Various extensions of his result can be found
in [4, 13, 14, 15, 17, 18, 19]; see also [7] for a different approach. Explicit “continuous
dependence on the nonlinearities” estimates were proved in [10]. In the literature
just cited it is essential that the solutions u possess the regularity ∇A(u) ∈ L2. This
excludes the possibility of imposing general L1 data, since it is well known that in
this case one cannot expect that much integrability.

The general anisotropic diffusion case (1.1) is more delicate and was successfully
solved only recently by Chen and Perthame [9]. Chen and Perthame introduced the
notion of kinetic solutions and provided a well-posedness theory for (1.1) with L1 data.
Using their kinetic framework, explicit continuous dependence and error estimates for
L1 ∩ L∞ entropy solutions were obtained in [8]. With the only assumption that
the data belong to L1, we cannot expect a solution of (1.1) to be more than L1.
Hence it is in general impossible to make distributional sense to (1.1) (or its entropy
formulation). In addition, as already mentioned above, we cannot expect

√
a(u)∇u

to be square-integrable, which seems to be an essential condition for uniqueness. Both
these problems were elegantly dealt with in [9] using the kinetic approach.

The purpose of the present paper is to offer an alternative “pure” L1 well-
posedness theory for (1.1) based on a notion of renormalized entropy solutions and
the classical Kružkov method [16]. The notion of renormalized solutions was intro-
duced by DiPerna and Lions in the context of Boltzmann equations [11]. This notion
(and a similar one called entropy solutions) was then adapted to nonlinear elliptic and
parabolic equations with L1 (or measure) data by various authors. We refer to [3] for
some recent results in this context and a list of relevant references. Bénilan, Carrillo,
and Wittbold [1] introduced a notion of renormalized Kružkov entropy solutions for
scalar conservation laws with L1 data and proved the existence and uniqueness of
such solutions. Their theory generalizes the Kružkov well-posedness theory for L∞

entropy solutions [16].
Motivated by [1, 3] and [9], we introduce herein a notion of renormalized entropy

solutions for (1.1) and prove its well-posedness. Let us illustrate our notion of an L1

solution on the isotropic diffusion equation (1.5) with initial data u|t=0 = u0 ∈ L1.
To this end, let Tl : R → R denote the truncation function at height l > 0 and
let ζ(z) =

∫ z

0

√
a(ξ) dξ. A renormalized entropy solution of (1.5) is a function

u ∈ L∞(0, T ;L1(Rd)) such that (i) ∇ζ(Tl(u)) is square-integrable on (0, T ) × Rd for
any l > 0; (ii) for any convex C2 entropy-entropy flux triple (η, q, r), with η′ bounded
and q′ = η′f ′, r′ = η′a, there exists for any l > 0 a nonnegative bounded Radon
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measure µl on (0, T ) × Rd, whose total mass tends to zero as l ↑ ∞, such that

∂tη(Tl(u)) + divq(Tl(u)) − ∆r(Tl(u))

≤ −η′′(Tl(u)) |∇ζ(Tl(u))|2 + µl(t, x) in D′((0, T ) × Rd).
(1.6)

Roughly speaking, (1.6) expresses the entropy condition satisfied by the truncated
function Tl(u). Of course, if u is bounded by M , choosing l > M in (1.6) yields the
usual entropy formulation for u, i.e., a bounded renormalized entropy solution is an
entropy solution. However, in contrast to the usual entropy formulation, (1.6) makes
sense also when u is merely L1 and possibly unbounded. Intuitively the measure µl

should be supported on {|u| = l} and carry information about the behavior of the
“energy” on the set where |u| is large. The requirement is that the energy should be
small for large values of |u|, that is, the total mass of the renormalization measure
µl should vanish as l ↑ ∞. This is essential for proving uniqueness of a renormalized
entropy solution. Being explicit, the existence proof reveals that

µl((0, T ) × Rd) ≤
∫
{|u0|>l}

|u0| dx → 0 as l ↑ ∞.

We prove existence of a renormalized entropy solution to (1.1) using an approx-
imation procedure based on artificial viscosity [21] and bounded data. We derive a
priori estimates and pass to the limit in the approximations.

Uniqueness of renormalized entropy solutions is proved by adapting the doubling-
of-variables device due to Kružkov [16]. In the first order case, the uniqueness proof
of Kružkov depends crucially on the fact that

∇xΦ(x− y) + ∇yΦ(x− y) = 0, Φ smooth function on Rd,

which allows for a cancellation of certain singular terms. The proof herein for the
second order case relies in addition crucially on the following identity involving the
Hessian matrices of Φ(x− y):

∇xxΦ(x− y) + 2∇xyΦ(x− y) + ∇yyΦ(x− y) = 0,

which, when used together with the parabolic dissipation terms (like the one found in
(1.6)), allows for a cancellation of certain singular terms involving the second order
operator in (1.1). Compared to [9], our uniqueness proof is new even in the case of
bounded entropy solutions.

The remaining part of this paper is organized as follows: In section 2 we in-
troduce the notion of a renormalized entropy solution for (1.1) and state our main
well-posedness theorem. The proof of this theorem is given in section 3 (uniqueness)
and section 4 (existence).

2. Definitions and statement of main result. We start by defining an
entropy-entropy flux triple.

Definition 2.1 (entropy-entropy flux triple). For any convex C2 entropy func-
tion η : R → R, the corresponding entropy fluxes

q = (q1, . . . , qd) : R → Rd and r = (rij) : R → Rd×d

are defined by q′(u) = η′(u)f ′(u) and r′(u) = η′(u)a(u). We will refer to (η, q, r) as
an entropy-entropy flux triple.
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For 1 ≤ k ≤ K and 1 ≤ i ≤ d, we let

ζik(u) =

∫ u

0

σik(ξ) dξ, ζk(u) = (ζ1k(u), . . . , ζdk(u)) ,

and for any ψ ∈ C(R)

ζψik(u) =

∫ u

0

ψ(ξ)σik(ξ) dξ, ζψk (u) =
(
ζψ1k(u), . . . , ζψdk(u)

)
.

Let us introduce the following set of vector fields:

L2(0, T ;L2(div;Rd))

=
{
w = (w1, . . . , wd) ∈

(
L2((0, T ) × Rd)

)d
: divw ∈ L2((0, T ) × Rd)

}
.

Following [9] we define an entropy solution as follows.

Definition 2.2 (entropy solution). An entropy solution of (1.1) is a measurable
function u : (0, T ) × Rd → R satisfying the following conditions:

(D.1) u ∈ L∞(0, T ;L1(Rd)) ∩ L∞((0, T ) × Rd).
(D.2) For any k = 1, . . . ,K, ζk(u) ∈ L2(0, T ;L2(div;Rd)).
(D.3) (chain rule) For any k = 1, . . . ,K and ψ ∈ C(R),

divζψk (u) = ψ(u)divζk(u)

a.e. in (0, T ) × Rd and in L2((0, T ) × Rd).

(D.4) Define the parabolic dissipation measure nu,ψ
l (t, x) by

nu,ψ(t, x) = ψ(u(t, x))

K∑
k=1

(
divζk(u(t, x))

)2

.

For any entropy-entropy flux triple (η, q, r),

∂tη(u) +

d∑
i=1

∂xi
qi(u) −

d∑
i,j=1

∂2
xixj

rij(u)

− η′(u)F ≤ −nu,η′′
in D′((0, T ) × Rd).

(2.1)

(D.5) ess limt↓0 ‖u(t, ·) − u0‖L1(Rd) = 0.

An important contribution of Chen and Perthame [9] is to make explicit the point
that the chain rule (D.3) should be included in the definition of an entropy solution
in the anisotropic diffusion case. They also note that (D.3) is automatically fulfilled
when a(u) is a diagonal matrix, and can then be deleted from Definition 2.2. This
applies to the isotropic case (1.5).

Uniqueness of an entropy solution in the sense of Definition 2.2 was proved in
[9] using a kinetic formulation and regularization by convolution. The present paper
offers an alternative proof based on the more classical Kružkov method of doubling
the variables [16].
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Let us mention that (D.4) implies that the following Kružkov-type entropy con-
dition holds for all c ∈ R (here A′

ij(·) = aij(·)):

∂t |u− c| +
d∑

i=1

∂xi

[
sign (u− c) (fi(u) − fi(c))

]

−
d∑

i,j=1

∂2
xixj

[
sign (u− c) (Aij(u) −Aij(c))

]
− sign (u− c)F ≤ 0.

(2.2)

In the isotropic case (1.5), (2.2) simplifies to

∂t |u− c| + div
[
sign (u− c) (f(u) − f(c))

]
− ∆ |A(u) −A(c)| ≤ 0.(2.3)

After Carrillo’s work [6, 5], it is known that (2.3) implies uniqueness in the isotropic
case (1.5). In the anisotropic case (1.1), (2.2) is not sufficient for uniqueness. Indeed,
it is necessary to explicitly include the parabolic dissipation measure in the entropy
condition, as is done in (D.4).

As we discussed in section 1, for unbounded L1 solutions Definition 2.2 is in
general not meaningful. In [9] the authors use a notion of kinetic solutions to handle
this problem. It is the purpose of this paper to use instead a notion of renormalized
entropy solutions. Before we can introduce this notion, let us recall the definition of
the (Lipschitz continuous) truncation function Tl : R → R at height l > 0:

Tl(u) =

⎧⎪⎨
⎪⎩
−l, u < −l,

u, |u| ≤ l,

l, u > l.

(2.4)

We then suggest the following notion of an L1 solution.
Definition 2.3 (renormalized entropy solution). A renormalized entropy solu-

tion of (1.1) is a measurable function u : (0, T ) × Rd → R satisfying the following
conditions:

(D.1) u ∈ L∞(0, T ;L1(Rd)).
(D.2) For any k = 1, . . . ,K, ζk(Tl(u)) ∈ L2(0, T ;L2(div;Rd)) for all l > 0.
(D.3) (renormalized chain rule) For any k = 1, . . . ,K and ψ ∈ C(R),

divζψk (Tl(u)) = ψ(Tl(u))divζk(Tl(u))

a.e. in (0, T ) × Rd and in L2((0, T ) × Rd) for all l > 0.
(D.4) For l > 0, introduce the renormalized parabolic dissipation measure

nu,ψ
l (t, x) = ψ(Tl(u(t, x)))

K∑
k=1

(
divζk(Tl(u(t, x)))

)2

.

For any l > 0 and any entropy-entropy flux triple (η, q, r), with |η′| bounded
by K (for some given K), there exists a nonnegative bounded Radon measure

µu,K
l on (0, T ) × Rd such that

∂tη(Tl(u)) +

d∑
i=1

∂xiqi(Tl(u)) −
d∑

i,j=1

∂2
xixj

rij(Tl(u))

− η′(Tl(u))F ≤ −nu,η′′

l + µu,K
l in D′((0, T ) × Rd).

(2.5)
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(D.5) The total mass of the renormalization measure µu,K
l vanishes as l ↑ ∞:

lim
l↑∞

µu,K
l ((0, T ) × Rd) = 0.

(D.6) ess limt↓0 ‖u(t, ·) − u0‖L1(Rd) = 0.

Note that since Tl(u) ∈ L∞((0, T ) × Rd), the terms in (2.5) are all well defined.
Moreover, if a renormalized entropy solution u belongs to L∞((0, T ) × Rd), then it
is also an entropy solution in the sense of Definition 2.2 (let l ↑ ∞ in Definition
2.3).

Our well-posedness result is contained in the following theorem, which is proved
in section 3 (uniqueness) and section 4 (existence).

Theorem 2.1 (well-posedness). Suppose that (1.2), (1.3), and (1.4) hold. Then
there exists a unique renormalized entropy solution u of (1.1).

It is worthwhile mentioning that Theorem 2.1 holds under merely local regularity
assumptions on f(u), a(u). Moreover, a(u) can be discontinuous, which is of interest
in some applications [4].

Remark 2.1. In the isotropic case it is not necessary to include the chain rule
(D.3) as a part of Definition 2.3, since it is then automatically fulfilled. Indeed, let
0 ≤ σ ∈ L∞

loc(R) and ψ ∈ L∞
loc(R). Set

β(z) =

∫ z

0

σ(ξ) dξ, βψ(z) =

∫ z

0

ψ(ξ)σ(ξ) dξ.

Then, for any measurable function u(x) such that ∂xiβ(Tl(u)) ∈ L1
loc(R

d), for some
fixed i = 1, . . . , d, there holds

∂xiβ
ψ(Tl(u(x))) = ψ(Tl(u(x)))∂xi

β(Tl(u(x)))(2.6)

for a.e. x ∈ Rd and in L2
loc(R

d) for all l > 0. To establish (2.6) we can apply the
proof in [9] to the function v := β(Tl(u)) ∈ L∞(R), which satisfies ∂xiv ∈ L1

loc(R
d).

Remark 2.2 (the initial condition). In Definition 2.3 of a renormalized entropy
solution we require that the initial condition at t = 0 be satisfied in the strong L1

sense. When proving convergence of approximate solution sequences without having
BV estimates at our disposal, it can be difficult to verify condition (D.6) for a limit
function. To have a more flexible framework, the initial condition can be included
into the renormalized entropy formulation, that is, delete condition (D.6) and require
instead that the renormalized entropy inequality in (2.5) hold in D′([0, T ) × Rd).

In this case, the Radon measure µu,K
l should be bounded on [0, T ) × Rd and satisfy

liml↑∞ µu,K
l ([0, T )×Rd) = 0. Such a weak formulation of the initial condition is much

easier to verify for limits of certain approximate solution sequences. This point was
made explicit in [12]; see also [13] for degenerate parabolic equations. To prove The-
orem 2.1 with a weak formulation of the initial condition we simply have to combine
the proof of Theorem 3.1 below with a straightforward adaptation of the arguments
in [12, 13] (we leave the details to the reader). Of course, the comments above also
apply to Definition 2.3 of an entropy solution.

3. Uniqueness of renormalized entropy solution. For the uniqueness proof,
we need a C1 approximation of sign (·) and a corresponding C2 approximation of the
Kružkov entropy flux |· − c|, c ∈ R.
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For ε > 0, set

signε (ξ) =

⎧⎪⎨
⎪⎩
−1, ξ < −ε,

sin
(

π
2εξ

)
, |ξ| ≤ ε,

1, ξ > ε.

(3.1)

For each c ∈ R, the corresponding entropy function

u �→ ηε(u, c) =

∫ u

c

signε (ξ − c) dξ

is convex and belongs to C2(R) with η′′ε ∈ Cc(R) and |η′ε| ≤ 1 (so that the constant
K appearing in Definition 2.3 is 1). Moreover, ηε is symmetric in the sense that
ηε(u, c) = ηε(c, u) and

ηε(u, c) → η(u, c) := |u− c| as ε ↓ 0.

For each c ∈ R and 1 ≤ i, j ≤ d, we define the entropy flux functions

u �→ qεi (u, c) =

∫ u

c

signε (ξ − c) f ′
i(ξ) dξ,

u �→ rεij(u, c) =

∫ u

c

signε (ξ − c)A′
ij(ξ) dξ,

(3.2)

where A′
ij(·) = aij(·) for 1 ≤ i, j ≤ d. Then as ε ↓ 0

qεi (u, c) → qi(u, c) := sign (u− c) (fi(u) − fi(c)) ,

rεij(u, c) → rij(u, c) := sign (u− c) (Aij(u) −Aij(c))
(3.3)

for 1 ≤ i, j ≤ d. Let qε = (qε1, . . . , q
ε
d), r

ε =
(
rεij

)
, and similarly for q, r.

We are now ready to prove uniqueness of renormalized entropy solutions.
Theorem 3.1 (uniqueness). Suppose that (1.3) and (1.4) hold. Let u and v be

renormalized entropy solutions of (1.1) with data F ∈ L1((0, T ) × Rd), u0 ∈ L1(Rd)
and G ∈ L1((0, T ) × Rd), v0 ∈ L1(Rd), respectively. Then for a.e. t ∈ (0, T ),

‖u(·, t) − v(·, t)‖L1(Rd)

≤ ‖u0 − v0‖L1(Rd) +

∫ t

0

‖F (s, ·) −G(s, ·)‖L1(Rd) ds.
(3.4)

In particular, (1.1) admits at most one renormalized entropy solution.
Proof. We shall prove (3.4) using Kružkov’s doubling-of-variables method [16].

When it is notationally convenient we drop the domain of integration.
Let (ηε, q

ε
i , r

ε
ij) be the entropy flux triple defined above, and denote by µu

l , µv
l the

corresponding renormalization measures.
From the definition of a renormalized entropy solution for u = u(t, x),

∫ ⎛
⎝ηε(Tl(u), c)∂tφ +

d∑
i=1

qεi (Tl(u), c)∂xiφ +

d∑
i,j=1

rεij(Tl(u), c)∂2
xixj

φ

⎞
⎠ dx dt

−
∫

signε (Tl(u) − c)F (t, x)φdx dt

≥
∫

nu,sign′
ε(·−c)(t, x)φdx dt−

∫
φdµu

l (t, x)

(3.5)
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for all c ∈ R, for all l > 0, and for every 0 ≤ φ = φ(t, x) ∈ D((0, T ) × Rd).
From the definition of a renormalized entropy solution for u = u(s, y),

∫ ⎛
⎝ηε(Tl(v), c)∂sφ +

d∑
i=1

qεi (Tl(v), c)∂yj
φ +

d∑
i,j=1

rεij(Tl(v), c)∂
2
yiyj

φ

⎞
⎠ dy ds

−
∫

signε (Tl(v) − c)G(s, y)φdy ds

≥
∫

nv,sign′
ε(c−·)(s, y)φdy ds−

∫
φdµv

l (s, y)

(3.6)

for all c ∈ R, for all l > 0, and for every 0 ≤ φ = φ(s, y) ∈ D((0, T ) × Rd).
Choose c = Tl(v(s, y)) in (3.5) and integrate over (s, y). Choose c = Tl(u(t, x))

in (3.6) and integrate over (t, x). Then adding the two resulting inequalities yields

∫ (
ηε(Tl(u), Tl(v)) (∂t + ∂s)φ

+
d∑

i=1

[qεi (Tl(u), Tl(v))∂xi
φ + qεi (Tl(v), Tl(u))∂yi

φ]

+

d∑
i,j=1

[
rεij(Tl(u), Tl(v))∂

2
xixj

φ + rεij(Tl(v), Tl(u))∂2
yiyj

φ
])

dx dt dy ds

−
∫

signε (Tl(u) − Tl(v)) (F (t, x) −G(s, y)) dx dt dy ds

≥
∫ (

nu,sign′
ε(·−c)(t, x) + nv,sign′

ε(·−c)(s, y)
)
φdx dt dy ds

−
∫

φ(t, x, s, y) dµu
l (t, x) dy ds

−
∫

φ(t, x, s, y) dµv
l (s, y) dx dt,

(3.7)

where φ = φ(t, x, s, y) is any nonnegative function in D(((0, T ) × Rd)2).
We introduce next a standard mollifier sequence ωρ : R × Rd → R, ρ > 0, and

take our test function φ = φ(t, x, s, y) to be of the form

φ(t, x, s, y)=ϕ

(
t + s

2
,
x + y

2

)
ωρ

(
t− s

2
,
x− y

2

)
, ϕ∈D((0, T )×Rd), 0≤ϕ≤1.

With this choice, we have (∂t + ∂s)φ = (∂t + ∂s)ϕ
(
t+s
2 , x+y

2

)
ωρ

(
t−s
2 , x−y

2

)
and

(∇x + ∇y)φ = (∇x + ∇y)ϕ
(
t+s
2 , x+y

2

)
ωρ

(
t−s
2 , x−y

2

)
.

Introduce the Hessian matrices

∇xxφ =
(
∂2
xixj

φ
)
, ∇xyφ =

(
∂2
xiyj

φ
)
, ∇yyφ =

(
∂2
yiyj

φ
)
.

Then one can check that the following crucial matrix equality holds:

(∇xx + 2∇xy + ∇yy)φ = (∇xx + 2∇xy + ∇yy)ϕ

(
t + s

2
,
x + y

2

)
ωρ

(
t− s

2
,
x− y

2

)
.
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Note that the two latter properties imply that for 1 ≤ i ≤ d,

qεi (Tl(u), Tl(v))∂xi
φ + qεi (Tl(v), Tl(u))∂yi

φ

= qεi (Tl(u), Tl(v)) (∂xi
+ ∂yi

)ϕ

(
t + s

2
,
x + y

2

)
ωρ

(
t− s

2
,
x− y

2

)

+ [qεi (Tl(v), Tl(u)) − qεi (Tl(u), Tl(v))] ∂yi
φ,

(3.8)

and for 1 ≤ i, j ≤ d,

rεij(Tl(u), Tl(v))∂
2
xixj

φ + rεij(Tl(v), Tl(u))∂2
yiyj

φ

= rεij(Tl(u), Tl(v))
(
∂2
xixj

+ 2∂2
xiyj

+ ∂2
yiyj

)
ϕ

(
t + s

2
,
x + y

2

)
ωρ

(
t− s

2
,
x− y

2

)

− 2rεij(Tl(u), Tl(v))∂
2
xiyj

φ

+
[
rεij(Tl(v), Tl(u)) − rεij(Tl(u), Tl(v))

]
∂2
yiyj

φ.

(3.9)

We also have

−
∫

φ(t, x, s, y) dµu
l (t, x) dy ds

≥ −
∫

ωρ

(
t− s

2
,
x− y

2

)
dy ds dµu

l (t, x) ≥ −µu
l ((0, T ) × Rd)

(3.10)

and similarly

−
∫

φ(t, x, s, y) dµv
l (s, y) dx dt ≥ −µv

l ((0, T ) × Rd).(3.11)

Insertion of (3.8)–(3.11) into (3.7) gives

∫ (
ηε(Tl(u), Tl(v)) (∂t + ∂s)ϕ

(
t + s

2
,
x + y

2

)

+
d∑

i=1

qεi (Tl(u), Tl(v)) (∂xi + ∂yi)ϕ

(
t + s

2
,
x + y

2

)

+

d∑
i,j=1

rεij(Tl(u), Tl(v))
(
∂2
xixj

+ 2∂2
xiyj

+ ∂2
yiyj

)
ϕ

(
t + s

2
,
x + y

2

))

× ωρ

(
t− s

2
,
x− y

2

)
dx dt dy ds

−
∫

signε (Tl(u) − Tl(v)) (F (t, x) −G(s, y)) dx dt dy ds

≥ E1(ε) + E2(ε) + E3(ε) − µv
l ((0, T ) × Rd) − µv

l ((0, T ) × Rd),

(3.12)
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where Ej(ε) =

∫
Ij(ε) dx dt dy ds, j = 1, 2, 3, with

I1(ε) =
(
nu,sign′

ε(·−c)(t, x) + nv,sign′
ε(·−c)(s, y)

)
φ,

I2(ε) = 2

d∑
i,j=1

rεij(Tl(u), Tl(v))∂
2
xiyj

φ,

I3(ε) =

d∑
i=1

[qεi (Tl(u), Tl(v)) − qεi (Tl(v), Tl(u))] ∂yiφ

+

d∑
i,j=1

[
rεij(Tl(u), Tl(v)) − rεij(Tl(v), Tl(u))

]
∂2
yiyj

φ.

Clearly, we have limε↓0 E3(ε) = 0 and

lim
ε↓0

E2(ε) =

∫
2

d∑
i,j=1

rij(Tl(u), Tl(v))∂
2
xiyj

φdx dt dy ds.(3.13)

Our goal now is to show that

lim
ε↓0

E1(ε) + lim
ε↓0

E2(ε) ≥ 0.(3.14)

To this end, note first that, since sign′
ε (·) ≥ 0,

I1(ε) ≥ 2

K∑
k=1

sign′
ε (Tl(u) − Tl(v)) divxζk(Tl(u))divyζk(Tl(v))φ,

so that

E1(ε) ≥
∫

2

K∑
k=1

sign′
ε (Tl(u) − Tl(v)) divxζk(Tl(u))

× divyζk(Tl(v))φdx dt dy ds.

Invoking the chain rule (D.3) in Definition 2.3 (we can do this since sign′
ε (·)

belongs to C(R)), we have for 1 ≤ k ≤ K

sign′
ε (Tl(u) − Tl(v)) divyζk(Tl(v)) = divyζ

sign′
ε(Tl(u)−·)

k (Tl(v)).(3.15)

If we now use (3.15), then we have

E1(ε) ≥
∫

2

K∑
k=1

divxζk(Tl(u))divyζ
sign′

ε(Tl(u)−·)
k (Tl(v))φdx dt dy ds.
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Integration by parts in y yields

E1(ε) ≥
∫

2

K∑
k=1

d∑
i,j=1

∂xiζik(Tl(u))

× ∂yj

(∫ Tl(v)

Tl(u)

sign′
ε (Tl(u) − ξ)σjk(ξ) dξ

)
φdx dt dy ds

= −
∫

2
K∑

k=1

d∑
i,j=1

∂xi
ζik(Tl(u))

×
(∫ Tl(v)

Tl(u)

sign′
ε (Tl(u) − ξ)σjk(ξ) dξ

)
∂yjφdx dt dy ds.

For 1 ≤ k ≤ K and 1 ≤ j ≤ d, define the function ψε
jk : R → R by

ψε
jk(η) =

∫ Tl(v)

η

sign′
ε (η − ξ)σjk(ξ) dξ.

Since sign′
ε (·) ∈ C(R) and σjk(·) ∈ L∞

loc(R), we have ψε
jk(·) ∈ C(R) and the chain

rule can therefore be used.

Using the chain rule (D.3) in Definition 2.3 and then doing integration by parts
in x, we derive

E1(ε) ≥ −
∫

2

K∑
k=1

d∑
i,j=1

∂xi
ζik(Tl(u))ψε

jk(Tl(u))∂yj
φdx dt dy ds

= −
∫

2

K∑
k=1

d∑
i,j=1

∂xi
ζ
ψε

jk

ik (Tl(u))∂yjφdx dt dy ds

= −
∫

2

K∑
k=1

d∑
i,j=1

∂xi

(∫ Tl(u)

Tl(v)

ψε
jk(ξ)σik(ξ) dξ

)
∂yj

φdx dt dy ds

=

∫
2

K∑
k=1

d∑
i,j=1

(∫ Tl(u)

Tl(v)

ψε
jk(ξ)σik(ξ) dξ

)
∂2
xiyj

φdx dt dy ds.

Observe that for a.e. η ∈ R

lim
ε↓0

ψε
jk(η) = −sign (η − Tl(v))σjk(η),

so that by the dominated convergence theorem we have for a.e. (t, x, s, y)

lim
ε↓0

∫ Tl(u)

Tl(v)

ψε
jk(ξ)σik(ξ) dξ = −

∫ Tl(u)

Tl(v)

sign (ξ − Tl(v))σjk(ξ)σik(ξ) dξ.
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Hence, after another application of the dominated convergence theorem,

lim
ε↓0

E1(ε) ≥ −
∫

2

K∑
k=1

d∑
i,j=1

(∫ Tl(u)

Tl(v)

sign (ξ − Tl(v))σjk(ξ)σik(ξ) dξ

)

× ∂2
xiyj

φdx dt dy ds

= −
∫

2

d∑
i,j=1

rij(Tl(u), Tl(v))∂
2
xiyj

φdx dt dy ds.

(3.16)

Finally, adding (3.16) to (3.13) yields (3.14).
Summing up, sending ε ↓ 0 in (3.12) gives∫ (

Itime + Iconv + Idiff

)
(t, x, s, y)ωρ

(
t− s

2
,
x− y

2

)
dx dt dy ds

−
∫

sign (Tl(u) − Tl(v)) (F (t, x) −G(s, y))

× ωρ

(
t− s

2
,
x− y

2

)
ϕ

(
t + s

2
,
x + y

2

)
dx dt dyds

≥ −µu
l ((0, T ) × Rd) − µv

l ((0, T ) × Rd),

(3.17)

where

Itime(t, x, s, y) = |Tl(u(t, x)) − Tl(v(s, y))| (∂t + ∂s)ϕ

(
t + s

2
,
x + y

2

)
,

Iconv(t, x, s, y) =

d∑
i=1

qi(Tl(u(t, x)), Tl(v(s, y))) (∂xi + ∂yi)ϕ

(
t + s

2
,
x + y

2

)
,

Idiff(t, x, s, y) =

d∑
i,j=1

rij(Tl(u), Tl(v))
(
∂2
xixj

+ 2∂2
xiyj

+ ∂2
yiyj

)
ϕ

(
t + s

2
,
x + y

2

)
.

Let us introduce the change of variables

x̃ =
x + y

2
, t̃ =

t + s

2
, z =

x− y

2
, τ =

t− s

2
,

which maps (0, T ) × Rd × (0, T ) × Rd into

Ω = Rd × Rd ×
{(

t̃, τ
) ∣∣∣ 0 ≤ t̃ + τ ≤ T, 0 ≤ t̃− τ ≤ T

}
.

Observe that

(∂t + ∂s)ϕ

(
t + s

2
,
x + y

2

)
= ϕt̃(t̃, x̃), (∇x + ∇y)ϕ(t, x, s, y) = ∇x̃ϕ(t̃, x̃).

This change of variables diagonalizes also the operator ∇xx + 2∇xy + ∇yy:

(∇xx + 2∇xy + ∇yy)ϕ

(
t + s

2
,
x + y

2

)
= ∇x̃x̃ϕ(t̃, x̃).
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Keeping in mind that

x = x̃ + z, y = x̃− z, t = t̃ + τ, s = t̃− τ,

we may now estimate (3.17) as∫
Ω

(
Itime + Iconv − Idiff

)
(t̃, x̃, τ, z)ωρ(τ, z) dt̃ dx̃ dτ dz

≥ −
∫

Ω

∣∣F (t̃ + τ, x̃ + z) −G(t̃− τ, x̃− z)
∣∣ωρ(τ, z) dx̃ dt̃ dτ dz − o(1/l),

(3.18)

where

Itime(t̃, x̃, τ, z) =
∣∣Tl(u(t̃ + τ, x̃ + z)) − Tl(v(t̃− τ, x̃− z))

∣∣ϕt̃(t̃, x̃),

Iconv(t̃, x̃, τ, z) =

d∑
i=1

qi
(
Tl(u(t̃ + τ, x̃ + z)), Tl(v(t̃− τ, x̃− z))

)
∂x̃i

ϕ(t̃, x̃),

Idiff(t̃, x̃, τ, z) =

d∑
i,j=1

rij
(
Tl(u(t̃ + τ, x̃ + z)), Tl(v(t̃− τ, x̃− z))

)
∂2
x̃ix̃j

ϕ.

Sending ρ ↓ 0 in (3.18) yields

∫ (
|Tl(u) − Tl(v)| ∂tϕ +

d∑
i=1

qi (Tl(u), Tl(v)) ∂xiϕ

+

d∑
i,j=1

rij (Tl(u), Tl(v)) ∂
2
xixj

ϕ

)
dx dt

≥ −
∫

|F (t, x) −G(t, x)|ϕdx dt− o(1/l).

(3.19)

By standard arguments (choosing a sequence of functions 0 ≤ ϕ ≤ 1 from
D((0, T )×Rd) that converges to 1(0,t)×Rd and using the initial conditions for u, v in
the sense of, say, (D.6) in Definition 2.3, it follows from (3.19) that for a.e. t ∈ (0, T )∫

Rd

|Tl(u(t, x)) − Tl(v(t, x))| dx

≤
∫
Rd

|Tl(u0) − Tl(v0)| dx +

∫ t

0

∫
Rd

|F (s, x) −G(s, x)| dx ds + o(1/l).

(3.20)

Equipped with (D.5) in Definition 2.3 for u and v, sending l ↑ ∞ in (3.20) finally
yields the L1 stability property (3.4).

4. Existence of renormalized entropy solution. The purpose of this section
is to prove the following theorem.

Theorem 4.1 (existence). Suppose that (1.2), (1.3), and (1.4) hold. Then there
exists at least one renormalized entropy solution u of (1.1).

We divide the proof into two steps.
Step 1 (bounded data). Suppose the data u0 and F are bounded and integrable

functions. Repeating the proof in [9] we find that there exists a unique entropy solution
u to (1.1) (interpreted in the sense of Definition 2.2), and this entropy solution can
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be constructed by the vanishing viscosity method [21]. For us it remains to prove
that this entropy solution is also a renormalized entropy solution in the sense of
Definition 2.3. To this end, let uρ be the unique classical (say C1,2) solution to the
uniformly parabolic problem

∂tuρ + divf(uρ) = ∇ · (a(uρ)∇uρ) + ρ∆uρ + F, ρ > 0,

uρ(x, 0) = u0(x).
(4.1)

Equipped with the a priori estimates in [21], Chen and Perthame [9] proved

uρ → u a.e. and in C(0, T ;L1(Rd)) as ρ ↓ 0,(4.2)

where u is the unique entropy solution to (1.1).

For any C2 function S and
(
qSi

)′
= S′f ′

i ,
(
rSij

)′
= S′aij for 1 ≤ i, j ≤ d, multiply-

ing the equation in (4.1) by S′(uρ) yields

∂tS(uρ) +

d∑
i=1

∂xiq
S
i (uρ) −

d∑
i,j=1

∂2
xixj

rSij(uρ) − ρ∆S(uρ)

− S′(uρ)F (uρ) = −
(
nS′′

ρ + mS′′

ρ

)
(t, x),

(4.3)

where the parabolic dissipation measure nS′′

n,ρ(t, x) is defined by

nS′′

ρ (t, x) =

K∑
k=1

(
d∑

i=1

∂xi
ζS

′′

ik (u(t, x))

)2

,

and the entropy dissipation measure mS′′

ρ (t, x) is defined by

mS′′

ρ (t, x) = ρS′′(uρ) |∇uρ|2 .

An easy approximation argument reveals that (4.3) continues to hold for any function
S ∈ W 2,∞(R).

Inserting S(u) = 1
l

∫ u

0
Tl(ξ)ξ into (4.3) and then sending l ↓ 0, we get the well-

known estimate

‖uρ‖L∞(0,T ;L1(Rd)) ≤ ‖u0‖L1(Rd) + ‖F‖L1((0,T )×Rd) .(4.4)

We need to derive some additional a priori estimates (involving (2.4)) that are inde-
pendent of ρ and ‖u0‖L∞(Rd), ‖F‖L∞((0,T )×Rd).

Lemma 4.1. For any l > 0, we have

∫
(0,T )×Rd

⎛
⎝ K∑

k=1

(
d∑

i=1

∂xi
ζik(Tl(uρ))

)2

+ ρ |∇Tl(uρ)|2
⎞
⎠ dx dt ≤ Cl

for some constant Cl that is independent of ρ but not l. More precisely,

Cl = l
(
‖u0‖L1(Rd) + ‖F‖L1((0,T )×Rd)

)
.

Proof. Introduce the function

S(u) =

∫ u

0

Tl(ξ) dξ =

{
|u|2
2 , |u| ≤ l,

l |u| − l2

2 , |u| > l.
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The lemma follows by choosing this S(·) in (4.3).
Lemma 4.2. For any l > 0 and any δ > 0,

1

δ

∫
{l<|uρ|<l+δ}

⎛
⎝ K∑

k=1

(
d∑

i=1

∂xi
ζik(uρ)

)2

+ ρ |∇uρ|2
⎞
⎠ dx dt ≤ E(l)(4.5)

for some bounded function E(·) on R+ that is independent of ρ, δ and satisfies
liml↑∞ E(l) = 0.

If the data u0, F are bounded and l > M := ‖u0‖L∞(Rd) +‖F‖L∞((0,T )×Rd), then

E(l) = 0.
Proof. Let us define the function S(·) by S(0) = 0 and

S′(u) =
1

δ
(Tl+δ(u) − Tl(u)) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−1, u < −l − δ,
−u−l

δ , −l − δ < u < −l,

0, −l < u < l,
u−l
δ , l < u < l + δ,

1, u > l + δ.

Inserting this S into (4.3) gives

1

δ

∫
{l<|uρ|<l+δ}

⎛
⎝ K∑

k=1

(
d∑

i=1

∂xiζik(uρ)

)2

+ ρ |∇uρ|2
⎞
⎠ dx dt

≤
∫
{|u0|>l}

|u0| dx +

∫
{|uρ|>l}

|F | dx dt := E(l).

(4.6)

Since u0 ∈ L1(Rd), F ∈ L1((0, T ) × Rd), and, thanks to (4.4), uρ is uniformly (in ρ)
bounded in L1((0, T ) × Rd), we have E(l) → 0 as l ↑ ∞.

If the data u0, F are bounded, then it is well known that ‖uρ‖L∞((0,T )×Rd) ≤ M ,

where M is defined in the lemma. We observe that if l > M , then S(u0) = 0 and
S′(uρ) = 0. Hence we deduce E(l) = 0.

Let us choose a particular S = Sη,h in (4.3) of the form

Sη,h(0) = 0, S′
η,h = η′h′,

η ∈ C2(R), η′′ ≥ 0, |η′| ≤ K,

h ∈ C2(R), supp(h′) ⊂ [−l, l].

This gives

∂tSη,h(uρ) +

d∑
i=1

∂xiq
Sη,h

i (uρ) −
d∑

i,j=1

∂2
xixj

r
Sη,h

ij (uρ) − ρ∆Sη,h(uρ)

− S′
η,h(uρ)F (uρ) = −

(
nη′′h′

ρ + µη′h′′

ρ

)
(t, x),

(4.7)

where

µη′h′′

ρ (t, x) := −
(
nη′h′′

ρ + mη′h′′

ρ

)
(t, x)

= −η′(uρ)h
′′(uρ)

⎛
⎝ K∑

k=1

(
d∑

i=1

∂xiζik(uρ)

)2

+ ρ |∇uρ|2
⎞
⎠ .
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Let hl,δ : R → R denote the function defined by hl,δ(0) = 0 and

h′
l,δ(u) =

⎧⎪⎨
⎪⎩

1, |u| < l,
l+δ−|u|

δ , l < |u| < l + δ,

0, |u| > l + δ.

Clearly,

hl,δ(u) → Tl(u), h′
l,δ(u) → 1{|u|<l}(4.8)

for any u ∈ R. The idea is to choose h = hn,l in (4.7) and then let δ ↓ 0. To this end,
let us first define the Radon measure µK

l,ρ,δ on (0, T ) × Rd by

dµK
l,ρ,δ(t, x) :=

K

δ
1{l<|uρ|<l+δ}

⎛
⎝ K∑

k=1

(
d∑

i=1

∂xi
ζik(uρ)

)2

+ ρ |∇uρ|2
⎞
⎠ dx dt,

that is, for any Borel set E ⊂ (0, T ) × Rd,

µK
l,ρ,δ(E) =

K

δ

∫
E∩{l<|uρ|<l+δ}

⎛
⎝ K∑

k=1

(
d∑

i=1

∂xi
ζik(uρ)

)2

+ ρ |∇uρ|2
⎞
⎠ dx dt.

Then, by Lemma 4.2, µK
l,ρ,δ((0, T ) × Rd) ≤ E(l). Consequently, we may assume that

µK
l,ρ,δ

�
⇀ µK

l,ρ in the sense of measures on (0, T ) × Rd as δ ↓ 0,

µK
l,ρ

�
⇀ µK

l in the sense of measures on (0, T ) × Rd ρ ↓ 0
(4.9)

for some nonnegative bounded Radon measure µK
l satisfying

µK
l ((0, T ) × Rd) ≤ E(l) → 0 as l ↑ ∞.(4.10)

For any 0 ≤ φ ∈ D((0, T ) × Rd), thanks to (4.8) and the convexity of η,

lim
δ↓0

∫
(0,T )×Rd

n
η′′h′

l,δ
ρ (t, x)φdx dt

≥
∫

(0,T )×Rd

η′′(Tl(uρ))

K∑
k=1

(
d∑

i=1

∂xiζik(Tl(uρ))

)2

φdx dt.

(4.11)

Again because of (4.8), it can be easily checked that as δ ↓ 0 (recall q′ = η′f ′ and
r′ = η′a)

Sη,hl,δ
(u) → η(Tl(u)), S′

η,hl,δ
(u) → η′(Tl(u)),

qSη,hl,δ (u) → q(Tl(u)), rSη,hl,δ (u) → r(Tl(u))
(4.12)

for any u ∈ R.
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Inserting h = hl,δ into (4.7) and using |η′| ≤ K, (4.9), (4.11), (4.12) when sending
δ ↓ 0, we get

∂tη(Tl(uρ)) +

d∑
i=1

∂xiqi(Tl(uρ)) −
d∑

i,j=1

∂2
xixj

rij(Tl(uρ))

− ρ∆η(Tl(uρ)) − η′(Tl(uρ))F

≤ −η′′(Tl(uρ))

K∑
k=1

(
d∑

i=1

∂xi
ζik(uρ)

)2

+ µK
l,ρ in D′((0, T ) × Rd).

(4.13)

Equipped with (4.9), passing to the limit ρ ↓ 0 in (4.13) yields that u satisfies the
entropy condition (2.5).

It remains to prove that the chain rule (D.3) in Definition 2.3 holds. For any
ψ ∈ C(R), the classical chain rule gives for k = 1, . . . ,K

d∑
i=1

∂xi
ζψik(Tl(uρ)) = ψ(Tl(uρ))

d∑
i=1

∂xi
ζik(Tl(uρ)) ∀l > 0.

As in [9], the proof is to observe that this equality continues to hold in the limit as

ρ ↓ 0 since uρ converges strongly and
∑d

i=1 ∂xi
ζik(Tl(uρ)) weakly.

Step 2 (unbounded data). Suppose the data u0 and F satisfy (1.2). For n > 1,
introduce the truncated data u0,n = Tn(u0) and Fn = Tn(F ). We have u0,n → u0,
Fn → F in L1 as n ↑ ∞. Thanks to the L1 contraction property of the solution
operator to (4.1), {un}n>1 is a Cauchy sequence in C(0, T ;L1(Rd)) and has a limit
point u. From Step 1 we know that each un is a renormalized entropy solution of
(1.1) with u0 and F replaced by u0,n and Fn, respectively. Denote by µK

l,n the cor-
responding renormalization measure. Lemma 4.1 and (4.10) imply that the following
n-independent a priori estimates hold for each l > 0:

‖un‖L∞(0,T ;L1(Rd)) ≤ ‖u0‖L1(Rd) + ‖F‖L1((0,T )×Rd) ,

K∑
k=1

(
divζk(Tl(un))

)2

=

K∑
k=1

(
d∑

i=1

∂xiζik(Tl(un))

)2

≤ Cl,

µK
l,n((0, T ) × Rd) ≤

∫
{|u0|>l}

|u0| dx +

∫
{|un|>l}

|F | dx dt

for some constant Cl depending on l but not n. Equipped with these estimates and
the strong convergence un → u, we can repeat the steps in the above limiting process
for the viscous approximations {uρ}ρ>0 and prove that the limit point u of {un}n>1

is a renormalized entropy solution of (1.1), with the renormalization measure µu,K
l

being a limit point of {µK
l,n}n>1. This completes the proof of Theorem 4.1.
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Abstract. We present a general framework to treat Γ-convergence of functionals through Young
measures and through slicing decomposition. After dealing with a general situation where functionals
are defined in Lebesgue spaces, we concentrate on the gradient case. Explicit computations are
possible, in this case, when the sequence of functions determining the functionals has a special
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1. Introduction. Γ-convergence of functionals is an important method for deal-
ing with sequences of functionals and for understanding their limiting properties. It
was originally introduced in the pioneering works [9], [10]. See [8] for a formal and
more complete analysis. It is closely related to homogenization, G- and H-convergence
(see [6], [11], [15], [16]), as well as variational problems and techniques (see [3], [7]).
Many examples and applications are scattered throughout the literature, but [1] is a
nice account of the application of all these ideas to optimal design and shape opti-
mization. See also [5]. In this work, we would like to start a systematic treatment
of Γ-convergence through the study of the underlying Young measures associated to
relevant sequences. A major tool is the slicing measure decomposition (see [2], [12]).

To explain our perspective, suppose we have a sequence of integral functionals

Ij(u) =

∫
Ω

W (aj(x), u(x)) dx, u ∈ A,

where Ω ⊂ RN is a bounded, regular domain, aj : Ω → Rm, and A is some weakly
closed subset of a certain reflexive Lebesgue space. The integrand

W (λ, ρ) : Rm × Rd → R

is assumed to be continuous to begin with. Under coercivity for W with respect to ρ,
the Γ-limit of the sequence of functional {Ij} is defined by putting

I(u) = inf

{
lim inf
j→∞

Ij(uj) : uj ⇀ u

}
,(1.1)

and it represents the right notion of variational convergence of functionals. A prime
objective in many situations is to provide an explicit, integral form for I(u), and doing
so amounts to describing how the new integrand can be determined and computed
from the sequence {aj}. The procedure, carried out in many cases which can be
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found in the references given above, essentially consists in finding a lower bound in
(1.1), in the form of an integral functional, set up in such a way that will eventually
become the Γ-limit, because that lower bound will in fact be an equality for a certain,
cleverly chosen sequence uj ⇀ u for any u. We would like to describe how this whole
procedure can be done in a more-or-less systematic way through Young measures.

The key idea is to work with the joint Young measure corresponding to pairs
{(aj , uj)}, where uj ⇀ u. But since {aj} is given and cannot be changed in any way,
by means of the slicing decomposition we keep the Young measure associated with
{aj} and work with the part of the joint measure coming from {uj}. Notice that the
joint Young measure will not, in general, be a product measure, and therefore a main
issue is to understand the connection and relationship between their respective Young
and joint Young measures.

Let

W (λ, ρ) : Rm × Rd → R

be a continuous integrand such that

c (|ρ|p − 1) ≤ W (aj(x), ρ) ≤ C (|ρ|p + 1) ,

|W (λ1, ρ) −W (λ2, ρ)| ≤ w(|λ1 − λ2|) |ρ|p

for some C > c > 0, p > 1, a.e. x ∈ Ω and all j. The function w is continuous and
w(0) = 0. Notice that an explicit x dependence of W can be incorporated into aj so
that, without loss of generality, we can assume no explicit dependence on x.

Let {aj} be weakly convergent in Lq(Ω) for some q > 1 and let σ = {σx}x∈Ω be
its underlying Young measure. Define the integrand

ψ(x, ρ) : Ω × Rd → R

by putting

ψ(x, ρ) = min
ϕ

{∫
Rm

CW (x, ϕ(λ)) dσx(λ) : ρ =

∫
Rm

ϕ(λ) dσx(λ)

}
.

We will show that ψ is well-defined in the sense that this infimum is indeed a minimum.
CW is the convexification of W with respect to ρ. Notice that ψ is defined through a
variational problem with respect to the Young measure corresponding to the sequence
{aj}, which determines the sequence of functionals {Ij}.

Theorem 1.1. Under the above hypotheses, the Γ-limit of {Ij} is given by

I(u) =

∫
Ω

ψ(x, u(x)) dx.

In section 3 we include various typical examples where one can explicitly calculate
the density ψ by exploiting optimality conditions.

The situation where functionals depend on gradients is much more interesting,

Ij(u) =

∫
Ω

W (aj(x),∇u(x)) dx, u ∈ A,

and this time A is a weakly closed subset of a certain reflexive Sobolev space. A
result similar to the previous one is valid only under a main, additional, structural
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assumption on the sequence {aj}. This property, called the “average gradient prop-
erty” (AGP), roughly says that averages of gradients over level sets of aj are gradients
themselves. A more rigorous treatment can be found in section 4. The integrand W
is assumed to enjoy the same properties as above. Suppose that {aj} is weakly con-
vergent in Lq(Ω) for some q > 1 and that it verifies AGP, and let σ = {σx}x∈Ω be its
underlying Young measure. Define the integrand

ψ(x, ρ) : Ω × Rd → R

by putting

ψ(x, ρ) = min
ϕ

{∫
Rm

CW (x, ϕ(λ)) dσx(λ) : ρ =

∫
Rm

ϕ(λ) dσx(λ),

ϕ(aj(y)) is a gradient in y

}
.

A more precise definition of ψ is discussed later (section 4).
Theorem 1.2. If the sequence {aj} verifies AGP, the Γ-limit of {Ij} is given

by

I(u) =

∫
Ω

ψ(x,∇u(x)) dx.

Some typical examples are explored in section 5 to illustrate the method.

2. The case without derivatives. In this section we treat and prove our main
result for the most simple situation where the functionals do not depend explicitly on
derivatives so that

Ij(u) =

∫
Ω

W (aj(x), u(x)) dx,

where u belongs to some weakly closed subset of a certain Sobolev space. Ω is assumed
to be a bounded, regular domain. More explicitly our assumptions on

W (λ, ρ) : Rm × Rd → R

and the sequence {aj} are as follows:
1. {aj} is a weakly convergent sequence in Lq(Ω) for some q > 1.
2. W is uniformly coercive in ρ for all j with an exponent p > 1 and is uniformly

bounded from above by the same power so that

c (|ρ|p − 1) ≤ W (aj(x), ρ) ≤ C (|ρ|p + 1)

for some C > c > 0, all j, and a.e. x ∈ Ω. Under this hypothesis, every
sequence {uj} such that {Ij(uj)} is bounded from above will be bounded in
Lp(Ω), and thus, possibly for a subsequence, it will converge weakly to some
u ∈ Lp(Ω).

3. W is uniformly continuous in λ as indicated earlier:

|W (λ1, ρ) −W (λ2, ρ)| ≤ w(|λ1 − λ2|) |ρ|p ,

where w is continuous and w(0) = 0.
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We have assumed no explicit, inhomogeneous dependence of W on x ∈ Ω but
have pointed out that there is no loss of generality. Our aim is a description of the
Γ-limit

I(u) = inf

{
lim inf
j→∞

Ij(uj) : uj ⇀ u in Lp(Ω)

}
.

Let u be given in Lp(Ω), and let {uj} be such that {Ij(uj)} is a nonincreasing
sequence of numbers and uj ⇀ u in Lp(Ω). Let σ = {σx}x∈Ω be the Young measure
associated with {aj} and let ν = {νx}x∈Ω be the Young measure corresponding to
the pairs {(aj , uj)}. Notice that

supp (σx) ⊂ Rm, supp (νx) ⊂ Rm × Rd.

At this point we invoke the slicing measure decomposition or disintegration.
Theorem 2.1 (see [2], [12]). Let ν be a nonnegative, finite Radon measure on

Rn+m, and let σ be its canonical projection onto Rn (σ(E) = ν(E × Rm)). For
σ-a.e. x ∈ Rn there exists a probability measure µx on Rm such that

1. the map

x �→
∫
Rm

f(x, y) dµx(y)

is σ-measurable for every bounded, continuous f ;
2. for every bounded, continuous function f∫

Rn+m

f(x, y) dν(x, y) =

∫
Rn

(∫
Rm

f(x, y) dµx(y)

)
dσ(x).

An enlightened way of shortening the statement of this theorem is to write

ν(x, y) = µx(y) ⊗ σ(x).

Hence, in our situation, we can write

νx = µλ,x ⊗ σx(2.1)

for a.e. x ∈ Ω and every λ ∈ supp (σx). Each µλ,x is a certain probability measure
with support contained in Rd.

On the other hand, the representation in terms of Young measures always yields
something smaller.

Theorem 2.2 (see [13]). If {zj} is a sequence of measurable functions with
associated Young measure ν = {νx}x∈Ω, then

lim inf
j→∞

∫
E

ψ(x, zj(x)) dx ≥
∫
E

∫
Rm

ψ(x, λ) dνx(λ) dx

for every Carathéodory function ψ, bounded from below, and every measurable subset
E ⊂ Ω.

By using this fact, we obtain

lim
j→∞

∫
Ω

W (aj(x), uj(x)) dx ≥
∫

Ω

∫
Rm×Rd

W (λ, ρ) dνx(λ, ρ) dx

=

∫
Ω

∫
Rm

∫
Rd

W (λ, ρ) dµλ,x(ρ) dσx(λ) dx.
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We also have the constraint on the first moment

u(x) =

∫
Rm×Rd

ρ dνx(λ, ρ)

=

∫
Rm

∫
Rd

ρ dµλ,x(ρ) dσx(λ).

If we set

ϕ(λ, x) =

∫
Rd

ρ dµλ,x(ρ),(2.2)

so that

u(x) =

∫
Rm

ϕ(λ, x) dσx(λ),(2.3)

we can go further down in our lower estimate by putting∫
Ω

∫
Rm

∫
Rd

W (λ, ρ) dµλ,x(ρ) dσx(λ) dx ≥
∫

Ω

∫
Rm

CW (λ, ϕ(λ, x)) dσx(λ) dx,

where CW indicates the convex hull of W with respect to ρ. We can therefore write

I(u) ≥ inf
ϕ

{∫
Ω

∫
Rm

CW (λ, ϕ(λ, x)) dσx(λ) dx : ϕ verifies (2.2) and (2.3)

for some admissible ν as in (2.1)

}
.

One main step is to isolate the key requirements on the vector fields ϕ in the
previous infimum without any reference to the measures µλ,x in (2.1), bearing in
mind that we will later have to produce a sequence converging weakly to u for which
all these inequalities are indeed equalities. In this general context, there is essentially
no structural condition on ϕ so that we go further down by estimating

I(u) ≥ inf
ϕ

{∫
Ω

∫
Rm

CW (λ, ϕ(λ, x)) dσx(λ) dx : u(x) =

∫
Rm

ϕ(λ, x) dσx(λ)

}
.

Because of the local nature of the Young measure, we see that this lower bound
for I(u) is an integral functional. Indeed if we define the integrand

ψ(x, ρ) : Ω × Rd → R

by putting

ψ(x, ρ) = inf
ϕ

{∫
Rm

CW (x, ϕ(λ)) dσx(λ) : ρ =

∫
Rm

ϕ(λ) dσx(λ)

}
,(2.4)

then, by interchanging the inf operation with the integral over Ω,

I(u) ≥
∫

Ω

ψ(x, u(x)) dx.

Our goal is to show that we have, in fact, equality

I(u) =

∫
Ω

ψ(x, u(x)) dx.
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Lemma 2.3. The infimum in (2.4) is always attained.
Proof. Notice that this lemma amounts to showing that a variational principle of

the type

Minimize in ϕ :

∫
Rm

F (λ, ϕ(λ)) dσ(λ)

subject to

ρ =

∫
Rm

ϕ(λ) dσ(λ)

always has optimal solutions where σ is a given probability measure supported in Rm

and F is a continuous integrand that is convex and coercive in the second variable.
One could invoke Lebesgue spaces with respect to measures different from the usual
Lebesgue measures (see [2]). Instead, in this simple context, it is easier to use the
same slicing measure technique.

Let {ϕj} be minimizing, and let ϕ be its weak limit. Define a measure ν supported
on Rm × Rd by putting

〈G, ν〉 = lim
j→∞

∫
Rm

G(λ, ϕj(λ)) dσ(λ)(2.5)

for any continuous G. It is clear that the projection of ν over Rm is σ. By the slicing
measure decomposition we claim that, by the convexity of F ,

lim
j→∞

∫
Rm

F (λ, ϕj(λ)) dσ(λ) =

∫
Rm

∫
Rd

F (λ, ρ) dµλ(ρ) dσ(λ)

≥
∫
Rm

F

(
λ,

∫
Rd

ρ dµλ(ρ)

)
dσ(λ)

=

∫
Rm

F (λ, ϕ(λ)) dσ(λ).

Notice that applying (2.5) to G(λ, ρ) = g(λ)ρ for arbitrary g, we conclude that the
first moment of µλ is precisely the weak limit ϕ.

Proof of Theorem 1.1. Let u be given. For a.e. x ∈ Ω, by Lemma 2.3, we find
ϕ0(λ, x) such that

ψ(x, u(x)) =

∫
Rm

CW (λ, ϕ0(λ, x)) dσx(λ),

u(x) =

∫
Rm

ϕ0(λ, x) dσx(λ).

It is also true that for every pair (λ, x) ∈ Rm × Ω we can find a probability measure
µλ,x supported in Rd such that

CW (λ, ϕ0(λ, x)) =

∫
Rd

W (λ, ρ) dµλ,x(ρ),

ϕ0(λ, x) =

∫
Rd

ρ dµλ,x(ρ).
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In fact, it is a direct consequence of Carathéodory’s theorem (see [7]) that we can
take

µλ,x =

d∑
l=0

tλ,x,lδzλ,x,l
, tλ,x,l ≥ 0,

d∑
l=0

tλ,x,l = 1

for certain vectors zλ,x,l. We conclude that∫
Ω

ψ(x, u(x)) dx =

∫
Ω

∫
Rm

∫
Rd

W (λ, ρ) dµλ,x(ρ) dσx(λ) dx.

Take the family of probability measures

νx = µλ,x ⊗ σx.(2.6)

Our main task consists in finding a sequence {uj} so that ν = {νx}x∈Ω is the Young
measure associated with {(aj , uj)} and

lim
j→∞

∫
Ω

W (aj(x), uj(x)) dx =

∫
Ω

ψ(x, u(x)) dx,(2.7)

as desired. Notation becomes cumbersome but the leading argument is quite trans-
parent, we believe.

An important issue here is that we are not entitled to change the sequence {aj} so
that it is the sequence {uj} that must adapt itself to {aj}. We will be using the next
lemma. It is modeled after Lemma 7.9 in [13], but this time for a general, positive
Radon measure. Its proof is based on the Lebesgue differentiation theorem, which is
also valid for Radon measures (see, for instance, Corollary 2.23 in [2]). B(λ, r) is, as
usual, the ball centered at λ and radius r.

Lemma 2.4. Let σ be a positive, Radon measure in an open set D in Rd. Let
N ⊂ D be a subset of σ-null measure. For rj : D \ N → R+ and {fi} ⊂ L1(D,σ),

there exist a set of points {λ(j)
k } ⊂ D \N and positive numbers {ε(j)k }, ε(j)k ≤ rj(λ

(j)
k ),

such that {
B(λ

(j)
k , ε

(j)
k )

}
are pairwise disjoint for each j,

σ
(
D \ ∪kB(λ

(j)
k , ε

(j)
k )

)
= 0 for each j,∫

D

ξ(λ)fi(λ) dσ(λ) = lim
j→∞

∑
k

fi(λ
(j)
k )

∫
B(λ

(j)
k ,ε

(j)
k )

ξ(λ) dσ(λ)

for every i and every ξ ∈ L∞(D,σ).
Choose a dense, countable family of functions {Wi(λ, ρ)}i=1,2,... vanishing at in-

finity. Put W0 ≡ W . Consider the countable family of functions
{
W i(x)

}
i=0,1,...

defined by

W i(x) =

∫
Rm

W̃i(λ, x) dσx(λ),

W̃i(λ, x) =

∫
Rd

Wi(λ, ρ) dµλ,x(ρ).
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Apply the preceding lemma to Ω, the Lebesgue measure, rj(x) = 1, N = ∅, and the

family
{
W i

}
to conclude that we can find {x(j)

k } and {ε(j)k } such that

{
B(x

(j)
k , ε

(j)
k )

}
are pairwise disjoint for each j,∣∣∣Ω \ ∪kB(x
(j)
k , ε

(j)
k )

∣∣∣ = 0 for each j,∫
Ω

ξ(x)

∫
Rm

∫
Rd

Wi(λ, ρ) dµλ,x(ρ) dσx(λ) dx = lim
j→∞

∑
k

W i(x
(j)
k )

∫
B(x

(j)
k ,ε

(j)
k )

ξ(x) dx

for all ξ ∈ L∞(Ω).

Apply Lemma 2.4 once again, this time to the Radon measures σ
(j)
k ≡ σ

x
(j)
k

,

rs(λ) = ε
(j)
k , N = ∅ and the family {W̃i(·, x(j)

k )}. Conclude that there exists a

collection of points {λ(j,s)
k,r } and δ

(j,s)
k,r < ε

(j)
k such that

{
B(λ

(j,s)
k,r , δ

(j,s)
k,r )

}
are pairwise disjoint for each j, k, and s,

σ
(j)
k

(
Rm \ ∪rB(λ

(j,s)
k,r , δ

(j,s)
k,r )

)
= 0 for every j, k, and s,∫

Rm

W̃i(λ, x
(j)
k ) dσ

(j)
k (λ) = lim

s→∞

∑
r

W̃i(λ
(j,s)
k,r , x

(j)
k )σ

(j)
k

(
B(λ

(j,s)
k,r , δ

(j,s)
k,r )

)

for all k, j and i.

By our previous remark about Carathéodory’s theorem,

µ
λ

(j,s)
k,r ,x

(j)
k

=

d∑
l=0

t
(j,s)
k,r,lδz(j,s)

k,r,l

, t
(j,s)
k,r,l ≥ 0,

d∑
l=0

t
(j,s)
k,r,l = 1.

Take any partition of the set

Λ
(j,s)
k,r =

{
aj ∈ B(λ

(j,s)
k,r , δ

(j,s)
k,r )

}
∩B(x

(j)
k , ε

(j)
k )

in d + 1 disjoint subsets, Λ
(j,s)
k,r,l , of relative (Lebesgue) measures t

(j,s)
k,r,l , and define uj,s

on these subsets as z
(j,s)
k,r,l , respectively. Notice that

lim
j→∞

sup
k

lim
s→∞

sup
r

⎛
⎝σ

(j)
k

(
B(λ

(j,s)
k,r , δ

(j,s)
k,r )

)
−

∣∣∣Λ(j,s)
k,r

∣∣∣∣∣∣B(x
(j)
k , ε

(j)
k )

∣∣∣
⎞
⎠ = 0.

Take {ξn} to be a dense, countable subset of continuous functions including the
function identically 1 over Ω. For any such continuous ξn and any j and s, we have
that the integrals

Rn,i,j,s =

∫
Ω

ξn(x)Wi(aj(x), uj,s(x)) dx
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can be decomposed as follows:

Rn,i,j,s =
∑
k

∑
r

∫
Λ

(j,s)
k,r

ξn(x)Wi(λ
(j,s)
k,r , uj,s(x)) dx + dn,i,j,s

=
∑
k

∑
r

∑
l

∫
Λ

(j,s)
k,r,l

ξn(x) dxWi(λ
(j,s)
k,r , z

(j,s)
k,r,l ) + dn,i,j,s

=
∑
k

∑
r

∫
Λ

(j,s)
k,r

ξn(x) dx W̃i(λ
(j,s)
k,r , x

(j)
k ) + dn,i,j,s

=
∑
k

∫
B(x

(j)
k ,ε

(j)
k )

ξn(x) dx
∑
r

W̃i(λ
(j,s)
k,r , x

(j)
k )σ

(j)
k

(
B(λ

(j,s)
k,r , δ

(j,s)
k,r )

)
+ dn,i,j,s.

dn,i,j,s designates different sequences of numbers such that

lim
j→∞

lim
s→∞

dn,i,j,s = 0

for all i and n. By our previous choices through Lemma 2.4, we can suitably choose
s = s(j) and have that the Young measure corresponding to {(aj , uj)}, uj = uj,s(j), is
precisely ν. Furthermore, by redoing all the previous computations for ξ ≡ 1 and W
(for this we need the uniform continuity with respect to λ), it is elementary to check
that (2.7) holds. In particular {uj} is bounded in Lp(Ω).

An interesting consequence of our theorem is the following.
Corollary 2.5. The Γ-limit of the initial functionals Ij depends upon the se-

quence {aj} only through its underlying Young measure.

3. Some examples. What is quite remarkable is that in specific examples the
computation of the density in (2.4) for the Γ-limit can be explicitly calculated. We
will look at two typical, nontrivial examples.

Notice, to begin with, that if the sequence {aj} converges strongly to a, then the
variational problem (2.4) is trivial since σx = δa(x), and we get

ψ(x, u(x)) = CW (a(x), u(x)).

On the other hand, solving (2.4) and overlooking the dependence on x amounts
to being able to find the optimal solutions of problems of the type

Minimize in ϕ :

∫
Rm

F (λ, ϕ(λ)) dσ(λ)

subject to

ρ =

∫
Rm

ϕ(λ) dσ(λ),

where σ is a given probability measure supported in Rm and F : Rm × Rd → R
is coercive and convex in the second variable. Since we know that there are always
optimal solutions, these can be found by examining optimality conditions in many
cases. The form of these will obviously depend on the probability measure σ.

Let us take

Ij(u) =

∫
Ω

aj(x) |u(x)|2 dx,
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where aj : Ω → R and u : Ω → Rd and aj ≥ α > 0. The family of probability
measures appearing in (2.4) is precisely the Young measure associated with {aj}. In
this example we know that those are supported in R, more precisely in (α,+∞). By
Corollary 2.5 we can specify σ = {σx} instead of aj . The simplest nontrivial example
corresponds, overlooking the dependence on x, to

σ = tδa + (1 − t)δb

for t ∈ (0, 1) and α < a < b. Since in this case the only relevant values in the
optimization problem to find the density for the Γ-limit are ϕ(a) and ϕ(b), let us put
for simplicity

A = ϕ(a), B = ϕ(b).

Then we must solve

Minimize in (A,B) : ta |A|2 + (1 − t)b |B|2

subject to

ρ = tA + (1 − t)B.

The optimal solution is easily found to be

A =
b

tb + (1 − t)a
ρ, B =

a

tb + (1 − t)a
ρ,

and hence the value of the infimum is

ab

tb + (1 − t)a
|ρ|2 .

In particular if {aj} generates the Young measure

σx = t(x)δa + (1 − t(x))δb,

then the Γ-limit is

I(u) =

∫
Ω

ab

t(x)b + (1 − t(x))a
|u(x)|2 dx.

Let us now assume that {aj} generates the Lebesgue measure restricted to the
interval (a, b), where again α < a < b. Then we should solve the variational problem

Minimize in ϕ :

∫ b

a

y |ϕ(y)|2 dy

subject to

ρ =

∫ b

a

ϕ(y) dy.

By looking at optimality conditions, we find that the optimal ϕ(y) is

ϕ(y) =
1

log b
a

1

y
ρ,
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and the value of the infimum is

1

log b
a

|ρ|2 .

In this case the Γ-limit is

I(u) =
1

log b
a

∫ b

a

|u(x)|2 dx.

Another such interesting example corresponds to having

dσx(y) = χ(a,b)(y)f(x, y) dy

for a certain f(x, y).
In connection with this last family of examples, consider the case of homogeniza-

tion of integrals in the periodic case

Ij(u) =

∫
Q

W (jx, u(x)) dx,

where

W (y, ρ) : Q× Rd → R

is Q-periodic in y, and Q is the unit cube in Rd. In this case we can take

aj : Q → Q, aj(x) = jx− [jx],

where brackets [·] indicate the integer part. It is well known (see Riemann–Lebesgue
lemma [7], [13]) that the Young measure associated with {aj} is the Lebesgue measure
restricted to Q. Thus the variational problem defining the homogenized functional

ψ(ρ) : Rd → R

is

Minimize in ϕ :

∫
Q

CW (y, ϕ(y)) dy

subject to

ρ =

∫
Q

ϕ(y) dy,

where CW is the convexification with respect to the u variable. When CW is smooth
then optimality conditions may be used to determine explicitly the integrand ψ(ρ)
as in the examples above. Explicit dependence of W on x can also be allowed and
nonperiodic examples can also be studied.

4. The gradient case. We would like to explore how the previous analysis may
be adapted to deal with an explicit dependence on gradients of the integrand defining
the functionals Ij . We thus assume

Ij(u) =

∫
Ω

W (aj(x),∇u(x)) dx.(4.1)
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The same technical assumptions on W as in the nongradient case hold:

c (|ρ|p − 1) ≤ W (aj(x), ρ) ≤ C (|ρ|p + 1) ,

|W (λ1, ρ) −W (λ2, ρ)| ≤ w(|λ1 − λ2|) |ρ|p

for some C > c > 0, all j, a.e. x ∈ Ω, and some exponent p > 1. We will restrict our
attention here to the scalar case where u : Ω → R and leave the more complicated
vector case for a future work [14]. Note that

aj : Ω → Rm, W : Rm × RN → R

if Ω is a regular, bounded domain in RN . Assume that {aj} is uniformly bounded in
some Lebesgue space.

Let u ∈ W 1,p(Ω) be given, and let uj ⇀ u in W 1,p(Ω). Let

ν = {νx}x∈Ω , νx = µλ,x ⊗ σx(4.2)

be the Young measure associated with the pairs {(aj ,∇uj)}, where σ = {σx}x∈Ω is
the one corresponding to {aj}. Notice that the lower bound for the case without
derivatives is again valid. Indeed if

ϕ(λ, x) =

∫
RN

ρ dµλ,x(ρ), ∇u(x) =

∫
Rm

ϕ(λ, x) dσx(λ),(4.3)

then a lower bound for the Γ-limit is

inf
ϕ

{∫
Ω

∫
Rm

CW (λ, ϕ(λ, x)) dσx(λ) dx

}
,(4.4)

where ϕ is admissible as indicated above. The key issue here is how to determine
admissibility for the fields ϕ(λ, x) in terms not only of σ, but also of the sequence
aj itself. Because of this fact, a general result such as Lemma 2.3 in this situation
should be more involved. The difficulties are related to the ones we encounter when
trying to adjust the gradients of several components (vector gradients) at the same
time. This is due to the fact that we cannot modify the sequence {aj} in the least.
Notice that the condition

ϕ(λ, x) =

∫
RN

ρ dµλ,x(ρ)

essentially says that admissible vector fields ϕ should be “averages” of gradients over
a partition of Ω related to the sequence {aj}. As far as we can tell there is no explicit
characterization of such property since we do not know how to reconstruct a gradient
field from its averages over certain known sets so as to “patch” them together. This
can only be done when there is some adjustment between the admissible fields ϕ in
(4.4) and the sequence {aj}. We would like, however, to explore how the proof of
Theorem 1.1 can be redone in the gradient situation. The only case where we can
proceed to compute the Γ-limit, always by reproducing the proof of Theorem 1.1,
corresponds to the situation when the infimum in (4.4) over all admissible ϕ’s equals
the infimum over the fields satisfying a certain property related to the sequence {aj}
itself. One such situation occurs when the sequence {aj} has the AGP. A rigorous
way of formalizing this property follows. Formalities are related to the fact that this
property needs to be defined locally. B stands for the unit ball in RN .

Definition 4.1. We say that the sequence {aj} verifies the AGP (with respect to
the exponent p) if σ = {σx}x∈Ω is its corresponding Young measure and for a.e. x ∈ Ω
whenever
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1. rj ↘ 0 and {aj(x + rjy)}, y ∈ B, generates σx;
2. for all j {

B(λ
(j)
k , r

(j)
k )

}
are pairwise disjoint,

r
(j)
k < rj for all k,

σx

(
Rm \ ∪kB(λ

(j)
k , r

(j)
k )

)
= 0;

3. v ∈ W 1,p(B),
then if we define

Ω
(j)
k =

{
y ∈ B : aj(x + rjy) ∈ B(λ

(j)
k , r

(j)
k )

}
and

Vj(y) =
1∣∣∣Ω(j)
k

∣∣∣
∫

Ω
(j)
k

∇v(z) dz, y ∈ Ω
(j)
k ,

it is true that

‖ curlVj‖W−1,q(B) → 0

as j → ∞.
This is a precise way (probably not the only one) of formalizing the heuristic idea

that averages of gradients over “level sets” of {aj} are themselves gradients. As such,
it has been specifically tailored to redo the proof of Theorem 1.1 in the gradient case.
We will describe some important explicit examples in the next section.

If we define the density

ψ(x, ρ) : Ω × RN → R

by putting, just as before,

ψ(x, ρ) = inf
ϕ

{∫
Rm

CW (λ, ϕ(λ)) dσx(λ) : ρ =

∫
Rm

ϕ(λ) dσx(λ), and whenever

rj ↘ 0 is such that {aj(x + rjy)} generates σx,

‖ curl (ϕ(aj(x + rjy)))‖W−1,q(B) → 0

}
,

(4.5)

then we claim that the Γ-limit is

I(u) =

∫
Ω

ψ(x,∇u(x)) dx.(4.6)

Lemma 4.2. If {aj} verifies the AGP, then the class of admissible fields in the
infimum in (4.5) is identical to the class for the infimum in (4.4) for a.e. x ∈ Ω.

Proof. Let ϕ(λ, x) be as in (4.3), where

νx = µλ,x ⊗ σx

is the slicing measure decomposition of the Young measure associated to the pairs
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{(aj ,∇uj)} for certain gradients {∇uj}. The point x is regarded here as a parameter.
We know that if rj ↘ 0 is such that the sequence {aj(x + rjy)}, for y ∈ B, generates
σx (the localization property of Young measures; see [13]) and

Ω
(j)
k =

{
y ∈ B : aj(x + rjy) ∈ B(λ

(j)
k , r

(j)
k )

}
,

σx

(
Rm \ ∪kB(λ

(j)
k , r

(j)
k )

)
= 0,{

B(λ
(j)
k , r

(j)
k )

}
pairwise disjoint for all j, r

(j)
k < rj ,

then

sup
k

∣∣∣∣∣∣
1∣∣∣Ω(j)
k

∣∣∣
∫

Ω
(j)
k

∇uj(z) dz − ϕ(λ
(j)
k , x)

∣∣∣∣∣∣ → 0 as j → ∞.

This is one important property of the slicing measure decomposition. Consequently
if Vj is taken as in Definition 4.1 for the gradients ∇uj , after a standard diagonal
argument, we have

‖Vj(y) − ϕ(aj(x + rjy), x)‖Lp(B) → 0 as j → ∞,

where

‖ curl yVj(y)‖W−1,q(B) → 0.

This certainly implies that

‖ curl yϕ(aj(x + rjy), x)‖W−1,q(B) → 0.

In the next lemma we gather several elementary or well-known facts.
Lemma 4.3.

1. Every probability measure supported in RN can be generated by a sequence of
gradients (the scalar case; see [13]).

2. If ‖ curlVj‖W−1,q(Ω) → 0, there exists a sequence {Uj}, bounded in W 1,p(Ω),

such that

‖∇Uj − Vj‖Lp(Ω) → 0.

3. If ‖Uj − Vj‖Lp(Ω) → 0, then the two sequences {Uj} and {Vj} generate the

same Young measure [13].
Proof of Theorem 1.2. We are now ready to prove Theorem 1.2. We follow closely

the same procedure as in the proof of Theorem 1.1. The key change refers to the fact
that by Lemma 4.2, the field ϕ0 is locally (almost) a gradient in λ. Thus, by item 1
of Lemma 4.3, and for j, k fixed, the family of probability measures

ν
(j)
k (y) = µ

λ
(j,s)
k,r ,x

(j)
k

⊗ σ
x
(j)
k

for y ∈ Λ
(j,s)
k,r , where as before

Λ
(j,s)
k,r =

{
y ∈ B : aj(x

(j)
k + ε

(j)
k )y) ∈ B(λ

(j,s)
k,r , δ

(j,s)
k,r )

}
∩B,
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is a gradient Young measure in B because its first moment is, by construction,

ϕ0

(
aj(x

(j)
k + ε

(j)
k )y), x

(j)
k

)
,

and this field is essentially a gradient (the characterization of Young measures; see
[13]). Hence, the sequence {uj,s} in the proof of Theorem 1.1 can be taken such that

lim
j→∞

lim
s→∞

‖ curluj,s‖W−1,q(Ω) → 0.

Keep in mind that the integral of ϕ0 against σ is also a gradient. We conclude by
applying items 2 and 3 of Lemma 4.3 to the pairs

{
(aj , uj,s(j))

}
for an appropriate

subsequence.
Because x in (4.3) is like a parameter, finding explicitly the density for the Γ-limit

(always under the AGP) amounts to solving problems of the type

Minimize in ϕ :

∫
Rm

F (λ, ϕ(λ)) dσ(λ)

subject to

ρ =

∫
Rm

ϕ(λ) dσ(λ),

‖ curl (ϕ(aj(y))‖W−1,q(D) → 0,

where aj is defined in D, and it generates σ as a homogeneous Young measure.
Notice that a fact as Corollary 2.5 cannot hold in this situation because the

underlying structure of the sequence {aj} is embedded in the definition of the density
for the Γ-limit.

5. Some examples for the gradient case. One of the simplest examples we
can consider is the gradient version of our first example in section 3 in two dimensions:

Ij(u) =

∫
Ω

aj(x) |∇u(x)|2 dx,

where Ω ⊂ R2, aj(x) = χ(jx · n)a + (1 − χ(jx · n))b, n is a unit vector, χ is the
characteristic function of the interval (0, t) over (0, 1) extended by periodicity, and
a and b are such that 0 < a < b. The Γ-limit can be computed explicitly if {aj}
verifies the AGP. Since in this example the Young measure associated with {aj} is
homogeneous and supported only in {a, b}, verifying AGP reduces to checking that if

V a
j =

∫
{aj=a}∩B

∇v(z) dz,

V b
j =

∫
{aj=b}∩B

∇v(z) dz

for any v ∈ H1(B), then

(V a
j − V b

j ) · Tn → 0

as j → ∞, where T is the counterclockwise π/2 rotation. In this particular case,
because of the divergence theorem,

(V a
j − V b

j ) · Tn =

∫
∂Bj

v(z) ⊗ n(z) dS(z) −
∫
∂B\∂Bj

v(z) ⊗ n(z) dS(z),
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where ∂Bj is the intersection of the region where aj = a with ∂B. It is clear that as
j grows larger and larger,

(V a
j − V b

j ) · Tn → 0.

In this way, since σ = tδa + (1− t)δb is the (homogeneous) Young measure gener-
ated by {aj}, the density for the Γ-limit is defined through the optimization problem

Minimize in (A,B) : ta |A|2 + (1 − t)b |B|2

subject to

ρ = tA + (1 − t)B, (A−B) · Tn = 0.

Notice that for an admissible vector field ϕ,

ϕ(aj(x)) = χ(jx · n)ϕ(a) + (1 − χ(jx · n))ϕ(b),

and the condition of this field being a gradient amounts to having

(ϕ(a) − ϕ(b)) · Tn = 0.

We have put A = ϕ(a), B = ϕ(b) as before.
After some elementary, algebraic computations, we find the optimal value

ψ(ρ) = (ta + (1 − t)b) |ρ|2 − (b− a)2t(1 − t)

(1 − t)a + tb
(ρ · n)2.

As expected, we can also write

ψ(ρ) = ρTHρ,

where

H = (ta + (1 − t)b)1 − (b− a)2t(1 − t)

(1 − t)a + tb
n⊗ n

is the associated, effective, or homogenized tensor. 1 is the identity matrix. We can
iterate this procedure to find the Γ-convergence of higher-order laminates (see [1]).

Another typical example is

Ij(u) =

∫
Q

W (jx,∇u(x)) dx,

where Q is the unit cube in R2, W (y, ρ) is Q-periodic in y, and we have the bounds

c
(
|ρ|2 − 1

)
≤ W (y, ρ) ≤ C

(
|ρ|2 + 1

)
for 0 < c < C and all y ∈ Q as well as the uniform continuity in the y variable. In
this case we take, as in section 3,

aj : Q → Q, aj(x) = jx− [jx].

We also know that the Young measure associated with {aj} is the Lebesgue measure
restricted to Q (homogeneous). In this example, the AGP is also easy to check since
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for a given v ∈ H1(B), the fields Vj in Definition 4.1 (when limj→∞ jrj = +∞)
converge strongly in Lp(B) to the average of ∇v over B due to periodicity. Since this
limit is a constant vector, the AGP holds.

To compute the density for the Γ-limit, we need to examine the requirement about

curl y (ϕ(aj(x + rjy), x))

converging to zero. In this case, due to homogeneity, the x-dependence is irrelevant.
If rj is such that sj = jrj converges to +∞, then we need to determine the fields
ϕ : R2 → R2 such that

curl y(ϕ(sjy − [sjy]) → 0.

Clearly, we can consider ϕ as Q-periodic, and then if z = sjy,

curl y(ϕ(sjy)) = sj curl zϕ(z),

so that since sj → +∞, we conclude that ϕ = ∇ξ for some (possibly nonperiodic)
field ξ. The optimization problem defining the density for the Γ-limit is

Minimize in ξ :

∫
Q

CW (y,∇ξ(y)) dy

subject to

ρ =

∫
Q

∇ξ(y) dy, ∇ξ, Q-periodic.

By an elementary change, we can reformulate the problem as

Minimize in ξ :

∫
Q

CW (y, ρ + ∇ξ(y)) dy

for all ξ ∈ H1(Q), Q-periodic. This is the typical cell problem in homogenization of
multiple integrals for the scalar case [4].
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[9] E. De Giorgi, Sulla convergenza di alcune successioni di integrali del tipo dell’area, Rend.

Mat. (6), 8 (1975), pp. 277–294.



440 PABLO PEDREGAL

[10] E. De Giorgi and T. Franzoni, Su un tipo di convergenza variazionale, Atti. Accad. Naz.
Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8), 58 (1975), pp. 842–850.

[11] E. De Giorgi and S. Spagnolo, Sulla convergenza degli integrali dell’energia per operatori
ellittici del secondo ordine, Boll. Un. Mat. Ital. (4), 8 (1973), pp. 391–411.

[12] L. C. Evans, Weak Convergence Methods for Nonlinear Partial Differential Equations, CBMS
Reg. Conf. Ser. Math., AMS, Providence, RI, 1990.

[13] P. Pedregal, Parametrized Measures and Variational Principles, Birkhäuser, Basel, 1997.
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Abstract. We present a general method for extending decomposition systems of L2(Rd) to
decomposition systems for the anisotropic Triebel–Lizorkin and Besov spaces, Fα,s

p,q and Bα,s
p,q , re-

spectively, for the full range of the indexes. Our approach is based on techniques from harmonic
analysis and relies on the boundedness of almost diagonal operators on appropriate sequence spaces.
Typical examples of such decomposition systems are the various wavelet-type unconditional bases
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1. Introduction. Multilevel-basis characterizations of function spaces are im-
portant in many applications since they frequently lead to simple characterizations
of the spaces in terms of discrete norms applied to the coefficients with respect to
that basis. In this context, wavelet-type characterizations of the various isotropic
Triebel–Lizorkin and Besov spaces have established themselves as a very useful tool
in many fields such as statistics, image processing, and the numerical solutions of
elliptic PDEs. In recent years, however, a renewed interest in pseudodifferential oper-
ators and Fourier multipliers acting on spaces with different degrees of smoothness in
the various coordinate directions, as well as applications of nonlinear approximation,
has lead to the study of the more general classes of anisotropic function spaces.

To describe our results we first introduce the standard multi-index notation. In
particular, for every x = (x1, . . . , xd) ∈ R

d and β = (β1, . . . , βd) ∈ N
d
0 (N0 := N∪ {0},

d ≥ 1), we let xβ := xβ1

1 · · ·xβd

d , |β| := β1 + · · · + βd, β! := β1! · · ·βd!, and (·)(β) :=
∂|β|(·)

∂β1x1···∂βdxd
. Also, if x, y ∈ R

d, we define xy := x1y1 + · · · + xdyd.

We recall that an anisotropy on R
d is a vector α = (ai, . . . , ad) of positive numbers

such that a1 + · · · + ad = d and we let αmin := min{ai : 1 ≤ i ≤ d} and αmax :=
max{ai : 1 ≤ i ≤ d}. If t ≥ 0 and x ∈ R

d the anisotropic dilation is defined by

tαx := (ta1x1, . . . , t
adxd),

and for every s ∈ R we use the notation tsαx := (ts)αx.

Let α be an anisotropy on R
d, which will be fixed for the rest of the article, and

λ > 1. For every k = (k1, . . . , kd) ∈ Z
d, j ∈ Z, we define the parallelepiped Iαj,k to be

the image of the cube k + [0, 1)d under anisotropic dilation by λ−jα, namely,

Iαj,k := λ−ja1 [k1, k1 + 1) × · · · × λ−jad [kd, kd + 1),

∗Received by the editors March 31, 2003; accepted for publication (in revised form) January 16,
2004; published electronically July 29, 2004.
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and we use the notation xIα
j,k

:= (λ−ja1k1, . . . , λ
−jadkd) for its lower left corner. The

volume of a parallelepiped I will be denoted by |I| (|Iαj,k| = λ−jd) and we define

�(I) := |I|1/d its average sidelength. Then, for every j ∈ N0 the set Dj := {Iαj,k : k ∈
Z
d} forms a disjoint partition of R

d and we define D := ∪j∈ZDj and D+ := ∪j∈N0
Dj .

We denote by S := S(Rd) the Schwartz space of infinitely differentiable, rapidly
decreasing functions on R

d and by S ′
:= S ′

(Rd) its dual, the space of tempered

distributions. The Fourier transform f̂ of an integrable function is defined by

f̂(ξ) =

∫
Rd

f(x)e−ixξ dx,

while its inverse is defined by f̌(ξ) = (2π)−df̂(−ξ). Duality now extends the Fourier
transform and thus its inverse uniquely from S to S ′

. Finally, we use 〈f, η〉 for the
standard inner product

∫
fη of two functions, when this makes sense, and the same

notation is employed for the action of a distribution f ∈ S ′
on η ∈ S.

Let now E be a finite set and Ψ := {ψe
I : e ∈ E, I ∈ D+} be a decomposition

system for L2(R
d) with dual functionals Ψ̃ := {ψ̃e

I : e ∈ E, I ∈ D+}, that is, for every
f ∈ L2(R

d)

f =
∑
e∈E

∑
I∈D+

〈f, ψ̃e
I〉ψe

I .(1.1)

Our goal is to study sufficient conditions on Ψ, Ψ̃ so that they form a decomposition
system for the inhomogeneous anisotropic Triebel–Lizorkin and Besov spaces. We
would like also to characterize the membership of a distribution f in these spaces
by the size of the coefficients {〈f, ψ̃e

I〉}I,e. In particular, we shall prove that under

certain smoothness and oscillation assumptions on the families Ψ, Ψ̃, depending on
the parameters s ∈ R, 0 < p < ∞, and 0 < q ≤ ∞ (see Theorem 4.1), if f ∈ Fα,s

p,q ,
then (1.1) holds in the distributional sense (and in the sense of Fα,s

p,q when q �= ∞).
In addition, we have

‖f‖Fα,s
p,q

≈
∑
e∈E

∥∥∥∥
( ∑

I∈D+

(|I|−s/d|〈f, ψ̃e
I〉|χ̃I)

q

)1/q∥∥∥∥
Lp

,(1.2)

where χ̃I := |I|−1/2χI is the characteristic function of I normalized in L2. Here we
have adopted the notation A ≈ B, which means that there exist constants C1, C2 > 0
such that C1A ≤ B ≤ C2A. The equivalence constants C1 and C2 in (1.2) depend
on d, p, q, and s. On other occasions, the reader will have to consult the text to un-
derstand the parameters on which the equivalence constants depend on. Throughout
the paper, the constants are denoted by C and they may vary at every occurrence.

Similarly (for suitable Ψ, Ψ̃) we shall prove (see Theorem 4.2) that for every
f ∈ Bα,s

p,q , s ∈ R, 0 < p, q ≤ ∞, the representation (1.1) holds in the distributional
sense (and in the sense of Bα,s

p,q when p, q �= ∞). Also,

‖f‖Bα,s
p,q

≈
∑
e∈E

( ∑
m∈N0

( ∑
I∈Dm

(
|I|−s/d+1/p−1/2|〈f, ψ̃e

I〉|
)p)q/p)1/q

(1.3)

with the usual modifications when q = ∞ or p = ∞.
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This type of question is well studied in the isotropic cases, especially within the
wavelet theory; for a full account see [FJW], [M], [HW], and [K] and the references
therein.

Multiscale characterizations for the anisotropic Besov Bα,s
p,q spaces were given

in [GHT], [GT], [H], and [L], by means of compactly supported wavelet bases for
0 < p, q ≤ ∞, and s > 0 and in the special case where α and s are related by (2.6).
In these references Besov spaces are defined via the modulus of smoothness; conse-
quently the techniques used have their roots in approximation theory, and they are
not applicable to the Triebel–Lizorkin spaces. In our paper we prefer to define both
scales of Besov and Triebel–Lizorkin spaces in a unified way by means of Calderon’s
reproducing formula. We note that in the case of Besov spaces the two definitions lead
to the same spaces for s > d( 1

p − 1)+ (see [D]). In particular, our goal is to present

a general method for extending decomposition systems (or unconditional bases) of
L2(R

d), which are usually easier to construct, to decomposition systems (or uncon-
ditional bases) for the inhomogeneous anisotropic Besov and Triebel–Lizorkin spaces.
As a consequence we establish wavelet characterizations for the Fα,s

p,q and Bα,s
p,q spaces

for the full range of the indexes and for any sufficiently decaying wavelet bases. As
an additional byproduct of our results we point out that the whole apparatus of non-
linear approximation by bases functions (see [De]) becomes available for these spaces
as well, with possible applications in numerical methods dealing with semielliptic dif-
ferential operators. Finally, we note that our results hold also for the homogeneous
versions of the anisotropic Besov and Triebel–Lizorkin spaces with minor modifica-
tions.

The outline of the paper is as follows. In section 2 we give the definitions of the
anisotropic Fα,s

p,q and Bα,s
p,q spaces and we briefly review some of their main properties.

In section 3 we study the boundedness of almost diagonal operators on the sequence
spaces fα,s

p,q and bα,sp,q , a subject that is important by itself, since it can be used for the
study of the boundedness of Calderon–Zygmund-type operators on the Fα,s

p,q and Bα,s
p,q

spaces. In section 4 we present the main results of our paper, and finally in section 5
we apply these results within the framework of wavelet bases. Some technical lemmas
have been included in the appendix section 6.

2. Anisotropic function spaces. Let α = (a1, . . . , ad) be our fixed anisotropy.
An anisotropic distance associated to α is a continuous function u : R

d → R such that
u(x) > 0, x �= 0, and u(tαx) = tu(x), t > 0; typical examples are given by

up(x) =

(
d∑

i=1

|xi|p/ai

)1/p

, x ∈ R
d, 0 < p < ∞.

It is well known that any two anisotropic distances are equivalent and that there exists
a C∞(Rd \ {0}) anisotropic distance function (see [Y]), which we denote by | · |α. We
also recall that any anisotropic distance satisfies a quasi-triangular inequality, and in
particular there exists cα > 1 such that |x + y|α ≤ cα(|x|α + |y|α), x, y ∈ R

d.
To define the various function spaces that we are interested in we consider λ > 1,

which will be fixed for the rest of this section, and we further assume that

{x ∈ R
d : |x|α ≤ λ} ⊂ [−π, π]d.(2.1)

(This assumption is needed to establish the anisotropic version of Calderon’s repro-
ducing formula (2.12).)
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Let now ϕ0 ∈ S be such that

supp ϕ̂0 ⊂ {ξ ∈ R
d : |ξ|α ≤ λ} and ϕ̂0(ξ) = 1 if |ξ|α ≤ 1.(2.2)

We let also

ϕ̂(ξ) := ϕ̂0(ξ) − ϕ̂0(λ
αξ), ξ ∈ R

d,(2.3)

and we define ϕν(x) := λνdϕ(λναx), x ∈ R
d, ν ∈ N. Then it is easily seen that∑

ν∈N0

ϕ̂ν(ξ) = 1, ξ ∈ R
d.(2.4)

Let s ∈ R, 0 < p < ∞, 0 < q ≤ ∞; the anisotropic Triebel–Lizorkin space Fα,s
p,q

is defined to be the set of all f ∈ S ′
such that

‖f‖Fα,s
p,q

:=

∥∥∥∥
(∑

ν∈N0

(λνs|ϕν ∗ f |)q
)1/q∥∥∥∥

Lp

< ∞,(2.5)

(with the usual modification for q = ∞).
We note that by varying the indices s, α, p, q we recover most of the classical

isotropic and anisotropic spaces. For instance, if 1 < p < ∞ and (s1, . . . , sd) ∈ N
d,

then the anisotropic Sobolev space

W (s1,...,sd)
p (Rd) :=

⎧⎨
⎩f ∈ S ′

: ‖f‖Lp(Rd) +

d∑
j=1

∥∥∥∥∥∂
sjf

∂x
sj
j

∥∥∥∥∥
Lp(Rd)

⎫⎬
⎭

is identified with Fα,s
p,2 (see [ST]), where α, s are defined by

1

s
=

1

d

(
1

s1
+ · · · + 1

sd

)
, α =

(
s

s1
, . . . ,

s

sd

)
.(2.6)

It also trivially seen that if s = s1 = · · · = sd, then Fα,s
p,q coincides with the isotropic

space F s
p,q (see [T]).

In a similar vein, for s ∈ R, 0 < p, q ≤ ∞, the anisotropic Besov space Bα,s
p,q is

defined to be the set of all f ∈ S ′
such that

‖f‖Bα,s
p,q

:=

(∑
ν∈N0

(λνs
∥∥ϕν ∗ f

∥∥
Lp

)q
)1/q

< ∞(2.7)

(with the usual modification for q = ∞).
In the literature it is customary to use λ = 2; nevertheless, from standard esti-

mates (similar to the ones in [T] section 2.3.2) it is not hard to prove that the above
definitions are independent of λ > 1.

Associated to the Triebel–Lizorkin and Besov spaces are the sequence spaces fα,s
p,q

and the bα,sp,q , respectively.
For s ∈ R, 0 < p < ∞, and 0 < q ≤ ∞, fα,s

p,q is defined to be the space of all
complex-valued sequences h := (hI)I∈D+ such that

‖h‖fα,s
p,q

:=

∥∥∥∥
( ∑

I∈D+

(|I|−s/d|hI |χ̃I)
q

)1/q∥∥∥∥
Lp

< ∞,

where χ̃I(x) := |I|−1/2χI(x), (with the usual modification for q = ∞).



CHARACTERIZATIONS OF ANISOTROPIC FUNCTION SPACES 445

Similarly, if s ∈ R, and 0 < p, q ≤ ∞, bα,sp,q is defined to be the space of all
complex-valued sequences h := (hI)I∈D+ such that

‖h‖bα,s
p,q

:=

(∑
j∈N0

(∑
I∈Dj

(
|I|−s/d+1/p−1/2|hI |

)p)q/p)1/q

< ∞

(with the usual modification for p = ∞ or q = ∞).
Regarding the notation of the Fα,s

p,q , B
α,s
p,q , f

α,s
p,q , and bα,sp,q spaces, we point out that

the anisotropy α appears only implicitly in their definitions, either in the construction
of ϕ or in the description of the parallelepipeds in D+. Therefore, as mentioned in
the introduction, we consider that α is a fixed anisotropy throughout this article, and
we are concerned only with the range of the other three indexes s, p, q.

Multiplying (2.4) by f̂ and inverting the Fourier transform we get that for every
f ∈ S ′

f =
∑
ν∈N0

ϕν ∗ f,(2.8)

in the sense of S ′
. We are interested in a discretized and more useful, for our purposes,

version of (2.8). Working toward this we recall from [Di] that one can construct

functions φ0, φ̃0, φ, φ̃ ∈ S satisfying

supp φ̂0,
̂̃
φ0 ⊂ {ξ : |ξ|α ≤ λ},

supp φ̂,
̂̃
φ ⊂

{
ξ :

1

λ
≤ |ξ|α ≤ λ

}
,

and such that

∑
ν∈N0

̂̃
φν(ξ)φ̂ν(ξ)(ξ) = 1, ξ ∈ R

d,(2.9)

where as before φν(x) := λνdφ(λναx) and φ̃ν(x) := λνdφ̃(λναx), x ∈ R
d, ν ∈ N.

Similarly to (2.8) we get that for every f ∈ S ′

f =
∑
ν∈N0

ην ∗ φν ∗ f,(2.10)

in the sense of S ′
, where ην(x) := φ̃ν(−x). This is the so-called Calderon’s repro-

ducing formula. The advantage of formula (2.10) over (2.8) is that we can further
analyze the smooth terms ην ∗ φν ∗ f, ν ∈ N0. Using techniques reminiscent of the
Shannon sampling theorem, one can show (see [Di]) that for every f ∈ S ′

ην ∗ φν ∗ f(x) =
∑
I∈Dν

〈f, φ̃I〉φI(x), x ∈ R
d, ν ∈ N0,(2.11)

where for every parallelepiped I ∈ D,

φI(·) := |I|−1/2φ

(
· − xI

�(I)
α

)
, φ̃I(·) := |I|−1/2φ̃

(
· − xI

�(I)
α

)
.



446 GEORGE KYRIAZIS

It follows that every distribution f ∈ Fα,s
p,q (or Bα,s

p,q ) can be represented in the form

f =
∑
ν∈N0

∑
I∈Dν

〈f, φ̃I〉φI =
∑
I∈D+

〈f, φ̃I〉φI ,(2.12)

in the sense of S ′
.

Moreover, the coefficients

sI(f) := 〈f, φ̃I〉, I ∈ D+,

in (2.12) contain all the necessary information to determine whether a distribution
belongs in the class of anisotropic Triebel–Lizorkin or Besov spaces. In particular,
it was established in [Di] that if s ∈ R, 0 < p < ∞, 0 < q ≤ ∞, and ς := (sI(f))I ,
then

‖f‖Fα,s
p,q

≈ ‖ς‖fα,s
p,q

.(2.13)

Similarly, if s ∈ R and 0 < p, q ≤ ∞ (see [Di]), then

‖f‖Bα,s
p,q

≈ ‖ς‖bα,s
p,q

.(2.14)

We note that Dintelmann considered in [Di] only the case where λ = 2, along
the lines of the isotropic cases established in [FJ]; however, his results follow almost
verbatim for any λ > 1.

To establish (1.2) and (1.3) we first need to study the boundedness of almost
diagonal operators on the spaces fα,s

p,q and bα,sp,q .

3. Almost diagonal matrices. In this section we are interested in giving suf-
ficient conditions on a matrix

(aIJ)I,J∈D+

so that it gives rise to a bounded operator A on fα,s
p,q or bα,sp,q . Similar to the isotropic

cases (see [FJ]), we say that A is almost diagonal on fα,s
p,q (bα,sp,q ) if there exist ε > 0

such that

|aIJ | ≤ CωIJ(ε), I, J ∈ D+,

with

ωIJ(ε)=

(
�(I)

�(J)

)s(
1+

|xI − xJ |α
max(�(I), �(J))

)−J−ε

min

[(
�(I)

�(J)

)(d+ε)/2

,

(
�(J)

�(I)

)(d+ε)/2+J−d
]
,

where J := d/min(1, p, q) for fα,s
p,q and J := d/min(1, p) for bα,sp,q .

A basic tool in proving that almost diagonal matrices are bounded on fα,s
p,q (bα,sp,q )

is the strong maximal operator Mt, t > 0, defined by

Mt(f)(x) :=

(
sup
Q�x

|Q|−1

∫
Q

|f(y)|t dy
)1/t

,(3.1)
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where the supremum is taken with respect to all rectangles with sides parallel to the
coordinate axes. It is known that if 0 < p < ∞, 0 < q ≤ ∞, and 0 < t < min{p, q},
then for any sequence of functions (fj)j∈Z

∥∥∥∥
(∑

j∈Z

Mt(fj)
q

)1/q∥∥∥∥
Lp

≤ C

∥∥∥∥
(∑

j∈Z

|fj |q
)1/q∥∥∥∥

Lp

.(3.2)

In the case where the sup in (3.1) is taken over, all cubes with sides parallel to the
coordinate axes (3.2) is a well-known result of Fefferman and Stein [FS], while for the
anisotropic case we refer the reader to [ST].

Proposition 3.1. Let 0 < p < ∞, 0 < q ≤ ∞, and s ∈ R. An almost diagonal
operator on fα,s

p,q is bounded.

Proof. Let A be an almost diagonal operator on fα,s
p,q associated with the matrix

(aIJ)I,J∈D+ . We recall that

‖A‖fα,s
p,q →fα,s

p,q
:= sup

‖h‖f
α,s
p,q

≤1

‖Ah‖fα,s
p,q

,

where

(Ah)I =
∑

J∈D+

aIJhJ .

(The series is absolutely convergent; see proof below.) It follows that

‖Ah‖fα,s
p,q

=

∥∥∥∥
( ∑

I∈D+

(|I|−s/d|(Ah)I |χ̃I)
q

)1/q∥∥∥∥
Lp

≤
∥∥∥∥
( ∑

I∈D+

(
|I|−s/d

∑
J∈D+

|aIJ ||hJ |χ̃I

)q)1/q∥∥∥∥
Lp

(3.3)

≤ C(σ1 + σ2),

where

σ1 :=

∥∥∥∥
( ∑

I∈D+

(
|I|−s/d

∑
|J|≤|I|

|aIJ ||hJ |χ̃I

)q)1/q∥∥∥∥
Lp

and

σ2 :=

∥∥∥∥
( ∑

I∈D+

(
|I|−s/d

∑
|J|>|I|

|aIJ ||hJ |χ̃I

)q)1/q∥∥∥∥
Lp

.

To estimate σ1, since |J | ≤ |I|,

|aIJ | ≤ C

(
�(I)

�(J)

)s+ (d−ε)
2 −J(

1 +
|xI − xJ |α

�(I)

)−J−ε

.(3.4)
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Let µI := |I|−s/dχ̃I and 0 < t < min{1, p, q} be such that J + ε
2 > d/t. Using

Lemmas 6.4 and 6.8 we obtain

σ1≤C

∥∥∥∥
( ∑

I∈D+

( ∑
|J|≤|I|

(
�(I)

�(J)

)s+ (d−ε)
2 −J(

1 +
|xI − xJ |α

�(I)

)−J−ε

|hJ |µI

)q) 1
q
∥∥∥∥
Lp

=C

∥∥∥∥
(∑

n∈N0

∑
I∈Dn

(∑
m≥n

λ(m−n)(s+ (d−ε)
2 −J )

∑
J∈Dm

(1+λn|xI −xJ |α)−J−ε|hJ |µI

)q) 1
q
∥∥∥∥
Lp

≤C

∥∥∥∥
(∑

n∈N0

∑
I∈Dn

(∑
m≥n

λ(m−n)(s+ (d−ε)
2 −J+ d

t )Mt

( ∑
J∈Dm

|hJ |χJ

)
µI

)q) 1
q
∥∥∥∥
Lp

=C

∥∥∥∥
(∑

n∈N0

(∑
m≥n

λ(m−n)(− ε
2−J+ d

t )Mt

( ∑
J∈Dm

|hJ |µJ

))q) 1
q
∥∥∥∥
Lp

≤C

∥∥∥∥
(∑

n∈N0

(
Mt

( ∑
I∈Dn

|hI |µI

))q) 1
q
∥∥∥∥
Lp

≤C‖h‖fα,s
p,q

,

where in the last inequality we used the maximal inequality (3.2).

When |J | > |I|, we have that

|aIJ | ≤ C

(
�(I)

�(J)

)s+ (d+ε)
2

(
1 +

|xI − xJ |α
�(J)

)−J−ε

.(3.5)

Employing Lemmas 6.4 and 6.8 once more we get

σ2 ≤ C

∥∥∥∥
( ∑

I∈D+

( ∑
|J|>|I|

(
�(I)

�(J)

)s+ (d+ε)
2

(
1 +

|xI − xJ |α
�(J)

)−J−ε

|hJ |µI

)q) 1
q
∥∥∥∥
Lp

= C

∥∥∥∥
(∑

n∈N0

∑
I∈Dn

(∑
m<n

λ(m−n)(s+ (d+ε)
2 )

∑
J∈Dm

(
1+

|xI − xJ |α
�(J)

)−J−ε

|hJ |µI

)q) 1
q
∥∥∥∥
Lp

≤ C

∥∥∥∥
(∑

n∈N0

∑
I∈Dn

(∑
m<n

λ(m−n)(s+ (d+ε)
2 )Mt

( ∑
J∈Dm

|hJ |χJ

)
µI

)q) 1
q
∥∥∥∥
Lp

= C

∥∥∥∥
(∑

n∈N0

(∑
m<n

λ(m−n) ε
2Mt

( ∑
J∈Dm

|hJ |µJ

))q) 1
q
∥∥∥∥
Lp

≤ C

∥∥∥∥
(∑

n∈N0

(
Mt

( ∑
I∈Dn

|hI |µI

))q) 1
q
∥∥∥∥
Lp

≤ C‖h‖fα,s
p,q

.

Putting the two estimates for σ1 and σ2 in (3.3) the result follows.

Similar to the previous proposition for the Besov spaces we have the following.

Proposition 3.2. Let 0 < p, q ≤ ∞, and s ∈ R. An almost diagonal operator
on bα,sp,q is bounded.
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Proof. Let A be an almost diagonal operator on bα,sp,q associated with the matrix
(aIJ)I,J∈D+ . As before, we need to prove that

‖A‖bα,s
p,q→bα,s

p,q
:= sup

‖h‖b
α,s
p,q

≤1

‖Ah‖bα,s
p,q

< ∞.

We shall consider only 0 < p, q < ∞; the cases p = ∞ or q = ∞ follow similarly.

Let h ∈ bα,sp,q . To simplify our notation we define γ := s/d − (1/p − 1/2) and

h̃J := |J |−γhJ . Since (Ah)I =
∑

J∈D+
aIJhJ ,

‖Ah‖q
bα,s
p,q

=
∑
m∈N0

( ∑
I∈Dm

(
|I|−γ |(Ah)I |

)p)q/p

≤
∑
m∈N0

( ∑
I∈Dm

( ∑
J∈D+

(|J |/|I|)γ |aIJ ||h̃J |
)p)q/p

≤ C(σq
1 + σq

2)

with

σ1 :=

( ∑
m∈N0

( ∑
I∈Dm

( ∑
|J|≤|I|

(|J |/|I|)γ |aIJ ||h̃J |
)p)q/p)1/q

and

σ2 :=

( ∑
m∈N0

( ∑
I∈Dm

( ∑
|J|>|I|

(|J |/|I|)γ |aIJ ||h̃J |
)p)q/p)1/q

.

Case I. 1 ≤ p < ∞. For σ1 using (3.4), Minkowski’s inequality, and Lemmas 6.6
and 6.8

σq
1 ≤

∑
m∈N0

( ∑
I∈Dm

(∑
n≥m

∑
J∈Dn

(|J |/|I|)γ |aIJ ||h̃J |
)p)q/p

≤
∑
m∈N0

( ∑
I∈Dm

(∑
n≥m

∑
J∈Dn

(|J |/|I|)γ− s
d−

1
2+J

d + ε
2d

(
1 +

|xI − xJ |α
�(I)

)−J−ε

|h̃J |
)p)q/p

≤ C
∑

m∈N0

(∑
n≥m

λ(m−n)(J− d
p+ ε

2 )

( ∑
I∈Dm

( ∑
J∈Dn

(
1 +

|xI − xJ |α
�(I)

)−J−ε

|h̃J |
)p) 1

p
)q

≤ C
∑

m∈N0

(∑
n≥m

λ(m−n)(J− d
p+ ε

2−
d
p′ )

( ∑
J∈Dn

|h̃J |p
)1/p)q

≤ C
∑

m∈N0

( ∑
I∈Dm

(
|I|−s/d+(1/p−1/2)|hI |

)p)q/p

= C‖h‖q
bα,s
p,q

since J − d
p + ε

2 − d
p′ = J − d + ε

2 > 0.
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Similarly, using (3.5), Minkowski’s inequality, and Lemma 6.7 we obtain

σq
2 ≤

∑
m∈N0

( ∑
I∈Dm

(∑
n<m

∑
J∈Dn

(|J |/|I|)γ |aIJ ||h̃J |
)p)q/p

≤
∑
m∈N0

( ∑
I∈Dm

(∑
n<m

∑
J∈Dn

(|J |/|I|)γ− s
d−

1
2−

ε
2d

(
1 +

|xI − xJ |α
�(J)

)−J−ε

|h̃J |
)p)q/p

≤ C
∑

m∈N0

(∑
n<m

λ(m−n)(− d
p−

ε
2 )

( ∑
I∈Dm

( ∑
J∈Dn

(
1 +

|xI − xJ |α
�(J)

)−J−ε

|h̃J |
)p) 1

p
)q

≤ C
∑

m∈N0

(∑
n<m

λ(m−n)(− ε
2 )

( ∑
J∈Dn

|h̃J |p
)1/p)q

≤ C
∑

m∈N0

( ∑
I∈Dm

(
|I|−s/d+(1/p−1/2)|hI |

)p)q/p

= C‖h‖q
bα,s
p,q

,

where in the last inequality we applied Lemma 6.8. Putting the estimates for σ1 and
σ2 together we get the desired result for 1 ≤ p < ∞.

Case II. p ≤ 1. Similar to the previous case,

σq
1 ≤ C

∑
m∈N0

( ∑
J∈Dn

∑
n≥m

∑
I∈Dm

λ(m−n)(J− d
p+ ε

2 )p

(
1 +

|xI − xJ |α
�(I)

)−J p−εp

|h̃J |p
)q/p

≤ C
∑

m∈N0

( ∑
J∈Dn

∑
n≥m

λ(m−n)(J− d
p+ ε

2 )p|h̃J |p
)q/p

= C
∑

m∈N0

(∑
n≥m

λ(m−n)(J− d
p+ ε

2 )p
∑

J∈Dn

|h̃J |p
)q/p

≤ C
∑

m∈N0

( ∑
I∈Dm

(
|I|−s/d+(1/p−1/2)|hI |

)p)q/p

= C‖h‖q
bα,s
p,q

,

where in the last inequality we used that J − d
p + ε

2 > 0.
Finally, from Lemmas 6.5 and 6.8,

σq
2 ≤ C

∑
m∈N0

(∑
n<m

∑
J∈Dn

∑
I∈Dm

λ(m−n)(γ− s
d−

1
2−

ε
2d )dp

(
1+

|xI − xJ |α
�(J)

)−J p−εp

|h̃J |p
)q/p

≤ C
∑

m∈N0

(∑
n<m

∑
J∈Dn

λ(m−n)(− εp
2 )|h̃J |p

)q/p

≤ C
∑

m∈N0

( ∑
I∈Dm

(
|I|−s/d+(1/p−1/2)|hI |

)p)q/p

= C‖h‖q
bα,s
p,q

.

This concludes the proof of the proposition.
Let now r1, r2 ∈ R,M > 0, and (θI)I∈D+ and (ηI)I∈D+ be families of functions

on R
d that satisfy∫

Rd

θI(x)xβ dx = 0, βα ≤ r1, |I| < 1,(3.6)



CHARACTERIZATIONS OF ANISOTROPIC FUNCTION SPACES 451

|θI(x)| ≤ C|I|− 1
2

(
1 +

|x− xI |α
�(I)

)−M

, I ∈ D+,(3.7)

|θ(β)
I (x)| ≤ C|I|− 1

2−
βα
d

(
1 +

|x− xI |α
�(I)

)−M

, βα ≤ r2 + αmax, I ∈ D+,(3.8)

and ∫
Rd

ηI(x)xβ dx = 0, βα ≤ r2, |I| < 1,(3.9)

|ηI(x)| ≤ C|I|− 1
2

(
1 +

|x− xI |α
�(I)

)−M

, I ∈ D+,(3.10)

|η(β)
I (x)| ≤ C|I|− 1

2−
βα
d

(
1 +

|x− xI |α
�(I)

)−M

, βα ≤ r1 + αmax, I ∈ D+,(3.11)

where (3.6), (3.11) and (3.8), (3.9) are void if r1 < 0 or r2 < 0, respectively.
Assuming that r1, r2 and M are sufficiently large and using Lemma 6.3 (or Re-

mark 6.1 instead, if |I| = |J | = 1 or when either of r1, r2 are negative), it is easily
seen that the infinite matrix

A := (〈θI , ηJ〉)I,J∈D+(3.12)

gives rise to a bounded operator on the f - and b-spaces. In particular, we have the
following.

Corollary 3.1. Let 0 < p < ∞, 0 < q ≤ ∞, s ∈ R, and J := d/min{1, p, q}.
Let also (θI)I∈D+

, (ηI)I∈D+
be families of functions satisfying (3.6)–(3.11) for some

r1, r2 ∈ R and M > 0. If r1 > s, r2 > J − d − s, and M > max{J , d + r1, d + r2},
then the matrix A in (3.12) defines a bounded operator on fα,s

p,q .
Corollary 3.2. Let 0 < p, q ≤ ∞, s ∈ R, and J := d/min{1, p}. We also

assume that (θI)I∈D+
, (ηI)I∈D+

are families of functions satisfying (3.6)–(3.11) for
some r1, r2 ∈ R and M > 0. If r1 > s, r2 > J −d−s, and M > max{J , d+r1, d+r2},
then the matrix A in (3.12) defines a bounded operator on bα,sp,q .

4. Decomposition systems for function spaces. We start this section by
giving two fundamental lemmas that will help us address the convergence of the
series in (2.12).

Lemma 4.1. Let s ∈ R, 0 < p < ∞, 0 < q ≤ ∞, and J := d/min{1, p, q}.
If (θI)I∈D+

satisfies (3.6)–(3.8) for some r1, r2 ∈ R with r1 > J − d − s, r2 > s,
and M > max{J , d + r1, d + r2}, then for every d := (dI)I∈D+

∈ fα,s
p,q the series∑

I∈D+
dIθI converges in S ′

(and in Fα,s
p,q for q �= ∞) and∥∥∥∥ ∑

I∈D+

dIθI

∥∥∥∥
Fα,s

p,q

≤ C‖d‖fα,s
p,q

.(4.1)

Proof. To establish that the series
∑

I∈D+
dIθI converges in S ′

it is sufficient to

prove that for every η ∈ S we have |
∑

I∈D+
dI〈θI , η〉| < ∞. For this, one has to use

that

|〈θI , η〉| ≤ C�(I)r1+d/2(1 + |xI |α)−M ,(4.2)

which is an immediate consequence of Lemma 6.3 (or Remark 6.1 if |I| = 1 or r1 < 0).
We leave the details to the reader and we refer to [K], where we have worked out the
full details for the isotropic case, which is similar.
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To prove (4.1) we define cIJ := 〈θI , φ̃J〉. Then

sJ(f) := 〈f, φ̃J〉 =
∑
I∈D+

dI〈θI , φ̃J〉 =
∑
I∈D+

dIcIJ , J ∈ D.

In other words, if C := (cIJ)I,J∈D and ς := (sJ(f))J , we have

ς = CT d,

where CT is the transpose of the matrix C. Applying Corollary 3.1 we get that CT

is an almost diagonal matrix on fα,s
p,q , and therefore bounded. Thus, from (2.13), it

follows that

‖f‖Fα,s
p,q

≈ ‖ς‖fα,s
p,q

= ‖CT d‖fα,s
p,q

≤ C‖d‖fα,s
p,q

.

Finally we note that once (4.1) has been established it follows that for q �= ∞ the
series

∑
I∈D+

dIθI converges in the sense of Fα,s
p,q , since its tail

∑
|I|≥N dIθI converges

strongly to 0, as N → ∞.
Similarly, in the case of Besov spaces we have the following lemma.
Lemma 4.2. Let s ∈ R, 0 < p, q ≤ ∞, and J := d/min{1, p}. If (θI)I∈D+

satisfies (3.6)–(3.8) for some r1, r2 ∈ R, with r1 > J − d − s, r2 > s, and M >
max{J , d + r1, d + r2}, then for every d := (dI)I∈D+ ∈ Bα,s

p,q the series
∑

I∈D+
dIθI

converges in S ′
(and in Bα,s

p,q for p, q �= ∞) and∥∥∥∥ ∑
I∈D+

dIθI

∥∥∥∥
Bα,s

p,q

≤ C‖d‖bα,s
p,q

.(4.3)

Proof. For the convergence of the series
∑

I∈D+
dIθI we note that since d ∈ bα,sp,q ,

then |dI | ≤ C|I|s/d+1/2−1/p, I ∈ D+. Using now this estimate it is not hard to see
that the series converges absolutely. Again we refer the reader to [K], where we have
worked out the details for the isotropic case. As far as the proof of (4.3) is concerned it
is identical to the one of (4.1) since under our assumptions the matrix CT is bounded
on bα,sp,q .

Now let E be a finite set and Ψ := {ψe
I : e ∈ E, I ∈ D+} be a decomposition

system for L2(R
d) with dual functionals Ψ̃ := {ψ̃e

I : e ∈ E, I ∈ D+}; that is, for every
f ∈ L2(R

d)

f =
∑
e∈E

∑
I∈D+

〈f, ψ̃e
I〉ψe

I .

We further assume that for every e ∈ E, the families (ψ̃e
I)I∈D+ and (ψe

I)I ∈ D+

satisfy (3.6)–(3.8) and (3.9)–(3.11), respectively, with rΨ̃ instead of r1 and rΨ instead
of r2. In particular for every I ∈ D+, we assume that∫

Rd

xβψe
I(x) dx = 0, βα ≤ rΨ̃, |I| < 1,(4.4)

|ψe
I(x)| ≤ C|I|− 1

2

(
1 +

|x− xI |α
�(I)

)−M

,(4.5)

|(ψe
I)

(β)(x)| ≤ C|I|− 1
2−

βα
d

(
1 +

|x− xI |α
�(I)

)−M

, βα ≤ rΨ + αmax,(4.6)
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and ∫
Rd

xβψ̃e
I(x) dx = 0, βα ≤ rΨ, |I| < 1,(4.7)

|ψ̃e
I(x)| ≤ C|I|− 1

2

(
1 +

|x− xI |α
�(I)

)−M

,(4.8)

|(ψ̃e
I)

(β)(x)| ≤ C|I|− 1
2−

βα
d

(
1 +

|x− xI |α
�(I)

)−M

, βα ≤ rΨ̃ + αmax,(4.9)

where M > 0 and rΨ̃, rΨ ∈ R. Of course (4.4), (4.9) and (4.6), (4.7) are void if rΨ̃ < 0
or rΨ < 0, respectively.

We note that for every I ∈ D+ since φI ∈ L2(R
d),

φI =
∑
e∈E

∑
J∈D+

〈φI , ψ̃
e
J〉ψe

J .(4.10)

Moreover, if ψe
J , ψ̃

e
J , J ∈ D+, e ∈ E, satisfy (4.4)–(4.9) with rΨ̃ > J − d − s and

rΨ > s, it is not hard to see that the sequence (〈φI , ψ̃
e
J〉)J∈D+

∈ fα,s
p,q for J :=

d/min{1, p, q} (or bα,sp,q for J := d/min{1, p}). It follows from Lemmas 4.1 and 4.2
that the convergence in (4.10) can be also considered in the sense of Fα,s

p,q or Bα,s
p,q ,

respectively.
Also, for every f ∈ Fα,s

p,q (or Bα,s
p,q ) from (2.12) we get that

f =
∑
I∈D+

〈f, φ̃I〉φI =
∑
I∈D+

∑
e∈E

∑
J∈D+

〈f, φ̃I〉〈φI , ψ̃
e
J〉ψe

J

=
∑
e∈E

∑
J∈D+

∑
I∈D+

〈f, φ̃I〉〈φI , ψ̃
e
J〉ψe

J

=
∑
e∈E

∑
J∈D+

〈f, ψ̃e
J〉ψe

J ,

where all identities above are considered in the distributional sense. To justify the
third equality, we note that our assumptions guarantee that for every e ∈ E the
sequence

(deJ)J∈D+ :=

( ∑
I∈D+

|〈f, φ̃I〉||〈φI , ψ̃
e
J〉|

)
J∈D+

belongs in fα,s
p,q (or bα,sp,q ). Similar now to Lemma 4.1 (or Lemma 4.2), it follows that

for every η ∈ S ∑
J∈D+

|deJ ||〈ψe
J , η〉| < ∞,

which allows us to interchange the order of the summations.
Theorem 4.1. Let s ∈ R, 0 < p < ∞, 0 < q ≤ ∞, and J := d/min{1, p, q}.

Let also Ψ, Ψ̃ be a decomposition system for L2(R
d) satisfying (4.4)–(4.9) for some

rΨ, rΨ̃ ∈ R with rΨ > s, rΨ̃ > J − d − s, and M > max{J , d + rΨ, d + rΨ̃}. Then,
for every f ∈ Fα,s

p,q ,

f =
∑
e∈E

∑
I∈D+

〈f, ψ̃e
I〉ψe

I ,(4.11)
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in the sense of S ′
(and in Fα,s

p,q for q �= ∞). Moreover,

‖f‖Fα,s
p,q

≈
∑
e∈E

‖(〈f, ψ̃e
I〉)I‖fα,s

p,q
.(4.12)

Proof. Taking into account our discussion above we only have to establish (4.12).
From (4.11) we get that for every I ∈ D+

〈f, φ̃I〉 =
∑
e∈E

∑
J∈D+

〈f, ψ̃e
J〉〈ψe

J , φ̃I〉 =
∑
e∈E

∑
J∈D+

aeJI ã
e
J(f),(4.13)

where

ãeJ(f) := 〈f, ψ̃e
J〉, aeJI := 〈ψe

J , φ̃I〉, I, J ∈ D+, e ∈ E.

Then, if ãe := (ãeI(f))I∈D+
and Ae := (aeIJ)I,J∈D+

, we can express (4.13) in the form

ς =
∑
e∈E

AT
e ãe,

where as before ς := (sI(f))I∈D+
.

Similarly, if we define ãeJI := 〈φJ , ψ̃
e
I〉, I, J ∈ D+, then

ãeI(f) = 〈f, ψ̃e
I〉 =

∑
J∈D+

〈f, φ̃J〉〈φJ , ψ̃
e
I〉 =

∑
J∈D+

ãeJIsJ(f), I ∈ D+.

Setting Ãe := (ãeIJ)I,J∈D+
it follows that for every e ∈ E

ãe = ÃT
e ς.

Employing now Corollary 3.1 we get that the matrices ÃT
e ,A

T
e , e ∈ E, are bounded

on fα,s
p,q and therefore

‖ς‖fα,s
p,q

=

∥∥∥∥∑
e∈E

AT
e ãe

∥∥∥∥
fα,s
p,q

≤ C
∑
e∈E

‖AT
e ãe‖fα,s

p,q
≤ C

∑
e∈E

‖ãe‖fα,s
p,q

= C
∑
e∈E

‖ÃT
e ς‖fα,s

p,q
≤ C‖ς‖fα,s

p,q
.

This concludes the proof of the theorem.
Theorem 4.2. Let s ∈ R, 0 < p, q < ∞, and J := d/min{1, p}. Let also Ψ, Ψ̃

be a decomposition system for L2(R
d) satisfying (4.4)–(4.9) for some rΨ, rΨ̃ ∈ R with

rΨ > s, rΨ̃ > J − d− s, and M > max{J , d+ rΨ, d+ rΨ̃}. Then, for every f ∈ Bα,s
p,q ,

f =
∑
e∈E

∑
I∈D+

〈f, ψ̃e
I〉ψe

I ,

in the sense of S ′
(and in Bα,s

p,q for p, q �= ∞). Moreover,

‖f‖Bα,s
p,q

≈
∑
e∈E

‖(〈f, ψ̃e
I〉)I‖bα,s

p,q
.(4.14)

Proof. Again we only have to demonstrate (4.14). One has to proceed as in the
previous theorem and use Corollary 3.2 instead of Corollary 3.1 to establish that the
matrices ÃT

e ,A
T
e , e ∈ E, are bounded on bα,sp,q . We leave the details to the reader.
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5. Wavelet characterizations of function spaces. Let α = (a1, . . . , ad) be
a given anisotropy and M = diag(λa1 , . . . , λad) be a diagonal matrix for some fixed
λ > 1. Since a1 + · · · + ad = d we note that detM = λd while for every j ∈ N the
action of Mj on R

d can also be expressed by means of the anisotropic dilation by λjα,
i.e., for every x = (x1, . . . , xd) ∈ R

d,

Mjx = λjαx = (λja1x1, . . . , λ
jadxd).

A biorthogonal wavelet basis associated to the matrix M is generated by a cou-
ple of scaling functions ψ0, ψ̃0 which, among other assumptions, satisfy the dilation
equations

ψ0(x) = |detM|1/2
∑
k∈Zd

bkψ
0(Mx− k), x ∈ R

d,

ψ̃0(x) = |detM|1/2
∑
k∈Zd

ckψ̃
0(Mx− k), x ∈ R

d,

for some sequence of complex numbers (bk)k, (ck)k ∈ �2(Z
d), and they have biorthog-

onal shifts, i.e.,

〈ψ0(· − k), ψ̃0(· − n)〉 = δk,n, k, n ∈ Z.

Now let E = (0, 1, . . . , λd − 1) and E0 = E \ {0}. Associated to ψ0 and ψ̃0 there
exist two families of wavelet functions,

Ψ := {ψe : e ∈ E0} and Ψ̃0 := {ψ̃e : e ∈ E}.

Following the wavelet literature for every I ∈ D, e ∈ E, we also define

ψe
I(·) := |I|−1/2ψe

(
· − xI

�(I)α

)
, ψ̃e

I(·) := |I|−1/2ψ̃e

(
· − xI

�(I)α

)
.(5.1)

In particular, if I := Iαj,k, k ∈ Z
d, j ∈ Z, we note that

ψe
I(·) = |detMj |1/2ψe(Mjx · −k), ψ̃e

I(·) = |detMj |1/2ψ̃e(Mjx− k).

Then the collection of functions

W0 := {ψ0
I , ψ̃

0
I : I ∈ D0, } ∪ {ψe

I , ψ̃
e
I : I ∈ D+, e ∈ E0}

constitutes a Riesz basis for L2(R
d). In particular, for every f ∈ L2(R

d) there exist

unique coefficients 〈f, ψ̃e
I〉, I ∈ D+, e ∈ E, such that

f =
∑
I∈D0

〈f, ψ̃0
I 〉ψ0

I +
∑
e∈E0

∑
I∈D+

〈f, ψ̃e
I〉ψe

I(5.2)
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and

‖f‖L2(Rd) ≈
( ∑

I∈D0

|〈f, ψ̃0
I 〉|2

)1/2

+

( ∑
e∈E0

∑
I∈D+

|〈f, ψ̃e
I〉|2

)1/2

.(5.3)

The construction of such a basis is a delicate matter and in the case of compactly
supported wavelet bases it requires that

λai ∈ N, i = 1, . . . , d.(5.4)

This in turn forces us to deal only with anisotropies α = (a1, . . . , ad) for which there
exist λ > 1 such that (5.4) holds. As it turns out this is equivalent to requiring

(a1, . . . , ad) ∈ µ log N
d for some µ > 0.(5.5)

In particular, it is not hard to see that (5.5) holds for all anisotropies α ∈ Q
d
+. We

refer the reader to [GT] for the proof of these facts and a complete analysis regarding
the construction of anisotropic wavelet bases.

Standard assumptions on the functions {ψe, ψ̃e : e ∈ E} include∫
Rd

xβψe(x) dx = 0, |β| ≤ r1, e ∈ E0,∫
Rd

xβψ̃e(x) dx = 0, |β| ≤ r2, e ∈ E0,

and

|(ψe)(β)(x)| ≤ C(1 + |x|α)−M , |β| ≤ r2 + m, e ∈ E,

|(ψ̃e)(β)(x)| ≤ C(1 + |x|α)−M , |β| ≤ r1 + m, e ∈ E,

where M > 0, m ≥ 0, and r1, r2 ∈ N0. By requiring that r1, r2,m, and M
are sufficiently large it is readily seen that the families {ψe

I : e ∈ E, I ∈ D+},
{ψ̃e

I : e ∈ E, I ∈ D+} satisfy the assumptions of Theorems 4.1 and 4.2 and therefore
form decomposition systems for the anisotropic Triebel–Lizorkin and Besov spaces.
Moreover, the uniqueness of the wavelet coefficients in (5.2) shows that they constitute
unconditional bases for these spaces.

6. Appendix: Inequalities. Throughout this section we assume that α =
(a1, . . . , ad) is a fixed anisotropy. We start with the following version of Taylor’s
formula, which was given in [F].

Lemma 6.1. Let r ≥ 0 and f : R
d → C be a function such that f (β) exists for all

β ∈ N
d
0 with βα ≤ r+αmax. Then, there is a constant C such that for every x, y ∈ R

d

f(x) =
∑
βα≤r

f (β)(y)
(x− y)β

β!
+ Rr(x),

where

|Rr(x)| ≤ C

r+αmax∑
βα>r

|x− y|βαα sup
|z−y|α≤|x−y|α

|f (β)(z)|.
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Lemma 6.2. Let J ∈ D+ and x1 ∈ R
d. If η, θ are functions on R

d such that for
some r ≥ 0 and M > d + r satisfy∫

Rd

xβη(x) dx = 0, βα ≤ r,(6.1)

|η(x)| ≤ C|J |− 1
2

(
1 +

|x− x1|α
�(J)

)−M

,(6.2)

and

|θ(β)(x)| ≤ C
(
1 + |x|α

)−M
, βα ≤ r + αmax;(6.3)

then,

|〈θ, η〉| ≤ C|J |r/d+1/2(1 + |x1|α)−M .

Proof. Although the proof of the lemma is typical, we give a full account of
it for the sake of completeness. We recall that there exists cα ≥ 1 such that for
every x, y ∈ R

d, |x + y|α ≤ cα(|x|α + |y|α) and that for every β ∈ N
d
0, |xβ | =∏d

i=1(|xi|1/ai)aiβi ≤
∏d

i=1(
∑d

j=1 |xj |1/aj )aiβi ≤ (
∑d

j=1 |xj |1/aj )βα ≤ C|x|βαα .
From the moment condition of η we have

|〈θ, η〉| =

∣∣∣∣
∫

Rd

θ(y)η(y) dy

∣∣∣∣
=

∣∣∣∣
∫

Rd

[
θ(y) −

∑
βα≤r

(y − x1)
β

β!
θ(β)(x1)

]
η(y) dy

∣∣∣∣
≤

∫
Rd

∣∣∣∣θ(y) − ∑
βα≤r

(y − x1)
β

β!
θ(β)(x1)

∣∣∣∣|η(y)| dy.
We will integrate over A := {y : |y − x1|α ≥ 1} and Ac separately. For the integral
over A, from (6.3)∫

A

|θ(y) −
∑
βα≤r

(y − x1)
β

β!
θ(β)(x1)||η(y)| dy

≤ C|J |−1/2

∫
A

(1 + |y|α)−M

(
1 +

|y − x1|α
�(J)

)−M

dy

+C|J |−1/2

∫
A

|y − x1|rα
(
1 + |x1|α

)−M
(

1 +
|y − x1|α

�(J)

)−M

dy

=: B1 + B2.

For B1, we first consider the case where |y|α ≤ |x1|α/2cα. Then, |y − x1|α ≥
|x1|α/2cα and |y−x1|α

�(J) ≥ 1+|y−x1|α
2�(J) ≥ C 1+|x1|α

�(J) . It follows that

|J |−1/2

∫
A∩{|y|α≤|x1|α/2cα}

(1 + |y|α)−M

(
1 +

|y − x1|α
�(J)

)−M

dy

≤ C|J |M/d−1/2(1 + |x1|α)−M

∫
A

(1 + |y|α)−M dy(6.4)

≤ C|J |M/d−1/2(1 + |x1|α)−M .
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If |y|α > |x1|α/2cα, then (1 + |y|α)−M ≤ C(1 + |x1|α)−M , and hence we have

|J |−1/2

∫
A∩{|y|α>|x1|α/2cα}

(1 + |y|α)−M

(
1 +

|y − x1|α
�(J)

)−M

dy

≤ C|J |−1/2(1 + |x1|α)−M

∫
|y−x1|α≥1

(
|y − x1|α

�(J)

)−M

dy(6.5)

≤ C|J |M/d−1/2(1 + |x1|α)−M .

For B2, using that |y − x1|α ≥ 1, we have

B2 ≤ C|J |M/d−1/2(1 + |x1|α)−M

∫
|y−x1|α≥1

|y − x1|−M+r
α dy(6.6)

≤ C|J |M/d−1/2(1 + |x1|α)−M .

Since |J | ≤ 1 and M − d/2 > r + d/2, from (6.4)–(6.6), we find∫
A

|θ(y) −
∑
βα≤r

(y − x1)
β

β!
θ(β)(x1)||η(y)| dy ≤ C|J |r/d+1/2(1 + |x1|α)−M .

Next, we estimate the integral over Ac = {y : |y − x1|α < 1}. From Taylor’s
formula we know that

|θ(y) −
∑
βα≤r

(y − x1)
β

β!
θ(β)(x1)| ≤ C

r+αmax∑
βα>r

|y − x1|βαα sup
|z−x1|α≤|y−x1|α

|θ(β)(z)|

≤ C|y − x1|rα sup
|z−x1|α≤|y−x1|α

(1 + |z|α)−M

≤ C|y − x1|rα(1 + |x1|α)−M ,

where in the second inequality we used the fact that |y−x1|α ≤ 1 and in the last that
|x1|α ≤ cα(|z − x1|α + |z|α) ≤ cα(1 + |z|α). It follows that∫

Ac

|θ(y) −
∑
βα≤r

(y − x1)
β

β!
θ(β)(x1)||η(y)| dy

≤ C|J |−1/2

∫
Ac

|y − x1|rα(1 + |x1|α)−M

(
1 +

|y − x1|α
�(J)

)−M

dy

≤ C|J |r/d−1/2(1 + |x1|α)−M

∫
Ac

(
1 +

|y − x1|α
�(J)

)−M+r

dy

≤ C|J |r/d+1/2(1 + |x1|α)−M .

Using dilations and translations we now easily get the following.
Lemma 6.3. Let I, J ∈ D with |J | ≤ |I|. We also assume that ηJ , θI are functions

on R
d such that for some r ≥ 0 and M > d + r satisfy∫

Rd

xβηJ(x) dx = 0, βα ≤ r,(6.7)

|ηJ(x)| ≤ C|J |− 1
2

(
1 +

|x− xJ |α
�(J)

)−M

,(6.8)
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and

|(θI)(β)(x)| ≤ C|I|− 1
2−

βα
d

(
1 +

|x− xI |α
�(I)

)−M

, βα ≤ r + αmax.(6.9)

Then,

|〈θI , ηJ〉| ≤ C

(
|J |
|I|

)r/d+1/2 (
1 +

|xI − xJ |α
�(I)

)−M

.

Remark 6.1. In the absence of zero moments, that is, if |J | ≤ |I| and

|ηJ(x)| ≤ C|J |− 1
2

(
1 +

|x− xJ |α
�(J)

)−M

,

|θI(x)| ≤ C|I|− 1
2

(
1 +

|x− xI |α
�(I)

)−M

,

M > d, then using similar arguments as in the proof of the previous lemma it is easy
to show that

|〈θI , ηJ〉| ≤ C

(
|J |
|I|

)1/2(
1 +

|xI − xJ |α
�(I)

)−M

.(6.10)

Lemma 6.4. Let 0 < t ≤ 1 and M > d/t. For any sequence of complex numbers
(hJ)J∈Dm

, m ∈ Z, and x ∈ I ∈ D, we have

∑
J∈Dm

|hJ |
(

1 +
|xI − xJ |α

max(�(I), �(J))

)−M

≤ C max

{(
|I|
|J |

) 1
t

, 1

}
Mt

( ∑
J∈Dm

|hJ |χJ

)
(x).

Proof. Without loss of generality we assume that xI = 0.
Case I. |I| ≤ 2−md. We let δ := M/d − 1/t > 0, and for each j ∈ N we define

Ωj := {J ∈ Dm : λj−1 < λm|xJ |α ≤ λj}, while Ω0 := {J ∈ Dm : λm|xJ |α ≤ 1}. If
x ∈ I, then

∑
J∈Dm

|hJ |
(
1 + λm|xJ |α

)−M
=

∞∑
j=0

∑
J∈Ωj

|hJ |
(
1 + λm|xJ |α

)−M

≤ C

∞∑
j=0

∑
J∈Ωj

|hJ |λ−jM = C

∞∑
j=0

λ−jd/t−jδd
∑
J∈Ωj

|hJ |

≤ C sup
j≥0

λ−jd/t
∑
J∈Ωj

|hJ | ≤ C

(
sup
j≥0

λ−jd
∑
J∈Ωj

|hJ |t
)1/t

= C

(
sup
j≥0

λ−jdλmd

∫ ( ∑
J∈Ωj

|hJ |χJ

)t)1/t

≤ C

(
sup
j≥0

1

| ∪J∈Ωj
J |

∫
∪J∈Ωj

J

( ∑
J∈Ωj

|hJ |χJ

)t)1/t

≤ CMt

( ∑
J∈Dm

|hJ |χJ

)
(x).
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Case II. |I| > λ−md. Let us assume that �(I) = λ−n, n < m. For j ∈ N+

we define Ωj := {J ∈ Dm : λj−1 < λn|xJ |α ≤ λj}, while for j = 0 we set
Ω0 := {J ∈ Dm : λn|xJ |α ≤ 1}. Then for every x ∈ I we have

∑
J∈Dm

|hJ |
(
1 + λn|xJ |α

)−M
=

∞∑
j=0

∑
J∈Ωj

|hJ |
(
1 + λn|xJ |α

)−M

≤ C

∞∑
j=0

∑
J∈Ωj

|hJ |λ−jM = C

∞∑
j=0

λ−jd/t−jδd
∑
J∈Ωj

|hJ |

≤ C sup
j≥0

λ−jd/t
∑
J∈Ωj

|hJ | ≤ C

(
sup
j≥0

λ−jd
∑
J∈Ωj

|hJ |t
)1/t

= C

(
sup
j≥0

λ−jdλmd

∫ ( ∑
J∈Ωj

|hJ |χJ

)t)1/t

≤ Cλ(m−n)d/t

(
sup
j≥0

1

| ∪J∈Ωj
J |

∫
∪J∈Ωj

J

( ∑
J∈Ωj

|hJ |χJ

)t)1/t

≤ Cλ(m−n)d/tMt

( ∑
J∈Dm

|hJ |χJ

)
(x).

Lemma 6.5. Let m,n ∈ Z with m ≥ n. If J ∈ Dn and M > d, then

∑
I∈Dm

(
1 +

|xI − xJ |α
�(J)

)−M

≤ Cλ(m−n)d.

Proof. We have

∑
I∈Dm

(
1 +

|xI − xJ |α
�(J)

)−M

= λ(m−n)M
∑
j∈Zd

(
λm−n + |λmxJ − j|α

)−M
.

Using now the fact that for every ρ ≥ 1 and M > d,∑
j∈Zd

(ρ + |j|α)−M ≤ Cρd−M ,

the result follows.
Lemma 6.6. Let M > d, 1 ≤ p ≤ ∞, and m,n ∈ Z be such that n ≥ m. If

(dJ)J∈Dn is a sequence of complex numbers, then

( ∑
I∈Dm

( ∑
J∈Dn

(
1 +

|xI − xJ |α
�(I)

)−M

|dJ |
)p)1/p

≤ Cλ(n−m)d/p
′
( ∑

J∈Dn

|dJ |p
)1/p

,

where 1/p + 1/p
′
= 1.

Proof. We note that for every I,∆ ∈ Dm, and J ∈ Dn with J ⊂ ∆,(
1 +

|xI − x∆|α
�(I)

)
≤ C

(
1 +

|xI − xJ |α
�(I)

)
.
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Also, for every I ∈ Dm, Dm = {∆ : ∆ = I + jλ−mα, j ∈ Z
d}. Using these two facts

we find ( ∑
I∈Dm

( ∑
J∈Dn

(
1 +

|xI − xJ |α
�(I)

)−M

|dJ |
)p)1/p

=

( ∑
I∈Dm

( ∑
∆∈Dm

∑
J∈Dn
J⊂∆

(
1 +

|xI − xJ |α
�(I)

)−M

|dJ |
)p)1/p

≤ C

( ∑
I∈Dm

( ∑
∆∈Dm

∑
J∈Dn
J⊂∆

(
1 +

|xI − x∆|α
�(I)

)−M

|dJ |
)p)1/p

= C

( ∑
I∈Dm

( ∑
j∈Zd

(1 + |j|α)−M
∑
J∈Dn

J⊂I+jλ−mα

|dJ |
)p)1/p

≤ C
∑
j∈Zd

(1 + |j|α)−M

( ∑
I∈Dm

( ∑
J∈Dn

J⊂I+jλ−mα

|dJ |
)p)1/p

≤ Cλ(n−m)d/p
′ ∑
j∈Zd

(1 + |j|α)−M

( ∑
I∈Dm

∑
J∈Dn

J⊂I+jλ−mα

|dJ |p
)1/p

≤ Cλ(n−m)d/p
′
( ∑

J∈Dn

|dJ |p
)1/p

,

where we used Minkowski’s and Hölder’s inequalities.
In a similar vein we have the following lemma. (We leave the proof to the reader.)
Lemma 6.7. Let M > d, 1 ≤ p ≤ ∞, and m,n ∈ Z be such that m ≥ n. If

(dJ)J∈Dn
is a sequence of complex numbers, then( ∑

I∈Dm

( ∑
J∈Dn

(
1 +

|xI − xJ |α
�(J)

)−M

|dJ |
)p)1/p

≤ Cλ(m−n)d/p

( ∑
J∈Dn

|dJ |p
)1/p

.

Finally, we close the appendix by stating a very useful result, used repeatedly in
the proofs of section 3.

Lemma 6.8. Let λ > 1, θ > 0, and 0 < q ≤ ∞. If an, bn ≥ 0, n ∈ Z, satisfy

0 ≤ bn ≤
∑
m≤n

λ(m−n)θam,

then (∑
n∈Z

bqn

)1/q

≤ C

(∑
n∈Z

aqn

)1/q

.
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Abstract. Eguchi–Oki–Matsumura equations are introduced to describe the dynamics of pattern
formation that arises from phase separation in some binary alloys. The model extends the well-known
Cahn–Hilliard equation and consists of coupled two functions; one is the local concentration and the
other is the local degree of order. We show the existence of a solution, its asymptotic profile, and in
part the structure of steady state solutions. Computational studies are also given.
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1. Introduction. There has been much interest in the dynamics of pattern for-
mation resulting from phase separation, which is commonly observed in many phys-
ical contexts; we recall, for example, certain binary alloys and polymer mixtures.
Cahn and Hilliard [4], based on a continuum model in thermodynamics, made a phe-
nomenological approach to explain such kinetics and derive the fourth-order partial
differential equations (PDEs), known as the Cahn–Hilliard equation. Many studies
have been performed on this equation and much progress has been achieved so far
from various points of view. For more information and background materials, see [1],
[2], [3], [6], [7], [8], [9], [11], [21], [22], [23], [24], [25] and the references therein.

Eguchi, Oki, and Matsumura [10], in an attempt to theoretically investigate such
pattern formation, introduced a system of equations, referred to here as EOM equa-
tions. This motion law is derived from the first principles of thermodynamics of
irreversible process under appropriate assumptions on the free energy, and it gener-
alizes the formulation settled by Cahn and Hilliard. The EOM equation extends the
Cahn–Hilliard equation and consists of coupled two phase fields, one the local con-
centration and the other the local degree of order. After performance of a suitable
scaling of parameters, presented later, EOM equations in one space dimension, with
which we are mainly concerned, are expressed as follows:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ut = −ε2uxxxx + ((a + v2)u)xx in 0 < x < l, t > 0,

vt = vxx + (b− u2 − v2)v in 0 < x < l, t > 0,

ux = uxxx = vx = 0 at x = 0 and l, t > 0,

u|t=0 = u0, v|t=0 = v0 on 0 ≤ x ≤ l,

(1.1)
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where u = u(x, t) and v = v(x, t) denote unknown functions related to the local
concentration and the local degree of order, respectively. The total concentration of u
is conserved under the evolution of (1.1). Namely, we have

1

l

∫ l

0

u(x, t) dx = m,

where m is a constant. Given initial data u0, v0 should satisfy required compatibility
conditions:

(u0)x = (u0)xxx = (v0)x = 0 at x = 0, l, and
1

l

∫ l

0

u0(x) dx = m.

Positive constants ε, a depend on the temperature, and b ∈ R is the principal
parameter which increases from negative to positive as the temperature decreases
from above to below the critical temperature. We focus our attention, however, on
the case of positive b, since the negative b turns out to enjoy rather trivial behaviors.

As a special case of EOM equations, we observe that if v ≡ 0, then (1.1) reduces
to ⎧⎪⎨

⎪⎩
ut = −ε2uxxxx + auxx in 0 < x < l, t > 0,

ux = uxxx = 0 at x = 0 and l, t > 0,

(1/l)
∫ l

0
u dx = m.

This is the famous Cahn–Hilliard equation in its simplest form (if we especially allow
a < 0). If we put u ≡ m in (1.1), then we recover{

vt = vxx + (b−m2 − v2)v in 0 < x < l, t > 0,

vx = 0 at x = 0 and l, t > 0,

which is deduced from the Ginzburg–Landau theory for superconductivity.
Motivated partly by works concerning the Cahn–Hilliard equation [8], [11], [25],

we expect that the solution (u(x, t), v(x, t)) for (1.1) converges as t → ∞ to the
solution (u(x), v(x)) for the steady state problem

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
−ε2uxxxx + ((a + v2)u)xx = 0 in 0 < x < l,

vxx + (b− u2 − v2)v = 0 in 0 < x < l,

ux = uxxx = vx = 0 at x = 0 and l,

(1/l)
∫ l

0
u dx = m.

(1.2)

We remark that (1.2) always has a solution u ≡ m and v ≡ 0. If b ≤ 0, then it can
be seen that this is the only solution to (1.2) by virtue of the maximum principle. If
b > m2, (1.2) has another solution u ≡ m and v ≡ ±

√
b−m2. We call these solutions

trivial. Solutions that are different from trivial ones will be called nontrivial solutions
of the EOM equations; in other words, solution (u, v) to (1.2), both of which are not
simultaneously constants, will be referred to as nontrivial solutions.

In this article, we are concerned with the local solvability, the asymptotic behavior
of solutions to (1.1), and the structure of steady state solutions to (1.2). It is exhibited
that the local degree of order v plays a key role in producing phase separation in the
EOM model. Our main analytical achievements are summarized as follows.
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Theorem 1.1. Suppose that u0, v0 ∈ H2(0, l) with (u0)x = (v0)x = 0 at x = 0, l

and (1/l)
∫ l

0
u0 dx = m. Then, for each T > 0, there exists a unique solution (u, v)

to (1.1) such that

u ∈ L2((0, T );H4(0, l)) ∩ L∞([0, T );H2(0, l)),

v ∈ L2((0, T );H2(0, l)) ∩ L∞([0, T );H1(0, l)).

For any initial data above, the solution (u, v) converges as t → ∞ to a solution of the
steady state problem (1.2).

There is at least one monotone nontrivial steady state solution of (1.2) if we
assign suitably large b and m2. Moreover, for any integer k ≥ 2 and for appropriately
chosen large b and m2 depending on k, (1.2) has at least one nonmonotone nontrivial
steady state solution, each of whose derivatives changes sign exactly (k − 1) times.

The values of b and m2 stated in the theorem will be clarified in the course of
proof.

For related results concerning EOM equations, see [17], [20].
We briefly outline the idea of proof. To obtain the local in time solution, a

standard Galerkin method is employed. The global existence then follows by a priori
estimates, with the aid of a Lyapunov functional; the free energy of the system serves
as a Lyapunov functional, which is given by

F [u, v] :=

∫ l

0

(
ε2

2
u2
x +

1

2
v2
x +

a

2
u2 +

1

4
v4 − b

2
v2 +

1

2
u2v2

)
dx.(1.3)

Note that F [u, v] is well defined for (u, v) of the function class specified in Theorem 1.1.
A direct calculation leads to

d

dt
F [u, v](t) = −

∫ l

0

{−ε2uxxx + ((a + v2)u)x}2 dx−
∫ l

0

v2
t dx ≤ 0(1.4)

for any solution (u, v) to (1.1).
Every solution is proved to converge to a steady state. Depending on the value

of parameters b and m, EOM equations have various steady state solutions, which
numerical investigation in section 5 clearly illustrates. Section 4 shows analytically
the existence of nontrivial steady state solutions of EOM equations.

We quickly review the derivation of (1.1) for completeness of our exposition.
Following [10], we begin with the total free energy:

FEOM[u, v] =

∫
Ω

(
H

2
|∇u|2 +

K

2
|∇v|2 + f(u, v)

)
dx,

where Ω ⊂ R3 represents a bounded domain and physical constants H,K mean the
surface energy per unit area, which depend on the temperature. The function f(u, v)
stands for the density of the bulk free energy assumed to be given by

f(u, v) =
a

2
u2 +

1

4
v4 − b

2
v2 +

g

2
u2v2,

where positive constants a, g depend on the temperature and b denotes the principal
parameter. Here we confine ourselves to considering the one-dimensional case and
put Ω = (0, l). We make a scaling of variables. Define√

g

K
u → u,

1√
K

v → v,
a

gK
→ a,

b

K
→ b
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and divide FEOM by K2. Then the functional (1.3) is discovered with ε2 = H/gK.
We remark that we have just rearranged the constants while retaining the role of the
principal parameter b.

2. Existence of solutions. First we deal with the solvability of the problem
(1.1). To establish the local in time existence, we implement a standard Galerkin
approximation method.

Let F denote the complete orthonormal system in L2(0, l) with the even periodic
boundary condition:

F :=

{
1√
l
,

√
2

l
cos

πx

l
,

√
2

l
cos

2πx

l
, . . . ,

√
2

l
cos

nπx

l
, . . .

}
.

For every integer N > 0, let WN be a linear space spanned by {1/
√
l,
√

2/l cos(πx/l),

. . . ,
√

2/l cos(Nπx/l)} and PN denote the orthogonal projector in L2(0, l) onto WN ;
namely,

PN : L2(0, l) → WN := Span

{
1√
l
,

√
2

l
cos

πx

l
, . . . ,

√
2

l
cos

Nπx

l

}
.

To be precise, for every even periodic f ∈ L2(0, l), we define

PNf(x) :=
1√
l
f0 +

N∑
n=1

fn

√
2

l
cos

nπx

l
,

where

f0 :=
1√
l

∫ l

0

f(x) dx and fn :=

∫ l

0

f(x)

√
2

l
cos

nπx

l
dx.

We are then looking for an approximate solution (uN (x, t), vN (x, t)) to (1.1) given
by

uN (x, t) = m +

N∑
n=1

un(t)

√
2

l
cos

nπx

l

(u0(t) =
√
lm is used without possible confusion),

vN (x, t) =
1√
l
v0(t) +

N∑
n=1

vn(t)

√
2

l
cos

nπx

l
.

That is, uN , vN are interpreted as WN -valued functions on [0, T ) for some T > 0,
which satisfy

⎧⎪⎨
⎪⎩

(uN )t = −ε2(uN )xxxx + a(uN )xx + PN ((vN )2uN )xx in 0 < x < l, 0 < t < T,

(vN )t = (vN )xx + bvN − PN (((uN )2 + (vN )2)vN ) in 0 < x < l, 0 < t < T,

uN |t=0 = PNu0, vN |t=0 = PNv0 on 0 ≤ x ≤ l.
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If we write up the equations for each component, then we discover

dun(t)

dt
= −ε2

(nπ
l

)4

un(t) − a
(nπ

l

)2

un(t)

− 1

2l

(nπ
l

)2 ∑∗

G(n1,n2,n3;n)

ιn1ιn2ιn3v
n1(t)vn2(t)un3(t),

dvn(t)

dt
= −

(nπ
l

)2

vn(t) + bvn(t)

− 1

2l

∑∗

G(n1,n2,n3;n)

ιn1ιn2ιn3ιn(un1(t)un2(t) + vn1(t)vn2(t))vn3(t)

(ι0 := 2−1/2 and ιn := 1 for n ≥ 1),

un(0) =

∫ l

0

u0(x)

√
2

l
cos

nπx

l
dx for n ≥ 1,

vn(0) =

{
(1/

√
l)
∫ l

0
v0(x) dx for n = 0,∫ l

0
v0(x)

√
2/l cos(nπx/l) dx for n ≥ 1.

(2.1)

Here we have defined

G(n1, n2, n3;n) := {0 ≤ n1, n2, n3 ≤ N |n1 + n2 + n3 = ±n

or n1 −n2 + n3 = ±n or n1 + n2 − n3 = ±n or n1 − n2 − n3 = ±n},

and the summation
∑∗

indicates that the multiplicity is taken into account; for
example, if (n1, n2, n3;n) = (1, 1, 1; 1), then

∑∗
v1(t)v1(t)u1(t) = 3v1(t)v1(t)u1(t),

since three equations in the definition of G are satisfied. If (n1, n2, n3;n) = (0, 0, 0; 0),
then the multiplication by eight is made.

The system of equations (2.1) has a unique solution on [0, TN ) for some TN > 0.
The passage to the limit N → ∞ is based on a priori estimates on (uN , vN ). Here
we refer to various a priori estimates established for the solution (u, v) to (1.1) in the
next section, which are principally applicable as well to the truncated systems with
necessary modifications. For instance, an upper bound for vN is estimated as

‖vN (t)‖2 :=

∫ l

0

vN (x, t)2 dx =

N∑
i=0

vi(t)2 ≤ lim sup
N→∞

‖vN (t)‖2 ≤ ‖v(t)‖2 ≤ 2bl,

where the last inequality is expressed in Lemma 3.1. Note also that norm ‖ · ‖ is
consistent with those defined there.

In addition, the time evolution of the Lyapunov functional F [uN , vN ](t) is calcu-
lated to be

d

dt
F [uN , vN ](t)

= −
∫ l

0

{−ε2(uN )xxx + (auN + PN (uN (vN )2))x}2 dx−
∫ l

0

((vN )t)
2 dx ≤ 0.

After performing an integration with respect to t, we infer that ‖uN (t)‖, ‖(uN )x(t)‖,
‖(vN )x(t)‖ and therefore max |uN (·, t)| and max |vN (·, t)| are uniformly bounded by
constants which depend on H1(0, l)-norms of the initial data u0 and v0 but are inde-
pendent of N .
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We are thus able to let N → ∞; in particular, we have lim infN→∞ TN ≥ T > 0
for some T > 0. Uniform bounds of H1(0, l)-norms enable us to repeat the local
solvability procedure and continue the solution. We remark that the linear parts of
(2.1) are good terms. In summary, our existence results are formulated as follows.

Proposition 2.1. Suppose that u0, v0 ∈ H1(0, l) with (u0)x = (v0)x = 0 at

x = 0, l and (1/l)
∫ l

0
u0 dx = m. Then, for each T > 0, there exists a unique solution

(u, v) to (1.1) such that

u ∈ L2((0, T );H3(0, l)) ∩ L∞([0, T );H1(0, l)),

v ∈ L2((0, T );H2(0, l)) ∩ L∞([0, T );H1(0, l)).

Further regularities claimed in Theorem 1.1 are standard consequences of a priori
estimates depicted as lemmas in the subsequent section.

We next deal with the long-term behavior of the solution (u, v) to (1.1). This is
a rather routine inference by virtue of the Lyapunov functional F [u, v].

Since the solution (u, v) exists for any T > 0, integration of (1.4) with respect
to t yields

lim sup
t→∞

F [u, v](t) +

∫ ∞

0

dτ

∫ l

0

({−ε2uxxx + ((a + v2)u)x}2 + v2
t ) dx ≤ F [u0, v0].

Taking into account that F [u, v] is bounded below, we conclude that there is a se-
quence t1 < t2 < · · · < tn < · · · → ∞ for which{

(−ε2uxxx + ((a + v2)u)x)(tn) → 0

(vxx + (b− u2 − v2)v)(tn) → 0
as n → ∞.

That is, (u, v) tends to an element of the ω-limit set of (u0, v0), on which F [u, v]
is constant; namely, (u, v) converges to an equilibrium solution of the steady state
problem (1.2).

3. A priori estimates. We turn our attention to some a priori estimates, which
are needed to prove the existence and to determine the asymptotic profile of the
solution (u, v) to (1.1). For brevity of presentation, we introduce the following function
spaces:

ET := {(u, v) ∈ L2((0, T );H4(0, l)) × L2((0, T );H2(0, l)) |
ux = uxxx = vx = 0 at x = 0, l},

E0 :=

{
(u0, v0) ∈ (H2(0, l))2

∣∣∣∣∣ (u0)x = (v0)x = 0 at x = 0, l,
1

l

∫ l

0

u0 dx = m

}
,

where T > 0. The norms of Lp(0, l) (1 ≤ p ≤ ∞) are denoted by ‖·‖p and ‖·‖ := ‖·‖2.
The inequalities ‖·‖p ≤ l(q−p)/q‖·‖q (1 < p ≤ q ≤ ∞) are easily checked. Furthermore,
C0 stand for various constants depending only on the initial data and constants ε2, a, b,
which may differ from line to line. We understand that C0 is independent of t.

First we provide a bound for v.
Lemma 3.1. There holds

‖v(t)‖∞ ≤ max{‖v0‖∞,
√
b} for 0 < t < T.

We recall once again that b ≥ 0 is assumed.
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Proof. Take an arbitrarily small δ > 0 and suppose there exists first 0 ≤ t < T ,
0 ≤ x ≤ l such that

‖v0‖∞ ≤
√
b + δ ≤ v(x, t) = max

0≤y≤l
v(y, t).

The other case v(x, t) = min0≤y≤l v(y, t) ≤ −
√
b− δ ≤ −‖v0‖ proceeds similarly. We

then find that

0 ≤ vt(x, t) = vxx(x, t) + (b− u(x, t)2 − v(x, t)2)v(x, t) ≤ (b− (
√
b + δ)2)v(x, t) < 0,

a contradiction. Since δ is arbitrary, we are done.
We can say further that for any initial data (u0, v0) ∈ E0 and for every δ > 0,

there exists Tδ such that ‖v(t)‖∞ ≤ (1 + δ)
√
b for t ≥ Tδ. We may thus assume

without loss of generality that ‖v0‖∞ ≤
√

2b from the beginning. Note also that this
especially leads to ‖v(t)‖p ≤ l1/p

√
2b for any 1 ≤ p ≤ ∞.

Lemma 3.2. For any initial data (u0, v0) ∈ E0, the solution (u, v) ∈ ET to (1.1)
verifies

‖u(t)‖, ‖ux(t)‖, ‖vx(t)‖ ≤ C0

for 0 < t < T , and moreover

‖u(t)‖∞ ≤ C0.

Proof. We employ the Lyapunov functional introduced in (1.3). We assert that
for 0 < t < T

F [u, v](t) +

∫ t

0

dτ

∫ l

0

({−ε2uxxx + ((a + v2)u)x}2 + v2
t ) dx ≤ F [u0, v0],

from which the first three estimates hold. Thanks to the inequality

‖w‖∞ ≤ 1√
l
‖w‖ +

√
l‖wx‖ for w ∈ H1(0, l),

we arrive at the last estimate.
Lemma 3.3. It follows that for any 0 ≤ t ≤ s ≤ T∫ s

t

(‖uxx(τ)‖2 + ‖ux(τ)‖2 + ‖vx(τ)‖2) dτ ≤ C0(1 + (s− t)).

Proof. Multiplying the first and the second equation of (1.1) by u and v, respec-
tively, and integrating by parts, we infer that

1

2

d

dt
‖u(t)‖2 + ε2‖uxx(t)‖2 = −

∫ l

0

((a + v2)u)xux dx

= −a‖ux(t)‖2 − ‖(uxv)(t)‖2 − 2

∫ l

0

uuxvvx dx

≤ −a‖ux(t)‖2 + ‖(uvx)(t)‖2 ≤ −a‖ux(t)‖2 + C2
0‖vx(t)‖2,

1

2

d

dt
‖v(t)‖2 + ‖vx(t)‖2 =

∫ l

0

(b− u2 − v2)v2 dx ≤ b‖v(t)‖2 ≤ 2lb2,
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where the use of ‖u(t)‖∞ ≤ C0 and ‖v(t)‖∞ ≤
√

2b is made. We compute

1

2

d

dt
(‖u(t)‖2 + (C2

0 + 1)‖v(t)‖2) + ε2‖uxx(t)‖2 + a‖ux(t)‖2 + ‖vx(t)‖2

≤ b2(C2
0 + 1) =: C0,

and hence we have

‖u(s)‖2 + (C2
0 + 1)‖v(s)‖2 + 2

∫ s

t

(ε2‖uxx(τ)‖2 + a‖ux(τ)‖2 + ‖vx(τ)‖2) dτ

≤ ‖u(t)‖2 + (C2
0 + 1)‖v(t)‖2 + C0(s− t) =: C0(1 + (s− t)),

from where the lemma follows.
Next we are going to derive higher derivative estimates. Our intention is to achieve

bounds represented explicitly in terms of t.
Lemma 3.4. There holds for any 0 ≤ t ≤ s ≤ T ,∫ s

t

(‖uxxx(τ)‖2 + ‖vxx(τ)‖2) dτ ≤ C0(1 + (s− t)).

Proof. This time we multiply the first and the second equation of (1.1) by uxx

and vxx, respectively; we deduce that

1

2

d

dt
‖ux(t)‖2 + ε2‖uxxx(t)‖2

= −
∫ l

0

((a + v2)u)xxuxx dx = −a‖uxx(t)‖2 +

∫ l

0

(uv2)xuxxx dx

≤ −a‖uxx(t)‖2 +
ε2

2
‖uxxx(t)‖2 +

1

2ε2

∫ l

0

(uxv
2 + 2uvvx)2 dx

≤ −a‖uxx(t)‖2 +
ε2

2
‖uxxx(t)‖2 + C0(‖ux(t)‖2 + ‖vx(t)‖2),

1

2

d

dt
‖vx(t)‖2 + ‖vxx(t)‖2 = −

∫ l

0

(b− u2 − v2)vvxx dx

=

∫ l

0

{(b− u2 − v2)v2
x dx− (u2 + v2)xvvx} dx

=

∫ l

0

{(b− 3v2)v2
x − u2v2

x − 2uuxvvx} dx

≤
∫ l

0

{(b− 3v2)v2
x + u2

xv
2} dx ≤ 2b(‖ux(t)‖2 + ‖vx(t)‖2).

Adding these inequalities, we have

1

2

d

dt
(‖ux(t)‖2 + ‖vx(t)‖2) +

ε2

2
‖uxxx(t)‖2 + ‖vxx(t)‖2 ≤ C0(‖ux(t)‖2 + ‖vx(t)‖2).

An integration with respect to t combined with Lemmas 3.2 and 3.3 finishes the proof
of Lemma 3.4.

Finally we formalize the next lemma.
Lemma 3.5. There hold for any 0 ≤ t ≤ s ≤ T

‖uxx(t)‖2 ≤ C0(1 + t),

∫ s

t

‖uxxxx(τ)‖2 dτ ≤ C0(1 + (s− t)).



EGUCHI–OKI–MATSUMURA EQUATION FOR PHASE SEPARATION 471

Proof. We multiply the equation of u by uxxxx and integrate by parts to obtain

1

2

d

dt
‖uxx(t)‖2 + ε2‖uxxxx(t)‖2 =

∫ l

0

(au + uv2)xxuxxxx dx

≤ −a‖uxxx(t)‖2 +
ε2

2
‖uxxxx(t)‖2 +

1

2ε2

∫ l

0

((uv2)xx)2 dx

≤ −a‖uxxx(t)‖2 +
ε2

2
‖uxxxx(t)‖2

+ C0(‖uxx(t)‖2 + ‖vxx(t)‖2 + ‖(uxvx)(t)‖2 + ‖vx(t)2‖2).

To handle the last term, we appeal to the inequality

‖ux(t)‖∞ ≤
√
l‖uxx(t)‖, ‖vx(t)‖∞ ≤

√
l‖vxx(t)‖,

which is valid in light of ux = vx = 0 at the boundary; it then follows that

‖(uxvx)(t)‖2 ≤ l‖uxx(t)‖2‖vx(t)‖2 ≤ C0‖uxx(t)‖2,

‖vx(t)2‖2 ≤ C0‖vxx(t)‖2.

To sum up, we have accomplished

1

2

d

dt
‖uxx(t)‖2 +

ε2

2
‖uxxxx(t)‖2 + a‖uxxx(t)‖2 ≤ C0(‖uxx(t)‖2 + ‖vxx(t)‖2).

The integral estimates of the previous two lemmas now imply the conclusion we
desired.

4. Structure of steady solutions. In this section, the structure of steady state
solutions to EOM equations is analyzed; we want to seek for solutions u = u(x) and
v = v(x) which verify (1.2).

Numerical investigation presented in section 5 strongly indicates that there really
exist nontrivial steady state solutions to EOM equations for certain parameter values.
We recall that nontrivial solutions are defined as those for (1.2) other than trivial
solutions mentioned in section 1; namely, they are solutions (u, v) to (1.2), both
of which are not simultaneously constants. The aim of this section is to confirm
analytically these numerical observations. Our results are as follows and extend our
previous establishments [15].

Proposition 4.1. For suitably assigned large b and m2, there exists at least one
monotone nontrivial steady state solution for EOM equations. Furthermore, for any
integer k ≥ 2 and for appropriately large b and m2 depending on k, EOM equations
have nonmonotone nontrivial steady state solutions, each of whose derivatives changes
sign exactly (k − 1) times.

The large values of b and m2 stated in Proposition 4.1 can be computed explicitly,
for which we do not go into detail. We also remark that our result should be compared
to [5], where the fact is described that nonmonotonic functions cannot be a local
minimizer for a single Cahn–Hilliard-type functional.

The proof is carried out from the variational point of view and divided into several
steps. First we notice that although (1.2) is a system of equations of fourth order, it
has a second-order variational structure; the solution to (1.2) is given by the critical
point of a functional (1.3) among the function space

A :=

{
(u, v) ∈ (H1(0, l))2

∣∣∣∣∣ 1

l

∫ l

0

u dx = m

}
.
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We have the next lemma, whose proof is given in a similar way as in Lemma 3.1
of [25], and we may safely omit it.

Lemma 4.2. Problem (1.2) is equivalent to the problem of finding the critical
points of functional F [u, v] defined by (1.3) over A.

Step 1. Existence of nontrivial global minimizer.
We immediately obtain

1

l
F [m, 0] =

a

2
m2,

1

l
F [m,±

√
b−m2] =

a

2
m2 − 1

4
(b−m2)2 if b > m2.

Since F is bounded below on A, our task of constructing at least one nontrivial steady
state solution is to find a test function (u, v) ∈ A such that

1

l
F [u, v] <

a

2
m2 − 1

4
(b−m2)2.(4.1)

The minimization procedure then works well to produce at least one nontrivial steady
state solution, which is global minimizer of (1.3) over A.

To accomplish this, we prepare

u(x) = m− δ cos
πx

l
,

v(x) = ±
√
b−

(
m− δ cos

πx

l

)2

,

(4.2)

where δ > 0 is a parameter and we assign b > (m + δ)2. Clearly (u, v) ∈ A and we
compute

1

l
F [u, v] =

a

2
m2 − 1

4
(b−m2)2 + (ε2(π/l)2 + a)

δ2

4

+
δ2π2

2l2

∫ l

0

(m− δ cos(πx/l))2 sin2(πx/l)

b− (m− δ cos(πx/l))2
dx− m2δ2

2
− 3δ4

32
+

δ2

4
(b−m2).

If we further set b = 2m2 and δ = m/4, then we infer that

1

l
F [u, v] =

1

l
F [m,±

√
b−m2] − 131

213
m4

+

(
ε2(π/l)2 + a

64
+

π2

32l2

∫ l

0

(4 − cos(πx/l))2 sin2(πx/l)

32 − (4 − cos(πx/l))2
dx

)
m2,

from which we conclude that (4.1) holds, taking larger m if necessary.
Step 2. Monotonicity of the global minimizer.
Our intention is to show the monotonicity of the global minimizer (u, v) obtained

in Step 1. Since there is a cross-term
∫ l

0
2−1u2v2 dx in the functional F [u, v], a simple

direct application of usual rearrangements is insufficient. We have, however, the next
lemma.

Lemma 4.3. Suppose f, g ∈ H1(0, l). Let f i and gd denote the monotone in-
creasing and decreasing rearrangement of f and g, respectively. Then∫ l

0

f igd dx ≤
∫ l

0

fg dx,
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where the equality holds if and only if (f, g) ≡ (f i, gd) or (fd, gi).
Suppose additionally f, g are both nonnegative (or nonpositive). Then

∫ l

0

(f i)2(gd)2 dx ≤
∫ l

0

f2g2 dx,

where the equality holds if and only if (f, g) ≡ (f i, gd) or (fd, gi). If the sign of (f, g)
is opposite, then (f i, gi) or (fd, gd) brings the same conclusion.

We recall that the monotone increasing rearrangement f i of f ∈ H1(0, l) is defined
as follows. For c ∈ R, put

Ic := {x ∈ (0, l) | f(x) ≥ c},

Iic :=

{
{l − |Ic| ≤ x ≤ l} if Ic �= ∅,
∅ if Ic = ∅,

where |Ic| denotes the Lebesgue measure of the interval Ic. We then have

f i(x) = sup{c ∈ R |x ∈ Iic} for 0 ≤ x ≤ l.

The monotone decreasing rearrangement is defined similarly.
The next properties of rearrangements are well known [19]:

∫ l

0

(f i)2x dx ≤
∫ l

0

f2
x dx,

∫ l

0

(f i)p dx =

∫ l

0

fp dx if f ≥ 0, p > 0.

(4.3)

The proof of our lemma is rather standard. Approximating f by step functions,
we see that it suffices to deduce the lemma in the case of sequences, which is known
to be true [18]. We omit the details.

Now we return to our problem. Taking account of (4.3) and Lemma 4.3, we assert
that the monotonicity of the global minimizer (u, v) follows at once if (u, v) are both
simultaneously taken to be nonnegative (or nonpositive). Indeed, suppose (u, v) are
nonnegative. Performing the monotone increasing and decreasing rearrangement for
u and v, respectively, we derive that

F [ui, vd] ≤ F [u, v] = min
A

F,

from which we establish that (u, v) ≡ (ui, vd) or (ud, vi).
It remains to prove that (u, v) are both taken to be nonnegative (or nonpositive).

Suppose m = l−1
∫ l

0
u dx > 0. Then |{x |u(x) > 0}| > 0 and we note that u solves

−ε2uxx + (a + v2)u = β in 0 < x < l,

ux = 0 at x = 0 and l

for some constant β ∈ R. Since |{x |u(x) > 0}| > 0, the sign of constant β must be
positive, which certainly holds at the maximum point in {x |u(x) > 0}. We recall
that a > 0. If there happens |{x |u(x) < 0}| > 0, then a similar reasoning as above
applied to the minimum point of u (< 0) implies β < 0, which is a contradiction.
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We therefore conclude that u has the same sign as m. If we further put v+(x) =
max{v(x),−v(x)} ≥ 0, then we observe

F [u, v+] = F [u, v] = min
A

F,

from which we find that (u, v) are nonnegative.
Step 3. Existence of multi-bump solutions.
Now, utilizing this monotone nontrivial solution, for every integer k ≥ 2, we

construct nontrivial solutions (uk, vk) to (1.2), whose derivatives uk
x and vkx change

sign exactly (k−1) times, respectively. To obtain these solutions, we divide the interval
[0, l] into k subpieces [(i−1)l/k, il/k] (i = 1, 2, . . . , k). On the first subinterval [0, l/k],
the minimization procedure formulated in Step 1 works if b and m2 are suitably large
enough and there exists at least one monotone nontrivial solution (uk, vk) to the
equations of (1.2) with uk

x = vkx = 0 at x = 0 and l/k. These are monotone functions.
We define inductively on i = 1, 2, . . . , k that

uk(x) =

{
uk(x− ((i− 1)l/k)), i is odd,

uk(−x + (il/k)), i is even,

on each subintervals [(i − 1)l/k, il/k]. vk is extended similarly onto [0, l]. Such con-
structed (uk, vk) clearly solves (1.2) and fulfills our requirements.

The proof of Proposition 4.1 is finally completed.

5. Computational study. In this section we treat the computational research
for EOM equations. The detailed exposition is given in another work [16]; here we just
incorporate several results. Note that our discretization scheme is motivated partially
by [12], [13], [14], whose principal target is to cultivate a stable reasonable numerical
scheme for computing the Cahn–Hilliard equation.

Let xk = k∆x (k = 0, 1, . . . , n) with ∆x = l/n. The discretized free energy
Fn[U, V ] for the approximations (Uk, Vk) of (u(xk, t), v(xk, t)) is expressed as

Fn[U, V ] =
∑

t

(
ε2

4
((∇+Uk)

2 + (∇−Uk)
2) +

1

4
((∇+Vk)

2 + (∇−Vk)
2)

+
a

2
U2
k +

1

4
V 4
k − b

2
V 2
k +

1

2
U2
kV

2
k

)
∆x.

Here ∇+ and ∇− denote the forward and backward difference in x, respectively:

∇+Uk =
1

∆x
(Uk+1 − Uk), ∇−Uk =

1

∆x
(Uk − Uk−1).

Furthermore,
∑

t represents the trapezoidal summation formula defined by

∑
t
U2
k =

1

2
U2

0 +

n−1∑
k=1

U2
k +

1

2
U2
n.

Now, for the approximations (Ūk, V̄k) of (u(xk, t + ∆t), v(xk, t + ∆t)), we mainly
adopt the implicit scheme as follows:

Ūk − Uk

∆t
= ∇2

(
−ε2∇2 Ūk + Uk

2
+ a

Ūk + Uk

2
+

ŪkV̄k + UkVk

2

V̄k + Vk

2

)
,

V̄k − Vk

∆t
= ∇2 V̄k + Vk

2
+ b

V̄k + Vk

2
− ŪkV̄k + UkVk

2

Ūk + Uk

2
− V̄k

2
+ V 2

k

2

V̄k + Vk

2
,
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Fig. 5.1. Convergence to a monotone steady state solution.

where ∇2 := ∇+∇− stands for the second-order central difference in x. With this
implicit scheme, we deduce that the discretized total concentration is conserved and
the discretized free energy is decreasing:∑

t
Ūk =

∑
t
Uk, Fn[Ū , V̄ ] ≤ Fn[U, V ].

We supplement our solver, however, by the explicit scheme, since our current problem
is in a sense stable by virtue that a > 0 and the implicit one is a little complicated to
implement.

Ūk − Uk

∆t
= −ε2∇4Uk + ∇2((a + V 2

k )Uk),

V̄k − Vk

∆t
= ∇2Vk + (b− U2

k − V 2
k )Vk.

In this case, the dissipation of the free energy holds only approximately; nevertheless,
it is whole enough for our purposes.

The discretized boundary conditions should be fixed as

U−1 = U1, Un−1 = Un+1 in place of ux = 0 at x = 0 and l,

V−1 = V1, Vn−1 = Vn+1 in place of vx = 0 at x = 0 and l,

U−2 = U2, Un−2 = Un+2 in place of uxxx = 0 at x = 0 and l.

We focus our interest on the question of whether the variety of steady state
solutions exists. In the following, constants are taken to be

l = 1, ε = 1, a = m =
1

4
.

Several steady solutions are illustrated in the following figures.
Figure 5.1 depicts the convergence of a solution (u, v) for (1.1) to a monotone

steady state solution. We set b = 16/25 and as initial function we employ

u0(x) = m,

v0(x) =
√

b−m2 − 1

1000
cos(πx).

The computation is implemented under the mesh size ∆x = 1/64 and ∆t = 1/256 up
to the time interval 0 ≤ t ≤ 4096.

The monotone steady state solution corresponds to the case k = 1 in Theorem 1.1.
It is numerically unstable with respect to the perturbation on initial data.
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Fig. 5.2. Convergence to a nonmonotone steady state solution.

Fig. 5.3. Energy diagram of steady state solutions.

Figure 5.2, on the other hand, illustrates the convergence to a nonmonotone
steady state solution. We set b = 0.99, and as initial functions we take

u0(x) = m,

v0(x) = − 1

1000
cos(πx).

The implementation data are the same as those of Figure 5.1, performed during the
time interval 0 ≤ t ≤ 128.

The limiting function is related to the case k = 2 in Theorem 1.1; however, the
function v is monotone increasing in Figure 5.2. This apparent discrepancy is easily
reconciled because the sign of v is irrespective to the problem. We hasten to remark
that the nonmonotone steady solution, which is constructed in Theorem 1.1 with
k = 2, also is numerically realized.

Finally, we exhibit the energy diagram of various steady state solutions in Fig-
ure 5.3. Here the notation w−i (i = 0, 1, . . . , 8) means the steady state solution to
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(1.1), which is akin to the one with k = i + 1 described in Theorem 1.1.

It is observed that the energy of the monotone steady state solution dominates
others. The detailed investigation, including the problem of the stability, will be
deferred to another work.
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Abstract. We study reaction-diffusion systems with FitzHugh–Nagumo-type nonlinearity. We
consider the rich structures of stable stationary solutions for two different parameter scalings with
the corresponding limiting problems. We study the complex phase separation patterns and derive
the stationary interface equation for the limiting problems.
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1. Introduction. In this paper, we study the singular limiting behavior of some
stable steady states of a class of reaction-diffusion systems:⎧⎪⎪⎨

⎪⎪⎩
ut = ε2∆u + f(u) − ε

µ
v in Ω × R

+,

τvt = D∆v + u−m− γv in Ω × R
+,

∂u

∂n
=

∂v

∂n
= 0 on ∂Ω × R

+,

(E)µε,D

where Ω ⊂ R
N (N ≥ 2) is a bounded domain with the smooth boundary ∂Ω; ∂/∂n

is the normal derivative on ∂Ω; ε, µ � 1 and D � 1 are positive parameters; γ and
τ are positive constants; f(u) = −W ′(u) (W ∈ C2(R) is a double-well potential such
that W (±1) = 0 and W (s) > 0 for s �= ±1); and m is a constant between two global
minima of W , namely,

m ∈ (−1, 1).(A1)

The system (E)µε,D describes, for instance, wave propagation in excitable media
such as a Belousov–Zhabotinskii reaction, pattern formation in population genetics,
propagation of signals along a nerve axon or cardiac tissue, etc. They are referred to
as FitzHugh–Nagumo equations and have been studied extensively. (See, for instance,
[3, 4, 5, 10, 15] and the references therein.)

We construct stable stationary solutions of (E)µε,D and study a behavior of them
in two cases:

(i) ε → 0 for fixed D,µ and
(ii) ε → 0, D → ∞ for fixed µ.

Although the Allen–Cahn equation

ut = ∆u + f(u)

with homogeneous Neumann data does not have nonconstant stable stationary solu-
tions, (E)µε,D provides a rich structure, that is, a formation of nontrivial stationary
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patterns. We construct stationary solutions of (E)µε,D by using variational methods

although (E)µε,D is not a gradient flow associated to some functional. For a proof of
stability of such stationary solutions, we can apply the result of [16]. This paper is
mostly concerned with variational problems for functionals with parameters ε,D, and
µ and asymptotic behavior of minimizers.

Here we compare our case with one in [16]. In [16], it was shown that there are
stable stationary solutions (u, v) such that the total variation of u is very large when
ε ∼ µ � 1 and D is of order 1. On the other hand, we see that in both (i) and (ii),
there is a limiting variational problem with a positive parameter µ. Then we study
the µ-parametrized limiting functionals in the limit µ → 0, and we see that, in the
case of (i), minimizers of the µ-parametrized limiting functional have the large total
variation when µ is small.

Finally we derive the Euler–Lagrange equation of the singular limiting problem
and it turns out to be a balance condition on the interface between the local effects
of curvature and the effect of the nonlocal term. We will see that, in the case of (ii),
the above balance condition on the interface coincides with the result of [5]. (See
Remark 2.3 below.)

We make the following conditions on f :
(f1) f ∈ C1(R).
(f2) f has just three zeros, f(±1) = f(a) = 0, a ∈ (−1, 1), and satisfies f ′(±1) <

0, f ′(a) > 0.

(f3)
∫ 1

−1
f(v) dv = 0.

(f4) f has the polynomial growth at infinity, that is, there exist constants s ∈
[1,∞) and c1, c2, R > 0 such that

c1|u|s ≤ |f(u)| ≤ c2|u|s for all |u| ≥ R.

We use the following notation. (·, ·) denotes L2-inner product, 〈u〉 is the mean
value of u ∈ L1(Ω) on Ω,

∫
Ω

|Du| := sup

{∫
Ω

N∑
i=1

uDigi dx ; g = (g1, . . . , gN ) ∈ C1
0 (Ω,RN ), |g| ≤ 1

}

is the total variation of u ∈ L1(Ω), BV (Ω) is the Banach space of functions u ∈ L1(Ω)
with

‖u‖BV :=

∫
Ω

u dx +

∫
Ω

|Du| < ∞,

|·| is the n-dimensional Lebesgue measure, and PΩ(G) denotes the perimeter of G ⊂ Ω
with respect to Ω. Denote by ∂′ the relative boundary with respect to Ω.

For an oriented smooth hypersurface, we define the second fundamental form so
that the principal curvatures and mean curvature of SN−1 are negative if the normal
vector orients to the center. In this paper, the mean curvature denotes the sum of all
principal curvatures.

2. Main results. The original problem has three independent parameters ε,D,
and µ with given constants τ, γ, and m. Theorem 2.1 concerns two scalings for fixed
µ, that is, ε → 0 with fixed D, and ε → 0, D → ∞. To state the main results, define

c0 :=

√
2∫ 1

−1

√
W (s) ds

.
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Remark 2.1. The constant c0 can be characterized as follows when f is smooth.
Indeed, it is known that if, in addition, f is smooth, then there exist a constant δ > 0
and smooth functions U : R × (−δ, δ) → R, c : (−δ, δ) → R such that

Uxx(x, V ) + c(V )Ux(x, V ) + f(U(x, V )) = V, x ∈ R, V ∈ (−δ, δ),

U(−∞, V ) = h−(V ), U(+∞, V ) = h+(V ), c(0) = 0,

where h±(V ), V ∈ (−δ, δ) are two solutions of f(·) = V which are smooth in V and
satisfy h±(0) = ±1. This means that for each V ∈ (−δ, δ), u(x, t) = U(x− c(V )t, V )
is a traveling wave solution of the equation

ut = uxx + f(u) − V, x ∈ R, t ∈ R,

which converges to h±(V ) as x → ±∞ (c = c(V ) represents the speed of the traveling
wave solution). See [2, 5, 8, 9] and references therein. Then it is easy to see that there
holds

c0 =
dc

dV

∣∣∣∣
V =0

.

Our first result is the following.
Theorem 2.1. Assume (A1) and (f1)–(f4). Then the following hold:
(i) Let D = 1. Then for any sequence εn → 0, there exists a subsequence εk =

εnk
→ 0 and stable stationary solutions (uk, vk) of (E)µεk,D such that uk converges

strongly in L1(Ω) to a solution of⎧⎪⎨
⎪⎩

min
u∈G

Bµ(u), Bµ(u) :=

[
2

c0
PΩ({u = 1}) +

1

2µ
(K(u−m), u−m)

]
,

G := {u ∈ BV (Ω) ; |u(x)| = 1 for almost all x ∈ Ω},
(P )µ

where

K := (−∆ + γ)−1(2.1)

is the Green operator with a homogeneous Neumann boundary condition.
(ii) For any sequence εn → 0, Dn → ∞, there exist subsequences εk = εnk

→ 0,
Dk = Dnk

→ ∞ such that for each k, (E)µεk,Dk
has a stable stationary solution (uk, vk)

which has the property that uk converges strongly in L1(Ω) to a solution of

min
u∈G

B̃µ(u), B̃µ(u) :=

[
2

c0
PΩ({u = 1}) +

1

2µγ
|Ω|(〈u〉 −m)2

]
,(P̃ )µ

where G is the same as in (P )µ.
The method used to prove Theorem 2.1 is based on the Γ-convergence result for

a sequence of functionals of Modica–Mortola type. Such a method was first applied
to such problems as the van der Waals–Cahn–Hilliard model or the phase transition
model in the gradient theory of fluids (see [11]). Note that such problems are gradient
flows associated to some functionals, but our problem (E)µε,D is not.

(P )µ and (P̃ )µ are the geometric minimization problems with a parameter de-
pendence, which determine the location of interior boundary layers. (Here we call
Γ = ∂′{u = 1} a sharp interface for u ∈ G.) We are interested in the following

two problems: the asymptotic behavior, as µ → 0, of solutions of (P )µ and (P̃ )µ,
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and finding a geometric interface equation for minimizers. Theorem 2.2 concerns the
parameter dependence of solutions of (P )µ and (P̃ )µ. In Theorem 2.3, we derive the

geometric interface equation associated with the solutions of (P )µ and (P̃ )µ. Note
that we obtain it without the technique of the matched asymptotic expansion.

Theorem 2.2. (i) Let uµ be a solution of (P )µ. Then for any sequence µk → 0,
(uµ) generates the Young measure ν = (νx)x∈Ω such that

νx =
1 −m

2
δ−1 +

1 + m

2
δ1 for almost all x ∈ Ω.

Furthermore, there holds

C1µ
−1/3 ≤ PΩ({uµ = 1}) ≤ C2µ

−1/3, µ ∈ (0, 1),(2.2)

where C1, C2 are positive constants (independent of µ).

(ii) Let ũµ be a solution of (P̃ )µ. There holds

PΩ({ũµ = 1}) ≤ C3, µ ∈ (0, 1),

for a positive constant C3 (independent of µ). Furthermore, for any sequence µn → 0,
there exists a subsequence µk → 0 that has the following properties:

(1) there exists a positive constant C4 such that

1

µk
(〈ũµk〉 −m)2 ≤ C4

| logµk|
, k = 1, 2, . . . ,

(2) ũµk converges strongly in L1(Ω) to a solution u∗ of

⎧⎪⎪⎨
⎪⎪⎩

min
u∈M

PΩ({u = 1}),

M :=

{
u ∈ G ;

∫
Ω

u dx = m|Ω|
}
.

In particular, (ũµk) generates the Young measure νx = δu∗(x) for almost every
x ∈ Ω.

Remark 2.2. From Theorem 2.2, the solutions (uk, vk) in Theorem 2.1 are not
spatially constant for large k.

We see that a phase separation with fine structures occurs in the scaling (i) of
Theorem 2.2, in the sense that we may construct a sequence of solutions that converges
to a pattern with an arbitrarily large perimeter if we choose sufficiently small µ. For
variational problems with two scales, see, for example, [1, 7, 13].

Theorem 2.3. (i) For fixed µ > 0, let u be a solution of (P )µ and Γ = ∂′{u = 1}.
Assume that Γ is smooth in a neighborhood U of x0 ∈ Γ. Then there holds

µH = c0v on Γ ∩ U,

where H is the mean curvature of Γ (when the normal vector points from {u = −1}
to {u = +1}) and v is the solution of⎧⎨

⎩
(−∆ + γ)v = u−m in Ω,
∂v

∂n
= 0 on ∂Ω.
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(ii) For fixed µ > 0, let ũ be a solution of (P̃ )µ and Γ̃ = ∂′{ũ = 1}. Assume that

Γ̃ is smooth in a neighborhood U of x0 ∈ Γ̃. Then there holds

µH =
c0
γ

(〈ũ〉 −m) on Γ̃ ∩ U,

where H is the mean curvature of Γ̃.
Remark 2.3. Theorem 2.3(ii) implies that solutions of (P̃ )µ typically involve a

partition of Ω into regions separated by surfaces of a constant mean curvature. In [5],
the authors obtained a limiting free boundary problem from an Allen–Cahn equation
with a nonlocal term, which arises as a limit of a reaction-diffusion system. Then we
see that any smooth surface that corresponds to a stationary solution of the motion
law obtained in [5] has also a constant mean curvature.

Hereafter, for the sake of notational simplicity, we will use the same letters C
to denote some positive constants whose values may vary from line to line. This
notational convention does not apply to such letters as C1, C2, C3, . . . .

3. Proof of Theorem 2.1. In this section, we prove Theorem 2.1. For simplic-
ity, we show the claim when

m = 0

is satisfied since we can prove in other cases by the same manner. Denote by (−D∆+
γ)−1 the Green operator of −D∆ + γ with the homogeneous Neumann boundary
condition. Define a functional

Iµε,D(u) :=

∫
Ω

{
ε2

2
|∇u|2 + W (u)

}
dx +

ε

2µ
((−D∆ + γ)−1u, u)

for u ∈ H1(Ω). Let uε,D ∈ H1(Ω) be a critical point of Iµε,D and let vε,D := (−D∆ +

γ)−1uε,D. Then uε,D satisfies the Euler–Lagrange equation

ε2∆uε,D + f(uε,D) − ε

µ
(−D∆ + γ)−1uε,D = 0,

which means that (uε,D, vε,D) is a stationary solution of (E)µε,D. Moreover, by the

result of section 3 in [16], (uε,D, vε,D) is stable for all ε if τ = 0 and for ε < τ−1µγ2 if
τ > 0. (The condition τ · ε

µ < γ2 is sufficient for stability but need not be necessary.)
Consider the minimization problem

min
u∈H1(Ω)

Iµε,D(u).(P )µε,D

Noting that the H1-norm is weakly lower semicontinuous, (−D∆ + γ)−1 is compact
and continuous on L2(Ω), and Iµε,D is coercive, the problem (P )µε,D has a solution
uε,D. To establish Theorem 2.1, it remains to show the behavior of uε,D in the limit
as ε → 0 or ε → 0 and D → ∞.

Define a functional aµε,D : L1(Ω) → [0,∞] for ε, µ,D > 0 as follows:

aµε,D(u) :=

{
ε−1Iµε,D(u) for u ∈ H1(Ω),

∞ otherwise.

We obtain the following lemma.
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Lemma 3.1. Let D = 1. Then
(1) for any εk → 0, and uk → u weakly in L2(Ω) and strongly in L1(Ω), there

holds

lim inf
k→∞

aµεk,D(uk) ≥ bµ(u);

(2) for any u ∈ L2(Ω), there exist sequences εk → 0 and uk → u weakly in L2(Ω)
and strongly in L1(Ω) such that

bµ(u) ≥ lim sup
k→∞

aµεk,D(uk),

where

bµ(u) :=

{
Bµ(u) = 2(c0)

−1PΩ({u = 1}) + (2µ)−1(Ku, u) for u ∈ G,
∞ for u ∈ L1(Ω)\G.

(The definitions of Bµ and G are in Theorem 2.1(i), and K is defined in (2.1).)
Lemma 3.2. The following two properties hold:
(1) For any εk → 0, Dk → ∞, and uk → u weakly in L2(Ω) and strongly in

L1(Ω), there holds

lim inf
k→∞

aµεk,Dk
(uk) ≥ b̃µ(u);

(2) for any u ∈ L2(Ω), there exist sequences εk → 0, Dk → ∞, and uk → u
weakly in L2(Ω) and strongly in L1(Ω) such that

b̃µ(u) ≥ lim sup
k→∞

aµεk,Dk
(uk),

where

b̃µ(u) :=

{
B̃µ(u) = 2(c0)

−1PΩ({u = 1}) + |Ω|(2µγ)−1〈u〉2 for u ∈ G,
∞ for u ∈ L1(Ω)\G.

(B̃µ is defined in Theorem 2.1(ii).)
Proof of Lemmas. First recall Modica–Mortola theorem, namely, a sequence

(Eε)0<ε≤1 of functionals on L1(Ω) such that

Eε(u) :=

⎧⎨
⎩
∫

Ω

(
ε

2
|∇u|2 +

1

ε
W (u)

)
dx for u ∈ H1(Ω),

∞ for u ∈ L1(Ω)\H1(Ω).

(3.1)

Γ converges to

E(u) :=

{
2(c0)

−1PΩ({u = 1}) for u ∈ G,
∞ for u ∈ L1(Ω)\G .

That is,
(i) for any εk → 0, and uk → u strongly in L1(Ω), there holds

lim inf
k→∞

Eεk(uk) ≥ E(u);
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(ii) for any u ∈ L1(Ω), there exist sequences εk → 0 and uk → u strongly in
L1(Ω) such that

E(u) ≥ lim sup
k→∞

Eεk(uk).

Note that in (ii), for u ∈ G, we may choose uk such that ‖uk‖L∞(Ω) = 1. (For example,
see [17].) Hence we may assume that uk ⇀ u weakly in L2(Ω).

Noting that if uk ⇀ u weakly in L2(Ω), then

(Kuk, uk) → (Ku, u) as k → ∞.

Lemma 3.1 follows.
To verify Lemma 3.2, it suffices to see that for any sequences εk → 0, Dk → ∞,

and uk → u weakly in L2(Ω) and strongly in L1(Ω), there holds

(Tkuk, uk) →
|Ω|〈u〉2

γ
as k → ∞,(3.2)

where Tk is the Green operator of −Dk∆ + γ with homogeneous Neumann boundary
data. Indeed, we may consider only the case uk ∈ H1(Ω) since other cases are trivial.
In the case u �∈ G, by the above Γ-convergence result,

lim inf
k→∞

aµε,D(uk) = ∞;

hence the assertion follows by the penalty term. Thus we may assume that u ∈ G ⊂
L2(Ω).

To see the above property (3.2), denote 0 = λ1 < λ2 ≤ · · · ≤ λi ≤ · · · → ∞
the eigenvalues of −∆ on Ω with homogeneous Neumann boundary condition and let
(φi)

∞
i=1 be the corresponding eigenfunctions with ‖φi‖L2(Ω) = 1. We may assume that

Dk ≥ 1 for all k ≥ 1. Expanding uk and u in terms of (φi), we have

uk =

∞∑
i=1

a
(k)
i φi, u =

∞∑
i=1

aiφi,

where a
(k)
i = (uk, φi) and ai = (u, φi). Note that

a1 = |Ω|− 1
2

∫
Ω

u dx

and

(Tkuk, uk) =
(a

(k)
1 )2

γ
+
∑
i≥2

(a
(k)
i )2

Dkλi + γ
.

Here we estimate

0 ≤
∑
i≥2

(a
(k)
i )2

Dkλi + γ
≤ 2

∑
i≥2

(a
(k)
i − ai)

2

λi + γ
+ 2

∑
i≥2

(ai)
2

Dkλi + γ

= 2

⎛
⎝K

⎛
⎝∑

i≥2

a
(k)
i φi −

∑
i≥2

aiφi

⎞
⎠ ,
∑
i≥2

a
(k)
i φi −

∑
i≥2

aiφi

⎞
⎠(3.3)

+ 2
∑
i≥2

(ai)
2

Dkλi + γ
.
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Since ∑
i≥2

a
(k)
i φi ⇀

∑
i≥2

aiφi, k → ∞,

weakly in L2(Ω), the first term of the right-hand side of (3.3) goes to 0 as k → ∞.
Moreover, since

(ai)
2

Dkλi + γ
≤ (ai)

2

λi + γ
,
∑
i≥2

(ai)
2

λi + γ
< ∞,

the second term of the right-hand side of (3.3) also goes to 0 as k → ∞ by the
Lebesgue dominated convergence theorem. Hence

lim
k→∞

∑
i≥2

(a
(k)
i )2

Dkλi + γ
= 0.

Noting that a
(k)
1 → a1 as k → ∞, we have

lim
k→∞

(Tkuk, uk) =
(a1)

2

γ
=

|Ω|〈u〉2
γ

,

as desired. The proof is complete.
To show Theorem 2.1(i), it is sufficient to see that for any sequence εn → 0, there

exists a subsequence εk → 0 such that uεk,D → u∗ weakly in L2(Ω) and strongly in
L1(Ω). Indeed, by Lemma 3.1(1), there holds

bµ(u∗) ≤ lim inf
k→∞

aµεk,D(uεk,D).

On the other hand, by Lemma 3.1(2), for any u ∈ G, there exists a sequence uk such
that

lim sup
k→∞

aµεk,D(uk) ≤ bµ(u).

Hence we have bµ(u∗) ≤ bµ(u), which means that u∗ is a solution of (P )µ.
It remains to see the existence of a subsequence εk such that uεk,D converges

to some u∗ weakly in L2(Ω) and strongly in L1(Ω). Note that there holds by the
assumption (f4), for some positive constants C5, C6,∫

Ω

|u|s+1 dx ≤
∫

Ω

(C5 + C6W (u)) dx

≤ C5|Ω| + C6εE
ε(u),

where Eε is defined in (3.1). Furthermore, by constructing a comparison function, it
is easy to see that for some constant C > 0, independent of ε ∈ (0, 1] and D ≥ 1,

Eε(uε,D) ≤ aµε,D(uε,D) =
1

ε
Iµε,D(uε,D) ≤ C.

Hence it follows that (uε,D)0<ε≤1 is bounded in L2(Ω) and that by the Modica–
Mortola theorem, (uε,D)0<ε≤1 is relatively compact in L1(Ω). Thus the claim follows.
The proof of Theorem 2.1(i) is complete.

Similarly, we establish Theorem 2.1(ii) by using Lemma 3.2.
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4. Asymptotic behavior of solutions. In this section, we prove Theorem 2.2.
Proof of Theorem 2.2(i). For simplicity, we show the claim when there hold

c0
4

= 1 and γ = 1,

since we can prove other cases by the same manner. We will show that our solu-
tion uµ oscillates rapidly with the average wave length of order µ

1
3 when µ goes to

zero.
First we give an upper bound for the minimal energy. Define the function oscil-

lating in a one-dimensional direction as follows. Let r be the solution of

−r′′(s) = q(s) −m for 0 < s < 1,
r(s + 1) = r(s), r′(s + 1) = r′(s) for all s ∈ R,

where

q(s) :=

{
+1, s < [s] + 1+m

2 ,

−1, [s] + 1+m
2 ≤ s.

Letting Qµ(x) := q(x1/µ
1
3 ) and Rµ(x) := r(x1/µ

1
3 ), there holds

−∆(µ
2
3Rµ) = Qµ −m.

Let Wµ := K(Qµ −m), that is, Wµ is the solution of{ −∆Wµ + Wµ = Qµ −m in Ω,
∂Wµ

∂n
= 0 on ∂Ω.

Then there holds Wµ = µ
2
3Rµ −Xµ − Yµ, where Xµ, Yµ are the solutions of{ −∆Xµ + Xµ = 0 in Ω,

∂Xµ

∂n
=

∂

∂n
(µ

2
3Rµ) on ∂Ω,

and ⎧⎨
⎩

−∆Yµ + Yµ = µ
2
3Rµ in Ω,

∂Yµ

∂n
= 0 on ∂Ω,

respectively. Since PΩ({Qµ = 1}) = O(µ− 1
3 ) and ‖Wµ‖L2(Ω) = O(µ

2
3 ) as µ → 0, one

obtains the upper bound for (P )µ, that is, Bµ(uµ) ≤ Cµ− 1
3 , in particular,

(K(uµ −m), uµ −m) ≤ Cµ
2
3 , PΩ({uµ = 1}) ≤ Cµ− 1

3 .(4.1)

To see a Young measure associated with uµ, choose any sequence µl → 0. Then
by the fundamental existence theorem, for a subsequence µk, we may assume that
(uµk) generates a Young measure ν = (νx)x∈Ω. Since uµk(x) = 1 or uµk(x) = −1
for almost all x ∈ Ω, there exists a measurable function ϕ : Ω → [0, 1] such that
νx = (1 − ϕ(x))δ−1 + ϕ(x)δ1 for almost every x ∈ Ω. Then since∫ ∞

−∞
λ dνx(λ) = 2ϕ(x) − 1,
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we have uµk ⇀ 2ϕ− 1 weakly in L2(Ω). Thus as k → ∞,

(K(uµk −m), uµk −m) → (K(2ϕ− 1 −m), 2ϕ− 1 −m) = 0

by (4.1). Therefore ϕ(x) ≡ 1+m
2 for almost all x ∈ Ω.

It remains to see the lower bound in (2.2). The key estimate to see this is the
following interpolation inequality.

Lemma 4.1. There exist positive constants β1 and δ1 such that for all 0 < δ ≤ δ1
and u ∈ G,

β1 ≤ δPΩ({u = 1}) + δ−2(K(u−m), u−m).(4.2)

This is obtained by standard arguments used in [6]. (A similar inequality was also
proved in [12].) For the one-dimensional case, see [14]. Then we have the following.

Corollary 4.2. (1)

min
u∈G

Bµ(u) ≥ 1

2
β1µ

− 1
3 .

(2) For any u ∈ G such that

(K(u−m), u−m) ≤
(
δ1
2

)2

,

there holds

[PΩ({u = 1})]2 · (K(u−m), u−m) ≥ 9

64
.(4.3)

By (4.3) and the upper bound (4.1), we obtain the estimates with a uniform constant
C > 0,

(K(uµ −m), uµ −m) ≥ Cµ
2
3 ,

PΩ({uµ = 1}) ≥ Cµ− 1
3

for all µ ∈ (0, 1). The proof is complete.
Proof of Theorem 2.2(ii). Here, for simplicity, we show the claim when there hold

c0
4γ

|Ω| = 1 and m = 0,

since we can prove other cases by the same manner. Let p̃µ :=
c0
2
B̃µ(ũµ). Choose

u0 ∈ L1(Ω) such that 〈u0〉 = 0 and W (u0) = 0 (i.e., u0(x) = −1 or u0(x) = +1) for
almost all x ∈ Ω. Then

p̃µ ≤ PΩ({u0 = 1}) = C,

where C is a constant independent of µ. Moreover, by the definition of p̃µ, the
function µ �→ p̃µ is nonincreasing and hence differentiable at almost every number
µ ∈ (0, 1). We will find the sequence µk → 0 satisfying the conditions (1) and (2) in
Theorem 2.2(ii). For 0 < µ1 < µ0,

C ≥ p̃µ1 − p̃µ0 ≥
∫ µ0

µ1

∣∣∣∣ ddµp̃µ
∣∣∣∣ dµ(4.4)

≥ ess inf
µ1<µ<µ0

µ

∣∣∣∣ ddµp̃µ
∣∣∣∣
∣∣∣∣log

µ1

µ0

∣∣∣∣ .
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Thus we infer that

µk

∣∣∣∣ ddµp̃µ
∣∣∣∣ ≤ C

| logµk|
for a suitable sequence µk → 0. Hence, noting Lemma 7.2 in [18], there holds

µ−1
k 〈ũµk〉2 = µk

∣∣∣∣∣∂B̃
µ

∂µ
(ũµk)

∣∣∣∣∣ ≤ µk

∣∣∣∣ ddµp̃µ
∣∣∣∣ ≤ C

| logµk|
.(4.5)

We may assume that ũµk → u∗ strongly in L1(Ω). (Note that ũµk is bounded in
BV (Ω) and the compactness of the embedding BV (Ω) ↪→ L1(Ω).) Then W (u∗(x)) =
0 almost every x ∈ Ω. Furthermore, by (4.5), we have

〈u∗〉 =
1

|Ω| lim
k→∞

∫
Ω

ũµk dx = 0,

that is, u0 ∈ M. It remains to show that the minimality of PΩ({u = 1}) in M. For
any u ∈ M, by the definition of ũµk ,

PΩ({ũµk = 1}) +
1

µk
〈ũµk〉2 ≤ PΩ({u = 1}).

Taking the limit k → ∞, we obtain by the weak lower semicontinuity of the total
variation in L1 topology,

PΩ({u∗ = 1}) ≤ lim inf
k→∞

PΩ({ũµk = 1}) ≤ PΩ({u = 1}).

The proof is complete.

5. Stationary sharp interfaces. In this section, we prove Theorem 2.3. First
we give some notation and preliminaries. Let

F : B → R
N , B := {z ∈ R

N−1 ; |z| < 1},
be a parametrized (smooth) hypersurface and let Γ := {F (z) ; z ∈ B} ⊂ R

N be
the corresponding hypersurface. We identify functions on Γ with functions on B.
For a given surface F , we use the following notation. Let (gij) represent the first
fundamental form, and let gij = (gij)

−1 be the coefficients of the inverse of the
matrix (gij). Let

ds :=
√

|g| dz,
where |g| = det(gij).

Let n = n(z) be the normal vector and let (�ij) represent the second fundamental
form. Let H := κ1 + · · · + κN−1 be the mean curvature, where κ1, . . . , κN−1 are the
principal curvatures.

Given a parametrized surface F , let α be a “variation” of F with “velocity” Φ ·n,
namely, α(η) is a parametrized surface for each η ∈ (−δ, δ), δ > 0, such that

α(η)(z) = α(η, z) := F (z) + ηΦ(z)n(z), (η, z) ∈ (−δ, δ) ×B,

for a given scalar function Φ : B → R. Let

A(F ) :=

∫
Γ

ds =

∫
B

√
|g| dz

be the area of F .
The first variation of the area is given by the following standard lemma. (We

omit the proof.)
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Lemma 5.1.

dA(α(η))

dη

∣∣∣∣
η=0

=

∫
Γ

ΦH ds.

Proof of Theorem 2.3(i). Here, for simplicity, we show the claim when c0
2µ = 1

is satisfied since we can prove in other cases by the same manner. For u ∈ G and a
function v ∈ H1(Ω), let

e(u, v) := PΩ({u = 1}) −
∫

Ω

[
1

2
(|∇v|2 + γv2) − (u−m)v

]
dx.

Remark 5.1. For any u ∈ G, there holds

c0
2
Bµ(u) = PΩ({u = 1}) +

1

2
(K(u−m), u−m)

= max
v∈H1(Ω)

e(u, v),

where the maximum in the right-hand side is attained at v if and only if v = K(u−m).
Let β = β(η) be a smooth path in G such that

β(0) = u.

We call β a variation of u. We identify the velocity vector

d

dη
β

∣∣∣∣
η=0

with a section Φn = Φ(s)n(s), s ∈ Γ of the normal bundle of Γ. Given a smooth
function v,Ψ : Ω → R, choose a smooth map � : V × Ω → R such that

�(0, x) = v(x),
∂�

∂η
(0, x) = Ψ(x).

We call �(η) := �(η, ·) a variation of v with velocity Ψ.
Claim 1.

d

dη
e(β(η), �(η))

∣∣∣∣
η=0

=

∫
Γ

(H − 2v)Φ ds +

∫
Ω

[−∇v · ∇Ψ − γΨ + (u−m)Ψ] dx.

Proof. We calculate the first variation of e, that is,

d

dη
e(β(η), �(η))

∣∣∣∣
η=0

=
d

dη
e(β(η), v)

∣∣∣∣
η=0

+
d

dη
e(u, �(η))

∣∣∣∣
η=0

.(5.1)

By Lemma 5.1,

d

dη
PΩ(β(η) = 1)

∣∣∣∣
η=0

=

∫
Γ

HΦ ds.

Similarly,

d

dη

∫
Ω

β(η)v dx

∣∣∣∣
η=0

= −2

∫
Γ

vΦ ds,

d

dη
e(u, �(η))

∣∣∣∣
η=0

=

∫
Ω

[−∇v · ∇Ψ − γΨ + (u−m)Ψ] dx.

Hence by (5.1), the claim follows.
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If u is a solution of (P )µ, for any variation β(η), �(η), the quantity

d

dη
e(β(η), �(η))

∣∣∣∣
η=0

must vanish; hence there holds

H − 2v = 0

on Γ. The proof is complete.
Proof of Theorem 2.3(ii). For simplicity, we show the claim when there hold

c0
2µγ

= 1 and m = 0,

since we can prove in other cases by the same manner. Then

c0
2
B̃µ(u) = PΩ({u = 1}) +

1

2|Ω|

(∫
Ω

u dx

)2

.

On the other hand,

d

dη

(∫
Ω

β(η) dx

)2
∣∣∣∣∣
η=0

= −2

∫
Ω

u dx

∫
Γ

2Φ ds.

Hence if u is a solution of (P̃ )µ, then by Lemma 5.1, there holds H − 2〈u〉 = 0 on Γ.
The proof is complete.

6. Remarks on the sharp interface problems. In this section, we give some
remarks about the problems (P )µ and (P̃ )µ. Throughout this section, we set for
simplicity

c0 := 2, γ :=
1

2
, |Ω| := 1.

We study the lower bound in Theorem 2.2(i). Define

α := inf

{
lim inf
k→∞

µ
1
3

kB
µk(uµk) ; µk → 0

}
> 0.

Here α depends only on N,Ω, and m. By an argument similar to the one used in
section 4, we have

β := inf

{
lim inf
k→∞

[
µ
− 2

3

k (〈uk〉 −m)2 + S(uk)
]

; µk → 0, uk ∈ G
}

> 0,

where

S(u) :=
3

2
[PΩ({u = 1})] 2

3 · [(K(u− 〈u〉), u− 〈u〉)] 1
3 .

Proposition 6.1. There holds

α ≥ β.

Proof. Let µk → 0 and uµk ∈ G be sequences such that

lim
k→∞

µ
1
3

kB
µk(uµk) = α.

Then

lim inf
k→∞

{
µ
− 2

3

k (〈uµk〉 −m)2 + S(uµk)
}
≤ α.

Hence β ≤ α.
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Next we give an upper bound for α using the functional defined as follows:

S∗(u) :=
3

2
[PΩ({u = 1})] 2

3 · [((−∆)−1(u−m), u−m)]
1
3

for u ∈ M. Here, (−∆)−1 denotes the Green operator of −∆ acting on {u ∈
L2(Ω) ;

∫
Ω
u dx = 0} with homogeneous Neumann data.

As in the proof of Theorem 2.2 and Proposition 6.1, we obtain

α∗ := inf

{
lim inf
k→∞

[
µ

1
3

k PΩ({uk = 1}) +
1

2
µ
− 2

3

k ((−∆)−1(uk −m), uk −m)

]
;

µk → 0 and uk ∈ M
}

≥ β∗ > 0,

where

β∗ := inf
u∈M

S∗(u).

Remark 6.1. If

α∗ > β∗,(6.1)

then β∗ is attained at some u∗ ∈ M, that is, S∗(u∗) = β∗. Moreover, the condition
(6.1) is necessary and sufficient for the BV -boundedness of all minimizing sequences
for S∗ in M.

Proof. To see that (6.1) is necessary, let u∗
µ be a solution of

min
u∈M

{
PΩ({u = 1}) +

1

2µ
((−∆)−1(u−m), u−m)

}
.

Choose a sequence µk → 0 such that

α∗ = lim
k→∞

{
µ

1
3

k PΩ({uk = 1}) +
1

2
µ
− 2

3

k ((−∆)−1(uk −m), uk −m)

}

with uk = u∗
µk

. If β∗ ≥ α∗, then uk is a minimizing sequence for S∗ in M. On the
other hand, by an argument similar to the one used in the proof of Theorem 2.2, we
have for a uniform constant C,

PΩ({uk = 1}) ≥ Cµ
− 1

3

k .

Hence uk is unbounded in BV (Ω).
We will see that (6.1) is sufficient. Suppose that α∗ > β∗. Assume by contradic-

tion that uk is a minimizing sequence for S∗ in M such that

PΩ({uk = 1}) → ∞,

as k → ∞. Let

µk :=
((−∆)−1(uk −m), uk −m)

PΩ({uk = 1}) ≤ C

[PΩ({uk = 1})]3 → 0.(6.2)
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Then

α∗ ≤ lim
k→∞

{
µ

1
3

k PΩ({uk = 1}) +
1

2
µ
− 2

3

k ((−∆)−1(uk −m), uk −m)

}
= lim

k→∞
S∗(uk)

= β∗,

which is a contradiction.
Proposition 6.2. Assume Ω = Q := (0, 1)N . Then

α ≤ β∗ := inf
u∈M

S∗(u).

Proof. It is easily seen that α ≤ α∗. Hence it is sufficient to show that α∗ = β∗.
Assume by contradiction that α∗ > β∗. Then by Remark 6.1, there exists a minimizer
u1 for S∗ in M. By rescaling the axially symmetric and periodic extension of u1, we
will construct a minimizing sequence uk for S∗ in M such that

PΩ({uk = 1}) → ∞.

Indeed, let u∗ be the function on R
N which satisfies u∗|Q = u1 and is axially symmetric

about the hyperplanes {xi = 0}, 1 ≤ i ≤ N , and invariant under the translations
generated by two times of the fundamental vectors. Let

uk(x) := u∗(2k−1x), x ∈ Q,(6.3)

for k ≥ 2. Then uk ∈ M. We claim that

PΩ({uk = 1}) = 2k−1PΩ({u1 = 0}),

((−∆)−1(uk −m), uk −m) =

(
1

2

)2(k−1)

((−∆)−1(u1 −m), u1 −m),

and hence S∗(uk) = β∗. To see the first equality, note that the contribution to the
perimeter of {u∗ = 1} on the hyperplanes {xi = k}, k = 1, 2, . . . , n (n ∈ N), vanishes
because of the symmetry. Thus we have PnQ({u∗ = 1}) = nNPQ({u∗ = 1}). The
claim follows by a scaling argument. Therefore uk is a minimizing sequence for S∗,
which is unbounded in BV (Q). This is a contradiction by Remark 6.1.

Hereafter let N = 2, Ω = Q := (0, 1)2. Now we have the following.
Definition 6.3. u ∈ G is called planar if u = u(x, y) depends only on x.
We show the following.
Proposition 6.4. There exists a constant m ∈ (0, 1) and a sequence µk → 0

such that every solution uµk of (P )µk is not planar.
Proof. We construct comparison functions as follows. Let m = 1 − 2

n2 (n =
2, 3, . . . ) and

u1(x, y) :=

⎧⎨
⎩−1, max{|x|, |y|} ≤ 1

n
,

+1 otherwise.

Then 〈u1〉 = m. We write u1 as

u1 = m +
∑
i,j≥0

(i,j)�=(0,0)

ai,jφi,j ,
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where

φi,j := 2 cos iπx · cos jπy, i, j ≥ 0, (i, j) �= (0, 0),

and

ai,j :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

− 4

ijπ2
sin

iπ

n
· sin jπ

n
, i ≥ 1, j ≥ 1,

− 4

iπn
sin

iπ

n
, i ≥ 1, j = 0,

− 4

jπn
sin

jπ

n
, i = 0, j ≥ 1,

are Fourier coefficients. Noting that if i ≡ k (mod n), then

sin2 iπ

n
= sin2 kπ

n
≤ (kπ)2

n2
,

we estimate for λi,j := π2(i2 + j2) (i, j ≥ 1),

∑
i,j≥1

(aij)
2

λi,j
=
∑
i,j≥1

16

π6

sin2 iπ
n sin2 jπ

n

i2j2(i2 + j2)

≤ 16

π2n4

n∑
k,l=1

∑
i,j≥0

k2l2

(ni + k)2(nj + l)2[(ni + k)2 + (nj + l)2]

=
16

π2n4

n∑
k,l=1

⎡
⎣∑
i,j≥1

k2l2

(ni + k)2(nj + l)2[(ni + k)2 + (nj + l)2]

+
1

k2 + l2
+

∞∑
j=1

l2

(nj + l)2[k2 + (nj + l)2]

+
∞∑
i=1

k2

(ni + k)2[(ni + k)2 + l2]

⎤
⎦

≤ C
(log n)2

n4
,

where C is a constant independent of n. Estimating other terms similarly, we get

((−∆)−1(u1 −m), u1 −m) ≤ α0
(log n)2

n4
.

Hence noting that PQ({u1 = 1}) = 2
n , we see that for any δ ∈ (0, 1), there exists a

constant α1 such that

(α ≤ β∗ ≤)S∗(u1) ≤
α1

n2−δ

for large n. Define uk as (6.3) in the proof of Proposition 6.2, and define µk as (6.2).
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We estimate

lim sup
k→∞

µ
1
3

kB
µk(uµk) ≤ lim

k→∞

{
µ

1
3

k PΩ({uk = 1}) +
1

2
µ
− 2

3

k ((−∆)−1(uk −m), uk −m)

}
= lim

k→∞
S∗(uk)

≤ α1

n2−δ
.(6.4)

Completion of the proof of Proposition 6.4. To the contrary, assume that
each (P )µk has a planar solution uµk . Then to get a lower bound, we apply the
following.

Lemma 6.5. Let u ∈ G be planar and let

m′ :=

∫
Q

u dxdy, L := PQ({u = 1}).

Then

S(u) ≥ 3

2

(
L

L + 1

) 2
3
(
C0

12

) 1
3

min{1 −m′, 1 + m′} 2
3 ,

where C0 = 2π2

2π2+1 .
Letting mk := 〈uµk〉 and Lk := PQ({uµk = 1}), we have

C ≥ µ
1
3

kB
µk(uµk)

≥ µ
− 2

3

k (mk −m)2 + S(uµk)

≥ µ
− 2

3

k (mk −m)2 +
3

2

(
Lk

Lk + 1

) 2
3
(
C0

12

) 1
3

(1 −mk)
2
3 ,

which implies that limk→∞ mk = m, and hence Lk ≥ 1 for large k. Thus taking the
limit k → ∞, we have

lim inf
k→∞

µ
1
3

kB
µk(uµk) ≥ 3

2

(
1

2

) 2
3
(
C0

12

) 1
3

(1 −m)
2
3

=: α2n
− 4

3 ,

which contradicts the upper bound (6.4) for large n. Proposition 6.4 has been
proved.

Proof of Lemma 6.5. Without loss of generality, we may assume that m′ ∈ [0, 1].

Since the second eigenvalue of − d2

dx2 acting on H2(0, 1) with homogeneous Neu-
mann data is π2, we have

(K(u−m′), u−m′) ≥ π2

π2 + 1
2

((−∆)−1(u−m′), u−m′).

Writing u(x, y) = g(x), let 0 < x1 < x2 < · · · < xL < 1 be the discontinuity points of
g in the interval (0, 1). Here L = PΩ({u = 1}). Then we estimate

S(u) ≥ 3

2
L

2
3 (C0)

1
3 [((−∆)−1(u−m′), u−m′)]

1
3 .(6.5)
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Letting ψ ∈ C1[0, 1] be the (weak) solution of{
−ψ′′ = g −m′, 0 < x < 1,

ψ′(0) = ψ′(1) = 0,

we have

((−∆)−1(u−m′), u−m′) =

∫ 1

0

ψ(g −m′) dx =

∫ 1

0

(ψ′(x))2 dx.

To complete the proof of Lemma 6.5, we show the following.
Lemma 6.6. Let u : [0, 1] → R be a piecewise linear function such that u′(x) is

constant on each interval (xi, xi+1) and takes ci, where 0 = x0 < x1 < · · · < xL <
xL+1 = 1 and ci ∈ R. Then

∫ 1

0

u2 dx ≥ 1

12

(
L∑

i=0

1

|ci|

)−2

.

Proof. Since u′(x) = ci for xi < x < xi+1, it follows that∫ xi+1

xi

u2 dx =

∫ xi+1

xi

(
ci

(
x− xi + xi+1

2

)
+

u(xi) + u(xi+1)

2

)2

dx ≥ c2i
12

(xi+1 − xi)
3.

Summing over i, we get∫ 1

0

u2 dx ≥ 1

12

L∑
i=0

1

|ci|
(|ci|(xi+1 − xi))

3

≥ 1

12

(
L∑

i=0

1

|ci|

)−2

.

Here in the second inequality we used the Jensen’s inequality.
Completion of the proof of Lemma 6.5. Applying Lemma 6.6 to ψ′, we have

((−∆)−1(u−m′), u−m′) ≥ (1 −m′)2

12
(L + 1)−2.(6.6)

Combining (6.5) and (6.6), the proof is complete.

Finally we remark on the problem (P̃ )µ.

Remark 6.2. We think that typical interfaces for solutions of (P̃ )µ should be
lines or circles when N = 2. We believe that, for m sufficiently close to 1, and
µ small, an interface approximated by a circle of a small radius, centered near the
points on the boundary, which have the maximum mean curvature, should arise as in
Cahn–Hilliard theory. We remark that phase separation with circular interfaces are
observed in experiments of block copolymer (see [15]).

Example. Let m = 0.8 and Ω = (0, 1)2. If u is planar, then

B̃µ(u) ≥ min

{
0.04

µ
, 1

}
.

On the other hand, if u ∈ G has the circular interface such that u(x, y) = −1 for
x2 + y2 < 0.4

π and u = +1, otherwise,

B̃µ(u) ≤
√

0.4π

2
∼ 0.56.

Hence solutions for (P̃ )µ are not planar.
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VISCOUS SHOCK WAVE TO A GAS-SOLID FREE BOUNDARY
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Abstract. We continue to study the large time behavior of the solution to a gas-solid free
boundary problem for a one-dimensional model system of compressible viscous gas proposed by us
in [SIAM J. Math. Anal., 34 (2003), pp. 1331–1355], where the travelling wave and the rarefaction
wave were investigated. In this paper we prove the asymptotic stability of the superposition of a
travelling wave and a viscous shock wave under some smallness conditions. The asymptotic behavior
of the free boundary is also obtained. The proof is given by the elementary energy estimate.

Key words. viscous shock wave, gas-solid free boundary, compressible gas

AMS subject classification. 35L65
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1. Introduction. In this paper, we continue to study the large time behavior of
the solution to a gas-solid free boundary problem for a one-dimensional model system
of compressible viscous gas proposed by us in [4]. The free boundary value problem
reads in the Eulerian coordinates as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ̃t + (ρ̃ũ)x̃ = 0 in x̃ > X(t),

(ρ̃ũ)t + (ρ̃ũ2 + p̃)x̃ = µũx̃x̃ in x̃ > X(t),

ρ̃(X(t), t) = ρb,

µũx̃(X(t), t) =
ρbρ̄

ρ̄− ρb
ũ2(X(t), t),

dX(t)

dt
=

ρb
ρb − ρ̄

ũ(X(t), t), X(0) = 0,

(ρ̃, ũ)|(+∞,t) = (ρ+, u+),

(ρ̃, ũ)|t=0 = (ρ0, u0),

(1.1)

where ρ̃(x̃, t) denotes the density of gas, ũ(x̃, t) denotes the velocity, and p̃ = ρ̃γ

1 ≤ γ ≤ 3 denotes the pressure; where the viscosity coefficient µ and the density ρ̄ of
the solid are given positive constants; and where

ρb < ρ̄,
dX(t)

dt
< 0.(1.2)

As shown in [4], the part x̃ > X(t) is filled by the gas with the density ρ̃(x̃, t)
and velocity ũ(x̃, t) satisfying the conservation of the mass and momentum, the part
x̃ < X(t) is filled by the solid with the constant density ρ̄ and zero velocity, and the
phase transition from the solid to the gas occurs on the free boundary x̃ = X(t). It
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is interesting to compare our free boundary problem (1.1), (1.2) with the previous

ones. In all previous works (e.g., Kazhikhov [8], Nagasawa [16]) they assume dX(t)
dt =

ũ(X(t), t). In this case, if we introduce the Lagrangian mass coordinates, we can
reformulate the problem to that with the fixed boundary. On the other hand, in our
case we cannot do it, which gives us a major difficulty. For the related free boundary
problem, see [4, 6, 8, 16] and references therein.

Now let us turn to our free boundary problem (1.1), (1.2). In [4] we proved the
free boundary problem (1.1), (1.2) admits a travelling wave under some conditions.
We then proved the asymptotic stability of the superposition of a travelling wave and
a rarefaction wave under some smallness conditions. However, the viscous shock wave
case was left open, and the asymptotic behavior of the free boundary x̃ = X(t) is not
obtained yet.

In this paper we investigate the case when the asymptotic state is given by the
combination of a travelling wave and a viscous shock wave. We further show the
asymptotic behavior of the free boundary x̃ = X(t). The main novelty of this paper
is to determine the phase shift of the viscous shock wave. As we know, it is difficult
to locate the phase shift even for the viscous scalar conservation laws with boundary
(see [9, 10]). For 2×2 compressible Navier–Stokes equations with the fixed boundary,
Matsumura and Mei [12] developed a new technique to calculate the shift. In their
case, only conservation of mass was used to determine the shift. Because the problem
(1.1), (1.2) is a free boundary problem, our case is much more difficult than [12] in
many aspects. Since the velocity ũ(x̃, t) on the free boundary is unknown, conser-
vation of momentum has to be used here. Our main difficulty comes from the free
boundary x̃ = X(t). To treat the free boundary problem more easily, we study it
in the Lagrangian coordinates instead of Eulerian coordinates. The free boundary in
the Lagrangian coordinates (x, t) becomes x = x(t) = ρ̄X(t). When the initial data is
closed to the superposition of a travelling wave with speed s̄ < 0 and a 2-viscous shock
wave, we expect the free boundary x = x(t) to tend to x = s̄t+constant as t tends to
infinity. To overcome the main difficulty from the free boundary, we manipulate both
conservation laws, and then the phase shift α is explicitly determined. Furthermore,
the asymptotic behavior of the free boundary is consequently given after the large
time behavior of the solution is obtained. Namely, x(t) − s̄t converges to a constant
as time tends to infinity. We note that our results naturally include the case that the
asymptotic state is given by a single travelling wave. This case was also considered
in [4]; however, the asymptotic behavior of the free boundary x = x(t) was not yet
obtained there. In this sense, we also improve some results of [4]. We now formulate
our main result.

As in [4], we transform (1.1) into the problem in the Lagrangian coordinates:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

vt − ux = 0, x > x(t), t > 0,

ut + p(v)x = µ
(ux

v

)
x
, x > x(t), t > 0,

v(x(t), t) = vb,

µux(x(t), t) =
vb

vb − v̄
u2(x(t), t),

dx(t)

dt
=

1

v̄ − vb
u(x(t), t), x(0) = 0,

(v, u)|(+∞,t) = (v+, u+) =

(
1

ρ+
, u+

)
,

(v, u)|t=0 = (v0, u0), v0(0) = vb,

(1.3)
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S2TWv̄(vb, 0)

S2(vb, 0)

S2(vp, up)

TWv̄(vb, 0)

(vp, up)

vb

Fig. 1.1.

where v = 1
ρ , p(v) = v−γ , 1 ≤ γ ≤ 3, and x(t) = ρ̄X(t). By the argument of [4],

a new travelling wave solution (simply denoted by TW-solution) exists for the free
boundary problem (1.1), (1.2). For any 0 < v̄ < vb < +∞, the TW-curve with the
parameter v̄ through the point (vb, 0) is defined by

(1.4)

TWv̄(vb, 0) = {(v, u);u = (v − v̄)
1
2 (p(vb) − p(v))

1
2 , u2 < (v − v̄)2|p′(v)|, v > vb}.

This shows that for any (v∗, u∗) ∈ TWv̄(vb, 0) there exists a travelling wave solution
(VT , UT )(ξ), ξ = x− s̄t, satisfying⎧⎨

⎩
−s̄V ′

T − U ′
T = 0,

−s̄U ′
T + p(VT )′ = µ

(
U ′
T

VT

)′
,

(1.5)

with {
VT (0) = vb, UT (0) = ub, µU ′

T (0) = vb(vb − v̄)s̄2,
VT (+∞) = v∗, UT (+∞) = u∗,

(1.6)

where

s̄ =
ub

v̄ − vb
, ub =

v̄ − vb
v̄ − v∗

u∗.(1.7)

That is, the TW-solution (VT , UT )(ξ) connects (vb, ub) and (v∗, u∗). On the other
hand, it is known that the 2-shock curve S2(vb, 0) through the point (vb, 0) is

S2(vb, 0) = {(v, u);u = −sb(v − vb), v > vb}, sb =

√
p(vb) − p(v)

v − vb
,(1.8)

and S2(vp, up) through the point (vp, up) is

S2(vp, up) = {(v, u);u = up − sp(v − vp), v > vp}, sp =

√
p(vp) − p(v)

v − vp
,(1.9)

where

up = (vp − v̄)
1
2 (p(vb) − p(vp))

1
2 , u2

p = (vp − v̄)2|p′(vp)|.(1.10)
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We define S2TWv̄(vb, 0) as the domain surrounded by curves TWv̄(vb, 0), S2(vb, 0),
and S2(vp, up) (see Figure 1.1).

Now let us turn to the asymptotic behavior of the solution. When the right end
state (v+, u+) of (1.3) belongs to the region S2TWv̄(vb, 0) in the phase plane, the
solution of (1.3) is expected to tend to the superposition of a TW-solution and a
2-viscous shock wave as t tends to infinity. Our aim is to justify the above conjecture.
Our result is, roughly speaking, as follows.

If (v+, u+) ∈ S2TWv̄(vb, 0), then there exists (v∗, u∗) ∈ TWv̄(vb, 0) such that
(v+, u+) ∈ S2(v∗, u∗), and the superposition of the TW-solution connecting (vb, ub)
with (v∗, u∗) and the 2-viscous shock wave connecting (v∗, u∗) with (v+, u+) is stable,
provided that |v∗−vb| is small. That is, the TW-solution is necessarily weak; however,
the 2-viscous shock wave is not necessarily weak.

Finally, we note that when the free boundary x̃ = X(t) is fixed as a straight line,
the problem (1.1), (1.2) becomes the so-called inflow problem (see [4]). We refer the
reader to [3, 11, 15, 17] for the inflow problem.

Our plan for this paper is as follows. In section 2, we give some known results
on the travelling wave and the viscous shock wave; in section 3, we study the phase
shift of the viscous shock wave; in section 4, we state our main result; in section 5,
we reformulate the original problem to a new initial-boundary value problem; in
section 6, we show the local existence of the solution; in section 7, we establish the a
priori estimates and prove our main result.

Notation. Throughout this paper, several positive generic constants are denoted
by c, C without confusion. For function spaces, Lp(Ω), 1 ≤ p ≤ ∞, denotes a usual
Lebesgue space on Ω ⊂ R = (−∞,∞) with its norm

‖f‖Lp(Ω) =

(∫
Ω

|f(x)|pdx
) 1

p

, 1 ≤ p < ∞, ‖f‖L∞(Ω) = sup
Ω

|f(x)|.(1.11)

H l(Ω) denotes the lth order Sobolev space with its norm

‖f‖l =

⎛
⎝ l∑

j=0

‖∂j
xf‖2

⎞
⎠

1
2

when ‖ · ‖ := ‖ · ‖L2(Ω).(1.12)

The domain Ω will often be abbreviated without confusion.

2. Preliminaries. In this section we recall some properties of the travelling
wave solution and the viscous shock wave. From [4], we have the following result of
the travelling wave solution.

Lemma 2.1. For any given v̄, vb, and v∗ with 0 < v̄ < vb < v∗, let u∗ be
the number such that (v∗, u∗) ∈ TWv̄(vb, 0). Then there exists a unique solution
(VT , UT )(ξ), ξ = x − s̄t, to (1.5) and (1.6) satisfying 0 < vb < VT (ξ) < v∗, V

′
T > 0,

where s̄ and ub are given by (1.7). Furthermore, fix v̄ and vb, and let v∗ − vb = δ;
then there exist positive constants δ0 > 0 and c0 > 0 such that, for any δ ≤ δ0,

|VT (ξ) − v∗| = O(δ)e
− c0√

δ
ξ
, |UT (ξ) − u∗| = O(δ

3
2 )e

− c0√
δ
ξ
,(2.1)

and

(u∗, s̄, ub) = O(δ
1
2 ), V ′

T = O(δ
1
2 )e

− c0√
δ
ξ
, V ′′

T = O(1)e
− c0√

δ
ξ
.(2.2)
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On the other hand, it is well known that for any point (v∗, u∗) with v∗ > 0,
if (v+, u+) ∈ S2(v∗, u∗), then there exists a unique viscous shock profile (v, u) =

(Vs, Us)(η = x − st), s =
√

p(v∗)−p(v+)
v+−v∗

> 0, satisfying (Vs, Us)(−∞) = (v∗, u∗),

(Vs, Us)(+∞) = (v+, u+) up to a shift. Namely, (Vs, Us) satisfies⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−sV ′
s − U ′

s = 0,

−sU ′
s + p(Vs)

′ = µ

(
U ′
s

Vs

)′
,

(Vs, Us)(−∞) = (v∗, u∗),

(Vs, Us)(+∞) = (v+, u+),

(2.3)

which yields

sµV ′
s

Vs
= −s2Vs − p(Vs) − b ≡: h(Vs),(2.4)

where b = −s2v∗ − p(v∗) = −s2v+ − p(v+). Thus, we have the following lemma.
Lemma 2.2. Let (v∗, u∗) be a point in the phase plane with v∗ > 0. Suppose that

(v+, u+) ∈ S2(v∗, u∗); then there exists a unique shock profile (Vs, Us)(η = x − st),

s =
√

p(v∗)−p(v+)
v+−v∗

> 0, up to a shift, which connects (v∗, u∗) and (v+, u+) and satisfies

(2.3) and

0 < v∗ < Vs(η) < v+, u+ < Us(η) < u∗, h(Vs) > 0, V ′
s =

Vsh(Vs)

sµ
> 0,

(|Vs(η) − v∗|, |Us(η) − u∗|) = O(1)|v+ − v∗|e−c−|η| as η → −∞,(2.5)

(|Vs(η) − v+|, |Us(η) − u+|) = O(1)|v+ − v∗|e−c+|η| as η → +∞,

where c− = v∗|p′(v∗)+s2|
µs > 0, c+ = v+|p′(v+)+s2|

µs > 0.

3. Phase shift. This section is devoted to the phase shift of the viscous shock
profile. When (v+, u+) ∈ S2TWv̄(vb, 0), there is (v∗, u∗) ∈ TWv̄(vb, 0) such that
(v+, u+) ∈ S2(v∗, u∗), and the asymptotic behavior of the solution to (1.3) is expected
to be the superposition of a TW-solution (VT , UT )(ξ), ξ = x− s̄t, connecting (vb, ub)
with (v∗, u∗) and a 2-viscous shock wave (Vs, Us)(η), η = x − st, connecting (v∗, u∗)
with (v+, u+), where

s̄ =
u∗

v̄ − v∗
, ub =

v̄ − vb
v̄ − v∗

u∗, s =

√
p(v∗) − p(v+)

v+ − v∗
.(3.1)

We consider the situation where the initial data (v0(x), u0(x)) are given in a neigh-
borhood of (VT (x) + Vs(x− β)− v∗, UT (x) +Us(x− β)− u∗) for some large constant
β > 0. That is, we ask the viscous shock wave to be suitably far from the boundary
initially. We now try to locate the phase shift α such that the asymptotic state of the
solution (v, u) to (1.3) is given by (VT (x − x(t)) + Vs(x − st + α − β) − v∗, UT (x −
x(t)) + Us(x− st + α− β) − u∗).

To investigate the phase shift α, we consider a coordinate transformation

t = t, y = x− x(t),(3.2)
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in which we can make the free boundary problem (1.3) easier to handle. Let x(t) =
s̄t + γ(t). Then we rewrite (1.3) as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

vt − (s̄ + γ′(t))vy − uy = 0, y > 0, t > 0,

ut − (s̄ + γ′(t))uy + p(v)y = µ
(uy

v

)
y
, y > 0, t > 0,

v(0, t) = vb,

µuy(0, t) =
vb

vb − v̄
u2(0, t),

dγ(t)

dt
=

1

v̄ − vb
u(0, t) − s̄, γ(0) = 0,

(v, u)|(+∞,t) = (v+, u+),

(v, u)(y, 0) = (v0, u0)(y), v0(0) = vb.

(3.3)

On the other hand, Lemma 2.1 yields the TW-solution (VT , UT )(y) connecting (vb, ub),
and (v∗, u∗) satisfies⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

−s̄VTy − UTy = 0, y > 0,

−s̄UTy + p(VT )y = µ

(
UTy

VT

)
y

, y > 0,

VT (0) = vb, UT (0) = ub,

µUTy(0) = vb(vb − v̄)s̄2,

(VT , UT )|(+∞) = (v∗, u∗).

(3.4)

In the new coordinate system (y, t), the asymptotic shock wave should take the form

(Vs, Us)(y, t) = (Vs, Us)(y + x(t) − st + α− β).(3.5)

Note that x(t) is an unknown function, and it is very difficult to determine the phase
shift α if we directly use the form (3.5). Since the free boundary x(t) is expected to
tend to s̄t + const as t tends to infinity, we use the shock profile

(V̄s, Ūs)(y, t) = (Vs, Us)(y − (s− s̄)t + α− β)(3.6)

instead of the profile (3.5) and then estimate the L1 distance between (Vs, Us) and
(V̄s, Ūs). By Lemma 2.2, the shock profile (3.6) satisfies⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

V̄st − s̄V̄sy − Ūsy = 0, y > 0, t > 0,

Ūst − s̄Ūsy + p(V̄s)y = µ

(
Ūsy

V̄s

)
y

, y > 0, t > 0,

(V̄s, Ūs)(−∞, t) = (v∗, u∗),

(V̄s, Ūs)(+∞, t) = (v+, u+).

(3.7)

Let

w(y, t) = v(y, t) − VT (y) − Vs(y, t) + v∗,
(3.8)

z(y, t) = u(y, t) − UT (y) − Us(y, t) + u∗,

and

w̄(y, t) = v(y, t) − VT (y) − V̄s(y, t) + v∗,
(3.9)

z̄(y, t) = u(y, t) − UT (y) − Ūs(y, t) + u∗.
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Then we have from (3.3)–(3.4), (3.7), and (3.9){
w̄t − s̄w̄y − z̄y = γ′(t)vy, y > 0, t > 0,

z̄t − s̄z̄y + Py −Qy = γ′(t)uy, y > 0, t > 0,
(3.10)

where

P (y, t) = p(v(y, t)) − p(VT (y)) − p(V̄s(y, t)) + p(v∗),

Q(y, t) = µ

(
uy(y, t)

v(y, t)
− UTy(y)

VT (y)
− Ūsy(y, t)

V̄s(y, t)

)
.

(3.11)

Integrating (3.10)1 over R+ yields

d

dt

∫ ∞

0

w̄(y, t)dy = − s̄w̄(0, t) − z̄(0, t) + γ′(t)(v+ − vb)

= − s̄(v∗ − V̄s(0, t)) − (u(0, t) − ub)
(3.12)

+ (Ūs(0, t) − u∗) + γ′(t)(v+ − vb)

= (s− s̄)(v∗ − V̄s(0, t)) + γ′(t)(v+ − v̄),

where we have used the fact that

Ūs(0, t) − u∗ = s(v∗ − V̄s(0, t)), u(0, t) − ub = γ′(t)(v̄ − vb).(3.13)

In the same fashion, integrating (3.10)2 over R+, by the fact that

−s(Ūs(0, t) − u∗) + p(V̄s(0, t)) − p(v∗) = µ
Ūsy(0, t)

V̄s(0, t)
,(3.14)

yields

d

dt

∫ ∞

0

z̄(y, t)dy = − s̄z̄(0, t) + P (0, t) −Q(0, t) + γ′(t)(u+ − u(0, t))

= −ubγ
′(t) + (s− s̄)(u∗ − Ūs(0, t))

(3.15)
+ γ′(t)(u(0, t) + ub) + γ′(t)(u+ − u(0, t))

= u+γ
′(t) + (s− s̄)(u∗ − Ūs(0, t)).

Here we are very lucky that the term γ′(t)u(0, t) is cancelled in (3.15). Integrating
(3.12) and (3.15) over (0, t) gives∫ ∞

0

w̄(y, t)dy = γ(t)(v+ − v̄) + (s− s̄)

∫ t

0

v∗ − V̄s(0, t)dt +

∫ ∞

0

w̄(y, 0)dy,(3.16) ∫ ∞

0

z̄(y, t)dy = γ(t)u+ + (s− s̄)

∫ t

0

u∗ − Ūs(0, t)dt +

∫ ∞

0

z̄(y, 0)dy.(3.17)

On the other hand, we compute∫ ∞

0

V̄s(y, t) − Vs(y, t)dy

= −
∫ ∞

0

∫ 1

0

Vsy(y + s̄t− st + α− β + θγ(t))dθdy × γ(t)

(3.18)

= −
∫ 1

0

[v+ − Vs(s̄t− st + α− β + θγ(t))]dθ × γ(t)

= (v∗ − v+)γ(t) + σ(t)
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and ∫ ∞

0

Ūs(y, t) − Us(y, t)dy = (u∗ − u+)γ(t) − sσ(t),(3.19)

where

σ(t) = σ(γ, t) =

∫ 1

0

[Vs(s̄t− st + α− β + θγ(t)) − v∗]dθ × γ(t).(3.20)

It is noted that s̄t + θγ(t) < 0 holds for any 0 ≤ θ ≤ 1 due to s̄ < 0 and x(t) < 0.
Thus, if α− β < 0, then σ(t) has the following estimate:

|σ(t)| ≤ C|γ(t)|e−c−|−st+α−β|.(3.21)

From (3.16)–(3.19), we have∫ ∞

0

w(y, t)dy =

∫ ∞

0

w̄(y, t)dy +

∫ ∞

0

V̄s(y, t) − Vs(y, t)dy

= γ(t)(v∗ − v̄) + (s− s̄)

∫ t

0

v∗ − V̄s(0, t)dt(3.22)

+

∫ ∞

0

w(y, 0)dy + σ(t),∫ ∞

0

z(y, t)dy =

∫ ∞

0

z̄(y, t)dy +

∫ ∞

0

Ūs(y, t) − Us(y, t)dy

= γ(t)u∗ + (s− s̄)

∫ t

0

u∗ − Ūs(0, t)dt(3.23)

+

∫ ∞

0

z(y, 0)dy − sσ(t).

Combining (3.22) and (3.23) implies

u∗

∫ ∞

0

w(y, t)dy − (v∗ − v̄)

∫ ∞

0

z(y, t)dy

= a(s− s̄)

∫ t

0

(v∗ − V̄s(0, t))dt(3.24)

+

∫ ∞

0

[u∗w(y, 0) − (v∗ − v̄)z(y, 0)]dy + aσ(t),

where a = u∗+s(v∗−v̄) > 0. Expecting [u∗
∫∞
0

w(y, t)dy−(v∗−v̄)
∫∞
0

z(y, t)dy]|t=+∞ =
0, σ(t)|t=+∞ = 0 yields

I(α) := a(s− s̄)

∫ ∞

0

(v∗ − Vs(s̄t− st + α− β))dt

+u∗

∫ ∞

0

[v0(y) − VT (y) − Vs(y + α− β) + v∗]dy

(3.25)

− (v∗ − v̄)

∫ ∞

0

[u0(y) − UT (y) − Us(y + α− β) + u∗]dy

= 0.
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Since

I ′(α) = a(v∗ − Vs(α− β)) − a(v+ − Vs(α− β))
(3.26)

= a(v∗ − v+) < 0,

the equality 0 = I(α) = I(0) + a(v∗ − v+)α determines α by

α = − 1

a(v∗ − v+)
I(0)

= − 1

a(v∗ − v+)

{
a(s− s̄)

∫ ∞

0

(v∗ − Vs(s̄t− st− β))dt

(3.27)

+u∗

∫ ∞

0

[v0(y) − VT (y) − Vs(y − β) + v∗]dy

− (v∗ − v̄)

∫ ∞

0

[u0(y) − UT (y) − Us(y − β) + u∗]dy

}
.

Substituting (3.25) into (3.24) gives

u∗

∫ ∞

0

w(y, t)dy − (v∗ − v̄)

∫ ∞

0

z(y, t)dy

= − a(s− s̄)

∫ ∞

t

(v∗ − Vs(s̄t− st + α− β))dt + aσ(t)(3.28)

=: A(t) + aσ(t).

4. Main result. Let

V (y, t;α, β) = VT (y) + Vs(y + x(t) − st + α− β) − v∗,
(4.1)

U(y, t;α, β) = UT (y) + Us(y + x(t) − st + α− β) − u∗,

where α = α(β) is given by (3.27). We suppose that for some β > 0,

v0(y) − V (y, 0; 0, β) ∈ H1 ∩ L1, u0(y) − U(y, 0; 0, β) ∈ H1 ∩ L1.(4.2)

Set

(Φ0,Ψ0)(y) = −
∫ ∞

y

(v0(y) − V (y, 0; 0, β), u0(y) − U(y, 0; 0, β))dy.(4.3)

Assume that

(Φ0,Ψ0) ∈ L2.(4.4)

We now give our main result.
Theorem 4.1. Suppose that 1 ≤ γ ≤ 3 and (v+, u+) ∈ S2TWv̄(vb, 0). Then there

exists (v∗, u∗) such that (v∗, u∗) ∈ TWv̄(vb, 0) and (v+, u+) ∈ S2(v∗, u∗). Assume that
(4.2) and (4.4) hold and

(γ − 1)2(v+ − v∗) < 2γv∗.(4.5)

Then there exists a positive constant δ0 such that for any given 0 < v∗ − vb = δ < δ0,
if √

β‖Φ0,Ψ0‖2 + e−
2
5 c−β < δ2,(4.6)
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then (3.3) has a unique global solution ((v, u)(y, t), γ(t)) satisfying

v(y, t) − V (y, t;α, β) ∈ C0([0,∞), H1) ∩ L2(0,∞;H1),(4.7)

u(y, t) − U(y, t;α, β) ∈ C0([0,∞), H1) ∩ L2(0,∞;H2),(4.8)

γ(t) ∈ C1[0,∞),(4.9)

and

sup
y∈�+

|(v, u)(y, t) − (V,U)(y, t;α, β)| −→ 0 as t → +∞,(4.10)

where α = α(β) is determined by (3.27). Furthermore, γ(t) converges to a constant Γ
as t → ∞, where

Γ =
1

v̄ − v∗

{
(s− s̄)

∫ ∞

0

[v∗ − Vs(−(s− s̄)t + α− β)]dt

(4.11)

+

∫ ∞

0

[v0(y) − VT (y) − Vs(y + α− β) + v∗]dy

}
.

Remark 4.2. In Theorem 4.1, the strength of the viscous shock wave is not
necessarily weak. For general pressure p, the same result could be easily proved by
the same argument if the strength of the viscous shock wave is suitably small.

5. Reformulated system. Let

φ(y, t) = −
∫ ∞

y

w(y, t)dy = −
∫ ∞

y

[v(y, t) − V (y, t;α, β)]dy,

ψ(y, t) = −
∫ ∞

y

z(y, t)dy = −
∫ ∞

y

[u(y, t) − U(y, t;α, β)]dy.

We put the perturbation by

v(y, t) = φy(y, t) + V (y, t;α, β),
(5.1)

u(y, t) = ψy(y, t) + U(y, t;α, β).

Note that the viscous shock profile (Vs, Us)(y, t) of (3.5) satisfies, from Lemma 2.2,⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Vst − (s̄ + γ′)Vsy − Usy = 0, y > 0, t > 0,

Ust − (s̄ + γ′)Usy + p(Vs)y = µ

(
Usy

Vs

)
y

, y > 0, t > 0,

(Vs, Us)(−∞, t) = (v∗, u∗),

(Vs, Us)|(+∞,t) = (v+, u+).

(5.2)

Substituting (3.4), (5.1)–(5.2) into (3.3) and integrating the system on [y,+∞), we
have ⎧⎪⎪⎪⎨

⎪⎪⎪⎩

φt − (s̄ + γ′)φy − ψy = (VT (y) − v∗)γ
′,

ψt − (s̄ + γ′)ψy + p(V + φy) − p(VT ) − p(Vs) + p(v∗)

= µ

(
Uy + ψyy

V + φy
− UTy

VT
− Usy

Vs

)
+ (UT (y) − u∗)γ

′.

(5.3)
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We now investigate the initial and boundary conditions of the reformulated system
(5.3). By the definition, the initial data satisfies

φ(ξ, 0) = −
∫ +∞

y

[v0(y) − V (y, 0;α, β)]dy

= Φ0(y) +

∫ ∞

y

∫ α

0

V ′
s (y + θ − β)dθdy(5.4)

= Φ0(y) +

∫ α

0

[v+ − Vs(y + θ − β)]dθ=: φ0(y),

ψ(y, 0) = Ψ0(y) +

∫ α

0

[u+ − Us(y + θ − β)]dθ=: ψ0(y).(5.5)

Furthermore, we have the following property of φ0(y) and ψ0(y).
Proposition 5.1. Under assumptions (4.2) and (4.4), there exists a positive

constant C0 > 0 such that the initial perturbations (φ0, ψ0) ∈ H2, and it satisfies

‖(φ0, ψ0)‖2 ≤ C0(
√
β‖(Φ0,Ψ0)‖2 + e−

1
2 c−β).(5.6)

Proof. From (3.27), we have

|α| ≤ C(|Φ0| + |Ψ0| + e−c−|st+β|) ≤ C(‖Φ0‖2 + ‖Ψ0‖2 + e−c−β).(5.7)

Thus by the same argument of [3, Proposition 3.1], Proposition 5.1 is proved.
We now show the boundary conditions. Let B(γ, t) = s̄t− st + α− β + γ(t) and

σ(γ, t) = σ(t). By (3.3), (3.22), and (3.23), we have

γ′(t) =
1

v̄ − vb
(ψy(0, t) + Us(B(γ, t)) − u∗),(5.8)

φ(0, t) = −γ(t)(v∗ − v̄) − (s− s̄)

∫ t

0

[v∗ − V̄s(0, t)]dt + φ0(0) − σ(t)

(5.9)
=: C(γ, t) + φ0(0) − σ(t),

and

ψt(0, t) =
Us(B(γ, t))

vb − v̄
ψy(0, t) +

[
(s− s̄) +

Us(B(γ, t))

vb − v̄

]
(Us(B(γ, t)) − u∗)

(5.10)
=: D(γ, t)ψy(0, t) + E(γ, t).

We note that

φy(0, t) = v∗ − Vs(B(γ, t))(5.11)

holds as a compatibility condition when we substitute (5.8)–(5.9) into (5.3)1. Thus
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our reformulated system is⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φt − (s̄ + γ′)φy − ψy = (VT (y) − v∗)γ
′,

ψt − (s̄ + γ′)ψy + p(V + φy) − p(VT ) − p(Vs) + p(v∗)

= µ

(
Uy + ψyy

V + φy
− UTy

VT
− Usy

Vs

)
+ (UT (y) − u∗)γ

′,

(φ, ψ)(y, 0) = (φ0, ψ0)(y),

φ(0, t) = C(γ, t) + φ0(0) − σ(t),

ψ(0, t) = ψ0(0) +

∫ t

0

D(γ, t)ψy(0, t)dt +

∫ t

0

E(γ, t)dt,

γ′(t) =
1

v̄ − vb
(ψy(0, t) + Us(B(γ, t)) − u∗), γ(0) = 0.

(5.12)

6. Local existence. For any interval I ⊂ 	+, we define the solution space X(I)
by

X(I) =

{
(φ, ψ) ∈ C0(I;H2); φy ∈ L2(I;H1),

(6.1)

ψy ∈ L2(I;H2), sup
t∈I

‖(φ, ψ)(t)‖2 ≤ ε1

}
,

where ε1 = 1
2vb. Let

N(t) = sup
0≤τ≤t

(‖φ(τ)‖2 + ‖ψ(τ)‖2), N0 = ‖φ0‖2 + ‖ψ0‖2.(6.2)

By the Sobolev embedding theorem, for (φ, ψ) ∈ X([0, T ]), one obtains

(V + φy)(y, t) ≥ vb − ‖φy‖1 ≥ 1

2
vb, (y, t) ∈ 	+ × [0, T ],(6.3)

which ensures that the system (5.12) is uniformly nonsingular on [0, T ]. We have the
following proposition.

Proposition 6.1 (local existence). For any τ ≥ 0, consider the problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φt − (s̄ + γ′)φy − ψy = (VT (y) − v∗)γ
′,

ψt − (s̄ + γ′)ψy + p(V + φy) − p(VT ) − p(Vs) + p(v∗)

= µ

(
Uy + ψyy

V + φy
− UTy

VT
− Usy

Vs

)
+ (UT (y) − u∗)γ

′,

(φ, ψ)|t=τ = (φτ , ψτ )(y) ∈ H2,

φ(0, t) = C(γ, t) + φ0(0) − σ(γ, t), t ≥ τ,

ψ(0, t) = ψ0(0) +

∫ t

0

D(γ, t)ψy(0, t)dt +

∫ t

0

E(γ, t)dt, t ≥ τ ,

γ′(t) =
1

v̄ − vb
(ψy(0, t) + Us(B(γ, t)) − u∗), γ(τ) = γτ .

(6.4)

Then there exist positive constants δ0 > 0 and C1 > 0 independent of τ such that, for
any 0 < δ ≤ δ0, ε ∈ (0, ε2

C0
], ε2 = O(δ) � ε1, and β satisfying e−c−β < ε2, there exists

a positive constant T0 depending on ε2 but not on τ such that, if ‖(φτ , ψτ )‖2 ≤ ε,
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|γ(τ)| ≤ |s̄τ |, then problem (6.4) has a unique solution (φ, ψ) ∈ X([τ, τ + T0]), γ(t) ∈
C1[τ, τ + T0] satisfying ‖(φ, ψ)(t)‖2 ≤ C1ε and |γ(t)| ≤ |s̄|t for t ∈ [τ, τ + T0].

Proof. Without loss of generality, let τ = 0. By the characteristic method, φ has
the explicit form

φ(y, t) = φ0(x̄0) +

∫ t

0

ψy(x̄0 − x(τ), τ)dτ

(6.5)

+

∫ t

0

γ′(τ)(VT (x̄0 − x(τ)) − v∗)dτ, if y ≥ −x(t),

and

φ(y, t) = C(γ(t̄0), t̄0) + φ0(0) − σ(γ(t̄0), t̄0) +

∫ t

t̄0

ψy(x(t̄0) − x(τ), τ)dτ

(6.6)

+

∫ t

t̄0

γ′(τ)(VT (x(t̄0) − x(τ)) − v∗)dτ if 0 ≤ y ≤ −x(t),

where x̄0 = y+x(t) and t̄0 = x−1(y+x(t)). We note that the inverse function of x(t)
exists because |γ′(t)| ≤ C(‖ψ(t)‖2 + e−c−β) ≤ 2Cε2 is small.

On the other hand, (6.4)2 is regarded as the initial-boundary value problem for
the parabolic equation of ψ:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ψt −
µ

V + φy
ψyy = g := g(φy, γ, γ

′, ψy),

ψ(0, t) = ψ0(0) +

∫ t

0

D(γ, t)ψy(0, t)dt +

∫ t

0

E(γ, t)dt,

ψ|t=0 = ψ0,

(6.7)

where

g(φy, γ, γ
′, ψy)= (s̄ + γ′)ψy − (p(V + φy) − p(VT ) − p(Vs) + p(v∗))

+µ

(
Uy

V + φy
− UTy

VT
− Usy

Vs

)
+ (UT (y) − u∗)γ

′

and

γ(t) =

∫ t

0

1

v̄ − vb
(ψy(0, τ) + Us(B(γ, t)) − u∗)dτ.(6.8)

We now approximate (φ0, ψ0) ∈ H2 by (φ0k, ψ0k) ∈ H3 such that

(φ0k, ψ0k) → (φ0, ψ0), strongly in H2,(6.9)

as k → ∞ and ‖(φ0k, ψ0k)‖2 ≤ 3
2ε holds for any k.

We will use the iteration method to prove Proposition 6.1. We define the sequence

{(φ(n)
k (y, t), ψ

(n)
k (y, t), γ

(n)
k (t))} for each k so that

(φ
(0)
k , ψ

(0)
k )(y, t) = (φ0k, ψ0k)(y),(6.10)

and γ
(0)
k (t) is the solution of the following ODE:

γ′(t) =
1

v̄ − vb
(ψ0ky(0) + Us(B(γ, t)) − u∗), γ(0) = 0,(6.11)
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and for a given ((φ
(n−1)
k , ψ

(n−1)
k )(y, t), γ

(n−1)
k (t)), ψ

(n)
k is a solution to⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ
(n)
kt −

µψ
(n)
kyy

V
(n−1)
k + φ

(n−1)
ky

= g(n−1) = g(φ
(n−1)
ky , γ

(n−1)
k , γ

(n−1)
kt , ψ

(n−1)
ky ),

ψ
(n)
k (0, t) = ψ0k(0) +

∫ t

0

D(γ
(n−1)
k , t)ψ

(n)
ky (0, t)dt +

∫ t

0

E(γ
(n−1)
k , t)dt

−
∫ t

0

[h(γ
(n−1)
k , ψ

(n)
ky ) − h(γ

(n−1)
k , ψ

(n−1)
ky )]|y=0dt,

ψ
(n)
k |t=0 = ψ0k,

(6.12)

γ
(n)
k (t) is a solution to

γ
(n)
kt (t) =

1

v̄ − vb
(ψ

(n)
ky (0, t) + Us(B(γ

(n)
k , t)) − u∗), γ

(n)
k (0) = 0,(6.13)

and φ
(n)
k (y, t) is a solution to

⎧⎪⎪⎨
⎪⎪⎩

φ
(n)
kt − (s̄ + γ

(n)
kt )φ

(n)
ky − ψ

(n)
ky = (VT (y) − v∗)γ

(n)
kt ,

φ
(n)
k (0, t) = C(γ

(n)
k , t) + φ0(0) − σ(γ

(n)
k , t),

φ
(n)
k (y, 0) = φ0k;

(6.14)

i.e.,

φ
(n)
k (y, t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C(γ
(n)
k (t̄

(n)
k ), t̄

(n)
k ) + φ0k(0) − σ(γ

(n)
k (t̄

(n)
k ), t̄

(n)
k )

+

∫ t

t̄
(n)

k

ψ
(n)
ky (x

(n)
k (t̄

(n)
k ) − x

(n)
k (τ), τ)dτ

+

∫ t

t̄
(n)

k

[γ
(n)
k (τ)]′[VT (x

(n)
k (t̄

(n)
k ) − x

(n)
k (τ)) − v∗]dτ

if 0 ≤ y ≤ −x
(n)
k (t),

φ0k(x̄
(n)
k ) +

∫ t

0

ψ
(n)
ky (x̄

(n)
k − x

(n)
k (τ), τ)dτ

+

∫ t

0

[γ
(n)
k (τ)]′[V (x̄

(n)
k − x

(n)
k (τ)) − v∗]dτ

if y ≥ −x
(n)
k (t),

(6.15)

where

x
(n)
k (t) = s̄t + γ

(n)
k (t),

t̄
(n)
k = (x

(n)
k )−1(y + x

(n)
k (t)), x̄

(n)
k = y + x

(n)
k (t),(6.16)

h(γ, ψy) = s̄ψy +
ψy + Us(B(γ, t)) − u∗

v̄ − vb
(ψy + ub − u∗),

and V
(0)
k = vb − φ

(0)
ky , V

(n)
k = VT + Vs(y + B(γ

(n)
k , t)) − v∗, n ≥ 1. Since (6.14)

contains only the index n, by the same argument of (5.11), we have φ
(n)
ky (0, t) =
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v∗ − Vs(B(γ
(n)
k , t)), which infers

(V
(n)
k + φ

(n)
ky )(0, t) = vb, n ≥ 0.(6.17)

Since ε2 is small, by the principle of contraction mapping, it is easy to prove
there exist C1 > 2 and positive time t0(ε2) � 1 such that, if g(n−1) ∈ C(0, t0;H

2)

and ψ0k ∈ H3, there exists a unique-local solution ψ
(n)
k to (6.12) satisfying

ψ
(n)
k ∈ C(0, t0;H

3) ∩ C1(0, t0;H
1) ∩ L2(0, t0;H

4)

and supy∈R+×(0,t0) |ψ
(n)
k (y, t)| ≤ C1ε.

Thus, if (‖φ(n−1)
k ‖2, ‖ψ(n−1)

k ‖2) ≤ C1ε, multiplying (6.12) by ψ
(n)
k and integrating

it over R+, we have

‖ψ(n)
k ‖2

t +
µ

v+
‖ψ(n)

ky ‖2

(6.18)

≤ C(ε)(1 + ‖ψ(n)
k ‖2) +

1

4
‖ψ(n)

kyy‖2.

Multiplying (6.12) by −ψ
(n)
kyy and integrating it over R+, one has

‖ψ(n)
ky ‖2

t+
µ

v+
‖ψ(n)

kyy(t)‖2≤ C(ε)(1 + ‖ψ(n)
ky ‖2).(6.19)

Combining (6.18) and (6.19) gives, if T0 is chosen suitably small,

‖ψ(n)
k ‖1 ≤ C1ε if t < T0.(6.20)

Differentiating (6.12) with respect to y, multiplying by −ψ
(n)
kyyy, and integrating over

R+, we have

‖ψ(n)
kyy‖2

t+
µ

v+
‖ψ(n)

kyyy(t)‖2 + 2ψ
(n)
kytψ

(n)
kyy

∣∣∣
y=0

≤ C(ε).(6.21)

Substituting (6.16), (6.17) into (6.12) yields, on the boundary y = 0,

ψ
(n)
kyy = e1[ψ

(n)
ky ]2 + e2ψ

(n)
ky + e3,(6.22)

where the coefficients ei, i = 1, 2, 3, depend only on γ
(n−1)
k and t. Thus the integration

of (6.21) over (0, t) and using (6.22) give

‖ψ(n)
kyy‖2 ≤ C1ε.(6.23)

On the other hand, a direct estimate on (6.15) yields

‖φ(n)
k (t)‖2 ≤ C1ε.(6.24)

Therefore, (‖φ(n)
k ‖2, ‖ψ(n)

k ‖2) ≤ C1ε. From (6.13), it is easy to see that γ
(n)
k (t) ∈

C1([0, T0]) and |γ(n)
k (t)| ≤ C1ε(t − τ) + γτ ≤ |s̄|t. By the classical method of the

contraction mapping principle, (φ
(n)
k , ψ

(n)
k ) is a Cauchy sequence in C(0, t0;H

3). Thus
we have a solution (φk(y, t), ψk(y, t)), γk(t) by letting n tend to infinity. In the same
way, letting k → ∞, we obtain the desired unique-local solution (φ(y, t), ψ(y, t), γ(t))
to (6.4). We omit the details.
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7. A priori estimates. This section is devoted to the a priori estimates. Through-
out this section, we use c, C to denote the positive constants which are independent
of T , β, and α. We first rewrite the system (5.12) as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φt − (s̄ + γ′)φy − ψy = (VT (y) − v∗)γ
′,

ψt − (s̄ + γ′)ψy − f(V )φy −
µ

V
ψyy = F + G + (UT (y) − u∗)γ

′,

(φ, ψ)(y, 0) = (φ0, ψ0)(y),

φ(0, t) = C(γ, t) + φ0(0) − σ(t),

ψ(0, t) = ψ0(0) +

∫ t

0

D(γ, t)ψy(0, t)dt +

∫ t

0

E(γ, t)dt,

γ′(t) =
1

v̄ − vb
(ψy(0, t) + Us(0, t) − u∗), γ(0) = 0,

(7.1)

where

f(V ) = f(Vs, VT ) = −p′(V ) +
h(Vs)

V
+

g(VT )

V
,(7.2)

h(Vs) =
µsV ′

s

Vs
, g(VT ) =

µs̄V ′
T

VT
,(7.3)

F = −{p(V + φy) − p(V ) − p′(V )φy}
(7.4)

+ (h(Vs)φy + g(VT )φy)

(
1

V + φy
− 1

V

)
+ µψyy

(
1

V + φy
− 1

V

)
,

G = −{p(V ) − p(Vs) − p(VT ) + p(v∗)} + h(Vs)
VT − v∗
V + φy

+ g(VT )
Vs − v∗
V + φy

.(7.5)

It is easy to see that

|F | = O(|φy|2 + |φy| · |ψyy|).(7.6)

Proposition 7.1 (a priori estimates). There exist positive constants δ0 and
C2 > 0 such that if 0 < v∗ − vb = δ < δ0 and (φ, ψ) ∈ X([0, T ]), γ(t) ∈ C1[0, T ] is

a solution of (7.1) for some positive T satisfying |γ(t)| ≤ |s̄|t and (N(T ), e−
1
5 c−β) =

O(δ), then (φ, ψ) satisfies the a priori estimates

‖(φ, ψ)(t)‖2
2 +

∫ t

0

{‖φy‖2
1 + ‖ψy‖2

2}dτ ≤ C2(δ
−2‖(φ0, ψ0)‖2

2 + δ2),(7.7) ∫ t

0

∣∣∣∣ ddt‖φy‖2

∣∣∣∣+
∣∣∣∣ ddt‖ψy‖2

∣∣∣∣ dτ ≤ C2(δ
−2‖(φ0, ψ0)‖2

2 + δ2).(7.8)

Before proving Proposition 7.1, we first give some lemmas.
Lemma 7.2. For 0 ≤ t ≤ T , the following holds:

ψ(0, t) = −s̄φ(0, t) +
A(t) + sσ(t)

v∗ − v̄
,

φy(0, t) = v∗ − Vs(0, t),(7.9)

ψyy(0, t) = A1ψy(0, t)
2 + A2(t)ψy(0, t) + A3(t),

(|A(t)|, |A′(t)|, |σ(t)|, |σ′(t)|) ≤ Ce−c−(st+β), s̄ < 0, |s̄| = O(δ
1
2 ),
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φ(0, t)ψ(0, t) ≥ −3

4
s̄φ(0, t) − Ce−c−(st+β),

ψ(0, t)2 ≤ Cδφ2(0, t) + Ce−c−(st+β),

δ
1
2 γ′2 ≤ ε3‖ψy‖2 + C(ε3)δ‖ψyy‖2 + Ce−c−(st+β),

(7.10)
φy(0, t)

2 ≤ Ce−c−(st+β), |ψ(0, t)φy(0, t)| ≤ C(ψ(0, t)2 + φy(0, t)
2),

|ψy(0, t)ψ(0, t)| ≤ ε3(δ
1
2φ(0, t)2 + ‖ψy‖2)

+C(ε3)(δ‖ψyy‖2 + δ−
1
2 e−c−(st+β)),

ψy(0, t)ψt(0, t) ≥
u∗

2(vb − v̄)
ψy(0, t)

2 − Ce−c−(st+β) − Cδ2γ′2,

where ε3 is an arbitrary positive constant and

A1 =
vb

µ(vb − v̄)
, A2(t) =

2(ub + Us(0, t) − u∗)vb
µ(vb − v̄)

,

A3(t) =
vb(ub + Us(0, t) − u∗)

2 − vbu
2
b

µ(vb − v̄)
− Usy(0, t).

Proof. In view of the boundary conditions of (7.1), we have (3.28) because α is
determined by (3.27). By (3.28), we get

u∗φ(0, t) − (v∗ − v̄)ψ(0, t) = −A(t) − sσ(t),(7.11)

which is equivalent to the first term of (7.9). It is noted that our boundary conditions
of the reformulated system (7.1) are derived from the original boundary conditions
of (3.3). To the contrary, it is easy to verify that (3.3) holds from (7.1). By the
boundary conditions of (3.3), the other terms of (7.9) are easily proved.

On the other hand, the first term of (7.10) is easy from Lemmas 2.1–2.2, (3.20),
and (3.28) because α is small due to Proposition 5.1. For the fourth term of (7.10),
we compute by (7.1) and Lemma 2.2

δ
1
2 γ′2 ≤ δ

1
2 (ψ2

y(0, t) + Ce−c−(st+β))

≤ ε3‖ψy‖2 + C(ε3)δ‖ψyy‖2 + Ce−c−(st+β).

In a similar way, we can also get the other terms of (7.10). We omit the proofs
here.

Let x′ = s̄ + γ′; then 0 > x′ ≥ − 1
2 s̄ and |x′| = O(δ

1
2 ). We now establish the

a priori estimates.
Lemma 7.3. There exists a positive constant δ0 which depends only on v̄, vb,

and v+. For any given 0 < v∗ − vb = δ < δ0, the following holds:

‖(φ, ψ)(t)‖2 +

∫ t

0

‖ψy‖2dτ +

∫ t

0

∫ ∞

0

Vsyψ
2dydt +

∫ t

0

δ
1
2φ2(o, t)dt

≤ C

{
‖(φ0, ψ0)‖2 + δ4 + δ2

∫ t

0

‖φy‖2dτ(7.12)

+ δ

∫ t

0

‖ψyy‖2dt + N(T )

∫ t

0

[‖φy‖2 + ‖ψyy‖2]dτ

}
.
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Proof. Multiplying (7.1)1 by φ and (7.1)2 by f(V )−1ψ, then we have(
1

2
φ2

)
t

−
(
x′

2
φ2

)
y

− (φψ)y +

(
1

2f(V )
ψ2

)
t

−
(

1

2f(V )

)
t

ψ2 − x′

2

(
ψ2

f(V )

)
y

+
x′

2
ψ2

(
1

f(V )

)
y

−
(

µ

V f(V )
ψyψ

)
y

+
µ

V f(V )
ψ2
y +

(
µ

V f(V )

)
y

ψyψ(7.13)

= (F + G)ψf(V )−1 + γ′(VT (y) − v∗)φ+ γ′(UT (y) − u∗)ψf(V )−1.

By the definition of f(V ) and Lemma 2.1, one has∣∣∣∣∣
(

µ

V f(V )

)
y

ψyψ

∣∣∣∣∣
≤
∣∣∣∣µ|K ′(Vs)| + Cδ

(V f(V ))2
Vsyψyψ

∣∣∣∣+ C(|V ′
T | + |s̄V ′′

T |)|ψyψ|(7.14)

≤ ε̄
µ

V f(V )
ψ2
y +

µK ′(Vs)
2 + Cδ

4ε̄K(Vs)3
V 2
syψ

2 + C(|V ′
T |2 + s̄2|V ′′

T |2)ψ2,

for any ε̄ > 0 which will be determined later, where

K(Vs) = −p′(Vs)Vs + h(Vs).

Substituting this inequality into (7.13) yields{
1

2
φ2 +

1

2f(V )
ψ2

}
t

+ (Z(Vs) − Cδ)Vsyψ
2+(1 − ε̄)

µ

V f(V )
ψ2
y

−
{
x′

2
φ2 + φψ +

µ

V f(V )
ψyψ +

x′

2f(V )
ψ2

}
y

(7.15)
≤ (F + G)ψf(V )−1 + γ′(VT (y) − v∗)φ

+ γ′(UT (y) − u∗)ψf(V )−1 + C(δ
1
2V ′

T + δ|V ′′
T |)ψ2,

where

Z(Vs) =
s

2

K(Vs) − VsK
′(Vs)

K(Vs)2
− µK ′(Vs)

2Vsy

4ε̄K(Vs)3
.(7.16)

Let 1 ≤ γ ≤ 3; if we choose

max

{
(γ − 1)2(v+ − v∗)

2γv∗
,
1

2

}
≤ ε̄ < 1,(7.17)

then by the argument of [3, 12] we have

Z(Vs) ≥ C3 > 0.(7.18)

Thus integration of (7.15) over [0,+∞) × [0, t] yields, if δ < 1
2C3,∫ +∞

0

{
φ2

2
+

ψ2

2f(V )

}
dy +

∫ t

0

∫ +∞

0

1

2
Z(Vs)Vsyψ

2dydτ
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+

∫ t

0

∫ +∞

0

µψ2
y

2V f(V )
dydτ +

∫ t

0

[
x′

2
φ2 + φψ

]
(0, t)dt

≤ C

∫ +∞

0

{φ2
0 + ψ2

0}dy+

∣∣∣∣
∫ t

0

[
µψyψ

V f(V )
+

x′

2f(V )
ψ2

]
(0, t)dτ

∣∣∣∣(7.19)

+ C

∫ t

0

∫ +∞

0

(|F | + |G|)|ψ|dydτ + Cδ
1
2

∫ t

0

∫ ∞

0

(V ′
T + δ

1
2 |V ′′

T |)ψ2dydτ

+

∫ t

0

∫ +∞

0

γ′(VT (y) − v∗)φ + γ′(UT (y) − u∗)ψf(V )−1dydτ.

We estimate the right-hand sides of (7.19). We compute∫ ∞

0

∫ ∞

0

|G|dydt

≤
∫ ∞

0

∫ ∞

0

|Vs(y + x(t) − st + α− β) − v∗||VT (y) − v∗|dydt
(7.20)

≤ C

∫ ∞

0

∫ st+β−α−x(t)

0

δe
−c0

y√
δ e−c−|y+x(t)−st+α−β|dydt

+C

∫ ∞

0

∫ ∞

st+β−α−x(t)

δe
−c0

y√
δ dydt ≤ Cδe−c−β ≤ Cδ6,

∫ ∞

0

(V ′
T + δ

1
2 |V ′′

T |)ψ2dy ≤ C

∫ ∞

0

(V ′
T + δ

1
2 |V ′′

T |)(ψ2(0, t) + y‖ψy‖2)dy

(7.21)
≤ Cδψ2(0, t) + Cδ

3
2 ‖ψy‖2,

and ∫ ∞

0

|γ′(VT (y) − v∗)φ|dy

≤ C

∫ ∞

0

|γ′(VT (y) − v∗)|(|φ(0, t)| + y
1
2 ‖φy‖)dy(7.22)

≤ Cδ
3
2 (γ′2 + φ2(0, t)) + Cδ2‖φy‖2.

Similar to (7.22), we also have∫ ∞

0

|γ′(UT (y) − u∗)ψf(V )−1|dy ≤ Cδ2(‖ψy‖2 + γ′2 + ψ2(0, t)).(7.23)

We now estimate the terms from the boundary. We calculate from (7.10)

x′

2
φ2 + φψ ≥ −1

4
s̄φ2(0, t) − Ce−c−(st+β) ≥ c1δ

1
2φ2(0, t) − Ce−c−(st+β),(7.24) ∣∣∣∣ µ

V f(V )
ψy(0, t)ψ(0, t)

∣∣∣∣
(7.25)

≤ ε3(δ
1
2φ(0, t)2 + ‖ψy‖2)+C(ε3)(δ‖ψyy‖2 + δ−

1
2 e−c−(st+β)).

Since e−c−β = O(δ5), we have

δ−
1
2 e−c−β ≤ Cδ4.(7.26)



GAS-SOLID FREE BOUNDARY 517

Thus there exists a positive constant δ0 > 0. For any δ < δ0, if we choose
ε3 ≤ 1

2c1, then the estimate (7.12) holds from (7.6), (7.10), and (7.19)–(7.26). Hence
Lemma 7.3 is proved.

Lemma 7.4. It follows that

‖φy‖2 +

∫ t

0

‖φy‖2dτ≤ Cδ

∫ t

0

‖ψyy‖2dt
(7.27)

+C

{
‖(φ0, ψ0)‖2

1 + δ4 + N(T )

∫ t

0

[‖φy‖2 + ‖ψy‖2
1]dτ

}
.

Proof. From the system (7.1), we have

µ

V
φyt − x′ µ

V
φyy + f(V )φy + x′ψy

(7.28)
= ψt − F −G +

µ

V
γ′V ′

T − γ′(UT (y) − u∗).
Multiplying (7.28) by φy yields

( µ

2V
φ2
y

)
t
− (s− x′)µ

2V 2
Vsyφ

2
y −

{
x′ µ

2V
φ2
y

}
y
− µx′

2V 2
Vyφ

2
y + f(V )φ2

y + x′ψyφy

(7.29)
= ψtφy − (F + G)φy+

µ

V
γ′V ′

Tφy − γ′(UT (y) − u∗)φy.

The system (7.1)1 gives

ψtφy = (ψφy)t − ψφyt = (ψφy)t − ψ(x′φyy + ψyy + γ′V ′
T )

(7.30)

= (ψφy)t − (x′ψφy)y − (ψψy)y − γ′ψV ′
T + x′ψyφy + ψ2

y,

and Lemma 2.1 and the Cauchy inequality yield

|γ′(UT (y) − u∗)φy| ≤ Cδφ2
y + Cδ2γ′2e

− c0√
δ
y
.(7.31)

Substituting (7.30)–(7.31) into (7.29), we get( µ

2V
φ2
y − ψφy

)
t
+

(
f(V ) − h(Vs)

2V
− Cδ

1
2

)
φ2
y+

{
ψψy + x′ψφy −

µx′

2V
φ2
y

}
y

(7.32)
≤ ψ2

y − (F + G)φy +
µ

V
γ′V ′

Tφy − γ′V ′
Tψ + Cδ2γ′2e

− c0√
δ
y
.

Note that (7.2) gives

f(V ) − h(Vs)

2V
> −p′(V ) ≥ −p′(v+),(7.33)

and the boundary terms of (7.32) are investigated in Lemma 7.2. Thus integrating
(7.32) over [0,+∞)×[0, t] and using (7.6), (7.20), Lemmas 7.2–7.3, and the inequalities∫ +∞

0

|ψφy|dy ≤ µ

4v+
‖φy(t)‖2 +

v+

µ
‖ψ‖2,(7.34) ∫ ∞

0

∣∣∣ µ
V
γ′V ′

Tφy

∣∣∣ dy ≤ Cδ
1
2 ‖φy‖2 + Cδγ′2,(7.35)

∫ ∞

0

|γ′V ′
Tψ|dy ≤ Cδ(γ′2 + ψ(0, t)2) + Cδ

3
2 ‖ψy‖2,(7.36)
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we get (7.27). Thus Lemma 7.4 is proved.
Lemma 7.5. It follows that

‖ψy(t)‖2 +

∫ t

0

‖ψyy‖2dτ + δ
1
2

∫ t

0

ψy(0, t)
2dt

(7.37)

≤ C

{
‖(φ0, ψ0)‖2

1 + δ4 + N(T )

∫ t

0

[
‖φy(τ)‖2 + ‖ψy(τ)‖2

1

]
dτ

}
.

Proof. Multiplying (7.1)2 by −ψyy, one obtains

(−ψyψt)y +

(
ψ2
y

2

)
t

+

(
x′

2
ψ2
y

)
y

+ f(V )φyψyy +
µ

V
ψ2
yy

(7.38)
= −(F + G)ψyy − γ′(UT (y) − u∗)ψyy.

The Cauchy inequality yields

|f(V )φyψyy| ≤
µ

4v+
ψ2
yy + Cφ2

y,(7.39)

and (7.6) and the Cauchy inequality yield

|Fψyy| ≤ C(|φy|2 + |φy| · |ψyy|)|ψyy| ≤ C|φy|(|φy|2 + |ψyy|2),(7.40)

|Gψyy| ≤
µ

4v+
ψ2
yy + C|G|,(7.41)

|γ′(UT (y) − u∗)ψyy| ≤
µ

4v+
ψ2
yy + Cδ3γ′3e

− c0√
δ
y
.(7.42)

Substituting (7.39)–(7.42) into (7.38), we have

1

2
(ψ2

y)t +

{
x′

2
ψ2
y − ψyψt

}
y

+
µ

4v+
ψ2
yy

(7.43)
≤ Cφ2

y + C|φy|(|φy|2 + |ψyy|2) + Cδ3γ′3e
− c0√

δ
y
.

The boundary terms of (7.43) are estimated in Lemma 7.2. Thus integrating (7.43)
over [0,+∞) × [0, t] and using Lemmas 7.2 and 7.4 and the fact that x′ < 0, we get
the estimate (7.37).

From Lemmas 7.3–7.5, we get the following inequality.
Lemma 7.6. It follows that

‖(φ, ψ)(t)‖2
1 +

∫ t

0

{
‖φy‖2 + ‖ψy‖2

1

}
dτ≤ C{‖(φ0, ψ0)‖2

1 + δ4}.(7.44)

Lemma 7.7. It follows that

‖φyy(t)‖2 +

∫ t

0

‖φyy‖2dτ≤ Cδ−2{‖(φ0, ψ0)‖2
2 + δ4}

(7.45)

+C

{∫ t

0

‖Fy‖2dτ + δ

∫ t

0

‖ψyyy‖2dτ

}
.
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Proof. Differentiating (7.28) with respect to y, one gets

µ

V
φyyt −

µVy

V 2
φyt − x′ µ

V
φyyy + x′µVy

V 2
φyy + f(V )φyy + f(V )yφy + x′ψyy

(7.46)

= ψyt − Fy −Gy +
µ

V
γ′V ′′

T − µVy

V 2
γ′V ′

T − γ′U ′
T .

Multiplying (7.46) by φyy, we have

( µ

2V
φ2
yy

)
t
+

(
f(V ) − h(Vs)

2V
− Cδ

1
2

)
φ2
yy −

(
x′µ

2V
φ2
yy

)
y

−µVy

V 2
φytφyy+f(V )yφyyφy + x′ψyyφyy(7.47)

≤ ψytφyy−(Fy + Gy)φyy+

(
µ

V
γ′V ′′

T − µVy

V 2
γ′V ′

T − γ′U ′
T

)
φyy.

Using Lemmas 2.1 and 7.2 and the Cauchy inequality, we obtain∣∣∣∣µVy

V 2
φytφyy

∣∣∣∣ =

∣∣∣∣µVy

V 2
(x′φyy + ψyy + γ′V ′

T )φyy

∣∣∣∣
(7.48)

≤ 1

8
|p′(v+)|φ2

yy + C(ψ2
yy + δ

1
2 γ′2V ′

T ),

|f(V )yφyyφy| ≤
1

8
|p′(v+)|φ2

yy + Cφ2
y,(7.49)

|Fyφyy| ≤
1

8
|p′(v+)|φ2

yy + C|Fy|2,(7.50)

ψytφyy = (ψyφyy)t − ψyφyyt = (ψyφyy)t − (ψyφyt)y + φytψyy
(7.51)

= (ψyφyy)t − (ψyφyt)y + x′φyyψyy + ψ2
yy + γ′V ′

Tψyy,∣∣∣∣
(
µ

V
γ′V ′′

T − µVy

V 2
γ′V ′

T − γ′U ′
T

)
φyy

∣∣∣∣ ≤ 1

8
|p′(v+)|φ2

yy + Cγ′2e
− c0√

δ
y
.(7.52)

Substituting (7.48)–(7.52) into (7.47), we have

( µ

2V
φ2
yy − ψyφyy

)
t
+

1

4
|p′(v+)|φ2

yy +

(
ψyφyt −

x′µ

2V
φ2
yy

)
y

(7.53)
≤ 2ψ2

yy + Cγ′2e
− c0√

δ
y

+ C|Gy|2.

Similar to (7.20), we have

|Gy| ≤ H + Cδφyy,(7.54)

where H satisfies ∫ t

0

∫ ∞

0

|H|dydt ≤ Cδ
1
2 e−c−β ≤ Cδ5.(7.55)

Since

φyy|y=0 =
1

x′ (φyt − ψyy − γ′V ′
T )|y=0,
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Lemma 7.2 and the Cauchy inequality yield∣∣∣∣x′µ

2V
φyy(0, t)

2

∣∣∣∣ ≤ C(δ
1
2 γ′2 + δ4e−c−st + δ−2‖ψyy‖2 + δ‖ψyyy‖2),(7.56)

where we have used the fact that φyt = −V ′
s (0, t). Note that |ψyφyt|(0, t) is controlled

by δψy(0, t)
2 and δ−1φyt(0, t)

2. Thus integrating (7.53) over [0,+∞) × [0, t] and
making use of Lemmas 7.2 and 7.6 and (7.54)–(7.56), we obtain the inequality (7.45).
Lemma 7.7 is proved.

Lemma 7.8. It follows that

‖ψyy(t)‖2 +

∫ t

0

‖ψyyy‖2dτ

(7.57)

≤ Cδ−2{‖(φ0, ψ0)‖2
2 + δ4} + C

∫ t

0

‖Fy(τ)‖2dτ.

Proof. Differentiating (7.1)2 with respect to y and multiplying the derivative by
−ψyyy, we have(

1

2
ψ2
yy

)
t

+

(
x′

2
ψ2
yy − ψytψyy

)
y

+ f(V )φyyψyyy+f(V )yφyψyyy

(7.58)
+
µ

V
ψ2
yyy −

µ

V 2
Vyψyyψyyy = −(Fy + Gy + γ′U ′

T )ψyyy.

The Cauchy inequality and Lemma 2.1 yield

|f(V )φyyψyyy| ≤ C|φyy|2 +
µ

8v+
|ψyyy|2,(7.59)

|f(V )yφyψyyy| ≤ C|φy|2 +
µ

8v+
|ψyyy|2,(7.60)

(|Fy| + |Gy|)|ψyyy| ≤ C

(
|Fy|2 + G2

y +
µ

8v+
|ψyyy|2

)
,(7.61)

|γ′U ′
Tψyyy| ≤ Cδ3γ′2e

− c0√
δ
y

+
µ

8v+
|ψyyy|2.(7.62)

On the other hand, Lemma 7.2 yields, on the boundary y = 0,

ψytψyy = ψyt(A1ψ
2
y + A2(t)ψy + A3(t))

(7.63)

=

(
A1

3
ψ3
y +

A2(t)

2
ψ2
y + A3(t)ψy

)
t

− A′
2(t)

2
ψ2
y −A′

3(t)ψy.

Here A2(t) > 0 because β is large and (|A′
2(t)|, |A′

3(t)|) ≤ Ce−c−(st+β).
Substituting (7.54), (7.55), and (7.59)–(7.63) into (7.58), integrating it over [0,+∞)×

[0, t], and making use of Lemmas 7.6 and 7.7 and the fact that x′ < 0, we obtain the
inequality (7.57). Lemma 7.8 is proved.

Proof of Proposition 7.1. By using the Sobolev embedding theorem and (7.4), we
have

‖Fy‖2 ≤ C

∫ +∞

0

(φ4
y + φ2

yφ
2
yy + ψ2

yyφ
2
yy + ψ2

yyyφ
2
y + φ2

yψ
2
yy)dy

≤ C sup
y∈�+

[
φ2
y

∫ +∞

0

(φ2
y + φ2

yy + ψ2
yyy + ψ2

yy)dy + ψ2
yy

∫ +∞

0

φ2
yy dy

]
(7.64)

≤ CN(T )(‖φy‖2
1 + ‖ψy‖2

2),
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which, together with Lemmas 7.3–7.8, yields the inequality (7.7). To prove the in-
equality (7.8), we differentiate the system (7.1)1 with respect to y, multiply it by φy,
and integrate the resulting equality with respect to y to get

d

dt
‖φy(t)‖2 = 2

∫ +∞

0

ψyyφydy + 2x′
∫ +∞

0

φyφyydy + 2

∫ ∞

0

γ′V ′
Tφydy.(7.65)

Integrating (7.65) over [0,+∞), we get (7.8) for φ due to (7.7). In the same way, we
can also prove (7.8) for ψ. Proposition 7.1 is proved.

Theorem 7.9. Suppose that the assumptions of Theorem 4.1 hold; then the
initial-boundary value problem (7.1) has a unique global solution (φ, ψ) ∈ X([0,+∞)),
γ(t) ∈ C1[0,∞) satisfying the inequalities (7.7) and (7.8) for any t ≥ 0. Moreover,
the solution is asymptotically stable:

lim
t→∞

sup
y∈�+

|(φy, ψy)(y, t)| = 0, lim
t→∞

γ(t) = Γ,

where Γ is determined by (4.11).
Proof. The assumption (4.6) gives ‖φ0, ψ0‖2 < C4δ

2 ≤ ε4 =
√
C2(1 + C2

4 )δ due
to Proposition 5.1. From Proposition 6.1, there exists a positive time T0 = T0(ε4) > 0
such that a unique local solution (φ, ψ)(y, t), γ(t) of (7.1) exists in [0, T0] satisfying

(‖φ‖2, ‖ψ‖2) ≤ C1C4δ
2 ≤

√
C2(1 + C2

4 )δ and |γ(t)| ≤ |s̄|t. We now assume that
for some positive integer n > 1 there exists a unique local solution (φ, ψ)(y, t), γ(t)

of (7.1) in [0, (n− 1)T0] satisfying (‖φ‖2, ‖ψ‖2)(t) ≤
√
C2(1 + C2

4 )δ and |γ(t)| ≤ |s̄|t.
From Proposition 6.1, we know the solution (φ, ψ), γ(t) can be extended to the interval
[(n−1)T0, nT0]. Furthermore, Proposition 7.1 yields (‖φ‖2, ‖ψ‖2)(t) ≤

√
C2(1 + C2

4 )δ

= ε4, and |γ(t)| ≤ |s̄|t still hold when t ∈ [(n − 1)T0, nT0]. Repeating the above
argument, we get the existence of a unique global solution (φ, ψ) ∈ X([0,+∞)),
γ(t) ∈ C1[0,∞) satisfying the inequalities (7.7) and (7.8) for any t ≥ 0. By (7.7),
‖(φy, ψy)(t)‖1 tends to zero as time tends to infinity. By the Sobolev embedding
theorem, we obtain

sup
y∈�+

|(φy, ψy)(y, t)| → 0 as t → +∞.(7.66)

On the other hand, the boundary condition (5.9) yields

γ(t)(v∗ − v̄) = −φ(0, t) − (s− s̄)

∫ t

0

[v∗ − V̄s(0, t)]dt + φ0(0) − σ(t).(7.67)

It is noted that |φ(0, t)| ≤ ‖φ‖1 and σ(t) tend to zero when t → ∞ due to (7.7) and
Lemma 7.2. From (7.67), we have

lim
t→∞

γ(t) = Γ =
1

v̄ − v∗

{
(s− s̄)

∫ ∞

0

[v∗ − Vs(s̄t− st + α− β)]dt

(7.68)

+

∫ ∞

0

[v0(y) − VT (y) − Vs(y + α− β) + v∗]dy

}
.

Proof of Theorem 4.1. From Theorem 7.9, Theorem 4.1 is obtained at once.
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PLANE-LIKE MINIMAL SURFACES IN PERIODIC MEDIA
WITH EXCLUSIONS∗
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Abstract. We consider minimal surfaces in a medium with exclusions (voids). This extends the
results given in [Comm. Pure Appl. Math., 54 (2001), pp. 1403–1441] to the case of a degenerate
metric such that the area of a surface of codimension 1 is measured by neglecting the parts inside
the exclusions. We prove that, given any plane in the medium, there is at least one minimal surface
that always stays at a bounded distance from the plane. We also explore the connections of this
problem with the theory of homogenization of Hamilton–Jacobi equations.

Key words. minimal surfaces, sets of finite perimeter, homogenization, periodic media

AMS subject classification. 35R99
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1. Introduction. The recent results in [14] consider a generalization of the prob-
lem of minimal surfaces in periodic media and show that, given a metric with periodic
coefficients, there exists a number M so that one can find a minimizer in any strip
of width M . The width M is independent of the orientation of the strip. Moreover,
the minimizers constructed in [14] have the property that, when folded to the funda-
mental domain, they are laminations. For a discussion on the history of the problem
of constructing minimizers that are asymptotic to a plane we refer the reader to [14]
and the references therein.

The goal of this paper is to extend the results of [14] to a situation where the
medium has exclusions, i.e., regions for which the metric vanishes. We also discuss
the behavior of the minimizers near the exclusions, which is an issue not considered in
[14]. Since similar situations of media with exclusions appear naturally in the theory
of homogenization, we consider in this paper the relation of the minimizers with the
theory of homogenization, and we develop several explicit calculations.

We recall that minimal surfaces can be studied using geometric measure theory
(see, e.g., [26, 34]) in which the surfaces are interpreted as currents, i.e., dual to
forms. Then the laminations can be interpreted as homologically minimizing currents
(see, for instance, [6, 5, 4]). One can also study minimal surfaces by considering the
surfaces as boundaries of sets in which the perimeter is defined in a weak sense (see,
e.g., [27]).

In this paper we will follow the approach of locally finite perimeter sets, which
is the one followed in [14]. For the problem considered in this paper, this approach
is more advantageous because the fundamental domain is a manifold with boundary,
and the theory of homologically minimizing currents in manifolds with boundary
is not readily available to our knowledge. We refer the reader to [27, 25, 2] for a
comprehensive survey on the theory of sets of finite perimeter.

The setting of the problem is as follows: the space R
n is considered as the lattice

of cubes [0, 1]n + Z
n where each cube has an internal exclusion. If I denotes the

∗Received by the editors December 20, 2001; accepted for publication (in revised form) November
14, 2003; published electronically July 29, 2004. This work was supported by a Research Assistanship
from Luis A. Caffarelli.
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†Department of Mathematics, Northwestern University, 2033 Sheridan Rd., Evanston, IL 60208-

2730 (torres@math.northwestern.edu).
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exclusion contained in Y = [0, 1]n, we assume the following:

1. I is compact, connected, and has Lipschitz boundary.
2. The distance between I and the boundary of Y , which we shall denote by α,

is strictly positive.
3. Any other exclusion is of the form I + z for some z ∈ Z

n; i.e., the exclusions
are periodic.

Once we have set up the domain for our problem, we proceed to explain our
definition of minimal surface, which is made precise in section 2. If Σ is a surface in
R

n of codimension one, we consider the following procedure for measuring the area
of Σ: the portions that are inside the exclusions do not contribute to the area, and
outside the exclusions the area is measured in the standard way. We say that Σ is
a minimal surface if Σ minimizes area outside the exclusions. This means, loosely
speaking, that any compact perturbation to Σ increases its area outside the exclusions.

We can now introduce the main result of this paper, which reads as follows: Under
the assumptions 1, 2, and 3 given above, there exists a universal constant C (that
depends only on n an α) such that, for every (n − 1)-dimensional hyperplane Π, we
can find a minimal surface Σ satisfying d(Π,Σ) ≤ C.

The minimizers constructed in this paper are regular away from the boundaries of
the exclusions. This follows directly from standard interior regularity theory for mini-
mal surfaces (see Remark A.2). For the case when the exclusions have C2 boundaries,
the regularity of the minimizers near the boundary of the exclusions is a consequence
of [29], where techniques of geometric measure theory are used to prove optimal reg-
ularity for codimension one minimal surfaces with a free boundary.

An important property of the surfaces constructed in this paper is that they meet
the exclusions orthogonally. This means, loosely speaking, that the intersection of
the minimizers with the exclusions looks like two perpendicular hyperplanes (in a
small neighborhood). This orthogonality result can be deduced (once we have the
regularity of the minimizers up to the boundary of the exclusions) by studying the
first variation of the area. An analysis of the Euler–Lagrange equation is done in [31],
where numerical and theoretical analysis for minimal surfaces involving two media is
performed. We discuss the orthogonality property in section 6, and we explain how it
can be obtained from [31]. For a proof of this orthogonality property, in the context
of geometric measure theory, we refer the reader to [29].

The existence of plane-like minimizers implies that, in spite of having a heteroge-
neous media, the minimizer looks like a plane (homogeneous media) when seen from
a far distance. This suggests connections with the theory of homogenization of PDEs,
which studies the asymptotic behavior of a family of PDEs that oscillate with small
period of size ε > 0. The last section of this paper begins to explore the connection
with the theory of homogenization of Hamilton–Jacobi equations. Hamilton–Jacobi
equations arise in optimal control, differential games, geometric optics, calculus of
variations, etc., and their solutions are understood in the viscosity sense. We re-
fer the reader to [8, 23, 7] and the references therein for the definitions and basic
properties of viscosity solutions that we will use in this paper.

The study of asymptotics of solutions of Hamilton–Jacobi equations is a funda-
mental question, as well as their applications to mathematical sciences. The homoge-
nization of Hamilton–Jacobi equations has been extensively studied (see, for instance,
[32, 21, 22, 15, 9]). The homogenized equation is also a Hamilton–Jacobi equation,
and the corresponding Hamiltonian, usually denoted by H, is called the effective
Hamiltonian. It is a difficult but interesting task to find explicit formulas for H. The
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references [22, 19, 20, 17, 16, 24] contain results in this direction. In this paper, we in-
troduce a particular example, and we perform several explicit computations in search
of its corresponding effective Hamiltonian. The homogenization of Hamilton–Jacobi
equations in perforated domains was treated in [30], where both the Neumann-type
and the Dirichlet boundary value problems were considered. A generalization of [30]
has been studied in [1].

The organization of the paper is as follows.
Section 2 contains the proof of the existence of minimizers.
Section 3 uses some subadditivity properties of sets of finite perimeter to define an

infimal minimizer which is contained in all the other minimizers and satisfies several
monotonicity properties. The results presented in section 3 are contained in [14], but
for clarity of the exposition we present again the proofs with more detail.

Section 4 deals with the proof of a geometric property that is specific to the
infimal minimizer. This property is analogous to the so-called Birkhoff property in
Aubry–Mather theory.

Section 5 contains the proof of the main theorem, which relies on the fact that
minimizers must satisfy some density estimates. The geometric property proven in
section 4, together with the density estimates, allows us to prove that the infimal
minimizer is contained in a band whose width is independent of the direction of the
plane.

Section 6 discusses the behavior of the minimizers near the boundaries of the
exclusions.

Section 7 explores the connection with the theory of homogenization of Hamilton–
Jacobi equations and contains several explicit computations.

We present at the end an appendix that includes the main definitions concerning
sets of finite perimeter, as well as several remarks regarding some conventions and
notation that we are using throughout the paper.

2. Existence of minimizers. We proceed now to prove the existence of min-
imizers. We refer the reader to the appendix for the definition and main properties
of sets of finite perimeter. As explained before, our setting in this paper is R

n with
exclusions (voids) that satisfy the three properties stated in the introduction.

We denote I as the exclusion contained in [0, 1]n. We let I denote the union of
all exclusions and O its complement; i.e.,

I =
⋃

k∈Zn

(I + k),(1)

O = R
n\I.(2)

We let ω ∈ R
n, and we consider first the case when ω ∈ Q

n. Given M̃ ∈ R, we define

Γω,M̃ =

{
x ∈ R

n : x · ω

|ω| ≤ M̃

}
,(3)

where ω
|ω| is the outward unit normal to ∂Γω,M̃ . We denote Tk as the translation op-

erator by k ∈ Z
n; that is, Tk(x) = x+k, x ∈ R

n. Given N ∈ N
+ and M > 0, we define

AS1,S2 = {E : E is a set of finite perimeter,(4)

S1 ⊂ E ⊂ S2, TNkE = E ∀k ∈ Z
n, ω · k = 0},
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E

Fig. 1. Diagram showing parallel plane restrictions and the period for minimization.

where S1 = Γω,0 and S2 = Γω,M . We will refer to the sets Π1 ≡ {x ∈ R
n : x · ω = 0}

and Π2 ≡ {x ∈ R
n : x · ω

|ω| = M} as the parallel plane restrictions. Throughout this

paper, we consider (without loss of generality) sets of finite perimeter that satisfy
Remark A.1.

Since ω is rational, the sets in AS1,S2 can be identified with sets in the manifold

Γω,M/ ≈,(5)

where ≈ is the equivalence relation defined by

x ≈ y ⇐⇒ x = y + Nk for some k ∈ Z
n, ω · k = 0.(6)

The space defined in (5) is [−∞,M ]×T
n−1. Moreover, we can identify the period of

the class AS1,S2 as [−ε,M + ε] × T
n−1 for a fixed ε > 0 (see Figure 1). We define

Ω = ([−ε,M + ε] × T
n−1) \ I.(7)

For each set E ∈ AS1,S2
, we consider

J(E) =

∫
Ω

|DϕE |,(8)

where the measure |DϕE | is introduced in Definition A.4. We let β = infE∈AS1,S2
J(E)

and {Ej} be a sequence such that J(Ej) → β. This implies that the sequence
{
∫
Ω
|DϕEj

|} is uniformly bounded. Since the exclusions have at least Lipschitz bound-
ary, it follows from Theorem A.2 that BV (Ω) is relatively compact in L1(Ω). There-
fore, there exists a convergent subsequence, which we denote again by {Ej}, in L1(Ω).
We let E0 ∈ L1(Ω) be the limit. Using Proposition A.1 we obtain∫

Ω

|DϕE0 | ≤ lim inf

∫
Ω

|DϕEj |.

Thus,

J(E0) = inf
E∈AS1,S2

J(E).
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We make the following definitions.
Definition 2.1. Any E ∈ AS1,S2

that satisfies J(E) = J(E0) shall be called a
minimizer corresponding to the class AS1,S2 , or simply a minimizer, when it is not
necessary to specify the class.

Definition 2.2. We say that the minimizer E is an unconstrained minimizer if
there exists a universal constant M̃ > 0 such that, for all M ≥ M̃ and all ε ≥ 0, E is
a minimizer corresponding to the class AΓω,−ε,Γω,M

.
Definition 2.3. We say that the minimizer E is a class A minimizer if, for any

open ball BR,∫
BR∩O

|DϕE |

= inf

{∫
BR∩O

|DϕF | : F is a set of finite perimeter, spt(ϕF − ϕE) ⊂ BR

}
.

Definition 2.4. We say that Σ ⊂ R
n is a minimal surface if Σ = ∂E, where E

is a class A minimizer.
Remark 2.1. We shall prove later (Proposition 5.2) that if the distance between

the two restrictions Π1 and Π2 is large enough (independently of the slope of the
restrictions), then there exists at least one unconstrained class A minimizer. That
is, if the distance between Π1 and Π2 is large enough, then the restrictions do not
interfere in the minimization, which means that they do not prevent the minimizers
from doing “better.”

The following lemma tells us that, without loss of generality, we can assume that
minimizers are closed sets.

Lemma 2.1. If E is a minimizer corresponding to the class AS1,S2
, then there

exists a closed set Ẽ, which is also a minimizer for the class AS1,S2
.

Proof. Define Ẽ = E ∪ ∂E (see Definition A.8). We have that Ẽ is closed. We
need to prove that Ẽ and E differ (outside the exclusions) on a set of Ln-measure zero.
Since the restrictions Π1 and Π2 have Ln-measure zero, we need only to consider the
set K ≡ ∂E∩O∩BΠ1,Π2 , where BΠ1,Π2 is the open slab enclosed by Π1 and Π2. Since
E minimizes area outside the exclusions, it follows from Lemma A.5 that if x ∈ K
has density γx, then 0 < γx < 1 (see Definition A.6 for the definition of density of
a point), which implies that such x is not a Lebesgue point for ϕE . Therefore, from
Definition A.6 we obtain that Ln(K) = 0. We can now prove that Ẽ is a minimizer,
which is a consequence of the fact that the sets E and Ẽ differ (outside the exclusions)
on a set of Ln-measure zero. In fact, if V ⊂ O is any open set, we have∫

V

|DϕE | = sup

{∫
V

ϕEdivg : g ∈ C1
0 (V ; Rn), |g(x)| ≤ 1, for x ∈ V

}

= sup

{∫
V

ϕẼdivg : g ∈ C1
0 (V ; Rn), |g(x)| ≤ 1, for x ∈ V

}

=

∫
V

|DϕẼ |,

which proves that both measures coincide outside the exclusions.
Remark 2.2. From now on, we shall assume that minimizers are closed sets.
We now proceed to prove that a minimizer (minus the exclusions) is connected

for the case when the exclusions are simply connected sets and have at least C1
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boundaries. We remark that we do not need the connectivity of the minimizers in any
of the proofs in this paper, but we present the result since it is interesting by itself.

Lemma 2.2. Let E be a minimizer corresponding to the class AS1,S2
. Assume

that the exclusions are simply connected and have at least C1 boundaries; then E ∩O
is connected.

Proof. We let Ẽ = E ∩ O. We prove that Ẽint is connected. We proceed by
contradiction and assume that

Ẽint = A ∪B,(9)

where A,B are two disjoints open sets. Since Γω,0 ∩ O is connected, it must be

contained in either A or B. We assume that Γω,0 ∩ O ⊂ A, and we let F = R
n \ Ẽ.

Since E minimizes area outside the exclusions it follows that the points in ∂F have
uniform density; i.e., there exists a universal constant C such that

|F ∩B(x, r)| ≥ Crn, x ∈ ∂F, r ≤ r0,(10)

for some small enough universal constant r0. We prove this claim in Lemma A.6.
We now proceed to prove that (10) implies that we can approximate Ẽint from inside
with smooth sets. We recall (see [2]) that sets of finite perimeter in R

n can be
approximated in measure by open sets with smooth boundaries in such a way that
we also have convergence of perimeters to perimeters. It is not, in general, possible
to approximate a set of finite perimeter E by C∞ sets contained inside E, nor it is
possible from outside (see [27, p. 24] for a counterexample). However, in our case,
we prove in Lemma A.7 that we can find sequences of sets {At}, {Bt} with smooth
boundaries satisfying

At ⊂⊂ A, Bt ⊂⊂ B(11)

and

Per(A ∪B) = lim
t→0

Per(At ∪Bt), At → A Bt → B in measure.(12)

From (11), (12), and the lower semicontinuity property given in Proposition A.1 we
obtain

Per(A ∪B) = lim
t→0

Per(At ∪Bt)

= lim
t→0

Per(At) + lim
t→0

Per(Bt)

≥ Per(A) + Per(B).

This is a contradiction since we can eliminate B and obtain a set with less peri-
meter.

3. Infimal minimizer. The minimizer we have just constructed may not be
unique. However, we can prove the existence of an infimal minimizer, that is, a
minimizer that is contained in any other minimizer. The results presented in this
section are contained in [14], but, for clarity of the exposition, we present here the
proofs with more detail.

In this section, Ω denotes the set defined in (7).
Theorem 3.1. There exists E∗ ∈ AS1,S2

such that, if E is any other minimizer,
then E∗ ⊂ E. We refer to E∗ as the infimal minimizer.
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Proof. We denote B as the set of all minimizers. We have that B ⊂ L1(Ω). If
E1, E2 ∈ B, by Theorem A.4 we have

Per(E1 ∩ E2,Ω) + Per(E1 ∪ E2,Ω) ≤ Per(E1,Ω) + Per(E2,Ω).(13)

Since E1 ∪ E2 is an admissible set we have Per(E1 ∪ E2,Ω) ≥ Per(E1,Ω). Since
Per(E1,Ω) = Per(E2,Ω) and using inequality (13), it follows that

Per(E1 ∩ E2,Ω) ≤ Per(E1,Ω),

which implies that E1 ∩ E2 is also a minimizer. Since we can uniformly bound the
perimeters of minimizers in Ω, it follows from Proposition A.1 and Theorem A.2 that
B is a compact subset of L1(Ω). Since L1(Ω) is separable, B is also separable. We let
{Ej} denote a dense subset of B, and we define

Ẽn =

n⋂
j=1

Ej .

Since Ẽn is a minimizer and Ẽn+1 ⊂ Ẽn with |Ẽ1∩Ω| < ∞, it follows that |Ẽn∩Ω| →
|
⋂∞

n=1 Ẽn ∩ Ω|, and therefore Ẽn →
⋂∞

n=1 Ẽn in L1(Ω). We define

E∗ =

∞⋂
n=1

Ẽn.

By Proposition A.1

Per(E∗,Ω) ≤ lim inf Per(Ẽn,Ω),

which implies that E∗ is a minimizer.
If E denotes any other minimizer we claim that |(E∗\E) ∩ Ω| = 0. We proceed

by contradiction and assume this is not true; i.e., |(E∗\E) ∩ Ω| > δ > 0. Since {Ej}
is a dense subset of B, we can find Ek such that |(Ek\E) ∩ Ω| < ε

2 , ε < δ. We choose

N large enough such that ẼN ⊂ Ek and |(E∗\ẼN ) ∩ Ω| < ε
2 . We have

|(E∗\E) ∩ Ω| ≤ |(E∗\ẼN ) ∩ Ω| + |(ẼN\E) ∩ Ω|
≤ |(E∗\ẼN ) ∩ Ω| + |(Ek\E) ∩ Ω|
≤ ε

2
+

ε

2
= ε < δ,

which is a contradiction. Since E and E∗ are both minimizers and are closed, if follows
from Remark A.1 that E∗ ⊂ E.

Corollary 3.1. The infimal minimizer is unique.
We let M1 < 0 and M2 > 0 be such that T2 := Γω,M2 ⊂ S2. We have T1 :=

Γω,M1 ⊂ S1 and T1 ⊂ T2. The following proposition shall be used later to establish
properties of the infimal minimizer.

Proposition 3.1. If E is a minimizer corresponding to the class AS1,S2 and L
a minimizer corresponding to the class AT1,T2

, then
(a) E ∩ L is a minimizer corresponding to the class AT1,T2 ;
(b) E ∪ L is a minimizer corresponding to the class AS1,S2 ;
(c) E∗,T1,T2 ⊂ E∗,S1,S2 .
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Proof. We note that E ∪ L ∈ AS1,S2 and E ∩ L ∈ AT1,T2 . Using Theorem A.4
and since Per(E,Ω) ≤ Per(E ∪ L,Ω), it follows that

Per(E ∩ L,Ω) + Per(E,Ω) ≤ Per(E ∩ L,Ω) + Per(E ∪ L,Ω)

≤ Per(E,Ω) + Per(L,Ω),

which implies that Per(E ∩ L,Ω) ≤ Per(L,Ω); i.e., E ∩ L is a minimizer in the class
AT1,T2 . In the same way we prove (b). In order to prove (c) we note that, by (a),
E∗,T1,T2 ∩ E∗,S1,S2 is a minimizer corresponding to the class AT1,T2 , and hence

E∗,T1,T2
⊂ (E∗,T1,T2 ∩ E∗,S1,S2)

⇒ E∗,T1,T2 ⊂ E∗,S1,S2
.

4. Birkhoff property. We denote E as the infimal minimizer corresponding to
the class AS1,S2 . We recall that Tk denotes the translation operator by k ∈ Z

n; that
is, Tk(x) = x + k, x ∈ R

n. The infimal minimizer satisfies an important geometric
property (quite analogous to the property called Birkhoff in Aubry–Mather theory),
which is proven in [14].

Lemma 4.1. If k ∈ Z
n, we have the following:

(a) If k · ω ≤ 0, then TkE ⊂ E.
(b) If k · ω ≥ 0, then E ⊂ TkE.
Proof. (a) We let T1 = Tk(S1) and T2 = Tk(S2), where as before S1 = {x ∈ R

n :
x ·ω ≤ 0} and S2 = {x ∈ R

n : x ·ω ≤ M}. If k ·ω ≤ 0 we have that T1 ⊂ S1, T2 ⊂ S2,
and T1 ⊂ T2. We note that TkE is the infimal minimizer in AT1,T2

. By Proposition
3.1(c) we have TkE ⊂ E.

(b) If k · ω ≥ 0, we have that S1 ⊂ T1, S2 ⊂ T2, and T1 ⊂ T2. Since TkE is the
infimal minimizer in AT1,T2 , by Proposition 3.1(c) it follows that E ⊂ TkE.

We make the following important observation.
Remark 4.1. From (a) and (b) above, we have that if k · ω = 0, then TkE = E.

This implies that even though in the minimization of (8) the size of the period of the
candidate sets is given by the number N (recall the definition (4)), the infimal minin-
imizer E has indeed a periodicity that depends only on the slope of the restrictions.

Definition 4.1. Given any two hyperplanes Π and Π̃ parallel to the restrictions,
we denote BΠ,Π̃ as the open slab enclosed by Π and Π̃.

The following two results are needed in order to handle the exclusions. They play
the analogous role that the lower estimates in [14] play for the case without exclusions.

Lemma 4.2. If C ⊂ BΠ1,Π2 is a cube of edge length l ≥ 5 with sides parallel to
the coordinate axis and integer vertices, we have the following:

(a) If C ⊂ (Rn\E), then there exists 0 < Ma < M such that E ⊂ Γw,Ma
.

(b) If C ⊂ E, then there exist 0 < Mb < M such that Γw,Mb
⊂ E.

Proof. (a) We denote Π̃ as the hyperplane parallel to the restrictions Π1 and Π2

in such a way that the intersection Π̃ ∩ C consists only of the edge of C that is closer
to the lower restriction Π1. The equation of Π̃ is x · ω

|ω| = M̃ for some 0 < M̃ < M .

We define

D =
⋃

ω·k≥0

TkC.(14)

If ω · k ≥ 0, we claim that TkC ⊂ R
n \ E. In fact, if this is not true, there exist

x ∈ C, y ∈ E such that Tk(x) = y. Then T−k(y) = x, which is a contradiction since
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Lemma 4.1 implies T−kE ⊂ E. We conclude that the set D ⊂ R
n \ E. We note that

D contains the set {x · ω
|ω| ≥ M̃ +

√
n}. If we define Ma = M̃ +

√
n, we obtain that

E ⊂ Γw,Ma .

(b) We denote Π̃ as the hyperplane parallel to the restrictions Π1 and Π2 in such
a way that the intersection Π̃ ∩ C consists only of the edge of C that is closer to the
upper restriction Π2. The equation of Π̃ is x · ω

|ω| = M̃ for some 0 < M̃ < M . We

define

G =
⋃

ω·k≤0

TkC.(15)

If ω · k ≤ 0, it follows from Lemma 4.1 that TkE ⊂ E, and therefore TkC ⊂ E. We
conclude that G ⊂ E. We note that G contains the set {x · ω

|ω| ≤ M̃ −
√
n}. If we

define Mb = M̃ −
√
n, we obtain Γw,Mb

⊂ E.
We use the previous lemma to prove the following proposition.
Proposition 4.1. If C ⊂ BΠ1,Π2

is a cube of edge length l ≥ 5, with sides parallel
to the coordinate axis and integer vertices, then we cannot have C ⊂ E.

Proof. We proceed by contradiction. We let Mb be the number given by Lemma
4.2(b), and we define Πb = {x ∈ R

n : x · ω
|ω| = Mb}. By subtracting a small number

ε > 0 to Mb, if necessary, we can assume that |ω|Mb ∈ Q. Since l ≥ 5, there
exists p ∈ Z

n such that p ∈ C ∩ Γw,Mb
. We define Mc = p · ω

|ω| , and we take

k ∈ {x · ω
|ω| = Mb−Mc}∩Z

n (which can be chosen because |ω|(Mb−Mc) ∈ Q). Since

Mb −Mc = k · ω
|ω| we have

T−k(Πb) =

{
x− k : x · ω

|ω| = Mb

}

=

{
y : y · ω

|ω| = Mb − k · ω

|ω|

}

=

{
y : y · ω

|ω| = Mc

}
:= Πc.

The plane Πc divides E in two parts, say E1 and E2, where Π1 ⊂ E1 and Πb ⊂ E2.
We consider now the set E1 ∪ T−k(E2\BΠb,Πc). Clearly, this set is also a minimizer
contained (and not equal) in E. This contradicts the fact that E is the infimal
minimizer, that is, a minimizer that is contained in any other minimizer.

5. Proof of the main theorem. We proceed in this section to prove the main
theorem. We recall that we are considering R

n as the lattice [0, 1]n+Z
n with periodic

exclusions; i.e., each cube [0, 1]n + k with k ∈ Z
n has an internal exclusion. If I

denotes the exclusion contained Y = [0, 1]n, we assume the following:
1. I is compact, connected, and has Lipschitz boundary.
2. The distance between I and the boundary of Y , which we denote by α, is

strictly positive.
3. Any other exclusion is of the form I + z for some z ∈ Z

n; i.e., the exclusions
are periodic.

Remark 5.1. From now on, given the restrictions S1 and S2, we work with the
unique infimal minimizer E corresponding to the class AS1,S2 .

Remark 5.2. In order to clarify exposition we use the same C to denote different
universal constants.
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We now state the main theorem.
Theorem 5.1. Assume that the exclusions satisfy 1, 2, and 3 above. Then there

exists a universal constant C (that depends only on n and α) such that, for every (n−
1)-dimensional hyperplane Π, we can find a minimal surface Σ satisfying d(Π,Σ) ≤
C.

We recall from Definition 2.4 that a surface Σ is a minimal surface if it is the
boundary of a class A minimizer (recall Definition 2.3), which means that any compact
perturbation to Σ will increase its area outside the exclusions. The tool used to prove
Theorem 5.1 is essentially a covering argument. This argument is similar to the one
used in [14] to obtain the theorem for the case without exclusions. However, in our
case we need to make several adjustments in order to extend the theorem to the
case with exclusions. Lemmas 5.1, 5.3, and 5.4 are needed to handle the presence of
exclusions. Using these lemmas we prove Propositions 5.1 and 5.2. Then Theorem
5.1 follows, for the case ω rational, from Proposition 5.3. Finally, we consider the case
ω irrational at the end of this section.

Lemma 5.1. We let E denote the infimal minimizer corresponding to the class
AS1,S2

, and we let x ∈ ∂E. If Qq is a closed cube of edge length q (or a closed ball of
radius q) containing x and such that Qq ∩ Π1 = ∅ and Qq ∩ Π2 = ∅, then

Per(E,Q0
q ∩O) ≤ Cqn−1,

where Q0
q denotes the interior of the set Qq.

Proof. We can consider the set E as a candidate in the class with a period large
enough (choosing N large enough in the definition (4)) in such a way that Qq is
completely contained inside the period [0,M ] × T

n−1. Using Remark 4.1, it follows
that the set E is a minimizer for the new class. Proceeding as in Lemmas A.1 and
A.2 we can prove that, for almost every 0 < s < q,

Per(E\Qs, Q
0
q ∩O) = Per(E, (Q0

q\Qs) ∩O) + Hn−1(∂Qs ∩ E ∩O).(16)

(In fact, we can use Lemma A.1 with f(x) = ϕE , A = (Q0
q\Qs)∩O, and Ω = Q0

q ∩O.)
Since E is a minimizer we have

Per(E,Q0
q ∩O) ≤ Per(E\Qs, Q

0
q ∩O).(17)

From (16) and (17) we obtain that, for almost every 0 < s < q,

Per(E,Q0
q ∩O) ≤ Per(E, (Q0

q\Qs) ∩O) + Hn−1(∂Qs ∩ E ∩O)

≤ Per(E, (Q0
q\Qs) ∩O) + Csn−1.(18)

We now choose a sequence {sj} → q such that (18) holds for each sj . If we let j → ∞,
we conclude that

∫
Q0

q∩O
|DϕE | ≤ Cqn−1. We note that we can use C = 2n if Qq is a

cube and C = nwn (where wn is the volume of the n-dimensional unit ball) if Qq is
a ball.

Lemma 5.2. We let E denote the infimal minimizer corresponding to the class
AS1,S2 , and we let y ∈ ∂E. We assume that there exists r̃ > 0 that satisfies B(y, r̃) ∩
Π1 = ∅, B(y, r̃) ∩ Π2 = ∅, and B(y, r̃) ⊂ O. Then there exists a universal constant
C > 0 such that, for all r ≤ r̃,∫

B(y,r)

|DϕE | ≥ Crn−1.(19)
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Proof. Since E minimizes area outside the exclusions we have, for all r ≤ r̃,∫
B(y,r)

|DϕE | ≤ Hn−1(E ∩ ∂B(y, r)).(20)

We define V (r) = |E ∩ B(y, r)|, r ≤ r̃. Using the isoperimetric inequality given in
Lemma A.3 we have that

|E ∩B(y, r)| ≤ C[Per(E ∩B(y, r))]
n

n−1 .(21)

From Lemma A.2 and using (20) and (21) it follows that, for almost every r ≤ r̃,

|E ∩B(y, r)| ≤ C[Per(E ∩B(y, r),Rn)]
n

n−1

= C[Per(E,B(y, r)) + Hn−1(E ∩ ∂B(y, r))]
n

n−1

≤ C[Hn−1(E ∩ ∂B(y, r))]
n

n−1 .

Due to Remark A.1 it follows that V (r) > 0 for all r ≤ r̃. Since V ′(r) = Hn−1(E ∩
∂B(y, r)) we have, for almost every r ≤ r̃,

V (r) ≤ CV ′(r)
n

n−1 .(22)

If we divide (22) by V (r), we obtain C ≤ V (r)
1−n
n V ′(r) = (V (r)

1
n )′. If we integrate,

we obtain V (r)
1
n ≥ Cr; i.e.,V (r) ≥ Crn for all r ≤ r̃. In the same way we can prove

that |(Rn\E) ∩ B(y, r)| ≥ Crn,r ≤ r̃. The isoperimetric inequality stated in Lemma
A.4 gives us

min{|(Rn\E) ∩B(y, r)|, |E ∩B(y, r)|} ≤ C

(∫
B(y,r)

|DϕE |
) n

n−1

⇒

Crn ≤
(∫

B(y,r)

|DϕE |
) n

n−1

.

We conclude that ∫
B(y,r)

|DϕE | ≥ Crn−1.

This completes the proof of the lemma.
Lemma 5.3. We let E denote the infimal minimizer for the class AS1,S2 , and

we take x ∈ ∂E ∩ O. We assume that x ∈ Y , where Y = [0, 1]n + k for some
k ∈ Z

n, and we denote I as the exclusion contained in Y . We assume also that Y
does not intersect the parallel plane restrictions Π1 and Π2. Then ∂E ∩ ∂Yα �= ∅,
where Yα = {x ∈ Y : d(x, I) ≥ α

2 }.
Proof. We proceed by contradiction and assume that ∂E ∩ Yα = ∅. This implies

that Yα ⊂ Eint or Yα ⊂ R
n\E. Assume that Yα ⊂ Eint. We define Ẽ = E ∪ Y . From

Lemma 5.2 it follows that Ẽ has strictly less area than E, which is a contradiction.
If we assume now that Yα ⊂ R

n\E, then we can define Ẽ = E \ Y . Again, Lemma
5.2 implies that the set Ẽ has strictly less area than E, which is a contradiction. We
conclude that ∂E ∩ ∂Yα �= ∅.

Lemma 5.4. We let E denote the infimal minimizer corresponding to the class
AS1,S2 , and we let x ∈ ∂E ∩ O. We assume that x ∈ Y , where Y = [0, 1]n + k for
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some k ∈ Z
n. We assume also that Y is far away from the parallel plane restrictions

Π1 and Π2. Then there exists a cube Cx of edge length 2 and a universal constant
β > 0, such that x ∈ Cx and Cx contains at least β > 0 amount of area, where β is a
universal constant.

Proof. From Lemma 5.3 there exists y ∈ ∂E ∩ Y such that d(y, I) ≥ α
2 , where I

is the exclusion contained in Y . If we make a dyadic decomposition of Y , we get 2n

cubes of side 1
2 contained in Y . The point y must be contained in one of these dyadic

cubes, say Ỹ . Both Y and Ỹ have a common vertex, say v. We denote Cx as the cube
of edge length 2 with its center in v. We note that B(y, α

4 ) satisfies the hypothesis
of Lemma 5.3, and thus we obtain the existence of the required constant β (in fact,
β = C(α4 )n). This completes the proof of the lemma.

We shall use Vitali’s covering lemma (see [25, Chapter 1]).
Lemma 5.5. Let F be any collection of nondegenerate closed cubes in R

n with
edges parallel to the coordinate axis and satisfying

sup{diagonal C : C ∈ F} < ∞.

Then there exists a countable family G of disjoints cubes in F such that⋃
C∈F

C ⊂
⋃
C∈G

Ĉ,

where Ĉ is concentric with C, and with edge length five times the edge length of C.
Proof. The proof is the same as with balls, using the fact that the cubes are

oriented in the same way as the coordinate axis.
We have the following.
Remark 5.1. If we have a cube C in R

n of edge length l, then we can have at most
3n − 1 cubes of edge length l that intersect C without intersecting among themselves
in a set of positive measure.

We now prove the following.
Proposition 5.1. There exists a universal constant M̃ such that for all M ≥ M̃ ,

if E denotes the infimal minimizer corresponding to AS1,S2
, where S1 = Γω,0 and

S2 = Γω,M , then d(Π1, ∂E) < M̃ .
Proof. We define τ = 5, and we fix λ to be a multiple of 2τ and satisfying

λ >
22nnτn(3n − 1)

β
.(23)

We let M̃ = 2λ
√
n, and we note that 2λ

√
n is the length of the diagonal of the

cube of edge length 2λ. We fix M ≥ M̃ and denote E as the infimal minimizer
corresponding to the class AS1,S2 , where S1 = Γω,0 and S2 = Γω,M . Our choice of λ

allows us to fit a cube C̃ of edge length 2λ in between Π1 = {x ∈ R
n : x · ω = 0} and

Π2 = {x ∈ R
n : x · ω

|ω| = M}, with C̃ having integer vertices, and edges parallel to the

coordinate axis and intersecting Π1 in a line. We claim that

d(∂E,Π1) < M̃.(24)

We let C be the cube of edge length λ that is concentric with the cube C̃. One of the
following must happen:

1. C ⊂ R
n\E. In this case, Lemma 4.2(a) implies the inequality (24).
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2. C ∩ E �= ∅. In this case, due to Proposition 4.1, we cannot have C ⊂ E.
Therefore, C must intersect ∂E.

For each x ∈ ∂E ∩ O ∩ C we denote Cx as the cube of edge length 2 constructed in
Lemma 5.4. Therefore, we have a cover {∪Cx} for ∂E ∩C ∩O. By Lemma 5.5 we can
extract a countable disjoint family {Ci} such that⋃

Cx ⊂
⋃

Ĉi,(25)

where Ĉi is concentric with Ci and has edge length 2τ . From Lemma 5.1 we have∫
(∪Ci)∩O

|DϕE | ≤ 2n(2λ)n−1.(26)

From (26) and Lemma 5.4 it follows that the disjoint family has a finite number of
cubes, say K, given by

K ≤ 2nnλn−1

β
.(27)

Since λ is a multiple of 2τ , we can divide C in λn

(2τ)n cubes of edge length 2τ , each

cube having integer vertices and edges parallel to the coordinate axis. We note that
the cubes do not intersect in sets of positive measure. Let us refer to this collection
of cubes as B. By Remark 5.1, out of the collection B, at most

(3n − 1)2nnλn−1

β
(28)

intersect ∂E. Due to our choice of λ, we have

(3n − 1)2nnλn−1

β
<

λn

(2τ)n
.

This implies that there exists C′ ∈ B such that C′ ∩ ∂E = ∅. Due to Proposition 4.1
we must have C′ ⊂ R

n\E, and the inequality (24) follows from Lemma 4.2(a).
We have the following.
Proposition 5.2. If E denotes the infimal minimizer corresponding to AS1,S2

,
where S1 = Γω,0 and S2 = Γω,2λ

√
n, then E is an unconstrained minimizer.

Proof. From inequality (24) we have that, for all M > M̃ = 2λ
√
n, E is a

minimizer for the class AΓω,0,Γω,M
. We fix γ > 0. We claim that E is a minimizer

for the class AΓω,−γ ,Γω,M̃
. We proceed by contradiction and assume this is not true.

Therefore, the infimal minimizer, say Ẽ, corresponding to the class AΓω,−γ ,Γω,M̃
has

less perimeter than E. We choose k ∈ Z
n in such a way that Γω,0 ⊂ TkẼ. We

obtain a contradiction since TkẼ is contained in the class AΓω,0,Γω,M̃+k· w
|w|

and has

less perimeter than E, which is a minimizer for this class.
Proposition 5.3. If E denotes the infimal minimizer corresponding to AS1,S2 ,

where S1 = Γω,0 and S2 = Γω,2λ
√
n, then E is a class A minimizer.

Proof. We let L denote any set that coincides with E outside the ball BR−1.
We consider E as competing in a class with a period and distance between the plane
restrictions large enough so that BR−1 is completely contained in one period. In order
to do this, we choose M > 0 and N in (4) large enough in such a way that BR−1
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is contained in the period [−M,M ] × T
n−1 corresponding to the class AΓω,−M ,Γω,M

.
Using Proposition 5.2 and Remark 4.1 it follows that E is a minimizer in this new
class, and therefore Per(E,BR ∩ O) ≤ Per(L,BR ∩ O). Since R is arbitrary, the
proposition follows.

This completes the proof of Theorem 5.1 for the case ω rational.

5.1. The case ω irrational. We now proceed to consider the case when the
slope ω of the plane is irrational. Given ω ∈ R

n\Q
n, there exists a sequence {ωj} ∈ Q

n

with ωj → ω. For each ωj , we let {Eωj} denote the corresponding class A minimizers
given by Theorem 5.1. From Lemma 5.1 we have

Per(Eωj , BR ∩O) ≤ CRn−1.

Thus, {Eωj
} has a subsequence that is convergent in L1(BR ∩ O). By applying the

diagonal procedure, we obtain a subsequence of {Eωj
} (which we will denote again

as {Eωj}) and a set Eω such that Eωj → Eω in L1
loc(R

n ∩O). We need to check that
Eω is a class A minimizer. We let L denote any set that coincides with Ew outside
the ball BR−1. We define, for each j and R ≤ r ≤ R + 1,

F r
j =

{
L in Br,
Ej in BR+1 \Br.

Since each Ej is a class A minimizer we have∫
BR+1∩O

|DϕEj
| ≤

∫
BR+1∩O

|DϕF r
j
|

=

∫
Br∩O

|DϕL| +
∫
∂Br∩O

|DϕF r
j
| +

∫
(BR+1\Br)∩O

|DϕEj
|

=

∫
Br∩O

|DϕL| +
∫
∂Br∩O

|(ϕL)rtr − (ϕEj )
r
tr|dHn−1

+

∫
(BR+1\Br)∩O

|DϕEj
|,

where (ϕL)rtr and (ϕEj )
r
tr are the traces (see Theorem A.3) of ϕL and ϕEj on ∂Br,

respectively. We recall that, for almost every R ≤ r ≤ R + 1, the traces (ϕL)rtr and
(ϕEj

)rtr coincide with the corresponding characteristic functions (see [27]). Using this
fact and passing the last term in the right-hand side of the previous inequality to the
left we obtain, for almost every R ≤ r ≤ R + 1,∫

Br∩O

|DϕEj | ≤
∫
Br∩O

|DϕL| +
∫
∂Br∩O

|ϕL − ϕEj |dHn−1.(29)

We have the identity∫
(BR+1\BR)∩O

|ϕEj − ϕL| =

∫ R+1

R

∫
∂Br∩O

|ϕEj − ϕL|dHn−1dr.(30)

Since Ew = L in BR+1 \ BR it follows that Ej → L in L1((BR+1 \ BR) ∩ O). This
implies that (30) converges to 0 as j → ∞, and therefore there exists a subsequence
of {Ej} (that we shall denote again as Ej) such that, for almost every R ≤ r ≤ R+1,∫

∂Br∩O

|ϕEj
− ϕL|dHn−1 → 0.(31)
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From (29) and (31), it follows that, for almost every R ≤ r ≤ R + 1,

lim sup
r→o

∫
Br∩O

|DϕEj
| ≤

∫
Br∩O

|DϕL|,(32)

and hence ∫
Br∩O

|DϕEw | ≤ lim inf

∫
Br∩O

|DϕEj |

≤
∫
Br∩O

|DϕL|.

Since L = Ew in BR+1 \BR we conclude that∫
BR∩O

|DϕEw
| ≤

∫
BR∩O

|DϕL|,(33)

which proves that Ew is a class A minimizer. Clearly, we also have d(Ew,Π1) ≤
2λ

√
n.

6. Behavior of the minimizers near the boundaries of the exclusions.
It is an easy exercise to check that, for n = 2, minimizers must enter the exclusions
orthogonally. In higher dimensions, the analogous result can be deduced (once we have
the regularity of the minimizers up to the boundary of the exclusions) by studying the
first variation of the area. An analysis of the Euler–Lagrange equation is done in [31],
and we explain in this section how to use the results in [31] to obtain the fact that the
minimizers must enter the exclusions orthogonally. For a proof of this orthogonality
property, using techniques of geometric measure theory, we refer the reader to [29].
When the exclusions have C2 boundary, the regularity of the minimizers near the
boundaries of the exclusions is proven in [29].

In order to show how the orthogonality result follows from the work in [31], we
must first recall that the minimal surface problem can also be studied by considering
the surfaces as graphs of functions (nonparametric approach; cf. [27]). We can think
of the nonparametric minimal surface problem as the problem of minimizing the
energy among a class of functions with fixed boundary data and where the density at
each point is one. In [31], the nonparametric minimal surface problem involving two
different media is considered (the density at each point is given by a positive, piecewise
smooth function), and the Euler–Lagrange equation is derived from the variational
form. The solution has a jump across the interface that separates the two media, and
a jump condition is derived that generalizes Snell’s law to higher dimensions.

For the case n = 2, following [31] we consider a two-dimensional domain D =
[a, b] × [c, d], and we seek a function u(x, y) which minimizes the functional

E(u) =

∫
D

c(x, y, u(x, y))
√

1 + |Du(x, y)|2dxdy,

u(x, y)|∂D = u0(x, y),(34)

where u0(x, y) is a given boundary condition and c(x, y, z) is a positive piecewise
smooth function which has a finite jump across a surface S = {(x, y, z) : g(x, y, z) =
0}. We assume that the graph of the minimizer of (34) intersects the surface S at a
curve Γ. We denote γ as the projection of Γ on the (x, y)-plane. The curve γ divides
the set D in two regions, D1 and D2. It is proven in [31] that if the surface S can
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be expressed locally as the graph of the function z = φ(x, y), then the jump of the
derivatives of u(x, y) across the surface S must satisfy the following generalized Snell’s
law in three dimensions (which can be extended to higher dimensions):

c−n1 · m|Γ = c+n2 · m|Γ,(35)

where c− and c+ are the weights of the two different media, ni =
(−ux,−uy,1)√

1+u2
x+u2

y

are the

normal directions of the surface u(x, y) in Di, i = 1, 2, and m =
(−φx,−φy,1)√

1+φ2
x+φ2

y

is the

unit normal direction of S.
We note that if we consider the case c− = ε, c+ = 1 and then compute the limit

in (35) as ε → 0 we obtain

n2 · m|Γ = 0,(36)

which implies that n2 and m are orthogonal vectors. We conclude from this that the
minimizer E meets (on its regular points) the boundary of the exclusions orthogonally.

7. Connection with homogenization of Hamilton–Jacobi equations. In
this section we explore some connections with the theory of homogenization of
Hamilton–Jacobi equations. We first recall some of the main issues concerning the
homogenization of Hamilton–Jacobi equations, and then we present the connection
with the degenerate metric considered earlier.

We consider, for each 0 < ε ≤ 1, the viscosity solution uε of the following problem:

H
(
Duε,

x

ε

)
= 0 in R

n,(37)

where H : R
n × R

n → R is a periodic function in the second variable. Under a
suitable hypothesis (see, for instance, [22]) we can homogenize (37); i.e., the sequence
of viscosity solutions {uε} converges as ε → 0 to the viscosity solution u of the averaged
problem

H(Du) = 0 in R
n,

where H : R
n → R is defined as follows: for each p ∈ R

n, H(p) is the unique number
for which the PDE

H(p + Dyv, y) = H(p) in R
n,

v is [0, 1]n-periodic(38)

has a viscosity solution.
As explained in the introduction, the function H is called the effective Hamil-

tonian, and an interesting endeavor is to study the structure of H in order to find
explicit formulas for it. This is still largely an open problem, and [22, 19, 20, 24, 17, 16]
contain results in this direction. The goal of this section is to provide a particular
example of (37) for which we can explicitly compute the limiting function u.

We recall our earlier consideration of R
n as the lattice of cubes [0, 1]n +Z

n where
each cube of side 1 has an internal exclusion. The exclusions satisfy properties 1, 2,
and 3 stated in the introduction. In this section we work with surfaces of codimension
(n− 1), i.e., curves, instead of surfaces of codimension 1.

We fix x ∈ R
n, and for each 0 < ε ≤ 1 we consider the sequence of lattices

ε([0, 1]n + Z
n). We let J denote the set of all curves joining the origin with x. We
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use the degenerate metric introduced in this paper to measure the length of each
curve l ∈ J . The length of l at the scale ε, that is, when we consider l as residing
in the configuration ε([0, 1]n + Z

n), is obtained by neglecting the portions inside the
exclusions. This length depends on ε since the configuration of the lattice changes as
we let ε → 0. We let lε denote the curve of minimal length and denote this optimal
length by dε(0, x). We shall refer to the number dε(0, x) as the smallest distance
between 0 and x at the scale ε.

We define, for each 0 < ε ≤ 1, the sequence of functions

uε(x) = dε(0, x), x ∈ R
n.(39)

We have the following.
Theorem 7.1. If I denotes the union of all exclusions and O = R

n\I, then{
|Duε| = 1 in εO,

uε is constant on each connected component of εI.
(40)

Proof. Without loss of generality we can assume ε = 1. We define

v(x) = d1(x, 0), x ∈ R
n.(41)

v(x) is the smallest distance from x to the origin, and since we compute the length
of a path l ∈ J by neglecting the portions inside the exclusions, we have that v
is constant on each exclusion, which is connected. We prove now that v solves the
eikonal equation |Dv| = 1 in the viscosity sense outside the exclusions. We prove first
that v is a viscosity subsolution of |Du| = 1. If ϕ is a C1 function such that v − ϕ
has a local maximum at the point x0 ∈ O, we need to prove that |Dϕ(x0)| ≤ 1. Since
v − ϕ has a local maximum at x0 it follows that v(x) − v(x0) ≤ ϕ(x) − ϕ(x0) for all
x in a neighborhood of x0. Therefore, for all z satisfying |z| = 1 and for all h small
enough, we have

v(x0 + hz) − v(x0) ≤ ϕ(x0 + hz) − ϕ(x0) =

∫ h

0

d

ds
ϕ(x0 + sz)

=

∫ h

0

Dϕ(x0 + sz) · zds ≤
∫ h

0

Dϕ(x0) · zds + Ch2.

If we define z0 = − Dϕ(x0)
|Dϕ(x0)| , then

v(x0 + hz0) − v(x0) ≤ −
∫ h

0

|Dϕ(x0)|ds + Ch2 = −h|Dϕ(x0)| + Ch2.(42)

We now use the fact that v is a Lipschitz function, and from (42) we obtain

h|Dϕ(x0)| ≤ v(x0) − v(x0 + hz0) + Ch2 ≤ |hz0| + Ch2,

and hence

|Dϕ(x0)| ≤ 1 + Ch.

By letting h → 0, we conclude that |Dϕ(x0)| ≤ 1. We now prove that v is a superso-
lution. If ϕ is a C1 function such that v−ϕ has a local minimum at the point x0 ∈ O,
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we need to prove that |Dϕ(x0)| ≥ 1. Since v−ϕ has a local minimum at x0, it follows
that v(x)− v(x0) ≥ ϕ(x)− ϕ(x0) for all x in a neighborhood of x0. Therefore, if h is
small enough, we have

v(x0 + hz) − v(x0) ≥ ϕ(x0 + hz) − ϕ(x0) =

∫ h

0

d

ds
ϕ(x0 + sz) =

∫ h

0

Dϕ(x0 + sz) · zds

≥
∫ h

0

Dϕ(x0) · zds− Ch2 ≥ −h|Dϕ(x0)| − Ch2(43)

for all |z| = 1. We fix h small enough. We note that v(x0) = inf |z|=1{h+ v(x0 +hz)},
and hence there exists a point z0 such that v(x0 + hz0) + h ≤ v(x0) + h2. From
(43) we obtain h|Dϕ(x0)| ≥ v(x0) − v(x0 + hz0) − Ch2 ≥ h − h2 − Ch2, and hence
|Dϕ(x0)| ≥ 1 − h− Ch. Letting h → 0 we obtain |Dϕ(x0)| ≥ 1.

From standard theory of viscosity solutions we have that {uε} contains a sub-
sequence that converges uniformly to a function u0. Constructing the PDE that u0

solves (i.e., the homogenization of (40)) is difficult. We present in this section some
partial results toward this homogenization.

We proceed to compute u0 for the particular case n = 2 and we assume, in
addition to properties 1, 2, and 3 given in the introduction, that the exclusions are
balls of radius ρ. Given two fixed points P and Q in the plane, we let lρε (P,Q) denote
the optimal path joining P and Q at the scale ε. We denote dρε (P,Q) as the length of
lρε (P,Q). The behavior of dρε (P,Q) depends on the value of ρ, where 0 < ρ ≤ 1

2 (we
note that the radius of the exclusions at the scale ε is ερ). We have, for any 0 < ε ≤ 1,

0 ≤ dρε (P,Q) ≤ |P −Q|2.(44)

Thus, fixing ρ and letting ε → 0 it follows that {dρε (P,Q)} contains a subsequence
that converges to a number, say dρ0(P,Q).

If we assume that X and Y are centers of exclusions at the scale ε, we can replace
lρε (X,Y ) inside the exclusions with lines so that this optimal path is composed of a
sequence of segments. We can classify (after a suitable translation and/or rotation)
these segments in the following four categories:

1. a segment joining the points (0, 0) and ( i
ε ,

j
ε ), where i, j ∈ Z

+ are relatively
prime and j < i;

2. the segment joining the points (0, 0) and (1
ε , 0);

3. the segment joining the points (0, 0) and (0, 1
ε );

4. the segment joining (0, 0) and (1
ε ,

1
ε ).

We identify a segment of type 1 with the pair [i, j], a segment of types 2 or 3 with
[1, 0], and a segment of type 4 with [1, 1]. Therefore, any optimal path joining two
points that are centers of exclusions is composed of a sequence of segments belonging
to the set

P = {[i, j] : i, j ∈ Z
+, i, j are relatively prime, j < i} ∪ {[1, 1]} ∪ {[1, 0]}.

We prove in the next theorem that if ρ is large enough, then the optimal path joining
two centers of exclusions is composed only of segments of the type [1, 0].

Theorem 7.2. If ρ > 2−
√

2
2 then, for any 0 < ε ≤ 1, the optimal path connecting

two points that are centers of exclusions is composed only of segments of the type [1, 0].
Moreover, if P and Q are any two points, we have that

lim
ε→0

dρε (P,Q) = (1 − 2ρ)|P −Q|1.
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Proof. We fix ε > 0, and thus in this proof we work in the domain ε([0, 1]n + Z
n).

We denote X = (x1, x2) and Y = (y1, y2) as two points that are centers of exclusions.
We can assume, without loss of generality, that y1 ≥ x1 and y2 ≥ x2. We proceed by
contradiction and assume that lρε (X,Y ) has a segment of the type 1 or 4. Therefore,
the path lρε (X,Y ) contains a segment joining the points ε(i + 1

2 , j + 1
2 ) and ε(i + 1

2 +
m, j + 1

2 + n), where n ≤ m, n ≥ 2, and m and n are prime relative to each other.
Since lρε (X,Y ) is the optimal path we have that

m(ε− 2ερ) + n(ε− 2ερ) ≥
√

ε2m2 + ε2n2 − 2ερ,

m(1 − 2ρ) + n(1 − 2ρ) ≥
√

m2 + n2 − 2ρ,

m + n−
√
m2 + n2 ≥ 2(m + n− 1)ρ,

⇒ ρ ≤ m + n−
√
m2 + n2

2(m + n− 1)
.

We claim that m+n−
√
m2+n2

2(m+n−1) ≤ 2−
√

2
2 . To prove this, we consider the function f(x) =

x+n−
√
x2+n2

2(x+n−1) and its derivative f ′(x) = 1
2
n2−

√
x2+n2+x−xn√

n2+x2(x+n+1)2
. We note that f ′(x) ≤ 0

if x ≥ 0. This implies that f is decreasing, and thus f(m) ≤ f(n). By a simple

substitution it follows that f(n) = 2n−
√

2n
2(2n−1) = 2−

√
2

2 ( n
2n−1 ) ≤ 2−

√
2

2 (since n
2n−1 ≤ 1).

Hence, ρ ≤ f(m) ≤ 2−
√

2
2 , which contradicts the fact that ρ > 2−

√
2

2 . This proves
the first part of the theorem. Because of the above result, we can explicitly compute
dρε (X,Y ):

dρε (X,Y ) =
y2 − x2

ε
(ε− 2ερ) +

y1 − x1

ε
(ε− 2ερ)

= (1 − 2ρ)[(y2 − x2) + (y1 − x1)]

= (1 − 2ρ)|Y −X|1.(45)

We now denote P and Q as any two points in the plane. If P ′ and Q′ are the closest
centers of exclusions to P and Q, respectively, we have

dρε (P
′, Q′) −

√
2ε ≤ dρε (P,Q) ≤ dρε (P

′, Q′) +
√

2ε.

From (45) we have

(1 − 2ρ)|P ′ −Q′|1 −
√

2ε ≤ dρε (P,Q) ≤ (1 − 2ρ)|P ′ −Q′|1 +
√

2ε.

Using the triangle inequality, again

(1 − 2ρ)(|P −Q|1 − 2
√

2ε) −
√

2ε ≤ dρε (P,Q)

≤ (1 − 2ρ)(|P −Q|1 + 2
√

2ε) +
√

2ε.

Letting ε → 0 yields

1 − 2ρ ≤ dρ0(P,Q)

|P −Q|1
≤ 1 − 2ρ

⇒
dρ0(P,Q) = (1 − 2ρ)|P −Q|1.

We now wish to study the behavior of the optimal path as ρ → 0. As ρ de-
creases, new paths (new segments of the collection P) become available. For each
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segment [i, j] there exists a critical radius ρ[i,j], which is the largest radius for which

d
ρ[i,j]

1 ((0, 0), (i, j)) =
√

i2 + j2.

Since P is countable, we can enumerate the sequence {ρ[i,j]} in such a way that
the coordinate i is always increasing. We have the following lemma.

Lemma 7.1. limi→∞ ρ[i,j] = 0.

Proof. We recall that [i, j] represents the segment joining (0, 0) with (i, j). We
denote by P = (p1, p2) the closest point (other than the extremes) with integer coor-
dinates to the segment, and we denote this distance as d. The point P satisfies the
equation | ij − p1

p2
| = 1

jp2
, that is, |ip2 − jp1| = 1 = A(p), where A(p) is the area of

the parallelogram spanned by (i, j) and (p1, p2). Hence we have that 1
2 = d

√
i2+j2

2 ,

which implies that d = 1√
i2+j2

. We define l =
√

i2 + j2, l1 =
√
p2
1 + p2

2, and

l2 =
√

(i− p1)2 + (j − p2)2. Solving the equation l−2ρ = l1 + l2−4ρ for ρ, we obtain
the critical radius for which the segment joining (0, 0) with (i, j) is a better path than
the one joining the points (0, 0), (p1, p2), and (i, j). We have that ρ = l1+l2−l

2 . Since

l1 + l2 ≤ 2d + l it follows that ρ ≤ 2d+l−l
2 = d = 1√

i2+j2
. Since ρ[i,j] ≤ ρ the lemma

holds.

An easy computation gives us ρ[1,1] = 2−
√

2
2 , ρ[2,1] = 1+

√
2−

√
5

2 , and ρ[3,1] =
1+

√
5−

√
10

2 . We have the following theorem.

Theorem 7.3. Let P , Q be any two points in the plane. Then we have the
following:

(a) If 1+
√

2−
√

5
2 < ρ ≤ 2−

√
2

2 , we have

lim
ε→0

dρε (P,Q) = |P −Q|1,1,

where | · |1,1 : R
2 → R

+ is given by

|(x, y)|1,1 = (
√

2 − 1)|x| + (1 − 2ρ)|y| if |x| ≤ |y| and

|(x, y)|1,1 = (
√

2 − 1)|y| + (1 − 2ρ)|x| if |y| ≤ |x|.
(b) If 1+

√
5−

√
10

2 < ρ ≤ 1+
√

2−
√

5
2 , we have

lim
ε→0

dρε (P,Q) = |P −Q|2,1,

where | · |2,1 : R
2 → R

+ is given by

|(x, y)|2,1 = (1 − 2ρ)|x| + (
√

5 − 2 + 2ρ)|y| if |y| ≤ |x|
2 ,

|(x, y)|2,1 = (2
√

2 −
√

5 − 2ρ)|y| + (
√

5 −
√

2)|x| if |x|
2 < |y| ≤ |x|,

|(x, y)|2,1 = (1 − 2ρ)|y| + (
√

5 − 2 − 2ρ)|x| if |y| ≥ 2|x|, and

|(x, y)|2,1 = (2
√

2 −
√

5 + 2ρ)|x| + (
√

5 −
√

2)|y| if |x| ≤ |y| < 2|x|.
Moreover, | · |1,1 and | · |2,1 define norms in R

2.

Proof. We denote X = (x1, x2) and Y = (y1, y2) as centers of exclusions (at the
scale ε). We can assume that x1 ≤ y1 and x2 ≤ y2. In order to prove (a), we consider
first the case when y2 − x2 ≤ y1 − x1. Solving the equation

√
5 − 2ρ =

√
2 + 1 − 4ρ,

we obtain ρ =
√

2+1−
√

5
2 , the critical radius for which the next segment [2, 1] becomes

available. Therefore, if ρ belongs to the interval given in (a), the only paths available
are [1, 0] and [1, 1]. Thus, the optimal path lρε (X,Y ) has as many segments [1, 1] as
possible, since for this interval [1, 1] is better than two segments of type [1, 0]. Hence,
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we can compute dρε (X,Y ) explicitly, and we obtain

dρε (X,Y ) =
y2 − x2

ε
(
√

2ε− 2ερ) +
(y1 − x1) − (y2 − x2)

ε
(ε− 2ερ)

= (
√

2 − 1)(y2 − x2) + (1 − 2ρ)(y1 − x1)

= |Y −X|1,1.
The case y2 − x2 ≥ y1 − x1 is computed in the same way, except that we interchange
the roles of the coordinates. To prove (a) we can proceed now in exactly the same
way (provided that | · |1,1 is a norm) as in Theorem 7.2. We need to check that | · |1,1
defines a norm in R

2. We need only to show that the triangle inequality holds, and
there are several cases to verify.

We let (x, y), (w, z) be any two points in the plane, and we consider the case
|y| ≤ |x|, |w| ≤ |z| and |x+w| ≤ |y+ z|. We need to prove that (

√
2−1)|x+w|+(1−

2ρ)|y + z| ≤ (
√

2− 1)(|y|+ |w|) + (1− 2ρ)(|x|+ |z|); that is, (
√

2− 1)(|x+w| − |y| −
|w|) + (1− 2ρ)(|y + z| − |x| − |z|) ≤ 0. Using the triangle inequality for real numbers
we can see that the last inequality is true since |x| − |y| ≥ 0 and 1 − 2ρ >

√
2 − 1 for

ρ in the interval given in (a).
Considering now the case |y| ≤ |x|, |w| ≥ |z|, and |x + w| ≤ |y + z|, we need to

prove that (
√

2− 1)|x+w|+ (1− 2ρ)|y+ z| ≤ (
√

2− 1)(|y|+ |z|) + (1− 2ρ)(|x|+ |w|);
that is, (

√
2 − 1)(|x + w| − |y| − |z|) + (1 − 2ρ)(|y + z| − |x| − |w|) ≤ 0. Using the

triangle inequality for real numbers we can see that the last inequality is true.
Proceeding to the case |y| ≤ |x|, |w| ≤ |z|, and |x + w| ≥ |y + z|, we need to

prove that (
√

2− 1)|y+ z|+ (1− 2ρ)|x+w| ≤ (
√

2− 1)(|y|+ |w|) + (1− 2ρ)(|x|+ |z|);
that is, (

√
2 − 1)(|y + z| − |y| − |w|) + (1 − 2ρ)(|x + w| − |x| − |z|) ≤ 0. Using the

triangle inequality for real numbers we can see that the last inequality is true since
|z| − |w| ≥ 0 and 1 − 2ρ >

√
2 − 1 for ρ in the interval given in (a).

Finally, we check that |y| ≤ |x|, |w| ≥ |z|, and |x+w| ≥ |y+ z|. We need to prove
that (

√
2− 1)|y + z|+ (1− 2ρ)|x+w| ≤ (

√
2− 1)(|y|+ |z|) + (1− 2ρ)(|x|+ |w|); that

is, (
√

2 − 1)(|y + z| − |y| − |z|) + (1 − 2ρ)(|x + w| − |x| − |w|) ≤ 0, which is true due
to the triangle inequality. There are four more cases corresponding to |y| ≥ |x|, but
they are proven in the same way. The unit ball for this norm is a polygon with eight
edges as shown in Figure 2.

To prove (b) we note that by solving the equation
√

10 − 2ρ =
√

5 + 1 − 4ρ we

obtain ρ =
√

5+1−
√

10
2 , the critical radius for which the next segment [3, 1] becomes

available. If p > 0 and q ≥ 0 are two integers satisfying −p+2q ≤ 0, then, for ρ in the
interval given in (b), the best path joining (0, 0) with (p, q) consists only of segments
of the type [2, 1] and [1, 0]. Furthermore, this path takes as many [2, 1] segments as
possible and then completes the trajectory with segments [1, 0]. If −p + 2q > 0 and
q < p, the best path consists only of segments of the type [2, 1] and [1, 1], and this
path takes as many [2, 1] segments as possible and then completes the trajectory with
segments [1, 1]. Thus, we can compute dρε (X,Y ) exactly as before and proceed as in
Theorem 7.2. The unit ball for | · |2,1 is a polygon with 16 edges as shown in Figure
2.

The following theorem gives an asymptotic behavior of dρ0.
Theorem 7.4. Let P , Q be any two points in the plane. Then

lim
ρ→0

dρ0(P,Q) = |P −Q|2.

Proof. We denote X and Y as two points that are centers of exclusions (at the
scale ε). The optimal path lρε (X,Y ) intersects a finite numbers of balls, say N . We
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(1,0)0

P

0
(1/(1−2ρ),0)

Q
R

S

0
0

ρ

(1/(1−2ρ),0)(1/(1−2ρ),0)

goes to 0

Fig. 2. Unit balls for limiting norms. P = R = ( 1√
2−2ρ

, 1√
2−2ρ

), Q = ( 1√
5−2ρ

, 2√
5−2ρ

),

S = ( 2√
5−2ρ

, 1√
5−2ρ

).

define

d̃ρε (X,Y ) = dρε (X,Y ) + (N − 1)(2ερ).(46)

Since the distance between two centers of exclusions is at least ε it follows that

N ≤ d̃ρε (X,Y )

ε
+ 1

⇒ N − 1 ≤ d̃ρε (X,Y )

ε
.(47)

Hence, using (46) and (47) we obtain

dρε (X,Y ) ≥ d̃ρε (X,Y ) − d̃ρε (X,Y )

ε
(2ερ)

= d̃ρε (X,Y )(1 − 2ρ)

≥ (1 − 2ρ)|X − Y |2.(48)

We denote P ′ and Q′ as the closest points to P and Q, respectively (at the scale ε),
in such a way that both P ′ and Q′ are centers of exclusions. We have

dρε (P
′, Q′) −

√
2ε ≤ dρε (P,Q) ≤ |P −Q|2.

Using (48), we obtain

(1 − 2ρ)|P ′ −Q′|2 −
√

2ε ≤ dρε (P,Q) ≤ |P −Q|2.

Using the triangle inequality we have

(1 − 2ρ)(|P −Q|2 −
√

2ε) −
√

2ε ≤ dρε (P,Q) ≤ |P −Q|2.

Letting ε → 0 we have

1 − 2ρ ≤ dρ0(P,Q)

|P −Q|2
≤ 1.

This implies

lim
ρ→0

dρ0(P,Q) = |P −Q|2.

Figure 2 shows the unit balls of norms dρ0 for the cases 2−
√

2
2 < ρ < 0.5,

1+
√

2−
√

5
2 < ρ ≤ 2−

√
2

2 , and 1+
√

5−
√

10
2 < ρ ≤ 1+

√
2−

√
5

2 . Our results suggest that
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as ρ gets smaller the behavior of the unit ball changes, though it is always polygonal
with more and mores edges until it becomes a circle in the limit. That is, as ρ → 0,
the sequence of norms converges to the Euclidean norm.

Remark 7.1. The norms dρ0 can be thought of as an example of the so-called
stable norms (see, for instance, [33, 28, 11, 6, 10, 5, 4] and the references therein).
However, in this paper we are interested in looking at these norms in the context of
Hamilton–Jacobi equations in order to provide an explicit example of homogenization
of Hamilton–Jacobi equations. As mentioned earlier, finding explicit formulas for the
effective Hamiltonian H is essentially still an open problem.

Remark 7.2. Theorems 7.2 and 7.3 provide, for n = 2, an explicit formula for
u0, which is the uniform limit of the solutions of (40). The homogenization of (40) is
difficult to achieve. The construction of the corresponding effective Hamiltonian H
does not follow from [30] due to the behavior of the functions uε on the boundaries
of the exclusions.

Appendix A.
We refer to the standard references [27, 25, 2] for the details related to the theory

of sets of finite perimeter.
Definition A.1. Throughout this paper, we denote B(x, r) as the open ball

centered at x and radius r (we shall also use the notation Br when x = 0). We denote
Hk as the k-dimensional Hausdorff measure in R

n, and Ln denotes the Lebesgue
measure in R

n. We recall that Hn = Ln. At times we shall denote |E| as the Ln-
Lebesgue measure of E.

Definition A.2 (see [27, p. 4]). We let Ω ⊂ R
n denote an open set. If f ∈ L1(Ω),

we define∫
Ω

|Df | = sup

{∫
Ω

fdivg : g ∈ C1
0 (Ω; Rn), |g(x)| ≤ 1, for x ∈ Ω

}
.

Definition A.3. A function f ∈ L1(Ω) is said to have bounded variation in Ω if∫
Ω
|Df | < ∞. We define BV (Ω) as the space of all functions in L1(Ω) with bounded

variation. With the norm |f |BV = |f |L1(Ω) +
∫
Ω
|Df |, BV (Ω) is a Banach space. If

f ∈ BV (Ω), then Df , the gradient of f in the sense of distributions, is a vector valued
Radon measure in Ω with total variation |Df |. Thus we may extend the definition of∫
A
|Df | to include cases where A ⊂ Ω is not necessarily open.
Definition A.4. If E denotes a Borel set, we define the perimeter of E in Ω as

Per(E,Ω) =

∫
Ω

|DϕE |,

where ϕE is the characteristic function of the set E. If Per(E,Ω) < ∞ for every
bounded open set Ω, then E is called a set of locally finite perimeter in R

n. For
simplicity, we will denote a set of locally finite perimeter in R

n simply as a set of
finite perimeter. Also, at times we shall denote Per(E,Rn) simply as Per(E).

Definition A.5 (see [27, p. 43]). Let E be a set of finite perimeter. We call the
reduced boundary of E, denoted as ∂∗E, the set of all points x ∈ supp|DϕE | such
that

•
∫
B(x,r)

|DϕE | > 0 for all r > 0;

• the limit ν(x) = limr→0

∫
B(x,r)

DϕE∫
B(x,r)

|DϕE |
exists;

• |ν(x)| = 1.
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Definition A.6. For every γ ∈ [0, 1] and every Ln-measurable set E ⊂ R
n, we

define

Eγ =

{
x ∈ R

n : lim
r→0

|B(x, r) ∩ E|
|B(x, r)| = γ

}
,(49)

the set of all points with density γ. If E is a set of finite perimeter, then (cf. [2]) the
limit in (49) exists for Hn−1-almost every x. The sets E1 and E0 are the measure
theoretic interior and exterior of E, respectively.

Definition A.7. We say that the set of finite perimeter E has least area in the
open set Ω if∫

Ω

|DϕE | = inf

{∫
Ω

|DϕF | : F is a set of finite perimeter, support(ϕF − ϕE) ⊂ Ω

}
.

Definition A.8. If E is a set of finite perimeter, we denote ∂E as the topological
boundary of E. We note that Eint ⊂ E1 and Eout ⊂ E0, where Eint denotes the
topological interior of the set E, and Eout = (Rn \ E)int. We define

∂sE = R
n \ (E0 ∪ E1).

The set ∂sE is called the essential boundary of E. We have

∂∗E ⊂ E 1
2
⊂ ∂sE

and

Hn−1(∂
sE \ ∂∗E) = 0.

We have that

|DϕE | = Hn−1|∂∗E .(50)

Remark A.1. When considering functions in BV we are really considering equiv-
alence classes of functions, and changing a function on a set of measure zero gives the
same function. The same is true for sets of finite perimeter, and, therefore, since we
are concerned only with equivalence classes of sets, we assume throughout this paper
that a set of finite perimter E is the representative given by Theorem A.1. With this
convention, there is no ambiguity when speaking of the topological boundary of a set
of finite perimeter.

Remark A.2. Standard interior regularity theory [12, 13, 26, 27, 18] implies
that, if n ≤ 7 and E is a set of finite perimeter that has least area in the open set Ω,
then ∂E ∩ Ω is a smooth surface. If n > 7, ∂E ∩ Ω can have singularities, but they
have zero Hk-measure for any k > n− 8. At times we will use the word “surface” to
denote the boundary of a set of finite perimeter, although this boundary could have
singularities.

Proposition A.1 (see [27, p. 7]). If {fj} denote a sequence of functions in
BV (Ω) that converge in L1

loc(Ω) to a function f, then the following semicontinuity
property holds: ∫

Ω

|Df | ≤ lim inf
j→∞

∫
Ω

|Dfj |.
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Theorem A.1 (see [27, p. 42]). If E is a Borel set, then there exists a Borel set
Ẽ equivalent to E (that is, differs only by a set of Ln-measure zero) and such that

0 < |Ẽ ∩B(x, r)| < ωnr
n

for all x ∈ ∂Ẽ and all r > 0, where ωn is the measure of the unit ball in R
n.

Theorem A.2 (see [27, p. 17]). If Ω is a bounded open set in R
n with Lipschitz

continuous boundary, then sets of functions uniformly bounded in a BV norm are
relatively compact in L1(Ω).

Since we are regarding BV (Ω) as a subset of L1(Ω), it makes no sense to talk
about the value of a BV function on sets of measure zero. However, it is important
to be able to talk about the value of a BV function on the boundary of a set even
though such a boundary may have measure zero; that is, we need a notion of trace
of a BV function on the boundary of the set. The following theorem provides such a
trace, which depends on the value of the function on the surroundings of the set.

Theorem A.3 (see [27, p. 37]). If Ω is a bounded open set with Lipschitz con-
tinuous boundary ∂Ω and f ∈ BV (Ω), then there exists a function ftr ∈ L1(∂Ω) such
that, for Hn−1-almost all x ∈ ∂Ω,

lim
r→0

∫
B(x,r)∩Ω

|f(z) − ftr(x)|dz = 0,

and ftr is called the trace function.
Theorem A.4 (see [27, p. 172]). We let A and B denote two sets of finite

perimeter. If Ω is any open set, then

Per(A ∩B,Ω) + Per(A ∪B,Ω) ≤ Per(A,Ω) + Per(B,Ω).

Proof. We let f, g be two smooth functions with 0 ≤ f ≤ 1, 0 ≤ g ≤ 1. We define
Ψ = f + g − fg and Φ = fg. We note that∫

Ω

|DΨ| ≤
∫

Ω

(1 − f)|Dg| +
∫

Ω

(1 − g)|Df |,∫
Ω

|DΦ| ≤
∫

Ω

f |Dg| +
∫

Ω

g|Df |.

This implies ∫
Ω

|DΦ| +
∫

Ω

|DΨ| ≤
∫

Ω

|Df | +
∫

Ω

|Dg|.(51)

We can find [27] sequences of smooth functions fj and gj such that fj → ϕA, gj → ϕB

in L1(Ω) and
∫
Ω
|Dfj | →

∫
Ω
|DϕA|,

∫
Ω
|Dgj | →

∫
Ω
|DϕB |. Since Ψj = fj+gj−fjgj →

ϕA∪B , Φj = fjgj → ϕA∩B , the theorem follows from (51) and Proposition A.1.
Theorem A.5 (see [27, p. 173]). Let E = E1 ∪E2, and let Hn−1(E1 ∩E2) = 0.

Then for any open set A we have∫
A

|DϕE | =

∫
A

|DϕE1
| +

∫
A

|DϕE2
|.(52)

Moreover, if E has least area in A, the same is true for E1 and E2.



548 MONICA TORRES

Lemma A.1 (see [27, p. 28]). Let f ∈ BV (Ω). If A ⊂⊂ Ω is an open set
with Lipschitz continuous boundary ∂A, then f |A and f |Ω\A belong to BV (A) and

BV (Ω\A), respectively, and∫
∂A

|Df | =

∫
∂A

|f−
A − f+

A |dHn−1,

where f−
A = (fA)tr and f+

A = (f |Ω\A)tr, the traces on ∂A of f |A and f |Ω\A, respec-

tively.
Lemma A.2. If E is a set of finite perimeter and x ∈ R

n, then, for almost every
r,

Per(E ∩B(x, r),Rn) = Per(E,B(x, r)) + Hn−1(E ∩ ∂B(x, r)).

Proof. We denote

F (x) =

{
ϕE(x), x ∈ B(x, r),

0, x ∈ R
n\B(x, r).

(53)

From Lemma A.1 and using (53) we have∫
Rn

|DF | =

∫
B(x,r)

|DϕE | +
∫
∂B(x,r)

|(ϕE)tr|dHn−1.(54)

The lemma follows from (54) since
∫

Rn |DF | = Per(E ∩B(x, r),Rn) and ϕE = (ϕE)tr
for almost every r.

Lemma A.3 (see [27, p. 25]). If E is a set of finite perimeter and x ∈ R
n, then,

for every r,

|E|
n−1
n ≤ C(n)Per(E,Rn).

Lemma A.4 (see [27, p. 25]). If E is a set of finite perimeter and x ∈ R
n, then,

for every r,

min{|E ∩B(x, r)|, |(Rn \ E) ∩B(x, r)|}
n−1
n ≤ C(n)

∫
B(x,r)

|DϕE |.

Lemma A.5. Let E be a set of finite perimeter that minimizes area in the open
set Ω. If x ∈ ∂E ∩ Ω has density γx (see Definition A.6), then 0 < γx < 1.

Proof. We take x ∈ ∂E ∩ Ω. Let r0 > 0 such that B(x, r0) ⊂ Ω. We now prove
that there exist universal constants C1, C2 such that, for all r ≤ r0,

|B(x, r) ∩ E| ≥ C1r
n, |B(x, r) ∩ (Rn \ E)| ≥ C2r

n.(55)

The computation that gives the first part of (55) is contained in the proof of Lemma
5.2. The second part (i.e., for the complement of E) is proven in the same way, and
we present here again the argument since (55) is a fundamental property of minimal
surfaces. We let F = R

n \ E. For all r ≤ r0 we have∫
B(x,r)

|DϕF | ≤ Hn−1(F ∩ ∂B(x, r)).(56)
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We define V (r) = |F ∩ B(x, r)|, r ≤ r0. Using the isoperimetric inequality given in
Lemma A.3 we have that

|F ∩B(x, r)| ≤ C[Per(F ∩B(x, r),Rn)]
n

n−1 .

Proceeding as in Lemma A.2 we can prove that Per(F∩B(x, r),Rn) = Per(F,B(x, r))+
Hn−1(F ∩ ∂B(x, r)) for almost every r ≤ r0, and hence

|F ∩B(x, r)| ≤ C[Per(F ∩B(x, r),Rn)]
n

n−1

= C[Per(F,B(x, r)) + Hn−1(F ∩ ∂B(x, r))]
n

n−1

≤ C[Hn−1(F ∩ ∂B(x, r))]
n

n−1 .

Due to Remark A.1 it follows that V (r) > 0 for all r ≤ r0. Since V ′(r) = Hn−1(F ∩
∂B(x, r)) we have , for almost every r ≤ r0,

V (r) ≤ CV ′(r)
n

n−1 .(57)

If we divide (57) by V (r) and integrate we obtain V (r)
1
n ≥ Cr; i.e.,V (r) ≥ Crn. Now,

from (55) we have

C1r
n ≤ |B(x, r) ∩ E| = |B(x, r)| − |B(x, r) ∩ (Rn \ E)| ≤ |B(x, r)| − C2r

n.

Therefore

0 < C̃1 ≤ |B(x, r) ∩ E|
|B(x, r)| ≤ C̃2 < 1,

where C̃1 and C̃2 are two universal constants. Taking limit as r → 0 and from
Definition A.6 we obtain that 0 < γx < 1.

Lemma A.6. If E is a minimizer corresponding to the class AS1,S2
, and if the

exclusions have at least C1 boundaries, then there exists a universal constant C such
that the set F ≡ R

n \ (E ∩O) satisfies

|F ∩B(x, r)| ≥ Crn(58)

for all x ∈ ∂F , r ≤ r0, where r0 is a universal constant.
Proof. We take x ∈ ∂F and r < α

2 . We have different situations according to the
location of B(x, r). In each case, however, the density estimate (58) can be obtained
as in Lemma A.5 from the isoperimetric inequality given in Lemma A.3. In fact, if
B(x, r) does not intersect any exclusion or the parallel plane restrictions, then we
proceed exactly as in Lemma A.5. We consider now the cases

1. B(x, r) intersects Π1 (the lower parallel plane restriction) and/or an exclusion.
2. B(x, r) intersects Π2 (the upper parallel plane restriction) and/or an exclu-

sion.
In case 1, we proceed as in Lemma A.5 with V (r) = |F ∩ B(x, r) ∩ O|, applying the
isoperimetric inequality given in Lemma A.3 to the domain |F ∩ B(x, r) ∩ O|. In
order to estimate Per(F ∩ B(x, r) ∩ O) we use the fact that ∂E is a free boundary
(in the sense that we do not impose any restriction as to how the minimizer E meets
the exclusions), and hence Per(F,B(x, r) ∩O) ≤ Hn−1(∂B(x, r) ∩ F ∩O). If B(x, r)
intersects the exclusion I, then (while computing Per(F∩B(x, r)∩O)) we can estimate
Hn−1(∂I∩B(x, r)∩F ) by performing a change of variables to flatten the boundary of
the exclusion. In case 2, if B(x, r) intersects Π2 and more than half the ball B(x, r) is
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outside the restrictions, then (58) is clear, but, if not, then we consider B(x, r
2 ), and

we proceed as in case 1.
Lemma A.7. Let E be a set of finite perimeter in R

n, and let F = R
n \ E . If

there exists a universal constant C such that

|F ∩B(x, r)| ≥ Crn(59)

for all x ∈ ∂F and all r ≤ r̃, then there exists a sequence of C∞ sets Eεk ⊂⊂ E
converging in measure to E and such that

lim
εk→0

Per(Eεk ,R
n) = Per(E,Rn).

Proof. The proof of this lemma is an improvement of Theorem 3.42 in [2] under the
extra condition (59). In fact, we consider the standard mollified functions uε = ϕE ∗ρε
and vε = ϕF ∗ ρε, where spt ρ ⊂ B1, ρ ≡ 1 on B(x, 1

2 ), and ρε = 1
εn ρ(

·
ε ). We note

that uε + vε = 1. If x ∈ ∂F and ε < r̃, we obtain from (59)

vε(x) =
1

εn

∫
B(x,ε)∩F

ρ

(
x− y

ε

)
dy

≥ 1

εn

∫
B(x, ε2 )∩F

ρ

(
x− y

ε

)
dy

=
1

εn

∣∣∣B (
x,

ε

2

)
∩ F

∣∣∣
≥ Cε−nεn = C.

Therefore, we can choose t close enough to 1 so that

{vε < 1 − t} = {uε > t} ⊂⊂ E.(60)

Using an exercise problem in [2, p. 39] we have that, for almost every t ∈ (0, 1),

lim
ε→0

Per({uε > t},Rn) = Per(E,Rn).(61)

Hence, we choose t such that (60) and (61) holds, and we define Eεk ≡ {uεk > t}. We
can now conclude as in [2].

Acknowledgments. I am greatly indebted to Luis A. Caffarelli for introducing
me to this subject. I am also very thankful to Lawrence C. Evans, Rafael de la Llave,
Ovidiu Savin, and the referees for many useful comments. The proof of Lemma A.7
was communicated by Luigi Ambrosio.

REFERENCES

[1] O. Alvarez, Homogenization of Hamilton-Jacobi equations in perforated sets, J. Differential
Equations, 159 (1999), pp. 543–577.

[2] L. Ambrosio, N. Fusco, and D. Pallara, Functions of bounded variation and free discontinu-
ity problems, Oxford Mathematical Monographs, The Clarendon Press, Oxford University
Press, New York, 2000.
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Abstract. We construct a discrete stochastic approximation of a convexified Gauss curvature
flow of boundaries of bounded open sets in an anisotropic external field. We also show that a weak
solution to the PDE which describes the motion of a bounded open set is unique and is a viscosity
solution of it.
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1. Introduction. Gauss curvature flow is known as a mathematical model of
the wearing process of a convex stone rolling on a beach and has been studied by
many authors (see, e.g., [2, 3, 6, 7, 11, 14, 16, 23]).

In the last few years we have been generalizing the theory of Gauss curvature flow
to a class of nonconvex sets.

In [17] we studied the existence and the uniqueness of a viscosity solution to the
PDE that describes the time evolution of a nonconvex graph by a convexified Gauss
curvature (see (1.10) for the PDE).

In [20] we proposed and studied the discrete stochastic approximations of evolving
functions which are generalizations of those considered in [17], proved the existence
and the uniqueness of a weak solution to the PDE which appears as the continuum
limit of discrete stochastic processes, and discussed under what conditions a weak
solution to the PDE is a viscosity solution of it.

In [19] we studied the existence and the uniqueness of the motion (or time evolu-
tion) of a nonconvex compact set which evolves by a convexified Gauss curvature in
RN (N ≥ 2), by the level set approach in the theory of viscosity solutions (see, e.g.,
[5, 10, 23] for the level set approach; also see [1]).

We introduce the notion of the motion of a smooth oriented closed hypersurface
by a convexified Gauss curvature.

Let M be a smooth oriented closed hypersurface in RN and ν be a smooth vector
field over M of unit normal vectors. For x ∈ M , let TxM denote the tangent space of
M at x, and let Ax : TxM �→ TxM denote the Weingarten map at x defined by the
following:

Ax(e) = −Deν for e ∈ TxM,(1.1)

where Deν denotes the derivative of ν with respect to e. Recall that the principal
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curvatures κ1, . . . , κN−1 of M at x are the eigenvalues of the symmetric map Ax and
the Gauss curvature K(x) of M at x is given by detAx.

Let C be the convex hull co M of M . We define σ : M �→ {0, 1} by

σ(x) =

{
1 if x ∈ M ∩ ∂C,

0 otherwise
(1.2)

and call σ(x)K(x) the convexified Gauss curvature of M at x.
The motion of a smooth oriented closed hypersurface by a convexified Gauss

curvature is the curvature flow:

v = −σKν,(1.3)

where ν denotes the unit outward normal vector field on the hypersurface and v
denotes the velocity of the hypersurface.

Let (Ax)+ denote the positive part of the symmetric map Ax. K+(x) := det{(Ax)+}
is called the positive part of the Gauss curvature of M at x, and the following holds:

σ(x)K(x) = σ(x)K+(x).(1.4)

Remark 1.1. For x ∈ M ,

det{(Ax)+} = Det+(Ax) :=

{
detAx if Ax is nonnegative definite,

0 otherwise.

The discrete approximation of a smooth simple closed convex curve which evolves
as the curvature flow was considered by Girão and is useful in the numerical analysis
(see [13] and the references therein). We refer to [12] and the references therein for
the recent development of this topic.

The discrete stochastic approximation of the curvature flow of smooth simple
closed convex curves is given in [18], where the model and the approach are completely
different from those in this paper.

In this paper we propose and study the discrete stochastic approximation of a
convexified Gauss curvature flow of boundaries of bounded open sets in an anisotropic
external field:

v = −R(ν)σKν,(1.5)

where R : SN−1 �→ [0,∞) controls the anisotropy of an external field (see (1.3) for
notation).

This is important since a stone on a beach is not always convex. Equation (1.5)
also gives a mathematical model of the wearing process of a stone which is hit by sev-
eral kinds of matter from different directions or a stone which has a fine microstructure
consisting of anisotropic materials.

Our result in this paper is the first one in the case N ≥ 3, among random and
nonrandom results, which gives a discrete approximation of the motion of a bounded
open set, in RN , by Gauss curvature.

Therefore the construction of a nonrandom version of such an approximation as
above in the case N ≥ 3 is an open problem, although the stochastic approximation
is more realistic than a nonrandom one in that a stone rolling on a beach moves
randomly.
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We briefly describe what we proved in [20] and then discuss the results in this
paper more precisely to compare a convexified Gauss curvature flow of graphs with
that of closed hypersurfaces. Put n := N − 1.

For x ∈ Rn and u : Rn �→ R, the following set is called the subdifferential of u
at x:

∂u(x) := {p ∈ Rn : u(y) − u(x) ≥ p · (y − x) for all y ∈ Rn},(1.6)

where · denotes the inner product in Rn. Let L1(Rn : [0,∞), dx) denote the set of
measurable functions ϕ : Rn �→ [0,∞) for which

∫
Rn |ϕ(x)|dx < ∞.

Alexandrov–Bakelman’s generalized curvature introduced in the following played
a crucial role in [20].

Definition 1.1 (see, e.g., [4, section 9.6]). Let R ∈ L1(Rn : [0,∞), dx) and
u ∈ C(Rn). For A ∈ B(Rn)(:=Borel σ-field of Rn), put

w(R, u,A) :=

∫
∪x∈A∂u(x)

R(y)dy.(1.7)

(It is known that w(R, u, ·) : B(Rn) �→ [0,∞) is completely additive.)
For R ∈ L1(Rn : [0,∞), dx), we showed the existence and the uniqueness of a

solution u ∈ C([0,∞) ×Rn) to the following equation (see [20, Theorem 1]): for any
ϕ ∈ Co(R

n) and any t ≥ 0,∫
Rn

ϕ(x)(u(t, x) − u(0, x))dx =

∫ t

0

ds

∫
Rn

ϕ(x)w(R, u(s, ·), dx).(1.8)

The existence of a continuous solution to (1.8) was given by the continuum limit
of the infinite particle systems {(Zm(t, z))z∈Zn/m}t≥0 that satisfies the following: for
any t ≥ 0 and any z ∈ Zn/m,

P (Zm(t + ∆t, z) − Zm(t, z) > 0) = mnE[w(R, Ẑm(t, ·), {z})]∆t + o(∆t)(1.9)

as ∆t → 0 (m ≥ 1), where Zn/m := {z/m|z ∈ Zn} and Ẑm(t, ·) denotes a convex
envelope of the function z �→ Zm(t, z), i.e., the graph of the boundary of the convex
hull, in RN , of the set {(z, y)|z ∈ Zn/m, y ≥ Zm(t, z)}.

In [20, Theorem 2], we proved that a continuous solution u to (1.8) sweeps in
time t > 0 a region with volume given by t ·w(R, u(0, ·),Rn) and that, for continuous
solutions u and v to (1.8) with v(0, ·) = û(0, ·), û(t, ·) is different from v(t, ·) at time
t > 0 in general if u(0, ·) �= û(0, ·).

We also showed that a continuous solution to (1.8) is a viscosity solution of the
following PDE (see [20, Theorem 3]):

∂tu(t, x) = χ(u,Du(t, x), t, x)R(Du(t, x))Det+(D2u(t, x)) on (0,∞) × Rn,(1.10)

where Du(t, x) := (∂u(t, x)/∂xi)
n
i=1, D

2u(t, x) := (∂2u(t, x)/∂xi∂xj)
n
i,j=1, and

χ(u, p, t, x) :=

{
1 if p ∈ ∂u(t, x),
0 otherwise

(see Remark 1.1 for notation). Here ∂u(t, x) denotes the subdifferential of the function
x �→ u(t, x). Conversely, we discussed under what conditions a viscosity solution to
(1.10) is a solution to (1.8).
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Remark 1.2. Suppose that u in (1.10) is twice differentiable in x. Then putting

ν =

(
(Du(t, x),−1)

(|Du(t, x)|2 + 1)1/2

)
x∈Rn

in (1.3),

χ(u,Du(t, x), t, x)(1 + |Du(t, x)|2)−(n+2)/2Det+(D2u(t, x))

is the convexified Gauss curvature of {(y, u(t, y))|y ∈ Rn} at x.
Next we briefly discuss what we study in this paper.
Let F be a closed convex set in RN . For x ∈ ∂F , put

NF (x) := {p ∈ SN−1|F ⊂ {y|〈y − x, p〉 ≤ 0}},

where 〈·, ·〉 denotes the inner product in RN .
Let L1(SN−1 : [0,∞), dHN−1) denote the set of measurable functions φ : SN−1 �→

[0,∞) for which
∫
SN−1 |ϕ(p)|dHN−1(p) < ∞, where dHN−1 denotes the (N − 1)-

dimensional Hausdorff outer measure.
To consider a convexified Gauss curvature flow of bounded open sets by the level

set approach, we introduce new types of measures.
Definition 1.2. Let u be a bounded function from a subset of RN to R, and

R ∈ L1(SN−1 : [0,∞), dHN−1).
(i) Let r ∈ R. For B ∈ B(RN ), put

ωr(R, u,B) :=

∫
∪x∈B∩∂ANA− (x)

R(p)dHN−1(p),(1.11)

where A = co u−1([r,∞)) and A− denotes the closure of the set A.
(ii) For B ∈ B(RN ), put

w(R, u,B) :=

∫
R

drωr(R, u,B),(1.12)

provided the right-hand side is well defined.
Remark 1.3. (i) If ∂(co u−1([r,∞))) is smooth at x, then N(co u−1([r,∞)))−(x)

is the set of a unit outward normal vector on ∂(co u−1([r,∞))) at x. Otherwise
N(co u−1([r,∞)))−(x) consists of more than one point. (ii) ωr(R, u, ·) : B(RN ) �→ [0,∞)
in (1.11) is completely additive (see [4, p. 31, Theorem 5.1]). (iii) For u and r in
Definition 1.2, the (N − 1)-dimensional Hausdorff outer measure of the following set
is zero (see [4, p. 30, Lemma 5.2]):

∪x∈∂(co u−1([r,∞))){p ∈ N(co u−1([r,∞)))−(x) :

{x} ⊂
�= {y ∈ RN : 〈y − x, p〉 = 0} ∩ (co u−1([r,∞)))−}.

When it is not confusing, we write ωr(R, u, dx) = ωr(u, dx) and w(R, u, dx) =
w(u, dx) for the sake of simplicity.

The existence and the uniqueness of a solution to the following equation are given
in section 2.

Definition 1.3. Let T ∈ [0,∞] and R ∈ L1(SN−1 : [0,∞), dHN−1). A family
of bounded open sets {D(t)}t∈[0,T ) in RN is called a convexified Gauss curvature flow
in an (R-)anisotropic external field on [0, T ) if

D(t) = (co D(t)) ∩D(0) for t ∈ [0, T )(1.13)
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and if the following holds: for any ϕ ∈ Co(R
N ) and any t ∈ [0, T ),

∫
RN

ϕ(x)(ID(0)(x) − ID(t)(x))dx =

∫ t

0

ds

∫
RN

ϕ(x)ω1(R, ID(s)(·), dx),(1.14)

where IA(x) = 1 if x ∈ A and = 0 if x �∈ A for the set A.
We also show the existence and the uniqueness of a solution u ∈ Cb([0, T )×RN )

to the following: for any ϕ ∈ Co(R
N ) and any t ∈ [0, T ),

∫
RN

ϕ(x)(u(0, x) − u(t, x))dx =

∫ t

0

ds

∫
RN

ϕ(x)w(R, u(s, ·), dx).(1.15)

The existence of {ID(t)}t≥0 in Definition 1.3 is shown by the continuum limit of
a class of particle systems {(Ym(t, z))z∈ZN/m}t≥0 that satisfies the following: for any

t ≥ 0 and any z ∈ ZN/m,

P (Ym(t + ∆t, z) − Ym(t, z) < 0) = mNE[ω1(Ym(t, ·), {z})]∆t + o(∆t)(1.16)

as ∆t → 0 (m ≥ 1) (see Theorem 2.1 in section 2).
The existence and the uniqueness of a solution to (1.15) are given by the contin-

uum limit of the linear combinations of solutions to (1.14) with D(0) = u(0, ·)−1((r,∞))
for r ∈ R (see Corollary 2.3 in section 2).

We also discuss the properties of {D(t)}t≥0 in Definition 1.3 (see Theorem 2.4 in
section 2).

For p ∈ RN and an (N ×N)-symmetric real matrix X, put

G(p,X) :=

⎧⎨
⎩ |p|det

{(
−(IN − p̄⊗ p̄) X

|p| (IN − p̄⊗ p̄) + p̄⊗ p̄
)

+

}
if p �= o,

0 if p = o

(1.17)

(see Remark 1.1 for notation), where IN denotes the (N × N)-identity matrix and
p̄ := p/|p|.

Suppose that a smooth oriented hypersurface M in RN is given by M = {y ∈
RN | ϕ(y) = a, Dϕ(y) �= o} for some ϕ ∈ C2(RN ) and a ∈ R and that the vector
field ν is given by νx = Dϕ(x)/|Dϕ(x)|. Regard the tangent space, TxM , as the
orthogonal complement of νx, and let Ex := span νx and idEx

denote the identity
map on Ex. Then the map

Ax ⊕ idEx : RN ≡ TxM ⊕ Ex → TxM ⊕ Ex

has a matrix representation

−(IN − p̄⊗ p̄)
X

|p| (IN − p̄⊗ p̄) + p̄⊗ p̄,

with p = Dϕ(x) and X = D2ϕ(x). Therefore, if Dϕ(x) �= o, then

K(x) = det

(
−(IN − p̄⊗ p̄)

X

|p| (IN − p̄⊗ p̄) + p̄⊗ p̄

)
,(1.18)

K+(x) =
G(p,X)

|p| .(1.19)
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For {D(t)}t≥0 in Definition 1.3, we show that ID(t)(x) and ID(t)−(x) are, respec-
tively, a viscosity supersolution and a viscosity subsolution of the following PDE (see
Theorem 2.5 in section 2):

∂tu(t, x) + R

(
Du(t, x)

|Du(t, x)|

)
σ−(u,Du(t, x), t, x)G(Du(t, x), D2u(t, x)) = 0(1.20)

(where (t, x) ∈ (0,∞) × RN ). Here

σ−(u, p, t, x) :=

{
1 if u(t, ·) < u(t, x) on H(p, x) and p ∈ RN \ {o},
0 otherwise,

(1.21)

where

H(p, x) := {y ∈ RN\{x}|〈y − x, p〉 ≤ 0}.(1.22)

Moreover, we show that a continuous solution to (1.15) is a viscosity solution of
(1.20) (see Corollary 2.6 in section 2).

G(p,−IN ) = |p|2−N for p �= o. Indeed, take p1, . . . , pN−1 ∈ SN−1 so that
{p1, . . . , pN−1, p̄} is an orthonormal basis of RN . Then p1, . . . , pN−1 and p̄ are eigen-
vectors of (IN − p̄ ⊗ p̄)2 = IN − p̄ ⊗ p̄ and p̄ ⊗ p̄, with an eigenvalue 1, respectively.
Therefore G(p,X) is not continuous at p = o. However, G(p,X) should be continuous
if we use the standard approach for a viscosity solution (see [8]). This is why we use
the modified definition of a viscosity solution to (1.20) from [21] (see Remark 1.5).

We first introduce the set of admissible test functions. We denote by F the set
of all functions f ∈ C2([0,∞)) for which f ′′ > 0 on (0,∞) and

lim
r↓0

f(r)

rN
= 0.(1.23)

Let Ω be an open subset of (0,∞)×RN . A function ϕ ∈ C2(Ω) is called admissible
in Ω if for any (t̂, x̂) ∈ Ω for which Dϕ vanishes, there exists f ∈ F such that as
(t, x) → (t̂, x̂),

|ϕ(t, x) − ϕ(t̂, x̂) − ∂tϕ(t̂, x̂)(t− t̂)| ≤ f(|x− x̂|) + o(|t− t̂|).(1.24)

We denote by A(Ω) the set of all admissible functions in Ω.
Remark 1.4. f(r) = rN+1 ∈ F and ϕ(t, x) = f(|x− x̂|) ∈ A((0,∞)×RN ) for any

x̂ ∈ RN .
Definition 1.4 (viscosity solution). Let 0 < T ≤ ∞ and set Ω := (0, T ) × RN ,

and put R(o/|o|) := 0.
(i) A function u ∈ LSC(Ω) is called a viscosity supersolution of (1.20) in Ω if

whenever ϕ ∈ A(Ω), (s, y) ∈ Ω, and u− ϕ attains a local minimum at (s, y); then

∂tϕ(s, y) + R

(
Dϕ(s, y)

|Dϕ(s, y)|

)
σ+(u,Dϕ(s, y), s, y)G(Dϕ(s, y), D2ϕ(s, y)) ≥ 0,(1.25)

where

σ+(u, p, s, y) :=

{
1 if u(s, ·) ≤ u(s, y) on H(p, y) and p ∈ RN \ {o},
0 otherwise.

(1.26)
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(ii) A function u ∈ USC(Ω) is called a viscosity subsolution of (1.20) in Ω if
whenever ϕ ∈ A(Ω), (s, y) ∈ Ω, and u− ϕ attains a local maximum at (s, y), then

∂tϕ(s, y) + σ−(u,Dϕ(s, y), s, y)R

(
Dϕ(s, y)

|Dϕ(s, y)|

)
G(Dϕ(s, y), D2ϕ(s, y)) ≤ 0.(1.27)

(iii) A function u ∈ C(Ω) is called a viscosity solution of (1.20) in Ω if it is a
viscosity supersolution and a viscosity subsolution of (1.20) in Ω.

Remark 1.5. (i) σ+(u, p, s, y) ≥ σ−(u, p, s, y) for all u : Ω �→ R and all (p, s, y) ∈
RN × Ω. (ii) Let A0(Ω) denote the set of all φ1(t) + φ2(x) ∈ A(Ω) such that x �→
G(Dφ2(x), D2φ2(x)) is continuous in Ω. Then one can replace, in Definition 1.4,
A(Ω) by A0(Ω) (see [19]). (iii) For any f ∈ F and x̂ ∈ RN , ϕ(t, x) = f(|x − x̂|) ∈
A0((0,∞) × RN ).

In section 2 we state our main results, which will be proved in section 4. In section
3 we give technical lemmas.

2. Main result. In this section we give our main result.
We give two assumptions to state the stochastic process which approximates the

solution to (1.13)–(1.14).
(A.0). D is a nonempty bounded open set in RN such that Vol(∂D) :=the

Lebesgue measure of the boundary ∂D of D is zero.
(A.1). R ∈ L1(SN−1 : [0,∞), dHN−1) and ||R||L1(SN−1) = 1.

Take K > 0 so that co D ⊂ [−K+1,K−1]N (see (1.2) for notation). For m ≥ 1,
put

Sm := {IA : [−K,K]N ∩ (ZN/m) �→ {0, 1}|A ⊂ [−K,K]N ∩ ZN/m}(2.1)

(see (1.14) for notation), and

Dm := D ∩ (ZN/m).(2.2)

For x, z ∈ ZN/m, and v ∈ Sm, put

vm,z(x) :=

{
v(x) if x �= z,
0 if x = z,

and for f : Sm �→ R, put

Amf(v) := mN
∑

z∈[−K,K]N∩(ZN/m)

ω1(R, v, {z}){f(vm,z) − f(v)}.(2.3)

Let m ≥ 1 and {ym(k, ·)}k≥0 be a Markov chain on Sm such that ym(0, ·) = IDm(·)
and such that the following holds: for any k ≥ 0 and any z ∈ [−K,K]N ∩ (ZN/m),

P (ym(k + 1, ·) = (ym(k, ·))m,z|ym(0, ·), . . . , ym(k, ·)) = ω1(R, ym(k, ·), {z}).(2.4)

Let {∆k}k≥0 be independent, exponentially distributed random variables with pa-
rameter one and be independent of {ym(k, ·)}k≥0. Put

Ym(t, ·) := ym(k, ·) if
1

mN

k−1∑
i=−1

∆i ≤ t <
1

mN

k∑
i=−1

∆i,(2.5)

where ∆−1 := 0.
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Then {Ym(t, ·)}t≥0 is a Markov process on Sm (m ≥ 1), with the generator Am,
such that Ym(0, z) = IDm(z) (z ∈ [−K,K]N ∩ (ZN/m)) (see [9, p. 162]).

Remark 2.1. (i) If ym(k, ·) �≡ 0, then∑
z∈[−K,K]N∩(ZN/m)

ω1(R, ym(k, ·), {z}) = 1.

(ii) If ω1(R, ym(k, ·), {z}) > 0, then z ∈ ∂{co ym(k, ·)−1(1)} ∩ ym(k, ·)−1(1).
(iii) ym(k, ·) ≡ 0 if and only if k ≥ #Dm :=the cardinal number of the set

Dm, a.s.
For (t, x) ∈ [0,∞) × [−K,K]N , put also

Xm(t, x) := I(co Ym(t,·)−1(1))o∩D(x),(2.6)

where Ao denotes the interior of the set A ⊂ RN .
Then {Xm(t, ·)}t≥0 is a stochastic process on

S := {f ∈ L2([−K,K]N ) : ||f ||L2([−K,K]N ) ≤ (2K)N},(2.7)

which is a complete separable metric space by the metric

dS(f, g) :=

∞∑
k=1

min(|〈f − g, ek〉L2([−K,K]N )|, 1)

2k
.(2.8)

Here {ek}k≥1 denotes a complete orthonomal basis of L2([−K,K]N ).
The following is our main result.
Theorem 2.1. Suppose that (A.0)–(A.1) hold. Then there exists a unique

solution {D(t)}t≥0 to (1.13)–(1.14) with D(0) = D on [0,∞) such that ID(·)(·) ∈
C([0,∞) : L2([−K,K]N )) and such that the following holds: for any γ > 0,

lim
m→∞

P

(
sup
t≥0

||Xm(t, ·) − ID(t)(·)||L2([−K,K]N ) ≥ γ

)
= 0.(2.9)

We recall the definition of Hausdorff metric: for compact sets A and B ⊂ RN ,

dH(A,B) := max(max
p∈A

dist(p,B),max
q∈B

dist(q,A)).(2.10)

As a corollary, we obtain the following.
Corollary 2.2. Suppose that (A.0)–(A.1) hold and that D is convex. Then for

a unique solution {D(t)}t≥0 to (1.13)–(1.14) with D(0) = D on [0,∞), the following
holds: for any T ∈ [0,Vol(D)) and any γ > 0,

lim
m→∞

P

(
sup

0≤t≤T
dH(∂(co Ym(t, ·)−1(1)), ∂D(t)) ≥ γ

)
= 0.(2.11)

We introduce the assumption on the initial function in (1.15).
(A.2). h ∈ Cb(R

N ). For any r ∈ R, the set h−1((r,∞)) is bounded or RN .
Then one can easily obtain the following from Theorem 2.1.
Corollary 2.3. Suppose that (A.1)–(A.2) hold. Then there exists a unique

continuous solution {u(t, ·)}t≥0 to (1.15) with u(0, ·) = h(·) on [0,∞). In addition,
for any r ∈ R, {u(t, ·)−1((r,∞))}t≥0 is a unique solution to (1.13)–(1.14) with D(0) =
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h−1((r,∞)) on [0,∞). In particular, {u(t, ·)−1((r,∞))}t≥0 depends only on the set
u(0, ·)−1((r,∞)).

The following theorem collects some elementary properties of solutions to (1.13)–
(1.14).

Theorem 2.4. Suppose that (A.0)–(A.1) hold. Let {D(t)}t≥0 be a unique solution
to (1.13)–(1.14) with D(0) = D on [0,∞). Then the following holds.

(a) t �→ D(t) is nonincreasing on [0,∞).
(b) For any t ≤ T ∗ := Vol(D(0)),

Vol(D(0)\D(t)) = t.(2.12)

(c) D(t) = ∅ for t ≥ T ∗.
(d) Let {D1(t)}t≥0 be a solution to (1.13)–(1.14) on [0,∞) such that D1(0) is a

bounded, convex, open set which contains D. Then

D(t) ⊂ D1(t) for all t ≥ 0,(2.13)

where the equality holds if and only if D(0) = D1(0).
Under

(A.3) R ∈ C(SN−1 : [0,∞)),

we give the relation between the solution to (1.13)–(1.14) and the viscosity solution
of (1.20).

Theorem 2.5. Suppose that (A.0)–(A.1) and (A.3) hold. Then for a unique
solution {D(t)}t≥0 to (1.13)–(1.14) with D(0) = D on [0,∞), ID(t)(x) and ID(t)−(x)

are a viscosity supersolution and a viscosity subsolution to (1.20) in (0,∞) × RN ,
respectively.

As a corollary, we obtain the following.
Corollary 2.6. Suppose that (A.1)–(A.3) hold. Then a continuous solution

{u(t, ·)}t≥0 to (1.15) with u(0, ·) = h(·) on [0,∞) is a viscosity solution to (1.20) in
(0,∞) × RN .

3. Lemmas. In this section we give lemmas which will be used in the next
section.

We extend Ym(t, ·) as a function on RN so that

Y m(t, x) =

{
0 (x ∈ Dc ∩ (ZN/m)),

Ym(t, [mx]/m) (x = (xi)
N
i=1 ∈ RN ),

(3.1)

where [mx] := ([mxi])
N
i=1 and [mxi] denotes an integer for which [mxi] ≤ mxi <

[mxi] + 1.
Remark 3.1. For z ∈ [−K,K]N ∩ (ZN/m),

Ym(t, z) = mN

∫
{x∈RN |[mx]=mz}

Y m(t, x)dx.

Lemma 3.1. Suppose that (A.0)–(A.1) hold. Then {Y m(·, ·)}m≥1 is tight in
D([0,∞) : S), and any weak limit point of {Y m(·, ·)}m≥1 belongs to the set C([0,∞) :
S).

Proof. Since S is compact and since t �→ Y m(t, x) is nonincreasing for any x ∈ RN ,
we only have to show the following (see [9, p. 129, Corollary 7.4, and p. 148, Theorem
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10.2]): for any η > 0 and T > 0, there exists δ > 0 such that for any i for which
1 ≤ i ≤ [T/δ] + 1,

lim
m→∞

P (||Y m(iδ, ·) − Y m((i− 1)δ, ·)||L1([−K,K]N ) ≥ η) = 0.(3.2)

Indeed, for any s and t for which (i− 1)δ ≤ s ≤ t ≤ iδ,

Y m(s, x) − Y m(t, x) = 0 or 1

and

dS(Y m(t, ·), Y m(s, ·))2 ≤ ||Y m(t, ·) − Y m(s, ·)||2L2([−K,K]N )

= ||Y m(iδ, ·) − Y m((i− 1)δ, ·)||L1([−K,K]N ).

For δ < η/2 and m ≥ 1, by Chebyshev’s inequality and Ito’s formula (see [15]),

P (||Y m(iδ, ·) − Y m((i− 1)δ, ·)||L1([−K,K]N ) ≥ η)(3.3)

≤
(

2

η

)2

E

[∣∣∣∣∣
∑

z∈Dm

(Ym(iδ, z) − Ym((i− 1)δ, z))
1

mN

+

∫ iδ

(i−1)δ

ω1(Ym(s, ·), Dm)ds

∣∣∣∣∣
2]

=

(
2

η

)2

m−NE

[∫ iδ

(i−1)δ

ω1(Ym(s, ·), Dm)ds

]

≤
(

2

η

)2

m−Nδ → 0 as m → ∞

(see (2.2) for notation). Indeed,

||Y m(iδ, ·) − Y m((i− 1)δ, ·)||L1([−K,K]N )

= −
∑

z∈Dm

(Ym(iδ, z) − Ym((i− 1)δ, z))
1

mN
−
∫ iδ

(i−1)δ

ω1(Ym(s, ·), Dm)ds

+

∫ iδ

(i−1)δ

ω1(Ym(s, ·), Dm)ds.

Lemma 3.2. Suppose that (A.0)–(A.1) hold. Then there exist a subsequence
{mk}k≥1 ⊂ N and stochastic processes {Y 1,mk

(·, ·)}k≥1 on a probability space (Ω1,B1,
P1) such that the probability law of Y 1,mk

(·, ·) is the same as that of Y mk
(·, ·) for all

k ≥ 1, and such that {Y 1,mk
(·, ·)}k≥1 is convergent in D([0,∞) : S), P1-a.s., and

such that the following holds P1-a.s.: for any T > 0 and ϕ ∈ C([−K,K]N ),

sup
0≤t≤T

∣∣∣∣∣
∑

z∈Dmk

ϕ + (z)(Y1,mk
(t, z) − Y1,mk

(0, z))

(
1

mk

)N

(3.4)

+

∫ t

0

∑
z∈Dmk

ϕ(z)ω1(Y1,mk
(s, ·), {z})ds

∣∣∣∣∣ → 0 as k → ∞.
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Here Y1,mk
is defined from Y 1,mk

in the same way as in Remark 3.1.
Proof. By Lemma 3.1 and Skorohod’s theorem (see [9, p. 102, Theorem 1.8]),

there exist a subsequence {m0,k}k≥1 ⊂ N and stochastic processes {Y 1,m0,k
(·, ·)}k≥1

on a probability space (Ω1,B1, P1) such that the probability law of Y 1,m0,k
(·, ·) is the

same as that of Y m0,k
(·, ·) for all k ≥ 1, and such that {Y 1,m0,k

(·, ·)}k≥1 is convergent
in D([0,∞) : S), P1-a.s.

As in (3.3), by Doob–Kolmogorov’s inequality (see [15]), for any T > 0 and
ϕ ∈ C([−K,K]N ),

E1

[
sup

0≤t≤T

∣∣∣∣∣
∑

z∈Dm0,k

ϕ(z)(Y1,m0,k
(t, z) − Y1,m0,k

(0, z))

(
1

m0,k

)N

(3.5)

+

∫ t

0

∑
z∈Dm0,k

ϕ(z)ω1(Y1,m0,k
(s, ·), {z})ds

∣∣∣∣∣
2]

→ 0 as k → ∞.

Since an L2-convergent sequence of random variables has an a.s. convergent sub-
sequence, and since C([−K,K]N ) is separable, one can complete the proof by the
diagonal method.

When it is not confusing, we write Y 1,mk
= Y mk

and Y1,mk
= Ymk

on (Ω1,B1, P1)
for the sake of simplicity.

Take x0 ∈ D and r0 > 0 so that U4r0(x0) := {y ∈ RN : |x0 − y| < 4r0} ⊂ D, and
put U0 := U2r0(x0). Then

V0 := inf
x∈∂U0

Vol(U3r0(x0) ∩H(x0 − x, x)) > 0.(3.6)

It is easy to see that V0 = Vol(U3r0(x0) ∩H(p, x0 − 2r0p)) for any p ∈ SN−1.
Put also, on (Ω1,B1, P1),

τm := inf{t > 0|Y1,m(t, z) = 0 for some z ∈ (ZN/m) ∩ U0}.(3.7)

Then for any k ≥ 1, there exists a random point zmk
∈ (ZN/m) ∩ U0 such that

Y1,mk
(τmk

−, zmk
) − Y1,mk

(τmk
, zmk

) = 1.

Additionally, the following holds:

Y1,mk
(0, z) − Y1,mk

(τmk
, z) = 1 for all z ∈ Dmk

∩H(x0 − zmk
, zmk

).

Since U3r0(x0) ⊂ D, Y1,mk
(0, z) − Y1,mk

(τmk
, z) = 0 or 1, and

∑
z∈Dmk

(Y1,mk
(0, z) − Y1,mk

(τmk
, z))

(
1

mk

)N

∼ τmk

for sufficiently large k ≥ 1 from (3.4), the following holds.
Lemma 3.3. Suppose that (A.0)–(A.1) hold. Then

P1

(
V0 ≤ lim inf

k→∞
τmk

≤ lim sup
k→∞

τmk
≤ Vol(D)

)
= 1.(3.8)
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Proof. By (3.4), for any t > Vol(D),

lim sup
k→∞

{min(τmk
, t)}(3.9)

= lim sup
k→∞

∫ min(τmk
,t)

0

ω1(Ymk
(s, ·), Dmk

)ds

≤ lim sup
k→∞

∑
z∈Dmk

(Ymk
(0, z) − Ymk

(min(τmk
, t), z))

(
1

mk

)N

≤ Vol(D)

P1-a.s. We also have

V0 ≤ lim inf
k→∞

∑
z∈Dmk

(Ymk
(0, z) − Ymk

(τmk
, z))

(
1

mk

)N

(3.10)

≤ lim inf
k→∞

∫ τmk

0

ω1(Ymk
(s, ·), Dmk

)ds = lim inf
k→∞

τmk
P1-a.s.

The following lemma can be proved in the same way as in [4, section 5.2], and
the proof is omitted.

Lemma 3.4. Suppose that (A.1) holds. Let F and Fm(m ≥ 1) be closed convex
sets in RN such that ∂F and ∂Fm(m ≥ 1) are closed hypersurfaces and such that
dH(Fm, F ) → 0 as m → ∞. Then ω1(IFm(·), dx) weakly converges to ω1(IF (·), dx) as
m → ∞, that is, for any ϕ ∈ Co(R

N ),

lim
m→∞

∫
RN

ϕ(x)ω1(IFm(·), dx) =

∫
RN

ϕ(x)ω1(IF (·), dx).(3.11)

We denote by X(·, ·) ∈ C([0,∞) : S) the P1-a.s. limit of Y 1,mk
(·, ·) as k → ∞

(see Lemma 3.2 for notation). Then we have the following.
Lemma 3.5. Suppose that (A.0)–(A.1) hold. Then there exists a solution

{D(t)}t∈[0,V0) to (1.13)–(1.14) on [0, V0) such that the following holds P1-a.s.:

X(t, x) = ID(t)(x), dx-a.e. for all t ∈ [0, V0)(3.12)

(see (3.6) for notation).
Proof. We introduce local coordinates so that we can reduce the study of the

time evolution of ∂(co Ymk
(t, ·)−1(1)) on [0, V0) to that of convex functions in all

local coordinates.
For (x0, r0) in (3.6) and any p ∈ SN−1, let C(x0, r0; p) denote a semi-infinite

cylinder

{x0 + rp + x : r ≥ 0, |x| ≤ r0, 〈x, p〉 = 0, x ∈ RN}

which can be obtained by moving an (N − 1)-dimensional ball

{x0 + x : |x| ≤ r0, 〈x, p〉 = 0, x ∈ RN}

in the positive direction of p.
Take p1, . . . , pk0

∈ SN−1 for some k0 ∈ N so that

co D ⊂ ∪k0
i=1C(x0, r0; pi).
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For i = 1, . . . , k0, take {qi1, . . . , qi(N−1)} so that {qi1, . . . , qi(N−1), pi} is an or-
thonormal basis in RN , and put

Cmk
(t) := co Ymk

(t, ·)−1(1).(3.13)

For x = (xj)
N−1
j=1 ∈ RN−1 for which |x| ≤ 2r0, also put

X̃mk,i(t, x) := − sup

{
r > 0|x0 + rpi +

N−1∑
j=1

qijxj ∈ Cmk
(t)

}
.(3.14)

Since the set Cmk
(t) is convex and since

inf

{(
N−1∑
j=1

|xj |2
)1/2

: x0 + rpi +

N−1∑
j=1

qijxj ∈ Cmk
(t) for some r > 0

}
≥ 7r0

4

for mk ≥ 8
√
N/r0 and t ∈ [0, τmk

), and since t �→ Ymk
(t, ·) is nonincreasing, X̃mk,i(t, ·)

(mk ≥ 8
√
N/r0, t ∈ [0, τmk

)) are bounded convex functions on {x ∈ RN−1 : |x| ≤
7r0/4}.

It is known that a uniformly bounded set of convex functions with a common
domain is compact as the set of continuous functions defined on K for every compact
subset K of the interior of their domain (see [4, section 3.3]).

Therefore, by Lemma 3.3 and the diagonal method, there exists a subsequence
{X̃m̃k,i(t, ·)}k≥1 of {X̃mk,i(t, ·)}k≥1 and a convex function X̃i(t, ·) such that for any
t ∈ Q ∩ [0, V0) and i = 1, . . . , k0,

lim
k→∞

sup
x∈RN−1,|x|≤3r0/2

|X̃m̃k,i(t, x) − X̃i(t, x)| = 0.(3.15)

(Notice that {m̃k}k≥1 can be random.)
It is clear that there exists a nonincreasing family of compact convex sets

{C̃(t)}t∈Q∩[0,V0) such that for any t ∈ Q ∩ [0, V0),

lim
k→∞

dH(Cm̃k
(t), C̃(t)) = 0,(3.16)

X̃i(t, x) = − sup

{
r > 0|x0 + rpi +

N−1∑
j=1

qijxj ∈ C̃(t)

}

for all i = 1, . . . , k0, and x = (xk)
N−1
k=1 ∈ RN−1 for which |x| ≤ 3r0/2.

In particular,

D ⊂ C̃(0) (by (2.2)),(3.17)

lim
k→∞

||X1,m̃k
(t, ·) − IC̃(t)o∩D(·)||L2([−K,K]N ) = 0

for all t ∈ Q ∩ [0, V0), where X1,m̃k
is defined by Y1,m̃k

in the same way as in (2.6).
When it is not confusing, we write X1,m̃k

= Xm̃k
on (Ω1,B1, P1) for the sake of

simplicity.
The following also holds: for all t ∈ [0, V0) ∩ Q,

lim
k→∞

||Y m̃k
(t, ·) −Xm̃k

(t, ·)||L2([−K,K]N ) = 0.(3.18)



CONVEXIFIED GAUSS CURVATURE FLOW 565

Indeed, if Xm(t, x) �= Y m(t, x), then

dist(x, ∂(Cm(t)o ∩D)) ≤ N1/2

m
,

and by (3.16), the volume of the (N1/2/m̃k)-neighborhood of the set ∂D ∪ ∂Cm̃k
(t)

converges to zero as k → ∞ for t ∈ [0, V0) ∩ Q.
For t ∈ [0, V0)\Q, put

C̃(t) := ∩s∈Q∩[0,t)C̃(s).(3.19)

Then, by (3.17)–(3.19), the following holds P1-a.s.:

X(t, x) = IC̃(t)o∩D(x), dx-a.e., for all t ∈ [0, V0),(3.20)

since {Y m̃k
}k≥1 is a subsequence of a convergent sequence {Y mk

}k≥1 and since X ∈
C([0,∞) : S) is the P1-a.s. limit, in D([0,∞) : S), of Y mk

as k → ∞, and since
{C̃(t)}t∈[0,V0)∩Q is nonincreasing in t.

Put

D(t) := C̃(t)o ∩D.(3.21)

Then (1.13) holds for all t ∈ [0, V0), since D = D(0) by (3.17) and since

D(t) ⊃ {co (C̃(t)o ∩D)} ∩D = (co D(t)) ∩D ⊃ D(t) ∩D = D(t).

On [0, V0),

ω1(IC̃(t)(·), dx) = ω1(ID(t)(·), dx), dt-a.e.,(3.22)

since

C̃(t)\(co D(t))− ⊂ C̃(t)\D(t)− ⊂ Dc

by (3.21), where Dc denotes a complement of D, and since∫ V0

0

ω1(IC̃(s)(·), D
c)ds =

∫
Dc

(ID(0)(x) − ID(V0)(x))dx = 0

by (3.4), (3.20)–(3.21), and Lemma 3.4.
Here we used the fact that (3.16) holds except for at most countably many t ∈

[0, V0). Indeed, t �→ Cm̃k
(t) is nonincreasing and (3.16) holds for all t ∈ Q ∩ [0, V0).

Therefore, if Cm̃k
(t) does not converge to C̃(t) as k → ∞, then (C̃(t)\C̃(t+))o is not

empty and has a positive Lebesgue measure by (3.19), where C̃(t+) := ∪s>tC̃(s).
Besides, (C̃(t)\C̃(t+))o are disjoint for different t.

Hence, (1.14) holds for all t ∈ [0, V0) from (3.4), Lemma 3.4, and (3.20)–
(3.22).

The following lemma, which can be proved by the translation invariance of the
solution to (1.13)–(1.14), implies the uniqueness of the solution to (1.13)–(1.14).

Lemma 3.6. Suppose that (A.1) holds. For T > 0, if {Di(t)}0≤t<T (i = 1, 2)
are solutions to (1.13)–(1.14) on [0, T ) for which D1(0) ⊂ D2(0) and if (A.0) holds
for D = Di(0) (i = 1, 2), then D1(t) ⊂ D2(t) for all t ∈ [0, T ). In particular, for all
t ∈ [0,min(Vol(D1(0)), T )),

dist(D1(t), D2(t)
c) ≥ dist(D1(0), D2(0)c).(3.23)
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Proof. For each t ≥ 0, put

D̃(t) := D1(t)
− ∩D2(t)

c, ui(t, ·) := IDi(t)(·), u−
i (t, ·) := IDi(t)−(·),

Ni(t) := ∪x∈∂D̃(t)∩∂Di(t)
{p ∈ SN−1|σ+(ui,−p, t, x) = 1}

(i = 1, 2). Then N2(t) ⊂ N1(t).
Take a nondecreasing sequence {ηm}m≥1 of nondecreasing C1-functions such that

ηm(r) = 0 for all r ≤ 0, ηm(r) = 1 for all r ≥ 1

m
,(3.24)

and for r ∈ R, put

ζm(r) =

∫ r

0

ηm(s)ds.(3.25)

Then since t �→ ui(t, x) and t �→ u−
i (t, x) are, respectively, right and left continuous

for any x ∈ RN , for t ∈ [0,min(Vol(D1(0)), T )) and x ∈ RN ,

ζm(u−
1 (t, x) − u2(t, x) − 1) − ζm(u−

1 (0, x) − u2(0, x))(3.26)

=

∫ t

0

ζm(u−
1 (s, x) − u2(s, x) − s/t)(u−

1 (ds, x) − u2(ds, x))

−1

t

∫ t

0

ηm(u−
1 (s, x) − u2(s, x) − s/t)ds.

Since ζm ≥ 0, D1(0) ⊂ D2(0), and N2(s) ⊂ N1(s), we have

0 ≤
∫ t

0

ds

∫
RN

ζm(u−
1 (s, x) − u2(s, x) − s/t)(3.27)

×(ω1(u2(s, ·), dx) − ω1(u1(s, ·), dx))

−1

t

∫ t

0

ds

∫
RN

ηm(u−
1 (s, x) − u2(s, x) − s/t)dx

→
∫ t

0

(1 − s/t)(ω1(u2(s, ·), D̃(s)) − ω1(u1(s, ·), D̃(s)))ds

−1

t

∫ t

0

ds

∫
D̃(s)

dx (as m → ∞)

≤ −1

t

∫ t

0

ds

∫
D̃(s)

dx,

which implies the first assertion of this lemma.
Suppose that (3.23) does not hold. Then there exists a ∈ (0, dist(D1(0), D2(0)c))

such that

inf{dist(D1(t), D2(t)
c)|t ∈ [0,min(Vol(D1(0)), T ))} < a.

Take pa ∈ SN−1 and ta ∈ [0,min(Vol(D1(0)), T )) so that

apa + D1(ta) �⊂ D2(ta).
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Since apa + D1(0) ⊂ D2(0) and {apa + D1(t)}0≤t<T is a solution to (1.13)–(1.14) on
[0, T ), this contradicts the first assertion of this lemma.

Take ϕ ∈ C2(RN ) for which Dϕ(xo) �= 0 for some xo ∈ RN . Put

fN :=
Dϕ(xo)

|Dϕ(xo)|
, (g1 · · · gN ) := IN − fN ⊗ fN .(3.28)

Take {f1, . . . , fN−1} so that {f1, . . . , fN} is an orthonormal basis of RN . Then the
following holds.

Lemma 3.7.

(i) 〈gi, fN 〉 = 0 (1 ≤ i ≤ N).
(ii) For i for which ∂iϕ(xo) := ∂ϕ(xo)/∂xi �= 0,

gi = −
∑
k �=i

∂kϕ(xo)

∂iϕ(xo)
gk.

(iii) span(g1, . . . , gN ) = span(f1, . . . , fN−1).
(iv) D(Dϕ(xo)/|Dϕ(xo)|)(RN ) ⊂ span(g1, . . . , gN ). As a mapping on span(g1,

. . . , gN ), eigenvalues and eigenvectors of (g1 · · · gN )(D2ϕ(xo)/|Dϕ(xo)|)(g1 · · · gN ) are
the same as those of D(Dϕ(xo)/|Dϕ(xo)|). In particular, all eigenvalues of D(Dϕ(xo)/
|Dϕ(xo)|) are real.

(v) If eigenvalues λ1 ≤ · · · ≤ λN−1 of −D(Dϕ(xo)/|Dϕ(xo)|) as a mapping on
span(g1, . . . , gN ) are nonnegative, then

N−1∏
i=1

λi =
G(Dϕ(xo), D

2ϕ(xo))

|Dϕ(xo)|
.(3.29)

Proof. It is easy to see that (i) and (ii) hold. Take i for which ∂iϕ(xo) �= 0. Then,
by (i) and (ii), we have only to show, to prove (iii), that {gj}j �=i is independent.
Suppose that for j = 1, . . . , N ,

∑
k �=i

λk

(
δkj −

∂kϕ(xo)∂jϕ(xo)

|Dϕ(xo)|2

)
= 0.(3.30)

Putting j = i in (3.30), we obtain

∑
k �=i

λk
∂kϕ(xo)∂iϕ(xo)

|Dϕ(xo)|2
= 0,

from which ∑
k �=i

λk∂kϕ(xo) = 0.(3.31)

Putting j �= i in (3.30), we obtain

λj − ∂jϕ(xo)
∑
k �=i

λk
∂kϕ(xo)

|Dϕ(xo)|2
= 0,

from which λj = 0 for j �= i, by (3.31).
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We prove (iv). It is easy to see that

D

(
Dϕ(xo)

|Dϕ(xo)|

)
= (g1 · · · gN )

D2ϕ(xo)

|Dϕ(xo)|
.(3.32)

Hence

D

(
Dϕ(xo)

|Dϕ(xo)|

)(
N∑
i=1

xigi

)
= λ

N∑
i=1

xigi

if and only if

(g1 · · · gN )
D2ϕ(xo)

|Dϕ(xo)|
(g1 · · · gN )

(
N∑
i=1

xigi

)
= λ

N∑
i=1

xigi,

since

(g1 · · · gN )2 = (g1 · · · gN ).(3.33)

Put P := (f1 · · · fN ) and Q := (f1 · · · fN−1), and let Q∗ and oN−1 denote the
transposed matrix of Q and the (N − 1)-dimensional zero vector, respectively. The
proof of (v) is divided into the following.

Step I. The eigenvalues of

−(IN − fN ⊗ fN )
D2ϕ(xo)

|Dϕ(xo)|
(IN − fN ⊗ fN ) + fN ⊗ fN

are those of (
−Q∗D( Dϕ(xo)

|Dϕ(xo)| )Q oN−1

o∗N−1 1

)
.

Step II. The eigenvalues of Q∗D(Dϕ(xo)/|Dϕ(xo)|)Q are those of D(Dϕ(xo)/
|Dϕ(xo)|) on span(g1, . . . , gN ).

Proof of Step I. Denote by ON−1 the (N − 1) × (N − 1)-zero matrix. For λ ∈ R,

det

(
−(IN − fN ⊗ fN )

D2ϕ(xo)

|Dϕ(xo)|
(IN − fN ⊗ fN ) + fN ⊗ fN − λIN

)

= det

(
−
(

IN−1 oN−1

o∗N−1 0

)
P ∗ D

2ϕ(xo)

|Dϕ(xo)|
P

(
IN−1 oN−1

o∗N−1 0

)

+

(
ON−1 oN−1

o∗N−1 1

)
− λIN

)

= det

((
−Q∗ D2ϕ(xo)

|Dϕ(xo)|Q oN−1

o∗N−1 1

)
− λIN

)

since

P ∗P = IN , P

(
ON−1 oN−1

o∗N−1 1

)
P ∗ = fN ⊗ fN .

Equations (3.28) and (3.32) complete the proof since 〈fi, fN 〉 = 0 if i �= N .
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Proof of Step II. Let x = (xi)
N−1
i=1 ∈ RN−1 and λ ∈ R. Suppose that

Q∗D

(
Dϕ(xo)

|Dϕ(xo)|

)
Qx = λx.(3.34)

Then

QQ∗D

(
Dϕ(xo)

|Dϕ(xo)|

)( ∑
1≤i≤N−1

xifi

)
= λ

∑
1≤i≤N−1

xifi.

Hence, by (3.32),

D

(
Dϕ(xo)

|Dϕ(xo)|

) ∑
1≤i≤N−1

xifi = λ
∑

1≤i≤N−1

xifi(3.35)

since, by (iii),

QQ∗(IN − fN ⊗ fN ) = IN − fN ⊗ fN .

It is easy to see that (3.35) implies (3.34) since Q∗Q = IN−1.
For i = 1, . . . , N , put

yi(x) :=

(
(δij − 1)

∂jϕ(x)

|Dϕ(x)| + δijϕ(x)

)N

j=1

.

Then we have the following.
Lemma 3.8. Suppose that all eigenvalues of D(Dϕ(xo)/|Dϕ(xo)|) are nonposi-

tive. Then, for i = 1, . . . , N,

∂iϕ(xo)

|Dϕ(xo)|
G(Dϕ(xo), D

2ϕ(xo)) = det(Dyi(xo)).(3.36)

Proof. For the sake of simplicity, we assume that i = N .
We first consider the case when ∂Nϕ(xo) �= 0. By (ii) in Lemma 3.7, it is easy to

see that the following holds:

A :=

(
IN−1 oN−1

−Dϕ(xo)∗

∂Nϕ(xo)

)
DyN (xo)(3.37)

= D

(
− Dϕ(xo)

|Dϕ(xo)|

)
+

(
ON−1 oN−1

−Dϕ(xo)
∗

)
.

By Lemma 3.7 (i) and (iv), the eigenvalues and eigenvectors of D(−Dϕ(xo)/
|Dϕ(xo)|) on span(g1, . . . , gN ) are real and are also those of the matrix A.

Therefore, by (iii) in Lemma 3.7, the matrix A has a real eigenvalue λ and a real
eigenvector xλ �∈ span(g1, . . . , gN ). Indeed, by (3.32),

AeN ∈ (−∂Nϕ(xo))eN + span(g1, . . . , gN ),

where eN := (δjN )Nj=1. Besides, eN �∈ span(g1, . . . , gN ) since ∂Nϕ(xo) �= 0.
We show that λ = −∂Nϕ(xo). Put

xλ := xg + aeN (xg ∈ span(g1, . . . , gN ), a �= 0),(3.38)
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which is possible since span(eN , g1, . . . , gN ) = RN by (iii) in Lemma 3.7. Then

(−∂Nϕ(xo))aeN = λaeN(3.39)

by (i) in Lemma 3.7 since Axλ = λxλ and since eN and {g1, . . . , gN} are independent.
This implies that λ = −∂Nϕ(xo).

Suppose that ∂Nϕ(xo) = 0. Then, by (3.32) and (i) in Lemma 3.7, for x ∈ RN ,

〈fN , DyN (xo)x〉 =

〈
fN , D

(
− Dϕ(xo)

|Dϕ(xo)|

)
x

〉
= 0.(3.40)

Hence DyN (xo)(R
N ) is at most (N − 1)-dimensional and (3.36) holds.

4. Proofs. In this section we prove the results in section 2.
Proof of Theorem 2.1. By Lemmas 3.1–3.6, there exists a unique (nonrandom)

solution {D(t)}0≤t<V0 (see (3.6) for notation) of (1.13)–(1.14) on [0, V0) such that
ID(·) ∈ C([0, V0) : S) and such that the following holds: for any T ∈ [0, V0) and γ > 0,

lim
m→∞

P

(
sup

0≤t≤T
dS(Y m(t, ·), ID(t)(·)) ≥ γ

)
= 0.(4.1)

Therefore

lim
m→∞

P

(
sup

0≤t≤T
||Y m(t, ·) − ID(t)(·)||L2([−K,K]N ) ≥ γ

)
= 0,(4.2)

since, for m ≥ 1 and t ∈ [0, T ],

||Y m(t, ·) − ID(t)(·)||2L2([−K,K]N )

=

∫
[−K,K]N

(Y m(t, x) − 2Y m(t, x)ID(t)(x) + ID(t)(x))dx.

We prove that the following holds:

lim
m→∞

P

(
sup

0≤t≤T
||Xm(t, ·) − ID(t)(·)||L2([−K,K]N ) ≥ γ

)
= 0.(4.3)

For any s and t for which 0 ≤ s < t ≤ T ,

||Xm(t, ·) − ID(t)(·)||L2([−K,K]N )(4.4)

≤ ||Xm(t, ·) −Xm(s, ·)||L2([−K,K]N ) + ||Xm(s, ·) − Y m(s, ·)||L2([−K,K]N )

+||Y m(s, ·) − ID(s)(·)||L2([−K,K]N ) + ||ID(s)(·) − ID(t)(·)||L2([−K,K]N ).

Let U−N1/2/m(D) := {x ∈ D|dist(x,Dc) > N1/2/m}. Then

||Xm(t, ·) −Xm(s, ·)||2L2([−K,K]N ) = ||Xm(t, ·) −Xm(s, ·)||L1([−K,K]N )(4.5)

≤ 2N
∑

z∈Dm

(Ym(s, z) − Ym(t, z))
1

mN
+ Vol(D\U−N1/2/m(D))

(see (2.2) for notation). Indeed, if x = (xi)
N
i=1 ∈ U−N1/2/m(D)\(co Ym(t, ·)−1(1)),

then Ym(t, z) = 0 for some z = (zi)
N
i=1 ∈ ZN/m for which |xi − zi| ≤ 1/m for all

i = 1, . . . , N .
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In the same way as in (3.5), by (4.5), for any γ > 0, there exists δ > 0 such that
the following holds: for any s ∈ [0, T − δ],

lim
m→∞

P

(
sup

s≤s1≤s+δ
||Xm(s1, ·) −Xm(s, ·)||L2([−K,K]N ) ≥ γ

)
= 0.(4.6)

Since, for any t ∈ [0, V0), any subsequence of {Cm(t)}m≥1 has a convergent sub-
sequence (see (3.13)–(3.16)),

lim
m→∞

||Y m(t, ·) −Xm(t, ·)||L2([−K,K]N ) = 0(4.7)

for all t ∈ [0, V0), P1-a.s. (see the discussion after (3.18)). Hence, for any γ > 0,

lim
m→∞

P (||Y m(s, ·) −Xm(s, ·)||L2([−K,K]N ) ≥ γ) = 0.(4.8)

ID(·) ∈ C([0, V0) : L2([−K,K]N )) since

||ID(s)(·) − ID(t)(·)||2L2([−K,K]N ) =

∫
[−K,K]N

ID(s)(x)dx−
∫

[−K,K]N
ID(t)(x)dx

and since t �→
∫
[−K,K]N

ID(t)(x)dx is continuous on [0, V0).

Equation (4.2) and the discussion after (4.3) show that (4.3) is true.
Recall Lemmas 3.2 and 3.3 and the notation therein. For T < V0, take x0 ∈ D(T )

and r0 so that U4r0(x0) ⊂ D(T ). For sufficiently large k ≥ 1,

U3r0(x0) ⊂ (co Ymk
(T, ·)−1(1))o ∩D, P1-a.s.,

since

lim
k→∞

||Xmk
(T, ·) − ID(T )(·)||L2([−K,K]N ) = 0, P1-a.s.

by Lemma 3.2 and (4.7) (see the discussion below (4.2)). Hence in the same way as
in Lemma 3.3,

V0 ≤ lim inf
k→∞

∑
z∈Dmk

(Ymk
(T, z) − Ymk

(τmk
, z))

1

mN
k

(4.9)

≤ lim inf
k→∞

(τmk
− T ) P1-a.s.,

which implies that (4.3) holds for T < 2V0. Repeating the same procedure as above
and then letting r0 ↓ 0, (4.3) holds for all T < T ∗ := Vol(D).

Put

D(t) = ∅ for t ≥ T ∗.(4.10)

Then ID(·) ∈ C([0,∞) : L2([−K,K]N )) and {D(t)}t≥0 is a unique solution to (1.13)–
(1.14) on [0,∞) by Lemma 3.6, since t �→ ID(t) is nonincreasing and since

Vol(D(t)) = Vol(D(0)) − t ↓ 0 as t ↑ T ∗(4.11)

by (1.14).
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We prove (2.9). By (4.11), for γ > 0,

Vol(D(t)) ≤
(
γ

4

)2

for t ≥ tγ := T ∗ −
(
γ

4

)2

.(4.12)

Therefore

P

(
sup
t≥0

||Xm(t, ·) − ID(t)(·)||L2([−K,K]N ) ≥ γ

)
(4.13)

≤ P

(
sup

0≤t≤tγ

||Xm(t, ·) − ID(t)(·)||L2([−K,K]N ) ≥ γ

)

+P

(
sup
t≥tγ

||Xm(t, ·) − ID(t)(·)||L2([−K,K]N ) ≥ γ

)

≤ 2P

(
sup

0≤t≤tγ

||Xm(t, ·) − ID(t)(·)||L2([−K,K]N ) ≥
γ

2

)
→ 0 (as m → ∞)

since for t ≥ tγ ,

||Xm(t, ·) − ID(t)(·)||L2([−K,K]N )

≤ ||Xm(tγ , ·)||L2([−K,K]N ) + ||ID(tγ)(·)||L2([−K,K]N )

≤ ||Xm(tγ , ·) − ID(tγ)(·)||L2([−K,K]N ) + 2||ID(tγ)(·)||L2([−K,K]N ).

Proof of Corollary 2.2. Since D is convex,

(co Ym(t, ·)−1(1))o ∩D = (co Ym(t, ·)−1(1))o =: Dm(t).

For T < T ∗(= Vol(D)), take x0 ∈ D(T ) and r0 so that U4r0(x0) ⊂ D(T ) (see
(3.6) for notation). Then, for sufficiently large m, U3r0(x0) ⊂ Dm(0).

Consider cones

cone(x) := co ({x} ∪ U−
0 ) (x ∈ D−)

(see (3.6) for notation), and for r > 0, put

V (r) := inf
x∈∂D

Vol(cone(x) ∩H(x0 − x, x + r(x0 − x))),(4.14)

Vm(r) := inf
x∈∂Dm(0)

Vol(cone(x) ∩H(x0 − x, x + r(x0 − x))).(4.15)

Then for γ > 0 and sufficiently large m ≥ 1, by Theorem 2.1,

P

(
sup

0≤t≤T
dH(∂Dm(t), ∂D(t)) ≥ γ

)
(4.16)

≤ P

(
||IDm(T )(·) − ID(T )(·)||2L2([−K,K]) ≥ V0)

+ P (U0 ⊂ Dm(T ), sup
0≤t≤T

dH(∂Dm(t), ∂D(t)) ≥ γ

)

→ 0 (as m → ∞)
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(see (3.6) for notation). Indeed,

P

(
U0 ⊂ Dm(T ), sup

0≤t≤T
dH(∂Dm(t), ∂D(t)) ≥ γ

)

≤ P

(
sup

0≤t≤T
||IDm(t)(·) − ID(t)(·)||2L2([−K,K]) ≥ min(V (γ), Vm(γ))

)
,

and Vm(γ) ≥ V (γ) for all m ≥ 1.
Proof of Corollary 2.3. For r ∈ R, let {Dr(t)}t≥0 denote the unique solution of

(1.13)–(1.14) with Dr(0) = h−1((r,∞)) on [0,∞). Notice that

Dr(·) =

{
RN if r < inf{h(x)|x ∈ RN},
∅ if r ≥ sup{h(x)|x ∈ RN}.(4.17)

Put

u(t, x) := sup{r ∈ R|x ∈ Dr(t)}.(4.18)

Then, for all t ≥ 0 and r ∈ R for which Dr(t) �= ∅, RN ,

u(t, ·)−1((r,∞)) = Dr(t),(4.19)

since Dr(t) = Dr+(t) := ∪r̃>rDr̃(t) by (1.13).
Indeed, Dr(0) = Dr+(0) and Dr(t) ⊃ Dr̃(t) for r̃ > r by Lemma 3.6. If r̃ − r is

positive and is sufficiently small, then Dr̃(t) �= ∅ by (b) in Theorem 2.4, and∫
RN

(IDr̃(t)(x)− IDr(t)(x))dx =

∫
RN

(IDr̃(0)(x)− IDr(0)(x))dx ↑ 0 (as r̃ → r).(4.20)

By Lemma 3.6 and (4.19), u is continuous.
For m ≥ 1, put

km,1 := [m sup{h(y)|y ∈ RN}],
km,0 := [m inf{h(y)|y ∈ RN}] − 1.

Then ∑
km,0≤k≤km,1

k

m

(
ID k

m
(t)(x) − ID k+1

m

(t)(x)

)
(4.21)

=
∑

km,0<k≤km,1

1

m
ID k

m
(t)(x) − km,1 + 1

m
ID km,1+1

m

(t)(x) +
km,0

m
ID km,0

m

(t)(x).

Since ID km,1+1

m

(t)(x) ≡ 0 and since ID km,0
m

(t)(x) ≡ 1, the following holds: for any

ϕ ∈ Co(R
N ) and any t ≥ 0,

∫
RN

ϕ(x)

⎡
⎣ ∑
km,0≤k≤km,1

k

m

(
ID k

m
(0)(x) − ID k+1

m

(0)(x)

)
(4.22)

−
∑

km,0≤k≤km,1

k

m

(
ID k

m
(t)(x) − ID k+1

m

(t)(x)

)⎤⎦ dx

=

∫ t

0

ds

⎡
⎣ ∑
km,0<k≤km,1

1

m

∫
RN

ϕ(x)ω1

(
ID k

m
(s)(·), dx

)⎤⎦ .
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Letting m → ∞ in (4.22), one can show that u is a solution to (1.15) by Lemma
3.4 since

ω1

(
ID [mr]+1

m

(s)(·), dx
)

→ ω1(IDr(s)(·), dx) weakly as m → ∞

and since

ω1(IDr(s)(·), dx) = ωr(u(s, ·), dx),

except for at most countably many r ∈ (inf{u(s, y)|y ∈ RN}, sup{u(s, y)|y ∈ RN}).
Indeed,

∪r̃>r{co u(s, ·)−1((r̃,∞))}− = co u(s, ·)−1((r,∞))(4.23)

since Dr(s) = Dr+(s) (see (4.19)–(4.20)) and since for r̃ > r,

co u(s, ·)−1((r̃,∞)) ⊂ {co u(s, ·)−1((r̃,∞))}−

⊂ co u(s, ·)−1([r̃,∞)) ⊂ co u(s, ·)−1((r,∞)).

Besides, except for at most countably many r,

{co u(s, ·)−1((r,∞))}− = co u(s, ·)−1([r,∞))(4.24)

since the sets (co u(s, ·)−1([r,∞))\{co u(s, ·)−1((r,∞))}−) are disjoint for different r
and since (co u(s, ·)−1([r,∞))\{co u(s, ·)−1((r,∞))}−) is not empty if and only if it
has a positive Lebesgue measure.

Let v ∈ C([0,∞) × RN ) be a solution to (1.15) with v(0, ·) = h(·). Then for
m ≥ 1, r ∈ [inf{h(y)|y ∈ RN}, sup{h(y)|y ∈ RN}), and ϕ ∈ Co(R

N ) and t ≥ 0,∫
RN

ϕ(x){ηm(v(0, x) − r) − ηm(v(t, x) − r)}dx(4.25)

=

∫ t

0

ds

∫
R

dηm(r̃ − r)

dr̃
dr̃

∫
RN

ϕ(x)ωr̃(v(s, ·), dx)

(see (3.24) for notation).
Let m → ∞ in (4.25). Then we see that D̃r(t) := v(t, ·)−1((r,∞)) is a solution to

(1.14) on [0,∞) by Lemma 3.4. Indeed, in the same way as in (4.23), one can show
that the following holds:

∪r̃>rco v(s, ·)−1([r̃,∞)) = co v(s, ·)−1((r,∞)).(4.26)

We prove that v(t, ·)−1((r,∞)) satisfies (1.13). For x ∈ (co D̃r(t)) ∩ D̃r(0), take
δ > 0 so that Uδ(x) ⊂ (co D̃r(t)) ∩ D̃r(0). Then Uδ(x) ⊂ co D̃r(s) for all s ≤ t.
Hence, by (1.14), for any ϕ ∈ Co(R

N ) such that ϕ ≡ 0 in Uδ(x)c,∫
RN

ϕ(y){ID̃r(0)(y) − ID̃r(t)(y)}dy =

∫ t

0

ds

∫
RN

ϕ(y)ω1(ID̃r(s)(·), dy) = 0,(4.27)

which implies that x ∈ (Uδ(x) ⊂)D̃r(t). Hence (1.13) holds.
The uniqueness of u follows from that of Dr(·) for all r.
Theorem 2.4 is an easy consequence of Theorem 2.1 and Lemma 3.6, and we omit

the proof.
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Proof of Theorem 2.5.
Step I. We first show that u(t, x) := ID(t)(x) is a viscosity supersolution of (1.20)

in (0,∞) × RN .
Let ψ ∈ A((0,∞) × RN ) and assume that u − ψ attains a local minimum at

(t0, x0) ∈ (0,∞) × RN . Without loss of generality, we may assume that u(t0, x0) =
ψ(t0, x0) and that u(t, x) > ψ(t, x) for all (t, x) ∈ (0,∞) × RN \ {(t0, x0)} (see [8]).

If x0 �∈ ∂(co D(t0)) ∩ ∂D(t0), then ∂tψ(t0, x0) ≥ 0.
Indeed, t �→ u(t, x0) is constant if t0 − t is a sufficiently small positive number,

from which ψ(t0, x0) > ψ(t, x0) for such t.
Suppose that x0 ∈ ∂(co D(t0)) ∩ ∂D(t0). Then u(t0, x0) = 0, and Dψ(t0, x0) = o

or σ+(u,Dψ(t0, x0), t0, x0) = 1.
Indeed, if Dψ(t0, x0) �= o, then for y for which y+x0 �∈ H(Dψ(t0, x0), x0) and for

r > 0, by the mean value theorem, there exists θ ∈ (0, 1) such that

u(t0, x0 + ry) > ψ(t0, x0 + ry) = ψ(t0, x0) + r〈Dψ(t0, x0 + θry), y〉 > 0,

provided r is sufficiently small, by the continuity of Dψ.
Case 1. We first consider the case when Dψ(t0, x0) = o. We may assume that

there exist f ∈ F and ϕ1 ∈ C2((0,∞)) such that

ψ(t, x) = −f(|x− x0|) − ϕ1(t)(4.28)

(see [21]).
For A > 0 and i ≥ 2, put

ψi,A(t, x) = ψ(t, x) −A{|t− t0|2 + |x− x0|i}.(4.29)

Then

∂tψi,A(t0, x0) = ∂tψ(t0, x0), Dψi,A(t0, x0) = Dψ(t0, x0),(4.30)

and

U+
i,A,ε := {(t, x) ∈ (0,∞) × RN |ψi,A(t, x) + ε > u(t, x)}(4.31)

⊂ U(2i/2ε/A)1/i((t0, x0))

(ε ∈ (0, A)), and the following holds: for t ≥ 0,

lim
x→x0

G(DψN,A(t, x), D2ψN,A(t, x)) = NA.(4.32)

We argue by contradiction. We consider ψN,A instead of ψ. When it is not
confusing, we omit N,A for the sake of simplicity.

Assume that the following holds:

∂tψ(t0, x0) < 0.(4.33)

By reselecting A > 0 sufficiently small and ε > 0 sufficiently small compared to
A if necessary, we may assume that U(2i/2ε/A)1/i((t0, x0)) ⊂ (0,∞) × RN , that

∂tψ(t, x) + R

(
Dψ(t, x)

|Dψ(t, x)|

)
G(Dψ(t, x), D2ψ(t, x)) + ε < 0 on U+

ε ,(4.34)
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and that

U+
ε = ∪t>0{t} × (ψ(t, ·)−1((−ε,∞)) ∩D(t)c).(4.35)

We may also assume that x �→ ψ(t, x) is strictly concave on U+
ε ; hence x �→

(ψ(s, x), Dψ(s, x)/|Dψ(s, x)|) is one-to-one on some neighborhood of ∂ψ(s, ·)−1((−ε,
∞)) ∩D(s)c, provided ψ(s, ·)−1((−ε,∞)) ∩D(s)c �= ∅.

Indeed, if ψ(s, ·)−1((−ε,∞)) ∩D(s)c �= ∅, then −ε is not the maximum of ψ(s, ·)
on ψ(s, ·)−1((−ε,∞)) ∩ D(s)c and hence Dψ(s, ·) �= o on some neighborhood of
∂ψ(s, ·)−1((−ε,∞)) ∩D(s)c.

For t ≥ 0 and m and k ≥ 1,∫
RN

(ζk(ηm(ψ(t, x) + ε) − u(t, x))(4.36)

− ζk(ηm(ψ(0, x) + ε) − u(0, x)))dx

=

∫
RN

dx

∫ t

0

(
− ζk(ηm(ψ(s, x) + ε) − u(s, x))u(ds, x)

+ ηk(ηm(ψ(s, x) + ε) − u(s, x))
dηm(ψ(s, x) + ε)

dr
∂sψ(s, x)ds

)

(see (3.24)–(3.25) for notation).
Letting k → ∞ in (4.36), by (4.31) and (4.35),

0 ≤
∫ t

0

ds

{∫
ψ(s,·)−1((−ε,∞))∩D(s)c

ηm(ψ(s, x) + ε)ω1(u(s, ·), dx)(4.37)

+

∫
ψ(s,·)−1((−ε,−ε+1/m))∩D(s)c

dηm(ψ(s, x) + ε)

dr
∂sψ(s, x)dx

}
.

For s for which ψ(s, ·)−1((−ε,−ε+1/m))∩D(s)c �= ∅ and sufficiently large m ≥ 1,
by Lemma 3.8 and (4.34),∫

ψ(s,·)−1((−ε,−ε+1/m))∩D(s)c

dηm(ψ(s, x) + ε)

dr
∂sψ(s, x)dx(4.38)

< −
∫ −ε+1/m

−ε

dηm(r + ε)

dr
dr

∫
{−Dψ(s,x)

|Dψ(s,x)| :x∈∂ψ(s,·)−1((r,∞))∩D(s)c}
(R(p)

+ ε sup{G(Dψ(s, x), D2ψ(s, x)) : (s, x) ∈ U+
ε }−1)dHN−1(p)

→ −
∫
∪r>−ε{−Dψ(s,x)

|Dψ(s,x)| :x∈∂ψ(s,·)−1((r,∞))∩D(s)c}
(R(p) + ε sup{G(Dψ(s, x),

D2ψ(s, x)) : (s, x) ∈ U+
ε }−1)dHN−1(p) (as m → ∞).

Equations (4.37)–(4.38) contradict

{p ∈ SN−1 : σ+(u,−p, s, x) = 1 for some x ∈ ψ(s, ·)−1((−ε,∞)) ∩D(s)c}

⊂ ∪r>−ε

{
− Dψ(s, x)

|Dψ(s, x)| : x ∈ ∂ψ(s, ·)−1((r,∞)) ∩D(s)c
}

since

ηm(ψ(s, x) + ε) → 1 if x ∈ ψ(s, ·)−1((−ε,∞)), as m → ∞.
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Case 2. Next we consider the case when σ+(u,Dψ(t0, x0), t0, x0) = 1. By (ii)–(iv)
in Lemma 3.7, all eigenvalues of −D(Dψ(t0, x0)/|Dψ(t0, x0)|) are nonnegative
since the function x �→ ψ(t0, x) takes a maximum ψ(t0, x0) on the set {x0 + y ∈
RN |〈y,Dψ(t0, x0)〉 = 0}.

For A > 0, all eigenvalues of −D(Dψ2,A(t0, x0)/|Dψ2,A(t0, x0)|) as a mapping on
the set {y ∈ RN |〈y,Dψ2,A(t0, x0)〉 = 0} are greater than or equal to 2A/|Dψ(t0, x0)|
(see (3.32)–(3.33)) since, in Lemma 3.7, 1 and f1, . . . , fN−1 are an eigenvalue and
eigenvectors of (g1 · · · gN ), respectively.

We argue by contradiction. Assume that the following holds:

∂tψ(t0, x0) + R

(
Dψ(t0, x0)

|Dψ(t0, x0)|

)
G(Dψ(t0, x0), D

2ψ(t0, x0)) < 0.(4.39)

We consider ψ2,A instead of ψ. When it is not confusing, we omit 2,A for the sake
of simplicity. By reselecting A, ε > 0 if necessary, we may assume that (4.34)–(4.35)
hold.

One can also assume, in U(2ε/A)1/2((t0, x0)), that ∂iψ(s, x) �= 0 and all eigenvalues

of −D(Dψ(s, x)/|Dψ(s, x)|) as a mapping on the set {y ∈ RN |〈y,Dψ(s, x)〉 = 0} are
greater than or equal to A/|Dψ(t0, x0)|, and x �→ yi(s, x) is one-to-one for some
i ∈ {1, . . . , N} by the inverse function theorem, (v) in Lemma 3.7, and Lemma 3.8.

In the same way as in (4.36)–(4.38), we obtain a contradiction.
Step II. We show that u−(t, x) = ID(t)−(x) is a viscosity subsolution of (1.20).

Let ψ ∈ A((0,∞)×Rd) and assume that u−−ψ attains a maximum at (t0, x0) ∈
(0,∞) × Rd. We may assume as well that u−(t0, x0) = ψ(t0, x0), so that u−(t, x) <
ψ(t, x) for all (t, x) ∈ (0,∞) × Rd \ {(t0, x0)} (see [8]).

Since t �→ u−(t, x) is nonincreasing, ∂tψ(t0, x0) ≤ 0.
Hence we have only to consider the case when the following holds: Dψ(t0, x0) �= o,

and

σ−(u−, Dψ(t0, x0), t0, x0) = 1, R

(
Dψ(t0, x0)

|Dψ(t0, x0)|

)
G(Dψ(t0, x0), D

2ψ(t0, x0)) > 0.

In particular, u−(t0, x0) = 1. By adding to ψ the function (t, x) �→ A{|t−s|2+|x−y|2},
with a sufficiently small A > 0, if necessary, we may assume that

U−
ε := {(t, x) ∈ (0,∞) × Rd|ψ(t, x) − ε < u−(t, x)} (ε > 0)(4.40)

is contained in the set U(ε/A)1/2((t0, x0)).
We argue by contradiction. Assume that the following holds:

∂tψ(t0, x0) + R

(
Dψ(t0, x0)

|Dψ(t0, x0)|

)
G(Dψ(t0, x0), D

2ψ(t0, x0)) > 0.(4.41)

By reselecting ε > 0 if necessary, we may assume that

∂tψ(t, x) + R

(
Dψ(t, x)

|Dψ(t, x)|

)
G(Dψ(t, x), D2ψ(t, x)) − ε > 0,(4.42)

and u−(t, x) = 1 on U−
ε by the continuity of ψ.

Put η̃m(r) = ηm(r + 1/m) for r ∈ R and m ≥ 1. In the same way as in Step
I, considering u−(t, x) − η̃m(ψ(t, x) − 1 − ε) instead of ηm(ψ(t, x) + ε) − u(t, x), we
obtain a contradiction.
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Proof of Corollary 2.6. We first show that u is a viscosity supersolution of (1.20)
in (0,∞)×RN . Let ϕ ∈ A((0,∞)×RN ) and assume that u− ϕ attains a minimum
at (t0, x0) ∈ (0,∞)×RN . We may assume that u(t0, x0) = ϕ(t0, x0), so that u(t, x) >
ϕ(t, x) for all (t, x) ∈ (0,∞)×RN \ {(t0, x0)} (see [8]). By subtracting a constant, we
may assume that ϕ ≤ u < 0.

Put r0 := ϕ(t0, x0) and

ur(t, x) := Iu−1(t,·)((r,0))(x) (r < 0).(4.43)

Then

ur0(t, x) ≥ ϕ(t, x)

|r0|
+ 1 for all (t, x) ∈ (0,∞) × RN ,(4.44)

where the equality holds if and only if (t, x) = (t0, x0).
Since ur is a viscosity supersolution of (1.20) in (0,∞)×RN by Corollary 2.3 and

Theorem 2.5, and since

σ+(ur0 , D(ϕ(t0, x0)/|r0| + 1), t0, x0) = σ+(u,Dϕ(t0, x0), t0, x0),

(1.25) holds.
Next we show that u is a viscosity subsolution of (1.20) in (0,∞) × RN . Let

ϕ ∈ A((0,∞)×Rd) and assume that u−ϕ attains a maximum at (t1, x1) ∈ (0,∞)×Rd.
We may assume as well that u(t1, x1) = ϕ(t1, x1), so that u(t, x) < ϕ(t, x) for all
(t, x) ∈ (0,∞) × Rd \ {(t1, x1)} (see [8]).

By adding a constant, we may assume that ϕ ≥ u > 0.
Put r1 := ϕ(t1, x1) and

u−
r (t, x) := Iu−1(t,·)([r,∞))(x) (r < 0).(4.45)

Then

u−
r1(t, x) ≤ ϕ(t, x)

r1
for all (t, x) ∈ (0,∞) × RN ,(4.46)

where the equality holds if and only if (t, x) = (t1, x1).
Since u−

r is a viscosity subsolution of (1.20) in (0,∞)×RN by Corollary 2.3 and
Theorem 2.5, and since

σ−(u−
r1 , D(ϕ(t1, x1)/r1), t1, x1) = σ−(u,Dϕ(t1, x1), t1, x1),

(1.27) holds.
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PROPAGATION OF VISCOUS SHOCK WAVES AWAY FROM
THE BOUNDARY∗

CHIU-YA LAN† , HUEY-ER LIN† , TAI-PING LIU‡ , AND SHIH-HSIEN YU§

SIAM J. MATH. ANAL. c© 2004 Society for Industrial and Applied Mathematics
Vol. 36, No. 2, pp. 580–617

Abstract. We study the propagation of shock waves away from the boundary for viscous
conservation law. Our main purpose is to obtain pointwise description of the perturbation of the
shock profile. We show that there are different convergence rates for the region between the boundary
and the shock and the region ahead of the shock. The dependence of these rates on the shock strength,
viscosity, and initial perturbation is studied. There are two mechanisms which govern the solution
behavior: the compressibility of the shock and the presence of the boundary. We introduce an
iteration scheme to decouple these two effects. Thus near the boundary we use the Green’s function
for the initial-boundary value problem of the equation linearized around the boundary value; away
from the boundary we use the Green’s function for the initial-value problem of the equation linearized
around the shock profile. To focus on our main ideas, we study the Burgers equation, for which the
Green’s functions have explicit forms. Our new approach should be applicable to more general
situations such as the system of viscous conservation laws.

Key words. time asymptotic, pointwise approach, shock location

AMS subject classifications. 35L65, 76L05, 76N10

DOI. 10.1137/S0036141003428159

1. Introduction. The purpose of this paper is to study the effect of the bound-
ary on the time asymptotic behavior of the propagation of shock waves for the viscous
conservation law

ut + f(u)x = uxx.

We are interested in the interplay of the effects of boundary, nonlinearity through the
strength of the shock, and the initial data. We will consider the case when the flux
is strongly nonlinear: f ′′(u) �= 0. For simplicity we consider the Burgers equation.
The situation is simpler when the shock is propagating toward the boundary and
becomes the boundary layer. We consider the case when the shock is propagating
away from the boundary. Thus we will study the stability of a viscous shock profile
for the initial-boundary value problem

ut + uux = uxx,(1.1)

u(−L− t, t) = u−, u(∞, t) = −u− ≡ u+,(1.2)

u(x, 0) = φ(x) + ū(x), ū(−L) = u− − φ(−L),(1.3)

φ(x) ≡ −u− tanh
(u−x)

2
,
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where φ(x) is a stationary shock wave solution of the Burgers equation and L > 0 is
a given constant.

To highlight the effect of the boundary, we will carry out the detailed analysis for
the case when the initial perturbation is small and has algebraic decay. Since we are
interested in the time asymptotic behavior, we assume that the shock is initially not
located near the boundary; i.e. L is large:

ū(x) = O(1)e−
L
d (1 + x + L)−α,(1.4)

ūx(x) = O(1)e−
L
d (1 + x + L)−α−1, α > 1, d ≥ 1.(1.5)

In this case, the boundary effect and the presence of the shock give rise to con-
vergence at an exponential rate for the region between the shock and the boundary,
and at an algebraic rate for the region around and ahead of the shock. The choice of
algebraic decaying initial data is also motivated by the study of the system of con-
servation laws, for which the wave interactions of distinct characteristic families give
rise to waves of algebraic rates [1].

There have been works on the boundary effects using the energy method [3], [2],
[5]. Our pointwise approach extends that of [4], which studies the propagation of
stationary shocks. For the pointwise approach, one needs to use the exact solution
representation, that is, make use of the Green’s functions. In this regard, the present
study introduces an important new analytical device for separating the nonlinearity
effect of the shock from that of the boundary. Specifically, for the region around
the boundary we use the Green’s function for the initial-boundary value problem
but ignore the presence of the shock. For the region away from the boundary we
use the Green’s function for the equation linearized around the shock, ignoring the
presence of the boundary. The advantage is the simplicity of the forms of these Green’s
functions and the clarity of the different roles played by the boundary and the shock
on the asymptotic behavior of the solutions. This avoids the potentially complicated
construction of the Green’s function with the presence of both the boundary and the
shock. This new methodology was raised first in the unpublished work [6], and is
applicable in principle to systems, a task we will pursue in the future.

There are three parts in this paper: first, we obtain preliminary pointwise esti-
mates, particularly the boundary estimate of the solution of (1.1), (1.2), and (1.3)
around a viscous shock wave. The boundary estimate thus obtained allows us to
locate, time-asymptotically, the shock profile. With the shock location determined,
we then study the time asymptotic behavior of the perturbation. We show that the
perturbation decays exponentially for the region between the boundary and the shock,
and algebraically for the region ahead of the shock. Finally, in the last section we re-
mark on the different roles played by the nonlinearity, viscosity, boundary, and initial
data in the time asymptotic behavior of the solutions.

2. Boundary estimate. In this section we will obtain the boundary estimate.
Since the shift of the shock location due to the perturbation and the boundary is
not known a priori, we therefore will not try to properly shift the shock. Thus the
interior estimate given in this section is rough and there is no time decay. However,
the boundary estimate given here is optimal and will be crucial in the next section in
determining the shock shift. For simplicity in the analysis, we will take the shock to
be of finite strength; in fact, we assume that u− = 1 and the initial data to be

ū(x) = O(1)e−L(1 + x + L)−α, ūx(x) = O(1)e−L(1 + x + L)−α−1.
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Set the perturbation with zero boundary value to be v(x, t):

v(x, t) ≡ u(x, t) − φ(x) − Ψ(x, t),

Ψ(x, t) = (1 − φ(−L− t))(1 + x + L + t)−α.

Then v(x, t) satisfies

vt + (φv)x − vxx = −
(
v2

2
+ Ψv

)
x

− Ψt −
(
φΨ +

Ψ2

2

)
x

+ Ψxx,(2.1)

v(−L− t, t) = 0, v(∞, t) = 0,(2.2) {
v(x, 0) = ū(x) − Ψ(x, 0) = O(1)e−L(1 + x + L)−α, v(−L, 0) = 0,

vx(x, 0) = O(1)e−L(1 + x + L)−α−1.
(2.3)

As mentioned before, we separate the space-time domain into two parts: the region
near the boundary, x ∈ [−L − t,−(L + t)/2), and that away from the boundary,
x ≥ −(L + t)/2.

Region I. For x ∈ [−L− t,−(L+ t)/2), we use the Green’s function KB(x, t; y, σ)
for

wt + wx = wxx,(2.4)

w(−L− t, t) = 0, w(∞, t) = 0.(2.5)

The following expression of the Green’s function is easily obtained by converting,
through reflection, the initial-boundary problem into the initial value problem for
which the Green’s function is the translated heat kernel:

k(x, t) ≡ e−
x2

4t /
√

4πt.

Lemma 2.1. The Green’s function KB(x, t; y, σ) for (2.4) and (2.5) is

KB(x, t; y, σ) = k(x− y − (t− σ), t− σ) − k(x + y − t + 3σ + 2L, t− σ)e−2(y+L+σ).

We represent the solution v(x, t) of (2.1), (2.2), and (2.3) using this Green’s
function. Multiply KB with (2.1) and integrate the equation to yield

v(x, t) =

∫ ∞

−L

KB(x, t; y, 0)v(y, 0)dy

+

∫ t

0

∫ ∞

−L−σ

KB
y (x, t; y, σ)

[
(φ(y) − 1 + Ψ(y, σ))v(y, σ) +

v(y, σ)2

2

]
dydσ(2.6)

+

∫ t

0

∫ ∞

−L−σ

KB(x, t; y, σ)

{
−Ψσ −

(
φΨ +

Ψ2

2

)
y

+ Ψyy

}
(y, σ)dydσ.

Region II. For x ≥ −(L + t)/2, we focus on the shock profile and consider the
Green’s function G(x, t; y, σ) for the initial value problem

wt + (φ(x)w)x − wxx = 0, −∞ < x < ∞.(2.7)

The Green’s function for this is easily obtained from Hopf–Cole transformation. It is
also easy to see that the Green’s function is the weighted heat kernels, as stated in
the corollary below; cf. [1].
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Lemma 2.2. The Green’s function G(x, t; y, σ) for (2.7) is

G(x, t; y, σ) = −
∫ y

−∞
gx(x, t; ξ, σ)dξ

(2.8)

= g(x, t; y, σ) +

∫ y

−∞ sinh(x−ξ
2 )k(x− ξ, t− σ)e−

t−σ
4 dξ

2 cosh2 x
2

,

where

g(x, t; y, σ) ≡
cosh(y2 )

cosh(x2 )
k(x− y, t− σ)e−

t−σ
4(2.9)

is the Green’s function for

wt + φ(x)wx − wxx = 0.

Corollary 2.3. The Green’s function g(x, t; y, σ) of wt +φ(x)wx−wxx = 0 can
be viewed as a weighted heat kernel:

for x > 0, y > 0, g(x, t; y, σ) = O(1)k(x− y + (t− σ), t− σ),

for x > 0, y < 0, g(x, t; y, σ) = O(1)e−|x|k(x− y − (t− σ), t− σ),

for x < 0, y < 0, g(x, t; y, σ) = O(1)k(x− y − (t− σ), t− σ),

for x < 0, y > 0, g(x, t; y, σ) = O(1)e−|x|k(x− y + (t− σ), t− σ).

More precisely, g(x, t; y, σ) can be written as the following two equivalent expressions:

g(x, t; y, σ) =

⎧⎪⎪⎨
⎪⎪⎩

1 + ey

1 + ex
k(x− y − (t− σ), t− σ),

1 + e−y

1 + e−x
k(x− y + (t− σ), t− σ).

With the second Green’s function, we obtain a representation for the solution
that is different from (2.6):

v(x, t) =

∫ ∞

−L

G(x, t; y, 0)v(y, 0)dy

−
∫ t

0

G(x, t;−L− σ, σ)vy(−L− σ, σ)dσ

(2.10)

+

∫ t

0

∫ ∞

−L−σ

Gy(x, t; y, σ)

(
Ψ(y, σ)v(y, σ) +

v(y, σ)2

2

)
dydσ

+

∫ t

0

∫ ∞

−L−σ

G(x, t; y, σ)

{
−Ψσ −

(
φΨ +

Ψ2

2

)
y

+ Ψyy

}
(y, σ)dydσ.

We study the solution v(x, t) for (2.1), (2.2), and (2.3) by the following iterations:

for x ∈ [−L− t,−(L + t)/2),

v0(x, t) =

∫ ∞

−L

KB(x, t; y, 0)v(y, 0)dy

(2.11)

+

∫ t

0

∫ ∞

−L−σ

KB(x, t; y, σ)

{
−Ψσ −

(
φΨ +

Ψ2

2

)
y

+ Ψyy

}
(y, σ)dydσ;
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for x ≥ −(L + t)/2,

v0(x, t) =

∫ ∞

−L

G(x, t; y, 0)v(y, 0)dy

−
∫ t

0

G(x, t;−L− σ, σ)v0
y(−L− σ, σ)dσ(2.12)

+

∫ t

0

∫ ∞

−L−σ

G(x, t; y, σ)

{
−Ψσ −

(
φΨ +

Ψ2

2

)
y

+ Ψyy

}
(y, σ)dydσ;

for x ∈ [−L− t,−(L + t)/2), n ≥ 1,

vn(x, t) =

∫ ∞

−L

KB(x, t; y, 0)v(y, 0)dy

+

∫ t

0

∫ ∞

−L−σ

KB
y (x, t; y, σ)

(2.13)

·
[
(φ(y) − 1 + Ψ(y, σ))vn−1(y, σ) +

vn−1(y, σ)2

2

]
dydσ

+

∫ t

0

∫ ∞

−L−σ

KB(x, t; y, σ)

{
−Ψσ −

(
φΨ +

Ψ2

2

)
y

+ Ψyy

}
(y, σ)dydσ;

for x ≥ −(L + t)/2, n ≥ 1,

vn(x, t) =

∫ ∞

−L

G(x, t; y, 0)v(y, 0)dy

−
∫ t

0

G(x, t;−L− σ, σ)vny (−L− σ, σ)dσ

(2.14)

+

∫ t

0

∫ ∞

−L−σ

Gy(x, t; y, σ)

(
Ψ(y, σ)vn−1(y, σ) +

vn−1(y, σ)2

2

)
dydσ

+

∫ t

0

∫ ∞

−L−σ

G(x, t; y, σ)

{
−Ψσ −

(
φΨ +

Ψ2

2

)
y

+ Ψyy

}
(y, σ)dydσ.

From the expression of Ψ(x, t) at the beginning of this section, we have

Ψt +

(
φΨ +

Ψ2

2

)
x

− Ψxx = O(1)e−L−t(1 + x + L + t)−α.

The first step is to estimate v0, for which we need the following lemmas. Lemma
2.4 follows from straightforward computations. In Lemma 2.5 both algebraic and
exponential rates are described, and we need to consider various regions in the (x, t)
space in its proof.

Lemma 2.4. For x ∈ [−L− t, 0),∫ ∞

−L

k(x− y − t, t)e−L(1 + y + L)−αdy ≤ Ce−
L
2 e−

|x|
2 e−

t
4 ,(2.15)

∫ t

0

∫ ∞

−L−σ

k(x− y − (t− σ), t− σ)e−L−σ(1 + y + L + σ)−αdydσ

(2.16)
≤ e−

L
2 e−

|x|
2 e−

t
4 .
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Lemma 2.5. For x ≥ −(L + t)/2 and r > 1,∫ t

0

G(x, t;−L− σ, σ)e−
L
2r e−

L+σ
2 dσ ≤ Ce−

L
2r e−

|x|
2 .(2.17) ∫ t

0

∫ ∞

−L−σ

G(x, t; y, σ)e−L−σ(1 + y + L + σ)−αdydσ

(2.18)

≤ C

{
e−Le−|x| + e−

L
2 e−

|x|
2 (1 + t)−α if x ∈ [−(L + t)/2, 0),

e−
L
2 e−

|x|
2 + e−L(1 + x + L + t)−α if x ≥ 0.∫ ∞

−L

G(x, t; y, 0)e−L(1 + y + L)−αdy

(2.19)

≤ C

{
e−

L
2 e−

|x|
2 if x ∈ [−(L + t)/2, 0),

e−Le−|x| + e−L(1 + x + L + t)−α if x ≥ 0.

Proof. From (2.8)

G(x, t; y, σ) = O(1)
{
e−

|x|
2 e

|y|
2 k(x− y, t− σ)e−

t−σ
4 + e−|x|

}
and so we have (2.17)∫ t

0

G(x, t;−L− σ, σ)e−
L
2r e−

L+σ
2 dσ

≤ C

{∫ t

0

e−
|x|
2 k(x + L + σ, t− σ)e−

t−σ
4 e−

L
2r dσ +

∫ t

0

e−|x|e−
L
2r e−

L+σ
2 dσ

}

≤ Ce−
L
2r e−

|x|
2 .

Similarly,∫ t

0

∫ ∞

−L−σ

G(x, t; y, σ)e−L−σ(1 + y + L + σ)−αdydσ

=

∫ t

0

∫ ∞

−L−σ

g(x, t; y, σ)e−L−σ(1 + y + L + σ)−αdydσ

+

∫ t

0

∫ ∞

−L−σ

O(1)e−|x|e−L−σ(1 + y + L + σ)−αdydσ ≡ g1 + g2,

where g2 is obtained by straightforward computation,

g2 =

∫ t

0

∫ ∞

−L−σ

O(1)e−|x|e−L−σ(1 + y + L + σ)−αdydσ ≤ Ce−|x|e−L,

and from Corollary 2.3, when x ∈ [−(L + t)/2,−t/2),

g1 =

∫ t

0

∫ ∞

−L−σ

g(x, t; y, σ)e−L−σ(1 + y + L + σ)−αdydσ

≤ C

{∫ t

0

∫ 0

−L−σ

k(x− y − (t− σ), t− σ)e−L−σ(1 + y + L + σ)−αdydσ

+

∫ t

0

∫ ∞

0

e−|x|k(x− y + (t− σ), t− σ)e−L−σ(1 + y + L + σ)−αdydσ

}
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≤ C

{∫ t

0

∫ 0

−L−σ

1√
4π(t− σ)

e−
(x−y)2

4(t−σ)
+

(x−y)
2 − t−σ

4 e−L−σ(1 + y + L + σ)−αdydσ

+

∫ t

0

e−|x|e−L−σdσ

}

≤ C
{
e−

L
2 e−

|x|
2 e−

t
4 + e−Le−|x|

}
≤ Ce−

L
2 e−

|x|
2 e−

t
4 ;

when x ∈ [−t/2, 0),

g1 ≤ C

{
e−

L
2 e−

|x|
2 e−

t
4

+

∫ t
4

0

(∫ t−σ
8

0

+

∫ ∞

t−σ
8

)

e−|x|k(x− y + (t− σ), t− σ)e−L−σ(1 + y + L + σ)−αdydσ

+

∫ t

t
4

∫ ∞

0

e−|x|k(x− y + (t− σ), t− σ)e−L−σ(1 + y + L + σ)−αdydσ

}

≤ C

{
e−

L
2 e−

|x|
2 e−

t
4

+

∫ t
4

0

e−|x|e−
(x− (t−σ)

8
+(t−σ))2

4(t−σ) e−L−σ(1 + L + σ)−αdσ

+

∫ t
4

0

e−|x|e−L−σ

(
1 +

t

8
+ L +

7σ

8

)−α

dσ

+

∫ t

t
4

e−|x|e−L−σ(1 + L + σ)−αdσ

}

≤ C
{
e−

L
2 e−

|x|
2 e−

t
4 + e−Le−

|x|
2 (1 + t)−α

}
;

and when x ≥ 0,

g1≤C

{∫ t

0

∫ 0

−L−σ

e−|x|k(x− y − (t− σ), t− σ)e−L−σ(1 + y + L + σ)−αdydσ

+

∫ t

0

∫ ∞

0

k(x− y + (t− σ), t− σ)e−L−σ(1 + y + L + σ)−αdydσ

}

≤C

{
e−

L
2 e−

|x|
2 e−

t
4

+

∫ t

0

(∫ x
2

0

+

∫ x+ t−σ
2

x
2

+

∫ ∞

x+ t−σ
2

)

k(x− y + (t− σ), t− σ)e−L−σ(1 + y + L + σ)−αdydσ

}
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≤C

{
e−

L
2 e−

|x|
2 e−

t
4

+

∫ t

0

e−
(x−(x/2)+(t−σ))2

4(t−σ) e−L−σdσ+

∫ t

0

e−
((t−σ)/2)2

4(t−σ) e−L−σ
(
1+

x

2
+L+σ

)−α

dσ

+

∫ t

0

e−L−σ

(
1 + x +

t

2
+ L +

σ

2

)−α

dσ

}

≤C
{
e−

L
2 e−

|x|
2 e−

t
4 + e−Le−

x
4 e−

t
4 + e−Le−

t
16 (1 + x + L)−α

+ e−L(1 + x + L + t)−α
}

≤C
{
e−

L
2 e−

|x|
2 e−

t
4 + e−L(1 + x + L + t)−α

}
.

By adding g1 and g2 we obtain (2.18).
The estimate for (2.19) is similar to that for (2.18) so we omit the detail.
Lemma 2.6. For 0 ≤ x + L + t ≤ 1, there exists a constant C > 0 such that

|KB(x, t; y, σ)| ≤ C
|x + L + t|√

t− σ

·
∫ 1

−1

k

(
y + L + σ + θ(x + L + t)

1.5
, t− σ

)
dθe−(y+L+σ)−(t−σ),

and

|KB
y (x, t; y, σ)| ≤ C

|x + L + t|√
t− σ

(
1 +

1√
t− σ

)

·
∫ 1

−1

k

(
y + L + σ + θ(x + L + t)

1.5
, t− σ

)
dθe−(y+L+σ)−(t−σ).

Proof. Let X = x + L + t and Y = y + L + σ, 0 ≤ X ≤ 1. Then the estimates of
KB and KB

y follow from the following expressions:

KB = k(x− y − (t− σ), t− σ) − k(x + y − t + 3σ + 2L, t− σ)e−2(y+L+σ)

= [k(Y −X, t− σ) − k(Y + X, t− σ)]e(X−Y )−(t−σ)

= −X

∫ 1

−1

kY (Y + θX, t− σ)dθe(X−Y )−(t−σ)

= O(1)
X√
t− σ

∫ 1

−1

k

(
Y + θX

1.5
, t− σ

)
dθe−Y−(t−σ),

KB
y = [kY (Y −X, t− σ) − kY (Y + X, t− σ)]e(X−Y )−(t−σ) −KB

= −X

∫ 1

−1

kY Y (Y + θX, t− σ)dθe(X−Y )−(t−σ) −KB

= O(1)
X√
t− σ

(
1 +

1√
t− σ

)∫ 1

−1

k

(
Y + θX

1.5
, t− σ

)
dθe−Y−(t−σ).

With the above lemmas we are now ready to estimate the leading term v0 of iterations
(2.11)–(2.14).
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Proposition 2.7. There exist constants C0 > 0 and r > 1 such that

v0(x, t) ≤ C0

⎧⎪⎨
⎪⎩

e−
L
2r e−

|x|
2 |x + L + t| for x ∈ [−L− t,−L− t + 1],

e−
L
2r e−

|x|
2 for x ∈ [−L− t, 0),

e−
L
2r e−

|x|
2 + e−

L
2 (1 + x + L + t)−α for x ≥ 0,

v0
x(−L− t, t) ≤ C0e

− L
2r e−

L+t
2 .

Proof. From the property of KB in Lemma 2.6, we have, for x ∈ [−L−t,−L−t+1],∫ t

0

∫ ∞

−L−σ

KB(x, t; y, σ)e−L−σ(1 + y + L + σ)−αdydσ

(2.20)
≤ C|x + L + t|e−s(L+t), 0 < s < 1,

and by Fubini’s theorem and integration by parts, with X = x + L + t, Y = y + L,∣∣∣∣
∫ ∞

−L

KB(x, t; y, 0)v(y, 0)dy

∣∣∣∣
=

∣∣∣∣
∫ ∞

0

[k(Y −X, t) − k(Y + X, t)]e(X−Y )−tv(Y, 0)dY

∣∣∣∣
=

∣∣∣∣
∫ ∞

0

∫ 1

−1

(−X)∂Y k(Y + θX, t)dθe(X−Y )−tv(Y, 0)dY

∣∣∣∣
(2.21)

=

∣∣∣∣(−X)

∫ 1

−1

∫ ∞

0

∂Y k(Y + θX, t)e(X−Y )−tv(Y, 0)dY dθ

∣∣∣∣
=

∣∣∣∣X
∫ 1

−1

∫ ∞

0

k(Y + θX, t)[−e(X−Y )−tv(Y, 0) + e(X−Y )−tvY (Y, 0)]dY dθ

∣∣∣∣
≤ CXe−Le−t.

Here we have used |v(Y, 0)| + |vY (Y, 0)| = O(1)e−L from (2.3). In particular we have
from (2.20) and (2.21) that v0(−L− t, t) = 0 and

(2.22)

v0
x(−L− t, t)

= lim
x+L+t→0+

{∫ ∞

−L

KB(x, t; y, 0)

|x + L + t| v(y, 0)dy

+

∫ t

0

∫ ∞

−L−σ

KB(x, t; y, σ)

|x + L + t|

{
−Ψσ −

(
φΨ +

Ψ2

2

)
y

+ Ψyy

}
dydσ

}

≤ Ce−L−t

+

∫ t

0

∫ ∞

−L−σ

C√
t− σ

∫ 1

−1

k

(
(x + L + t)θ + (y + L + σ)

1.5
, t− σ

)
e−(y+L+σ)−(t−σ)dθ

·
{
−Ψσ −

(
φΨ +

Ψ2

2

)
y

+ Ψyy

}
dydσ

≤ Ce−s(L+t), 0 < s < 1.

Since KB(x, t; y, σ) ≤ k(x− y− (t−σ), t−σ), we may apply Lemmas 2.4 and 2.5 and
(2.20)–(2.22) by letting s = 1

2 + 1
2r for r > 1. This proves the lemma.
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Remark 2.8. For general initial data (1.4) with d > 1, v0 is estimated as

v0(x, t) ≤ O(1)

⎧⎪⎪⎨
⎪⎪⎩

|x + L + t|e−
|x|
2d e−

L+t
2d for x ∈ [−L− t,−L− t + 1],

e−
|x|
2d e−

L
2d for x ∈ [−L− t, 0),

e−
|x|
2 max{e−L

d , e−
L
2 } + (1 + x + L + t)−αe−

L
d for x ≥ 0,

v0
x(−L− t, t) ≤ O(1)e−

L
2d e−

(L+t)
2d .

Our main theorem of this section, Theorem 2.13 on the solution v(x, t), will be
proved by induction. The general procedure is to estimate vn for all n ∈ N . The
ansatz is more complicated than that of v0 because of nonlinearity in (2.1) and the
singularity in KB

y (x, t; y, σ) and Gy(x, t; y, σ). To deal with the singularity, we need
the following lemmas.

Lemma 2.9. For |x + L + t| < 1 and L large, there exists a positive constant C
such that∫ t

0

∫ −L−σ+4

−L−σ

|KB
y (x, t; y, σ)|(y + L + σ)e−|y|dydσ ≤ C|x + L + t|e−

|x|
2 e−

L
2 ,(2.23)

∫ t

0

∫ 0

−L−σ+4

|KB
y (x, t; y, σ)|e−|y|dydσ ≤ C|x + L + t|e−

|x|
2 e−

L
2 ,(2.24)

∫ t

0

∫ ∞

0

|KB
y (x, t; y, σ)|dydσ ≤ C|x + L + t|e−

|x|
2 e−

L
2 .(2.25)

Proof. If t > 1,∫ t

0

∫ −L−σ+4

−L−σ

|KB
y (x, t; y, σ)|(y + L + σ)e−|y|dydσ

=

(∫ t−1

0

+

∫ t

t−1

)∫ −L−σ+4

−L−σ

|KB
y (x, t; y, σ)|(y + L + σ)e−|y|dydσ

≡ J1 + J2.

If X = x + L + t, Y = y + L + σ, and L > 0 is large, then from the property of KB
y

in Lemma 2.6 we have

J1 =

∫ t−1

0

∫ −L−σ+4

−L−σ

|KB
y (x, t; y, σ)|(y + L + σ)e−|y|dydσ

≤
∫ t−1

0

∫ 4

0

C
X√
t− σ

(
1 +

1√
t− σ

)∫ 1

−1

k

(
Y + θX

1.5
, t− σ

)
dθ

e−Y−(t−σ)Y e(Y−L−σ)dY dσ

≤
∫ t−1

0

CXdσe−(L+t) (t− σ > 1, 0 < Y < 4)

≤ CX(t− 1)e−(L+t) ≤ CXex/2e−
L
2 ,

J2 =

∫ t

t−1

∫ −L−σ+4

−L−σ

|KB
y (x, t; y, σ)|(y + L + σ)e−|y|dydσ

≤
∫ t

t−1

∫ −L−σ+4

−L−σ

KB(x, t; y, σ)(y + L + σ)e−|y|dydσ
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+

∫ t

t−1

∫ 2X

0

|kY (Y −X, t− σ)− kY (Y +X, t− σ)|e−Y−(t−σ)Y e(Y−L−σ)dY dσ

+

∫ t

t−1

∫ 4

2X

|kY (Y −X, t− σ) − kY (Y + X, t− σ)|e−Y−(t−σ)Y e(Y−L−σ)dY dσ

≡ j1 + j2 + j3.

The terms j1, j2, and j3 are estimated using Lemma 2.6:

j1 =

∫ t

t−1

∫ −L−σ+4

−L−σ

|KB(x, t; y, σ)|(y + L + σ)e−|y|dydσ

≤ C

∫ t

t−1

∫ 4

0

X√
t− σ

∫ 1

−1

k

(
Y + θX

1.5
, t− σ

)
dθe−Y−(t−σ)Y e(Y−L−σ)dY dσ

≤ C

∫ t

t−1

X√
t− σ

dσe−(L+t)

≤ C|x + L + t|ex/2e−L
2 ,

j2 =

∫ t

t−1

∫ 2X

0

|kY (Y −X, t− σ) − kY (Y + X, t− σ)|e−Y−(t−σ)Y e(Y−L−σ)dY dσ

≤ C

∫ t

t−1

∫ 2X

0

2X√
t− σ

k

(
Y −X

2
, t− σ

)
e−Y−(t−σ)e(Y−L−σ)dY dσ

≤ C

∫ t

t−1

2X√
t− σ

dσe−(L+t)

≤ C|x + L + t|ex/2e−L
2 ,

j3 =

∫ t

t−1

∫ 4

2X

|kY (Y −X, t− σ) − kY (Y + X, t− σ)|e−Y−(t−σ)Y e(Y−L−σ)dY dσ

=

∫ t

t−1

∫ 4

2X

∣∣∣∣−X

∫ 1

−1

kY Y (Y + θX, t− σ)dθ

∣∣∣∣ e−Y−(t−σ)Y e(Y−L−σ)dY dσ

≤ C

∫ t

t−1

∫ 4

2X

∫ 1

−1

X

t− σ
k

(
Y + θX

1.5
, t− σ

)
dθe−Y−(t−σ)Y e(Y−L−σ)dY dσ

≤ C

∫ t

t−1

∫ 4

2X

XY

t− σ
k

(
Y

3
, t− σ

)
e−(L+t)dY dσ

≤ C

∫ t

t−1

X√
t− σ

dσe−(L+t)

≤ C|x + L + t|ex/2e−L
2 .

Thus we have obtained (2.23) for t > 1. For t ≤ 1 the calculation is the same as for
J2 and is omitted.

Next, for 0 ≤ X ≤ 1 and Y ≥ 4, KB
y in Lemma 2.6 satisfies

|KB
y (x, t; y, σ)| ≤ C

X√
t− σ

(
1 +

1√
t− σ

)
k

(
Y − 1

1.5
, t− σ

)
e−Y−(t−σ)

≤ CXk

(
Y − 1

2
, t− σ

)
e−Y−(t−σ),
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and therefore∫ t

0

∫ 0

−L−σ+4

|KB
y (x, t; y, σ)|e−|y|dydσ

≤
∫ t

0

∫ L+σ

4

CXk

(
Y − 1

2
, t− σ

)
e−Y−(t−σ)e(Y−L−σ)dY dσ

≤ CX

∫ t

0

dσe−(L+t) = CXte−(L+t)

≤ C|x + L + t|ex/2e−L
2 ,

and ∫ t

0

∫ ∞

0

|KB
y (x, t; y, σ)|dydσ

≤
∫ t

0

∫ ∞

0

C|x + L + t|k
(
y + L + σ − 1

2
, t− σ

)
e−(y+L+σ)−(t−σ)dydσ

≤ C|x + L + t|te−(L+t) ≤ C|x + L + t|e−
|x|
2 e−

L
2 .

This establishes (2.24), (2.25) and completes the proof of the lemma.
Lemma 2.10. For x ∈ [−L− t,−(L + t)/2), D > 1,∫ t

0

∫ 0

−L−σ

k(x− y − (t− σ), t− σ)eydydσ = O(1)tex,(2.26)

∫ t

0

∫ ∞

0

k(x− y − (t− σ), t− σ)e−y/2dydσ = O(1)
√
tex,(2.27) ∫ t

0

∫ ∞

0

k(x− y − (t− σ), t− σ)(1 + y + L + σ)−αdydσ = O(1)
√
tex,(2.28)

∫ t

0

∫ 0

−L−σ

1√
t− σ

k

(
x− y + (t− σ)

D
, t− σ

)
ex−ye−|y|dydσ = O(1)

√
tex,(2.29)

∫ t

0

∫ ∞

0

1√
t− σ

k

(
x− y + (t− σ)

D
, t− σ

)
ex−ye−

|y|
2 dydσ = O(1)

√
tex,(2.30)

∫ t

0

∫ ∞

0

1√
t− σ

k

(
x− y + (t− σ)

D
, t− σ

)
ex−y(1 + y + L + σ)−αdydσ(2.31)

= O(1)
√
tex.

Proof. The last three estimates, (2.29), (2.30), and (2.31), are obvious from∫ ∞

−∞
k

(
x− y + (t− σ)

D
, t− σ

)
dy = O(1).

The first three estimates, (2.26), (2.27), and (2.28), are obtained from the following
equations, which hold for x < 0:∫ 0

−L−σ

k(x− y − (t− σ), t− σ)eydy

=

∫ 0

−L−σ

k(x− y + (t− σ), t− σ)exdy ≤ ex,



592 C.-Y. LAN, H.-E. LIN, T.-P. LIU, AND S.-H. YU∫ ∞

0

k(x− y − (t− σ), t− σ)e−y/2dy

=

∫ ∞

0

1√
4π(t− σ)

e−
x2

4(t−σ)
+ x

2 −y− t−σ
4 dy

=
1√

4π(t− σ)
e−

(x−(t−σ))2

4(t−σ) ≤ 1√
4π(t− σ)

ex,

∫ ∞

0

k(x− y − (t− σ), t− σ)(1 + y + L + σ)−αdy

≤
∫ ∞

0

k(x− (t− σ), t− σ)e−y/2(1 + y + L + σ)−αdy

≤ Ck(x− (t− σ), t− σ) ≤ C√
t− σ

ex.

Lemma 2.11. For x ≥ −(L + t)/2,

∫ t

0

∫ 0

−L−σ

|gx(x, t; y, σ)|ey/2dydσ = O(1)e−
|x|
2 ,(2.32)

∫ t

0

∫ ∞

0

|gx(x, t; y, σ)|e−y/2dydσ = O(1)e−
|x|
2 .(2.33)

Proof. These estimates follow immediately from the inequality

|gx(x, t; y, σ)| ≤ 4√
t− σ

(
1 +

1√
t− σ

)
e−

1
2 (|x|−|y|)e−

t−σ
4 e−

(x−y)2

8(t−σ) .

Lemma 2.12. For x ≥ −(L + t)/2,

∫ t

0

∫ ∞

0

|gx(x, t; y, σ)|(1 + y + L + σ)−2αdydσ

(2.34)

= O(1)

{
e−

|x|
2 (1 + t)−2α+1 if x ∈ [−(L + t)/2, 0),

(1 + x + L + t)−α if x ≥ 0.

Proof. First we note that

gx(x, t; y, σ)

=−1

2
tanh

x

2
g(x, t; y, σ) − (x− y)

2(t− σ)
g(x, t; y, σ)

=O(1)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
1+

1√
t− σ

)
e−|x|k

(
x− y+(t− σ)

D
, t− σ

)
for x<0, y>0,

(
1+

1√
t− σ

)
k

(
x− y+(t− σ)

D
, t− σ

)
for x>0, y>0,

for D>1.

This yields, for x ∈ [−(L + t)/2,−t/2],
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∫ t

0

∫ ∞

0

|gx(x, t; y, σ)|(1 + y + L + σ)−2αdydσ

≤ C

∫ t

0

∫ ∞

0

(
1 +

1√
t− σ

)
e−|x|k

(
x− y + (t− σ)

D
, t− σ

)
· (1 + y + L + σ)−2αdydσ

≤ Ce−|x|
∫ t

0

(
1 +

1√
t− σ

)
(1 + L + σ)−2αdσ

≤ Ce−|x| = O(1)e−
|x|
2 e−

t
4 ;

for x ∈ (−t/2, 0),

∫ t

0

∫ ∞

0

|gx(x, t; y, σ)|(1 + y + L + σ)−2αdydσ

≤ C

{∫ t
4

0

(∫ t−σ
8

0

+

∫ ∞

t−σ
8

)(
1 +

1√
t− σ

)
e−|x|k

(
x− y + (t− σ)

D
, t− σ

)

· (1 + y + L + σ)−2αdydσ

+

∫ t

t
4

∫ ∞

0

(
1 +

1√
t− σ

)
e−|x|k

(
x− y + (t− σ)

D
, t− σ

)

· (1 + y + L + σ)−2αdydσ

}

≤ Ce−
|x|
2 (1 + t)−2α+1;

and, for x ≥ 0,

∫ t

0

∫ ∞

0

|gx(x, t; y, σ)|(1 + y + L + σ)−2αdydσ

≤ C

∫ t

0

(∫ x
2

0

+

∫ x+ t−σ
2

x
2

+

∫ ∞

x+ t−σ
2

)(
1 +

1√
t− σ

)

· k
(
x− y + (t− σ)

D
, t− σ

)
(1 + y + L + σ)−2αdydσ

≡ A1 + A2 + A3.

As in the proof of Lemma 2.5, we have broken the above integral into the terms
A1, A2, and A3 according to various regions. The estimates for these terms are
straightforward:

A1 =

∫ t

0

∫ x
2

0

(
1 +

1√
t− σ

)
k

(
x− y + (t− σ)

D
, t− σ

)
(1 + y + L + σ)−2αdydσ

≤ C

∫ t

0

(
1 +

1√
t− σ

)
e−

( x
2

+t−σ)2

4D(t−σ) (1 + L + σ)−2αdσ

≤ Ce−
x

4D

(∫ t
2

0

+

∫ t

t
2

)
e−

t−σ
4D

(
1 +

1√
t− σ

)
(1 + L + σ)−2αdσ

≤ Ce−
x

4D (e−
t

8D + (1 + L + t)−2α)
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≤ C(1 + x + L + t)−2α,

A2 =

∫ t

0

∫ x+ t−σ
2

x
2

(
1 +

1√
t− σ

)
k

(
x− y + (t− σ)

D
, t− σ

)
(1 + y + L + σ)−2αdydσ

≤ C

∫ t

0

(
1 +

1√
t− σ

)
e−

(
t−σ
2

)2

4D(t−σ)

(
1 +

x

2
+ L + σ

)−2α

dσ

= C

(∫ t
2

0

+

∫ t

t
2

)(
1 +

1√
t− σ

)
e−

t−σ
16D (1 + x + L + σ)−2αdσ

≤ C

[
e−

t
32D (1 + x + L)−2α

∫ t
2

0

(
1 +

1√
t− σ

)
dσ

+ (1 + x + L + t)−2α

∫ t

t
2

(
1 +

1√
t− σ

)
e−

t−σ
16D dσ

]

≤ C(1 + x + L + t)−2α,

A3 =

∫ t

0

∫ ∞

x+ t−σ
2

(
1 +

1√
t− σ

)
k

(
x− y + (t− σ)

D
, t− σ

)
(1 + y + L + σ)−2αdydσ

≤ C

∫ t

0

(
1 +

1√
t− σ

)(
1 + x + L +

t

2
+

σ

2

)−2α

dσ

≤ C(1 + x + L + t)−2α+1.

By adding A1, A2, and A3 we obtain (2.34) in the case x ≥ 0.
Finally, we can establish the basic structure of the global solution of the problem

(2.1), (2.2), and (2.3).
Theorem 2.13. Suppose that L is sufficiently large. Then there exists a global

solution v(x, t) of (2.1), (2.2), and (2.3) satisfying the following estimate:

v(x, t) = O(1)e−
L
2r

⎧⎪⎨
⎪⎩

e−
|x|
2 |x + L + t| for x ∈ [−L− t,−L− t + 1],

e−
|x|
2 for x ∈ [−L− t, 0),

e−
|x|
2 + (1 + x + L + t)−α for x ≥ 0.

(2.35)

Moreover, vx(−L− t, t) exists and has the estimate

vx(−L− t, t) = O(1)e−
L
2r e−

(L+t)
2 , r > 1.(2.36)

Proof. From Proposition 2.7. we have proved that v0 satisfies estimates (2.35)
and (2.36). Now, suppose that vn(x, t), for any n ≤ k, satisfies estimate (2.35). We
define a weighted super norm ‖| · ‖| as follows:

‖|y‖| ≡ sup
t≥0

−L−t≤x<0

|y(x, t)|
e−

|x|
2

+ sup
t≥0
x≥0

|y(x, t)|
e−

|x|
2 + (1 + x + L + t)−α

.

Let

δn(x, t) ≡ vn(x, t) − vn−1(x, t) for n ≥ 1;

then it suffices to show that δn is a geometric sequence by induction. We have the
following representation for δn’s:
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for x ∈ [−L− t,−(L + t)/2),

δ1(x, t) =

∫ t

0

∫ ∞

−L−σ

KB
y (x, t; y, σ)

[
(φ− 1 + Ψ)v0 +

(v0)2

2

]
(y, σ)dydσ;(2.37)

for x ≥ −(L + t)/2,

δ1(x, t) = −
∫ t

0

G(x, t;−L− σ, σ)δ1
y(−L− σ, σ)dσ

(2.38)

+

∫ t

0

∫ ∞

−L−σ

Gy(x, t; y, σ)

[
(v0)2

2
+ Ψv0

]
(y, σ)dydσ;

for x ∈ [−L− t,−(L + t)/2), n ≥ 1,

δn+1(x, t) =

∫ t

0

∫ ∞

−L−σ

KB
y (x, t; y, σ)

(2.39)

·
[
(φ− 1 + Ψ)δn +

δn(vn + vn−1)

2

]
(y, σ)dydσ;

and, for x ≥ −(L + t)/2, n ≥ 1,

δn+1(x, t) = −
∫ t

0

G(x, t;−L− σ, σ)δn+1
y (−L− σ, σ)dσ

(2.40)

+

∫ t

0

∫ ∞

−L−σ

Gy(x, t; y, σ)

[
Ψδn +

δn(vn + vn−1)

2

]
(y, σ)dydσ.

Since Ψ(x, t) ≤ 1 − φ(x), either less than ex if −L− t ≤ x ≤ 0 or 2 if x > 0, and

|KB
y (x, t; y, σ)| ≤ KB + (|kY (Y −X, t− σ)| + |kY (Y + X, t− σ)|)e(X−Y )−(t−σ)

≤ C

{
k(x− y − (t− σ), t− σ)

+
1√
t− σ

k

(
x− y + (t− σ)

D
, t− σ

)
ex−y

}
for all D > 1,

we have from Lemma 2.10 and (2.37) that, for x ∈ [−L− t,−(L + t)/2),

|δ1(x, t)| ≤ C0

∫ t

0

∫ 0

−L−σ

|KB
y (x, t; y, σ)|

·
[
‖|v0‖|e−|y|/2(2(1 − φ(y))) +

1

2
‖|v0‖|e− L

2r e−|y|
]
dydσ

+ C0

∫ t

0

∫ ∞

0

|KB
y (x, t; y, σ)|

·
[
‖|v0‖|(e−|y|/2 + (1 + y + L + σ)−α)2(1 − φ(y))

+
1

2
‖|v0‖|e− L

2r

(
e−|y|/2 + (1 + y + L + σ)−α

)2
]
dydσ

(2.41)

≤ C‖|v0‖|
∫ t

0

∫ 0

−L−σ

|KB
y (x, t; y, σ)| · e−

|y|
2

(
e−|y| + e−

L
2r e−|y|/2

)
dydσ
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+ C‖|v0‖|
∫ t

0

∫ ∞

0

|KB
y (x, t; y, σ)|

·
[(

e−|y|/2 + (1 + y + L + σ)−α
)

+ e−
L
2r

(
e−|y| + (1 + y + L + σ)−2α

)]
dydσ

≤ Ce−
L
2r e−

|x|
2 ‖|v0‖|.

From Lemma 2.9 and the fact that φ(x) − 1 + Ψ(x, t) = O(1)|x + L + t|e−|x|, for
−L− t ≤ x < 0, we obtain, for x ∈ [−L− t,−L− t + 1),

|δ1(x, t)| ≤ C

∫ t

0

∫ −L−σ+4

−L−σ

|KB
y (x, t; y, σ)|(y + L + σ)

·‖|v0‖|e−|y|/2
[
e−|y| +

1

2
e−

L
2r e−

|y|
2

]
dydσ

+ C

∫ t

0

∫ 0

−L−σ+4

|KB
y (x, t; y, σ)|

·
[
‖|v0‖|e−|y|/2(2(1 − φ(y))) +

1

2
‖|v0‖|e− L

2r e−|y|
]
dydσ

(2.42)

+ C

∫ t

0

∫ ∞

0

|KB
y (x, t; y, σ)|

·
[
‖|v0‖|

(
e−|y|/2 + (1 + y + L + σ)−α

)
2(1 − φ(y))

+
1

2
‖|v0‖|e− L

2r

(
e−|y|/2 + (1 + y + L + σ)−α

)2
]
dydσ

≤ C|x + L + t|e− L
2r e−

|x|
2 ‖|v0‖|.

This yields δ1(−L− t, t) = 0. Furthermore, similar to (2.22) and the proof of Lemma
2.9, with X = x + L + t, Y = y + L + σ, we have that

(2.43)

|δ1
x(−L− t, t)|

=

∣∣∣∣ lim
x+L+t→0+

∫ t

0

∫ ∞

−L−σ

−KB(x, t; y, σ)

|x + L + t|

[
(φ− 1 + Ψ)v0 +

(v0)2

2

]
(y, σ)dydσ

+ lim
X→0+

∫ t

0

∫ ∞

−L−σ

(kY (Y −X, t− σ) − kY (Y + X, t− σ))

X
eX−Y−(t−σ)

·
[
(φ− 1 + Ψ)v0 +

(v0)2

2

]
(y, σ)dydσ

∣∣∣∣
≤ Ce−

L
2r e−

L+t
2 ‖|v0‖|.

Also, from Lemmas 2.5, 2.11, and 2.12, equations (2.38), (2.43), and the fact that

Gy(x, t; y, σ) = −gx(x, t; y, σ),

we have, for x ≥ −(L + t)/2,
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|δ1(x, t)| ≤ C

{∫ t

0

|G(x, t;−L− σ, σ)| ‖|v0‖|e− L
2r e−(L+σ)/2dσ

+

∫ t

0

∫ 0

−L−σ

|Gy(x, t; y, σ)|

·
[
‖|v0‖|e−

|y|
2 e−L−σ(1 + y + L + σ)−α +

1

2
‖|v0‖|e− L

2r e−|y|
]
dydσ

+

∫ t

0

∫ ∞

0

|Gy(x, t; y, σ)|(2.44)

·
[
‖|v0‖|

(
e−

|y|
2 + (1 + y + L + σ)−α

)
e−L−σ(1 + y + L + σ)−α

+ ‖|v0‖|e− L
2r (e−|y| + (1 + y + L + σ)−2α)

]
dydσ

}

≤ Ce−
L
2r ‖|v0‖|

{
e−

|x|
2 for x ∈ [−(L + t)/2, 0),

e−
|x|
2 + (1 + x + L + t)−α for x ≥ 0.

Inequalities (2.41) and (2.44) imply that

‖|δ1‖| ≤ Ce−
L
2r ‖|v0‖|.(2.45)

Similarly, we have from the induction hypothesis that, for x ∈ [−L− t,−L− t + 1),

(2.46)

|δn+1(x, t)|≤C‖|δn‖|

·
{∫ t

0

∫ −L−σ+4

−L−σ

|KB
y (x, t; y, σ)|(y+L+σ)e−

|y|
2

(
e−|y| +e−

L
2r e−

|y|
2

)
dydσ

+

∫ t

0

∫ 0

−L−σ+4

|KB
y (x, t; y, σ)|e−

|y|
2

(
e−|y| + e−

L
2r e−

|y|
2

)
dydσ

+

∫ t

0

∫ ∞

0

|KB
y (x, t; y, σ)|

(
e−

|y|
2 + (1 + y + L + σ)−α

)

·
[
4 + e−

L
2r

(
e−

|y|
2 + (1 + y + L + σ)−α

)]
dydσ

}

≤C|x + L + t|‖|δn‖|e− L
2r e−

|x|
2 .

Thus

|δn+1
x (−L− t, t)| ≤ C‖|δn‖|e− L

2r e−
L+t
2 ;(2.47)

and, for x ∈ [−L− t,−(L + t)/2),

|δn+1(x, t)| ≤ C‖|δn‖|

·
{∫ t

0

∫ 0

−L−σ

|KB
y (x, t; y, σ)|e−

|y|
2

(
e−|y| + e−

L
2r e−

|y|
2

)
dydσ

+

∫ t

0

∫ ∞

0

|KB
y (x, t; y, σ)|

(
e−

|y|
2 + (1 + y + L + σ)−α

)
(2.48)

·
[
4 + e−

L
2r

(
e−

|y|
2 + (1 + y + L + σ)−α

)]
dydσ

}

≤ C‖|δn‖|e− L
2r e−

|x|
2 ;



598 C.-Y. LAN, H.-E. LIN, T.-P. LIU, AND S.-H. YU

for x ≥ −(L + t)/2,

|δn+1(x, t)| ≤ C‖|δn‖|

·
{∫ t

0

|G(x, t;−L− σ, σ)|e− L
2r e−(L+σ)/2dσ

+

∫ t

0

∫ 0

−L−σ

|Gy(x, t; y, σ)|e−
|y|
2

·
[
e−L−σ(1 + y + L + σ)−α + e−

L
2r e−

|y|
2

]
dydσ

(2.49)

+

∫ t

0

∫ ∞

0

|Gy(x, t; y, σ)|
(
e−

|y|
2 + (1 + y + L + σ)−α

)
·
[
e−L−σ(1 + y + L + σ)−α

+ e−
L
2r

(
e−

|y|
2 + (1 + y + L + σ)−α

)]
dydσ

}

≤ Ce−
L
2r ‖|δn‖|

{
e−

|x|
2 for x ∈ [−(L + t)/2, 0),

e−
|x|
2 + (1 + x + L + t)−α for x ≥ 0.

From the inequalities (2.47), (2.48), and (2.49) we conclude that

‖|δn+1‖| ≤ C‖|δn‖|e− L
2r ,(2.50)

|δn+1
x (−L− t, t)| ≤ C‖|δn‖|e− L

2r e−
L+t
2 , 1 ≤ n ≤ k.(2.51)

Thus, when L is sufficiently large, ‖|δn‖| and |δn+1
x (−L−t, t)| are geometric sequences

and

‖|vk+1 − v0‖| ≤
k∑

n=0

‖|δn+1‖| ≤
∞∑

n=0

(
Ce−

L
2r

)n+1

‖|v0‖| ≤ 1

2
‖|v0‖|,(2.52)

which means, by induction, that for all n, vn satisfy the estimates (2.35) and (2.36),
and there exists

v(x, t) ≡ lim
n→∞

vn(x, t)

satisfying (2.35), (2.36), (2.6), and (2.10).

From the above estimate of v(x, t) and vx(−L − t, t), we obtain the estimate of
the solution u(x, t) for (1.1), (1.2), and (1.3).

Theorem 2.14. Suppose that L is sufficiently large. Then, there exists a global
solution u(x, t) of (1.1), (1.2), and (1.3) such that

u(x, t) = φ(x) + O(1)e−
L
2r

{
e−

|x|
2 for x ∈ [−L− t, 0),

e−
|x|
2 + (1 + x + L + t)−α for x ≥ 0.

(2.53)

Moreover, ux(−L− t, t) exists and has the estimate

ux(−L− t, t) = O(1)e−
L
2r e−

(L+t)
2 , r > 1.(2.54)
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Remark 2.15. For general initial data (1.4) with d > 1, we also obtain the
structure of global solution in time as follows:

u(x, t) = φ(x) + O(1)e−
L
2d

{
e−

|x|
2d for x ∈ [−L− t, 0),

e−
|x|
2 + (1 + x + L + t)−α for x ≥ 0,

ux(−L− t, t) = O(1)e−
L
2d e−

(L+t)
2d .

The computation is similar to those in section 3 and is therefore omitted.

3. Time asymptotic stability. In this section, we will study the time asymp-
totic behavior of the solution for (1.1), (1.2), and (1.3). For that, we need to locate
the time asymptotic position of the shock profile through the conservation law.

As a consequence of the boundary estimate (2.54), we have

d

dt

∫ ∞

−L−t

u(x, t) − φ(x)dx = (1 − φ(−L− t)) − ux(−L− t, t)

≤ O(1)e−
L
6 e−

L+t
2 ,

and therefore

lim
t→∞

∫ ∞

−L−t

u(x, t) − φ(x)dx

exists. We thus obtain the time asymptotic shift x0 of the shock location

x0 ≡
limt→∞

∫∞
−L−t

u(x, t) − φ(x)dx

u+ − u−
= O(1)e−

L
6 e−

L
2 ,(3.1)

where u−, u+ are the end states of the stationary Burgers shock and here are taken
to be u− = −u+ = 1.

Now, consider the new variables

v(x, t) ≡ u(x, t) − φ(x + x0),(3.2)

w(x, t) ≡ −
∫ ∞

x

v(r, t)dr.(3.3)

Then

w(−L− t, t) = −
∫ ∞

−L−t

u(x, t) − φ(x + x0)dx

= −
∫ ∞

−L−t

u(x, t) − φ(x)dx +

∫ ∞

−∞
φ(x + x0) − φ(x)dx

−
∫ −L−t

−∞
φ(x + x0) − φ(x)dx

= −
∫ ∞

−L−t

u(x, t) − φ(x)dx + O(1)e−L−t + x0(u+ − u−)

≤ O(1)e−
L
6 e−

L+t
2 ,

wx(−L− t, t) = u(−L− t, t) − φ(−L− t + x0)

= 1 − φ(−L− t + x0) = O(1)e−L−t ≤ O(1)e−
L
6 e−

L+t
2 ,

wxx(−L− t, t) = ux(−L− t, t) − φ′(−L− t + x0)

= O(1)e−
L
6 e−

L+t
2 .
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And the initial value for w(x, t) satisfies

w(x, 0) = −
∫ ∞

x

u(r, 0) − φ(r + x0)dr

≤ C

α− 1
e−L(1 + x + L)−α+1 +

∫ ∞

x

φ(r) − φ(r + x0)dr

≤ Ce−L(1 + x + L)−α+1 + C

{
|x0|, −L ≤ x ≤ 0,
|x0|e−|x|, x > 0,

wx(x, 0) = u(x, 0) − φ(x + x0)

≤ O(1)(e−L(1 + x + L)−α + |x0|e−|x|).

In summary, w(x, t) satisfies

wt + φ(x + x0)wx − wxx =
−v2(x, t)

2
,(3.4)

w(x, 0) ≤ O(1)

{
e

−L
2 −L

6 , −L ≤ x ≤ 0,

e
−L
2 − L

6d (x + L + 1)−α+1, x > 0, d >∼ 1,

wx(x, 0) ≤ O(1)

{
e

−L
2 −L

6 , −L ≤ x ≤ 0,

e
−L
2 − L

6d (x + L + 1)−α, x > 0, d >∼ 1,

w(−L− t, t) ≤ O(1)e
−(L+t)

2 e
−L
6 ,

wx(−L− t, t) ≤ O(1)e
−(L+t)

2 e
−L
6 ,

wxx(−L− t, t) ≤ O(1)e
−(L+t)

2 e
−L
6 ,

|x0| ≤ O(1)e
−L
2 e

−L
6 ,

where d >∼ 1 means that d > 1 and is close to 1.
To simplify the boundary condition, we set

w̄(x, t) ≡ w(x, t) −R(x, t),
(3.5)

where R(x, t) = w(−L− t, t)e−(x+L+t).

Then it follows from (3.4) and previous estimates that

w̄t + φ(x + x0)w̄x − w̄xx +
1

2
w̄2

x + w̄xRx

(3.6)

+Rt + φ(x + x0)Rx −Rxx +
1

2
R2

x = 0,

w̄(−L− t, t) = 0,(3.7)

w̄(x, 0) ≤ O(1)

{
e

−L
2 −L

6 , −L− t ≤ x ≤ 0,

e
−L
2 − L

6d (x + L + 1)−α+1, x > 0, d >∼ 1,
(3.8)

w̄x(x, 0) ≤ O(1)

{
e

−L
2 −L

6 , −L− t ≤ x ≤ 0,

e
−L
2 − L

6d (x + L + 1)−α, x > 0, d >∼ 1.
(3.9)

As before, we have two different representations for the solution in two different
regions.
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Region I: x ∈ [−L− t,−(L + t)/2). We have from (3.6) that

w̄(x, t) =

∫ ∞

−L

KB(x, t; y, 0)w̄(y, 0)dy

+

∫ t

0

∫ ∞

−L−σ

KB(1 − φ(y + x0))w̄ydydσ

−
∫ t

0

∫ ∞

−L−σ

KB (w̄y)
2

2
dydσ(3.10)

−
∫ t

0

∫ ∞

−L−σ

KBw̄yRydydσ

−
∫ t

0

∫ ∞

−L−σ

KB

[
Rσ + φ(y + x0)Ry −Ryy +

1

2
R2

y

]
dydσ.

Region II: x ≥ −L−t
2 . We have from (3.6) that

w̄(x, t) =

∫ ∞

−L

ḡ(x, t; y, 0)w̄(y, 0)dy

−
∫ t

0

ḡ(x, t;−L− σ, σ)w̄y(−L− σ, σ)dσ

−
∫ t

0

∫ ∞

−L−σ

ḡ
(w̄y)

2

2
dydσ(3.11)

−
∫ t

0

∫ ∞

−L−σ

ḡw̄yRydydσ

−
∫ t

0

∫ ∞

−L−σ

ḡ

[
Rσ + φ(y + x0)Ry −Ryy +

1

2
R2

y

]
dydσ,

where ḡ(x, t; y, σ) ≡ g(x + x0, t; y + x0, σ).

And, as before, we use the following iterations:
for (−L− t) ≤ x < (−L− t)/2,

w̄0(x, t) =

∫ ∞

−L

KB(x, t; y, 0)w̄(y, 0)dy

−
∫ t

0

∫ ∞

−L−σ

KB

[
Rσ + φ(y + x0)Ry −Ryy +

1

2
R2

y

]
dydσ;

for x ≥ (−L− t)/2,

w̄0(x, t) =

∫ ∞

−L

ḡ(x, t; y, 0)w̄(y, 0)dy

−
∫ t

0

ḡ(x, t;−L− σ, σ)w̄0
y(−L− σ, σ)dσ

−
∫ t

0

∫ ∞

−L−σ

ḡ

[
Rσ + φ(y + x0)Ry −Ryy +

1

2
R2

y

]
dydσ;

for (−L− t) ≤ x < (−L− t)/2, n ≥ 0,

w̄n+1(x, t) =

∫ ∞

−L

KB(x, t; y, 0)w̄n(y, 0)dy



602 C.-Y. LAN, H.-E. LIN, T.-P. LIU, AND S.-H. YU

+

∫ t

0

∫ ∞

−L−σ

KB(1 − φ(y + x0))w̄
n
y dydσ

−
∫ t

0

∫ ∞

−L−σ

KB
(w̄n

y )2

2
dydσ

−
∫ t

0

∫ ∞

−L−σ

KBw̄n
yRydydσ

−
∫ t

0

∫ ∞

−L−σ

KB

[
Rσ + φ(y + x0)Ry −Ryy +

1

2
R2

y

]
dydσ;

for x ≥ (−L− t)/2, n ≥ 0,

w̄n+1(x, t) =

∫ ∞

−L

ḡ(x, t; y, 0)w̄n(y, 0)dy

−
∫ t

0

ḡ(x, t;−L− σ, σ)w̄n+1
y (−L− σ, σ)dσ

−
∫ t

0

∫ ∞

−L−σ

ḡ
(w̄n

y )2

2
dydσ

−
∫ t

0

∫ ∞

−L−σ

ḡw̄n
yRydydσ

−
∫ t

0

∫ ∞

−L−σ

ḡ

[
Rσ + φ(y + x0)Ry −Ryy +

1

2
R2

y

]
dydσ.

It is noted that

w̄m(x, 0) = w̄(x, 0) for all m ∈ N,(3.12)

Rx(x, t) = −R(x, t) and |Rt(x, t)| ≤ O(1)e
−(L+t)

2 e
−L
6 e−(x+L+t)(3.13)

by (3.5). We will show that the boundary value is unchanged through the iteration.
The proof of Lemma 3.1 contains the essential estimate for that.

Lemma 3.1.

w̄0(−L− t, t) = 0.(3.14)

Proof. Let X = x + L + t (≥ 0) and Y = y + L + σ (≥ 0). KB(x, t; y, σ) can be
represented as

KB(x, t; y, σ) = [k(Y −X, t− σ) − k(Y + X, t− σ)]e(X−Y )−(t−σ).(3.15)

Then by (3.15) and Fubini’s theorem,∣∣∣∣
∫ ∞

−L

KB(x, t; y, 0)w̄(y, 0)dy

∣∣∣∣
=

∣∣∣∣(−X)

∫ ∞

−L

∫ 1

−1

∂yk(Y − θX, t)dθe(X−Y )−tw̄(y, 0)dy

∣∣∣∣
=

∣∣∣∣(−X)

∫ 1

−1

∫ ∞

−L

∂yk(Y − θX, t)e(X−Y )−tw̄(y, 0)dydθ

∣∣∣∣
=

∣∣∣∣X
∫ 1

−1

∫ ∞

−L

k(Y − θX, t)
[
−e(X−Y )−tw̄(y, 0) + e(X−Y )−tw̄y(y, 0)

]
dydθ

∣∣∣∣



VISCOUS SHOCK WAVES AWAY FROM THE BOUNDARY 603

=

∣∣∣∣X
∫ 1

−1

∫ ∞

−L

1√
4πt

e
−(Y −X)2

4t e
−2XY (1−θ)

4t e
X2(1−θ2)

4t

·
[
−e(X−Y )−tw̄(y, 0) + e(X−Y )−tw̄y(y, 0)

]
dydθ

∣∣∣∣
≤ Xe

X2

4t

∫ 1

−1

e
−X2θ2

4t

∫ ∞

−L

k(x− y − t, t)[|w̄(y, 0)| + |w̄y(y, 0)|]dydθ,

≤ O(1)Xe
X2

4t e
x
2 e

−t
4 e

−L
6 ,

and ∣∣∣∣
∫ t

0

∫ ∞

−L−σ

KB(x, t; y, σ)Rσdydσ

∣∣∣∣
=

∣∣∣∣(−X)

∫ t

0

∫ ∞

−L−σ

∫ 1

−1

∂yk(Y − θX, t− σ)dθe(X−Y )−(t−σ)Rσdydσ

∣∣∣∣
=

∣∣∣∣(−X)

∫ t

0

∫ 1

−1

∫ ∞

−L−σ

∂yk(Y − θX, t− σ)e(X−Y )−(t−σ)Rσdydθdσ

∣∣∣∣
≤ O(1)X

∫ t

0

∫ 1

−1

∫ ∞

−L−σ

1

(t− σ)
e

−(Y −θX)2

4d̄(t−σ) e(x−y)

· e
−(L+σ)

2 e
−L
6 e−(y+L+σ)dydθdσ

≤ O(1)Xex
∫ t

0

∫ 1

−1

eσ/2√
t− σ

dθdσe
L
2 −L

6

≤ O(1)Xex
√
te

t
2 e

L
2 −L

6 , where d̄ > 1,

which imply (3.14).
The leading ansatz for the solution w̄(x, t) is provided by the estimate for w̄0(x, t),

for which we need the following lemmas. They are analogous to Lemmas 2.4 and 2.5,
with additional attention to the property of time decay.

Lemma 3.2. For x ≥ (−L− t)/2,∫ t

0

ḡ(x, t;−L− σ, σ)e
−σ
2 e

−L
2 −L

6 dσ ≤ O(1)e
−|x|

4 e
−3t
16 e

−L
4 −L

6 ,(3.16) ∣∣∣∣
∫ t

0

ḡx(x, t;−L− σ, σ)e
−σ
2 e

−L
2 −L

6 dσ

∣∣∣∣ ≤ O(1)e
−|x|

4 e
−3t
16 e

−L
4 −L

6 .(3.17)

Proof. First we notice that, for y < 0,

ḡx(x, t; y, σ) =
1√

4π(t− σ)

−(1 + ey+x0)ex+x0

(1 + ex+x0)2
e

−(x−y−(t−σ))2

4(t−σ)

+
1√

4π(t− σ)

1 + ey+x0

1 + ex+x0

−2(x− y − (t− σ))

4(t− σ)
e

−(x−y−(t−σ))2

4(t−σ)(3.18)

≡ ḡ1x + ḡ2x.

Since∫ t

0

ḡ(x, t;−L− σ, σ)e
−σ
2 e

−L
2 −L

6 dσ
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= O(1)
1

1 + ex

∫ t

0

1√
4π(t− σ)

e
−(x+L+σ−(t−σ))2

4(t−σ) · e
−σ
2 e

−L
2 −L

6 dσ

= O(1)
e

x
4

1 + ex

∫ t

0

1√
t− σ

e
−[x+L+σ−(1/2)(t−σ)]2

4(t−σ) e
−3
16 (t−σ)e

−σ
4 dσe

−L
4 −L

6

≤ O(1)
e

x
4

1 + ex
e

−3t
16 e

−L
4 −L

6 ,

the first estimate is proved. Set

η =
x + L + σ − 1

2 (t− σ)√
4(t− σ)

,

⇒ dη =

(
3/2√

4(t− σ)
+ 2

x + L + σ − (1/2)(t− σ)

(4(t− σ))
3
2

)
dσ.

Then∣∣∣∣
∫ t

0

ḡx(x, t;−L− σ, σ)e
−σ
2 e

−L
2 −L

6 dσ

∣∣∣∣
=

∣∣∣∣∣∣O(1)
1

1 + ex

∫ t

0

(
1 +

−2(x + L + σ − (t− σ))

4(t− σ)

)
e

−(x+L+σ−(t−σ))2

4(t−σ)√
4(t− σ)

· e
−σ
2 e

−L
2 −L

6 dσ

∣∣∣∣∣∣
=

∣∣∣∣∣O(1)
e

x
4

1 + ex

∫ t

0

(
− 3/2√

4(t− σ)
− 2

x + L + σ − (1/2)(t− σ)

(4(t− σ))
3
2

)

· e
−[x+L+σ−(1/2)(t−σ)]2

4(t−σ) e(−3/16)(t−σ)e
−σ
4 dσe

−L
4 −L

6

+O(1)
e

x
4

1 + ex

∫ t

0

1√
t− σ

e
−[x+L+σ−(1/2)(t−σ)]2

4(t−σ) e(−3/16)(t−σ)e
−σ
4 dσe

−L
4 −L

6

∣∣∣∣∣
≤ O(1)

e
x
4

1 + ex
e

−3t
16 e

−L
4 −L

6 .

Lemma 3.3. For x ≥ (−L−t)
2 ,∫ ∞

−L

ḡ(x, t; y, 0)w̄(y, 0)dy

≤ O(1)

⎧⎨
⎩ e

x
4 e

−3t
16 e

−L
4 −L

6 + e
2x
3 (x + t + L + 1)−α+1e

−L
2 ,

−L− t

2
≤ x ≤ 0,

(x + t + L + 1)−α+1e
−L
4 − L

6d , x > 0.

Proof. We have∫ ∞

−L

ḡ(x, t; y, 0)w̄(y, 0)dy



VISCOUS SHOCK WAVES AWAY FROM THE BOUNDARY 605

=

∫ 0

−L

1√
4πt

1 + ey+x0

1 + ex+x0
e

−(x−t−y)2

4t w̄(y, 0)dy

+

∫ ∞

0

1√
4πt

1 + e−(y+x0)

1 + e−(x+x0)
e

−(x+t−y)2

4t w̄(y, 0)dy

≡ I1 + I2.

The estimate of I1 is straightforward by (3.8):

|I1| = O(1)
1

1 + ex
e−

L
2 −L

6

∫ 0

−L

e
−(x−t−y)2

4t

√
4πt

dy

≤ O(1)
1

1 + ex
e−

L
2 −L

6 · e x
4 e

L
4 e

−3t
16

∫ 0

−L

e
−(x−t/2−y)2

4t

√
4πt

dy

≤ O(1)e
−|x|

4 e
−3t
16 e

−L
4 −L

6 .

For the estimate of I2, we have the following cases:
Case 1. For x ≥ 0,

|I2| ≤ O(1)e
−L
2 − L

6d

·
(∫ (x+t)

3

0

+

∫ ∞

(x+t)
3

)
1√
4πt

e
−(x+t−y)2

4t (y + L + 1)−α+1dy.

Since ∫ (x+t)
3

0

1√
4πt

e
−(x+t−y)2

4t (y + L + 1)−α+1dy

≤ O(1)

∫ x+t√
4t

x+t

3
√

t

e−η2

dη ≤ O(1)e
−2x
9 e

−t
9 ,

∫ ∞

(x+t)
3

1√
4πt

e
−(x+t−y)2

4t (y + L + 1)−α+1dy

≤ O(1)(x + t + L + 1)−α+1,

we have

|I2| ≤ O(1)(x + t + L + 1)−α+1e
−L
2 .

Case 2. For −t < x < 0,

|I2| ≤ O(1)exe
−L
2 e

−L
6d ·

(∫ (x+t)
3

0

+

∫ ∞

(x+t)
3

)
1√
4πt

e
−(x+t−y)2

4t (y + L + 1)−α+1dy.

≤ O(1)
(
ex−

2x
9 e

−t
9 e

−L
2 − L

6d + ex(x + t + L + 1)−α+1e
−L
2 − L

6d

)
≤ O(1)e

−2|x|
3 (x + t + L + 1)−α+1e

−L
2 .

Case 3. For x ≤ −t,

|I2| ≤ O(1)exe
−L
2 − L

6d

∫ ∞

0

1√
4πt

e
−(x+t−y)2

4t (y + L + 1)−α+1dy
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≤ O(1)exe
−L
2 − L

6d

∫ x+t√
4t

−∞
e−η2

dη

≤ O(1)e
x
2 e

−t
4 e

−L
2 − L

6d .

Combining the estimates for I1 and I2, the lemma is proved.

Lemma 3.4. For x ≥ (−L−t)
2 ,

∫ t

0

∫ ∞

−L−σ

ḡ(x, t; y, σ)e
−L
6 e

−(L+σ)
2 e−(y+L+σ)dydσ

≤ O(1)e
−|x|

4 e−
3t
16 e

−L
4 −L

6 .

Proof.∫ t

0

∫ ∞

−L−σ

ḡ(x, t; y, σ)e
−L
6 e

−(L+σ)
2 e−(y+L+σ)dydσ

≤ O(1)

⎛
⎝ e

x
4

1 + ex

∫ t

0

∫ 0

−L−σ

1√
4π(t− σ)

e
−
(
x−y− (t−σ)

2

)2
4(t−σ) e

−y
4 e

−3
16 (t−σ)

· e
−L
6 e

−(L+σ)
2 e−(y+L+σ)dydσ

+
e

−x
2

1 + e−x

∫ t

0

∫ ∞

0

1√
4π(t− σ)

e
−(x−y)2

4(t−σ) e
y
2 e

−(t−σ)
4

· e
−L
6 e

−(L+σ)
2 e−(y+L+σ)dydσ

)

≤ O(1)e
−|x|

4 e−
3t
16 e

−L
4 −L

6 .

Lemma 3.5. For −L− t ≤ x ≤ −L−t
2 and 1 < D < 2,

∫ t

0

∫ ∞

−L−σ

1

(t− σ)
e

−(Y −X)2

4D(t−σ) ex−y · e
−L
6 e

−(L+σ)
2 e−(y+L+σ)dydσ

≤ O(1)e
x
2 e

−L
6 .

Proof. The calculation is divided into two parts: For −L− σ ≤ y < 0,∫ t

0

∫ 0

−L−σ

1

(t− σ)
e

−(Y −X)2

4D(t−σ) ex−y · e
−L
6 e

−(L+σ)
2 e−(y+L+σ)dydσ

≤
∫ t

0

∫ 0

−L−σ

1

(t− σ)
e

−(x−y+(t−σ))2

4D(t−σ) ex−y · e
−L
6 e

y
2 dydσ

=

∫ t

0

∫ 0

−L−σ

1

(t− σ)
e

−[x−y+(1−D)(t−σ)]2

4D(t−σ) e
x
2 e

−(2−D)
4 (t−σ)dydσe

−L
6

≤ O(1)e
x
2 e

−L
6 ,

and for y ≥ 0,∫ t

0

∫ ∞

0

1

(t− σ)
e

−(Y −X)2

4D(t−σ) ex−y · e
−L
6 e

−(L+σ)
2 e−(y+L+σ)dydσ
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=

∫ t

0

∫ ∞

0

1

(t− σ)
e

−(x−y)2

4D(t−σ)
− x

2D + y
2D− (t−σ)

4D ex−y · e
−L
6 e

−(L+σ)
2 e−(y+L+σ)dydσ

≤ O(1)e(1− 1
2D )xe

−t
4D e−L−L

2 −L
6 .

Now, we are ready to study the solution through iterations. We first estimate
w̄0(x, t). From the representation of w̄0(x, t),

|w̄0(x, t)| ≤ O(1)

(∫ ∞

−L

k(x− y − t, t)|w̄(y, 0)|dy

+

∫ t

0

∫ ∞

−L−σ

k(x− y − (t− σ); t− σ)e
−(L+σ)

2 e
−L
6 e−(y+L+σ)dydσ

)

≤ O(1)e
x
2 e

−L
6 for − L− t ≤ x <

−L− t

2
.

Based on the relation

KB
x (x, t; y, σ) + KB

y (x, t; y, σ)
(3.19)

= 2KB(x, t; y, σ) − 2∂yk(Y −X, t− σ)e(X−Y )−(t−σ)

and the facts that KB(x, t; y = ∞, σ) = 0 and w̄(−L, 0) = 0, by integration by parts,
we have that ∣∣∣∣

∫ ∞

−L

KB
x (x, t; y, 0)w̄(y, 0)dy

∣∣∣∣
≤ O(1)

∫ ∞

−L

k(x− y − t, t)|(−w̄(y, 0) + w̄y(y, 0))|dy

≤ O(1)e
x
2 e

−t
4 e

−L
6 .

From

KB
x (x, t; y, σ) = KB(x, t; y, σ)

+

⎛
⎝ (Y −X)

2(t− σ)

e
−(Y −X)2

4(t−σ)√
4π(t− σ)

+
(Y + X)

2(t− σ)

e
−(Y +X)2

4(t−σ)√
4π(t− σ)

⎞
⎠ ex−y(3.20)

≡ KB(x, t; y, σ) + K�(x, t; y, σ)

and

|K�(x, t; y, σ)| ≤ O(1)
1

(t− σ)
e

−(Y −X)2

4D(t−σ) ex−y,(3.21)

where D > 1 and is close to 1, we have, by Lemma 3.5,∣∣∣∣
∫ t

0

∫ ∞

−L−σ

KB
x

[
Rσ + φ(y + x0)Ry −Ryy +

1

2
R2

y

]
dydσ

∣∣∣∣
≤ O(1)

(∫ t

0

∫ ∞

−L−σ

k(x− y − (t− σ), t− σ)e
−L
6 e

−(L+σ)
2 e−(y+L+σ)dydσ

+

∫ t

0

∫ ∞

−L−σ

1

t− σ
e

−(Y −X)2

4D(t−σ) ex−ye
−L
6 e

−(L+σ)
2 e−(y+L+σ)dydσ

)

≤ O(1)e
x
2 e

−L
6 .
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Therefore,

|w̄0
x(x, t)| ≤ O(1)e

x
2 e

−L
6 for − L− t ≤ x <

−L− t

2
,

and, in particular,

|w̄0
x(−L− t, t)| ≤ O(1)e

−t
2 e

−L
2 −L

6 .

Then by Lemmas 3.2, 3.3, and 3.4,

|w̄0(x, t)|≤O(1)

⎧⎨
⎩ e

x
4 e

−3t
16 e

−L
4 −L

6 + e
2x
3 (x+ t+L+1)−α+1e

−L
2 for

−L− t

2
≤x≤0,

(x + t + L + 1)−α+1e
−L
4 − L

6d for x > 0.

Also note that

ḡx + ḡy =
−1

4

1

cosh2((x + x0)/2)

1√
4π(t− σ)

e
−(x−y−(t−σ))2

4(t−σ)

(3.22)

+
1

4

1

cosh2((x + x0)/2)

1√
4π(t− σ)

e
−(x−y+(t−σ))2

4(t−σ) ,

ḡ(x, t,∞, σ) = 0 and w̄(−L − t, t) = 0. Then by Lemmas 3.2 and 3.4, (3.13), and
(3.22),

|w̄0
x(x, t)|

≤ O(1)

(∫ ∞

−L

ḡ(x, t; y, 0)|w̄y(y, 0)|dy

+ e−|x|
∫ ∞

−L

1√
4πt

(
e

−(x−y−t)2

4t + e
−(x−y+t)2

4t

)
|w̄(y, 0)|dy

+

∣∣∣∣
∫ t

0

ḡx(x, t;−L− σ, σ)w̄0
y(−L− σ, σ)dσ

∣∣∣∣
+

∫ t

0

ḡ(x, t;−L− σ, σ)e
−(L+σ)

2 e
−L
6 dσ

+

∫ t

0

∫ ∞

−L−σ

ḡ(x, t; y, σ)e
−L
6 e

−(L+σ)
2 e−(y+L+σ)dydσ

+

∫ t

0

∫ ∞

−L−σ

e−|x|
√
t− σ

(
e

−(x−y−(t−σ))2

4(t−σ) + e
−(x−y+(t−σ))2

4(t−σ)

)

· e
−L
6 e

−(L+σ)
2 e−(y+L+σ)dydσ

)

≤ O(1)

⎧⎨
⎩ e

−L
4 − L

6d

[
e

−|x|
4 e

−3t
16 + e

−2|x|
3 (x+ t+L+ 1)−α+1

]
for

−(L + t)

2
<x≤0,

e
−L
4 − L

6d [(x + t + L + 1)−α + e−|x|(x + t + L + 1)−α+1] for x > 0.

With these, we can now formulate our main theorem.
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Theorem 3.6. Suppose that L is sufficiently large and α > 1. Then the solution
w̄(x, t) for (3.6)–(3.9) satisfies

(3.23)

|w̄(x, t)| ≤ C0

·
{

e
−|x|

4 e
−t
8 e

−L
4 + e

−|x|
2 (x + t + L + 1)−α+1e

−L
4 , −L− t ≤ x ≤ 0,

(x + t + L + 1)−α+1e
−L
4 , x > 0,

(3.24)

|w̄x(x, t)| ≤ C0

·
{

e
−|x|

4 e
−t
8 e

−L
4 + e

−|x|
2 (x + t + L + 1)−α+1e

−L
4 , −L− t ≤ x ≤ 0,

(x + t + L + 1)−αe
−L
4 + e

−|x|
3 (x + t + L + 1)−α+1e

−L
4 , x > 0,

where C0 > 0 is a constant.
Remark 3.7. The theorem induces that the decay rate of v(x, t) = u(x, t)−φ(x+

x0) is also of the form (3.24).
Before proving the theorem, we need the following lemmas to study the nonlinear

terms in the iterations.
Lemma 3.8. For x ≥ (−L− t)/2,

∫ t

0

∫ 0

−L−σ

ḡe−|y|(y + σ + L + 1)−2α+2dydσ

≤ O(1)

⎧⎨
⎩ e

−|x|
2 e

−t
8 t(L + 1)−2α+2 + e

−|x|
2 (x + t + L + 1)−α+1 for

−L− t

2
≤ x ≤ 0,

e
−|x|

3 (x + t + L + 1)−α+1 for x > 0,

∣∣∣∣
∫ t

0

∫ 0

−L−σ

ḡxe
−|y|(y + σ + L + 1)−2α+2dydσ

∣∣∣∣

≤ O(1)

⎧⎪⎪⎨
⎪⎪⎩

e
−|x|

2 e
−t
8 (t +

√
t)(L + 1)−2α+2 + e

−|x|
2 (x + t + L + 1)−α+1

for
−L− t

2
≤ x ≤ 0,

e
−|x|

3 (x + t + L + 1)−α+1 for x > 0.

Proof. Recall that ḡ is a simple translation of g. From (2.9)

∫ t

0

∫ 0

−L−σ

ḡe−|y|(y + σ + L + 1)−2α+2dydσ

≤ O(1)e
−|x|

2

∫ t

0

∫ 0

−L−σ

e
−(x−y)2

4(t−σ)√
4π(t− σ)

e
−|y|

2 e
−(t−σ)

4 (y + σ + L + 1)−2α+2dydσ

=O(1)e
−|x|

2

∫ t

0

(∫ −L−σ
2

−L−σ

+

∫ 0

−L−σ
2

)
e

−(x−y)2

4(t−σ)√
4π(t− σ)

e
−|y|

2 e
−(t−σ)

4 (y+σ+L+1)−2α+2dydσ

≤ O(1)e
−|x|

2

∫ t

0

e
−(t−σ)

4 e
−L−σ

4 dσ

+O(1)e
−|x|

2

∫ t

0

e
−(t−σ)

4

(
L + σ

2
+ 1

)−2α+2

dσ.
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This proves the first estimate. From (3.18)∣∣∣∣
∫ t

0

∫ 0

−L−σ

ḡxe
−|y|(y + σ + L + 1)−2α+2dydσ

∣∣∣∣
≤O(1)e

−|x|
2

∫ t

0

∫ 0

−L−σ

(
1+

1√
t− σ

)
e

−(x−y)2

4r(t−σ)

√
t− σ

e
−|y|

2 e
−(t−σ)

4 (y+σ+L+1)−2α+2dydσ,

where r > 1 and is close to 1. From this the second estimate follows easily.
Lemma 3.9. For x ≥ (−L− t)/2,∫ t

0

∫ ∞

0

ḡe
−|y|

3 (y + σ + L + 1)−2α+1dydσ

≤ O(1)

⎧⎨
⎩ e

−2|x|
3 e

−t
9 t(L + 1)−2α+1 + e

−2|x|
3 (x+ t+L+ 1)−α for

−L− t

2
≤ x≤ 0,

e
−|x|

3 (x + t + L + 1)−α for x > 0,

∫ t

0

∫ ∞

0

ḡxe
−|y|

3 (y + σ + L + 1)−2α+1dydσ

≤ O(1)

⎧⎪⎪⎨
⎪⎪⎩

e
−2|x|

3 e
−t
9 (t +

√
t)(L + 1)−2α+1 + e

−2|x|
3 (x + t + L + 1)−α

for
−L− t

2
≤ x ≤ 0,

e
−|x|

3 (x + t + L + 1)−α for x > 0.

Proof. Since for x ≤ 0,∫ t

0

∫ ∞

0

ḡe
−|y|

3 (y + σ + L + 1)−2α+1dydσ

≤ O(1)e
−2|x|

3

∫ t

0

∫ ∞

0

1√
4π(t− σ)

e
−[x−y+ 1

3
(t−σ)]2

4(t−σ) e
−2(t−σ)

9 (y + σ + L + 1)−2α+1dydσ

≤ O(1)e
−2|x|

3

(
e

−t
9 t(L + 1)−2α+1 + (x + t + L + 1)−α

)
,

and for x > 0,∫ t

0

∫ ∞

0

ḡe
−|y|

3 (y + σ + L + 1)−2α+1dydσ

≤ O(1)e
−|x|

3

∫ t

0

∫ ∞

0

1√
4π(t− σ)

e
−[x−y+ 1

3
(t−σ)]2

4(t−σ) e
−2(t−σ)

9 (y + σ + L + 1)−2α+1dydσ

= O(1)e
−|x|

3

∫ t

0

(∫ x+(t−σ)/3
2

0

+

∫ ∞

x+(t−σ)/3
2

)
e

−[x−y+ 1
3
(t−σ)]2

4(t−σ)√
4π(t− σ)

e
−2(t−σ)

9

·(y + σ + L + 1)−2α+1dydσ

≤ O(1)e
−|x|

3

(∫ t

0

e
−[x+ 1

3
(t−σ)]2

16(t−σ) e
−2(t−σ)

9 (σ + L + 1)−2α+1dσ

+

∫ t

0

e
−2(t−σ)

9 (x + t + σ + L + 1)−2α+1dσ

)

≤ O(1)e
−|x|

3 (x + t + L + 1)−α,
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the first estimate is proved. Due to (3.18),∣∣∣∣
∫ t

0

∫ ∞

0

ḡxe
−|y|

3 (y + σ + L + 1)−2α+1dydσ

∣∣∣∣
≤ O(1)e

−|x|
3

∫ t

0

∫ ∞

0

(
1+

1√
t− σ

)
e

−[x−y+ 1
3
(t−σ)]2

4r(t−σ)

√
t− σ

e
−2(t−σ)

9 (y + σ + L + 1)−2α+1dydσ,

where r > 1 and is close to 1. The second estimate then follows easily as the first.
Lemma 3.10. For x ≥ (−L− t)/2,

∫ t

0

∫ ∞

0

ḡ(y + σ + L + 1)−2αdydσ e
−L
6

≤ O(1)

⎧⎨
⎩ e

−|x|
2 e

−t
2 e

−L
6 + e

−|x|
2 (x + t + L + 1)−αe

−L
6 for

−L− t

2
≤ x ≤ 0,

(x + t + L + 1)−αe
−L
6 for x > 0.∫ t

0

∫ ∞

0

ḡx(y + σ + L + 1)−2αdydσ e
−L
6

≤ O(1)

⎧⎨
⎩ e

−|x|
2 e

−t
2

√
t e

−L
6 + e

−|x|
2 (x + t + L + 1)−αe

−L
6 for

−L− t

2
≤ x ≤ 0,

(x + t + L + 1)−αe
−L
6 for x > 0.

Proof. For convenience, let

P3 ≡
∫ t

0

∫ ∞

0

ḡ(y + σ + L + 1)−2αdydσ e
−L
6 .

When −t < x ≤ 0

P3 ≤ O(1)ex

·
(∫ x+t

r1

0

+

∫ t

x+t
r1

)∫ ∞

0

1√
4π(t− σ)

e
−[x+(t−σ)−y]2

4(t−σ) (y + σ + L + 1)−2αdydσ e
−L
6

≡ O(1)(P−
31 + P−

32),

where r1 > 1, with

P−
31 = O(1)ex

∫ x+t
r1

0

(∫ 1
r2

(1− 1
r1

)(x+t)

0

+

∫ ∞

1
r2

(1− 1
r1

)(x+t)

)
e

−[x+(t−σ)−y]2

4(t−σ)√
4π(t− σ)

·(y + σ + L + 1)−2αdydσe
−L
6

≤ O(1)e
−|x|

2 (x + t + L + 1)−αe
−L
6 ,

where r2 > 1, and

P−
32 = O(1)ex

∫ t

x+t
r1

(σ + L + 1)−2αdσ · e
−L
6

≤ O(1)ex(x + t + L + 1)−αe
−L
6 .
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When x ≤ −t, it is obvious that

P3 ≤ O(1)exe
−L
6 ≤ O(1)e

x
2 e

−t
2 e

−L
6 .

When x > 0, we have

P3 ≤ O(1)

∫ t

0

(∫ x+(t−σ)
2

0

+

∫ ∞

x+(t−σ)
2

)
e

−[x+(t−σ)−y]2

4(t−σ)√
4π(t− σ)

(y + σ + L + 1)−2αdydσe
−L
6

≤ O(1)(x + t + L + 1)−αe
−L
6 .

The first estimate is proved. As in the previous two lemmas, the second estimate fol-
lows due to (3.18).

Proof of Theorem 3.6. We will prove the theorem by induction. Suppose that
w̄m(x, t) and w̄m

x (x, t) satisfy the estimates (3.23) and (3.24) for all m ≤ n. We will
show that the sequence

δ̄m(x, t) ≡ w̄m(x, t) − w̄m−1(x, t), m ≥ 1,

is geometric in the weighted norm

|||h||| ≡ sup
−L−t≤x≤0

t>0

|h(x, t)|
e

−|x|
4 e

−t
8 + e

−|x|
2 (x + t + L + 1)−α+1

+ sup
x>0
t>0

|h(x, t)|
(x + t + L + 1)−α+1

+ sup
−L−t≤x≤0

t>0

|hx(x, t)|
e

−|x|
4 e

−t
8 + e

−|x|
2 (x + t + L + 1)−α+1

+ sup
x>0
t>0

|hx(x, t)|
(x + t + L + 1)−α + e

−|x|
3 (x + t + L + 1)−α+1

.

From the estimates on w̄0 preceding (3.22), we have, by (3.12),
for (−L− t) ≤ x < (−L− t)/2,

δ̄1(x, t) =

∫ t

0

∫ ∞

−L−σ

KB(1 − φ(y + x0))w̄
0
ydydσ

−
∫ t

0

∫ ∞

−L−σ

KB
(w̄0

y)
2

2
dydσ

−
∫ t

0

∫ ∞

−L−σ

KBw̄0
yRydydσ;

for x ≥ (−L− t)/2,

δ̄1(x, t) = −
∫ t

0

ḡ(x, t;−L− σ, σ)δ̄1
y(−L− σ, σ)dσ

−
∫ t

0

∫ ∞

−L−σ

ḡ
(w̄0

y)
2

2
dydσ

−
∫ t

0

∫ ∞

−L−σ

ḡw̄0
yRydydσ;
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for (−L− t) ≤ x < (−L− t)/2, m ≥ 1,

δ̄m+1(x, t) =

∫ t

0

∫ ∞

−L−σ

KB(1 − φ(y + x0))δ̄
m
y dydσ

−
∫ t

0

∫ ∞

−L−σ

KB δ̄my
(w̄m

y + w̄m−1
y )

2
dydσ

−
∫ t

0

∫ ∞

−L−σ

KB δ̄my Rydydσ;

for x ≥ (−L− t)/2, m ≥ 1,

δ̄m+1(x, t) = −
∫ t

0

ḡ(x, t;−L− σ, σ)δ̄m+1
y (−L− σ, σ)dσ

−
∫ t

0

∫ ∞

−L−σ

ḡδ̄my
(w̄m

y + w̄m−1
y )

2
dydσ

−
∫ t

0

∫ ∞

−L−σ

ḡδ̄my Rydydσ.

Region I: {−L− t ≤ x < (−L− t)/2}. Since∣∣∣∣
∫ t

0

∫ ∞

−L−σ

KB(1 − φ(y + x0))δ̄
n
y dydσ

∣∣∣∣ ≤ O(1)e
x
2 |||δ̄n|||,∣∣∣∣

∫ t

0

∫ ∞

−L−σ

KB δ̄nyRydydσ

∣∣∣∣ ≤ O(1)e
x
2 e

−t
8 e

−L
6 |||δ̄n|||

and∣∣∣∣∣
∫ t

0

∫ ∞

−L−σ

KB δ̄ny
(w̄n

y + w̄n−1
y )

2
dydσ

∣∣∣∣∣
≤ O(1)

(∫ t

0

∫ 0

−L−σ

KB
[
e

−|y|
4 e

−σ
8 + e

−|y|
2 (y + σ + L + 1)−α+1

]2
e

−L
4 dydσ

+

∫ t

0

∫ ∞

0

KB
[
(y + σ + L + 1)−α + e

−|y|
3 (y + σ + L + 1)−α+1

]2
e

−L
4 dydσ

)

·|||δ̄n||| ≤ O(1)e
x
2 e

−L
4 · |||δ̄n|||,

we have, for −L− t ≤ x < (−L− t)/2,

|δ̄n+1(x, t)| ≤ O(1)e
x
2 |||δ̄n|||.(3.25)

Moreover, similar to Lemma 3.1, we have, from (3.15) and Fubini’s theorem, that

δ̄m(−L− t, t) = 0(3.26)

for all 1 ≤ m ≤ (n + 1). This and (3.12) mean that the boundary value and initial
value are kept in the iterations.

Based on (3.20), (3.21), and straightforward calculation, we can obtain∣∣∣∣∣
∫ t

0

∫ 0

−L−σ

K�δ̄ny
(w̄n

y + w̄n−1
y )

2
dydσ

∣∣∣∣∣
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≤ O(1)

(∫ t

0

∫ 0

−L−σ

|K�|e
−|y|

2 e
−σ
4 e

−L
4 dydσ

+

∫ t

0

∫ 0

−L−σ

|K�|
[
e−|y|(y + σ + L + 1)−2α+2

+ e
−|y|

2 − |y|
4 e

−σ
8 (y + σ + L + 1)−α+1

]
· e

−L
4 dydσ

+

∫ t

0

∫ ∞

0

|K�|
[
(y + σ + L + 1)−α

+ e
−|y|

3 (y + σ + L + 1)−α+1
]2

e
−L
4 dydσ

)
· |||δ̄n|||

≤ O(1)e
x
2 e

−L
4 · |||δ̄n|||,∣∣∣∣

∫ t

0

∫ ∞

−L−σ

K�(1 − φ(y + x0))δ̄
n
y dydσ

∣∣∣∣ ≤ O(1)e(1− 1
2D )x|||δ̄n|||,

and ∣∣∣∣
∫ t

0

∫ ∞

−L−σ

K�δ̄nyRydydσ

∣∣∣∣ ≤ O(1)e(1− 1
2D )xe

−L
6 · |||δ̄n|||.

Hence, for −L− t ≤ x < (−L− t)/2

|δ̄n+1
x (x, t)| ≤ O(1)e

x
2 e

−L
6 |||δ̄n|||,(3.27)

and, in particular,

|δ̄n+1
x (−L− t, t)| ≤ O(1)e

−t
2 e

−L
2 −L

6 · |||δ̄n|||.(3.28)

Region II: {x ≥ (−L− t)/2}. Substituting (3.28) into the following integrals and
then by Lemma 3.2, we can obtain∣∣∣∣

∫ t

0

ḡ(x, t;−L− σ, σ)δ̄n+1
y (−L− σ, σ)dσ

∣∣∣∣ ≤ O(1)e
−|x|

4 e
−3t
16 e

−L
4 −L

6 |||δ̄n|||,

and ∣∣∣∣
∫ t

0

ḡx(x, t;−L− σ, σ)δ̄n+1
y (−L− σ, σ)dσ

∣∣∣∣ ≤ O(1)e
−|x|

4 e
−3t
16 e

−L
4 −L

6 |||δ̄n|||.

From Lemmas 3.8–3.10, we have, by straightforward calculations,∣∣∣∣∣
∫ t

0

∫ ∞

−L−σ

ḡδ̄ny
(w̄n

y + w̄n−1
y )

2
dydσ

∣∣∣∣∣
≤ O(1)

(∫ t

0

∫ 0

−L−σ

ḡ
[
e

−|y|
4 e

−σ
8 + e

−|y|
2 (y + σ + L + 1)−α+1

]2
e

−L
4 dydσ

+

∫ t

0

∫ ∞

0

ḡ
[
e

−|y|
3 (y + σ + L + 1)−α+1 + (y + σ + L + 1)−α

]2
e

−L
4 dydσ

)
·|||δ̄n|||

≤ O(1)|||δ̄n|||e
−L
6

⎧⎨
⎩ e

−|x|
2 e

−t
8 + e

−|x|
2 (x + t + L + 1)−α+1,

−L− t

2
< x ≤ 0,

e
−|x|

3 (x + t + L + 1)−α+1 + (x + t + L + 1)−α, x > 0,
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and |
∫ t

0

∫∞
−L−σ

ḡxδ̄
n
y

(w̄n
y +w̄n−1

y )

2 dydσ| is also bounded by the same estimates as above,
and ∣∣∣∣

∫ t

0

∫ ∞

−L−σ

ḡδ̄nyRydydσ

∣∣∣∣ ≤ O(1)e
−|x|

4 e
−3t
16 e

−L
2 −L

6 |||δ̄n|||,∣∣∣∣
∫ t

0

∫ ∞

−L−σ

ḡxδ̄
n
yRydydσ

∣∣∣∣ ≤ O(1)e
−|x|

4 e
−3t
16 e

−L
2 −L

6 |||δ̄n|||.

Therefore, for x > (−L− t)/2,

|δ̄n+1(x, t)|, |δ̄n+1
x (x, t)| ≤ O(1)|||δ̄n|||e

−L
6(3.29)

·

⎧⎨
⎩ e

−|x|
4 e

−t
8 + e

−|x|
2 (x + t + L + 1)−α+1,

−L− t

2
< x ≤ 0,

e
−|x|

3 (x + t + L + 1)−α+1 + (x + t + L + 1)−α, x > 0.

From (3.25), (3.27), and (3.29),

|||δ̄n+1||| ≤ Ce
−L
6 |||δ̄n|||.(3.30)

Similar estimates also yield

|||δ̄1||| ≤ Ce
−L
6 |||w̄0|||.(3.31)

Consequently, when L is sufficiently large, {|||δ̄m|||} is a geometric sequence such that

|||w̄n+1 − w̄0||| ≤
n+1∑
m=1

|||δ̄m||| < 1

2
|||w̄0|||,(3.32)

which implies that w̄n+1(x, t) and w̄n+1
x (x, t) satisfy the required bounds. By math-

ematical induction, the theorem is true for all m ∈ N. As a result, there exists a
subsequence converging to a limit w̄(x, t) which is the solution of the initial-boundary
problem (3.6)–(3.9). The proof is completed.

4. Effect of nonlinearity, boundary and initial data. In Theorem 3.6, we
show that there are three different convergence rates to the shock: exponential near
the boundary, exponential in space and algebraic in time (1+ t)−α+1 behind and near
the shock, and algebraic (1+x+L+ t)−α in front of the shock. This is so when initial
data decays slowly (e.g., algebraically). On the other hand, similar computations
show that when initial data decays faster than e−|x|, the solution doesn’t converge in
space as fast as the initial data. The convergence rate is exponential but depends on
the viscosity ε and the nonlinearity, that is, the strength 2|u−| of the shock. Thus,
consider the initial-boundary value problem

ut + uux = εuxx,(4.1)

u(−L− t, t) = u−, u(∞, t) = −u−,(4.2)

u(x, 0) = φε(x) + ūε(x), ūε(−L) = u− − φε(−L),(4.3)

φε(x) ≡ −u− tanh
(u−x

2ε

)
.

As before, we use two different Green’s functions for two divided space-time domains,
respectively:
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I. Near the boundary, we represent the solutions using the Green’s function

KB,ε(x, t; y, σ)

=
1√

4πε(t− σ)

(
e−

(x−y−u−(t−σ))2

4ε(t−σ) − e−
(x+y+2L−u−t+(2+u−)σ)2

4ε(t−σ) e
−
(

1+u−
ε

)
(y+L+σ)

)

of the initial-boundary value problem with viscosity ε > 0

wt + u−wx = εwxx,

w(−L− t, t) = 0, w(∞, t) = 0.

II. In the domain which is far away from the boundary, we represent the solutions
using the Green’s function Gε for the initial value problem for wt+(φε(x)w)x = εwxx:

Gε(x, t; y, σ) = gε(x, t; y, σ) +

∫ y

−∞ sinh
(

u−(x−ξ)
2ε

)
kε(x− ξ, t− σ)e−

u2
−(t−σ)

4ε dξ

2 cosh2 u−x
2ε

,

where

gε(x, t; y, σ) ≡
cosh

(u−y
2ε

)
cosh

(u−x
2ε

)kε(x− y, t− σ)e−
u2
−(t−σ)

4ε

is the Green’s function for

wt + φε(x)wx − εwxx = 0

and kε(x, t) ≡ e−
x2

4εt /
√

4πεt is the heat kernel. Of course, we also use the Green’s
function ḡε for

wt + φε(x + xε
0)wx = εwxx

to represent the solution in this region, where xε
0 is the translation and

ḡε(x, t; y, σ) = gε(x + xε
0, t; y + xε

0, σ).

As before, the convergence rate is dictated by the effect of the initial data and
boundary for x ≥ −(L + t)/2:∫ ∞

−L

ḡε(x, t; y, 0)w̄y(y, 0)dy,(4.4)

∫ t

0

ḡεx(x, t;−L− σ, σ)w̄y(−L− σ, σ)dσ, w̄ defined as in (3.5).(4.5)

For the particular initial data with the critical decay

ūε(x) =

{
(u− − φε(−L))e−

u−(x+L)

ε , −L ≤ x ≤ 0,
0, x > 0,

and therefore

w̄x(x, 0) = O(1)

{
e−(

u−
ε L)β , −L ≤ x ≤ 0,

e−(
u−
ε L)βe−

u−|x|
ε , x > 0,

for some β between 1
2 and 1;
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then the convergence rates in space and time are those given by the integral (4.4) and
(4.5) and are of the order

O(1)e−
u−|x|
2rε e−

u2
−t

4rε for any fixed r > 1.

Assuming that the initial perturbation has faster decay, for instance, in the extreme
case, is of compact support, then the solutions converge no faster than e−u−|x|/2rε in

space and e−u2
−t/4rε in time. In other words, in this case, the nonlinearity |u−| and

the viscosity ε dictate the convergence rate. Note that the effects of viscosity and
nonlinearity are different for space and time decay. In the limiting case of hyperbolic
conservation law, ε → 0, perturbation with compact support will decay to zero in
finite time T , which is large when the shock strength is small. This is consistent with
the above estimate in that the convergence rate is infinite in the limit ε → 0. For
data with either algebraic or exponential decay, the convergence of solution between
the boundary and the shock,

O(1)e−
u−|x|

2ε e−
u2
−t

4ε ,

depends solely on the nonlinearity and viscosity. This is so because of the effect of
the boundary.
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Abstract. Existence and uniqueness results are given for second-order parabolic and elliptic
equations with variable coefficients in C1 domains in Sobolev spaces with weights allowing the deriva-
tives of solutions to blow up near the boundary. The “number” of derivatives can be negative and
fractional. The coefficients of parabolic equations are only assumed to be measurable in time.
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1. Introduction. In this article we deal with the Sobolev space theory of second-
order parabolic and elliptic equations in C1 domains. Since the boundary is not
supposed to be regular enough we have to look for solutions in function spaces with
weights allowing derivatives of our solutions to blow up near the boundary. In the
framework of Hölder spaces such a setting leads to investigating so-called intermediate
(or interior) Schauder estimates, which originated in [2]. For results about these
estimates the reader is referred to [2], [4], [5] (elliptic case) and [3], [13] (parabolic
case).

The main source of our interest in the Sobolev space theory comes from the theory
of stochastic partial differential equations (SPDEs). There the Hölder space approach
seems not to allow one to obtain results of reasonable generality. On the contrary,
the Sobolev space approach works quite well. However, the Sobolev spaces without
weights turn out to be trivially inappropriate. Therefore, even if we investigate SPDEs
in smooth domains we need to work with weights. Then, naturally, we first need to
understand what happens if we are dealing with usual parabolic equations rather than
SPDEs. Interestingly, if one studies the problem under natural assumptions, then it
becomes irrelevant whether the domain is C1 or C∞ (see Theorem 2.12). This is how
we ended up with C1 domains.

Various Sobolev spaces with weights (say, in domains with irregular boundaries or
even in the whole space) and their applications to partial differential equations have
long been investigated. We do not want to even try to present all relevant references,
some of which can be found in [1]. The reader can find some references related to the
subject of this article in the papers [9], [14], [15], and [16], the results of which are
extensively used in what follows.

Our main results are stated in section 2 and consist of Theorem 2.10 and The-
orem 2.14, on solvability of parabolic equations in domains and half-spaces, respec-
tively; Theorem 2.11, treating elliptic equations; and Theorem 2.12, allowing us to
reduce the case of general C1 domains to the case of C∞ domains. Notice that in
Theorem 2.10 we consider only bounded domains; however, actually, the result is
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DMS-0140405.
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†127 Vincent Hall, University of Minnesota, Minneapolis, MN 55455 (khkim@math.umn.edu,

krylov@math.umn.edu).
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also true for the domains Ω which are uniformly C1 smooth in a natural sense. It is
assumed usually in the Lp-theory of parabolic equations that the leading coefficients
are continuous in the closure of the domain. In our results the coefficients are only
assumed to be measurable in t and may substantially oscillate near the boundary.

In section 3 we prove some auxiliary results, and in section 4 the solvability in
half-spaces is investigated and Theorem 2.14 is proved. Then in section 5, Theo-
rems 2.10 and 2.11 are proved. The final section, section 6, is devoted to the proof of
Theorem 2.12.

It is certainly worth saying that formally speaking, at least under heavier smooth-
ness assumptions on the domain, the continuity of leading coefficients, and the rate
with which lower order coefficients are allowed to grow near the boundary, Theo-
rem 2.10 can be obtained from Theorem 4.1 of [14] after deleting all stochastic terms
and then claiming that in this situation the restriction p ≥ 2 can be relaxed to p > 1.
However, while reading somewhat sketchy proofs in [14] we came to the conclusion
that the argument based on renormalization of spaces may be wrong. This is why
we decided to give independent proofs in a more general situation but only for the
deterministic case. SPDEs will be considered in a subsequent article.

In this paper, as usual R
d stands for the Euclidean space of points x= (x1, . . . , xd),

Br(x) = {y ∈ R
d : |x−y| < r}, Br = Br(0), R

d
+ = {x ∈ R

d : x1 > 0}. For i = 1, . . . , d,
multi-indices α = (α1, . . . , αd), αi ∈ {0, 1, 2, . . .}, and functions u(x) we set

uxi = ∂u/∂xi = Diu, Dαu = Dα1
1 × · · · ×Dαd

d u, |α| = α1 + · · · + αd.

2. Main results. Let Ω be an open set in R
d, Ω �= R

d. First, we consider the
equation

ut(t, x) = aij(t, x)uxixj (t, x) + bi(t, x)uxi(t, x) + c(t, x)u(t, x) + f(t, x)(2.1)

given for x ∈ Ω, t ≥ 0.
Take an increasing function ω0(ε) defined on [0,∞) and such that ω0(ε) ↓ 0 as

ε ↓ 0. Also take some numbers r0,K0 ∈ (0,∞).
Assumption 2.1. The domain Ω is of class C1

u. In other words, for any x0 ∈ ∂Ω,
there exists a one-to-one continuously differentiable mapping Ψ of Br0(x0) onto a
domain G ⊂ R

d such that
(i) G+ := Ψ(Br0(x0) ∩ Ω) ⊂ R

d
+ and Ψ(x0) = 0;

(ii) Ψ(Br0(x0) ∩ ∂Ω) = G ∩ {y ∈ R
d : y1 = 0};

(iii) ‖Ψ‖C1(Br0 (x0)) ≤ K0 and |Ψ−1(y1) − Ψ−1(y2)| ≤ K0|y1 − y2| for any yi ∈ G;
(iv) for x1, x2 ∈ Br0(x0), we have |Ψx(x1) − Ψx(x2)| ≤ ω0(|x1 − x2|).
To state our assumptions on a, b, c we introduce the following notation. Set

ρ(x) = ρΩ(x) = dist(x, ∂Ω), ρ(x, y) = ρΩ(x, y) = ρ(x) ∧ ρ(y)

and according to [2] and [5] for σ ∈ R, α ∈ (0, 1), and k = 0, 1, 2, . . . introduce

[f ]
(σ)
k = [f ]

(σ)
k,Ω = sup

|β|=k

sup
x∈Ω

ρk+σ(x)|Dβf(x)|,

[f ]
(σ)
k+α = [f ]

(σ)
k+α,Ω = sup

|β|=k

sup
x,y∈Ω

ρk+α+σ(x, y)
|Dβf(x) −Dβf(y)|

|x− y|α ,(2.2)

|f |(σ)
k = |f |(σ)

k,Ω =

k∑
j=0

[f ]
(σ)
j,Ω, |f |(σ)

k+α = |f |(σ)
k+α,Ω = |f |(σ)

k,Ω + [f ]
(σ)
k+α,Ω.
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Remark 2.2. We did not specify what kind of derivatives are Dβf . These are
either classical derivatives or Sobolev ones. In the latter case, of course, instead of

sup we should have used ess sup. Also, it is worth pointing out that the norms | · |(σ)
γ

introduced for all γ ≥ 0 and σ ∈ R possess quite peculiar properties if γ is not an

integer and γ+σ < 0. In that case, for instance, [f ]
(σ)
γ = ∞ unless Dβf ≡ 0 whenever

|β| = [γ], so that it may happen that |f |(σ)
ν < ∞ for a ν > γ but |f |(σ)

γ = ∞.
We also fix a function δ0(τ) ≥ 0 defined on [0,∞) such that δ0(τ) > 0 unless

τ ∈ {0, 1, 2, . . .}. For τ ≥ 0 define

τ+ = τ + δ0(τ).

Finally, fix some constants

δ,K ∈ (0,∞), γ ∈ R, p ∈ (1,∞).

Assumption 2.3. (i) The functions a, b, c are Borel measurable in (t, x), aij = aji.
(ii) For any t > 0, x ∈ Ω, and λ ∈ R

d,

δ|λ|2 ≤ aij(t, x)λiλj ≤ K|λ|2.(2.3)

(iii) For each t > 0,

|a(t, ·)|(0)|γ|+ + |b(t, ·)|(1)|γ|+ + |c(t, ·)|(2)|γ|+ ≤ K.

Assumption 2.4. (i) The function a(t, ·) is continuous at any point x ∈ Ω uni-
formly with respect to t.

(ii) There is a control on the behavior of a, b, and c near ∂Ω, namely,

lim
ρ(x)→0,
x∈Ω

sup
y∈Ω,

|x−y|≤ρ(x,y)

sup
t

|a(t, x) − a(t, y)| = 0.(2.4)

lim
ρ(x)→0,
x∈Ω

sup
t

[ρ(x)|b(t, x)| + ρ2(x)|c(t, x)|] = 0.

Remark 2.5. Equation (2.4) has very little to do with the uniform continuity of
a in Ω (which is assumed, for instance, in [14]) and, for that matter, even with its
pointwise continuity. For instance, if δ ∈ (0, 1), d = 1, and Ω = R+, then the function
a(x) equal to 2 + sin(| lnx|δ) for 0 < x ≤ 1/2 satisfies (2.4).

Indeed, if x, y > 0 and |x− y| ≤ x ∧ y, then

|a(x) − a(y)| = |x− y||a′(ξ)|,

where ξ lies between x and y. In addition, |x − y| ≤ x ∧ y ≤ ξ ≤ 2(x ∧ y), and
ξ|a′(ξ)| ≤ | ln[2(x ∧ y)]|δ−1 → 0 as x ∧ y → 0. The function a(x) also satisfies
Assumption 2.3 for any γ if we change it appropriately for x > 1/2.

To proceed further we state a version of well-known results from [4] and [12],
which we discuss in section 6.

Lemma 2.6. There is a bounded real-valued function ψ defined in Ω̄ such that
(i) ψ(x) > 0 in Ω, ψ = 0 on ∂Ω, and for any ε > 0 the function ψ is bounded

away from zero on the set {x ∈ Ω : ρ(x) ≥ ε};
(ii) ψx is uniformly continuous in Ω̄, and |ψx(x)| ≥ 1 on ∂Ω;
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(iii) for any multi-index α we have

sup
Ω

ρ|α|(x)|Dαψx(x)| < ∞.

(iv) for any multi-index α �= 0 we have ρ|α|(x)|Dαψx(x)| → 0 as x ∈ Ω and
ρ(x) → 0.

Remark 2.7. In the part of a neighborhood of ∂Ω lying in Ω the functions ψ and
ρ are comparable in the following sense.

For x ∈ Ω, the ratio ψ(x)/ρ(x) equals ψxi(ξ)τ i, where τ i = (xi − xi
0)/|x− x0|, x0

is one of the closest points to x on ∂Ω, and ξ is a point between x and x0. It follows
from (iii) that ψ(x) ≤ Nρ(x), where N is independent of x. On the other hand, (ii)
implies that

ψxi(ξ)τ i = ψxi(x0)τ
i + o(|x− x0|) = |ψx(x0)| + o(|x− x0|) ≥ 1 + o(|x− x0|).

It follows that, if ρ(x) is small enough, then ρ(x) ≤ 2ψ(x). Thus, there exists an ε > 0
such that in {x ∈ Ω : ρ(x) ≤ ε} we have (1/2)ρ(x) ≤ ψ(x) ≤ Nρ(x).

Also notice that the functions ψ and ρ are comparable in Ω if Ω is bounded.
Therefore, in many situations one can interchange ψ(x) and ρ(x). An advantage of
using ψ on some occasions is that this function is infinitely differentiable. For instance,
we prove the following fact in section 3.

Lemma 2.8. Let ψ be a function as in Lemma 2.6 and let Ω be bounded. Let

µ ∈ R, τ ≥ 0, κ ≤ σ, and either σ+[τ ] ≥ 0 or τ ∈ {0, 1, 2 . . .}. Then (i) |ψ−κ|(σ)
τ < ∞;

(ii) for any function a we have |a|(σ)
τ ≤ N |ψσa|(0)τ and |ψµa|(σ)

τ ≤ N |a|(µ+σ)
τ , where

N is independent of a.
To describe the assumptions on f we use the Banach spaces introduced in [15].

Let ξ ∈ C∞
0 (R+) be a function satisfying

∞∑
n=−∞

ξ(en+t) > 0 ∀t ∈ R.(2.5)

For x ∈ Ω and n ∈ Z = {0,±1, . . .} define

ζn(x) = ξ(enψ(x)).

Observe that, due to (2.5), we have
∑

n ζn ≥ const > 0 in Ω. Also in Ω by virtue of
Lemma 2.6(i)–(iii) we have

ζn ∈ C∞
0 (Ω), |Dmζn(x)| ≤ Nemn,(2.6)

where N is independent of n and x. For any distribution u on Ω, the first relation in
(2.6) allows us to define uζn as a distribution on R

d (equal to zero outside of Ω).
Now, for θ, γ ∈ R, let Hγ

p,θ(Ω) be the set of all distributions u on Ω such that

‖u‖p
Hγ

p,θ
(Ω)

:=
∑
n∈Z

enθ‖ζ−n(en·)u(en·)‖p
Hγ

p
< ∞,(2.7)

where Hγ
p = (1 − ∆)−γ/2Lp(R

d, dx).
Remark 2.9. It is known (see, for instance, [15]) that up to equivalent norms the

space Hγ
p,θ(Ω) is independent of the choice of ξ and ψ if Ω is bounded and, if γ is a
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nonnegative integer, then Hγ
p,θ(Ω) is the space of all distributions u on Ω such that

ρ|α|+(θ−d)/pDαu ∈ Lp(Ω, dx), |α| ≤ γ, provided with a natural norm.
For convenience we may assume that ξ(t) = 0 if t ≤ supΩ ψ. In that case ζn = 0

for n ≤ 0 and the sum in (2.7) can be taken only over n ≤ −1.
Denote

H
γ
p,θ(Ω, T ) = Lp((0, T ), Hγ

p,θ(Ω)), Uγ
p,θ(Ω) = ψ1−2/pH

γ−2/p
p,θ (Ω),

and by H
γ
p,θ(Ω, T ) we denote the space of all functions u ∈ ψH

γ
p,θ(Ω, T ) such that, for

some u0 ∈ Uγ
p,θ(Ω) and f ∈ ψ−1

H
γ−2
p,θ (Ω, T ), we have

(u(t), φ) = (u0, φ) +

∫ t

0

(f(s), φ) ds ∀t ≤ T, φ ∈ C∞
0 (Ω).

Naturally, we denote ut = f and u(0) = u0. The norm in H
γ
p,θ(Ω, T ) is introduced by

‖u‖H
γ
p,θ

(Ω,T ) = ‖ψ−1u‖H
γ
p,θ

(Ω,T ) + ‖ψut‖H
γ−2
p,θ

(Ω,T ) + ‖u(0)‖Uγ
p,θ

(Ω).

Finally, let H
γ
p,θ,0(Ω, T ) = H

γ
p,θ(Ω, T ) ∩ {u : u(0) = 0}.

From this point on, we assume that

d− 1 < θ < d− 1 + p.

Here is our first main result.
Theorem 2.10. Let Ω be bounded and T ∈ [0,∞). Then under the above as-

sumptions,
(i) for any f ∈ ψ−1

H
γ
p,θ(Ω, T ) and u0 ∈ Uγ+2

p,θ (Ω), (2.1) with initial data u0 admits

a unique solution u in the class H
γ+2
p,θ (Ω, T );

(ii) for this solution

‖ψ−1u‖
H

γ+2
p,θ

(Ω,T ) ≤ NeNT
(
‖u0‖Uγ+2

p,θ
(Ω) + ‖ψf‖H

γ
p,θ

(Ω,T )

)
,(2.8)

where the constant N is independent of T , f , and u0.
The following theorem is obtained in section 5 rather easily from Theorem 2.10.

It extends Theorem 5.1 of [15], in which there is the requirement that c ≤ −c0/ρ(x)
with a sufficiently large constant c0. On the other hand, it should be noted that in
[15] there are no restrictions on θ and no assumptions on the smoothness of Ω.

Theorem 2.11. Let Ω be bounded and the above assumptions be satisfied. Let
a, b, c be independent of t and let c0 be a sufficiently large constant (actually, any
constant bigger than N from (2.8)). Then for any f ∈ ψ−1Hγ

p,θ(Ω) there is a unique

u ∈ ψHγ+2
p,θ (Ω) such that, in Ω,

aijuxixj + biuxi + (c− c0)u + f = 0.(2.9)

Furthermore,

‖ψ−1u‖Hγ+2
p,θ

(Ω) ≤ N‖ψf‖Hγ
p,θ

(Ω),(2.10)

where the constant N is independent of f .
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One of important ingredients in the proof of Theorem 2.10 is the following result,
which allows us to reduce the case of general C1 domains to the case of C∞ domains.
For ε > 0 set

Ωε = {x ∈ Ω : ψ(x) > ε}.

Theorem 2.12. There is an ε > 0 and a C∞ diffeomorphism µ : Ωε → Ω such
that, for ν = µ−1,

(i) the functions µx and νx are uniformly continuous in Ωε and Ω, respectively;

(ii) for any n = 0, 1, 2, . . . , we have |µx|(0)n,Ωε
+ |νx|(0)n,Ω < ∞;

(iii) for any multi-index α �= 0 we have (ψ(x)− ε)|α|Dαµx(x) → 0 as x ∈ Ωε and
ψ(x) − ε ↓ 0;

(iv) for any multi-index α �= 0 we have ρ|α|Dανx(x) → 0 as x ∈ Ω and ρ(x) ↓ 0;
(v) in the part of a neighborhood of ∂Ωε lying in Ωε we have ψ(µ(x)) = ψ(x)− ε;
(vi) if Ω is bounded, then ρΩ ≤ NρΩε

(ν) in Ω and ρΩε
≤ NρΩ(µ) in Ωε, where

N is a finite constant.
The proof of Theorem 2.10 is also based on the following result for R

d
+. Below,

the spaces Hγ
p,θ, H

γ
p,θ(T ), and H

γ
p,θ(T ) are taken from [9]. They are defined on the

basis of (2.7), where we formally take Ω = R
d
+ and ψ(x) = x1, so that ζ−n(enx) =

ξ(x1) =: ζ(x) and

‖u‖p
Hγ

p,θ

:=
∑
n∈Z

enθ‖u(en·)ζ‖p
Hγ

p
< ∞.

As in [9] by Mα we denote the operator of multiplying by (x1)α and M = M1.
Remark 2.13 (see [9]). If γ = 0, 1, 2, . . . , then ‖u‖p

Hγ
p,θ

is equivalent to

∑
|α|≤γ

∫
R

d
+

(x1)θ−d|(x1)|α|Dαu(x)|p dx.

Theorem 2.14. Let Ω = R
d
+, ω ∈ (0,∞), T ∈ (0,∞]. Drop Assumption 2.4 and

instead suppose that

|a(t, x) − a(t, y)| + x1|b(t, x)| + (x1)2|c(t, x)| ≤ ω

whenever t > 0, x, y ∈ Ω, and |x − y| ≤ x1 ∧ y1. Suppose that all other assumptions
are satisfied.

Then there exists an ω0 ∈ (0, 1) depending only on δ, p, θ, γ, |γ|+, and K, such
that, if ω ≤ ω0, then

(i) for any f ∈ M−1
H

γ
p,θ(T ) and u0 ∈ Uγ+2

p,θ , (2.1) with initial data u0 admits a

unique solution u in the class H
γ+2
p,θ (T );

(ii) for this solution

‖M−1u‖
H

γ+2
p,θ

(T ) ≤ N
(
‖u0‖Uγ+2

p,θ
+ ‖Mf‖H

γ
p,θ

(T )

)
,(2.11)

where the constant N depends only on p, δ, θ, γ, |γ|+, and K.

3. Auxiliary results. The goal of this section is to write multidimensional ver-
sions of the results of section 3 in [6] and to develop certain techniques for dealing with

the norms | · |(σ)
γ . In the following lemma, no restriction on θ is needed. One can prove
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that its statement also holds true if one replaces R
d
+ and Hγ

p,θ with Ω and Hγ
p,θ(Ω),

respectively. However, such a modification is of no use for us because we needed the
lemma as it is stated and the norms in Hγ

p,θ(R
d
+) and Hγ

p,θ are not equivalent (since
ψ is bounded).

Lemma 3.1. Let constants C, δ ∈ (0,∞), a function u ∈ Hγ
p,θ, and q be the

smallest integer such that |γ| + 2 ≤ q.
(i) Let ηk ∈ C∞(Rd

+), k = 1, 2, . . . , satisfy

∑
k

M |α||Dαηk| ≤ C in R
d
+(3.1)

for any multi-index α such that 0 ≤ |α| ≤ q. Then∑
k

‖ηku‖pHγ
p,θ

≤ NCp‖u‖p
Hγ

p,θ

,

where the constant N is independent of u, θ, and C.
(ii) If in addition to the condition in (i)∑

k

η2
k ≥ δ on R

d
+,(3.2)

then

‖u‖p
Hγ

p,θ

≤ N
∑
k

‖ηku‖pHγ
p,θ

,(3.3)

where the constant N is independent of u and θ.
Proof. (i) One may assume that C = 1 because one can replace ηk with ηk/C.

Then since different functions ξ generate equivalent norms, we have∑
k

‖ηku‖pHγ
p,θ

≤ N
∑
n

enθ
∑
k

‖u(en·)ζηkn‖pHγ
p
,

where ηkn = ηk(e
n·)ζ. Furthermore, observe that by the Leibniz rule

Inα :=
∑
k

|Dαηkn(x)| ≤ N
∑
k

∑
|β|+|γ|=|α|

en|β||Dβηk|(enx) |Dγζ(x)|

and that on the support of ζ we have en|β| ≤ N(enx1)|β|. Then, upon recalling (3.1),
we see that Inα are bounded by a constant independent of x ∈ R

d, n ∈ Z, and α such
that |α| ≤ q.

It follows by Theorem 2.1 and Remark 2.1 of [7] that, for each n,∑
k

‖u(en·)ζηkn‖pHγ
p
≤ N‖u(en·)ζ‖p

Hγ
p
.

Formally speaking, to use Theorem 2.1 in [7], we need condition (3.1) to be satisfied
for all multi-indices α rather than only such that |α| ≤ q. That it suffices to dominate
these quantities for |α| ≤ q follows by inspecting the argument in [7]. Hence,∑

k

‖ηku‖pHγ
p,θ

≤ N
∑
n

enθ‖u(en·)ζ‖p
Hγ

p
≤ N‖u‖p

Hγ
p,θ

.
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This proves (i) and allows us to use the same argument as in Remark 2.1 of [7].
Assertion (i) means that the operator mapping u ∈ Hγ

p,θ into (ηku, k = 1, 2, . . .) ∈
�p(H

γ
p,θ) is bounded. Its dual is also bounded, which means that (due to the arbi-

trariness of p, γ, θ we do not use new parameters for dual spaces) if
∑

k ‖gk‖
p
Hγ

p,θ

< ∞,

then
∑

k ηkgk ∈ Hγ
p,θ and

∥∥∥∥∥
∑
k

ηkgk

∥∥∥∥∥
p

Hγ
p,θ

≤ N
∑
k

‖gk‖pHγ
p,θ

.(3.4)

Under the condition in (ii), it turns out that here in place of ηk one can take η̃k :=
ηk/η̄, where η̄ =

∑
i η

2
i . Indeed, it is easy to deduce from (3.1) and the inequality∑

|ab| ≤
∑

|a|(
∑

|b|) that M |α|Dαη̄ is bounded if 0 ≤ |α| ≤ q. Then one gets the
same property for 1/η̄ by relying on (3.2). This makes it clear that η̃k satisfy (3.1)
with certain C. Finally, by taking η̃k = ηk/

∑
i η

2
i and ηku in place of ηk and gk,

respectively, in (3.4) we get (3.3). The lemma is proved.

Remark 3.2. In Lemma 3.1 we assumed that u ∈ Hγ
p,θ. In this connection it is

important to observe that the above proof shows also that if the right-hand side of
(3.3) is finite, then u ∈ Hγ

p,θ.

Notice that the first inequality in (3.5) below is written for η4
k and not for η2

k as in
Lemma 3.1. The purpose of this is to have the possibility to apply Lemma 3.1 to η2

k in
place of ηk. In this connection it is useful to have in mind that

∑
|ab| ≤

∑
|a|(

∑
|b|)

and
∑

a2 ≤ (
∑

|a|)2.
Lemma 3.3. For each ε > 0 and q = 1, 2, . . . there exist nonnegative func-

tions ηk ∈ C∞
0 (Rd

+), k = 1, 2, . . . , such that (i) on R
d
+ for each multi-index α with

1 ≤ |α| ≤ q we have

∑
k

η4
k ≥ 1,

∑
k

ηk ≤ N(d),
∑
k

M |α||Dαηk| ≤ ε;(3.5)

(ii) for any k and x, y ∈ supp ηk we have |x − y| ≤ N(x1 ∧ y1), where N =
N(d, q, ε) ∈ [1,∞).

Proof. Let

R
d−1 =

∞⋃
k=1

Qk

be a decomposition of R
d−1 into disjoint unit cubes Qk. Mollify the indicator function

of each Qk in such a way that thus obtained function χk vanish outside of the twice
dilated Qk (naturally, with center of dilation being that of Qk). Then

δ ≤
∑
k

χ2
k ≤

(∑
k

χk

)2

≤ N

on R
d−1 for some constants δ,N ∈ (0,∞) depending only on d. Furthermore, by

Lemma 3.2 of [6] there exists a nonnegative function ξ ∈ C∞
0 (R+) such that assertion

(i) of the present lemma holds for d = 1 with the collection {ξ(enx) : n ∈ Z} in place
of {ηk(x) : k = 1, 2, . . .}.
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Then write x = (x1, x′), fix a constant r ∈ (0, 1) to be specified later, and intro-
duce

τk(x
′) = χk(rx

′), ηnk(x) = ξ(enx1)τk(e
nx′).

Then (first sum with respect to k)

δ ≤
∑
n,k

η4
nk ≤

⎛
⎝∑

n,k

ηnk

⎞
⎠

4

≤ N(3.6)

on R
d
+ for some constants δ,N ∈ (0,∞) depending only on d.
Now, for 1 ≤ |α| ≤ q and some constants cβγ , we have

M |α|Dαηnk(x) = (x1)|α|en|α|
∑

β+γ=α

cβγξ
(β1)(enx1)(Dγτk)(e

nx′).

Hence, ∑
n,k

|M |α|Dαηnk(x)| ≤
∑

β+γ=α

cβγI1(γ)I2(α, β),

where

I1(γ) = sup
x′

∑
k

|Dγτk(x
′)| = r|γ| sup

x′

∑
k

|Dγχk(x
′)|,

I2(α, β) = sup
t≥0

∑
n

t|α|en|α||ξ(β1)(ent)| = sup
t∈R

∑
n

e(n+t)|α||ξ(β1)(en+t)|.

Obviously I1 is finite. That I2 is also finite is seen from its representation as the
supremum of a continuous 1-periodic function. Moreover, if γ = 0, then cβγ �= 0 only
if β1 = |α|, in which case cβγ = 1 and, by the construction of ξ, we have I2(α, β) ≤ ε.
It follows that ∑

n,k

|M |α|Dαηnk(x)| ≤ N(d)ε + N(ε, q, d)r.(3.7)

We renumber the set {ηkn : n = 0,±1, . . . , k = 1, 2, . . .} and write it as {ηk : k =
1, 2, . . .}. Then from (3.7) we see how to choose r to satisfy the last inequality in (3.5)
with N(d)ε in place of ε.

Equation (3.6) shows that N(d)ηk, with an appropriate N(d), satisfy the first
two inequalities in (3.5). However, ε in (3.5) will be replaced with N(d)ε. This is,
of course, irrelevant since from the very beginning we could take a smaller constant
instead of ε. This proves (i).

To prove (ii) notice that if x, y ∈ supp η0k, then x1, y1 ∈ supp ξ and x1, y1 are
separated away from zero and bounded above, whereas x′, y′ ∈ supp τk, so that |x′−y′|
is bounded above independently of k. In that case |x− y| ≤ N(d, q, ε)(x1 ∧ y1). This
relation is dilation invariant and therefore holds for any n, k, and x, y ∈ supp ηnk.
The lemma is proved.

Lemma 3.4. Let 0 ≤ γ ≤ τ , σ1, σ2, σ, κ ∈ R, and

either [γ] + σ ≥ 0, [γ] + σ1 + σ2 ≥ 0 or γ ∈ {0, 1, 2, . . .}.
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Then, with N = N(γ, σ, σ1, σ2, d), we have

|a|(σ)
γ ≤ N |a|(σ)

τ , |ab|(σ1+σ2)
γ ≤ N |a|(σ1)

γ |b|(σ2)
γ ,

|a|(κ)
γ+1 ≤ N(|a|(κ)

0 + |ax|(κ+1)
γ ), |a|(κ)

0 + |ax|(κ+1)
γ ≤ N |a|(κ)

γ+1.

This result is quite standard (for various particular cases of it we refer to [2] and
[5]) and is based on simple manipulations. We only mention three main ingredients.

The first is that if we take the sup in (2.2) only over x, y ∈ Ω such that 4|x− y| ≤
ρ(x, y), then the norm | · |(σ)

k+α will be replaced with an equivalent one provided that

k + σ ≥ 0. This is because ρk+σ(x, y) ≤ ρk+σ(x) and ρ(x, y)/|x − y| ≤ 4 when
4|x− y| ≥ ρ(x, y). This replacement allows one to connect x, y by a straight segment
lying in Ω and use that (ρ(x, y)/|x− y|)α increases with α.

The second ingredient is the observation that if 4|x−y| ≤ ρ(x, y), then (1/2)ρ(x) ≤
ρ(x, y) ≤ ρ(x), and one can raise this inequality to any power. The third ingredient
is the Leibniz rule.

The following interpolation lemma is a particular case of Proposition 4.2 of [13]
(also see www.math.iastate.edu/lieb/book/errata.pdf) stated in more general form
and for norms based on parabolic distances. Various versions of the lemma also can
be found in many other places (see, for instance, [2] and [5]).

Lemma 3.5. If 0 ≤ κ ≤ τ < ∞, then

|a|(0)κ ≤ N(κ, τ, d)

(
sup
Ω

|a|
)1−κ/τ (

|a|(0)τ

)κ/τ
.

Notice that we only need Lemma 3.5 for Ω = R
d
+. The next result for Ω = R

d
+

bears on multiplicators in Hγ
p,θ.

Lemma 3.6. Let p ∈ (1,∞), γ, θ ∈ R. Then there exists a constant N =

N(γ, |γ|+, p, d) such that if f ∈ Hγ
p,θ and a is a function with finite norm |a|(0)|γ|+,Rd

+

,

then

‖af‖Hγ
p,θ

≤ N |a|(0)|γ|+,Rd
+

‖f‖Hγ
p,θ

.(3.8)

In addition, if γ = 0, 1, 2, . . . , then

‖af‖Hγ
p,θ

≤ N sup
R

d
+

|a| ‖f‖Hγ
p,θ

+ N‖f‖Hγ−1
p,θ

sup
R

d
+

sup
1≤|α|≤γ

|M |α|Dαa|.(3.9)

Proof. Since the norms in Hγ
p,θ constructed from different ζ are equivalent, we

have

‖af‖p
Hγ

p,θ

≤ N
∑
n

enθ‖ζ(·)a(en·)ζ(·)f(en·)‖p
Hγ

p
.

Furthermore, for any n (see, for instance, Lemma 5.2 in [8]),

‖ζ(·)a(en·)ζ(·)f(en·)‖Hγ
p
≤ N |a(en·)ζ|B|γ|+‖f(en·)ζ‖Hγ

p
=: I,

where | · |Bν is a natural Hölder’s norm in R
d. Now we use, first, that for functions

with support belonging to that of ζ the norm | · |Bν is equivalent to | · |(0)ν , then the

multiplicative property of | · |(0)ν from Lemma 3.4 and, finally, the simple fact that the
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norms | · |(0)ν are dilation invariant. Then we see that

I ≤ N |a(en·)ζ|(0)|γ|+,Rd
+

‖f(en·)ζ‖Hγ
p
≤ N |a|(0)|γ|+,Rd

+

|ζ|(0)|γ|+,Rd
+

‖f(en·)ζ‖Hγ
p
.

Assertion (3.8) easily follows from these inequalities. Inequality (3.9) is straightfor-
ward due to Remark 2.13. The lemma is proved.

Now we give a result that will allow us to use change of variables.
Lemma 3.7. Let Ω′, Ω′′ be domains in R

d′
and R

d′′
, respectively, constants

N1, N2 ∈ [1,∞), σ ≥ 0, γ = k+ε, where k = 0, 1, . . . and ε ∈ [0, 1). Let a be a function

on Ω′ with |a|(σ)
γ,Ω′ < ∞ and let µ : Ω′′ → Ω′ be a Lipschitz continuous mapping with

Lipschitz constant N1 such that ρΩ′′ ≤ N2ρΩ′(µ) on Ω′′ and |µx|(0)(γ−1)+,Ω′′ < ∞. Then

|a(µ)|(σ)
γ,Ω′′ ≤ N(γ, σ, d)N3|a|(σ)

γ,Ω′ ,(3.10)

where N3 = N3(k, ε, σ) = Nγ+σ
2 Nε

1 (1 + |µx|(0)(γ−1)+,Ω′′)
k.

Proof. The result is trivial if k = ε = 0 since ρΩ′′ ≤ N2ρΩ′(µ) and σ ≥ 0. If k = 0
and ε ∈ (0, 1), estimate (3.10) follows after observing that for x, y ∈ Ω′′ we have

ρε+σ
Ω′′ (x, y)

|a(µ(x)) − a(µ(y))|
|x− y|ε ≤ Nγ+σ

2 [a]
(σ)
γ,Ω′

|µ(x) − µ(y)|ε
|x− y|ε ≤ Nγ+σ

2 Nε
1 [a]

(σ)
γ,Ω′ .

We now use the induction on k. Assume that k = n + 1 and (3.10) holds with
n + ε in place of γ, where n = 0, 1, 2, . . . and ε ∈ [0, 1). Observe that

(a(µ(x)))xi = ayj (µ(x))µj
xi(x).

Then by the induction hypotheses and Lemma 3.4 we obtain

|(a(µ))x|(σ+1)
γ−1,Ω′′ ≤ N |(ax(µ))|(σ+1)

γ−1,Ω′′ |µx|(0)γ−1,Ω′′

≤ NN3(k − 1, ε, σ + 1)|ax|(σ+1)
γ−1,Ω′ |µx|(0)γ−1,Ω′′ ≤ NN3(k, ε, σ)|a|(σ)

γ,Ω′ .

By using again Lemma 3.4 and the fact that |a(µ)|(σ)
0,Ω′′ admits the same estimate

(recall that N1, N2 ≥ 1), we see that (3.10) holds with k = n + 1. The lemma is
proved.

Proof of Lemma 2.8. (i) Owing to the first assertion of Lemma 3.4 we have

|ψ−κ|(σ)
τ ≤ N |ψ−κ|(σ)

n , where n is any integer ≥ τ . Therefore, it suffices to concentrate

on τ ∈ {0, 1, . . .}. Furthermore, since Ω is bounded and κ ≤ σ, we have |ψ−κ|(σ)
τ ≤

N |ψ−κ|(κ)
τ . Hence we may assume in addition that κ = σ.

Now first let σ ≥ 0. In Lemma 3.7 take Ω′ = R+, Ω′′ = Ω, and µ = ψ. Then the
assumption ρΩ′′ ≤ N2ρΩ′(µ) is satisfied since Ω is bounded, and it remains only to

note that, obviously, a(x) := x−σ, x > 0, satisfies |a|(σ)
τ,Ω′ < ∞ for any τ = 0, 1, 2, . . . .

If σ < 0, assertion (i) follows by induction on τ on the basis of the case σ ≥ 0
and the Leibniz rule:

0 = ψ|γ|Dγ(ψσψ−σ) = ψ|γ|+σDγ(ψ−σ)

+
∑

α+β=γ,
|α|<|γ|

cγαβ [ψ|α|+σDα(ψ−σ)]ψ|β|−σDβ(ψσ),

where |γ| ≥ 1 and cγαβ are certain constants.
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To prove assertion (ii) notice that by (i) and the second assertion of Lemma 3.4
we have

|a|(σ)
τ = |ψ−σψσa|(σ)

τ ≤ N |ψ−σ|(σ)
τ |ψσa|(0)τ ≤ N |ψσa|(0)τ .

Also

|ψµa|(σ)
τ ≤ N |ψµ|(−µ)

τ |a|(µ+σ)
τ ≤ N |a|(µ+σ)

τ ,

provided that [τ ] − µ ≥ 0 or τ ∈ {0, 1, 2, . . .}. However, if none of these conditions
holds, then µ = kα, where k is an integer ≥ 2 and 0 < α ≤ [τ ]. Then, for µ(i) = iα,
we have

|ψµ(i+1)a|(σ)
τ = |ψα(ψµ(i)a)|(σ)

τ ≤ N |ψµ(i)a|(α+σ)
τ

and the rest is obvious. The lemma is proved.
The following lemma about implicit functions will be used on few occasions.
Lemma 3.8. Let n = 1, 2, . . . , G ⊂ R

d be a domain and let d(x) be a nonnegative
function on G. Let E(r, x) be an R

d1-valued n times continuously differentiable func-
tion given in an open set of points (r, x) ∈ R

d1+d, r ∈ R
d1 , x ∈ R

d, whose projection
on R

d is G. Assume that for each x ∈ G there exists a unique solution r(x) of the
equation E(r, x) = 0. Denote z(x) = (r(x), x) and assume that for x ∈ G the matrix
Er(z(x)) is invertible and the inverse matrix is bounded on G. Finally, assume that

d|α|−1(x)(DαE)(z(x))(3.11)

is bounded in G for any α such that n ≥ |α| ≥ 1, where, as usual, Dα stands for the
derivative of order α in all variables (on that occasion of function E depending on
z = (r, x)). Then

(i) it holds that

d|α|−1(x)Dαr(x)(3.12)

is bounded in G for any α such that n ≥ |α| ≥ 1;
(ii) if the sets {x ∈ G : d(x) < ε} are nonempty for any ε > 0 and if n ≥ 2 and

(3.11) tends to zero as d(x) → 0 for any α such that n ≥ |α| ≥ 2, then (3.12) tends
to zero as d(x) → 0 for any α such that n ≥ |α| ≥ 2.

Proof. (i) It is well known that r(x) is n times continuously differentiable in G
and

Erj (z(x))rjxi(x) = −Exi(z(x)).(3.13)

It follows that (3.12) is bounded for |α| = 1. Assume that it is bounded for 1 ≤ |α| ≤
m, where m ∈ {1, 2, . . . , n− 1}. By differentiating (3.13) we find for x ∈ G that

Erj (z(x))d|α|(x)Dαrjxi(x) = − d|α|(x)Dα
(
Exi(z(x))

)
+

∑
|β|≤|α|−1,
|β|+|γ|=|α|

cαβγ
[
d|β|(x)Dβrjxi(x)

]
d|γ|(x)Dγ

(
Erj (z(x))

)
,(3.14)

where cαβγ are some constants. Owing to the induction hypotheses, we see that to prove

the boundedness of (3.12) for |α| = m+1 it suffices to prove that d|α|(x)Dα
(
Ez(z(x))

)
is bounded whenever |α| ≤ m.
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Observe that Dα
(
Ez(z(x))

)
is represented as the sum of certain constants times

terms of the type

(DβEz)(z(x))Dγ1zi1(x) × · · · ×Dγ|β|zi|β|(x),(3.15)

where |γi| ≥ 1, |γ1| + · · · + |γ|β|| = |α| and zi, i = 1, . . . , d1 + d, is the ith coordinate

of z = (r, x). Being multiplied by d|α|(x) expression (3.15) is written as

d|β|(x)(DβEz)(z(x))d|γ1|−1(x)Dγ1zi1(x) × · · · × dγ|β|−1(x)Dγ|β|zi|β|(x).(3.16)

If |α| ≤ m, then |γk| ≤ m and d|γk|−1(x)Dγkzik(x) is bounded in both cases if zik = rj

(by the induction hypotheses) or zik = xj (trivially). Hence the boundedness of (3.11)
implies that of (3.16) and finishes the proof of (i).

To prove (ii), first examine (3.14) for |α| = 1. The first term on the right goes
to zero as d(x) → 0 due to the assumption about (3.11) and the fact that rx is
bounded. The treatment of the second term is no different since for β there is only
one possibility: β = 0. Next, assume that (3.12) tends to zero as d(x) → 0 for
|α| = 2, . . . ,m (m ≤ n − 1) and, to make one step forward, take α in (3.14) with
|α| = m.

Notice that in the second term on the right in (3.14) the terms with |β| ≥ 1 tend
to zero as d(x) → 0 by the induction hypotheses since |β|+ 1 ≤ m. It follows that to
complete the induction it suffices to prove that d|α|(x)Dα

(
Ez(z(x))

)
→ 0 if |α| = m.

We go back to (3.16) and observe that if 2≤|γk|(≤m), then d|γk|−1(x)Dγkzik(x)→
0 as d(x) → 0 in both cases if zik = rj (by the induction hypotheses) or zik = xj

(being identically zero). Taking into account assertion (i) we see that it remains only
to analyze the terms of type (3.16) with |γ1| = · · · = |γ|β|| = 1. However, for those
terms we have |β| = |α| ≥ 1 and they tend to zero by assumption. The lemma is
proved.

4. Proof of Theorem 2.14. We closely follow the proof of Theorem 2.16 of [6].
As usual we may assume that u0 = 0 and T = ∞ and, since for aij = δij and b = 0
and c = 0 the result is known from [9], we need only prove the existence of an ω0,
such that the a priori estimate (2.11) holds given that the solution already exists and
ω ≤ ω0. Below, unless explicitly expressed otherwise, we use notation N for various
constants which may vary from one occurrence to another and depend only on the
data as they should according to the statement of the theorem.

Case 1. |γ| �∈ {0, 1, 2, . . .}. Take the least integer q ≥ |γ| + 4. Also take an
ε ∈ (0, 1) to be specified later and take a sequence of functions ηk, k = 1, 2, . . . , from
Lemma 3.3 corresponding to ε, q. Then by Lemma 3.1, we have

‖M−1u‖p
H

γ+2
p,θ

≤ N

∞∑
k=1

‖M−1uη2
k‖

p

H
γ+2
p,θ

.(4.1)

For any k let xk be a point in supp ηk and ak(t) = a(t, xk). Owing to (2.1), we have

(uη2
k)t = aijk (uη2

k)xixj + M−1fk,

where

fk = (aij − aijk )η2
kMuxixj − 2aijk M(η2

k)xiuxj − aijk M
−1uM2(η2

k)xixj

+ η2
kMbiuxi + η2

kM
2cM−1u + Mfη2

k.
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It follows from [9] that for each k

‖M−1uη2
k‖

p

H
γ+2
p,θ

≤ N‖fk‖pHγ
p,θ

.(4.2)

Furthermore, by Lemmas 3.6 and 3.5 after denoting γ′ = |γ| + δ0(|γ|)/2 and δ1 =
δ0(|γ|)/(2|γ| + 2δ0(|γ|)) (> 0), we get

‖(aij − aijk )η2
kMuxixj‖H

γ
p,θ

≤ N‖ηkMuxixj‖H
γ
p,θ

sup
t≥0

|(aij − aijk )(t, ·)ηk|(0)γ′,Rd
+

≤ N‖ηkMuxixj‖H
γ
p,θ

sup
[0,∞)×R

d
+

|(aij − aijk )ηk|δ1 .

Observe that for any k and x, y ∈ supp ηk we have |x− y| ≤ N(ε)(x1 ∧ y1), where
N(ε) = N(d, q, ε), and one can easily find not more than N(ε) + 2 ≤ 3N(ε) points xi

lying on the straight segment connecting x and y and including x and y, such that
|xi − xi+1| ≤ x1

i ∧ x1
i+1. It follows from our assumptions that

sup
[0,∞)×R

d
+

|(aij − aijk )ηk| ≤ NN(ε)ω.

Similarly,

‖η2
kMbiuxi‖H

γ
p,θ

+ ‖η2
kM

2cM−1u‖H
γ
p,θ

≤ NN(ε)ωδ1
(
‖ηkux‖H

γ
p,θ

+ ‖ηkM−1u‖H
γ
p,θ

)
.

Coming back to (4.2) and (4.1) and using Lemma 3.1, we conclude

‖M−1u‖p
H

γ+2
p,θ

≤ NN(ε)ωpδ1
(
‖Muxx‖pHγ

p,θ

+ ‖ux‖pHγ
p,θ

+ ‖M−1u‖p
H

γ
p,θ

)
+NCp

(
‖ux‖pHγ

p,θ

+ ‖M−1u‖p
H

γ
p,θ

)
+ N‖Mf‖p

H
γ
p,θ

,(4.3)

where

C = sup
R

d
+

sup
|α|≤q−2

∞∑
k=1

M |α|(|Dα(M(η2
k)x)| + |Dα(M2(η2

k)xx)|).

By construction, we have C ≤ Nε. Furthermore (see, for instance, [9]),

‖ux‖Hγ
p,θ

≤ N‖M−1u‖Hγ+1
p,θ

, ‖Muxx‖Hγ
p,θ

≤ N‖M−1u‖Hγ+2
p,θ

.(4.4)

Hence (4.3) yields

‖M−1u‖p
H

γ+2
p,θ

≤ N1(N(ε)ωpδ1 + εp)‖M−1u‖p
H

γ+2
p,θ

+ N‖Mf‖p
H

γ
p,θ

.

We finally choose first ε and then ω0 so that N1(N(ε)ωpδ1 + εp) ≤ 1/2 for ω ≤ ω0 and
finish the proof of the theorem in the case under consideration.

Case 2. γ ∈ {0, 1, 2, . . .}. If γ = 0, (4.3) obviously holds with δ1 = 1 and C
defined by the same formula in which we drop the supremum with respect to α and
take α = 0. After this one can follow the previous arguments word for word. If γ is
a positive integer, one can proceed as in [6] by induction on γ on the basis of (3.9).
We leave the details to the reader.
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Case 3. γ ∈ {−1,−2, . . .}. In this case instead of proving a priori estimates we
prove the theorem directly. As above we may assume that u0 = 0.

We proceed by induction on γ and assume that there exists an ω0 > 0 such that
the theorem holds for γ + 1 in place of γ. We will see that the same ω0 suits γ. The
possibility to start the induction from γ = −1 is justified by the above result.

Let ω ≤ ω0. Then the operator R which maps f ∈ M−1
H

γ+1
p,θ into the solution

u ∈ H
γ+3
p,θ,0 of (2.1) is well defined and bounded.

Take an f ∈ M−1
H

γ
p,θ and recall that d− 1 < θ < d− 1 + p, so that according to

Corollary 2.12 of [9] we have the representation

f = MDkf
k,

where fk ∈ M−1
H

γ+1
p,θ , k = 1, 2, . . . , d, and

d∑
k=1

‖Mfk‖
H

γ+1
p,θ

≤ N‖Mf‖H
γ
p,θ

.(4.5)

Now let

wk = Rfk, k = 1, 2, . . . , d, v = MDkw
k.

Owing to the induction hypothesis, (4.4), and (4.5) we have

‖M−1v‖
H

γ+2
p,θ

≤
∑
k

‖wk
x‖H

γ+2
p,θ

≤ N
∑
k

‖M−1wk‖
H

γ+3
p,θ

≤ N‖Mf‖H
γ
p,θ

.

Furthermore, as is easy to check,

vt = aijvxixj + bivxi + cv + f + f̄

with

Mf̄ = Mwk
xixjMDka

ij + wk
xiM2Dkb

i + M−1wkM3Dkc

− 2ai1Mwk
xkxi − wk

xkMb1.

In addition,

|MDka||γ+1|,Rd
+

= |MDka||γ|−1,Rd
+
≤ N |a||γ|,Rd

+
≤ NK,

|M2Dkb||γ+1|,Rd
+

= |M2Dkb||γ|−1,Rd
+
≤ N |b|(1)|γ|,Rd

+

,

and similar estimates hold for M3Dkc, a, and Mb. Hence from the construction of
wk, (4.4), Lemma 3.6, and (4.5) we infer that

‖Mf̄‖
H

γ+1
p,θ

≤ N‖Mf‖H
γ
p,θ

.

Finally, we can define ū = R(f̄) and u = v − ū. Then u belongs to H
γ+2
p,θ,0 and

satisfies (2.1), and (2.11) follows from the above estimates.
To prove the uniqueness of solutions take an u ∈ H

γ+2
p,θ,0 and assume that it satisfies

(2.1) in (0,∞) × R
d
+ with f = 0. Notice that

(ηku)t = aij(ηku)xixj + bi(ηku)xi + c(ηku) + f̃ ,(4.6)
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where

f̃ = −2aijηkxiuxj − (aijηkxixj + biηkxi)u.

As is easy to see, f̃ ∈ Lp((0,∞), Hγ+1
p ) =: H

γ+1
p . (Here we use the notation from [8].)

Furthermore, (4.6) will not change if we change arbitrarily a, b, c outside of the support
of ηk. We do this preserving the uniform ellipticity and smoothness of a, b, c in the
whole space, and then by a well-known regularity result we get that (4.6) about ηku is
uniquely solvable in H

γ+2
p for any f̃ ∈ H

γ
p and also uniquely solvable in H

γ+3
p for any

f̃ ∈ H
γ+1
p . Actually, it is hard to find an exact reference to this “well-known” result,

but refer to Remark 5.6 of [8], where one must throw away all stochastic terms and
then notice that one can apply this remark for all p ∈ (1,∞) rather than p ∈ [2,∞).
The latter assumption on p in [8] is only related to the presence of stochastic terms.

From the uniqueness in H
γ+2
p and the solvability in H

γ+3
p we conclude that ηku ∈

H
γ+3
p . Since ηk has compact support, we also have ηku ∈ H

γ+3
p,θ , M−1ηku ∈ H

γ+3
p,θ ,

and ηku ∈ H
γ+3
p,θ,0. This and the induction hypotheses allow us to get from (4.6)

that

‖ηkM−1u‖p
H

γ+3
p,θ

≤ N‖Mηkxiaijuxj‖p
H

γ+1
p,θ

+N‖(aijM2ηkxixj + MbiMηkxi)M−1u‖p
H

γ+1
p,θ

.

By summing up these estimates with respect to k and using Lemmas 3.1, 3.4, and 3.6
and the fact that M−1u ∈ H

γ+2
p,θ , we obtain that ‖M−1u‖

H
γ+3
p,θ

< ∞, that is, u ∈ H
γ+3
p,θ,0.

That u = 0 now follows from the induction hypotheses.
The theorem is proved.

5. Proof of Theorems 2.10 and 2.11.
Proof of Theorem 2.10. We split the proof into three steps.
Step 1. First we claim that we may assume that ∂Ω is infinitely differentiable.

To prove the claim, use Theorem 2.12 and notice that, as we know from Theo-
rem 3.2 of [15], due to assertions (i) and (ii) of Theorem 2.12, the mappings µ and
ν induce one-to-one linear bounded mappings of the spaces Hγ

p,θ(Ω) onto Hγ
p,θ(Ωε)

and vice versa. Therefore, proving that a function u ∈ H
γ+2
p,θ (Ω, T ) satisfies (2.1)

with initial condition u0 and admits estimate (2.8) is equivalent to proving that the
function ũ := u(µ) satisfies the corresponding equation in (0, T ) × Ωε, belongs to
H

γ+2
p,θ (Ωε, T ), and admits the natural modification of estimate (2.8). The equation for

ũ is

ũt = ãij ũxixj + b̃iũxi + c̃ũ + f̃ ,(5.1)

where

ãij(t, x) = āij(t, µ(x)), b̃i(t, x) = b̄i(t, µ(x)),

āij = akrνixkν
j
xr , b̄i = akrνixkxr + bkνixk ,

c̃(t, x) = c(t, µ(x)), f̃(t, x) = f(t, µ(x)).

Since the matrix νx(µ) and its inverse µx are bounded, (5.1) is uniformly parabolic.
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Furthermore, by Lemma 3.4,

|ā(t, ·)|(0)|γ|+ ≤ N |a(t, ·)|(0)|γ|+(|νx|(0)|γ|+)2 ≤ N1,

|b̄(t, ·)|(1)|γ|+ ≤ N |a(t, ·)|(0)|γ|+|νxx|
(1)
|γ|+ + N |b(t, ·)|(1)|γ|+|νx|

(0)
|γ|+ ≤ N1,

where N1 is independent of t. Also observe that in a bounded C1 domain every
function having bounded first derivatives satisfies the Lipschitz condition. Then from
the above estimates by Lemma 3.7 we conclude that ã, b̃, c̃ satisfy Assumption 2.3
relative to Ωε with certain strictly positive and finite constants in place of δ and K.

The function ã(t, x) is obviously continuous inside of Ωε uniformly in t, so that As-
sumption 2.4(i) is satisfied. Also, obviously the part of Assumption 2.4(ii) concerning
c̃ is satisfied. It is satisfied for b̃ as well since (cf. Theorem 2.12(iv)) ρΩ(x)(|b(t, x)| +
|νxx(x)|) → 0 as long as t > 0 and Ω � x → ∂Ω, which implies that, under
the same conditions, ρΩ|b̄| → 0 and if x ∈ Ωε and t > 0 and ρΩε(x) → 0, then
ρΩε

(x)|b̃(t, x)| → 0.
It remains to check (2.4) for ã. This turns out to be a more tedious albeit

elementary task. Observe that for x, y ∈ Ωε,

|ã(t, x) − ã(t, y)| = |ā(t, µ(x)) − ā(t, µ(y))|
≤ N |a(t, µ(x)) − a(t, µ(y))| + N |νx(µ(x)) − νx(µ(y))|.

Here the last term goes to zero as x − y → 0 due to the uniform continuity of µ
and νx no matter whether x, y approach ∂Ωε or not. Furthermore, if x, y ∈ Ωε and
|x− y| ≤ ρΩε(x, y), then

|µ(x) − µ(y)| ≤ N |x− y| ≤ NρΩε
(x, y) ≤ NρΩ(µ(x), µ(y)).

Therefore, to check that |ã(t, x) − ã(t, y)| → 0 uniformly in t as Ωε � x → ∂Ωε

and |x− y| ≤ ρΩε(x, y) it suffices to prove that, for any constant N1,

lim
ρ(x)→0,
x∈Ω

sup
y∈Ω,

|x−y|≤N1ρ(x,y)

sup
t

|a(t, x) − a(t, y)| = 0,(5.2)

which is given for N1 = 1 by Assumption 2.4.
By way of getting a contradiction assume that (5.2) is false. Then there exists a

point x0 ∈ ∂Ω, a τ > 0, and sequences xn, yn ∈ Ω and tn > 0 such that xn, yn → x0,
|xn − yn| ≤ N1ρ(xn, yn), and

|a(tn, xn) − a(tn, yn)| ≥ τ.

Take the mapping Ψ from Assumption 2.1 and a number k = 1, 2, . . . to be specified
later and define

x̄n(i) = Ψ(xn)i/k + Ψ(yn)(k − i)/k, xn(i) = Ψ−1(x̄n(i)), i = 0, 1, . . . , k.

As is easy to see, due to Assumption 2.1, we have Br0/K0
∩ R

d
+ ⊂ Ψ(Br0(x0) ∩ Ω).

Therefore, for all large n, which we only concentrate on, we have xn(i) ∈ Br0(x0)∩Ω.
Furthermore, for x ∈ ∂Ω close to x0, we have

x̄1
n(i) ≤ |x̄n(i) − Ψ(x)| ≤ K0|xn(i) − x|.
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By taking the inf over x ∈ Br0(x0)∩∂Ω, we get that x̄1
n(i) ≤ K0ρ(xn(i)). Similarly, if

z ∈ ∂R
d
+ and z is close to 0, then ρ(xn(i)) ≤ |xn(i) − Ψ−1(z)| ≤ K0|x̄n(i) − z|, which

after taking the inf over z yields ρ(xn(i)) ≤ K0x̄
1
n(i).

Now, notice that the sequence x̄1
n(i) is monotone in i so that, for i = 0, 1, . . . , k−1,

x̄1
n(k) ∧ x̄1

n(0) ≤ x̄1
n(i + 1) ∧ x̄1

n(i).

It follows that, for i = 0, 1, . . . , k − 1,

|xn(i + 1) − xn(i)| ≤ K0|x̄n(i + 1) − x̄n(i)| = K0k
−1|Ψ(xn) − Ψ(yn)|

≤ K2
0k

−1|xn − yn| ≤ K2
0k

−1N1ρ(xn(k), xn(0))

≤ K3
0k

−1N1[x̄
1
n(k) ∧ x̄1

n(0)] ≤ K3
0k

−1N1[x̄
1
n(i + 1) ∧ x̄1

n(i)]

≤ K4
0k

−1N1ρ(xn(i + 1), xn(i)).

The latter is less than ρ(xn(i + 1), xn(i)) if k ≥ K4
0N1. With such a k by Assump-

tion 2.4 we conclude

|a(tn, yn) − a(tn, xn)| ≤
k−1∑
i=0

|a(tn, xn(i + 1)) − a(tn, xn(i + 1))| → 0,

which is the contradiction in question. Thus indeed in the rest of the proof we may
assume that ∂Ω is infinitely differentiable.

Step 2. We establish a priori estimate (2.8) assuming that u ∈ H
γ+2
p,θ (Ω, T ) satisfies

(2.1). Let x0 ∈ ∂Ω and Ψ be a function from Assumption 2.1. By Step 1 we may
assume that Ψ is infinitely differentiable with bounded derivatives.

Define r = r0/K0 and fix smooth functions η ∈ C∞
0 (Br), ϕ ∈ C∞(R) such that

η = 1 in Br/2 and ϕ(t) = 1 for t ≤ −3 and ϕ(t) = 0 for t ≥ −1 and 0 ≥ ϕ′ ≥ −1. As

we noted above, Ψ(Br0(x0)) contains Br. For k = 1, 2, . . . , t > 0, x ∈ R
d
+ introduce

ϕk(x) = ϕ(k−1 lnx1),

âk := ãη(x)ϕk + (1 − ηϕk)I, b̂k := b̃ηϕk, ĉk := c̃ηϕk,

where the functions ã, b̃, and c̃ are taken from (5.1) with Ψ and Ψ−1 instead of ν and µ,

respectively. By using Lemma 3.4 one can check that âk, b̂k, ĉk satisfy Assumptions 2.3
with Ω = R

d
+ and some new constant δ′,K ′ ∈ (0,∞) independent of k and x0.

Take the ω0 from Theorem 2.14 corresponding to δ′, p, θ, γ, |γ|+, and K ′. We also
fix a k > 0 such that

|âk(t, x) − âk(t, y)| + x1|b̂k(t, x)| + (x1)2|ĉk(t, x)| ≤ ω0

whenever t > 0, x, y ∈ R
d
+ and |x − y| ≤ x1 ∧ y1. The fact that this condition holds

with ã, b̃, c̃ in place of âk, b̂k, ĉk if x1 and y1 are small enough is proved in Step 1.
That multiplying by ϕk preserves the needed property for small x1 and y1 and also
extends it for all x1 and y1 follows from the fact that ϕ(k−1 lnx1) = 0 for x1 ≥ e−k

and

|ϕ(k−1 lnx1) − ϕ(k−1 ln y1)| = k−1ξ−1|ϕ′(k−1 ln ξ)| · |x1 − y1| ≤ k−1,

where ξ is a point between x1 and y1, so that |x1 − y1| ≤ x1 ∧ y1 ≤ ξ. Now we fix a
ρ0 < r0 such that

Ψ(Bρ0
(x0)) ⊂ Br/2 ∩ {x : x1 ≤ e−3k}.
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Let ζ be a smooth function with support in Bρ0(x0) and denote v := (uζ)(Ψ−1) and
continue v as zero in R

d
+ \ Ψ(Bρ0(x0)). Since ηϕk = 1 on Ψ(Bρ0(x0)), the function v

satisfies

vt = âijk vxixj + b̂ikvxi + ĉkv + f̂ ,

where f̂ = f̃(Ψ−1), f̃ = −2aijuxiζxj − uaijζxixj − ubiζxi + ζf . Similar to what was
said in the beginning of Step 1, we have v ∈ H

γ+2
p,θ (T ). It follows from Theorem 2.14

that for any t ≤ T ,

‖M−1v‖
H

γ+2
p,θ

(t) ≤ N‖Mf̂‖H
γ
p,θ

(t) + N‖u0(Ψ
−1)ζ(Ψ−1)‖Uγ+2

p,θ
.

To transform this estimate we observe that by Theorem 3.2 in [15], for any ν, α ∈ R

and g ∈ ψ−αHν
p,θ(Ω) with support in Bρ0(x0),

‖ψαg‖Hν
p,θ

(Ω) ∼ ‖Mαg(Ψ−1)‖Hν
p,θ

.

Then we find

‖ψ−1uζ‖
H

γ+2
p,θ

(Ω,t) ≤ N‖M−1v‖
H

γ+2
p,θ

(t) ≤ N‖aζxψux‖H
γ
p,θ

(Ω,t)

+N‖aζxxψu‖H
γ
p,θ

(Ω,t) + ‖ζxψbu‖H
γ
p,θ

(Ω,t)

+N‖ζψf‖H
γ
p,θ

(Ω,t) + ‖ζu0‖Uγ+2
p,θ

(Ω).

Next we use a natural counterpart of Lemma 3.6 for general domains, which is
stated as Theorem 3.1 in [15]. We also use that, by Lemma 2.8, Assumption 2.3(iii)

implies that |ψb(t, ·)|(0)|γ|+ is bounded on [0, T ]. Then we conclude

‖ψ−1uζ‖
H

γ+2
p,θ

(Ω,t) ≤ N‖ψux‖H
γ
p,θ

(Ω,t) + N‖u‖H
γ
p,θ

(Ω,t)

+N‖ψf‖H
γ
p,θ

(Ω,t) + N‖u0‖Uγ+2
p,θ

(Ω).

Note that the above constants ρ0, k, δ
′,K ′, and N are independent of x0. There-

fore, to estimate the norm ‖ψ−1u‖
H

γ+2
p,θ

(Ω,t), one introduces a partition of unity ζ(i), i =

0, 1, 2, . . . , N , such that ζ(0) ∈ C∞
0 (Ω) and ζ(i) ∈ C∞

0 (Bρ0
(xi)), xi ∈ ∂Ω, for i ≥ 1.

Then one estimates ‖ψ−1uζ(0)‖H
γ+2
p,θ

(Ω,t) using Theorem 5.1 in [8] and the other norms

as above. By summing up those estimates one gets

‖ψ−1u‖
H

γ+2
p,θ

(Ω,t) ≤ N‖ψux‖H
γ
p,θ

(Ω,t) + N‖u‖H
γ
p,θ

(Ω,t)

+N‖ψf‖H
γ
p,θ

(Ω,t) + N‖u0‖Uγ+2
p,θ

(Ω).(5.3)

Furthermore, we know from Theorem 4.1 of [15] (cf. also (4.4)) that

‖ψux‖Hγ
p,θ

(Ω) ≤ N‖u‖Hγ+1
p,θ

(Ω).

Therefore (5.3) yields

‖u‖p
H

γ+2
p,θ

(Ω,t)
≤ N‖u‖p

H
γ+1
p,θ

(Ω,t)
+ N‖ψf‖p

H
γ
p,θ

(Ω,t)
+ N‖u0‖pUγ+2

p,θ
(Ω)

.

Now (2.8) follows from inequality (2.21) of [16] and Gronwall’s inequality. Actually,
there is a restriction that p ≥ 2 in inequality (2.21) of [16], but by inspecting the proofs
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of Theorem 4.2 and Theorem 7.1 in [8] one can easily check that in our (deterministic)
case the result holds for all p > 1.

Step 3. The a priori estimate from Step 2 combined with the method of continuity
shows that it remains only to prove solvability in the case of the heat equation. At
this moment the fact that the domain is infinitely smooth turns out to be extremely
handy.

Since C∞
0 (Ω) is dense in Uγ+2

p,θ (Ω), it suffices to concentrate on u0 ∈ C∞
0 (Ω).

Then passing from u to u − u0 we see that we may assume u0 = 0. Again using the
fact that C∞

0 (Ω) is dense in the spaces Hκ
q,τ (Ω) we easily convince ourselves that it

suffices to consider only f ’s that are bounded on Ω× [0, T ] along with each derivative
in (t, x) and vanish if x is in a neighborhood of the boundary of Ω.

In that case it is well known (see, for instance, Theorem 4.5.2 in [10]) that there
exists a classical solution u of the heat equation with zero boundary and initial data.
Moreover, u is infinitely differentiable and each of its derivatives in (t, x) is bounded.

Next, it turns out that u/ψ is infinitely differentiable and has bounded deriva-
tives. Indeed, this is a local property which is preserved under C∞ transformations
of coordinates. Moreover, inside of Ω the property is obvious and near the boundary
points it follows after flattening the boundary from the formula

v(x)/x1 =

∫ 1

0

vx1(rx1, x2, . . . , xd) dr,

valid for any smooth function v on R̄
d
+ vanishing for x1 = 0. In particular, we infer

that ψ|α|Dα(ψ−1u) is bounded for any multi-index α. Hence, by Proposition 2.2 in
[15] we conclude that u ∈ H

γ+2
p,θ (Ω, T ). The theorem is proved.

Proof of Theorem 2.11. Let u ∈ ψHγ+2
p,θ (Ω) be a solution of (2.9). Observe that,

due to Theorem 3.1 of [15] and Lemma 2.8(i) implying that |ψ2/p|(0)τ < ∞ for all
τ ≥ 0, we have u ∈ Uγ+2

p,θ (Ω). Furthermore, v := uec0t satisfies (2.1) with fec0t in
place of f . For v estimate (2.8) becomes

g(T )‖u/ψ‖Hγ+2
p,θ

(Ω) ≤ N1e
N1T

(
‖u/ψ‖Hγ+2

p,θ
(Ω) + g(T )‖ψf‖Hγ

p,θ
(Ω)

)
,

where

g(T ) =

(∫ T

0

eptc0 dt

)1/p

.

If c0 > N1, then the ratio N1e
N1T /g(T ) tends to zero as T → ∞. Then after finding

a T such that this ratio is less than 1/2 one gets (2.10).
Having thus proved the a priori estimate (2.10), we can proceed as in Steps 1

and 3 of the above proof of Theorem 2.10. The theorem is proved.

6. Proof of Theorem 2.12. First we discuss Lemma 2.6. Its assertions (i)–
(iii) are stated as Lemma 2.8 in [4] and one finds all the assertions for |α| = 1 in
Theorems 1.3 and 2.1 of [12]. Since the lemma plays a crucial role in the present
article, we give a short proof.

Lemma 2.8 of [4] is obtained on the basis of Lemma 2.3 of [4], and assertion (iv) of
our Lemma 2.6 is obtained by analyzing the proof of Lemma 2.3 of [4], which treats a
generalization of the following. Given a C1 function f on R

d−1 with compact support
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and a ϕ ∈ C∞
0 (Rd−1), for x = (x1, x′) ∈ R

d
+, introduce

F (x) = (x1)1−d

∫
Rd−1

f(y′)ϕ((x′ − y′)/x1) dy′ =

∫
Rd−1

f(x′ − x1y′)ϕ(y′) dy′.

We have

Fxj (x) =

∫
Rd−1

fyj (x′ − x1y′)ϕ(y′) dy′, j = 2, . . . , d,(6.1)

Fx1(x) = −
∫

Rd−1

fyi(x′ − x1y′)yiϕ(y′) dy′,(6.2)

|Fx(x)| ≤ N sup
y′

|fy′(y′)|.(6.3)

Furthermore, by induction one easily gets that for any multi-index α �= 0

(MD)αF (x) := (MD1)
α1 × · · · × (MDd)

αdF (x)

= (x1)1−d

∫
Rd−1

f(y′)ϕα((x′−y′)/x1) dy′ =

∫
Rd−1

f(x′ − x1y′)ϕα(y′) dy′,

where ϕα ∈ C∞
0 (Rd−1) and

∫
ϕα dy′ = 0. Applying this to (6.1) and (6.2) we obtain

(MD)αFxi(x) =

∫
Rd−1

fyj (x′ − x1y′)ϕijα(y′) dy′,

where ϕijα ∈ C∞
0 (Rd−1) and

∫
ϕijα dy′ = 0 if α �= 0. It follows that if α �= 0, then

(MD)αFxi(x) =

∫
Rd−1

[fyj (x′ − x1y′) − fyj (x′)]ϕijα(y′) dy′,

|(MD)αFxi(x)| ≤ N sup
y′:|y′|≤x1R

|fx(x′ + y′) − fx(x′)|,

|(x1)|α|DαFx(x)| ≤ N sup
y′:|y′|≤x1R

|fx(x′ + y′) − fx(x′)|,(6.4)

where R is such that suppϕ ∈ BR.
Now, if a portion of ∂Ω is given by the equation x1 = f(x′) and Ω near this

portion lies in x1 > f(x′), then there the function ψ is constructed after Lemma 2.5
of [4] by means of solving the equation

x1 = ψ(x) + F (εψ(x), x′)(6.5)

under the additional harmless assumptions that
∫
ϕdy′ = 1. The constant ε > 0

is chosen in such a way that ε|Fx1 | ≤ 1/2, so that (6.5) admits a smooth solution
by the implicit function theorem. In that case also, for the function E(r, x) := r +
F (εr, x′) − x1, we have Er ≤ −1/2. By Lemma 3.8 and estimates (6.3) and (6.4)
we conclude that assertion (iv) of Lemma 2.6 holds for ψ defined from (6.5). For
general C1 domains one constructs ψ by “piecing together such local definitions of ψ
by partitions of unity” (see [4]); one can find more detail in [11] and [12].

Proof of Theorem 2.12. This proof consists of five steps.
Step 1. First we construct µ(x) near the boundary of Ωε as a mapping that moves

x ∈ Ωε = {ψ > ε} along the straight line x(r) = x − rψx(x) toward ∂Ω to a point y
at which ψ(y) = ψ(x) − ε. The value of ε > 0 will be taken in a special way.
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To make a preliminary choice, notice that we can take 2ψ in place of ψ, so that
without losing generality we may assume that for an ε̄ > 0, we have |ψx| > 1 in Ω\Ωε̄.
Then recalling that r0 and K0 are the constants from Assumption 2.1, define

M = sup
Ω

|ψx|, R = 10K2
0M

2,

and only concentrate on ε satisfying

0 < ε < (ε̄/R) ∧ (r0/(8K
2
0M)).(6.6)

Keeping in mind that ψ(x) is equivalent to ρ(x) near ∂Ω and that ψx is uniformly
continuous, choose ε (satisfying (6.6) and) such that

x, y ∈ Ω̄ \ ΩRε, |x− y| ≤ 2Mε =⇒ ρ(x) <
r0

2K2
0

, |ψx(x) − ψx(y)| ≤ 1

8K2
0M

.(6.7)

Next, for x ∈ Ω̄ \ ΩRε and r ∈ R such that x − rψx(x) ∈ Ω̄ \ ΩRε, introduce the
functions

u = u(r, x) = x− rψx(x), E(r, x) = ψ(u) − ψ(x) + ε.

Observe that if x, u(r, x) ∈ Ω̄ \ΩRε and |r| ≤ 2ε, then |x− u| ≤ 2Mε and |ψx(u)| ≥ 1
(owing to Rε ≤ ε̄; see (6.6)) and

Er(r, x) = −ψxi(x)ψxi(u) = −|ψx(u)|2

+
(
ψxi(u) − ψxi(x)

)
ψxi(u) ≤ −1 + M/(8K2

0M) < −1/2.

Hence, in this range of r, the functions ψ(u(r, x)) and E(r, x) are strictly locally
decreasing in r. In particular, if x ∈ ∂Ω, then on the interval −2ε ≤ r < 0 we have
ψ(u(r, x)) > |r|/2. Hence u(−2ε, x) ∈ Ωε, so that any point on ∂Ω can be connected
by a straight line with a point in Ωε.

Furthermore, it is seen that for any x ∈ Ωε \ ΩRε we have E(0, x) = ε and there
is a unique r = r(x) ∈ (0, 2ε) such that

ε ≥ E(r, x) > 0 for r ∈ [0, r(x)), E(r(x), x) = 0.(6.8)

Now we apply Lemma 3.8 to G = Ωε \ Ω̄Rε and d = ρΩε . Notice that in G
every derivative of ψ(x) is bounded and that d on G is comparable with ψ(x) − ε
(cf. Remark 2.7). Also we introduce

u(x) = u(r(x), x) = x− r(x)ψx(x)

and notice that by definition ψ(x) − ε = ψ(u(x)) and the latter is comparable with
ρ(u(x)). Then we see that instead of dealing with (3.11) it suffices to treat

(ψ(x) − ε)|α|−1(Dαψ)(u(x)),

which equals

ψ|α|−1(u(x))(Dαψ)(u(x)),

and the latter is bounded on G for any α �= 0 and, for |α| ≥ 2, tends to zero as
ψ(x) − ε = ψ(u(x)) ↓ 0 by Lemma 2.6.
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Thus, by Lemma 3.8 we have that (ψ(x)− ε)|α|−1Dαr(x) is bounded in Ωε \ΩRε

for any α �= 0 and, for |α| ≥ 2, tends to zero as ψ(x) − ε ↓ 0.
Step 2. Now we can define µ in Ωε. Observe that R > 10, so that 1/(R − 2) <

5/(4R) and there is an infinitely differentiable function κ(t), t ∈ R, such that κ(t) = 1
for t ≤ 2, κ(t) = 0 for t ≥ R, and 0 ≤ −κ′ ≤ 5/(4R). In Ωε we define

µ(x) = x− r(x)κ(ψ(x)/ε)ψx(x).(6.9)

Strictly speaking, for x ∈ ΩRε the above formula has no sense since we have not
defined r(x) for x ∈ ΩRε, but for those x we have ψ(x) > Rε, so that κ(ψ(x)/ε) = 0
and in that case we set by definition µ(x) = x. Certainly, assertions (ii), (iii), (v),
and (vi) hold in what concerns µ. Assertion (i) for µ follows from the formula

rxi(x)ψxj (u)ψxj (x) = ψxi(u) − ψxi(x) − r(x)ψxj (u)ψxixj (x),(6.10)

which holds for x ∈ Ωε \ ΩRε with u = u(x) and which yields, first, the modulus of
continuity of r(x) and then that of rx(x) in Ωε \ ΩRε.

Step 3. Next, we come to defining ν. To be sure that µ is locally one-to-one,
we fine tune the choice of ε in the following way. Observe that in Ωε \ ΩRε as we
know, r(x) ∈ (0, 2ε) so that r ≤ 2ψ in Ωε \ΩRε and the last term in (6.10) is less than
2Mψψxixj . Furthermore, ψψxx can be made arbitrary small in Ω\ΩRε on the account
of appropriate choice of ε. Therefore, (6.10) and the estimates in the beginning of the
proof (remember |u− x| ≤ 2εM) show that for sufficiently small ε we have

|rx| ≤ 2|ψx(u) − ψx(x)| + 1/(4MK2
0 ) ≤ 1/(2MK2

0 )

in Ωε \ ΩRε.
Now, by differentiating (6.9) in the direction of a unit vector e ∈ R

d we obtain in
Ωε \ ΩRε that

|µ(e)(x) − e| ≤ |r(e)(x)|κ(ψ/ε)M + 2ε|κ′(ψ/ε)|M2/ε + 2ψ|ψx(e)|

≤ 1/(2K2
0 ) + 10M2/(4R) + 2ψ|ψx(e)| = 3/(4K2

0 ) + 2ψ|ψx(e)|.

By reducing further ε we arrive at a situation in which

|µ(e)(x) − e| ≤ 4/(5K2
0 ) < 1(6.11)

in Ωε \ ΩRε and, actually, in Ωε since the first expression is zero in ΩRε.
Estimate (6.11) allows us to solve the equation

µ(ν(x)) − x = 0(6.12)

near any point x0 = µ(y0) with y0 ∈ Ωε (and the solution satisfying ν(x0) = y0 is
unique). Furthermore,

ρ|α|−1(x)(Dαµ)(ν(x)) = ρ|α|−1(µ(y))Dαµ(y)|y=ν(x)

and, due to the part of assertion (ii) proved for µ, the latter is bounded. Also observe
that, for any solution of (6.12) and x ∈ Ω \ ΩRε, we have ν(x) ∈ Ωε \ ΩRε (otherwise
µ(ν(x)) = ν(x)), so that, by virtue of (6.8) and the fact that 0 ≤ κ ≤ 1, we have

ψ(x) = ψ(µ(ν(x))) ≥ ψ(u(ν(x))) = ψ(ν(x)) − ε.
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It follows that if Ω � x → ∂Ω, then y = ν(x) → ∂Ωε and

|ρ|α|−1(µ(y))Dαµ(y)| ≤ Nψ|α|−1(µ(y))Dαµ(y)| → 0,

as have been pointed out above. This and Lemma 3.8 applied to (6.12) would have
finished the proof of the theorem if we already knew that ν(x) was uniquely defined
in Ω.

Step 4. To show that ν(x) is indeed uniquely defined in Ω, we first prove that

Ω′ := µ(Ωε) = Ω.(6.13)

Referring to (6.11), we conclude that Ω′ is an open subset of Ω. On the other
hand, if yn ∈ Ω′ and y ∈ Ω and yn → y, then for xn ∈ Ωε such that µ(xn) = yn we
have

xn − yn = r(xn)κ(ψ(xn)/ε)ψx(xn).

Since the right-hand side is bounded, there is a subsequence xn′ converging to a point
x ∈ Ω̄ε.

It turns out that x ∈ Ωε. Indeed, if x ∈ ∂Ωε, then κ(ψ(xn′)/ε) = 1 for all large n′

and ψ(xn′) = ψ(yn′)+ε, so that ψ(x) = ψ(y)+ε. Here y ∈ Ω and ψ(y) > 0, implying
ψ(x) > ε and contradicting x ∈ ∂Ωε.

By passing to the limit in µ(xn′) = yn′ we now see that µ(x) = y and y ∈ Ω′.
This means that Ω′ is not only open but also is closed in the relative topology of Ω.
It follows that Ω′ is the union of some connected components of Ω. In addition, since
as was noted above, any point on ∂Ω can be connected by a straight line with a point
in Ωε, each connected component of Ω contains points of Ωε and thus points of Ω′.
We have proved (6.13).

Step 5. It remains to prove that the mapping µ is one-to-one. To this end we
make the final adjustment of ε which gives us the possibility of connecting close points
in Ωε by paths of length comparable with the distance between the points. So far the
relation of ε to r0 and K0 did not play much of a role. Now it becomes crucial.

As is easy to see, due to Assumption 2.1 for any x0 ∈ ∂Ω, we have Br0/K0
∩R

d
+ ⊂

Ψ(Br0(x0) ∩ Ω). Furthermore, the function ψ(Ψ−1) is continuously differentiable in
the closure of Br0/K0

∩ R
d
+ and vanishes on the set {y1 = 0} ∩ Br0/K0

, so that its
gradient on this set is parallel to the y1 axis. It follows that for sufficiently small
ε > 0 the angle, which the gradient of ψ(Ψ−1) makes with the y1 axis on the surface
{ψ(Ψ−1) = ε}∩Br0/K0

, is as small as we like. We make it so small that any two points
y1, y2 ∈ {ψ(Ψ−1) > ε} ∩ Br0/K0

could be connected by a path lying in {ψ(Ψ−1) >
ε} ∩Br0/K0

and consisting of two straight segments of total length ≤ (10/9)|y1 − y2|.
Next, if x1, x2 ∈ Ω and

ρ(x1) < r0/(2K
2
0 ) and |x1 − x2| < r0/(2K

2
0 ),

then there is an x0 ∈ ∂Ω such that

x1, x2 ∈ Br0/K2
0
(x0) ∩ Ω

and the images y1 and y2 of x1, x2 under Ψ lie in Br0/K0
∩ R

d
+ and |y1 − y2| ≤

K0|x1−x2|. If in addition x1, x2 ∈ Ωε, then by the above paragraph there is a path in
Ωε connecting x1 and x2 and having length ≤ K0(10/9)|y1−y2| ≤ (10/9)K2

0 |x1−x2|.
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Now, assume that µ(x1) = µ(x2) for some xi ∈ Ωε. If x1, x2 ∈ ΩRε, then µ(x1) =
x1 = µ(x2) = x2. If, say x1 ∈ Ω\ΩRε, then (see (6.7)) we have ρ(x1) < r0/(2K

2
0 ) and

|x1 − x2| = |r(x1)κ(ψ(x1)/ε)ψx(x1) − r(x2)κ(ψ(x2)/ε)ψx(x2)|
≤ |r(x1)κ(ψ(x1)/ε)ψx(x1)| + |r(x2)κ(ψ(x2)/ε)ψx(x2)| ≤ 4Mε.

In addition (see (6.6)) 4Mε < r0/(2K
2
0 ), so that the points x1 and x2 can be connected

by a path s(t), t ∈ [0, 1], lying in Ωε and having length ≤ (10/9)K2
0 |x1 − x2|. In light

of (6.11), we obtain

|x1 − x2| = |µ(x1) − µ(x2) − (x1 − x2)| ≤
∫ 1

0

|(µ(s(t)))′ − s′(t)| dt

≤ 4/(5K2
0 )

∫ 1

0

|s′(t)| dt ≤ (8/9)|x1 − x2|,

implying that |x1−x2| = 0. We see that the conditions µ(x1) = µ(x2) and x1, x2 ∈ Ωε

imply that x1 = x2. Therefore, ν = µ−1 is well defined indeed and the theorem is
proved.

Acknowledgments. The authors are sincerely grateful to the referees for useful
comments and suggestions.
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Abstract. In this paper the exact asymptotics of eigenvalues λn(J), n → ∞, of a class of
unbounded self-adjoint Jacobi matrices J with discrete spectrum are given. Their calculation is based
on a successive diagonalization approach—a new version of the classical transformation operator
method. The approximations of the transformation operator are constructed step by step using a
successive diagonalization procedure, which results in higher order approximations of the λn(J).
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1. Introduction. In this work we consider a class of infinite Jacobi matrices act-
ing in l2 = l2(N). Although the class we study looks rather special, it is large enough to
contain examples of physical interest. More precisely we investigate the asymptotics
of the energy spectrum of a molecule in the homogeneous electric field. The asymp-
totics of the spectrum are obtained via a general successive diagonalization method
which seems to be of independent interest and can be used for other Jacobi matrices
with discrete spectrum. We emphasize that the special class of Jacobi matrices under
consideration has been chosen for simplicity only. Our goal is to present the general
ideas of the method, avoiding tedious calculations and complicated formulations.

Recall that an essentially self-adjoint Jacobi matrix

J =

⎛
⎜⎜⎜⎜⎜⎝

q1 λ1 0 0 · · ·
λ1 q2 λ2 0 · · ·
0 λ2 q3 λ3 · · ·
0 0 λ3 q4 · · ·
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎠ ,

which is a relatively compact perturbation of the diagonal operator Q (given by Qfn =
qnfn in the canonical basis fn of l2) under suitable conditions on its entries, has a
compact resolvent and so its spectrum is discrete. A simple sufficient condition for
the discreteness of the spectrum of J was given, for example, in [19] and says

if lim
n

inf
q2
n

λ2
n + λ2

n−1

> 2, then J has discrete spectrum

(we assume that λn > 0). Another sufficient condition for discreteness of the spectrum
of J was obtained in [36] (using continuous fraction representation of the Weyl function
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Kraków, Poland (najanas@cyf-kr.edu.pl).
‡Department of Mathematical Physics, Institute of Physics, St. Petersburg University,

Ulianovskaia 1, 198904, St. Petergoff, St. Petersburg, Russia (naboko@snoopy.phys.spbu.ru).

643



644 JAN JANAS AND SERGUEI NABOKO

of J). The class of J we consider below has bounded weights λn and qn = n2 + c1n+
O(1). The idea of successive diagonalization uses two general ingredients.

First, for a given compact perturbation R of a diagonal self-adjoint operator D
(Den = µnen, where en is an orthonormal basis in a Hilbert space) we assume that
(a) dist (µk, µl) ≥ ε0 > 0 if k �= l and at least k or l is large enough, and (b) R is a
band matrix in the basis en. We stress that R can be non-self-adjoint (as it will be in
our situation of self-adjoint Jacobi matrices). Under the above assumption σ(D +R)
is obviously discrete and the eigenvalues λk(D + R) = µk + O(‖R∗en‖). In this way
we are able to control the distance |λk(D+R)−µk|. Note that even for a rank-one R
it may happen that the above distance can be an arbitrary l1 sequence (see Example
2.3).

Second, we look for a diagonal matrix that is similar to the original J modulo
some compact band matrix (in the same basis fn).

This idea in some important features goes back to the old method of transfor-
mation operator presented by Delsarte [10], Delsarte and Lions [11], Marchenko [32],
Levitan [30], and Naimark [33]. It was applied to calculate the exact asymptotics of
the eigenvalues of Sturm–Liouville operators with smooth coefficients. However, we
do not try to find exactly the transformation operator; instead, a successive approx-
imation procedure is suggested. A somewhat similar idea of approximate similarity
was used by Rosenblum in his remarkable paper [34] on asymptotics of the eigenvalues
of some pseudodifferential operators. But our class of unbounded Jacobi matrices is
quite different from the one of pseudodifferential operators considered by Rosenblum.
Note that in this way we have to leave the class of self-adjoint operators, but we stay
in the class of band matrices that are a weak perturbation of the diagonal matrix. We
repeat this procedure several times (successive diagonalization), obtaining finally as
weak perturbation of the diagonal operator, as we require. This allows us to find the
value of the eigenvalues λn(J) with arbitrary precision as n → ∞. In this paper we
restrict ourselves to three steps to avoid the tedious calculation necessary for higher
order approximation. Although we concentrate on finding asymptotics of λn(J), the
approach also works simultaneously for computing approximate formulas of the eigen-
vectors of J . Surely this is a natural consequence of realization of the transformation
operator idea. Actually, the spectral analysis of infinite self-adjoint Jacobi matrices
is a classical topic related to the theory of orthogonal polynomials [1], [2], [3], [4], [8].
Numerous methods were elaborated on for studies of spectral problems for various
classes of Jacobi matrices in l2(N) and L2(Z); see [12], [13], [14], [15], [16], [19], [20],
[21], [22], [23], [24], [25], [26], [27], [35].

Note that calculation of exact asymptotics of eigenvalues of ordinary differential
operators is a classical problem studied by Birkhoff and Tamarkin and for partial dif-
ferential operators by Weyl. The same question about the asymptotics of eigenvalues
can be investigated for difference operators (Jacobi matrices).

In turn, in physical models it is important to analyze the influence of physical
parameters on the spectrum of Hamiltonians. Since the exact calculation of their
eigenvalues is usually impossible, it is of considerable interest to study the appearance
of the parameters in different terms of asymptotics of the eigenvalues. This allows
better understanding of the role of parameters in the spectral picture of Hamiltonians
and therefore in the corresponding physical model as well.

Let us also recall that Jacobi matrices appear in applications to many fields,
including quantum mechanics, quantum optics, solid state physics, and numerical
analysis. Already classical operators of creation a and annihilation a+ = a∗ of quan-
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tum physics can be represented by the nonsymmetric Jacobi matrix (aij) with only
one nonzero diagonal aij =

√
i− 1δij+1, where δij is the Kronecker delta function. In

quantum optics, Hamiltonians in simple models can be represented by polynomials
in a and a+. Therefore in a suitable orthonormal basis they are given by Hermitian
band matrices. In some cases such models can be reduced to symmetric Jacobi ma-
trices, for example, in the case of the Jaynes–Cumming model without rotating wave
approximation (RWA) studied in [31]. In turn, in solid state physics models appear
as Jacobi matrices with almost periodic entries [9].

The paper is organized as follows. In section 2 the first abstract fact is proved.
The above-mentioned three steps of successive diagonalization are presented in section
3. Finally, the application to a physical model is considered briefly in section 4.

2. Preliminaries. Before proceeding further let us recall some notation and
notions. Let {fn}∞n=1 be the canonical orthonormal basis in l2 = l2(N). For given
sequences {λn}∞n=1, {qn}∞n=1 of real numbers one defines the Jacobi matrix J by
J = SD + DS∗ + Q, where D and Q are the diagonal operators defined by {λn}∞n=1

and {qn}∞n=1, respectively, and the unilateral shift is defined by Sfn = fn+1. As
mentioned, the class of Jacobi operators we study in this paper is given by qn =
n2 + c1n+ c2n

−1 + c3n
−2 +O( 1

n3 ), λn = g + b1n
−1 + b2n

−2 +O( 1
n3 ), where all cj , bj

are real and such that λn �= 0 (as usual). We omit the zero order term in qn since
it produces the shift of the spectrum only. The physical motivation for so special a
choice of qn and λn will be given in section 4. Denote by J(= J(g, b1, b2, c1, c2, c3))
the Jacobi operator induced by the above sequences. The spectrum of J is obviously
discrete and consists of the eigenvalues {λk(J)}∞k=1 [18].

In what follows Σ1/p (p > 0) stands for the weak ideal of Schatten–von Neumann
compact operators T such that their singular numbers sk(T ) satisfy estimates sk(T ) =
O( 1

kp ) [5]. Below ‖ ‖ denotes the operator norm and [A,B] := AB − BA is the
commutator of operators A and B.

We start by proving a folklore-type, simple lemma, which will be used as a tool
of successive approximation of the eigenvalues λk(J).

Lemma 2.1. Let D be a self-adjoint diagonal operator in a Hilbert space H given
by Den = µnen, where {en} is an orthonormal basis of eigenvectors in H and simple
eigenvalues µn → ∞ are ordered by |µi| ≤ |µi+1|. Assume that

(i) dist (µi, µk) ≥ ε0 for some ε0 > 0 and all i �= k.

If R is a compact (not necessary self-adjoint) operator in H, then the operator T =
D+R has discrete spectrum when the complex eigenvalues λn(T ) of T are numerated
properly. Moreover, for large values of n the eigenvalues of T are simple and λn(T )
satisfy the estimates λn(T ) = µn + O(‖R∗en‖).1

Proof. Let

Kn := {λ ∈ C, |λ− µn| ≤ rn}

with rn = O(‖R∗en‖). We claim two facts. First, there exists a collection of the
eigenvalues of T such that for arbitrary n the distance between µn and an eigenvalue
of T from the collection fulfills the estimate O(‖R∗en‖), as n → ∞. Second, all
the eigenvalues of T belong to the collection and therefore satisfy the estimates of

1The above formula induces a proper numeration of λn(T ) which does not coincide in general
with monotonic ordering of their moduli, due to possible jumps of the signs of µn.
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Lemma 2.1 after a proper numeration. Note that the above inessential complicated
formulation appears due to not fixed signs of µn.

To prove the first fact we find numbers rn < ε0/2 such that for large n in the disc
Kn there is exactly one simple eigenvalue of T. Below we essentially follow the idea
of the proof of the stability of the multiplicity from [5]. For λ ∈ C \ σ(D) we have

(T − λ)−1 = [I + (D − λ)−1R]−1(D − λ)−1.(2.1)

Assume that for n 	 1 we have chosen rn such that

(∗)sup‖(D − λ)−1R‖ ≤ 1

3
, λ ∈ Γn,where Γn = ∂Kn.

Since rn < ε0/2, using (2.1) and (i) we see that σ(T ) ∩ Γn = φ. Fix large n for
which (∗) holds. Now we follow more or less standard reasoning. Let PT and PD be
the Riesz projections given by

PT := − 1

2πi

∫
Γn

(T − λ)−1dλ, PD := − 1

2πi

∫
Γn

(D − λ)−1dλ = (·, en)en.

Denote Fλ := (D − λ)−1R. Then using (2.1) we have

PT = PD − 1

2πi

∫
Γn

[ ∞∑
k=1

(−1)kF k
λ

]
(D − λ)−1dλ.

Due to (∗) one can estimate

‖PT − PD‖ ≤ 1

2π
|Γn| sup

Γn

∞∑
k=1

‖Fλ‖kr−1
n = sup

Γn

[‖Fλ‖(1 − ‖Fλ‖)−1] ≤ 1/2.

Hence rank PT = rank PD = 1. Therefore there is in Kn exactly one eigenvalue of T
provided one can find rn for which (∗) is satisfied.

Consider the Schmidt decomposition R =
∑∞

k=1 sk(R)(·, ϕk)ψk, where {ϕn} and
{ψn} are some orthonormal bases in H and sk(R) are the singular numbers of the
compact operator R [5], [28]. Let Pn := (·, en)en and P⊥

n := I − Pn.
Then ‖R∗(D − λ)−1‖ ≤ ‖R∗(D − λ)−1Pn‖ + ‖R∗(D − λ)−1P⊥

n ‖. However,

‖R∗(D − λ)−1Pn‖ = ‖R∗e‖nr
−1
n , λ ∈ Γn.(2.2)

On the other hand, for f ∈ H

‖R∗(D − λ)−1P⊥
n f‖2 =

∞∑
k=1

sk(R)2|(P⊥
n (D − λ)−1P⊥

n f, ψk)|2

≡
N∑

k=1

sk(R)2| · · · |2 +

∞∑
k=N+1

sk(R)2| · · · |2.

Since ‖P⊥
n (D − λ)−1P⊥

n ‖ ≤ 2ε−1
0 (remember that rn ≤ ε0/2) and λ ∈ Γn,
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∞∑
k=N+1

sk(R)2|(P⊥
n (D − λ)−1P⊥

n f, ψk)|2

≤ sN+1(R)2 · (2ε−1
0 ‖f‖)2 ≤ 1

32
‖f‖2(2.3)

for N sufficiently large.
Fix such a large value of N . Then |(P⊥

n (D − λ)−1P⊥
n f, ψk)|2 → 0 as n → ∞

(uniformly in λ ∈ Γn and f in the unit ball) and k = 1, . . . , N.

Indeed, if QL =
∑L

l=1 Pl, then

|(P⊥
n (D − λ)−1P⊥

n f, ψk)| ≤ |(P⊥
n (D − λ)−1P⊥

n f,QLψk)|
+ |(P⊥

n (D − λ)−1P⊥
n f, (I −QL)ψk)|

≤
L∑

l=1

|(P⊥
n (D − λ)−1P⊥

n f, Plψk)| + 2ε−1
0 ‖(I −QL)ψk‖ · ‖f‖.(2.4)

The second term from the above line can be made arbitrarily small by choosing L
sufficiently large. For such fixed L and k each term |(P⊥

n (D − λ)−1P⊥
n f, Plψk)|,

1 ≤ l ≤ L, obviously tends to zero uniformly in f from the unit ball as n → ∞ (since
supλ∈Γn

‖Pl(D − λ)−1‖ → 0 as n → ∞). Fix L so large that

2(2/ε0)
2

N∑
k=1

sk(R)2‖(I −QL)ψk‖2 ≤ 1

32
.

For such large fixed L and n 	 1 and λ ∈ Γn,

N∑
k=1

sk(R)2|(P⊥
n (D − λ)−1P⊥

n f, ψk)|2 ≤ 1

32
‖f‖2.(2.5)

Put rn = 12‖R∗en‖. Combining (2.2), (2.3), (2.4), and (2.5), we obtain the desired
estimate (∗) (since all the above estimates were uniform with respect to λ ∈ Γn and
1
12 +

√
1
32 + 1

32 = 1
3 ).

To prove the second fact, choose the radii Rn → +∞, n → ∞, such that the
circles ΓRn

:= {z, |z| = Rn} satisfy the estimates dist (ΓRn
, σ(D)) ≥ ε0/4 (using

assumption (i)). As above, we want to prove the new estimate (compare to (∗)) for
large n,

sup ‖(D − λ)−1R‖ ≤ 1

3
, λ ∈ ΓRn

.(2.6)

Since sk(R) → 0, as k → ∞,

∞∑
k=N+1

sk(R)2|(P⊥
n (D − λ)−1P⊥

n f, ψk)|2 ≤ sN+1(R)2(4ε−1
0 )2‖f‖2 ≤ 1

4
‖f‖2(2.7)

for N sufficiently large. Fix such N. To complete the proof it is enough to estimate

N∑
k=1

sk(R)2|(P⊥
n (D − λ)−1P⊥

n f, ψk)|2.
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If λ ∈ ΓRn we have

‖(D − λ)−1P⊥
n f‖2 =

∞∑
l=1

|(P⊥
n f, el)|2|µl − λ|−2 ≤

∞∑
l=1

|(P⊥
n f, el)|2(4ε−1

0 )2.

Since |µl + Rn|−2 + |µl −Rn|−2 → 0, as n → ∞, for l = 1, 2, . . . , we get

N∑
k=1

sk(R)2|(P⊥
n (D − λ)−1P⊥

n f, ψk)|2 = o(1)N‖f‖2(2.8)

as n → ∞. Here o(1) tends to zero uniformly in f when n → ∞. Finally (2.7) and
(2.8) imply the desired estimate (2.6) for large n.

Our second fact will be proved once we show that for the discs K(0, Rn) of radius
Rn and the center at zero that


(K(0, Rn) ∩ σ(T )) = 
(K(0, Rn) ∩ σ(D))(2.9)

for n sufficiently large.
Note that due to the separation assumption (i), the circles Γn separate pairs

of neighboring eigenvalues of D and therefore they do the same for neighboring
eigenvalues of T for sufficiently large n. Finally, combining (2.9) and the formula
rn = 12‖Re∗n‖ we get the desired asymptotic estimates λn(T ) = µn + O(‖R∗en‖).
It remains to prove (2.9). As above, it is enough to show that ‖PT − PD‖ < 1,
where PT (resp., PD) are the Riesz projections corresponding to σ(T ) ∩ K(0, Rn)
(σ(D) ∩K(0, Rn), resp.).

Applying (2.6) we have

‖PT − PD‖ ≤ 1

2π

∫
ΓRn

‖(D − λ)−1R(T − λ)−1‖|dλ|

≤ 1

2π
· 3

2

∫
ΓRn

‖(D − λ)−1R(D − λ)−1‖|dλ|.

We claim that

lim
n

∫
ΓRn

‖(D − λ)−1R(D − λ)−1‖|dλ| = 0.(2.10)

First observe that by the separation condition∫
ΓRn

‖(D − λ)−1R(D − λ)−1‖|dλ| ≤ ‖R‖
∫

ΓRn

‖(D − λ)−1‖2|dλ| ≤ C‖R‖(2.11)

for some positive C, n = 1, 2, . . . .
Fix ε > 0 for which C · ε  1 and choose M so large that

R = Rε +

M∑
k=1

sk(R)(. . . , ϕk)ψk, where ‖Rε‖ ≤ ε.(2.12)

Using (2.11) and (2.12), the above claim is reduced to the convergence

lim
n

∫
ΓRn

‖(D − λ)−1(〈·, ϕk〉)ψk(D − λ)−1‖|dλ| = 0, k = 1, . . . ,M.
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Below we omit the index k. Applying the Cauchy–Schwarz inequality, it is enough to
prove that for any ϕ ∈ H

lim
n

∫
ΓRn

‖(D − λ)−1ϕ‖2|dλ| = 0.(2.13)

The above integral can be estimated easily:

∫
ΓRn

‖(D − λ)−1ϕ‖2|dλ| =

∫
ΓRn

∞∑
k=1

|(ϕ, ek)|2|(µk − λ)−2||dλ|

=

∞∑
k=1

|(ϕ, ek)|2
∫

ΓRn

|(µk − λ)−2||dλ|.

As it has been noticed above,∫
ΓRn

|(µk − λ)−2||dλ| ≤
∫

ΓRn

‖(D − λ)−1‖2|dλ| ≤ C

for all n and k. On the other hand, for large n and some positive constant C1,∫
ΓRn

|(µk − λ)−2||dλ| ≤ C1

∫
ΓRn

|λ|−2|dλ| = O(R−1
n )

(uniformly in k). Combining the last two estimates we obtain the relation (2.13).
This completes the proof of Lemma 2.1.

Remark 2.2. A similar result holds in the case in which the eigenvalues {µn} of
D are not simple. If |µl| ≤ |µl+1| and P{µl} is the orthogonal projection on the space
of eigenvectors corresponding to µl, and nl stands for the multiplicity of µl, then the
eigenvalues λn(l)(T ) (counted properly with algebraic multiplicity) satisfy for l 	 1

λn(l)(T ) = µl + O(‖R∗P{µl}‖),

where n1 + · · · + nl−1 < n(l) ≤ n1 + · · · + nl. In the applications given in the
next section we shall need estimates: ‖R∗en‖ = O( 1

np ), p > 0. Note that the above
estimate on R cannot be replaced by R ∈ Σ1/p.

Indeed, one can add to a given operator D a diagonal operator R = diag( 1
np
k

),

where nk is an arbitrary permutation of N. It is clear that by a proper choice of the
permutation nk we have R ∈ Σ1/p, but we are not able to prove any estimates of
dist(λn(T ), µn) (T = D + R), only its decreasing to 0, as n tends to infinity.

Moreover, even for rank-one perturbation of R, the statement λn(T )−µn = O( 1
np )

does not hold true.
Example 2.3. Indeed, choose the operator T in l2 given by T = D+(·, ϕ)ϕ, where

Den = nen, ϕ ∈ l2, ‖ϕ‖ = 1; i.e., R = (·, ϕ)ϕ. Straightforward calculation shows that
in the interval (n, n + 1) there exists exactly one eigenvalue λn of T satisfying the
following condition:

∞∑
k=1

|ϕk|2(k − λn)−1 = −1,(2.14)

where ϕ =
∑∞

k=1 ϕkek, and the Fourier coefficients ϕn �= 0 for all n.
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We have for fixed n

|ϕn|2(n− λn)−1 + |ϕn+1|2(n + 1 − λn)−1 +
∑

k �=n,n+1

|ϕk|2(k − λn)−1 = −1.

However, ∑
k �=n,n+1

ϕ2
k(k − λn)−1| ≤ 2

∑
k �=n

|ϕk|2|n− k|−1 = o(1) as n → ∞.

Thus

−1 + o(1) = |ϕn|2(n− λn)−1 + |ϕn+1|2(n + 1 − λn)−1 ≥ |ϕn|2(n− λn)−1

and so λn − n = |λn − n| ≤ |ϕn|2(1 + o(1)).
It follows that limn(λn − n) = 0, which in turn implies equality −1 + o(1) =

|ϕn|2(n−λn)−1 + o(1). Therefore |ϕn|2(λn−n)−1 = 1+ o(1). However, we know only
that |ϕn|2 ∈ l1 and so λn − n can tend to zero as an arbitrary l1 sequence (exactly
like |ϕn|2).

Before we turn to some applications of Lemma 2.1 let us define by Σb
1/p the set

of all operators in H that are in Σ1/p and possess a band-type matrix in the basis
{en}∞n=1 of the eigenvectors of D. Consider a band-type operator R of the following

form: R =
∑N

k=−N SkΛk, where Λk are diagonal operators and S−k := S∗k

, k > 0.

It will be proved below that R ∈ Σb
1/p iff the diagonal operators Λk are defined by

sequences from lp (for k = −N, . . . , N).
Proposition 2.3. Let R be a compact operator that has a band matrix represen-

tation (rij) of width N in the basis {en}.
Then R ∈ Σ1/p iff rii+k = O(i−p), k = −N, . . . , N.

Proof. Let R =
∑N

k=−N ΛkS
k. If rii+k = O(i−p) for all k, then Λk ∈ Σ1/p and so

R ∈ Σ1/p. On the other hand, if R ∈ Σ1/p and is given by the above formula, then

SNR =
∑2N

k=0 Λ̃kS
k, where Λ̃k := SNΛk−NS∗N

. Since SNR ∈ Σ1/p, it follows that its
singular numbers satisfy estimates sk(S

NR) = O(k−p), and applying [18, Cor. 3.2]
we know that the same estimate holds for its eigenvalues λk(S

NR) = O(k−p). Hence
Λ̃o ∈ Σ1/p (note that the matrix SNR is lower triangular). It follows that Λ−N ∈ Σ1/p

and also (by symmetry) that ΛN ∈ Σ1/p. Therefore
∑N−1

k=−N+1 ΛkS
k ∈ Σ1/p and so

on. The proof is complete.
Below we also shall need the following elementary result.
Proposition 2.4. Let W = I+K, where K is a compact operator. If 0 ∈ σ(W ),

then for any small ε > 0 there exists a natural number N = N(ε) such that W + εQN

is invertible; here QN is the orthogonal projection in H onto [e1, . . . , eN ], and en is
the orthonormal basis in H.

Proof. Choose ε > 0 so small that W + εI is invertible. Then W + εQN =
[I + ε(QN − I)(W + εI)−1](W + εI). Since (W + εI)−1 = (1 + ε)−1I + Kε, for a
certain compact Kε, it follows that ‖(QN−I)Kε‖ → 0, as N → ∞. Therefore W+εQN

is invertible for N sufficiently large (as the product of two invertible operators).

3. Successive diagonalization and the eigenvalues of Jacobi matrices.
In this section a general method of successive diagonalization will be applied to Jg.
The choice of the special class of J, s (in what follows we omit the letter g in Jg) is
motivated by applications that will be given in section 4. The method seems strong
enough (as will become clear from its proof) for possible applications to other classes of
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Jacobi matrices with dominating diagonal. However, the method admits its simplest
form for α > 2β + 1, where α is the power order of the diagonal growth and β is the
power order of the weight growth. We hope to consider this and other situations in a
future paper. The procedure of the successive diagonalization method is the following.

Step 1. We look for self-adjoint diagonal operators J̃1, Λ1, where Λ1 ∈ Σb
1 such

that for anti-Hermitian T1 := Λ1S − S∗Λ1 we have

J̃1(I + T1)
.
= (I + T1)J,(3.1)

and the equality
.
= means one modulo Σb

1. By this notation J
.
= Λ2 +c1Λ+g(S+S∗).

Assumptions on J̃1 and T1 imply (using (3.1)) that

J̃1 − Λ2 − c1Λ ∈ Σb
1.(3.2)

This can be easily checked by looking at the main diagonal entries of the difference of
the left- and right-hand sides of (3.1). In turn, the first lower diagonal entries of the
difference between the left- and right-hand sides of (3.1) are obtained by grouping all
the terms of the difference that contain only S. Denoting this difference by A1 we get
that

A1
.
= J̃1Λ1S − gS − Λ1SΛ2 − c1Λ1SΛ.

We search for Λ1 satisfying the condition

J̃1Λ1S − gS − Λ1SΛ2 − c1Λ1SΛ ∈ Σb
1.(3.3)

It means

Λ1(J̃1S − SΛ2 − c1SΛ) − gS ∈ Σb
1.(3.4)

If we define J̃1 := Λ2 + c1Λ (see (3.2)), then using the elementary identities

[Λ, S] = S, [Λ2, S] = (2Λ − I)S,(3.5)

the condition (3.4) can be written as

Λ1[2Λ − I + c1]S − gS ∈ Σb
1.(3.6)

The inclusion (3.6) implies the choice

Λ1 :=
g

2
Λ−1.

Observe that the first upper diagonal entries of the same difference are given by
collecting all the terms of the difference that contain only S∗. Moreover, if B1 denotes
the above collection, then one can easily check (again using (3.1), and (3.6)) that

B1
.
= S∗[2Λ − I + c1]Λ1 − gS∗.(3.7)

Hence B1 − A∗
1 ∈ Σb

1 and our choice of Λ1 gives simultaneously that B1 ∈ Σb
1. Con-

cerning terms containing S2 or S∗2

(in (3.1)), all of them belong to Σb
1 already. The

above choice of J̃1 and Λ1 implies the condition (2.1). Now we obtain the first three
terms (in power asymptotic expansion) of λn(J). Indeed, we rewrite (3.1) as

K1 + J̃1(I + T1) = (I + T1)J
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for a certain K1 ∈ Σb
1. Since I + T1 is invertible (because T ∗

1 = −T1), J = (I +
T1)

−1[J̃1 + K1(I + T1)
−1](I + T1) and so

{λn(J)}∞n=1 = σ(J) = σ(J̃1 + K1(I + T1)
−1).

Applying Lemma 2.1 with R = K1(I + T1)
−1 and D = J̃1 = Λ2 + c1Λ we have

λn(J) = n2 + c1n + O(n−1).

Due to the above choices and the form of R it is clear that ‖R∗en‖ = O( 1
n ).

Step 2. We look for new self-adjoint diagonal operators J̃2,Λ1 ∈ Σb
1, and Λ2 ∈

Σb
1/2 such that for

T1 := Λ1S − S∗Λ1, T2 := Λ2S
2 + S∗2

Λ2

we have

J̃2(I + T1 + T2)
.
= (I + T1 + T2)J,(3.8)

where
.
= means the equality modulo Σb

1/2.

Below diagonal operators Λj , band operators Tj and equalities
.
= will have slightly

different meanings at each of Steps 2 and 3. We keep the same notation for similar
notions for reader convenience to avoid complicated symbols, hoping it will not lead
to misunderstanding. Again in the new notation,

J
.
= Λ2 + c1Λ + c2Λ

−1 + g(S + S∗) + b1(SΛ−1 + Λ−1S∗).

Note that Λ1 can be different from Λ1 given in the first step, but for reader convenience
we keep the same notation as above. Moreover, anticipating consequences of the above
assumptions and (3.8) we also impose the following smoothness condition on Λ1:

Λ1 − S∗Λ1S ∈ Σb
1/2.(3.9)

The operators Λj and J̃2 will be chosen more precisely than in Step 1. Comparing
the main diagonal entries of the difference between the left- and the right-hand side
of (3.8) we put

J̃2 = Λ2 + c1Λ + c2Λ
−1.(3.10)

One can check that the diagonal part of the above difference has the form J̃2 − Λ2 −
c1Λ − c2Λ

−1 − g(Λ1 − S∗Λ1S) modulo Σb
1/2. This clarifies the choice of J̃2 in (3.10)

and the condition (3.9)
As in the first step we collect all the terms of the difference of both sides of (3.8)

containing only S and we obtain using (3.10)

A2 := J̃2Λ1S − (SD + Λ1SQ + Λ2S
2DS∗)

.
= J̃2Λ1S − (DS + Λ1SQ)(3.11)

= −DS + [2Λ − I + c1]Λ1S,

Again, as in the first step one can check that for the term B2 which appears at
the difference of both sides of (3.8) with terms containing only S∗,

A2
.
= B∗

2 .(3.12)
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In turn collecting all terms, which appear on both sides of (3.8), containing only S2,
we have

C2 := J̃2Λ2S
2 − Λ1S

2D − Λ2S
2Q.

By the same token, for terms containing only S∗2

we have

D2 := J̃2S
∗2

Λ2 + S∗Λ1DS∗ − S∗2

Λ2Q.

Direct computation shows that again

D2
.
= C∗

2 .(3.13)

Combining (3.12) and (3.13) it is obvious that the condition B2 ∈ Σb
1/2 (resp., D2 ∈

Σb
1/2) holds provided one can check that A2 ∈ Σb

1/2 (resp., C2 ∈ Σb
1/2). First we

are going to satisfy the condition A2 ∈ Σb
1/2. Using (3.10) the claim A2 ∈ Σb

1/2 is

equivalent to (2Λ − I + c1)Λ1 − D ∈ Σb
1/2. The above equation suggests that the

simplest choice of Λ1 is

Λ1 := D(2Λ − I + c1I)
−1.(3.14)

Note that Λ1 defined by (3.14) satisfies both conditions Λ1 ∈ Σb
1 and Λ1 − S∗Λ1S ∈

Σb
1/2. Put

Λ2 := gΛ1[4Λ + 2c1 − 4]−1(3.15)

to ensure that C2 ∈ Σb
1/2.

If for a certain k it happens that 2k − 2 + c1 = 0, then one can put Λ1ek = 0.
This makes no problem in checking all the above conditions. (Finite dimensional
perturbations in the canonical basis are allowed.) Since Λ1 ∈ Σb

1, we see that Λ2 ∈
Σ1/2. Using the formulas (3.14) and (3.15) one can verify that C2 ∈ Σb

1/2. Since we

can reverse the implication in the above reasoning, the desired equality (3.8) holds.
Therefore there is K2 ∈ Σb

1/2 such that

K2 + J̃2(I + T1 + T2) = (I + T1 + T2)J.

By Proposition 2.4 we can find a finite dimensional projection Q such that I + T1 +
T2 + εQ is invertible for some ε > 0. Since J̃2Q−QJ is a finite rank band matrix, the
above equality can be written as

K̃2 + J̃2(I + T1 + T2 + εQ) = (I + T1 + T2 + εQ)J

for a certain K̃2 ∈ Σb
1/2. We can repeat the reasoning given at the end of Step 1 and

applying Lemma 2.1 we have

λn(J) = n2 + c1n + c2n
−1 + O(n−2).(3.16)

Step 3. One might think that the method of diagonalization presented in the
above steps carries over easily to the third step. This is not the case, however, as we
shall see below. At this step we look again for new self-adjoint diagonal operators
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Λj ∈ Σ1/j (j = 1, 2, 3) and Λ̃2 ∈ Σ1/2 such that for Tj = ΛjS
j − S∗j

Λj (j = 1, 3) and

T2 = Λ2S
2 + S∗2

Λ̃2,

J̃3(I + T1 + T2 + T3) − (I + T1 + T2 + T3)J ∈ Σ1/3,(3.17)

where J̃3 is a diagonal operator given by

J̃3 = Λ2 + c1Λ + c2Λ
−1 + ∆ for a certain ∆ ∈ Σ1/2.(3.18)

Note that at this step the diagonalizing matrix I+T1+T2+T3 not only has one upper
and one lower diagonal more (than in Step 2) but also loses its symmetry with respect
to the main diagonal. Using (3.17) we will determine (similarly as in the above steps)
Λj , Λ̃2, and ∆. In what follows

.
= stands for the equality modulo Σ1/3. Comparing

the diagonal entries of both sides of (3.17) we can write

J̃3
.
= Λ2 + c1Λ + c2Λ

−1 + c3Λ
−2 + Λ1SDS∗ − S∗Λ1SD.

Following the ideas presented in the above steps we also need some extra smoothing
assumptions on Λ1 and Λ2. Namely, in what follows we assume that

(3.19)

(a) [Λ1, S] ∈ Σb
1/2, (b) [Λ2, S] ∈ Σb

1/3, (c) [Λ̃2, S] ∈ Σb
1/3, (d) Λ̃2 − Λ2 ∈ Σb

1/3.

Substituting D
.
= gI + b1Λ

−1 + b2Λ
−2 into the above formula for J̃3 we obtain (using

(3.19) (a)) that ∆ = c3Λ
−2 + g(Λ1 − S∗Λ1S). Then we can express J̃3 as

J̃3 := Λ2 + c1Λ + c2Λ
−1 + c3Λ

−2 + g(Λ1 − S∗Λ1S).(3.20)

Similarly as in the second step one can verify (by using (3.19) (c), (d) and assumptions
Λj ∈ Σ1/j (j = 1, 2, 3), Λ̃2 ∈ Σ1/2) that the coefficients A3 and E3 (resp., Ã3 and B̃3)
of the difference of the left- and right-hand sides of (3.16) at S and S3 (resp., S∗ and

S∗3

) satisfy Ã3
.
= A∗

3, B̃3
.
= E∗

3 . As calculations to be given below show, the situation

for the coefficients at S2 and S∗2

terms is not so symmetric. This is exactly the reason
for introducing two slightly different diagonal matrices Λ2 and Λ̃2. Below we shall see
that Λ̃2

.
= Λ2. Note that (3.19) (c) follows from (3.19) (b) and (d). In what follows

we shall find formulas for Λj , j = 1, 2, 3, and Λ̃2. These formulas will be derived from
the basic equation (3.17). First we look for Λ1,Λ2. Since Λj ∈ Σ1/j and due to the

definition of J̃3, and Jg, we seek Λj(j = 1, 2) in the form

Λ1 := aΛ−1 + bΛ−2 + cΛ−3,(3.21)

Λ2 := dΛ−2 + eΛ−3(3.22)

for some constants a, b, c, d, e to be determined below. The ansatz for Λ1, Λ2 follows
straightforwardly from simple analysis of (3.24) and (3.26) (see below). The proper
formula for the matrix Λ̃2 will be given by formula (3.30). It turns out that (3.17)
defines the above constants uniquely. Indeed, by looking at terms of (3.17) containing
only S we see that

(Λ2 + c1Λ + c2Λ
−1)Λ1S − SD − Λ1S(Λ2 + c1Λ + c2Λ

−1) − Λ2S
2DS∗ .

= 0.(3.23)
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Using again the commutation formulas (3.5) and [Λ−1, S] = −SΛ−1(Λ + I)−1, one
can check that (3.23) is equivalent to

Λ1[2Λ + (c1 − 1)I] − gI − b1Λ
−1 − (b1 + b2)Λ

−2 .
= 0.(3.24)

In turn by collecting all terms of (3.17) containing only S2 we have

(Λ2 + c1Λ)Λ2S
2 − Λ1S

2D − Λ2S
2(Λ2 + c1Λ)

.
= 0.(3.25)

Since S2Λ−1 .
= (Λ−1 + 2Λ−2)S2 one can verify that (3.25) is equivalent to

Λ2[4(Λ − I) + 2c1I]
.
= Λ1(gI + b1Λ

−1).(3.26)

By substituting expressions (3.21) into (3.24) one gets in particular that a = g/2. The
explicit solution of (3.24), (3.26) is given by the following formulas:

Λ1 := [gI + b1Λ
−1 + (b1 + b2)Λ

−2][2Λ + c1 − 1]−1 (modulo Σ1/4),

Λ2 := Λ1(gI + b1Λ
−1)[4Λ − (4 − 2c1)I]

−1 (modulo Σ1/4).(3.27)

Again in formula (3.27) possible two zero of the denominators are inessential and can
be removed similarly as in Step 2 (both diagonal operators are defined to be equal to
zero for critical indexes). One can compute Λ1,Λ2 using (3.27) in the form of (3.21),
(3.22), respectively; however, it is necessary only if we want to obtain an approximate
formula for the eigenvectors of J .

What about Λ̃2 and Λ3? By grouping all terms with S∗2

of (3.17) we have

(Λ2 + c1Λ)S∗2

Λ̃2 + S∗Λ1DS∗ − S∗2

Λ̃2(Λ
2 + c1Λ)

.
= 0.(3.28)

Using the standard commutator formulas for [S∗2

,Λ2] and [S∗2

,Λ] we rewrite (3.28)
into the equivalent form

Λ̃2[4(Λ − I) + 2c1I]
.
= Λ1(gI + b1Λ

−1) + g(SΛ1S
∗ − Λ1).(3.29)

Thus

Λ̃2
.
= Λ1[4(Λ − I) + 2c1I]

−1(gI + b1Λ
−1) = Λ2(3.30)

because g(SΛ1S
∗−Λ1) ∈ Σb

1/2. However, (3.29) is not sufficiently precise: substitution

of Λ2 instead of Λ̃2 into (3.28) contradicts it. Indeed, due to the multiplier Λ in the
left-hand side of (3.29) we should calculate Λ̃2 modulo Σ1/4 but Λ̃2 = Λ2 modulo Σ1/3

only because (Λ1 − SΛ1S
∗) belongs to Σ1/2 and not to Σ1/3 in general! Moreover,

one can choose Λ̃2 = Λ2 iff Λ1 − SΛ1S
∗ ∈ Σ1/3.

Now by collecting all terms with S3 we have

(Λ2 + c1Λ)Λ3S
3 − Λ2S

3b− Λ3S
3(Λ2 + c1Λ)

.
= 0.(3.31)

Applying the relations [S3,Λ2] = −3(2Λ − 3)S3, [S3,Λ] = −3S3, we see that (3.31)
is equivalent to 6Λ3Λ

.
= gΛ2. The last equation has the solution Λ3 := gΛ2(6Λ)−1. In

turn by bringing together all terms of (3.17) that contain S∗3

, one easily finds that the
sum of these terms must belong to Σb

1/3 because Λ̃2
.
= Λ2 and Λ̃2−SΛ̃2S

∗ ∈ Σ1/3. Note
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that the above explicit formulas for Λj and Λ̃2 also imply that all the requirements

concerning Λj(j = 1, 2, 3) and Λ̃2 (in particular assumptions (3.19) (a), (b), (c), (d))
are satisfied. Finally, since all the above equations are equivalent to suitable ones,
we check that the above choice of Tj(j = 1, 2, 3) leads to the desired relation (3.17).
By repeating the reasoning given at the end of Step 1 we obtain the following more
precise asymptotics of the eigenvalues of J .

Theorem 3.1. The asymptotic formula for λn(Jg) is given by

λn(Jg) = n2 + c1n + c2n
−1 + c3n

−2 +
g2

2
n−2 + O(n−3).(3.32)

Proof. It is enough to use the formula (3.20) and observe that Λ1−S∗Λ1S
.
= g

2Λ−2

(use here (3.27) for the matrix Λ1).
Remark 3.2. Surely one can continue this process of successive diagonalization of

J. We have stopped after making three steps because the weights λn and the diagonal
qn are known only up to O(n−3).

Moreover, the idea of successive diagonalization can be applied for other classes
of Jacobi operators with uniformly separated discrete spectrum (at least provided
the main diagonal has more than one order higher-power-like growth compared to
off-diagonal terms). Observe that one can use the same method to approximate the
eigenvectors fk of J for large indices k. In the next section we give an application of
Theorem 3.1 to spectral analysis of energy spectrum of a molecule in the homogeneous
electric field, which motivated our special choice of J entries.

Remark 3.3. It seems somewhat surprising that the influence of the zero order
term g(S + S∗) in J causes only the minus second order variation of the eigenvalues
(see [36]).

4. Application to asymptotics of the energy spectrum of a molecule in
a homogeneous electric field. This section contains an application of Theorem
3.1 to a polar molecule of symmetric top type in a homogeneous electric field [6], [7],
[17]. The Hamiltonian of a symmetric pendulum has the form

Ĥo =
L̂2

2I
+

(
1

2I3
− 1

2I

)
L̂2
z′ ,

where L̂2 (resp., L̂2
z) are the operators of the full moment (resp., its projection on the

z′-axis) acting in L2(R3), and I, I3 are the corresponding inertia moments. It turns
out that Ĥo has eigenfunctions φn

mk coinciding (up to the normalization constant) with
the generalized spherical function Dn

mk(a, b, c), where (a, b, c) ∈ (0, 2π)x(0, π)x(0, 2π).
More precisely,

φn
mk(a, b, c) =

√
(2n + 1)/8π2Dn

mk(a, b, c),

k,m = −n, . . . , 0, . . . , n. The eigenvalues of Ĥo corresponding to φn
mk are given by

En,|k| =
h2

2I
n(n + 1) +

h2

2

(
1

I3
− 1

I

)
k2;

here h is the Planck constant. Let V̂ = −dE(t)cosb be the potential energy of the
perturbation by the electric field E(t) directed along the z-axis (in the fixed coordinate
system (x, y, z) connected with the pendulum), where d is the dipole moment of the
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molecule and b is the angle between the axes z and z′. For more physical details of
the model, see [17].

It turns out that the full Hamiltonian Ĥ := Ĥo + V̂ can be reduced in the basis
φn
mk to a Jacobi matrix Jg̃, where g̃ = dE(t) is the constant of interaction for fixed

time t. More precisely, for fixed indices k,m ∈ Z, the diagonal and the weights of Jg̃,
after straightforward calculations in the basis φn

km, are given by

qn =
h2

2I
n(n + 1) +

h2

2

(
1

I3
− 1

I

)
k2 − g̃

mk

n(n + 1)
,

λn =
−g̃

(n + 1)(2n + 1)
|[((n + 1)2 −m2)((n + 1)2 − k2)]|1/2.

These calculations use the explicit form of the matrix elements of V̂ in the basis φn
mk

as the Clebsch–Gordan coefficients crtklmn; see [31]. Namely, we have

(V̂ φn
mk, φ

p
rs) = −dE(t)cnm1r0mcnk1p0kδmrδks.

Although the study of this type of molecule in an electric field is of special interest, our
goal in this paper is rigorous mathematical analysis of related classes of unbounded
Jacobi matrices only. It is clear that Jg̃ is of the form considered in Theorem 3.1.
Applying Theorem 3.1 we immediately obtain the following result.

Theorem 4.1. The asymptotics as n → ∞ of the energy spectrum En(k,m) (for
fixed integer numbers k,m) are given by

En(k,m) =
h2

2I
n2 +

h2

2I
n+

h2

2

(
1

I2
− 1

I

)
k2 +

⎛
⎝ g̃mk + I g̃2

(4h2)

n2

⎞
⎠+O

(
1

n3

)
, n → ∞.
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Abstract. We consider a strictly hyperbolic, genuinely nonlinear system of conservation laws
in one space dimension. A sharp decay estimate is proved for the positive waves in an entropy weak
solution. The result is stated in terms of a partial ordering among positive measures, using symmetric
rearrangements and a comparison with a solution of Burgers’s equation with impulsive sources.
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1. Introduction. Consider a strictly hyperbolic system of n conservation laws

ut + f(u)x = 0(1.1)

and assume that all characteristic fields are genuinely nonlinear. Call λ1(u) < · · · <
λn(u) the eigenvalues of the Jacobian matrix A(u)

.
= Df(u). We shall use bases of

left and right eigenvectors li(u), ri(u) normalized so that

∇λi(u) ri(u) ≡ 1 , li(u) rj(u) =

{
1 if i = j,
0 if i �= j.

(1.2)

Given a function u : R �→ R
n with small total variation following [BC], [B], one can

define the measures µi of i-waves in u as follows. Since u ∈ BV , its distributional
derivative Dxu is a Radon measure. We define µi as the measure such that

µi .
= li(u) ·Dxu(1.3)

restricted to the set where u is continuous, while, at each point x where u has a jump,
we define

µi
(
{x}

) .
= σi ,(1.4)

where σi is the strength of the i-wave in the solution of the Riemann problem with
data u− = u(x−), u+ = u(x+). In accordance with (1.2), if the solution of the
Riemann problem contains the intermediate states u− = ω0, ω1, . . . , ωn = u+, the
strength of the i-wave is defined as

σi
.
= λi(ωi) − λi(ωi−1).(1.5)

Observing that

σi = li(u
+) · (u+ − u−) + O(1) · |u+ − u−|2,
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we can find a vector li(x) such that∣∣li(x) − li
(
u(x+)

)∣∣ = O(1) ·
∣∣u(x+) − u(x−)

∣∣,(1.6)

σi = li(x) ·
(
u(x+) − u(x−)

)
.(1.7)

We can thus define the measure µi equivalently as

µi .
= li ·Dxu ,(1.8)

where li(x) = li
(
u(x)

)
at points where u is continuous, while li(x) is some vector

which satisfies (1.6)–(1.7) at points of jump. For all x ∈ R there holds∣∣∣li(x) − li
(
u(x)

)∣∣∣ = O(1) ·
∣∣u(x+) − u(x−)

∣∣ .(1.9)

We call µi+, µi−, respectively, the positive and negative parts of µi, so that

µi = µi+ − µi−, |µi| = µi+ + µi−.(1.10)

It is our purpose to prove a sharp estimate on the decay of the density of the measures
µi+. This will be achieved by introducing a partial ordering within the family of
positive Radon measures. In the following, meas(A) denotes the Lebesgue measure
of a set A.

Definition 1. Let µ, µ′ be two positive Radon measures. We say that µ � µ′ if
and only if

sup
meas(A)≤s

µ(A) ≤ sup
meas(B)≤s

µ′(B) for every s > 0 .(1.11)

In some sense, the above relation means that µ′ is more singular than µ. Namely,
it has a greater total mass, concentrated on regions with higher density. Notice that
the usual order relation

µ ≤ µ′ if and only if µ(A) ≤ µ′(A) for every A ⊂ R(1.12)

is much stronger. Of course µ ≤ µ′ implies µ � µ′, but the converse does not hold.
Following [BC], [B], together with the measures µi, we define the Glimm func-

tionals

V (u)
.
=

∑
i

|µi|(R) ,(1.13)

Q(u)
.
=

∑
i<j

(
|µj | ⊗ |µi|

){
(x, y) ; x < y

}
+
∑
i

(
µi− ⊗ |µi|

){
(x, y) ; x �= y

}
.(1.14)

Now let u = u(t, x) be an entropy weak solution of (1.1). If the total variation of u is
small and the constant C0 is large enough, it is well known that the quantities

Q(t)
.
= Q

(
u(t)

)
, Υ(t)

.
= V

(
u(t)

)
+ C0 Q

(
u(t)

)
(1.15)

are nonincreasing in time. The decrease in Q controls the amount of interaction, while
the decrease in Υ controls both the interaction and the cancellation in the solution.

An accurate estimate on the measure µi+
t of positive i-waves in u(t, ·) will be

obtained by a comparison with a solution of Burgers’s equation with source terms.
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Theorem 1. For some constant κ and for every small BV solution u = u(t, x)
of the system (1.1) the following holds. Let w = w(t, x) be the solution of the scalar
Cauchy problem with impulsive source term

wt + (w2/2)x = −κ sgn(x) · d

dt
Q
(
u(t)

)
,(1.16)

w(0, x) = sgn(x) · sup
meas(A)<2|x|

µi+
0 (A)

2
.(1.17)

Then, for every t ≥ 0,

µi+
t � Dxw(t) .(1.18)

As shown in the next section, the initial data in (1.17) represents the odd rear-
rangement of the function vi(x)

.
= µi+

0

(
] −∞, x]

)
. The above theorem improves the

earlier estimate derived in [BC]. For a scalar conservation law with strictly convex
flux, a classical decay estimate was proved by Oleinik [O]. In the case of genuinely
nonlinear systems, results related to the decay of nonlinear waves were also obtained
in [GL], [L1], [L2], [L3], [BG]. An application of the present analysis can be found in
[BY], where Theorem 1 plays a key role in the estimate of the rate of convergence of
vanishing viscosity approximations.

2. Lower semicontinuity. Let µ be a positive Radon measure on R, so that
µ

.
= Dxv is the distributional derivative of some bounded, nondecreasing function

v : R �→ R. We can decompose

µ = µsing + µac

as the sum of a singular and an absolutely continuous part, w.r.t. Lebesgue measure.
The absolutely continuous part corresponds to the usual derivative z

.
= vx, which is

a nonnegative L1 function defined at a.e. point. We shall denote by ẑ the symmetric
rearrangement of z, i.e., the unique even function such that

ẑ(x) = ẑ(−x) , ẑ(x) ≥ ẑ(x′) if 0 < x < x′ ,(2.1)

meas
({

x ; ẑ(x) > c
})

= meas
({

x ; z(x) > c
})

for every c > 0 .(2.2)

Moreover, we define the odd rearrangement of v as the unique function v̂ such that
(Figure 1)

v̂(−x) = −v̂(x) , v̂(0+) =
1

2
µsing(R) ,(2.3)

v̂(x) = v̂(0+) +

∫ x

0

z(y) dy for x > 0 .(2.4)

By construction, the function v̂ is convex for x < 0 and concave for x > 0.
The relation between the odd rearrangement v̂ and the partial ordering (1.10) is

clarified by the following result, which is an easy consequence of the definitions.
Proposition 1. Let µ = Dxv and µ′ = Dxv

′ be positive Radon measures. Call
v̂, v̂′ the odd rearrangements of v, v′, respectively. Then µ � Dxv̂ � µ and moreover

v̂(x) = sgn(x) · sup
meas(A)≤2|x|

µ(A)

2
,(2.5)

µ � µ′ if and only if v̂(x) ≤ v̂′(x) for all x > 0 .(2.6)
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v̂

0

v

xx

Fig. 1.

Two more results will be used in what follows. By the restriction of a measure µ
to a set J , we mean the measure

(µJ)(A)
.
= µ(A ∩ J) .

Proposition 2. Let µ, µ′ be positive measures. Consider any finite partition
R = J1 ∪ · · · ∪ JN . If the restrictions of µ, µ′ to each set J� satisfy µJ� � µ′J� ,
then µ � µ′.

Proposition 3. Assume that µ � Dsw for some nondecreasing odd function w.
If |µ� − µ|(R) ≤ ε, then

µ� � Ds

[
w + sgn(s) · ε

2

]
.

The next result is concerned with the lower semicontinuity of the partial ordering
� w.r.t. weak convergence of measures.

Proposition 4. Consider a sequence of measures µν converging weakly to a mea-
sure µ. Assume that the positive parts satisfy µ+

ν � Dwν for some odd, nondecreasing
functions s �→ wν(s), concave for s > 0. Let w be the odd function such that

w(s)
.
= lim inf

ν→∞
wν(s) for s > 0 .

Then the positive part of µ satisfies

µ+ � Dsw .(2.7)

Proof. By possibly taking a subsequence, we can assume that wν(s) → w(s) for
all s �= 0. Moreover, we can assume the weak convergence

µ+
ν ⇀ µ̃+ , µ−

ν ⇀ µ̃−

for some positive measures µ̃+, µ̃−. We thus have

µ = µ̃+ − µ̃− , µ+ ≤ µ̃+ , µ− ≤ µ̃− .(2.8)

By (2.8) it suffices to prove that µ̃+ � Dsw, i.e.,

meas (A) ≤ 2s =⇒ µ̃+(A) ≤ 2w(s)(2.9)

for every s > 0 and every Borel measurable set A ⊂ R. If (2.9) fails, there exists s > 0
and a set A such that

meas (A) = 2s , µ̃+(A) > 2w(s) = 2 lim
ν→∞

wν(s).
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Since w is continuous for s > 0, we can choose an open set A′ ⊇ A such that, setting
s′

.
= meas (A′)/2, one has 2w(s′) < µ̃+(A). By the weak convergence µ+

ν ⇀ µ̃+ one
obtains

µ̃+(A′) ≤ lim inf
ν→∞

µ+
ν (A′) ≤ 2w(s′) < µ̃+(A) ,

reaching a contradiction. Hence (2.9) must hold.
Toward the proof of Theorem 1 we shall need a lower semicontinuity property for

wave measures, similar to what was proved in [BaB]. In the following, C0 is the same
constant as in (1.15).

Lemma 1. Consider a sequence of functions uν with uniformly small total vari-
ation and call µi+

ν the corresponding measures of positive i-waves. Let s �→ wν(s),
ν ≥ 1, be a sequence of odd, nondecreasing functions, concave for s > 0, such that

µi+
ν � Ds

[
wν + C0 sgn(s)

(
Q0 −Q(uν)

)]
(2.10)

for some Q0. Assume that uν → u and wν → w in L1
loc. Then the measure of positive

i-waves in u satisfies

µi+ � Ds

[
w + C0 sgn(s)

(
Q0 −Q(u)

)]
.(2.11)

Proof. The main steps follow the proof of Theorem 10.1 in [B].
1. By possibly taking a subsequence we can assume that uν(x) → u(x) for every

x and that the measures of total variation converge weakly, say,

|µν |
.
=

∣∣Dxuν

∣∣ ⇀ µ�(2.12)

for some positive Radon measure µ�. In this case one has µ� ≥ |µ|, in the sense of
(1.12).

2. Let any ε > 0 be given. Since the total mass of µ� is finite, one can select
finitely many points y1, . . . , yN such that

µ�
(
{x}

)
< ε for all x /∈ {y1, . . . , yN}.(2.13)

We now choose disjoint open intervals Ik
.
= ]yk − ρ, yk + ρ[ such that

µ�
(
Ik \ {yk}

)
<

ε

N
, k = 1, . . . , N.(2.14)

Moreover, we choose R > 0 such that

N⋃
k=1

Ik ⊂ [−R,R], µ�
(
] −∞, −R] ∪ [R, ∞[

)
< ε.(2.15)

Because of (2.13), we can now choose points p0 < −R < p1 < · · · < R < pr which are
continuity points for u and for every uν , such that

µ�
(
{ph}

)
= 0, uν(ph) → u(ph) for all h = 0, . . . , r(2.16)

and such that either

ph − ph−1 <
ε

N
, ph−1 < yk < ph, [ph−1, ph] ⊂ Ik(2.17)
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for some k ∈ {1, . . . , N}, or else

|µ|
(
[ph−1, ph]

)
≤ µ�

(
[ph−1, ph]

)
< ε.(2.18)

Call Jh
.
= [ph−1, ph]. If (2.18) holds, by weak convergence for some ν0 sufficiently

large one has

|µν |(Jh) < ε for all ν ≥ ν0.(2.19)

On the other hand, if (2.17) holds, from (2.14) it follows that

|µ|
(
Jh \ {yk}

)
≤ µ�

(
Jh \ {yk}

)
<

ε

N
.(2.20)

In the remainder of the proof, the main strategy is as follows.
• On the intervals Jh(k) containing a point yk of large oscillation, we first replace

each uν by a piecewise constant function ūν having a single jump at yk. The
relations between the corresponding measures µi

ν and µ̄i
ν are given by Lemma

10.2 in [B]. Then we take the limit as ν → ∞.
• On the remaining intervals Jh with small oscillation, we replace the left eigen-

vectors li(uν) by a constant vector li(u
∗
h). Then we use Proposition 4 to

estimate the limit as ν → ∞.
3. We first take care of the intervals Jh containing a point yk of large oscillation,

so that (2.17) holds. For each k = 1, . . . , N , let h = h(k) ∈ {1, . . . , r} be the index
such that yk ∈ Jh

.
= [ph−1, ph]. For every ν ≥ 1 consider the function

ūν(x)
.
=

⎧⎨
⎩

uν(x) if x /∈ ∪kJh(k),
uν(ph(k)−1) if x ∈ ]ph(k)−1, yk[ ,
uν(ph) if x ∈ [yk, ph(k)].

Observe that all functions u, ūν are continuous at every point p0, . . . , pr and have
jumps at y1, . . . , yN . Call µ̄i

ν , i = 1, . . . , n, the corresponding measures, defined as
in (1.8) with u replaced by ūν . Clearly µ̄i

ν = µi
ν outside the intervals Jh(k) of large

oscillation. By Lemma 10.2 at page 203 in [B], there holds

Q(ūν) ≤ Q(uν), V (ūν) + C0 Q(ūν) ≤ V (uν) + C0 ·Q(uν),

µ̄i+
ν (R) − µi+

ν (R) ≤ C0

[
Q(uν) −Q(ūν)

]
.

As a consequence, from (2.10) we deduce

µ̄i+
ν � Ds

[
T εwν + C0 sgn(s)

(
Q0 −Q(ūν)

)]
,(2.21)

where

T εw(s)
.
=

{
w(s + ε/2) if s > 0,
w(s− ε/2) if s < 0.

Indeed, all the mass which in µi+
ν lies on the set

Ω
.
=

N⋃
k=1

Jh(k) , Jh
.
= [ph−1, ph]
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is replaced in µ̄i+
ν by point masses at y1, . . . , yN . We obtain (2.21) by observing that,

by (2.17), meas(Ω) < ε. Moreover, the increase in the total mass is ≤ C0

[
Q(uν) −

Q(ūν)
]
.

Since uν(ph) → u(ph) for every h, there holds∣∣∣µi
(
{yk}

)
− µ̄i

ν

(
{yk}

)∣∣∣ = O(1) ·
{∣∣u(yk−) − u(ph(k)−1)

∣∣ +
∣∣u(yk+) − u(ph(k))

∣∣
+
∣∣u(ph(k)−1) − uν(ph(k)−1)

∣∣ +
∣∣u(ph(k)) − uν(ph(k))

∣∣}
= O(1) · ε

N
(2.22)

for each k = 1, . . . , N and all ν sufficiently large. By construction we also have

|µ̄i
ν |
(
Jh(k) \ {yk}

)
= 0, |µi|

(
Jh(k) \ {yk}

)
= O(1) · ε

N
.(2.23)

4. Next, call S .
=

{
h ; µ�(Jh) < ε

}
the family of intervals where the oscillation of

every uν is small, so that (2.18) holds. If h ∈ S, for every x, y ∈ Jh and ν sufficiently
large, one has ∣∣uν(x) − uν(y)

∣∣ ≤ |µν |(Jh) < ε,

∣∣u(x) − u(y)
∣∣ ≤ |µ|(Jh) ≤ µ�(Jh) < ε.

Set u∗
h

.
= u(ph). By the pointwise convergence uν(ph) → u(ph) and the two above

estimates it follows that∣∣uν(x) − u∗
h

∣∣ < ε,
∣∣u(x) − u∗

h

∣∣ < ε for all x ∈ Jh .(2.24)

5. We now introduce the measures µ̂i
ν such that

µ̂i
ν

.
= li(u

∗
h) ·Dxuν

restricted to each interval Jh, h ∈ S, where the oscillation is small, while

µ̂i
ν = µ̄i

ν

on each interval Jh = Jh(k) where the oscillation is large. Observe that the restriction

of µ̂i
ν to Jh(k) consists of a single mass at the point yk. Namely, µ̂i

ν

(
{yk}

)
is precisely

the size of the ith wave in the solution of the Riemann problem with data u− =
uν(ph(k)−1), u

+ = uν(ph(k)).
We define ŵν as the nondecreasing odd function such that

ŵν(s)
.
= sup

meas(A)≤2s

µ̂i+
ν (A)

2
, s > 0.(2.25)

By possibly taking a further subsequence we can assume the convergence

Q(ūν) → Q , µ̂i
ν ⇀ µ̂i , ŵν(s) → ŵ(s) .

Using (2.16), we can apply Proposition 4 on each interval Jh and obtain

µ̂i+ � Dsŵ .(2.26)
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6. Observe that, by (2.24) and (2.19),

|µ̂i
ν − µi

ν |(Jh) = O(1) · ε µ�(Jh), h ∈ S.(2.27)

From (2.21) and the definition of ŵν at (2.25) it thus follows that

ŵν(s) ≤ T εwν(s) + C0

[
Q0 −Q(ūν)

]
+ O(1) · ε, s > 0 .(2.28)

Letting ν → ∞ we obtain

ŵ(s) ≤ T εw(s) + C0[Q0 −Q] + O(1) · ε, s > 0 ,(2.29)

Q = lim
ν→∞

Q(ūν) ≥ lim
ν→∞

Q(uν) −O(1) · ε ≥ Q(u) −O(1) · ε ,(2.30)

because of the lower semicontinuity of the functional u �→ Q(u). From (2.26), (2.29),
and (2.30) we deduce

µ̂i+ � Ds

[
T εw + sgn(s)

(
C0[Q0 −Q(u)] + O(1) · ε

)]
.

By (2.22)–(2.24), our construction of the measure µ̂i achieves the property∣∣µi+ − µ̂i+
∣∣(R) = O(1) · ε .

Hence, by Proposition 3,

µi+ � Ds

[
T εw + sgn(s)

(
C0[Q0 −Q(u)] + O(1) · ε

)]
.

Since ε > 0 was arbitrary, this proves (2.11).

3. A decay estimate. The second basic ingredient in the proof is the following
lemma, which refines the estimate in [BC].

Lemma 2. For some constant κ > 0 the following holds. Let u = u(t, x) be
any entropy weak solution of (1.1), with initial data u(0, x) = ū(x) having small total
variation. Then the measure µi+

t of positive i-waves in u(t, ·) can be estimated as
follows.

Let w : [0, τ [×R �→ R be the solution of Burgers’s equation

wt + (w2/2)x = 0(3.1)

with initial data

w(0, x) = sgn(x) · sup
meas(A)≤2|x|

µi+
0 (A)

2
.(3.2)

Set

w(τ, x) = w(τ− , x) + κ sgn(x) ·
[
Q(ū) −Q

(
u(τ)

)]
.(3.3)

Then

µi+
τ � Dxw(τ) .(3.4)

Proof. The main steps follow the proof of Theorem 10.3 in [B]. We first prove
the estimate (3.3) under the following additional hypothesis.
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(H) There exist points y1 < · · · < ym such that the initial data ū is smooth
outside such points, constant for x < y1 and x > ym, and the derivative
component li(u)ux is constant on each interval ]y�, y�+1[ . Moreover, the
Glimm functional t �→ Q

(
u(t)

)
is continuous at t = τ .

1. The solution u = u(t, x) can be obtained as the limit of front tracking approx-
imations. In particular, we can consider a particular converging sequence (uν)ν≥1 of
εν-approximate solutions with the following additional properties:

(i) Each i-rarefaction front xα travels with the characteristic speed of the state
on the right:

ẋα = λi

(
u(xα+)

)
.

(ii) Each i-shock front xα travels with a speed strictly contained between the
right and the left characteristic speeds:

λi

(
u(xα+)

)
< ẋα < λi

(
u(xα−)

)
.(3.5)

(iii) As ν → ∞, the interaction potentials satisfy

Q
(
uν(0, ·)

)
→ Q(ū).(3.6)

2. Let uν be an approximate solution constructed by the front tracking algorithm.
By a (generalized) i-characteristic we mean an absolutely continuous curve x = x(t)
such that

ẋ(t) ∈
[
λi(uν(t, x−)), λi(uν(t, x+))

]
for a.e. t. If uν satisfies the above properties (i)–(ii), then the i-characteristics are
precisely the polygonal lines x : [0, τ ] �→ R for which the following holds. For a
suitable partition 0 = t0 < t1 < · · · < tm = τ , on each subinterval [tj−1, tj ] either
ẋ(t) = λi

(
uν(t, x)

)
, or else x coincides with a wave front of the ith family. For a given

terminal point x̄ we shall consider the minimal backward i-characteristic through x̄,
defined as

y(t) = min
{
x(t) ; x is an i-characteristic, x(τ) = x̄

}
.

Observe that y(·) is itself an i-characteristic. By (3.5), it cannot coincide with an
i-shock front of u on any nontrivial time interval.

In connection with the exact solution u, we define an i-characteristic as a curve

t �→ x(t) = lim
ν→∞

xν(t)

which is the limit of i-characteristics in a sequence of front tracking solutions uν → u.
3. Let ε > 0 be given. If the assumption (H) holds, the measure µi+

τ of i-waves in
u(τ) is supported on a bounded interval and is absolutely continuous w.r.t. Lebesgue
measure. We can thus find a piecewise constant function ψτ with jumps at points
x1(τ) < x̄2(τ) < · · · < x̄N (τ) such that∫ ∣∣∣∣dµi+

τ

dx
− ψτ

∣∣∣∣ dx < ε ,

∫ xj+1(τ)

xj(τ)

(
dµi+

τ

dx
− ψτ

)
dx = 0, j = 1, . . . , N−1 .

(3.7)
To prove the lemma in this special case, relying on Proposition 2, it thus suffices

to find i-characteristics t �→ xj(t) such that the following hold (Figure 2):
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(i) For each j = 1, . . . , N , the function ψτ is constant on the interval
]
xj(τ),

xj+1(τ)
[

and (3.7) holds. Moreover, either xj(0) = xj+1(0), or else the deriva-

tive component ψ0 .
= li(u)ux(0, ·) is constant on the interval

]
xj(0), xj+1(0)

[
.

(ii) An estimate corresponding to (3.3)–(3.4) holds restricted to each subinterval[
xj(τ), xj+1(τ)

[
.

We need to explain in more detail this last statement. Define

Ij(t)
.
=

[
xj(t), xj+1(t)

[
, ∆j

.
=

{
(t, x) ; t ∈ [0, τ ] , x ∈ Ij(t)

}
.

For each j, we denote by Γj the total amount of wave interaction within the domain
∆j . This is defined as in [B], first for a sequence of front tracking approximations uν ,
then taking a limit as ν → ∞. Furthermore, we define the constant values

ψτ
j

.
= ψτ (x), x ∈ Ij(τ) ,

ψ0
j

.
= ψ0(x), x ∈ Ij(0).

Call

σ0
j

.
= lim

t→0+
µi+

(
Ij(t)

)
the initial amount of positive i-waves inside the interval Ij .

For each interval Ij , we consider on one hand the function wτ
j corresponding to

(3.2)–(3.3), namely,

wτ
j (s)

.
= min

{
σ0
j ,

s

τ + (ψ0
j )

−1

}
+ κΓj · sgn(s) .

Here (ψ0
j )

−1 .
= 0 in the case where xj(0) = xj+1(0). This may happen when the

initial data has a jump at xj(0), and the corresponding measure µi+ has a Dirac mass
(with infinite density) at that point.

On the other hand, we look at the nondecreasing, odd function ηj such that

ηj(s)
.
= min

{
ψτ
j s, ψτ

j

[
xj+1(τ) − xj(τ)

]}
, s > 0 .

Our basic goal is to prove that (Figure 3)

ηj(s) ≤ wτ
j (s) for all s > 0 .(3.8)
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Indeed, by (3.7), for s > 0 one has

sup
meas(A)≤2s

µi+
τ

(
A ∩ Ij(τ)

)
2

≤ ηj(s) + εj

with ∑
j

εj < ε .

Proving (3.8) for each j will thus imply

µi+
τ � w(τ, x) = w(τ− , x) + κ sgn(x) ·

[
Q(ū) −Q

(
u(τ)

)
+ O(1) · ε

]
.

Since ε > 0 was arbitrary, this establishes the lemma under the additional assumptions
(H).

4. We now work toward a proof of (3.8), in three cases.
Case 1: σ0

j = 0.

Case 2: xj(0) = xj+1(0) and σ0
j > 0.

Case 3: xj(0) < xj+1(0) and σ0
j =

(
xj+1(0) − xj(0)

)
ψ0
j > 0.

In Case 1 the proof is easy. Indeed, the total amount of positive i-waves in Ij(τ) is
here bounded by a constant times the total amount of interaction taking place inside
the domain ∆j , i.e.,

µi+
τ

(
Ij(τ)

)
≤ C0 · Γj

for some constant C0. On the other hand

wτ
j (s) = κΓj · sgn(s) .

Choosing κ > C0 we achieve (3.8).
5. Since Case 2 can be obtained from Case 3 in the limit as xj+1 − xj → 0, we

shall only give a proof for Case 3.
We can again distinguish two cases. If the amount of interaction Γj is large

compared with the initial amount of i-waves, say

Γj ≥
1

6C0
σ0
j ,
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then the bound (3.8) is readily achieved choosing κ > 8C0. Indeed, for s > 0 we have

ηj(s) ≤
1

2
µi+
τ

(
Ij(τ)

)
≤ C0Γj + σ0

j ≤ 7C0 Γj .

The more difficult case to analyze is when Γj is small, say

Γj < σ0
j /6C0 .(3.9)

Looking at Figure 3, it clearly suffices to prove (3.8) for the single value

s = s∗j
.
=

xj+1(τ) − xj(τ)

2
.

Equivalently, calling

zj(t)
.
= xj+1(t) − xj(t)

the length of the interval Ij(t) and

στ
j

.
= µi+

τ

(
Ij(τ)

)
= zj(τ)ψτ

j

the total amount of positive i-waves inside Ij(τ), we need to show that

στ
j ≤ 2κΓj + min

{
σ0
j ,

2s∗j
τ + (ψ0

j )
−1

}
.(3.10)

By the approximate conservation of i-waves over the region ∆j , we can write

στ
j ≤ σ0

j + C0Γj .(3.11)

Using (3.11) in (3.10), our task is reduced to showing that

στ
j ≤ 2κΓj +

2s∗j
τ + (ψ0

j )
−1

(3.12)

for a suitably large constant κ. Because of (3.11), it suffices to show that

zj(τ) ≥ (σ0
j − C ′Γj)

(
τ + (ψ0

j )
−1

)
=

[
zj(0) + τσ0

j

]
− C ′(τ + (ψ0

j )
−1

)
Γj(3.13)

for a suitable constant C ′.
6. We now prove (3.13). Notice that, by genuine nonlinearity and the normal-

ization (1.2), if no other waves were present in the region ∆j we would have Γj = 0
and

d

dt
zj(t) ≡ σ0

j .

In this case, the equality would hold in (3.13).
To handle the general case, we represent the solution u as a limit of front tracking

approximations uν , where for each ν ≥ 1 the function uν(0, ·) contains exactly ν
rarefaction fronts equally spaced along the interval Ij(0) (Figure 4). Each of these
fronts has initial strength σα(0) = σ0

j /ν. For α = 1, . . . , ν, let yα(t) ∈ Ij(t) be the
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location of one of these fronts at time t ∈ [0, τ ], and let σα(t) > 0 be its strength.
Moreover, call

Jα(t)
.
=

[
yα(t) , yα+1(t)

]
, ∆α

.
=

{
(t, x) ; t ∈ [0, τ ] , x ∈ Jα(t)

}
,

and let Γα be the total amount of interaction in uν taking place inside the domain
∆α.

We define a subset of indices I ⊆ {1, . . . , ν} by setting α ∈ I if

5C0Γα > σα(0) = σ0
j /ν .(3.14)

Observe that, if α /∈ I, then∣∣∣∣ σα(t)

σα(0)
− 1

∣∣∣∣ < 1

2
for all t ∈ [0, τ ] .

In particular, if α, α + 1 /∈ I, then the interval Jα(t) is well defined for all t ∈ [0, τ ].
Its length

zα(t)
.
= yα+1(t) − yα(t)

satisfies the differential inequality

d

dt
zα(t) ≥ Wα(t) − C1 ·

∑
β∈Cα(t)

|σβ |(3.15)

for some constant C1. Here

Wα(t)
.
=

[
amount of i-waves inside the interval Jα(t)

]
≥ σα(0) − C0Γα ,(3.16)
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while Cα(t) refers to the set of all wave fronts of different families which are crossing
the interval Jα at time t. Calling W ′

α the total amount of waves of families �= i which
lie inside Jα(0), we can now write

(3.17)∫ τ

0

⎛
⎝ ∑

β∈Cα(t)

|σβ |

⎞
⎠ dt≤

(
max
t∈[0,τ ]

zα(t)
)
· 2ν

σ0
j

· Γα +O(1) · τΓα +O(1) ·
(
zj(0)+ 1

ν

)
W ′

α.

Indeed, by strict hyperbolicity, every front σβ of a different family can spend at most
a time O(1) · zα inside Jα. Either it is located inside Jα already at time t = 0,
or else, when it enters, it crosses yα or yα+1. In this case, since α, α + 1 /∈ I,
by (3.14) it will produce an interaction of magnitude |σβ σα| ≥ |σβ · σ0

j |/2ν. The
second term on the right-hand side of (3.17) takes care of the new wave fronts which
are generated through interactions inside Jα. The last term takes into account wave
fronts of different families that initially lie already inside Jα at time t = 0. Integrating
(3.15) over the time interval [0, τ ] and using (3.16)–(3.17) one obtains

zα(τ) ≥ zα(0)+τ
σ0
j

ν
−O(1)·τΓα−O(1)·

(
max
t∈[0,τ ]

zα(t)
)
·2ν
σ0
j

·Γα−O(1)·
(
zj(0) + 1

ν

)
W ′

α.

(3.18)
7. To proceed in our analysis, we now show that

max
t∈[0,τ ]

zα(t) ≤ 2 zα(τ) .(3.19)

Indeed, let τ ′ ∈ [0, τ ] be the time where the maximum is attained. If our claim (3.19)
does not hold, there would exist a first time τ ′′ ∈ [τ ′, τ ] such that zα(τ ′′) = zα(τ ′)/2.
From (3.15) and the assumption Wα(t) ≥ 0 it follows that

∫ τ ′′

τ ′
C1

∑
β∈Cα(t)

|σβ | dt ≥
zα(τ ′)

2
.(3.20)

Using the smallness of the total variation, a contradiction is now obtained as follows.
Call

Φ(t)
.
= C0Q(t) +

∑
kβ 	=i

φkβ

(
t, xβ(t)

)
|σβ | ,

where the sum ranges over all fronts of strength σβ located at xβ , of a family kβ �= i.
The weight functions φj are defined as

φj(t, x)
.
=

⎧⎨
⎩

0 if x > yα+1(t) ,
yα+1(t)−x

yα+1(t)−yα(t) if x ∈
[
yα(t), yα+1(t)

]
,

1 if x < yα(t)

in the case j > i, while

φj(t, x)
.
=

⎧⎨
⎩

1 if x > yα+1(t) ,
x−yα(t)

yα+1(t)−yα(t) if x ∈
[
yα(t), yα+1(t)

]
,

0 if x < yα(t)
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in the case j < i. Because of the term C0Q(t), the functional Φ is nonincreasing
at times of interactions. Moreover, outside interaction times a computation entirely
similar to the one on page 213 of [B] now yields

− d

dt
Φ(t) ≥

∑
β∈Cα(t)

|σβ | ·
c0
z(t)

(3.21)

for some small constant c0 > 0 related to the gap between different characteristic
speeds. From (3.20) and (3.21), respectively, we now deduce

∫ τ ′′

τ ′

∑
β∈Cα(t)

|σβ | dt ≥
zα(τ ′)

2C1
,

∫ τ ′′

τ ′

∑
β∈Cα(t)

|σβ | dt ≤
∫ τ ′′

τ ′

∣∣∣∣dΦ(t)

dt

∣∣∣∣ · zα(τ ′)

c0
dt ≤ Φ(τ ′)

c0
zα(τ ′) .

Since Φ(t) = O(1) · Tot.Var.
{
u(t)

}
, by the smallness of the total variation we can

assume Φ(τ ′) < 2C1/c0. In this case, the two above inequalities yield a contradiction.
8. Using (3.19), from (3.18) we obtain

zj(τ) =
∑

1≤α≤ν

zα(τ) ≥
∑
α/∈I

zα(τ)

≥
∑
α/∈I

{
zα(0) + τσ0

j /ν

1 + C2(ν/σ0
j )Γα

−O(1) · τΓj −O(1) ·
(
zj(0) + 1

ν

)
W ′

α

}

≥
∑
α/∈I

(
zα(0) + τ

σ0
j

ν

)(
1 − C2

ν

σ0
j

Γα

)
−O(1) · τΓj −O(1) · zj(0) + 1

ν

≥
∑
α/∈I

(
zα(0) + τ

σ0
j

ν

)
− C2

zj(0)

σ0
j

Γj −O(1) · τΓj −O(1) · zj(0) + 1

ν
.(3.22)

By (3.14) the cardinality of the set I satisfies

#I ·
σ0
j

5C0ν
≤

∑
α∈I

Γα ≤ Γj ;

hence

#I
ν

≤ 5C0

σ0
j

Γj .

In turn, this implies

∑
α/∈I

(
zα(0) + τ

σ0
j

ν

)
≥

(
zj(0) + τσ0

j

)(
1 − #I

ν

)
(3.23)

≥
(
zj(0) + τσ0

j

)
− 5C0Γj

zj(0)

σ0
j

Γj − 5C0τΓj .
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Using (3.23) in (3.22), observing that

zj(0)

σ0
j

=
xj+1(0) − xj(0)

σ0
j

= (ψ0
j )

−1,

and letting ν → ∞, we conclude

zj(τ) ≥
(
zj(0) + τσ0

j

)
−O(1) · (ψ0

j )
−1Γj −O(1) · τΓj .

This establishes (3.13) for a suitable constant C ′.
9. In the general case, without the assumptions (H), the lemma is proved by an

approximation argument. We construct a convergent sequence of initial data ūν → ū
which satisfy (H) and such that

ūν → ū , Q(ūν) → Q(ū) ,
∣∣µi+

ν,0 − µi+
0

∣∣ → 0 .

Calling wν the solution of (3.1) with initial data

wν(0, x) = sgn(x) · sup
meas(A)≤2|x|

µi+
ν,0(A)

2
,

by the previous analysis we have

µi+
ν,τν � Dx

[
wν(τν−) + sgn(x) ·

[
Q(ūν) −Q(uν(τν))

]]
.

Observe that wν(τν−) → w(τ−) in L1
loc. Choosing κ ≥ C0, by the lower semiconti-

nuity result stated in Lemma 1 we now conclude

µi+
τ � Dx

[
w(τ−) + κ sgn(x) ·

[
Q(ū) −Q(u(τ))

]]
.

4. Proof of the main theorem. Using the previous lemmas, we now give a
proof of Theorem 1. For a given interval [0, τ ], the solution of the impulsive Cauchy
problem (1.17)–(1.18) can be obtained as follows. Consider a partition 0 = t0 < t1 <
· · · < tN = τ . Construct an approximate solution by requiring that w(0, x) = v̂i(x),

wt + (w2/2)x = 0(4.1)

on each subinterval [tk−1, tk[ , while

w(tk, x) = w(tk− , x) + κ sgn(x) ·
[
Q(tk−1) −Q(tk)

]
.(4.2)

We then consider a sequence of partitions 0 = tν0 < tν1 < · · · < tνNν
= τ , and the

corresponding solutions wν . If the mesh of the partitions approaches zero, i.e.,

lim
ν→∞

sup
k

|tνk − tνk−1| = 0 ,

then the approximate solutions wν converge to a unique limit, which yields the solution
of (1.17)–(1.18).

Call F the set of nondecreasing odd functions, concave for x > 0. This set is
positively invariant for the flow of Burgers’s equation (4.1). Moreover, this flow is
order preserving. Namely, if w,w′ ∈ F are solutions of (4.1) with initial data such
that w(0, x) ≤ w′(0, x) for all x > 0, then also

w(t, x) ≤ w′(t, x) for all t, x > 0 .
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Equivalently,

Dxw(0) � Dxw
′(0) =⇒ Dxw(t) � Dxw

′(t)

for every t > 0. For each fixed ν, we can apply Lemma 2 on each subinterval [tνk−1, t
ν
k]

and obtain

µi+
tν
k
� Dxwν(t

ν
k) =⇒ µi+

tν
k+1

� Dxwν(t
ν
k+1) .

By induction on k, this yields

µi+
τ � Dxwν(τ) ,(4.3)

where wν is the approximate solution constructed according to (4.1)–(4.2). Letting
ν → ∞ and using Lemma 1, we achieve a proof of Theorem 1.

5. Examples.
Example 1. Consider first the scalar case. Let u = u(t, x) be a solution of

Burgers’s equation with smooth initial data

ut + (u2/2)x = 0 , u(0, x) = ū(x) .

Define the function w as the solution to

wt + (w2/2)x = 0 , w(0, x) = sgn(x) · sup
meas(A)<2|x|

∫
A

ūx(y)

2
dy .

This corresponds to (1.16)–(1.17) with Q ≡ 0. According to Oleinik’s estimate we
now have ux(t, x) ≤ 1/t for all t > 0, and a.e. x ∈ R. Of course, this reflects the fact
that, along each characteristic with ẋ = u

(
t, x(t)

)
, the gradient satisfies

d

dt
ux

(
t, x(t)

)
= − 1

u2
x

(
t, x(t)

) .(5.1)

A better estimate on ux

(
t, x(t)

)
when it is positive, based on (5.1), is

ux

(
t, x(t)

)
≤ 1

t +
[
ūx(x(0))

]−1 .(5.2)

According to (1.18), for every t > 0 we have the relation

µ+
t � Dxw(t) ,(5.3)

which includes the additional information (5.2). This relation is sharp in the sense
that the converse inequality

Dxw(t) � µ+
t

also holds, as long as no positive waves are cancelled by interacting with shocks.
Analogous results are valid for scalar equations with more general flux:

ut + f(u)x = 0, u(0, x) = ū(x) ,
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under the assumption of genuine nonlinearity f ′′ > 0. Notice that in this case the
normalization (1.2) yields r(u) = 1/f ′′(u), l(u) = f ′′(u). As long as the solution
u(t, ·) remains smooth, the corresponding wave measure is thus defined as

µt(A) =

∫
A

f ′′(u(t, x)
)
· ux(t, x) dx .

Example 2. Consider the p-system in Lagrangean coordinates (see [Sm])

vt − ux = 0 , ut + (K/vγ)x = 0 .

Here K > 0 and γ ≥ 1 are constants. Consider a solution which initially contains two
approaching 1-shocks and a 2-rarefaction (Figure 5). Assume that at time t = 1 the
two shocks interact. As shown in [Sm], the Riemann problem is then solved in terms
of a 1-shock and a 2-rarefaction. Let us look at the measure of positive 2-waves in
the solution. Let η be the strength of the centered rarefaction. During the interval
t ∈ [0, 1[ the density of rarefaction waves decays, as in the scalar case. At time t = 1
a new centered rarefaction is created by the interaction. Calling σ′, σ′′ the strengths
of the incoming shocks, the strength σ of this new rarefaction will satisfy

σ ≤ κ · |σ′σ′′| .
= σ̃(5.4)

for a suitable constant κ > 0. Notice that the decrease in the interaction potential at
time t = 1 is ∆Q = −|σ′σ′′|. The values of the corresponding function w = w(t, x) in
(1.16)–(1.18) at various times are illustrated in Figure 6. For t ∈ [0, 1[ the estimate
(1.18) is sharp, in the sense that

Dxw(t) � µ2+
t � Dxw(t) .(5.5)

The first relation in (5.5) will fail for t ≥ 1 if σ̃ < σ. The accuracy of our estimate
in this case depends essentially on the careful choice of the constant κ in (5.4). In
particular, if we could choose κ so that σ = κ|σ′σ′′|, then both relations in (5.5) would
remain valid for all times t ≥ 0.

Remark. Concerning compression waves, an estimate of the form (1.18) could be
derived also for the negative part of the measures µi

t. In this case, µi−
t can be compared

with the gradient Dxw of an odd, nonincreasing solution of a perturbed Burgers’s
equation. However, the result does not appear to be very interesting. Indeed, as
time progresses negative waves become ever more singular and a bound such as (1.18)
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retains little content. For large times, a much better way to estimate negative waves
is to analyze their cancellation with positive waves of the same family, as in [L1], [L2].
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Abstract. The present paper addresses stability properties of singular equilibria arising in a
given family of quasi-linear ODEs. These ODEs model continuous-time methods for root-finding
problems and their singular equilibria are degenerate in the sense that the linearization of the system
at equilibrium yields a singular matrix pencil. The analysis is based upon a normal form defined
by a codimension-one regular system coupled with a singular scalar equation. The key step is the
formulation of certain codimension-one Lyapunov matrix equations which incorporate the relevant
singular information and allow for the construction of Lyapunov functions supporting the stability
analysis. This approach makes it possible to state precisely the asymptotic stability of such de-
generate equilibria, and provides a local estimation of the corresponding attraction domains. An
application to the computation of singular DC operating points in nonlinear circuits is discussed.
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1. Introduction. Consider the implicit differential system

y′ = ξ(y, z)(1a)

zz′ = ζ(y, z),(1b)

where y ∈ R
n−1, z ∈ R, and the functions ξ(y, z), ζ(y, z) are sufficiently smooth.

System (1) arises as a local normal form for quasi-linear ODEs A(u)u′ = f(u)
(where A and f are sufficiently smooth matrix- and vector-valued functions) around
a singular point satisfying detA(u∗) = 0 and (detA)′(u∗)v �= 0, ∀v ∈ KerA(u∗)− {0}
[11, 16, 19, 22]. It is also closely related to certain singular differential-algebraic
equations (DAEs) [3, 4, 17]. These singular equations are relevant in problems arising
in magnetohydrodynamics, electrical circuits, or power system theory, to name a few
[5, 6, 15, 23].

Singularities of the normal form (1) are located in the hyperplane z = 0, and
can be classified (see [3, 4, 6, 12, 13, 17, 19, 23] and references therein) into pseudo-
equilibria (defined by the condition ζ(y, 0) = 0), forward impasse points (ζ(y, 0) < 0),
or backward impasse points (ζ(y, 0) > 0). Smooth solutions may be defined through
pseudoequilibrium points, whereas a pair of trajectories collapse when reaching an
impasse point, either in forward or backward time direction.

The present work is focused on stability issues concerning singular equilibria of (1),
characterized by the pair of conditions ξ(y, 0) = 0, ζ(y, 0) = 0. Within the context
of semiexplicit DAEs, these singular equilibria have been analyzed in [3] under an
assumption of regularity on the matrix pencil (see [18] and references therein for
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background on this topic) describing the linearization of the problem. For system
(1), this matrix pencil would read µC − D, µ being a complex parameter, whereas
C = diag{In−1, 0} and D is the Jacobian matrix of the right-hand side of (1) evaluated
at equilibrium; regularity of the matrix pencil means that there exists a µ0 such that
µ0C −D is invertible, allowing for the definition of a Kronecker index for the pencil.

In contrast, the present paper will address degenerate singular equilibria, display-
ing a singular pencil in the linearization. Specifically, we will consider ODEs of the
form

y′ = Hy + β(y, z),(2a)

zz′ = λz2 + yTGy + γ(y, z),(2b)

where H, G ∈ R
(n−1)×(n−1), G being symmetric, and λ ∈ R. The functions β(y, z)

and γ(y, z) are O(‖(y, z)‖)2 and O(‖(y, z)‖)3, respectively. Singularity of the matrix
pencil arising in the linearization at the origin would in this situation follow from the
vanishing of the last row of µC −D for any µ, with the above-explained notation.

System (2), with H = −In−1, λ = −1/2, is proved in [19] to describe a normal
form around a singular equilibrium of the so-called continuous Newton method (see
[18, 20, 21] and the bibliography therein)

−J(u)u′ = f(u)(3)

for sufficiently smooth f : R
n → R

n, J being the Jacobian matrix of f . Euler dis-
cretization of (3) yields the classical Newton iteration for root-finding and optimiza-
tion problems. The interest of a continuous-time scheme in this setting stems from its
better properties regarding global issues and singular problems, together with the fact
that a unique continuous system may lead to different iterative techniques, including
damped and accelerated versions of basic methods, through the use of different inte-
gration schemes. Therefore, the same continuous-time study may be of interest for a
wide family of discrete-time techniques [21].

A singular equilibrium of (3) is defined by the pair of conditions f(u∗) = 0 and
rkJ(u∗) < n, together with the assumption that u∗ is a limit point of the set where
J is invertible. Singular roots arise for instance in predictor-corrector continuation
methods [1], and are mapped into the origin in the normal form (2) [19]. In the
discrete-time context of the classical Newton method, several results concerning the
existence of locally cone-shaped regions of attraction for these singular zeroes were
proved in [8, 10, 14] and references therein. Continuous-time extensions have been
addressed in [18, 20], and applications of this approach to the original discrete-time
setting can be found in [21].

Nevertheless, several issues in this direction remain open. In section 2, we analyze
the actual local shape of attraction domains of degenerate equilibria of (2) and the
dynamic phenomena which are responsible for these local shapes. Under certain
assumptions, the attraction domain comprises a cone-shaped region, but the actual
domain may be larger, which may have important implications regarding the use of
(3) and related discretizations in singular root-finding problems. This local shape
will be shown to be intimately linked with the nature of singularities surrounding the
equilibrium and, in particular, with the backward or forward nature of nearby impasse
points. The analysis will be supported on the use of several Lyapunov functions, based
in turn on certain (n − 1)-dimensional Lyapunov matrix equations constructed from
the “regular” part (2a) but incorporating the relevant information from the singular
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equation (2b). An application to the computation of singular DC operating points in
nonlinear circuits is discussed in section 3.

The reader is referred to [2] for background on semiflows, invariance, and Lya-
punov functions. Useful facts coming from matrix analysis and involving, in particu-
lar, the Lyapunov matrix equation can be found in [9].

2. Dynamics around degenerate equilibria. System (2) and, in particular,
the continuous Newton method, define a (possibly not complete) flow Φ on the set of
regular points

X = {(y, z) ∈ R
n−1 × R /z �= 0}.(4)

Nevertheless, in order to analyze the behavior of this flow near the origin, the reader
should avoid simply considering an “extension” of this flow to X ∪ {0} by adding
Φ(t, 0) = 0 for t ∈ R, since the resulting extension of Φ may not be well defined as
a flow. Therefore, our present approach will be based on the fact that well-defined,
complete semiflows are induced by (2) on certain positively invariant subsets of X ;
asymptotic stability of the origin may then be precisely addressed for such semiflows.

Inspired on convergence results for singular equilibria of Newton’s method [8, 10,
14, 18, 20], one may conjecture if these asymptotic stability results for (2) may follow
from the assumption that λ and the spectral abscissa

α = maxµ∈σ(H) Re µ(5)

are negative. Note that, for the continuous Newton method, it is α = −1, λ = −1/2.
System (7) in section 2.1 will prove that this conjecture is false in general. It is shown
in section 2.2 that, at least, the conditions α < 0, λ < 0 make it possible to prove
that nearby trajectories remain on a given neighborhood of the origin as long as they
are defined.

If the matrix G is positive definite, then the assumptions α < 0, λ < 0 suffice
indeed to guarantee the asymptotic convergence to the origin of all trajectories em-
anating from regular points within a given neighborhood of the equilibrium. This
is illustrated by the case η > 0 in section 2.1, and proved in general in section 2.3.
The local attraction domains of such singular roots are therefore significantly larger
than a cone-shaped region, making those solutions more easily computable through
Newton-based techniques.

Nevertheless, without the positive definiteness of G, this nice behavior will not
be displayed. It will be shown in section 2.4 that, under the dominance condition
α < λ < 0, there exists a cone-shaped region with vertex in the origin which is pos-
itively invariant and asymptotically convergent to the degenerate equilibrium. Com-
pared with previous approaches in this direction (see [18] and references therein), the
Lyapunov function method used to prove this result will additionally give a hint for
the estimation of the actual local shape of the attraction domain. An example is
provided by the case η < 0 in section 2.1.

Particularization of these results for the continuous Newton method and an ap-
plication in circuit theory can be found in sections 2.5 and 3, respectively.

2.1. A glimpse. Consider the vector field f(y, z) = (y, z2 + 2ηy2), with (y, z) ∈
R

2, η ∈ R. The continuous Newton method (3) reads y′ = −y, 4ηyy′ + 2zz′ =
−z2 − 2ηy2 or, equivalently,

y′ = −y,(6a)

zz′ = −(1/2)z2 + ηy2,(6b)
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which has the form depicted in (2), with Hy = −y, λ = −1/2, yTGy = ηy2, β = γ =
0. The origin may be easily shown to be a degenerate singular equilibrium regardless
of the value of η ∈ R. Nevertheless, this parameter strongly influences the dynamic
behavior around the origin, as discussed below.

Note that the particular value η = 0 yields a removable singularity, since (6)
would amount in this case to y′ = −y, z′ = −z/2, leading to an asymptotically stable
equilibrium in the classical sense. This nongeneric phenomenon has been analyzed in
[18, 20, 21] and will not be considered further here.

Case η > 0. Solutions of (6) read

y(t) = y0e
−t,

z(t) = sg(z0)
√
z2
0e

−t + 2ηy2
0(e−t − e−2t).

Trajectories with z0 �= 0 are well defined for all t ≥ 0, since the radicand is always
positive. Furthermore, every initial point with z0 �= 0 converges to the origin. This
means that the domain of attraction of the origin is the set of regular points, showing
that of singular roots in Newton-based techniques may be significantly larger than a
locally cone-shaped set.

Concerning general systems of the form (2), this behavior will be shown in sec-
tion 2.3 to follow from the positive definiteness of G, together with the assumptions
λ < 0, α < 0. The first condition forces all singularities in a neighborhood of the equi-
librium to behave as backward impasse points, and amounts in this example to η > 0.
Trajectories are then repelled by the singular manifold and must evolve towards the
equilibrium.

Case η < 0. In this case, if we rewrite the radicand as (z2
0 +2ηy2

0)e−t− 2ηy2
0e

−2t,
it is not difficult to check that initial points (y0, z0) in the cone-shaped region

{(y0, z0) ∈ R
2 : z2

0 + 2ηy2
0 ≥ 0} ≡ {(y0, z0) ∈ R

2 : |y0| ≤ |z0|/
√

2|η|}

guarantee that the radicand remains positive and, therefore, trajectories are well
defined for all positive t. It is also easy to check that all these solutions converge to
the origin.

On the contrary, the condition z2
0 +2ηy2

0 < 0 ≡ |y0| > |z0|/
√

2|η| yields a positive
collapse-time

t∗ = ln

(
2ηy2

0

z2
0 + 2ηy2

0

)
,

beyond which trajectories are not defined. Note that 2ηy2
0 < z2

0 + 2ηy2
0 < 0 and,

therefore, t∗ > 0. This means that trajectories outside the cone evolve towards
a forward impasse point, where they cease to exist. This directional convergence
phenomenon will be shown in section 2.4 to be a general property of systems of the
form (2) with α < λ < 0 and, in particular, of the continuous Newton method. The
actual local shape of the attraction domain can be estimated with the Lyapunov
function approach discussed there.

A generalization of (6). If we finally consider the system

y′ = αy,(7a)

zz′ = λz2 + ηy2,(7b)
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with η < 0, λ < α < 0, it may be shown that solutions are

y(t) = y0e
αt,

z(t) = sg(z0)

√(
z2
0 +

η

λ− α
y2
0

)
e2λt − η

λ− α
y2
0e

2αt.

Now, any y0 �= 0 yields a positive escape time

t∗ =
ln
(
1 +

(λ−α)z2
0

ηy2
0

)
2(α− λ)

,

where it is to be noted that both (λ− α)z2
0/ηy

2
0 and α − λ are positive. This means

that only the z-coordinate curve is convergent to the origin and suggests that the
dominance condition α < λ < 0 is a key requirement in the phenomenon of directional
stability.

2.2. Positive invariance with α < 0, λ < 0. As a preliminary result let us
recall that, writing as µ1, . . . , µn the n (not necessarily distinct) real eigenvalues of
an n× n symmetric matrix A, and denoting

ηA = min{µ1, . . . , µn},(8a)

κA = max{µ1, . . . , µn},(8b)

then ηA|x|2 ≤ xTAx ≤ κA|x|2 for any vector x ∈ R
n, | | standing for the Euclidean

norm.
Proposition 1. Consider a quasi-linear ODE of the form (2) with λ < 0.

Assume that the spectral abscissa defined in (5) verifies α < 0, and denote κ̃ =
max{κG, 0} ≥ 0, where κ is defined as in (8b). Let P be the positive definite solution
of the (n− 1)-dimensional Lyapunov matrix equation

PH + HTP = 2(−κ̃ + λ)In−1.(9)

Then, there exists r0 > 0 such that

V (y, z) = yTPy + z2(10)

satisfies V ′ ≤ 0 on {x = (y, z) ∈ X / |x| ≤ r0}. Hence, for 0 < V0 < min|x|=r0 V (y, z),
the level sets {x = (y, z) ∈ X / V (y, z) ≤ V0} are positively invariant.

Proof. The derivative of V along trajectories of (2) reads

V ′ = yT (PH + HTP )y + 2[yTPβ(y, z) + λz2 + yTGy + γ(y, z)].

Now, using (9) and the fact that yTGy ≤ κ̃|y|2, we have

V ′ ≤ 2[(−κ̃ + λ)|y|2 + yTPβ(y, z) + λz2 + κ̃|y|2 + γ(y, z)]

= 2[λ(|y|2 + z2) + yTPβ(y, z) + γ(y, z)].

Let rβ , cβ , rγ , cγ be positive constants such that

|x| ≤ rβ ⇒ |β(x)| ≤ cβ |x|2,
|x| ≤ rγ ⇒ |γ(x)| ≤ cγ |x|3,
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and define

r0 = min

{
rβ , rγ ,

|λ|
κP cβ + cγ

}
.

Then, |x| ≤ r0 implies that

|yTPβ(y, z) + γ(y, z)| ≤ |y|κP cβ |x|2 + cγ |x|3 ≤ r0(κP cβ + cγ)|x|2 ≤ |λ||x|2

and, therefore, V ′ ≤ 0. Positive invariance of the level sets {x = (y, z) ∈ X / V (y, z) ≤
V0} follows from [2, Theorem 18.2].

Denoting

P̃ =

(
P 0
0 1

)
,

the level sets {x = (y, z) ∈ X / V (y, z) ≤ V0} can be alternatively described in terms
of the Hilbert norm

‖x‖ =
√
xT P̃ x ≡

√
yTPy + z2 =

√
V (y, z).(11)

To this end, let us define

B(0, ρ) = {x ∈ R
n / ‖x‖ ≤ ρ},(12a)

B+(0, ρ) = {x = (y, z) ∈ R
n / ‖x‖ ≤ ρ, z > 0},(12b)

B−(0, ρ) = {x = (y, z) ∈ R
n / ‖x‖ ≤ ρ, z < 0},(12c)

B±(0, ρ) = B+(0, ρ) ∪ B−(0, ρ) = B(0, ρ) ∩ X .(12d)

From the relations ηP̃ |x|2 ≤ ‖x‖2 ≤ κP̃ |x|2, it is easy to check that min|x|=r0 V (y, z) =
ηP̃ r

2
0. Defining ρ0 =

√
ηP̃ r0, the following result can be immediately derived from

Proposition 1.

Corollary 1. If α < 0 and λ < 0, system (2) induces a semiflow Φ on B±(0, ρ)
for all positive ρ < ρ0.

Note that B±(0, ρ) excludes points in the hyperplane z = 0. From the result
above the reader should not conclude that, in general, trajectories evolve towards
the origin; note that there might be forward impasse points on z = 0 attracting
solutions in finite time. In this situation, the additional dominance condition α <
λ < 0 (verified, in particular, by the continuous Newton method), allows one to
prove the existence of a locally cone-shaped region which is positively invariant and
asymptotically convergent to the origin, as shown in section 2.4. Nevertheless, in the
particular case in which the origin is entirely surrounded by backward impasse points,
then the origin is actually a stable attractor for the dynamics on B±(0, ρ), without
the need for the above-mentioned dominance condition. This simpler case, associated
with the positive definiteness of G, is considered in section 2.3.

2.3. Completeness and asymptotic stability with positive definite G.

Theorem 1. Consider the quasi-linear ODE (2). Assume that α < 0, λ < 0,
and that G is positive definite. Then, there exists a positive ρ1 < ρ0 such that the
semiflow Φ induced by (2) on B±(0, ρ1) is complete; that is, all solutions are defined
on the time interval [0,∞). Furthermore, limt→∞ Φ(t, x0) = 0 for all x0 in B±(0, ρ1).
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Proof. The key aspect here is that the smallness of ρ1 must guarantee that all
singularities in B(0, ρ1) − {0} are backward impasse points. To achieve this, choose
any positive r1 satisfying

r1 < min

{
r0,

ηG
cγ

}
,(13)

where ηG > 0 since G is positive definite, and define ρ1 =
√
ηP̃ r1. Hence, if ‖(y, 0)‖ ≤

ρ1 =
√
ηP̃ r1, then |y| ≤ ‖(y, 0)‖/√ηP̃ ≤ r1 and |γ(y, 0)| ≤ cγ |y|3 ≤ cγr1|y|2 < ηG|y|2

(note that y = 0 is excluded). This implies that γ(y, 0) > −ηG|y|2 and, since yTGy ≥
ηG|y|2,

yTGy + γ(y, 0) > 0, (y, 0) ∈ B(0, ρ1) − {0},

showing that all singularities in B(0, ρ1)−{0} are backward impasse points. This fact
will suffice to prove that all trajectories are well defined in [0,∞).

Suppose that x0 = (y0, z0) ∈ B+(0, ρ1) is such that the trajectory emanating
from this point is defined for a maximal positive time t+(x0) < ∞ (the reasoning in
B−(0, ρ1) would be entirely analogous). In this situation, [2, Proposition 10.12] shows
that for every compact set C on B+(0, ρ1) there would exist a time t0 < t+(x0) such
that Φ(t, x0) /∈ C for t > t0. If we define Cε = {(y, z) ∈ B+(0, ρ1) / z ≥ ε}, for every
ε > 0 there would exist a t0(ε) such that z(t) < ε if t > t0(ε). This shows that, under
the assumption t+(x0) < ∞, it would be limt→t+(x0) z(t) = 0.

Nevertheless, the positive definiteness of G precludes z(t) from reaching the set
z = 0 in finite time, as shown below. Since |γ(y, z)| ≤ cγr1|x|2 ≤ ηG|x|2, we have
γ ≥ −ηG|x|2 and, therefore,

λz2 + yTGy + γ(y, z) ≥ λz2 + ηG|y|2 − ηG(|y|2 + z2) = (λ− ηG)z2.

This means that the real-valued function (λz2 + yTGy + γ(y, z))/z is bounded below
by (λ− ηG)z on B+(0, ρ1). Since orbits do not leave B+(0, ρ1) due to Proposition 1,
the z-component of the trajectory emanating from (y0, z0), with z0 > 0, satisfies
z(t) ≥ z0e

(λ−ηG)t > 0 for all finite t, in contradiction with limt→t+(x0) z(t) = 0.
This proves that t+(x0) = ∞ and, since x0 is arbitrary, the semiflow is complete on
B±(0, ρ1).

In this situation, the function V defined in (10) behaves as a classical Lyapunov
function, since limit points verifying z = 0, y �= 0 are ruled out by the backward
nature of impasse points in B(0, ρ1). Hence, Φ(t, x0) → 0 as t → ∞, for all x0 in
B±(0, ρ1).

Under the hypotheses of Theorem 1, the semiflow Φ may be safely extended to
B±(0, ρ1)∪{0} by adding Φ(t, 0) = 0 for t ∈ [0,∞), the origin being an asymptotically
stable equilibrium of the resulting semiflow. In applications concerning the continuous
Newton method, this situation yields a domain of attraction for a singular root which
comprises all regular points within a usual ball about the degenerate equilibrium, as
compiled in item 1 of Theorem 3 in section 2.5. An example of this nice behavior is
given by the case V0 = 0 in the nonlinear circuit presented in section 3.

2.4. Directional convergence with α < λ < 0 and arbitrary G. If G is
not positive definite, forward impasse points of system (2) may (and actually will, if G
is not positive semidefinite) be displayed around the origin, precluding the application
of the results discussed in section 2.3. Nevertheless, Proposition 1 and Corollary 1
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can be strengthened under the additional dominance condition α < λ < 0, which is
satisfied in particular by the continuous Newton method, for which α = −1, λ = −1/2.

In this direction, note that the condition α < λ implies that H − λIn−1 is an
asymptotically stable matrix, since σ(H−λIn−1) = {µ−λ / µ ∈ σ(H)}, and, therefore,
the condition α = maxµ∈σ(H) Re µ < λ yields maxµ∈σ(H) Re (µ − λ) < 0. This fact
guarantees that the matrix equation (14) below has indeed a positive definite solution.

Theorem 2. Consider a quasi-linear ODE (2) with α < λ < 0, and let Q be the
positive definite solution of the (n− 1)-dimensional Lyapunov matrix equation

Q(H − λIn−1) + (H − λIn−1)
TQ = −In−1.(14)

Then, for every θ > 0 (satisfying additionally θ < 1/
√

2|ηG| if ηG < 0, where ηG is
defined as in (8a)), there exists a positive ρ(θ) < ρ0 such that

U(y, z) = yTQy − θ2z2(15)

satisfies U ′ ≤ 0 on ∂K(0, θ) ∩ B±(0, ρ(θ)), where

K(0, θ) = {(y, z) ∈ R
n−1 × R : yTQy ≤ θ2z2},(16)

and ∂K(0, θ) stands for the boundary {(y, z) ∈ R
n−1 × R : yTQy = θ2z2}. Hence, the

set K(0, θ) ∩ B±(0, ρ(θ)) is positively invariant for the semiflow Φ defined in Corol-
lary 1. Furthermore, the restriction of Φ to K(0, θ) ∩ B±(0, ρ(θ)) is complete, and
limt→∞ Φ(t, x0) = 0 for all x0 in K(0, θ) ∩ B±(0, ρ(θ)).

Proof. The derivative of U along trajectories of (2) reads

U ′ = yT (QH + HTQ)y + 2[yTQβ(y, z) − θ2(λz2 + yTGy + γ(y, z))].

In the boundary ∂K(0, θ), it is U = 0 or, equivalently, θ2z2 = yTQy. Therefore, in
∂K(0, θ) we have

yT (QH + HTQ)y − 2λθ2z2 = yT (QH + HTQ)y − 2λyTQy

= yT [Q(H − λIn−1) + (H − λIn−1)
TQ]y = −|y|2,

yielding

U ′ = −|y|2 − 2θ2yTGy + 2[yTQβ(y, z) − θ2γ(y, z)]

≤ −|y|2 − 2θ2ηG|y|2 + 2[yTQβ(y, z) − θ2γ(y, z)].

In light of the restriction imposed on θ when ηG < 0, we always have −1 − 2θ2ηG <
0. The property U ′ ≤ 0, together with the other claims in the theorem, follows
then from the choice of ρ(θ) in a way such that 2|yTQβ(y, z) − θ2γ(y, z)| ≤ (1 +
2θ2ηG)|y|2 whenever U = 0, ‖x‖ ≤ ρ(θ). Details are straightforward and are left to the
reader.

2.5. The continuous Newton method at singular roots: Attraction do-
mains.

Theorem 3. Consider the normal form (2) for the continuous Newton method
around a singular equilibrium, for which H = −In−1, λ = −1/2. Then, the solution
of the Lyapunov matrix equation (14) reads Q = In−1. Depending on the inertia of G
in (2b), the following sets are included in the attraction domain of the origin, A(0),
according to Theorems 1 and 2:
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1. If ηG > 0, that is, if G is positive definite, then there exists a positive ρ1 such
that

B±(0, ρ1) ⊂ A(0),

B± being defined in (12b).
2. If ηG ≤ 0, that is, if G is not positive definite, then for every positive θ <

1/
√

2|ηG| there exists a positive ρ(θ) such that the Euclidean cone K(0, θ) =
{(y, z) ∈ R

n−1 × R : |y|2 ≤ θ2z2} verifies that

K(0, θ) ∩ B±(0, ρ(θ)) ⊂ A(0).

In the particular case ηG = 0, the result holds for any θ > 0.
Note that the cone-shaped regions described in the second item of Theorem 3

are also included in the attraction domain of cases with positive definite G, but in
this situation the first item yields a wider estimation of the local domain. It is also
worth remarking that weak problems, for which these results may be improved, are
not considered here (see [18, 20] and references therein). In cases with nonpositive
definite G, the limit value θ = 1/

√
2|ηG| may provide a rather nice estimation of the

actual extension of the cone-shaped region convergent to a singular root in the con-
tinuous Newton method. This value will also be shown to play a role in discrete-time
counterparts of this method, particularly in the classical Newton iteration. This is il-
lustrated, together with several additional features of these techniques, in a nonlinear
circuit example addressed in section 3.

3. Bifurcation points of nonlinear circuits. The circuit displayed in Figure 1
includes an independent current source I0, a linear capacitor C, two linear resistors
R1 and R2, a nonlinear voltage-controlled current source (VCCS) with a quadratic
characteristic i = v2 (v being the voltage drop across the resistor R1), a Josephson
junction, and an independent voltage source V0. The Josephson junction consists of
two superconductors separated by an oxide barrier [7], and can be considered as a
nonlinear inductor characterized by the differential relation φ′ = vJ , where φ denotes
the magnetic flux in the junction, together with a (simplified) sinusoidal current-flux
relation iJ = sinφ. As shown in Figure 1, most parameters in the circuit have been
normalized for simplicity.

vJ

+

-+

-

v

i=v

i

2

C=1 Josephson

0I  = 1 J
+

V0

-

VCCS = 1

 = 12R

R1

Fig. 1. Nonlinear circuit.
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The dynamics of this circuit can be described in terms of the capacitor charge q
and the flux φ in the Josephson junction through the ODE

q′ = −q + 1,(17a)

φ′ = q2 − sinφ− V0,(17b)

whereas the continuous Newton method for the right-hand side of (17) can be written
as

q′ = −q + 1,(18a)

cosφ φ′ = −q2 + 2q − sinφ− V0.(18b)

Singularities of this quasi-linear ODE are defined by the condition cosφ = 0, which
yields φ = π/2+kπ, k ∈ Z. Note that the location of singularities does not depend on
the value of V0. Singular equilibria will be displayed only if sinφ = ±1 at equilibrium
(defined by q = 1, sinφ = 1− V0), that is, if V0 = 0 or V0 = 2. It can be checked that
these values yield saddle-node bifurcations for (17) at q = 1, φ = π/2 + 2kπ, k ∈ Z,
for V0 = 0, and q = 1, φ = −π/2 + 2kπ, k ∈ Z, for V0 = 2.

Let us consider the behavior of the continuous Newton method (18) regarding
these singular operating points, focusing on

(a) q = 1, φ = π/2 for V0 = 0;
(b) q = 1, φ = −π/2 for V0 = 2.

In both cases, the normal form (2) can be easily computed through the coordinate
change

y = q − 1,(19a)

z = cosφ,(19b)

with φ ∈ (0, π) for (a) and φ ∈ (−π, 0) for (b). Some simple computations lead to

y′ = −y,(20a)

zz′ = −(1/2)z2 ± y2 + h.o.t.(20b)

The “+” sign in (20b) corresponds to (a), whereas the “−” case is obtained in (b).
Note that the quadratic terms of (20b) are those of (6b) with η = 1 and η = −1,
respectively.

Case (a). Singularities near the equilibrium q = 1, φ = π/2, for V0 = 0, are
backward impasse points and, in light of the results in section 2.3 (see also item 1
in Theorem 3), every regular point sufficiently close to the singular equilibrium must
evolve towards the origin. Computer simulations indicate that this is actually the
case: Figure 2(a) displays an estimation of the attraction domain of this singular
operating point. Note that the boundary of the attraction domain is partially defined
by the straight lines φ = −π/2 and φ = 3π/2, which correspond to singularities of
the quasi-linear ODE (18).

Case (b). Concerning the equilibrium q = 1, φ = −π/2, for V0 = 2, it follows
from the results discussed in section 2.4 and compiled in item 2 of Theorem 3 that,
for all θ < 1/

√
2, there must exist a ρ(θ) defining a region of the form y2 ≤ θ2z2

positively invariant and convergent to the origin. In the limit case θ = 1/
√

2, the set
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Fig. 2. Domains of attraction of the continuous Newton method: (a) equilibrium at (1, π/2),
V0 = 0; (b) equilibrium at (1,−π/2), V0 = 2.

y2 = (1/2)z2 reads, in the original coordinates q, φ and using (19),

(q − 1)2 = (1/2) cos2 φ, −π < φ < 0.(21)

This curve is plotted in Figure 2(b), together with a computer estimation of the
attraction domain of the singular equilibrium. The figure clearly indicates that (21)
provides, in this case, an accurate estimation of the boundary of the attraction domain
near the degenerate solution. It is worth remarking that, as we move away from the
singularity, the incidence of higher order terms becomes more significant and the
divergence between the curve representing (21) and the boundary of the attraction
domain is more apparent. Equation (21) is not plotted for φ < −π and φ > 0 since
the coordinate change (19) remains valid only for −π < φ < 0. attraction domain is
clearly delimited by the straight lines

With illustrative purposes, let us briefly address this directional convergence phe-
nomenon in the discrete-time setting. Figure 3(a) displays the set of points which
converge in the classical Newton iteration (obtained as the Euler discretization of (18)
with stepsize 1) to the degenerate equilibrium without crossing the singular manifold;
that is, the iteration is truncated for any orbit which jumps from one side of the
singular manifold to the other (a jump which is allowed by the discrete-time nature of
the method). The curve (21) again provides an accurate estimation of the boundary
of the attraction domain for this truncated iteration.

The computer estimation of the actual local domain of attraction of the sin-
gular equilibrium for the discrete-time method is shown in Figure 3(b). This do-
main comprises not only the one shown in (a), but also those points which converge
to the solution after crossing the singular manifold. For instance, the initial point
q = 2.5, φ = −0.5 may be shown to “jump over” the singular manifold in the first
iteration step, reaching q = 1.0, φ = −3.6571 and then evolving towards the singu-
lar root without additional jumps. Note that the first iteration step is exact in the
q-component due to the decoupled and linear nature of (18a).

Although additional details in this direction are beyond the purposes of the
present paper, let us finally remark here that this approach provides a linearly con-
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Fig. 3. Local domains of attraction of (1,−π/2): (a) truncated and (b) standard discrete-time
Newton method, V0 = 2.

vergent iteration to the singular root. This follows from the value λ = −1/2 in the
normal form (2b): Euler discretization with stepsize 1 places an eigenvalue at 1/2 in
the linearized discrete-time system. Quadratic convergence to singular roots may be
recovered through the use of certain Runge–Kutta discretizations; see [21].
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Abstract. In this paper problem
⎧
⎪⎪⎨

⎪⎪⎩

ut − div(|x|−pγ |∇u|p−2∇u) = λ
up−2u

|x|p(γ+1)
in Ω × (0,∞), 0 ∈ Ω,

u(x, t) = 0 on ∂Ω × (0,∞),

u(x, 0) = ψ(x) ≥ 0

(0.1)

is studied when 1 < p < N , −∞ < (γ + 1) < N
p

, and under hypotheses on the initial data.
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1. Introduction. The results by Baras and Goldstein in [7] concerning a blow-
up for the solution to the heat equation with a critical potential of the type⎧⎪⎨

⎪⎩
ut − ∆u = λ

u

|x|2 in Ω × (0,∞), 0 ∈ Ω,

u(x, t) = 0 on ∂Ω × (0,∞),

u(x, 0) = ψ(x) ≥ 0

(1.1)

have attracted in recent years the interest of research on some related problems.
Roughly speaking, apparently, the main ingredient of the problem studied by Baras
and Goldstein is a classical Hardy inequality,∫

Rn

|u|2
|x|2 dx ≤ CN

∫
Rn

|∇u|2 dx,(1.2)

where CN = ( 2
N−2 )2 is the optimal constant that is not achieved in the Sobolev space

D1,2(Rn). For problem (1.1) Baras and Goldstein have proved that if λ ≤ C−1
N , then

there exists a global solution if the initial datum is in a convenient class, while if
λ > C−1

N , there is no solution in the sense that if we consider the solutions un of the
problems with truncated potential Wn(x) = min{n, |x|−2}, then

lim
n→∞

un(x, t) = +∞ for all (x, t) ∈ Ω × R
+.
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We will call this behavior spectral instantaneous complete blow-up. On the other hand,
we have the following extension of Hardy’s inequality:∫

Rn

|u|p
|x|(γ+1)p

dx ≤ Cn,p,γ

∫
Rn

|∇u|p
|x|γp dx, −∞ < γ <

N − p

p
.(1.3)

This is a particular limit case of the following Caffarelli–Kohn–Nirenberg inequalities
which are proven in [13] (see also [14], [4], and [11]).

Proposition 1.1. Assume that 1 < p < N . Then there exists a positive constant
CN,p,γ,q such that, for every u ∈ C∞

0 (RN ),(∫
Rn

|u|q
|x|δq dx

)p/q

≤ CN,p,γ,q

∫
Rn

|∇u|p
|x|γp dx,(1.4)

where p, q, γ, δ are related by

1

q
− δ

N
=

1

p
− γ + 1

N
, γ ≤ δ ≤ γ + 1,(1.5)

and δq < N , γp < N .
Remark 1.2.

(i) Inequality (1.3) holds a fortiori in every open set Ω.
(ii) One can take

Cn,p,γ =

(
p

N − p(γ + 1)

)p

(1.6)

in (1.3). This choice of Cn,p,γ is optimal in every open set Ω containing 0. (The
arguments are similar to those in [19] for γ = 0.)

(iii) If 0 ∈ Ω, the optimal constant is never attained in (1.3).
Remark 1.3. The other limit case for inequality (1.4) is for δ = γ, and then one

obtains a weighted Sobolev inequality

(∫
Rn

|u|p∗

|x|γp∗ dx

)p/p∗

≤ Sn,p,γ

∫
Rn

|∇u|p
|x|γp dx,(1.7)

where p∗ = pN
N−p .

It is quite natural to study the parabolic equations associated to inequality (1.3);
namely, for the same values of p and γ we consider the problem⎧⎪⎪⎪⎨

⎪⎪⎪⎩
ut − div

(
|∇u|p−2∇u

|x|γp

)
= λ

|u|p−2u

|x|(γ+1)p
, (x, t) ∈ Ω × (0, T ),

u(x, t) = 0, (x, t) ∈ ∂Ω × (0, T ),

u(x, 0) = ψ(x), x ∈ Ω,

(P)

where we assume that Ω is a bounded domain in R
n such that 0 ∈ Ω and ∂Ω is a C1

submanifold.
It is clear that the constant (1.6) will play an essential role in what follows, since

the behavior of the problem (P) will deeply depend on whether the parameter λ is
smaller or greater than the value

λn,p,γ =
1

Cn,p,γ
=

(
N − p(γ + 1)

p

)p

.(1.8)
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Fig. 1.1. Summary of the existence and nonexistence results for λ > λN,p,γ:
Region A: Global existence of energy solutions.
Region B: Global existence of entropy solutions.
Region C: Global existence of very weak solutions.
Region D: Local existence of solutions.
Region E: Instantaneous complete blow-up.

It could be expected that the behavior for problem (P) should be similar to the
one obtained by Baras and Goldstein for (1.1). This conjecture is not completely
true. Actually, there is another property which plays an important role in the spec-
tral instantaneous and complete blow-up: a Harnack inequality for the homogeneous
parabolic equation. This property is verified if p ≥ 2 and (1 + γ) > 0. The case p = 2
was proved by Chiarenza and Serapioni in [15], while the case p > 2 was proved by
Abdellaoui and Peral in [1].

The main contribution of this paper is to show that in the complementary range
of the parameters p and γ we find solutions, even for large values of λ. The case
p = 2, γ = 0 has been studied in [7] and recently in [26]. The case p �= 2, γ = 0 has
been studied in [19] and [5].

The plan of this work is as follows. We begin with section 2, where some notation
is provided and appropriate function spaces are defined. Section 3 is devoted to the
existence results. In subsection 3.1 we obtain the existence of a global solution in the
case λ < λN,p,γ for all 1 < p < N . This is the content of Theorem 3.1. In this case

the solution belongs to the space Lp(0, T ;D1,p
0,γ(Ω)), which is naturally related to (P)

(see section 2 for the definition). For this reason we will refer to this function u as an
energy solution. In the proof of Theorem 3.1 we give the details of some convergence
results that will be used thereafter. Subsection 3.2 deals with the case λ > λN,p,γ

and 1 < p ≤ 2. The existence of solutions according to the values of γ and p is
investigated, and the main results are stated in Theorems 3.3, 3.6, and 3.8. Roughly
speaking, as γ and p become larger, we find solutions which are less and less regular.
More precisely, we show the following.

1. If 1 < p ≤ 2 and γ + 1 < N(2−p)
2p (see region A in Figure 1.1), then we show

the existence of energy solutions (see Theorem 3.3).

2. If 1 < p ≤ 2 and N(2−p)
2p ≤ γ + 1 < N(2−p)

p (see region B), we show the

existence of a solution of (P) in the sense of distributions; however, this solution does
not belong to the energy space (see Theorem 3.6). We will show that this is an entropy
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solution in the sense introduced in [8], [22], and [23] for equations with L1 data (see
Definition 3.5 below).

3. If 1 < p ≤ 2 and N(2 − p)/(p) < γ + 1 < N/p (see region C), we show the
existence of solutions of (P) in a very weak sense (see Theorem 3.8). We would like
to point out that in this case we solve a problem where the right-hand side is not
bounded in L1.

Notice that, comparing the existence results with those contained in [3] for the case
p = 2, we find that in the nonlinear case (i.e., p �= 2) a very much different behavior
of the solutions appears, depending on the parameters; namely, the behavior in cases
2 and 3 above is typical of the nonlinear setting and does not appear in the linear
case.

In subsection 3.3, for completeness, we include the elementary local existence
result for p ≥ 2 and γ ≤ −1 (see region D in Figure 1.1) in Theorem 3.10, which is
also stated in [2].

In section 4 we study the blow-up when p > 2, 0 < 1 + γ < N
p , and λ > λN,p,γ

(see region E in Figure 1.1), extending and improving the result of [19] for γ = 0.
(See also [12].)

The case p = 2 is obtained in [3] by different kinds of techniques. The main result
is Theorem 4.4 and its consequences. The results in Theorems 4.5 and 4.7 have also
been stated in [2] and are included here for completeness. With regard to the proof
of instantaneous blow-up that we give, it is interesting to point out that for p > 2 the
blow-up is stronger than that obtained for p = 2. Indeed, even the solutions un of
the problems with truncated potential, Wn(x) = min{n, |x|−p(γ+1)}, blow up in finite
time, and the blow-up time tends to zero as n → ∞.

Finally, in section 5 we study the extinction in finite time of the solution in the
case 1 < p < 2, according to the relation between λ and λN,p,γ . Roughly speaking, the
role that λN,p,γ plays in the case p > 2 for the blow-up is changed to be a threshold
for the finite time extinction property in the case 1 < p < 2.

2. Notation and function spaces. For 1 < p < ∞ and γ < N−p
p , we define

the weighted space

Lp
γ(Ω) =

{
u : Ω → R measurable, such that

u(x)

|x|γ ∈ Lp(Ω)

}
,

equipped with the norm

‖u‖Lp
γ(Ω) =

(∫
Ω

|u(x)|p
|x|γp dx

)1/p

.

It is easy to check that the dual space (Lp
γ(Ω))′ of Lp

γ(Ω) is the space Lp′

−γ(Ω), where

p′ is defined by 1
p + 1

p′ = 1. Moreover, we define D1,p
0,γ(Ω) as the closure of C∞

0 (Ω) in
the norm

‖u‖D1,p
0,γ(Ω) = ‖∇u‖Lp

γ(Ω) =

(∫
Ω

|∇u(x)|p
|x|γp dx

)1/p

.

As 1 < p < ∞, D1,p
0,γ(Ω) is reflexive, and we can define the dual space of D1,p

0,γ(Ω),

which we will denote by D−1,p′

−γ (Ω), as

D−1,p′

−γ (Ω) = {G ∈ D′(Ω) : G = divF, F ∈ Lp′

−γ(Ω; RN )}.
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Let us point out that functions in Lp
γ(Ω) do not need to be distributions since they

do not belong necessarily to L1(Ω). If γ + 1 ≤ − (p−1)N
p , D1,p

0,γ �⊂ L1(Ω). The meaning

of the gradient in this case is understood as follows. If u ∈ D1,p
0,γ and {φn}n∈N ⊂ C∞

0 (Ω)
is an approximating sequence, then we obtain

∇φn → V in Lp
γ(Ω;RN );

in fact, by density and duality we can justify the integration by parts, namely,∫
Ω

〈V, ψ〉dx = lim
n→∞

∫
Ω

〈∇φn, ψ〉dx = −
∫

Ω

u div(ψ)dx for all ψ ∈ D1,p′

0,−(γ+1).

As a consequence we define grad(u) := V. On the other hand, Theorem 1.18 in [20]
shows that if u ∈ D1,p

0,γ , then the truncature Tk(u) ∈ D1,p
0,γ(Ω), where Tk(u) is defined

by Tk(u) = u if |u| < k and Tk(u) = k u
|u| if |u| ≥ k. Since Tk(u) ∈ L∞(Ω), we can

define ∇Tk(u) as a distribution and by Theorem 1.20 in [20] we have

∇Tk(u) = grad(u)χ{|u|<k}.(2.1)

Hereafter we will denote ∇u = grad (u). Notice the relation of this concept of gradient
with the one in Lemma 2.1 in [8].

Therefore, inequality (1.4) implies the continuous imbedding

D1,p
0,γ(Ω) ⊂ Lq

δ(Ω) for p, q, γ, δ satisfying (1.5).(2.2)

This implies, by duality,

Lq′

−δ(Ω) ⊂ D−1,p′

−γ (Ω) for p, q, γ, δ satisfying (1.5).(2.3)

We now define the following “evolution” spaces which will be useful in what
follows.

Lp(0, T ;D1,p
0,γ(Ω))={u(x, t) : Ω × (0, T ) → R measurable :

u(·, t) ∈ D1,p
0,γ(Ω) for a.e. t ∈ (0, T ), ‖u(·, t)‖D1,p

0,γ(Ω) ∈ Lp(0, T )},

endowed with the norm

‖u‖Lp(0,T ;D1,p
0,γ(Ω)) =

(∫ T

0

‖u(·, t)‖pD1,p
0,γ(Ω)

dt

)1/p

=

(∫∫
QT

|∇u|p
|x|pγ dx

)1/p

.

The dual space of Lp(0, T ;D1,p
0,γ(Ω)) is Lp′

(0, T ;D−1,p′

−γ (Ω)). Let us point out that

D1,p
0,γ(Ω) ⊂ Lq

δ(Ω) compactly

for every p, q, γ, δ satisfying 1
q − δ

N > 1
p − γ+1

N with γ ≤ δ ≤ γ + 1 and δq < N ,
γp < N .

Indeed, a sequence {un} which is bounded in D1,p
0,γ(Ω) has a subsequence, again

denoted by {un}, which converges almost everywhere in Ω to a function u ∈ Lq
δ(Ω).

Moreover, by Hölder’s inequality and (1.7), for every measurable subset E ⊂ Ω,

∫
E

|un − u|q
|x|δq dx ≤

(∫
Ω

|un − u|p∗

|x|γp∗ dx

)q/p∗ (∫
E

1

|x|(δ−γ) qp∗
p∗−q

dx

)(p∗−q)/p∗

≤ c

(∫
E

1

|x|(δ−γ) qp∗
p∗−q

dx

)(p∗−q)/p∗

.
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Since the function in the last integral is an L1 function, we get the compactness result
by Vitali’s theorem.

It is easy to see that the operator defined by

−∆p,γu = −div

(
|∇u|p−2∇u

|x|pγ

)

maps D1,p
0,γ(Ω) into its dual D−1,p′

−γ (Ω) and is hemicontinuous, coercive, and monotone.
(See [21].)

In what follows, we will often use the following result, which is an easy application
of Theorem 1.2 of [21] and the reference [24] for the continuity with respect to the
time of the L2-norm.

Proposition 2.1. If f ∈ Lp′
(0, T ;D−1,p′

−γ (Ω)), ψ ∈ L2(Ω), then there exists a

unique solution in the distribution sense, u ∈ Lp(0, T ;D1,p
0,γ(Ω)) ∩ C0(0, T ;L2(Ω)), of

the following problem:⎧⎨
⎩

ut − ∆p,γu = f in Ω × (0, T ) ,
u(x, t) = 0 in ∂Ω × (0, T ) ,
u(x, 0) = ψ(x) in Ω.

We have the following result about the boundedness of the solutions.
Lemma 2.2. Let u ∈ Lp(0, T ;D1,p

0,γ(Ω)) ∩ C0(0, T ;L2(Ω)) be a distributional solu-
tion of (F) (see section 2), with ψ ∈ L∞(Ω), and assume that there exist two constants
q and β0 such that

q >
N

p
, β0 < pγ, ess sup

t

∫
Ω

|f(x, t)|q|x|β0q dx < +∞.(2.4)

Then u ∈ L∞(QT ).
The proof is a slight modification of the classical arguments and is omitted.

3. Existence results. We start with the simpler case λ < λN,p,γ , where λN,p,γ

is defined by (1.8).

3.1. The case λ < λN,p,γ : Global existence. As usual we denote by Tn(s)
the truncation function, i.e., Tn(s) = s if |s| < n, Tn(s) = n sign s if |s| > n. Let

us observe that in this range for λ the operator −∆p,γ − λ |u|p−2u
|x|p(γ+1) is coercive in the

space D1,p
0,γ(Ω). This essentially justifies the following.

Theorem 3.1. If 1 < p < N , γ < N−p
p , λ < λN,p,γ , ψ(x) ∈ L2(Ω), there exists

one distributional solution u for problem (P). Moreover, u ∈ Lp(0, T ;D1,p
0,γ(Ω)) ∩

C0(0, T ;L2(Ω)).
Proof. Define

wn(x) =

⎧⎨
⎩
|x|−pγ if γ ≥ 0,

|x|−pγ +
1

n
if γ < 0,

fn(x, u) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Tn(|u|p−2u)

|x|p(γ+1) + 1
n

if γ ≥ 0,

Tn(|u|p−2u)

|x|pγ(|x|p + 1
n )

if γ < 0.
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Let us first consider the following approximate problems:⎧⎪⎪⎨
⎪⎪⎩

(un)t − div
(
wn(x)|∇un|p−2∇un

)
= λfn(x, un), (x, t) ∈ Ω × (0, T ),

un(x, t) = 0, (x, t) ∈ ∂Ω × (0, T ),

un(x, 0) = Tn(ψ(x)), x ∈ Ω.

(Pn)

By Proposition 2.1 of section 2 and Schauder’s fixed point theorem, it is quite easy to
get existence of a solution un ∈ W 1,p

0 (Ω)∩L∞(QT ). Let us multiply (Pn) by un(x, t).
Using inequality (1.4), one obtains∫∫

QT

∂un

∂t
un +

∫∫
QT

wn(x)|∇un|p ≤ λ

∫∫
QT

fn(x, un)un

≤ λ

∫∫
QT

|un|p
|x|p(γ+1)

≤ λ

λN,p,γ

∫∫
QT

|∇un|p
|x|pγ ,

where the first integral is understood as a duality product. Since λ < λN,p,γ , we get
the estimates

‖un‖L∞(0,T ;L2(Ω)) ≤ c1,(3.1) ∫∫
QT

|∇un|p
|x|pγ dx dt ≤ c2,(3.2)

that is,

‖un‖Lp(0,T ;D1,p
0,γ(Ω)) ≤ c3.(3.3)

Therefore, there exist a function u ∈ Lp(0, T ;D1,p
0,γ(Ω)) ∩ L∞(0, T ;L2(Ω)) and a sub-

sequence (still denoted by un) such that un ⇀ u weakly in Lp(0, T ;D1,p
0,γ(Ω)) and

∗-weakly in L∞(0, T ;L2(Ω)).
Moreover, if Bε is the sphere centered in the origin with radius ε, we also have

‖un‖Lp(0,T ;W 1,p(Ω\Bε))
≤ c4(ε)(3.4)

for every ε > 0. By (Pn) we also deduce∥∥∥∥∂un

∂t

∥∥∥∥
Lp′ (0,T ;W−1,p′ (Ω\Bε))

≤ c5(ε).(3.5)

Using a compactness Aubin-type result (see, for instance, [24]), by (3.4) and (3.5) we
can assume that un → u strongly in Lp((Ωε) × (0, T )) for every ε > 0, and therefore,
up to a subsequence,

un → u a.e. and in measure in QT .(3.6)

Let us now prove that, for every ε > 0, if we define

Q
(ε)
T = (Ω \Bε) × (0, T ),

then

∇un → ∇u in measure on Q
(ε)
T .(3.7)
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To do this, we follow a technique similar to the one introduced by Boccardo and
Murat in [10]. Let us define, for h > 0, the set

Hh = Hh,m,n = {(x, t) ∈ Q
(ε)
T : |∇un −∇um| > h}.

We are going to prove that, for every δ > 0, one has measHh < δ for m and n large
enough. Then, if we set, for positive A, k,

Γ(n,A) = {(x, t) ∈ Q
(ε)
T : |∇un| > A},

Λ(k) = {(x, t) ∈ Q
(ε)
T : |un − um| > k},

D(A, k, h) = {(x, t) ∈ Q
(ε)
T : |∇un −∇um| > h,

|∇un| ≤ A, |∇um| ≤ A, |un − um| ≤ k},

then

Hh ⊂ Γ(n,A) ∪ Γ(m,A) ∪ Λ(k) ∪D(A, k, h).

For every n ∈ N, meas Γ(n,A) is small for A large enough, uniformly in n, since
|∇un|q is bounded in L1(QT ) for every q < Np/(N − γp). Indeed

∫∫
QT

|∇un|q =

∫∫
QT

|∇un|q
|x|γq |x|γq ≤

(∫∫
QT

|∇un|p
|x|γp |x|γq

) q
p
(∫∫

QT

|x|
γpq
p−q

) p−q
p

,

(3.8)

and the last integral is finite. Moreover, by (3.6), for every fixed k, meas Λ(k) is small
if n, m are large enough. We now consider the set D(A, k, h). By multiplying by
ϕ(x)Tk(un − um) the equations satisfied by un and um, respectively, where ϕ(x) ∈
C∞

0 (Ω), ϕ(x) ≡ 0 for |x| ≤ ε/2, and ϕ(x) ≡ 1 for |x| ≥ ε, one obtains, since the
integral involving the time-derivative is positive,∫∫

Q
(ε/2)
T

|∇un|p−2∇un − |∇um|p−2∇um

|x|pγ ∇Tk(un − um)ϕ(x)

(3.9)

≤ λk

∫∫
Q

(ε/2)
T

|un|p−1 + |um|p−1

|x|p(γ+1)
+ k

∫∫
Q

(ε/2)
T

|∇un|p−1 + |∇um|p−1

|x|pγ |∇ϕ|.

Using Hölder’s inequality, (1.4), and (3.3), one checks that the right-hand side of (3.9)
is bounded by c6k, where c6 is a constant which only depends on λ, ε, p, N . Since
the left-hand side is greater than

ε−pγ

∫∫
Q

(ε)
T ∩{|un−um|≤k}

(
|∇un|p−2∇un − |∇um|p−2∇um

)
· ∇(un − um),

we have proved that this last integral is small (uniformly in n and m) if k is sufficiently
small. Observe now that by the monotonicity and continuity of |ξ|p−2ξ, for every
h > 0, there exists µ > 0 such that

D(A, k, h) ⊂ G(A, k, µ) = {(x, t) ∈ Q
(ε)
T : |∇un| ≤ A, |∇um| ≤ A, |un − um| ≤ k,

(|∇un|p−2∇un − |∇um|p−2∇um) · ∇(un − um) > µ}.
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It follows that

measD(A, k, h)≤ 1

µ

∫∫
Q

(ε)
T ∩{|un−um|≤k}

(
|∇un|p−2∇un−|∇um|p−2∇um

)
·∇(un−um),

so that meas D(A, k, h) is small (uniformly in n and m) if k is sufficiently small. This
proves (3.7). We can now pass to the limit in (Pn) in the sense of distributions.
Indeed, if we multiply (Pn) by ϕ(x, t) ∈ C∞

0 (QT ), we obtain

−
∫∫

QT

un
∂ϕ

∂t
+

∫∫
QT

|∇un|p−2∇un

|x|pγ ∇ϕ = λ

∫∫
QT

Tn

(
|un|p−2un

|x|p(γ+1)

)
ϕ.(3.10)

One can easily pass to the limit in each term using the convergences (3.6) and (3.7),
the estimates (3.1) and (3.3), the inequality (1.4), and Vitali’s theorem.

3.2. The case λ > λN,p,γ , p ≤ 2: Global existence. In this section we will
suppose λ > λN,p,γ and p ≤ 2. We will show the existence of solutions with different
behaviors (see Theorems 3.3, 3.6, and 3.8 in subsections 3.2.1, 3.2.2, and 3.2.3 below),
depending on the range for the parameters γ and p.

More precisely, we will find solutions which become weaker and weaker (from the
point of view of regularity) as γ and p increase (see Figure 1.1).

First, let us prove the following lemma which will be useful in what follows. It
gives the existence of self-similar solutions S(x, t) of the equation in problem (P) for
this range of the parameters.

Lemma 3.2. If λ > λN,p,γ and p < 2, the function

S(x, t) = A ·
(

t

|x|p(γ+1)

) 1
2−p

,(3.11)

where A = A(λ, γ) > 0, is such that

Ap−2 =
1

(2 − p)[(p− 1)δp − (N − p(γ + 1))δp−1 + λ]
and δ =

p(γ + 1)

2 − p
(3.12)

satisfy the following:

1. If γ + 1 < N(2−p)
2p , then S(·, t) ∈ D1,p

γ (Ω) and verifies (P) in the sense of
distributions.

2. If N(2−p)
2p ≤ γ + 1 < N(2−p)

p , then

(i) S(·, t) ∈ Lq(Ω) for every q such that 1 < q < N(2−p)
p(γ+1) ;

(ii) ∇S(·, t) ∈ Lq1(Ω) for every q such that 0 < q1 < N(2−p)
2+pγ ;

(iii) ∇S(·, t) ∈ Lq
γ(Ω) for every q such that 0 < q < N(2−p)

2(γ+1) ;

(iv) |∇S(·,t)|p−1

|x|pγ , S(·,t)p−1

|x|p(γ+1) ∈ L1(Ω);

(v) S solves (P) in the sense of distributions.

3. If N (2−p)
p ≤ (γ + 1) < N

p , then S solves (P) in D′(RN \ {0} × (0,∞)) (and

in some weighted Sobolev spaces that will be made precise later).
Proof. We start by looking for solutions of (P) of the form

S(x, t) = tαf(r), with r = |x|.
Choosing the exponent α = 1/(2−p), one can cancel the variable t from the equation,
getting the following ordinary differential equation for f(r):

αf = (p− 1)r−pγ |f ′|p−2f ′′ + r−(pγ+1)(N − (pγ + 1))|f ′|p−2f ′ + λr−p(γ+1)|f |p−2f.

(3.13)
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Next we look for solutions f(r) of the form

f(r) = Ar−δ, A > 0.

It is easy to check that if we choose δ as in (3.12), we can cancel the terms involving
powers of r in (3.13), getting solutions of the form (3.11), provided the constant A is
defined as in (3.12) and is positive. This last assertion is true if

λ >

(
p(γ + 1)

2 − p

)p

(s− 1) = µp,γ ,

where

s =
N(2 − p)

p(γ + 1)
.

Let us observe that the critical value λN,p,γ can be rewritten as

λN,p,γ =

(
p− 2 + s

2 − p
(γ + 1)

)p

.

Moreover, if we regard the constants λN,p,γ and µN,p,γ as functions of the variable s,

λN,p,γ(2) = µN,p,γ(2), λ′
N,p,γ(2) = µ′

N,p,γ(2), λ′′
N,p,γ(s) > 0 for s ≥ 2 − p,

which implies λN,p,γ ≥ µN,p,γ , since s > 2 − p. Therefore, for λ ≥ λN,p,γ we have
A > 0, and we obtain the existence of a positive solution S(x, t). The regularity of S
stated in the lemma is an easy calculation from the explicit expression of S. It is also
easy to see that, if γ + 1 < N(2 − p)/p, then S(x, t) is a solution of (P) in the sense
of distributions.

We can summarize the results about S for 1 < p < 2 as follows.

(a) If γ+1< N(2−p)
2p , S(x, t) is an energy solution; i.e., S(x, t)∈Lp(0, T ;D1,p

0,γ(Ω))∩
C0(0, T ;L2(Ω)).

(b) If N(2−p)
2p ≤ γ + 1 < N(2−p)

p , S(x, t) is an entropy solution (see Definition

3.5 in subsection 3.2.2).

(c) If N(2−p)
p ≤ γ + 1 < N

p , S(x, t) is a very weak solution (see Theorem 3.8,

below).
We will prove that the regularity of the self-similar solution gives the behavior of

the solutions for the initial value problem in each interval of the parameters. Notice
that behavior means that, if 1 < p < 2, then, for all γ ∈ (−∞, N−p

p ), the spectral
instantaneous and complete blow-up as in Baras–Goldstein does not occur. Namely,
there exist solutions with different meanings for all λ.

Let us point out that, if p = 2, all the previous critical values collapse to 1+γ = 0,
and we will find that for 1 + γ ≤ 0 there exist solutions in the energy sense. Note
that in this case, by linearity, we obtain global solutions. Hence, also in this case, the
spectral instantaneous and complete blow-up does not occur.

Moreover, if p > 2 and 1+γ ≤ 0, an argument of comparison allows us to conclude
that there exists at least a local (in time) solution.

The remaining question about the behavior in the case p ≥ 2, N
p > 1 + γ > 0 will

be discussed in section 4.
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3.2.1. The case λ > λN,p,γ , p ≤ 2, γ + 1 < N(2 − p)/(2p): Global
existence of solutions with finite energy.

Theorem 3.3. If λ > λN,p,γ , 1 < p ≤ 2, γ + 1 < N(2−p)
2p , ψ(x) ∈ L2(Ω), then

there exists a distributional solution u of problem (P) such that

u ∈ Lp(0, T ;D1,p
0,γ(Ω)) ∩ L∞(0, T ;L2(Ω)).

Proof. Let us consider the approximate problems (Pn) defined in the proof of
Theorem 3.1. Using un(x, t) as test function in (Pn), we get

1

2

∫
Ω

u2
n(x, τ) dx +

∫∫
Qτ

|∇un|p
|x|pγ ≤ λ

∫∫
Qτ

|un|p
|x|p(γ+1)

− 1

2

∫
Ω

ψ2(x) dx.

If p < 2, one has∫∫
Qτ

|un|p
|x|p(γ+1)

≤
∫∫

Qτ

u2
n + c1T

∫
Ω

dx

|x|2p(γ+1)/(2−p)
,

where c1 = c1(p). The last integral is finite by the hypotheses on γ. If p = 2, then
necessarily γ + 1 < 0, and therefore∫∫

Qτ

|un|p
|x|p(γ+1)

≤ c2

∫∫
Qτ

u2
n,

with c2 = c2(Ω, γ). In both cases, by Gronwall’s lemma, we obtain the estimates
(3.1)–(3.3), and we can conclude the proof exactly as for Theorem 3.1.

Remark 3.4. Note that actually, in the proof of this theorem, λ can be any real
number, since the principal part of the operator is never used to obtain estimates.

3.2.2. The case λ > λN,p,γ , p ≤ 2, N(2−p)/(2p) < γ +1 < N(2−p)/p:
Global existence of entropy solutions. We will specify the sense in which we
consider solutions in this case.

Definition 3.5. Assume that ψ ∈ L1(Ω). We say that u ∈ C([0, T ];L1(Ω)) is

an entropy solution to problem (P) if |u|(p−1)

|x|p(γ+1) ∈ L1(QT ), Tk(u) ∈ Lp(0, T ;D1,p
0,γ(Ω))

for all k > 0, and

∫
Ω

Θk(u(T ) − v(T )) dx +

∫ T

0

〈vt, Tk(u− v)〉 dt +

∫∫
QT

|∇u|p−2

|x|pγ ∇u · ∇(Tk(u− v))

≤
∫

Ω

Θk(ψ − v(0)) dx + λ

∫∫
QT

|u|p−2u

|x|p(γ+1)
Tk(u− v)

(3.14)

for all k > 0 and v ∈ Lp((0, T ),D1,p
0,γ(Ω)) ∩ L∞(QT ) ∩ C([0, T ];L1(Ω)) such that

vt ∈ Lp′
((0, T );D−1,p′

−γ (Ω)), where Θk is given by

Θk(s) =

∫ s

0

Tk(t)dt.(3.15)

For a general definition and basic properties of entropy solutions, see, for instance,
the references [9], [23], and [22].
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Theorem 3.6. If λ ≥ λN,p,γ , 1 < p < 2, N(2−p)
2p ≤ γ + 1 < N(2−p)

p , while the

initial datum ψ(x) satisfies

ψ ∈ Lq(Ω) for every q such that 1 < q <
N(2 − p)

p(γ + 1)
,

then there exists a distributional solution u of problem (P) such that

u ∈ L∞(0, T ;Lq(Ω)) for every q such that 1 < q <
N(2 − p)

p(γ + 1)
,(3.16)

|∇u|q1
|x|γq1 ∈ L1(QT ) for every q1 such that 0 < q1 <

N(2 − p)

2(γ + 1)
,(3.17)

|∇u|p−1

|x|pγ ,
up−1

|x|p(γ+1)
∈ L1(QT ).(3.18)

Moreover, u is an entropy solution to problem (P).
Proof. Once again, we consider the approximate problems (Pn), and we multiply

them by the test function Φ(un) = [(1 + |un|)1−µ − 1] signun, with µ ∈ (0, 1) to be
chosen hereafter. If we define

Ψ(s) =

∫ s

0

Φ(σ) dσ =
(1 + |s|)2−µ − 1

2 − µ
− |s|,

we have

Ψ(s) ≥ c1(µ)|s|2−µ − c2(µ).(3.19)

Therefore,

∫
Ω

Ψ(u(x, τ)) dx + (1 − µ)

∫∫
Qτ

|∇un|p
|x|γp

1

(1 + |un|)µ

≤
∫

Ω

Ψ(ψ(x)) dx + λ

∫∫
Qτ

|un|p−1

|x|p(γ+1)
(1 + |un|)1−µ(3.20)

≤
∫

Ω

Ψ(ψ(x)) dx + c3

∫∫
Qτ

|un|p−µ + 1

|x|p(γ+1)
,

where c3 depends on λ, µ, p. Note that Ψ(ψ) is integrable by the hypothesis on the
initial datum. Since p < 2, we can estimate the last integral as

∫∫
Qτ

|un|p−µ + 1

|x|p(γ+1)
≤ c4

∫∫
Qτ

|un|2−µ + c5

∫∫
Qτ

1

|x|p(γ+1)(2−µ)/(2−p)
,(3.21)

where c4 and c5 depend on µ and p. Now we choose µ in such a way that

2 − (2 − p)N

p(γ + 1)
< µ < 1.(3.22)
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This implies that the last integral in (3.21) converges. Using (3.19)–(3.22) and Gron-
wall’s lemma, we obtain the following estimates:

‖un‖L∞(0,T ;Lq(Ω)) ≤ c6 for every q such that 1 < q <
(2 − p)N

p(γ + 1)
,(3.23) ∫∫

QT

|∇un|p
|x|γp

1

(1 + |un|)µ
≤ c7 for every µ such that (3.22) holds,(3.24)

∫∫
QT

|∇un|q1
|x|γq1 ≤ c8 for every q1 such that 0 < q1 <

(2 − p)N

2(γ + 1)
,(3.25)

∫∫
QT

|un|p−µ

|x|p(γ+1)
≤ c9 for every µ such that (3.22) holds.(3.26)

Indeed,

∫∫
QT

|∇un|q1
|x|γq1 ≤

(∫∫
QT

|∇un|p
|x|γp

1

(1 + |un|)µ

)q1/p(∫∫
QT

(1 + |un|)µq1/(p−q1)

)(p−q1)/p

.

The estimate (3.25) follows from (3.24) and (3.22).
We now show that the sequence {un} satisfies

∫∫
QT

|un|(p−1)r

|x|p(γ+1)
≤ c10 for all r such that 1 ≤ r <

2 − p

p− 1

[
N

p(γ + 1)
− 1

]
,(3.27)

∫∫
QT

|∇un|(p−1)s

|x|pγ ≤ c11 for all s such that 1 ≤ s <
(N − pγ)(2 − p)

(p− 1)(2 + pγ)
.(3.28)

Inequality (3.27) follows from (3.26) and (1.4), while (3.28) follows easily from (3.25).
We can now pass to the limit in the distributional formulation, as we have done in the
proof of Theorem 3.1, using the estimate in Lq1(0, T ;W 1,q1(Ω \ Bε)), which follows
from (3.17), for every ε > 0.

The function u is an entropy solution. Indeed, it is easy to prove (taking Tk(un) as
test function in (Pn)) that Tk(un) is bounded in Lp(0, T ;D1,p

0,γ(Ω)) and (using Vitali’s

theorem and (3.28)) that fn(x, un) converges to up−1

|x|p(γ+1) strongly in L1(QT ).

Then, if we take Tk(un − v) as test function in (Pn), with v as in Definition 3.5,
we can easily pass to the limit and get the result with the same techniques as in
[22].

Remark 3.7. As far as the sharpness of the regularity of the solutions found in
Theorem 3.6, let us observe that any function of the form St0(x, t) = S(x, t + t0),
where S is defined by (3.11), is a solution in the distribution sense of problem (P),
with initial data ψ(x) = S(x, t0), and its regularity is exactly the one we quoted in
Theorem 3.6.

3.2.3. The case λ > λN,p,γ , p ≤ 2, N(2−p)/(p) < γ +1 < N/p: Global
existence of very weak solutions. We point out that for every t > 0 the singular
solution S(x, t) is continuous with respect to t with values in L2

−αp/2(Ω) for every α
such that

α >
2(γ + 1)

2 − p
− N

p
.(3.29)
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This, together with the previous estimates on S, suggests the definition of the following
space:

Yα = {u ∈ Lp(0, T ;D1,p
0,γ−α(Ω)) ∩ C0([0, T ];L2

−αp
2

(Ω)) : u′ ∈ Lp′
(0, T ;D−1,p′

−β (Ω))},
(3.30)

where

β = γ + α(p− 1).(3.31)

The following theorem specifies the meaning of a very weak solution.

Theorem 3.8. Assume that λ > λN,p,γ , 1 < p < 2, N(2−p)
p ≤ γ + 1 < N

p , and

that the initial data ψ(x) belongs to L2
−αp

2
(Ω) for some α satisfying (3.29). Then there

exists a function u ∈ Yα which is a distributional solution of (P) away from the origin
(that is, in D′((Ω \ {0}) × (0, T ))). Moreover, u is a solution of (P) in the following
sense:

−
∫ τ

0

〈v′, |x|αpu〉 dt +

∫
Ω

u(τ)v(τ)|x|αp dx−
∫

Ω

ψv(0)|x|αp dx
(3.32)

+

∫∫
Qτ

|∇u|p−2∇u · ∇(v|x|αp)
|x|γp dx dt =

∫∫
Qτ

|u|p−2uv|x|αp
|x|(γ+1)p

dx dt

for every τ ∈ [0, T ] and for every v ∈ Yα.
Proof. Step 1: A priori estimate. Let un be a solution of problem (Pn). We use

|x|αpun(x, t) as test function in (Pn). Then, by Young’s inequality,

∫
Ω

u2
n(x, T )|x|αp dx +

∫∫
QT

|∇un|p|x|(α−γ)p

≤ c1

∫∫
QT

|∇un|p−1|x|(α−γ)p−1 + λ

∫∫
QT

|un|p
|x|p(γ+1−α)

+
1

2

∫
Ω

ψ2(x)|x|αp dx

≤ 1

2

∫∫
QT

|∇un|p|x|(α−γ)p + c3

∫∫
QT

|un|2|x|αp + c3

∫
Ω

|x|p(α−
2(γ+1)
2−p )

+
1

2

∫
Ω

ψ2(x)|x|αp dx.

Under the hypotheses on α and on the initial datum, the last two integrals are finite.
Therefore, we can use Gronwall’s lemma to conclude that

un is bounded in Lp(0, T ;D1,p
0,γ−α(Ω)) ∩ C0([0, T ];L2

−αp
2

(Ω)).

By (Pn), one can easily check that

u′
n is bounded in Lp′

(0, T ;D−1,p′

−β (Ω)).

Step 2: Passage to the limit. By weak convergence, and following the same ar-
gument as in the proof of Theorem 3.1 for the pointwise convergence of the gra-
dients, we obtain a function u ∈ Lp(0, T ;D1,p

0,γ−α(Ω)) ∩ L∞(0, T ;L2
−αp

2
(Ω)), with
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u′ ∈ Lp′
(0, T ;D−1,p′

−β (Ω)), such that

un ⇀ u weakly in Lp(0, T ;D1,p
0,γ−α(Ω)),

un ⇀ u ∗-weakly in L∞(0, T ;L2
−αp

2
(Ω)),

∇un → ∇u almost everywhere in QT ,

un(·, τ) → u(·, τ) a.e. in Ω and weakly in L2
−αp

2
(Ω) for every τ ∈ [0, T ].

Using these convergences, one can take |x|αpv as test function in (Pn) and pass to the
limit as n → ∞, obtaining the weak formulation (3.32). Since the functions of the
form |x|αpv include smooth test functions in D(QT ) which are zero in a neighborhood
of the origin, we have also proved that u is a solution in the distributional sense far
from the origin.

We now prove that u ∈ C0([0, T ];L2
−αp

2
(Ω)). According to the uniform estimates

for the approximate solutions, we find that un(·, t) is an equicontinuous sequence in
L2
−αp

2
(Ω)). By the Ascoli–Arzelà lemma, we conclude.

Remark 3.9.

(i) The previous result, in the case where γ = 0, improves the result contained
in [19] and specifies the meaning of the solution given in that paper; more precisely,
it gives us that the solution is in Lp(0, T ;D1,p

−α(Ω)) for some α > 2/(2 − p) −N/p.
(ii) If we define the operator Γv = |x|αpv, then Γ is an isomorphism from

D1,p
0,γ−α(Ω) to D1,p

0,β(Ω), where β = (p − 1)α + γ. Therefore, the weak formulation
(3.32) could be rewritten as

−
∫ τ

0

〈w′, u〉 dt +

∫
Ω

u(τ)w(τ) dx−
∫

Ω

ψw(0) dx +

∫∫
Qτ

|∇u|p−2∇u · ∇w

|x|γp dx dt

=

∫∫
Qτ

|u|p−2uw

|x|(γ+1)p
dx dt

for every τ ∈ [0, T ] and for every w ∈ Lp(0, T ;D1,p
0,β(Ω))∩C0([0, T ];L2

αp
2

(Ω)) such that

w′ ∈ Lp′
(0, T ;D−1,p′

α−γ (Ω)).
(iii) In the case where the initial data ψ(x) is nonnegative and satisfies

ψ(x) ≤ S(x, t + t0) for some positive t0,

it is possible to obtain an alternative (constructive) proof by a monotone iteration
argument, using S(x, t+t0) as a supersolution and solving, by induction, the sequence
of problems⎧⎪⎪⎪⎨

⎪⎪⎪⎩

∂un

∂t
− ∆p,γun = λTn

(
1

|x|p(γ+1)

)
up−1
n−1, (x, t) ∈ Ω × (0, T ),

un(x, t) = 0, (x, t) ∈ ∂Ω × (0, T ),

un(x, 0) = ψ(x), x ∈ Ω,

(P̃n)

with u0 ≡ 0.
(iv) The solution found in Theorem 3.10 satisfies the equation in a very weak

sense because the right-hand side of the equation does not even belong to L1.
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3.3. The case λ > λN,p,γ , p ≥ 2, γ ≤ −1: Existence for small times.
This subsection deals with existence for small values of t in the case λ > λN,p,γ , p > 2,
γ ≤ −1. The result of this subsection can be compared with the ones of section 4: an
instantaneous blow up will occur for the solutions of the approximate problems for
the same values of λ and p when γ > −1.

Theorem 3.10. If λ > λN,p,γ , p ≥ 2, γ ≤ −1, while the initial data ψ(x) satisfies
ψ(x) ∈ L∞(QT ) and ψ(x) ≥ 0, then there exist T ∗ = T ∗(N, p, γ, λ, ‖ψ‖L∞(Ω)) > 0

and a distributional solution u in QT∗ of our problem with u ∈ Lp(0, T ;D1,p
0,γ(Ω)) ∩

L∞(0, T ;L2(Ω)) for every T < T ∗. Moreover, if p = 2, T ∗ is any positive value.
Proof. Let us define the problems (P̃n) as in the previous subsection and let y(t)

be the solution of the ordinary differential equation{
y′(t) = d yp−1,

y(0) = ‖ψ‖L∞(Ω),

where

d ≥ λ sup
x∈Ω

|x|−p(γ+1).(3.33)

An immediate calculation shows the following.
(α) If p > 2, the solution is

y(t) =
‖ψ‖L∞(Ω)

(1 − (p− 2)d‖ψ‖p−2
L∞(Ω)t)

1/(p− 2)
,

which blows up in t = T ∗ = 1

(p−2)d‖ψ‖p−2

L∞(Ω)

.

(β) If p = 2, then the global solution is

y(t) = ‖ψ‖L∞(Ω)e
dt.

Since y(t) is a supersolution of (P), by the comparison principle we have

u1 ≤ u2 ≤ · · · ≤ un ≤ · · · ≤ y.

If we multiply problem (P̃n) by un
χ

(0,τ), we obtain

1

2

∫
Ω

u2
n(x, τ) dx +

∫∫
QT

|∇u|p
|x|pγ ≤ λ

∫∫
QT

|y|p−1|x|−p(γ+1) +
1

2

∫
Ω

ψ2(x) dx.

By condition (3.33),

λ

∫∫
QT

|y|p−1|x|−p(γ+1) ≤ meas Ω(y(τ) − ‖ψ‖L∞(Ω)).

Therefore, we get the estimates

‖un‖L∞(0,τ ;L2(Ω)) ≤ c1, ‖un‖Lp(0,τ ;D1,p
0,γ(Ω)) ≤ c2 for every τ < T ∗.

In the case p = 2, we can fix any T ∗ > 0 to get the same estimates. Now the conclusion
follows exactly as in the proof of Theorem 3.1.
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4. Blow-up: p > 2, N/p > (1 + γ) > 0, and λ > λn,p,γ . We consider in
this section the spectral, instantaneous, and complete blow-up in the case p > 2 and
(1 + γ) > 0. The case p = 2 has been obtained in [3] and requires a different method.
We would like to point out that in the case p > 2 a stronger result than in the linear
case is obtained. This behavior is given because even the problem with the truncated
potential blows up in finite time. We will assume that the initial data verifies that
ψ ∈ L2(Ω) and there exists δ > 0 such that ψ > 0 in Bδ(0). Notice that for the
equation

ut − ∆p,γu = 0(4.1)

and by direct calculations we can find Barenblatt-type solutions; precisely,

B(x, t) = t−Nβ(N,p,γ)

[
M − (p− 2)β(N, p, γ)

1
p−1

p(γ + 1)
ξ

p(γ+1)
p−1

] (p−2)
(p−1)

+

,(4.2)

where M is a positive arbitrary constant,

β(N, p, γ) =
1

N(p− 2) + p(γ + 1)
, and ξ =

|x|
tβ(N,p,γ)

.

This property could be understood as some kind of finite speed of propagation for
the equation with zero right-hand side. It is necessary to point out that if γ �= 0,
the equation is not invariant by translation, and then the corresponding translated
Barenblatt functions are not solutions to the equation.

The lack of homogeneity in (4.1) provides the following weak Harnack inequality.
Lemma 4.1. Let u be a nonnegative weak solution to (4.1), and assume that

u(x0, t0) > 0 for some (x0, t0) ∈ ΩT ; then there exists B(N, p, γ) > 1 such that, for
all θ, ρ > 0 satisfying B4ρ(x0) × (t0 − 4θ, t0 + 4θ) ⊂ ΩT , we have

1

|Bρ(x0)|

∫
Bρ(x0)

u(x, t0)dx

(4.3)

≤ B

⎡
⎣(ρp(γ+1)

θ

) 1
p−2

+

(
θ

ρp(γ+1)

) N
p(γ+1)

(
inf

Bρ(x0)
u(., t0 + θ)

) λγ
p(γ+1)

⎤
⎦ ,

where λγ = N(p− 2) + p(γ + 1) = 1
β(N,p,γ) .

The proof is similar to the one by DiBenedetto in [17] for the case γ = 0. The
details can be found in [1] in the case (1 + γ) > 0, where some counterexamples to
the Harnack inequality if (1 + γ) ≤ 0 are shown.

We consider problem (P), and we make the following assumptions:
(H1) p > 2, 0 < 1 + γ < N/p, and λ > λn,p,γ .
(H2) ψ ∈ L∞(Ω), ψ(x) ≥ 0, and moreover, there exists ρ, δ > 0 such that ψ(x) > δ

for every x ∈ Bρ(0).
We will prove that problem (P) has no solution. We start by studying, for n ∈ N,

the approximate problems⎧⎪⎨
⎪⎩

(un)t − ∆p,γun = λWn(x)|un|p−2un in QT ,

u(x, t) = 0 on ∂Ω × (0, T ),

u(x, 0) = ψ(x) in Ω,

(4.4)
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where Wn(x) = Tn( 1
|x|p(γ+1) ). Note that for every fixed n, problem (4.4) has a solution

at least for small times (depending on n and λ), as one can easily see using a convenient
supersolution independent of x.

By separation of variables we look for solutions of (4.4) of the form Φ(x, t) =
Θ(t)X(x), to use as a subsolution. The equation becomes

Θ′X − Θp−1∆p,γX = λWn(x)Θp−1Xp−1.

We take the Θ(t) solution of {
Θ′(t) = µΘp−1(t),
Θ(0) = A,

(4.5)

that is,

Θ(t) =
A

[1 − (p− 2)µAp−2t]1/(p−2)

with µ,A > 0 to be chosen. Note that limt→τ Θ(t) = ∞ for τ = 1
µ(p−2)Ap−2 .

On the other hand, X(x) must solve the elliptic problem{−∆p,γX = λWn(x)Xp−1 − µX in Ω,

X(x) = 0 on ∂Ω.
(4.6)

Defining αX = Y with µαp−2 = λ the problem above becomes{−∆p,γY = λ(Wn(x)Y p−1 − Y ) in Ω,

Y (x) = 0 in ∂Ω.
(4.7)

Problem (4.7) fails in the hypotheses for bifurcation from infinity as in [6]; see [16]
for details.

Let λ1(n) be the first eigenvalue for the problem{−∆p,γϕ = λWn(x)|ϕ|p−2ϕ in Ω,

ϕ(x) = 0 in ∂Ω.

Then (i) λ1(n) > 0; (ii) λ1(n) is isolated and simple; (iii) the first eigenfunction does
not change sign; (iv) λ1(n) is decreasing in n, and λ1(n) ↘ λN,p,γ . The properties
(i), (ii), and (iii) are similar to the p-laplacian case and are detailed in [16]; (iv) is
easily checked following the proof for the p-laplacian in [19].

Theorem 4.2. If λ > λN,p,γ , then there exists n0 such that, for every n > n0,
there exists a bounded positive solution Y (x) to (4.7).

Proof. As λ > λN,p,γ there exists n0 such that, for n > n0, λ > λ1(n). Now
λ1(n) is the unique bifurcation point of positive solutions from infinity for problem
(4.7). Moreover, as (1 + γ) > 0, the solutions in the branch are bounded; see [16]
and [6]. Moreover, if Y > 0 is a solution to (4.7), then ‖Y ‖∞ ≥ Rn > 0 for some
constant Rn, because if a positive solution Y is such that ‖Y ‖∞ < ε, then we have
−∆p,γY ≤ λY (nεp−2 − 1) < 0, and for ε small we reach a contradiction with the
maximum principle.

As a consequence we can find a subsolution to problem (4.4) that shows the finite
time blow-up. Precisely, we have the following result.
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Lemma 4.3. Let u be a solution to problem (4.4), where λ > λ1(n) and ψ(x) > 0
in every x ∈ Ω. Then there exists T > 0 depending on the data and there exists a
subsolution Φ such that u(x, t) ≥ Φ(x, t) and limt→T Φ(x, t) = ∞ for every x ∈ Ω.

Proof. The solution u is positive and, by regularity (see [1]), is bounded for small
times. Therefore, we fix a small time τ > 0, and we look for a subsolution of the form
Φ(x, t) = X(x)Θ(t), with X(x) the solution of (4.6), and

Θ(t) = ε(1 − (p− 2)εp−2(t− τ))−1/(p−2),

with ε > 0 such that εX(x) ≤ u(x, τ). By the weak comparison principle we
conclude.

In order to show the instantaneous complete blow-up, we need to rescale the
problem, using the following property. Define

Zn(x) =
(n0

n

) 1
p−2

X

((
n

n0

) 1
p(γ+1)

x

)
.(4.8)

Then Zn solves⎧⎪⎨
⎪⎩

−∆p,γZn = λWn(x)Zp−1
n − µZn if |x| <

(n0

n

) 1
p(γ+1)

,

Zn(x) = 0 if |x| =
(n0

n

) 1
p(γ+1)

since ( n
n0

)Wn0((
n
n0

)
1

p(γ+1)x) = Wn(x). Moreover, the radius of the ball goes to zero
and ‖Zn‖∞ → 0 as n → ∞. Therefore, for prescribed R, η > 0 we can choose n such
that (n0

n

) 1
p(γ+1)

< R, Zn(x) ≤ η on BR.(4.9)

Theorem 4.4. Assume that (H1), (H2) hold. Then for every ε > 0 there exist
r(ε) > 0 and nε such that if un is the minimal solution to (4.4) ∀n > nε

un(x, t) ≡ +∞ for t > ε and |x| < r(ε).

Proof. Take n0 such that λ > λ1(n0). We prescribe the blow-up time T = ε and
choose µ = [(p−2)ε]−1. For such µ and n > n0, the scaled solution (4.8) to (4.4), Xn,
satisfies (4.9) with R = ρ and η = δ. Consider Θ(t) solution to (4.5) with µ as above
and A = 1. Then φn(x, t) = Θ(t)Xn(x) blows up in T = ε. By weak comparison in

the ball |x| < (n0

n )
1

p(γ+1) , the minimal solution to (4.4) blows up in T0 < ε.
We point out that in order to obtain blow-up in a prescribed small time we have to

take the index n large enough. We will use the concept of entropy solution introduced
in Definition 3.5 and a straightforward modification of the comparison arguments for
entropy solutions (see [23]).

Theorem 4.5. Assume that (H1), (H2) hold. Then problem (P) has no entropy
solution, even for small times, and moreover, if un(x, t) is the minimal solution to
(4.4), we have that limn→∞ un(x, t) = +∞ for all (x, t) ∈ Ω × (0,∞).

Proof. By contradiction, assume that there exists an entropy solution u(x, t) > 0
of problem (P). Then u is a supersolution to problem (4.4) for all n. As a consequence
the minimal solution to (4.4) satisfies un(x, t) ≤ u(x, t); hence u(x, t) blows up at least
in the time in which un blows up, so we conclude.
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By using Theorem 4.4 we obtain a region E∞ such that

E∞ ⊃ {|x| < r(t)} × (0,∞),

such that

lim
n→∞

un(x, t) = +∞ for all (x, t) ∈ E∞.

Next we use the Harnack inequality (4.3), assume that there exists a point (x0, t0) ∈
Ω × (0,∞) such that 0 ≤ un(x0, t0) ≤ M < ∞, and call

ρ(x0, t0) = dist{x0, ∂Ω} > 0.

Then, if Br(x0) × {t = t1} ∩ E∞ has N -dimensional positive measure for some r <
ρ(x0, t0) and t1 < t0, we consider the problem⎧⎪⎨

⎪⎩
(vn)t − ∆p,γvn = 0 in Br(x0) × (t1, t0),

vn(x, t) = 0 on ∂Br(x0) × (t1, t0),

vn(x, t1) = un(x, t1) in Br(x0);

(4.10)

then vn(x, t) ≤ un(x, t), and this is a contradiction to the Harnack inequality (4.3).
If for all r < ρ(x0) and all t1 < t0, |Br(x0) × {t = t1} ∩ E∞| = 0, then for all δ > 0
we can find in a finite number of steps a point (x1, t0 − δ) ∈ Ω × (0, t0) such that

|Br(x0) × {t = t1} ∩ E∞| > 0,

and then we reach a contradiction as above.
Remark 4.6. Notice that this result is stronger, in some sense, than the result by

Baras and Goldstein (see [7]) for the heat equation; if p > 2, even the solution to the
equation with truncated potential blows up in finite time.

Next we will prove that even if we truncate the whole nonlinearity, we find spectral
instantaneous complete blow-up. More precisely, we have the following result.

Theorem 4.7. Consider the truncated problem⎧⎪⎨
⎪⎩

(vn)t − ∆p,γvn = λWn(x)Tn(vp−1
n ) in Ω × R

+,

v(x, t) = 0 on ∂Ω × R
+,

v(x, 0) = ψ(x) in Ω,

(4.11)

where (H1) and (H2) hold. Then

lim
n→∞

vn(x, t) = +∞ for every (x, t) ∈ Ω × R
+.

Proof. Using the same argument as in [2], we find that if B4r(0) ⊂ Ω, then

lim
n→∞

∫
Br(0)

vn(x, t) dx = +∞ for every t > 0.

Then by the Harnack inequality and a strategy which is similar to the one in Theorem
4.5, we obtain the complete blow-up.
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Remark 4.8.

(i) An alternative method to the one described above can be seen in [1]. The
separation of variables gives a more transparent view of the behavior but uses in a
strong way the presence of exactly two homogeneities. In the linear case (see [3]), or
if the second member is not eigenvalues-like (see [2]), different arguments are needed.

(ii) If instantaneous and complete blow-up happens without hypothesis (H2),
this seems to be an open problem. If γ = 0, we can take as a subsolution a convenient
scaled and translated Barenblatt function that allows us to conclude that there exists
a T ∗ > 0 such that for t > T ∗ the same result as in Theorem 4.7 holds.

5. Behavior of solutions in the case 1 < p < 2 and λ < λN,p,γ . In
this section we will try to explain how the optimal constant in the Hardy inequality
becomes the threshold for extinction in finite time of the solution.

5.1. Finite time extinction.
Theorem 5.1. Assume that

max

{
2N

N + 2
,

2N

N + 2(γ + 1)

}
< p < 2,

λ < λN,p,γ , and ψ ∈ L2(Ω). Then there exists a constant

T ∗ = T ∗(N, p, γ, λ,Ω) ≤ c1(N, p, γ, λ,Ω)‖ψ‖2−p
L2(Ω)

such that any solution of problem (P) satisfies

u(·, t) ≡ 0 for t ≥ T ∗.(5.1)

Proof. Taking u as a test function in (P), and using inequalities (1.3) and (1.7),
we get

1

2

d

dt

∫
Ω

u2(t) dx +
1

SN,p,γ

(
1 − λ

λN,p,γ

)[∫
Ω

|u(t)|p∗

|x|γp∗ dx

] p
p∗

≤ 0.

Using the assumptions on p and γ, by Hölder’s inequality we obtain

∫
Ω

u2(t) dx ≤
[∫

Ω

|u(t)|p∗

|x|γp∗ dx

] 2
p∗ [∫

Ω

|x|
2γp∗
p∗−2 dx

] p∗−2
γp∗

≤ c1

[∫
Ω

|u(t)|p∗

|x|γp∗ dx

] 2
p∗

,

where c1 = c1(N, p, γ,Ω) is a positive constant. Therefore, setting

φ(t) =

∫
Ω

u2(t) dx,

one has

φ′(t) + c2[φ(t)]
p
2 ≤ 0,

with c2 > 0. Since p < 2, this implies

φ(t) ≤
(
[φ(0)]

2−p
2 − c3t

) 2
2−p

+
,

from which the statement follows.
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Theorem 5.2. Assume that

γ ≥ 0, 1 < p <
2N

N + 2
,

λ < ηN,p,γ =

(
N(2 − p)

p
− 1

)(
[N − p(γ + 1)]p

(2 − p)(N − p)

)p

,

and ∫
Ω

|ψ|
N(2−p)

p dx < ∞.

Then there exists a constant

T ∗ = T ∗(N, p, γ, λ,Ω) ≤ c1(N, p, γ, λ,Ω)‖ψ‖2−p

L
N
p

(2−p)
(Ω)

such that any solution of problem (P) found by approximation as in Theorem 3.1
satisfies

u(·, t) ≡ 0 for t ≥ T ∗.(5.2)

Proof. We take vn = |un|α−2un as test function in (Pn), with α ≥ 2 to be chosen
hereafter. We obtain

1

α

d

dt

∫
Ω

uα
n(t) dx + (α− 1)

∫
Ω

|∇un(t)|p|un(t)|α−2

|x|γp dx = λ

∫
Ω

|un(t)|α−(2−p)

|x|(γ+1)p
dx.

Since

∫
Ω

|∇un(t)|p|un(t)|α−2

|x|γp dx =

(
p

α− (2 − p)

)p ∫
Ω

∣∣∣∇(
|un(t)|

α−(2−p)
p

)∣∣∣p
|x|γp dx

and, by Hardy’s inequality,

∫
Ω

|un(t)|α−(2−p)

|x|(γ+1)p
dx ≤ λ−1

N,p,γ

∫
Ω

∣∣∣∇(
|un(t)|

α−(2−p)
p

)∣∣∣p
|x|γp dx,

we obtain

1

α

d

dt

∫
Ω

uα
n(t) dx + c1

∫
Ω

∣∣∣∇(
|un(t)|

α−(2−p)
p

)∣∣∣p
|x|γp dx ≤ 0,

where

c1 = (α− 1)

(
p

α− (2 − p)

)p

− λ

(
p

N − p(γ + 1)

)p

> 0.

Therefore, by (1.7),

1

α

d

dt

∫
Ω

uα
n(t) dx + c1SN,p,γ

[∫
Ω

|un(t)|
[α−(2−p)]p∗

p

|x|γp∗ dx

] p
p∗

≤ 0.(5.3)
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Choosing

α =
N(2 − p)

p
,

the two powers of un become equal. Since γ ≥ 0, if we define

φ(t) =

∫
Ω

uα
n(t) dx,

we obtain

φ′(t) + c2[φ(t)]
p
p∗ ≤ 0,

where c2 = c2(N, p, γ,Ω) > 0, and we obtain the result for the approximate solutions
un as in the previous theorem. The result on u follows by taking the limit on n.

Remark 5.3. Note that ηN,p,γ = λN,p,γ for p = 2N
N+2 .

Theorem 5.4. Assume that

0 < γ + 1 <
N(2 − p)

2p
,

(5.4)

λ < µN,p,γ =

(
N(2 − p)

p(γ + 1)
− 1

)(
p(γ + 1)

2 − p

)p

,

and that there exists

ᾱ >
(2 − p)N

p(γ + 1)

such that ψ ∈ Lᾱ(Ω). Then there exists a constant

T ∗ = T ∗(N, p, γ, λ,Ω, ᾱ, ψ) ≤ c1(N, p, γ, λ,Ω, ᾱ)‖ψ‖2−p
Lα(Ω)

such that any solution of problem (P) found by approximation as in Theorem 3.1
satisfies

u(·, t) ≡ 0 for t ≥ T ∗.(5.5)

Proof. We use |un|α−2un as a test function in (Pn), where α is such that

(2 − p)N

p(γ + 1)
< α ≤ ᾱ(5.6)

and

λ < (α− 1)

(
p(γ + 1)

α− (2 − p)

)p

.(5.7)

Note that this is always possible, since assumption (5.4) implies that (5.7) is true for

α = (2−p)N
p(γ+1) . As in the previous proof, we obtain inequality (5.3), where the constant

c1 is positive by (5.7). Now observe that condition (5.6) implies

α >
N(2 − p)

p
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and

γαpp∗

p∗[α− (2 − p)] − αp
> −N ;

therefore, by Hölder’s inequality,

∫
Ω

uα
n(t) dx ≤

[∫
Ω

|x|
γαpp∗

p∗[α−(2−p)]−αp dx

] p∗[α−(2−p)]−αp
p∗[α−(2−p)]

[∫
Ω

|un(t)|
[α−(2−p)]p∗

p

|x|γp∗ dx

] αp
p∗[α−(2−p)]

≤ c2(N, p, γ, α,Ω)

[∫
Ω

|un(t)|
[α−(2−p)]p∗

p

|x|γp∗ dx

] αp
p∗[α−(2−p)]

.

Hence one has

d

dt

∫
Ω

uα
n(t) dx + c3

[∫
Ω

uα
n(t) dx

]α−(2−p)
α

≤ 0,

with c3 > 0. Since α−(2−p)
α < 1, we conclude as before.

Remark 5.5. Note that condition 0 < γ + 1 < N(2−p)
2p in Theorem 5.4 means

that 1 < p < 2N
N+2(γ+1) , which implies, for γ ≥ 0, that p also satisfies 1 < p < 2N

N+2 .

Therefore, we can compare the results of Theorems 5.2 and 5.4 in the region where
1 < p < 2N

N+2 and γ ≥ 0. An easy calculation shows that in that region we have
ηN,p,γ < µN,p,γ , where ηN,p,γ and µN,p,γ are given in the statements of Theorems 5.2

and 5.4, respectively. Since N(2−p)
p > N(2−p)

p(γ+1) , Theorem 5.4 gives a better result than

Theorem 5.2 in the above region. Let us also point out that the value µN,p,γ is the
same value we find in Lemma 3.2, which gives the esistence of self-similar solutions of
the equation in problem (P).

5.2. Nonextinction results. If p > 2 and ψ verifies the hypothesis (H2), by
using the Barenblatt-type functions one can easily prove that there is no extinction
in finite time. Indeed, for any fixed time T > 0, consider the function B(x, t + 1),
where B is the function defined in (4.2). One can easily check that, if the constant M
in (4.2) is sufficiently small, then this function is a subsolution of problem (P). Since
T is arbitrary, the result follows.

In this section we will prove that solutions to problem (P) with 1 < p < 2,
γ + 1 ≥ 0, and λ > λn,p,γ are nonzero for all time. The key of the proof is the
construction of a nonnegative subsolution to the problem⎧⎪⎪⎪⎨

⎪⎪⎪⎩
ut − ∆p,γ(u) = λ

|u|p−2u

|x|(γ+1)p
, (x, t) ∈ Ω × (0, T ),

u(x, t) = 0, (x, t) ∈ ∂Ω × (0, T ),

u(x, 0) = 0, x ∈ Ω,

(5.8)

following the ideas in [18] (see also [19]). Consider the eigenvalue problem{
−∆p,γ(φ1) = µ1(n)Wn(x)φp−1

1 , x ∈ Ω,

u(x) = 0, x ∈ ∂Ω,
(5.9)
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where Wn(x) = min{n, |x|−(γ+1)p}. The principal eigenvalue is isolated and simple.
Moreover, it is easy to check that the sequence of principal eigenvalues, {µ1(n)}, is
decreasing, that limn→∞ µ1(n) = λn,p,γ , and that the corresponding eigenfunction φ1

has constant sign (see, for instance, [16]). In this way, if λ > λn,p,γ , there exists n0

such that for n > n0, one has λ > µ1(n). Hence, for n > n0, let Θ(t) be the positive
solution to the problem Θ′(t) = Θp−1(t), Θ(0) = 0.

Define

v(x, t) = Θ(εt)φ1(x),

where ε > 0 will be chosen later, and φ1 is a positive eigenfunction of (5.9) such that
‖φ1‖∞ = 1. We have that

vt − ∆p,γ(v)

λv(x, t)p−1
<

εφ2−p
1

λ
+

µ1(n)

λ
Wn(x);

hence, as 2 − p > 0, γ + 1 ≥ 0, and µ1(n)
λ < 1, for a suitable ε > 0 we obtain that

vt − ∆p,γ(v)

λv(x, t)p−1
< Wn(x).

Then v(x, t) is a subsolution to the truncated problem obtained from (5.8) and there-
fore to problem (5.8) with 1 < p < 2, ψ(x) ≥ 0, (1 + γ) > 0, and λ > λn,p,γ . For
the truncated equation we obtain a flat supersolution by solving the ordinary differ-
ential equation y′(t) = nλ[y(t)]p−1, 1 < p < 2, with data y(0) = a, whose solution
is y(t) = [a2−p + nλ(2 − p)t]1/(2−p). Given a T > 0 we find a value of a for which
v(x, t) < y(t) in Ω × (0, T ) and y(0) ≥ ψ(x). Iterating from v, we obtain as a conclu-
sion that in these hypotheses the minimal solution to the truncated equation of (5.8)
has no finite time extinction. And therefore the same result holds for (5.8).

Remark 5.6. If 1 + γ < 0, the weights are flat at the origin. If we use the
eigenvalue analysis as in [16], i.e., for βn = (1 + γ) − 1

n , then we define, for instance,

αn(x) =

{
|x|−pβn if x ∈ Ω ∩B1(0),

|x|−p(γ+1) if x ∈ Ω \B1(0).

In this way αn(x) ≤ |x|−p(γ+1) for all x ∈ Ω, and moreover, the eigenvalue problems⎧⎨
⎩−div

(
|∇ψ1|p−2∇ψ1

|x|γp

)
= ν1(n)αn(x)ψp−1

1 , x ∈ Ω,

u(x) = 0, x ∈ ∂Ω,
(5.10)

verify the following:
1. The principal eigenvalue is isolated and simple.
2. We can choose the corresponding eigenfunction ψ1 positive.
3. The sequence of principal eigenvalues satisfies ν1(n) ↘ λN,p,γ as n → ∞.

However, the final construction does not work.
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Abstract. This paper contains two examples related to the problem of whether the local center
manifolds of the time-t maps of a semiflow at an equilibrium point are also invariant under the
semiflow itself. An ordinary differential equation in R

2 is given to show that, for almost all choices of
the localization functions, the center manifold of the time-1 map at the origin is not locally invariant
under the flow. The second example is an abstract functional differential equation. Although a
variation-of-constants formula is not known to exist in the phase space, we prove that the classical
approach works: The semiflow can be modified outside a neighborhood of the equilibrium point so
that the center manifold of the time-t map of the modified semiflow will be locally invariant under
the original semiflow.

Key words. invariant manifold, time-t map, smoothness, modification of the nonlinearity,
Lyapunov–Perron method, abstract functional differential equation
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1. Introduction. Center manifolds play a fundamental role in the study of dy-
namical systems near nonhyperbolic equilibrium points. They were discovered by
Pliss [25] and Kelley [18] in the 1960s and later developed by many others (e.g.,
[4, 16, 27, 31]). There are essentially two methods for proving the existence of cen-
ter manifolds. The Lyapunov–Perron approach obtains the manifold as a fixed point
of a certain integral equation for flows, and of a corresponding equation with sums
for maps (e.g., [5, 8, 30, 31]). The Hadamard approach is more geometrical; it uses
the graph transform technique (see, e.g., [1, 16]). There is a very extensive litera-
ture on applications and various generalizations of the theory of center manifolds;
see [1, 4, 6, 7, 8, 9, 13, 19, 20, 32] and the references therein. For some interesting
properties of center manifolds we refer to [3, 4, 27].

In this paper we consider the time-t, t > 0, map of a smooth semiflow on a Banach
space with an equilibrium point at zero and study the problem of whether the local
center manifolds (i.e., local center-stable, center-unstable, and center manifolds) of
the time-t map are invariant with respect to the semiflow. If the answer for a given
semiflow were affirmative, then the local center manifolds of the time-t map would
also be local center manifolds of the semiflow. In particular, the problem is very
important for semiflows, for which smooth local center manifolds are not known to
exist because of certain technical difficulties, while for their time-t maps smooth local
center manifolds have been constructed (see, e.g., [13]). We note that at a hyperbolic
equilibrium point, under natural conditions it is straightforward to show that the
stable and unstable manifolds of the time-t maps are invariant with respect to the
semiflow.
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In section 3, for an ordinary differential equation in R
2, we construct a center

manifold of the time-1 map so that it is not locally invariant with respect to the
flow. In the example, the noninvariance holds for an open and dense subset of the
localization functions. It is expected that the general case is analogous, although
the calculations are specific to the example.

There is a classical approach for solving the above invariance problem (see, e.g.,
[5]): Assume that the semiflow can be extended from a small neighborhood of the
equilibrium point to a global semiflow, which is a small and globally Lipschitzian
perturbation of the linearized semiflow with a small Lipschitz constant. Then the
center manifold (if it exists) of the time-t map of the modified semiflow will be locally
positively invariant with respect to the original semiflow. In section 4 we show that the
above extendability property holds for the semiflows generated by a class of abstract
functional differential equations, for which the existence of Ck-smooth local center-
stable, center, and center-unstable manifolds was a problem for a long time since a
variation-of-constants formula in the phase space was not known. Namely, we consider
the semilinear functional differential equation

u̇(t) = ATu(t) + But + F (ut)(1.1)

in a Banach space X, where r ≥ 0, C = C([−r, 0];X) is the Banach space of continuous
mappings from [−r, 0] into X with the supremum norm, ut ∈ C is defined by ut(θ) =
u(t+ θ) for θ ∈ [−r, 0], B : C → X is a bounded linear operator, AT : D(AT ) ⊂ X →
X is the infinitesimal generator of a compact C0-semigroup of linear operators on X,
and F is Ck-smooth from an open neighborhood of 0 in C into X with F (0) = 0,
DF (0) = 0. The mild solutions of (1.1) generate a local semiflow Ψ on C. It is shown
by Faria, Huang, and Wu [13] that, for τ > r, the time-τ map Ψ(τ, ·) has Ck-smooth
local center-stable, center-unstable, and center manifolds at 0. Therefore, (1.1) is a
new example for the general method of [5] to construct smooth local center manifolds
for semiflows.

Reaction-diffusion equations with time delay are examples for (1.1). These equa-
tions have served as models for many ecology, chemistry, and biology problems [32].
A simple yet important equation is Fisher’s equation with a delayed logistic type of
reaction term

∂U(t, x)

∂t
=

∂2U(t, x)

∂x2
+ lU(t, x)[1 − U(t− r, x)], t > 0, x ∈ (0, π),(1.2)

with the Dirichlet boundary condition

U(t, 0) = U(t, π) = 0,(1.3)

where l > 0 and r > 0. It was shown for l ≤ 1 that the origin is a global attractor of
all positive solutions of (1.2), (1.3). As l exceeds 1, the origin loses its stability, and
a unique positive equilibrium Ul(x) bifurcates from the origin. By [17], the spatially
nonconstant Ul(x) is locally stable provided rlmax{Ul(x) : x ∈ [0, π]} < π/2. In
addition, for l > 1 and l − 1 small, as the delay increases and crosses some critical
values, Hopf bifurcations occur [2]. The stability of the nontrivial periodic solutions
on the center manifold arising from the first Hopf bifurcation point was stated without
a proof in [2]. Recently, Faria and Huang [12] completed the proof by applying normal
form theory from [11, 13] and Ck-smoothness of center manifolds from [13]. However,
the Ck-smooth center manifold of a time-τ map as obtained in [13] is not necessarily
invariant with respect to the semiflow (see section 3 in this paper), and thus it is not
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necessarily a Ck-smooth center manifold of the semiflow. Our result in this paper
provides the Ck-smoothness of the center manifold. This fact was used without proof
in the papers [11, 12]. We refer to [12, 32] to see how problem (1.2), (1.3) can
be written in the abstract form (1.1) with X = L2([0, π],R) after time-scaling and
translating the equilibrium Ul to the origin. Of course, the same approach works for
more general reaction-diffusion equations and different bifurcation problems.

We conclude this introduction by listing some notation. N, Z, R, and C denote
the set of nonnegative integers, integers, real, and complex numbers, respectively.

Spectra of linear operators in a Banach space E over R are defined as spectra of
complexifications. If a decomposition E = Es ⊕Ec ⊕Eu into closed linear subspaces
is given, then Esc = Es ⊕ Ec, Ecu = Ec ⊕ Eu, Esu = Es ⊕ Eu, and PrEs

denotes the
associated projection along Ecu onto Es, and similarly for PrEsc

, PrEc
, PrEu

, PrEsu
,

and PrEcu
.

By a (local) semiflow Φ on E we mean a continuous semiflow defined on an open
subset of [0,∞) × E. If the domain of Φ is [0,∞) × E, then Φ is called a global
semiflow on E. The semiflow Φ is said to be Ck-smooth on E if, for each t ≥ 0, Φ(t, ·)
is Ck-smooth from its domain into E. If I ⊂ R is an interval and y : I → E is a curve
with y(t+ s) = Φ(t, y(s)) for all s ∈ I and for all t ≥ 0 with t+ s ∈ I, then y is called
a trajectory of Φ. If x ∈ E, I ⊂ (−∞, 0] is an interval with 0 ∈ I, and y : I → E is a
trajectory of Φ with y(0) = x, then y is called a backward trajectory of Φ through x.

Let V ⊂ U ⊂ E, and let Φ be a semiflow on E. We say that V is positively
invariant with respect to the semiflow Φ relative to U if for each x ∈ V and for every
t > 0,

{Φ(s, x) : s ∈ [0, t]} ⊂ U implies {Φ(s, x) : s ∈ [0, t]} ⊂ V.

We say that V is negatively invariant with respect to Φ relative to U if for each x ∈ V
the following holds: If a backward trajectory through x exists, then there exist a
tx > 0 and a backward trajectory y : (−tx, 0] → E through x, with tx maximal, so
that for every t ∈ (0, tx),

{y(s) : s ∈ [−t, 0]} ⊂ U implies {y(s) : s ∈ [−t, 0]} ⊂ V.

V is invariant relative to U if it is both positively and negatively invariant relative
to U .

The set V ⊂ E is called locally positively invariant with respect to the semiflow
Φ if for each x ∈ V there exists tx > 0 so that Φ(s, x) ∈ V for all s ∈ [0, tx]. It is easy
to see that if V ⊂ U ⊂ E, U is open, {0} × U belongs to the domain of Φ, and V is
positively invariant with respect to Φ relative to U , then V is also locally positively
invariant with respect to Φ.

For η > 0 and a Banach space E with norm | · |, let Eη denote the Banach
space of all sequences χ = (xn)∞0 ∈ EN with supj∈N

|xj |η−j < ∞ and norm ||χ||Eη =

supj∈N
|xj |η−j .

2. Invariant manifolds for maps. In this section we recall some steps of the
construction of invariant manifolds of maps from [13, 19] with a slight modification. It
is shown in section 3 that if the map is the time-1 map of a flow, then the construction
of [13, 19] may lead to center manifolds of the map which are not locally invariant
with respect to the flow. A modified construction is used in section 4 to get smooth
invariant manifolds for a semiflow generated by an abstract functional differential
equation. This application motivates some of the particular assumptions on the map
below.
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Let f : V → E be a Ck-smooth map, k ∈ N \ {0}, on an open subset V of a
Banach space E over R, with 0 ∈ V and f(0) = 0. Let L = Df(0) and assume that
E has the decomposition

E = Es ⊕ Ec ⊕ Eu

such that Es, Ec, and Eu are closed subspaces of E, Ec and Eu are finite-dimensional,
Ec �= {0}, L(Es) ⊂ Es, L(Ec) ⊂ Ec, L(Eu) ⊂ Eu, and the spectra σs, σc, and σu

of the induced maps Ls : Es 	 x 
→ Lx ∈ Es, Lc : Ec 	 x 
→ Lx ∈ Ec, and
Lu : Eu 	 x 
→ Lx ∈ Eu are contained in compact subsets of {z ∈ C : |z| < 1},
{z ∈ C : |z| = 1}, and {z ∈ C : |z| > 1}, respectively.

Recent works of Faria, Huang, and Wu [13] and Krisztin, Walther, and Wu [19]
show that under the above conditions on f , Ck-smooth local center-stable, center-
unstable, and center manifolds of the map f can be obtained by using a discrete
version of the Lyapunov–Perron method, and by following the approach of Vander-
bauwhede and van Gils [31] for flows, and Diekmann et al. [9] for semiflows. The
construction of these manifolds starts with an extension and modification of f . As
Ec ⊕ Eu is finite-dimensional, by applying a suitable cut-off function, it is possible
to modify and extend f − L outside a small neighborhood of 0 in E to get a small
Lipschitzian rδ : E → E with a small Lipschitz constant such that rδ is Ck-smooth on
small strips containing the center-unstable space Ec ⊕ Eu. The global center-stable,
center-unstable, and center manifolds of the map gδ := L + rδ are defined as ini-
tial points of forward, backward, and global trajectories, respectively, of gδ having
a small exponential growth bound. These global manifolds are graphs of Lipschitz
continuous maps from the spaces Es ⊕ Ec, Ec ⊕ Eu, and Ec into their complemen-
tary spaces, respectively. Since the global center-unstable and center manifolds are
situated in regions where gδ is Ck-smooth, their Ck-smoothness can be also verified.
This is not surprising since analogous results for flows and semiflows were known.
The significance of [13, 19] is that the same modification works also for the infinite-
dimensional center-stable manifold, although in a different way: Only that part of
the global center-stable manifold is Ck-smooth which is in a small strip containing
Ec ⊕ Eu. This is sufficient because the local center-stable, center-unstable, and cen-
ter manifolds of the map f are obtained as intersections of the corresponding global
manifolds of gδ with suitable small neighborhoods of 0 in E.

We remark that the finite dimensionality of Ec and Eu is made to guarantee the
existence of smooth cut-off functions. This restriction is not necessary if E is a Hilbert
space, or if it is a Banach space with the “Ck extension property” (see, e.g., [26]). In
the example of section 4, dimEc < ∞ and dimEu < ∞ hold.

Set a = supλ∈σs
|λ| and b = infλ∈σu |λ|. In case Es = {0} let a = 1/2, and in

case Eu = {0} let b = 3/2. Fix an ε > 0 with a + ε < 1 and (1 + ε)k < b − ε. There
exists a norm | · | on E which is equivalent to the one given originally and satisfies
|x| = |PrEs x| + |PrEc x| + |PrEu x| and

|LPrEs
x| ≤ (a + ε)|PrEs

x|,
|LPrEc x| ≤ (1 + ε)|PrEc x|,(2.1)

|LPrEu
x| ≥ (b− ε)|PrEu

x|

for all x ∈ E.
Define r∗ : V 	 x 
→ f(x) − Lx ∈ E, and extend r∗ to a map r : E → E by

r(x) = 0 for all x ∈ E \ V . Let g = L + r.
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For q > 0 let Rq denote the set of C∞-smooth functions ρ : R → R satisfying
ρ(t) = 1 for t ≤ 1, 0 < ρ(t) < 1 for 1 < t < 2, ρ(t) = 0 for t ≥ 2, and |ρ′(t)| < q for
all t ≥ 0. Clearly, for a sufficiently large q > 0, Rq �= ∅. We fix such a q > 0, and set
R = Rq. Let R be equipped with the metric d defined by d(ρ, ζ) = supt∈R

|ρ(t)−ζ(t)|,
ρ, ζ ∈ R.

Fix a norm | · |cu on the finite-dimensional Ecu, which is C∞-smooth on Ecu \{0}.
Then || · || : E 	 x 
→ max{|PrEs

x|, |PrEcu
x|cu} ∈ R is a new norm on E which is

equivalent to | · |. Let E(δ) = {x ∈ E : ||x|| < δ} for δ > 0.
In section 3 we shall consider a set of modifications of the nonlinearity r. This

motivates the introduction of a parametrized family of modifications rδp, given below.
Let a δ∗ > 0, a set P, and, for each δ ∈ (0, δ∗] and p ∈ P, a mapping rδp : E → E

be given. Assume that the family of mappings rδp, δ ∈ (0, δ∗], p ∈ P, satisfies the
following two hypotheses:

(R1) E(δ∗) ⊂ V ; rδp|E(δ) = r|E(δ) for all δ ∈ (0, δ∗] and p ∈ P; there exists a
nondecreasing function λ : [0, δ∗] → [0, 1] with limδ→0+ λ(δ) = 0 = λ(0) such
that for every δ ∈ (0, δ∗], for every p ∈ P, and for all x, y in E,

|rδp(x)| ≤ δλ(δ),

|rδp(x) − rδp(y)| ≤ λ(δ)|x− y|.

(R2) For every δ ∈ (0, δ∗] and p ∈ P the restriction rδp|{x∈E:|PrEs x|<δ} is Ck-
smooth, and all lth derivatives, l ∈ {1, . . . , k}, of rδp|{x∈E:|PrEs x|<δ} are
bounded.

For every δ > 0 and ρ ∈ R, define r̃δρ : E → E by

r̃δρ(x) = r(x)ρ

(
|PrEcu x|cu

δ

)
ρ

(
|PrEs x|

δ

)
,

and set g̃δρ = L + r̃δρ. One can fix a δ0 > 0 so that E(3δ0) ⊂ V and that r|E(3δ0) is

Ck-smooth, and all lth derivatives, l ∈ {1, . . . , k}, of r|E(3δ0) are bounded. If δ > 0,
ρ ∈ R, and x ∈ E with |PrEs x| < δ, then

r̃δρ(x) = r(x)ρ

(
|PrEcu x|cu

δ

)
.

It follows that, for every δ ∈ (0, δ0) and ρ ∈ R, the map r̃δρ|{x∈E:|PrEs x|<δ} is Ck-
smooth, and all lth derivatives, l ∈ {1, . . . , k}, of r̃δ|{x∈E:|PrEs x|<δ} are bounded. By
an argument completely analogous to [19, Proposition II.2] there exist δ1 ∈ (0, δ0)
and a nondecreasing function λ̃ : [0, δ1] → [0, 1] with limδ→0+ λ̃(δ) = 0 = λ̃(0) so that
for each δ ∈ (0, δ1] and ρ ∈ R, and for all x, y in E,

|r̃δρ(x)| ≤ δλ̃(δ), |r̃δρ(x) − r̃δρ(y)| ≤ λ̃(δ)|x− y|.(2.2)

The construction of λ̃ (see [19, Proposition II.2]) uses the facts r(0) = 0, Dr(0) = 0
and that ρ′ is bounded on [0,∞). Since supt≥0 |ρ′(t)| < q for all ρ ∈ R, a function λ̃
can be constructed so that (2.2) is satisfied for all ρ ∈ R.

The choice δ∗ = δ1, P = R and rδρ = r̃δρ, δ ∈ (0, δ1], ρ ∈ R, clearly satisfies
hypotheses (R1) and (R2). This case is used in section 3. In section 4, the case
P = {ρ} with a fixed ρ ∈ R is applied. However, there the mappings rδρ are necessarily
different from r̃δρ in order to guarantee that the local center manifolds of the time-t
maps of the semiflow generated by (1.1) are invariant with respect to the semiflow.
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Choose the reals η0 and η1 so that 1 + ε < η0 < ηk0 < η1 < b− ε, and define

c = max

{
1

s− 1 − ε
+

1

b− ε− s
: s ∈ [η0, η1]

}
.

Assuming that a family of mappings rδp, δ ∈ (0, δ∗], p ∈ P, is given with properties
(R1) and (R2), we choose δ∗∗ ∈ (0, δ∗) so small that λ(δ∗∗) < 1/(2c) and λ(δ∗∗) <
(1 − a− ε)2/2.

In the following result we state a slightly modified version of Theorem 5.1 in [13].
Theorem 2.1. Let E, f , L, and r be defined as above. Let a δ∗ > 0, a set

P, and, for each δ ∈ (0, δ∗] and p ∈ P, a mapping rδp : E → E be given such that
hypotheses (R1) and (R2) are satisfied. Set gδp = L + rδp for δ ∈ (0, δ∗) and p ∈ P.

Then for all δ ∈ (0, δ∗∗) and p ∈ P the following holds:
(i) There is a Lipschitz continuous map w : Esc → Eu with Lipschitz constant 2

and w(0) = 0 so that the set

W cs = {z + w(z) : z ∈ Esc}

is equal to the set

{x ∈ E : There is (xn)∞0 ∈Eη0 with x0 = x, and xn+1 = gδp(xn) for all n ∈ N}.

(ii) There exist convex open neighborhoods Nsc of 0 in Esc, Nu of 0 in Eu, N ⊂ V
of 0 in E such that Nsc + Nu ⊂ E(δ), w(Nsc) ⊂ Nu, w|Nsc

is Ck-smooth,
Dw(0) = 0, and the set

W cs
loc = {z + w(z) : z ∈ Nsc}

satisfies f(W cs
loc ∩N) ⊂ W cs

loc and ∩∞
n=0f

−n(Nsc + Nu) ⊂ W cs
loc.

For a proof of Theorem 2.1 we can refer to the proof of Theorem 5.1 in [13] (see
also [19, Theorem II.1]). Our observation is that the particular modification used in
[13] can be replaced by a parametrized family of mappings. The reason for this is
that all the required smallness conditions on δ are expressed by the function λ, and
λ is independent of the choice of p ∈ P.

Remarks. 1. The set W cs = {z + w(z) : z ∈ Esc} is called the global center-stable
manifold of the map gδp, while W cs

loc is a local center-stable manifold of f . Since, for
the fixed η, w depends on the constant δ and on the parameter p, the sets W cs and
W cs

loc also depend on δ and p. This dependence on δ and p is related also to the
nonuniqueness of local center manifolds (see [3, 4]). As the function λ in hypothesis
(R1) is independent of p ∈ P, for a fixed δ > 0, the neighborhood Nsc of 0 in Esc can
be chosen independently of p ∈ P.

2. Under the same conditions as those in Theorem 2.1, analogous results can
be stated for the center-unstable and center manifolds. For the center-unstable case
we refer to [19, Theorem III.1]; for the center case we refer to [13]; and for works
containing results for semiflows we refer to [5, 9, 30, 31].

3. The proofs of Theorem 5.1 in [13] and Theorem II.1 in [19] fix a ρ ∈ R and
use the modification rδ = r̃δρ, δ > 0, of the nonlinearity r.

In the next section we need the dependence of the manifolds obtained in Theorem
2.1 on the parameters in a particular case.
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Proposition 2.2. Let E, f , L, r, η0, η1, and c be the same as in Theorem
2.1. Assume that the family of mappings r̃δρ : E → E, δ ∈ (0, δ1], ρ ∈ R, is given

as above. Define δ∗∗ ∈ (0, δ1) so that λ̃(δ∗∗) < min{1/(2c), (1 − a − ε)2/2}. Set
r0 = supx∈E(2δ∗∗) |r(x)|.

Then for each δ ∈ (0, δ∗∗) and for all ρ, ζ ∈ R, the mappings wδρ : Esc → Eu and
wδζ : Esc → Eu, guaranteed by Theorem 2.1, satisfy

sup
z∈Esc

|wδρ(z) − wδζ(z)| ≤ 4cr0 d(ρ, ζ).

The proof is omitted since it goes in a standard way.

3. Noninvariance: An example. In this section we consider an ordinary
differential equation in R

2 so that the origin is an equilibrium point with a one-
dimensional center and unstable subspaces. Fixing a smooth norm || · || in R

2, we
modify the nonlinearity r of the time-1 map as

r̃δρ = r(x)ρ

(
||x||
δ

)
, δ > 0, ρ ∈ R.

For a sufficiently small fixed δ > 0, Theorem 2.1 guarantees local center-stable man-
ifolds W cs

loc(ρ) for all ρ ∈ R, which are center manifolds since the stable subspace is
trivial. We show that, for an open and dense subset of R, these local manifolds are
not locally positively invariant with respect to the flow.

The idea of the proof is simple. Let ρ ∈ R be fixed. The global center-stable
manifold W of the modified time-1 map G = L + r̃δρ consists of those points z ∈ R

2

for which the trajectories (Gn(z))∞n=0 do not grow faster than (ηn)∞n=0 with some
fixed η between 1 and the greatest eigenvalue of the linear part L of the time-1
map. There is a smooth function h : R → R with h(0) = 0 and h′(0) = 0 so that
W = {(x, h(x)) : x ∈ R}. If the local center manifold W (γ) = {(x, h(x)) : |x| < γ},
with a sufficiently small γ > 0, is locally positively invariant with respect to the flow,
then W+(γ) = {(x, h(x)) : 0 < x < γ} is a single trajectory of the flow. For another
cut-off function ρκ ∈ R the same holds replacing G, h, W , W (γ), W+(γ) by Gκ,
hκ, Wκ, Wκ(γ), W+

κ (γ), respectively. Consequently, if both W (γ) and Wκ(γ) are
locally positively invariant with respect to the flow, then either W+(γ) = W+

κ (γ),
or W+(γ) and W+

κ (γ) are disjoint sets. If ρκ is chosen such that ρκ differs from ρ
only in a small interval (c1, c2) ⊂ (1, 2), then G(z) = Gκ(z) for all z from the set
R

2 \ {z ∈ R
2 : c1δ < ||z|| < c2δ}. This fact allows us to construct a sequence (un)n∈Z

in the open right half plane R
2
+ such that un ∈ W ∩Wκ, and un → 0 as n → −∞.

On the other hand, ρ �= ρκ makes it possible to find another sequence (vn)n∈Z in R
2
+

with vn ∈ Wκ \ W for all integers n ≤ 0, and vn → 0 as n → −∞. Thus, for each
γ > 0, W+(γ) �= W+

κ (γ) and W+(γ)∩W+
κ (γ) �= ∅. Therefore, both W (γ) and Wκ(γ)

cannot be locally positively invariant with respect to the flow. It also follows that
the noninvariance holds for a dense subset of R. By using Proposition 2.2, there is
an open subset of R so that the corresponding time-1 maps are noninvariant with
respect to the flow.

It is expected that the general case is analogous, although the calculations below
are specific to the example.

Now we give the details of the promised example. Consider the two-dimensional
system of ordinary differential equations{

ẋ = x3,
ẏ = y − x2.

(3.1)
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In R
2 the solutions of (3.1) define the flow

Φ(t, x, y) =

⎛
⎝ x√

1−2tx2

ety − et
∫ t

0
e−sx2

1−2sx2 ds

⎞
⎠ ,

−∞ < t < 1/(2x2). Let us fix an integer k ≥ 1. It is clear that, for each t ∈ R, Φ(t, ·)
is Ck-smooth. Set

V =

(
− 1√

2
,

1√
2

)
× R.

The time-1 map f = Φ(1, ·) is defined and Ck-smooth on V , and it is given by

f(x, y) =

⎛
⎝ x√

1−2x2

ey − e
∫ 1

0
e−sx2

1−2sx2 ds

⎞
⎠ ((x, y) ∈ V ).

We have

Df(0, 0) =

(
1 0
0 e

)
,

and E = R
2 has the decomposition E = Es⊕Ec⊕Eu with Es = {(0, 0)}, Ec = R×{0},

and Eu = {0} × R. In this case a = 1/2, b = e. Choose ε ∈ (0, 1/2) so that
(1 + ε)k < e− ε, and let the norm | · | on R

2 be given by

|(x, y)| = |(x, 0)| + |(0, y)| = |x| + |y|

Then the trichotomy (2.1) holds for L = Df(0, 0).
Define r : R

2 → R
2 by r(x, y) = (0, 0) for (x, y) ∈ R

2 \ V , and

r(x, y) =

⎛
⎝ x√

1−2x2
− x

−e
∫ 1

0
e−sx2

1−2sx2 ds

⎞
⎠ for (x, y) ∈ V.

In order to make certain estimates simpler, we choose a particular smooth norm in
R

2.
Proposition 3.1. There exists a norm || · || on R

2 which is C∞-smooth on
R

2 \ {(0, 0)} and satisfies the following:

|x| ≤ 3

4
and |y| ≤ 3

4
imply ||(x, y)|| < 1,

|x| = 1 and |y| ≤ 3

4
imply ||(x, y)|| = 1,

|x| ≤ 3

4
and |y| = 1 imply ||(x, y)|| = 1,

|x| ≥ 1 or |y| ≥ 1 implies ||(x, y)|| ≥ 1.

(3.2)

Proof. Suppose that ν : R → R is a π/2-periodic positive C∞-smooth function.
Let C be the simple closed curve in R

2 given by r = ν(φ), φ ∈ [0, 2π], in polar
coordinates [r, φ]. Then int C, the interior of C, is symmetric about zero. Assume that

int C is convex. For (x, y) ∈ R
2 set s(x, y) =

√
x2 + y2, and let φ(x, y) denote the
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polar angle of the point (x, y). Then, by the symmetry and convexity of int C, it is
not difficult to see that the map

R
2 	 (x, y) 
→ s(x, y)

ν(φ(x, y))
∈ R

defines a norm || · || on R
2 which is C∞-smooth on R

2 \ {(0, 0)}. In fact, the norm is
the Minkowski functional associated to the bounded balanced convex absorbing set
int C. Let |C| denote the trace of C. If{

(x, y) : |x| = 1, |y| ≤ 3

4

}⋃{
(x, y) : |x| ≤ 3

4
, |y| = 1

}
⊂ |C|(3.3)

also holds, then || · || satisfies (3.2). It is an elementary exercise to find a ν with the
above properties.

For ρ ∈ R and δ > 0, define r̃δρ : R
2 → R

2 by

r̃δρ(x, y) = r(x, y)ρ

(
||(x, y)||

δ

)
.

Set g̃δρ = Df(0, 0)+ r̃δρ. We have seen in section 2 that there exists δ1 > 0 so that the
family of mappings rδρ = r̃δρ, δ ∈ (0, δ1], ρ ∈ R, satisfies hypotheses (R1) and (R2)
with δ∗ = δ1 and P = R. Therefore, we can fix η0 ∈ (1 + ε, e − ε) and δ∗∗ ∈ (0, δ∗)
such that statements (i) and (ii) of Theorem 2.1 are satisfied for all δ ∈ (0, δ∗∗) and
for all ρ ∈ R.

Let us fix ρ ∈ R and δ ∈ (0, δ∗∗) so that

δ < min

{
e− 2

16e
,

1√
32q

}
,(3.4)

where q > 0 appears in the definition of R. Set G = L + r̃δρ. We have

G(x, y) =

⎛
⎝x +

(
x√

1−2x2
− x

)
ρ
(

||(x,y)||
δ

)
ey − e

∫ 1

0
e−sx2

1−2sx2 ds ρ
(

||(x,y)||
δ

)
⎞
⎠ ((x, y) ∈ R

2).

By Theorem 2.1, the global center-stable manifold W of G exists, and there is a
map w : R × {0} → {0} × R such that w((0, 0)) = (0, 0) and

W = {z + w(z) : z ∈ R × {0}}
= {u ∈ R

2 : There is a sequence (un)∞0 in R
2
η0

with u0 = u, and un+1 = G(un) for all n ∈ N},

|w(x1, 0) − w(x2, 0)| ≤ 2|(x1, 0) − (x2, 0)| = 2|x1 − x2| (x1, x2 ∈ R).

We shall use the notation

((x, y))1 = x, ((x, y))2 = y

for (x, y) ∈ R
2.

Define h : R → R by

h(x) =
(
w((x, 0))

)
2
.
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Then h(0) = 0,

|h(x1) − h(x2)| ≤ 2|x1 − x2| (x1, x2 ∈ R),

and

W = {(x, h(x) : x ∈ R}.

Proposition 3.2. h(x) = 0 for |x| ≥ 2δ, and 0 < h(x) < δ/2 for 0 < |x| < 2δ.
Proof. Assume |x| ≥ 2δ. Then ||(x, y)|| ≥ 2δ for all y ∈ R, and Gn(x, h(x)) =

(x, enh(x)) for all n ∈ N. The fact (x, h(x)) ∈ W implies ((x, enh(x)))∞0 ∈ R
2
η0

. Since
1 < η0 < e, h(x) = 0 follows.

Assume that |x| < 2δ and h(x) ≥ δ/2. By the choice of δ, we have δ < (e − 2)/
(16e), and thus

e

∫ 1

0

e−sx2

1 − 2sx2
ds ≤ ex2

1 − 2x2
<

4eδ2

1 − 8δ2
< 8eδ2 <

8e(e− 2)

16e
δ =

e− 2

2
δ.

Then

(G(x, h(x)))2 = eh(x) − e

∫ 1

0

e−sx2

1 − 2sx2
ds ρ

(
||(x, h(x))||

δ

)
≥ eδ

2
− e− 2

2
δ = δ.

By using the facts G(x, h(x)) ∈ W and h(u) = 0 for |u| ≥ 2δ, we conclude

|(G(x, h(x)))1| < 2δ.

Hence

(G2(x, h(x)))2 ≥ eδ − e− 2

2
δ =

(e
2

+ 1
)
δ > 2δ

follows. Then ||G2(x, h(x))|| ≥ 2δ holds. Consequently,

Gn+2(x, h(x)) =

(
(G2(x, h(x)))1

en(G2(x, h(x)))2

)
for all n ∈ N.

Clearly, (Gn(x, h(x)))
∞
0 /∈ R

2
η0

because of
(
G2(x, h(x))

)
2
> 2δ. On the other hand, the

definition of W yields (Gn(x, h(x)))
∞
0 ∈ R

2
η0

, a contradiction. Therefore, h(x) < δ/2.
If y < 0 and x ∈ R, then

(Gn(x, y))2 ≤ eny for all n ∈ N.

Obviously, (Gn(x, y))
∞
0 /∈ R

2
η0

, and (x, y) /∈ W .
If 0 < |x| < 2δ and y = 0, then ||(x, y)|| = |x| < 2δ. Then

(
G(x, 0)

)
2

= −e

∫ 1

0

e−sx2

1 − 2x2
ds ρ

(
|x|
δ

)
< 0.

Hence (x, 0) /∈ W follows as above. Consequently, h(x) > 0 for 0 < |x| < 2δ.
Define

U = (0, 2δ) ×
(

0,
δ

2

)
.
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If (x, y) ∈ U and x ≤ (3/4)δ, then ||(x, y)|| < δ, and ρ(||(x, y)||/δ) = 1 = ρ(x/δ).
If (x, y) ∈ U and x > (3/4)δ, then |x| > (3/2)|y|, and thus ||(x, y)|| = |x| = x.
Consequently,

ρ

(
||(x, y)||

δ

)
= ρ

(x
δ

)
for all (x, y) ∈ U.

Therefore, the first component of G in U is given by the function

a : [0, 2δ] 	 x 
→ x +

(
x√

1 − 2x2
− x

)
ρ
(x
δ

)
∈ R.

The function a is C∞-smooth, a(0) = 0, a(2δ) = 2δ. Moreover, it has nice properties.
Proposition 3.3. The function a is strictly increasing on [0, 2δ]. For each

x ∈ (0, 2δ) there is a unique sequence (xn)n∈Z in (0, 2δ) so that xn+1 = a(xn) for
all n ∈ Z. For the sequence (xn)n∈Z, limn→−∞ xn = 0 and limn→∞ xn = 2δ are
satisfied.

Proof. We have

a′(x) = 1 +

(
1

(1 − 2x2)3/2
− 1

)
ρ
(x
δ

)
+

(
x√

1 − 2x2
− x

)
ρ′
(x
δ

) 1

δ
.

For the last term∣∣∣∣
(

x√
1 − 2x2

− x

)
ρ′
(x
δ

) 1

δ

∣∣∣∣ =
2x3|ρ′(x/δ)|

δ
√

1 − 2x2(1 +
√

1 − 2x2)
≤ 32δ3q

δ
= 32qδ2 < 1

holds because of the choice of δ. Then

a′(x) ≥
(

1

(1 − 2x2)3/2
− 1

)
ρ
(x
δ

)
> 0 for all x ∈ (0, 2δ).

Consequently, a is strictly increasing. Observe that a(x) > x for all x ∈ (0, 2δ).
Combining these facts with a(0) = 0 and a(2δ) = 2δ, the last two statements follow
immediately.

As a has an inverse, the sequence (xn)n∈Z guaranteed by Proposition 3.3 will be
denoted also by (an(x))n∈Z.

Proposition 3.4. For each (u, v) ∈ U there is a unique (x, y) ∈ U with G(x, y) =
(u, v).

Proof. Let (u, v) ∈ U be given. Define

x = a−1(u), y =
1

e
v +

∫ 1

0

e−sx2

1 − 2sx2
ds ρ

(x
δ

)
.

Clearly, x ∈ (0, 2δ) and

0 < y <
δ

2e
+

4δ2

1 − 8δ2
≤ δ

2e
+ 8δ2 <

δ

2e
+ 8δ

e− 2

16e
<

δ

e
<

δ

2
.

Thus (x, y) ∈ U , and then G(x, y) = (u, v). Obviously, x is uniquely determined by
u. Hence the uniqueness of y also follows.

By Proposition 3.4, the restriction G|U has an inverse, denoted by G−1.
Proposition 3.5. For each (x, y) ∈ U ,

G−n(x, y) → (0, 0) as n → ∞.
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Proof. Let (x, y) ∈ U be given. Set (x−n, y−n) = G−n(x, y), n ∈ N . By Proposi-
tion 3.3,

x−n = a−n(x) → 0 as n → ∞.

Let ε̃ > 0 be given. There exists n0 ∈ N such that∫ 1

0

e−sx2
−n

1 − 2sx2
−n

ds ρ

(
x−n

δ

)
<

ε̃

2

for all n ≥ n0. For all k ∈ N, we have

y−n0−k = ey−n0−k−1 − e

∫ 1

0

e−sx2
−n0−k−1

1 − 2sx2
−n0−k−1

ds ρ

(
x−n0−k−1

δ

)
,

from which

|y−n0−k−1| ≤
1

e
|y−n0−k| +

ε̃

2
for all k ∈ N.

Using |y−n0
| < δ/2, an induction argument yields

|y−n0−k−1| ≤
1

ek+1

δ

2
+

⎛
⎝ k∑

j=0

1

ej

⎞
⎠ ε̃

2
for all k ∈ N.

Hence

lim sup
n→∞

|y−n| < ε̃

follows. As ε̃ > 0 was arbitrary, we conclude limn→∞ y−n = 0.
Define

c1 =
3δ + a(δ)

4δ
, c2 =

δ + 3a(δ)

4δ

and

x∗ =
δ + a(δ)

2
, I =

(
x∗ − a(δ) − δ

4
, x∗ +

a(δ) − δ

4

)
= (c1δ, c2δ).

Let β : R → R be a C∞-smooth function so that β(t) > 0 for c1 < t < c2, and
β(t) = 0 for all t ∈ R \ (c1, c2). Fix κ > 0 so small that

ρ + κβ ∈ R.

Set ρκ = ρ+κβ. If ρ is replaced by ρκ, then, with the same fixed η0 > 0 and δ > 0, we
get Gκ, Wκ, hκ, aκ, a−1

κ , and G−1
κ instead of G, W , h, a, a−1, and G−1, respectively,

and Gκ, Wκ, hκ, aκ, a−1
κ , and G−1

κ have the same properties as obtained above for
G, W , h, a, a−1, and G−1, respectively.

We have

ρ
(x
δ

)
= ρκ

(x
δ

)
for all x ∈ (0, 2δ) \ I.

As I ⊂ (δ, a(δ)) and (an(δ))n∈Z is increasing, we obtain that
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G(an(δ), h(an(δ))) = Gκ(an(δ), h(an(δ))) for all n ∈ Z.

The positive invariance of W with respect to G and(
G(an(δ), h(an(δ)))

)
1

= an+1(δ)

combined yield

G(an(δ), h(an(δ))) =
(
an+1(δ), h(an+1(δ))

)
for all n ∈ Z. Hence

Gκ(an(δ), h(an(δ))) =
(
an+1(δ), h(an+1(δ))

)
for all n ∈ Z

follows. From (an(δ), h(an(δ))) ∈ W , n ∈ Z, we get(
an+k(δ), h(an+k(δ))

)∞
k=0

∈ R
2
η0

for all n ∈ Z.

These facts imply

(an(δ), h(an(δ))) ∈ Wκ for all n ∈ Z.

Proposition 3.6. Gκ(x∗, h(x∗)) /∈ W .
Proof. Assume Gκ(x∗, h(x∗)) ∈ W . Clearly, G(x∗, h(x∗)) ∈ W because of the

positive invariance of W with respect to G. We have

G(x∗, h(x∗)) =

⎛
⎝ x∗ +

(
x∗

√
1−2x∗2

− x∗
)
ρ
(
x∗

δ

)
eh(x∗) − e

∫ 1

0
e−sx∗2

1−2sx∗2 ds ρ
(
x∗

δ

)
⎞
⎠

and

Gκ(x∗, h(x∗)) =

⎛
⎝ x∗ +

(
x∗

√
1−2x∗2

− x∗
) (

ρ
(
x∗

δ

)
+ κβ

(
x∗

δ

))
eh(x∗) − e

∫ 1

0
e−sx∗2

1−2sx∗2 ds
(
ρ
(
x∗

δ

)
+ κβ

(
x∗

δ

))
⎞
⎠ .

Using the fact that W is the graph of h, and h is Lipschitz continuous with Lipschitz
constant 2, one gets∣∣(G(x∗, h(x∗))

)
2
−
(
Gκ(x∗, h(x∗))

)
2

∣∣ ≤ 2
∣∣(G(x∗, h(x∗))

)
1
−
(
Gκ(x∗, h(x∗))

)
1

∣∣ ,
that is

e

∫ 1

0

e−sx∗2

1 − 2x∗2 ds κβ

(
x∗

δ

)
≤ 2

(
x∗

√
1 − 2x∗2

− x∗
)
κβ

(
x∗

δ

)
.

As x∗ > 0, κ > 0, and β(x∗/δ) > 0, the last inequality is equivalent to

e

∫ 1

0

e−s

−2sx∗2 ds ≤
4x∗

√
1 − 2x∗2(1 +

√
1 − 2x∗2)

.

By 0 < x∗ < 2δ and the choice of δ,

1 < e

∫ 1

0

e−s

1 − 2sx∗2 ds ≤
4x∗

√
1 − 2x∗2(1 +

√
1 − 2x∗2)

≤ 16δ <
e− 2

e
,

a contradiction. Therefore, Gκ(x∗, h(x∗)) /∈ W .
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Define y∗ ∈ (0, δ/2) so that

(x∗, y∗) = G−1
κ (aκ(x∗), h(aκ(x∗))).

Clearly, Gκ(x∗, y∗) = (aκ(x∗), h(aκ(x∗))) ∈ W . By Proposition 3.6, y∗ �= h(x∗), that
is

(x∗, y∗) /∈ W.

Observe that aκ(x) ≥ a(x) for all x ∈ [0, 2δ]. Hence we get

aκ(x∗) ≥ a(x∗) > a(δ),

and for each n ∈ N,

anκ(aκ(x∗)) = an(aκ(x∗)) > a(δ).

This fact and the invariance of W combined give

Gn+1
κ (x∗, y∗) = Gn

κ(Gκ(x∗, y∗)) = Gn (aκ(x∗), h(aκ(x∗)))

= (an(aκ(x∗)), h(an(aκ(x∗)))) ∈ W

for all n ∈ N. It follows that

(Gn
κ(x∗, y∗))

∞
0 ∈ R

2
η0
.

By the analogue of Proposition 3.4 for Gκ, G−n
κ (x∗, y∗) ∈ U is well defined for all

n ∈ N. Consequently,

Gn
κ(x∗, y∗) ∈ Wκ for all n ∈ Z.

We have

Gn
κ(x∗, y∗) = (anκ(x∗), hκ(anκ(x∗))) for all n ∈ Z.

If x ∈ [δ, x∗], then aκ(x) ≥ a(x) ≥ a(δ). Thus a−1
κ (x∗) < δ, and

a−n
κ (x∗) < δ for all n ∈ N \ {0}.

Since ρ(x/δ) = ρκ(x/δ) = 1 for 0 < x < δ, we obtain that

G−n
κ (x∗, y∗) = G−n(x∗, y∗) for all n ∈ N.

This equality, the positive invariance of W with respect to G, and (x∗, y∗) /∈ W
combined yield

G−n
κ (x∗, y∗) /∈ W for all n ∈ N.

By the analogue of Proposition 3.5 for Gκ, G−n
κ (x∗, y∗) → (0, 0) as n → ∞ also holds.

For γ ∈ (0, δ), the sets

W (γ) = {(x, h(x)) : |x| < γ}, Wκ(γ) = {(x, hκ(x)) : |x| < γ}

are local center-stable manifolds of f . Set

W+(γ) = {(x, h(x)) : 0 < x < γ}, W+
κ (γ) = {(x, hκ(x)) : 0 < x < γ}.
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Proposition 3.7. If W (γ) and Wκ(γ) are locally positively invariant with respect
to Φ, then

W+(γ) = {Φ(t, γ, h(γ)) : t < 0},

W+
κ (γ) = {Φ(t, γ, hκ(γ)) : t < 0}.

Proof. We know that

Gn(γ, h(γ)) = (an(γ), h(an(γ))) ∈ W for all n ∈ Z,

where (an(γ))n∈Z is a strictly increasing sequence with limn→−∞ an(γ) = 0. It is also
true that

G−n(γ, h(γ)) = f−n(γ, h(γ)) = Φ(−n, γ, h(γ)) ∈ W (γ)

for all n ∈ N \ {0}. Assume that t0 < 0 and Φ(t0, γ, h(γ)) /∈ W+(γ). Choose
n0 ∈ N \ {0} with −n0 < t0 < −n0 + 1. Define

t1 = sup
{
s ∈ [−n0, t0) : Φ(s, γ, h(γ)) ∈ W+(γ)

}
.

Clearly, −n0 ≤ t1 < t0 and

Φ(t1, γ, h(γ)) ∈ W+(γ).

The local positive invariance of W (γ) gives t∗ > 0 so that Φ(s,Φ(t1, γ, h(γ))) =
Φ(t1 + s, γ, h(γ)) ∈ W+(γ) for all s ∈ [0, t∗]. This contradicts the definition of t1.
Consequently,

{Φ(t, γ, h(γ)) : t < 0} ⊂ W+(γ).

The inclusion {Φ(t, γ, h(γ)) : t < 0} ⊃ W+(γ) follows from {
(
Φ(t, γ, h(γ))

)
1

: t < 0}
= (0, γ).

The proof for W+
κ (γ) is analogous.

Finally, we can state the following.
Proposition 3.8. One of the local manifolds W (γ) and Wκ(γ) is not locally

positively invariant with respect to Φ.
Proof. Assume that both W (γ) and Wκ(γ) are locally positively invariant with

respect to Φ. By Proposition 3.7 either

W+(γ) = W+
κ (γ)

or

W+(γ) ∩W+
κ (γ) = ∅

holds. On the other hand,

(an(δ), h(an(δ))) ∈ W ∩Wκ for all n ∈ Z,

G−n
κ (x∗, y∗) ∈ Wκ \W for all n ∈ N,

and limn→−∞ an(δ) = 0, limn→∞ G−n
κ (x∗, y∗) = (0, 0) combined imply
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W+(γ) �= W+
κ (γ)

and

W+(γ) ∩W+
κ (γ) �= ∅,

which is a contradiction.
We remark that in the above example W and Wκ are in fact the global center

manifolds of G and Gκ, respectively, because of Es = {(0, 0)}. Then W (γ) and Wκ(γ),
γ ∈ (0, δ), are local center manifolds of the time-1 map Φ(1, ·) at (0, 0). These local
center manifolds depend on δ and ρ, ρκ, too. Thus, in the next result, where their
dependence on the elements of R is considered, the notation Wδρ(γ) will be used
instead of W (γ).

Proposition 3.9. Let Φ, r, the norm || · || in R
2, the family of mappings r̃δρ,

0 < δ ≤ δ1, ρ ∈ R, and the constants η0, δ∗∗ be given as above. Let δ ∈ (0, δ∗∗) be
fixed so that (3.4) holds. Fix a γ ∈ (0, δ).

Then the set of those elements ρ ∈ R, for which the local center manifold Wδρ(γ)
of the time-1 map Φ(1, ·) is not locally positively invariant with respect to Φ, is an
open and dense subset of R.

Proof. Let Q be the set of ρ ∈ R such that Wδρ(γ) is not locally positively
invariant with respect to Φ.

If ρ ∈ R \ Q, then the above construction shows that for all sufficiently small
κ > 0, Wδρκ

(γ) ∈ Q. Thus, Q is dense in R.
If ρ ∈ Q, then there exist u0 ∈ Wδρ(γ) and a t0 > 0 such that Φ(t0, u0) /∈ Wδρ(γ)

and
∣∣(Φ(t, u0)

)
1

∣∣ < γ for all t ∈ [0, t0]. There is an ε1 > 0 so that for every u1 ∈ R
2

with |u1 − u0| < ε1 we have dist(Φ(t0, u1),Wδρ(γ)) > ε1, and
∣∣(Φ(t, u1)

)
1

∣∣ < γ for
all t ∈ [0, t0]. By Proposition 2.2, there is ε2 > 0 such that for each ζ ∈ R with
d(ρ, ζ) < ε2, dist(u0,Wδζ(γ)) < ε1 and dist(Φ(t0, u1),Wδζ(γ)) > ε1/2 for all u1 ∈ R

2

with |u1 − u0| < ε1. Let ζ ∈ R be given with d(ρ, ζ) < ε2, and choose u1 ∈ Wδζ(γ)
such that |u1 − u0| < ε1. Then Φ(t0, u1) /∈ Wδζ(γ) and

∣∣(Φ(t, u1)
)
1

∣∣ < γ for all
t ∈ [0, t0]. Define

t1 = sup{t ∈ [0, t0] : Φ(t, u1) ∈ Wδζ(γ)}.

It is easy to see that t1 < t0, Φ(t1, u1) ∈ Wδζ(γ), and Φ(t, u1) /∈ Wδζ(γ) for all
t ∈ (t1, t0]. It follows that Wδζ(γ) is not locally positively invariant under Φ. So,
ζ ∈ Q. Therefore, Q is an open subset of R.

4. Invariance: An abstract functional differential equation. Let Φ be a
Ck-smooth semiflow on the Banach space E with Φ(t, 0) = 0 for all t ≥ 0. Fix τ > 0.
There exists an open neighborhood V of 0 in E so that the time-τ map f = Φ(τ, ·)
is defined on V . Let L = Df(0), and assume that E has the decomposition and the
exponential trichotomy with the norm | · | as described in section 2. Let r : E → E
and the equivalent norm || · || on E also be given as in section 2.

The classical solution to the invariance problem consists in assuming that the
semiflow can be modified outside a small neighborhood of the equilibrium point so
that the modified semiflow is a small and Lipschitzian perturbation of the linearized
semiflow, and taking as a modification of the time-τ map the time-τ map of the
modified semiflow [5]. We formulate this as a proposition for the semiflow Φ with the
conditions on the time-τ map f given in section 2. The proof is omitted since it is
essentially the same as the proof in [5].
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Proposition 4.1. Let Φ, L, and r be given as above. Assume that there is a δ∗>0,
and that for each δ ∈ (0, δ∗] there exists a semiflow Φδ : [0,∞)×E→E such that

(a) Φδ|[0,τ ]×E(δ) = Φ|[0,τ ]×E(δ) for all δ ∈ (0, δ∗];
(b) the family of mappings rδ := Φδ(τ, ·) − L, 0 < δ ≤ δ∗, satisfies hypotheses

(R1) and (R2);
(c) for every δ ∈ (0, δ∗], there exists K > 0 so that |Φδ(t, x)| ≤ K|x| for all

(t, x) ∈ [0, τ ] × E.
Then the Ck-smooth local center-stable manifold W cs

loc of Φ(τ, ·), given in Theorem
2.1, is invariant with respect to Φ relative to Nsc + Nu.

Analogous results can be stated for the local center-stable and center manifolds.
The paper [5] by Chen, Hale, and Tan contains several examples where a modi-

fication Φδ of Φ with the required properties in Theorem 4.1 can be obtained. All of
these semiflows are generated by evolutionary equations, and a variation-of-constants
formula is valid for the evolutionary equation.

Now we demonstrate the applicability of Proposition 4.1 to (1.1), which does not
fall into the class of examples considered in [5] since a suitable variation-of-constants
formula in the phase space is not known.

Consider the abstract semilinear functional differential equation

u̇(t) = ATu(t) + But + F (ut)(4.1)

in a Banach space X over R, where r ≥ 0, C = C([−r, 0];X) is the Banach space of
continuous mappings from [−r, 0] into X with the supremum norm || · ||0, ut ∈ C is
defined by ut(θ) = u(t + θ) for θ ∈ [−r, 0], B : C → X is a bounded linear operator,
AT : D(AT ) ⊂ X → X is the infinitesimal generator of a compact C0-semigroup
(T (t))t≥0 of linear operators on X, F : V1 → X is Ck-smooth, k ∈ N\{0} on an open
neighborhood V1 of 0 in C, and F (0) = 0, DF (0) = 0.

The following results on the decomposition of C and on the existence and smooth-
ness of solutions of (4.1) can be found in the works [13, 14, 29, 32]. For other results
and applications of (4.1) we refer to [10, 11, 20, 21, 22, 28, 32].

For any φ ∈ C there exists a unique continuous function u = u(φ) : [−r,∞) → X
such that

u(t) = T (t)φ(0) +

∫ t

0

T (t− s)Bus ds, t ≥ 0,

and u0 = φ holds. The operators U(t) : C → C, given by U(t)φ = ut(φ), form a
C0-semigroup of bounded linear operators on C; moreover, U(t) is compact for all
t > r.

Fix τ > r. Since U(τ) is compact, its spectrum σ(U(τ)) consists of three disjoint
compact sets σs, σc, and σu, where σs is contained in {z ∈ C : |z| < 1}, and σc

and σu are finite sets in {z ∈ C : |z| = 1} and {z ∈ C : |z| > 1}, respectively. We
assume σc �= ∅. Set a = maxλ∈σs |λ| and b = minλ∈σu |λ|. As in section 2, a = 1/2
if σs = ∅, b = 3/2 if σu = ∅. Choose ε > 0 with a + ε < 1 and (1 + ε)k < b − ε. Let
α = (1/τ) log(a + ε), β = (1/τ) log(b− ε), κ = (1/τ) log(1 + ε). The space C has the
decomposition

C = Cs ⊕ Cc ⊕ Cu

into closed subspaces Cs, Cc, Cu of C so that Cc and Cu are finite-dimensional, the
spaces Cs, Cc, and Cu are invariant under U(t) for all t ≥ 0, and (U(t))t≥0 can be
extended to a group on Cc and Cu. There exists a norm | · | on C which is equivalent
to || · ||0 and satisfies |φ| = |PrCs φ| + |PrCc φ| + |PrCu φ| and
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|U(t) PrCs
φ| ≤ eαt|PrCs

φ| (t ≥ 0),

|U(t) PrCc φ| ≤ eκ|t||PrCc φ| (t ∈ R),

|U(t) PrCu φ| ≤ eβt|PrCu
φ| (t ≤ 0)

(4.2)

for all φ ∈ C. In addition, |PrCs | = |PrCc | = |PrCu | = 1 also holds.
For any φ ∈ V1 there exist a maximal tφ > 0 and a unique continuous function

uφ : [−r, tφ) → X such that uφ
0 = φ and

uφ(t) = T (t)φ(0) +

∫ t

0

T (t− s)
[
Buφ

s + F (uφ
s )
]
ds

for all t ∈ [0, tφ). The function uφ is called the mild solution of (4.1) through (0, φ).

There is an open neighborhood V2 ⊂ V1 of 0 in C so that Ψ, given by Ψ(t, φ) = uφ
t ,

is a Ck-smooth semiflow on V2 with Ψ(t, 0) = 0 and D2Ψ(t, 0) = U(t) for all t ≥ 0.
Let V ⊂ V2 be an open neighborhood of 0 in C such that [0, τ ] × V is in the

domain of Ψ. Define R : C → C so that R(φ) = Ψ(τ, φ) − U(τ)φ for φ ∈ V and
R(φ) = 0 for φ ∈ C \ V .

Under the above assumptions, there exist Ck-smooth local center-stable, center-
unstable, and center manifolds of the semiflow Ψ at 0. More precisely, we have the
following.

Theorem 4.2.

(i) There exist convex open neighborhoods Nsc of 0 in Csc, Nu of 0 in Cu, and a
Ck-smooth map wcs : Nsc → Cu so that wcs(0) = 0, Dwcs(0) = 0, wcs(Nsc) ⊂
Nu, the set W cs

loc = {z + wcs(z) : z ∈ Nsc} is invariant with respect to Ψ
relative to Nsc + Nu, and

{Ψ(t, φ) : t ≥ 0} ⊂ Nsc + Nu implies φ ∈ W cs
loc.

(ii) There exist convex open neighborhoods Ncu of 0 in Ccu, Ns of 0 in Cs, and
a Ck-smooth map wcu : Ncu → Cs so that wcu(0) = 0, Dwcu(0) = 0,
wcu(Ncu) ⊂ Ns, the set W cu

loc = {z+wcu(z) : z ∈ Ncu} is invariant with respect
to Ψ relative to Ncu +Ns, and for every backward trajectory y : (−∞, 0] → C
of Ψ,

{y(t) : t ≤ 0} ⊂ Ncu + Ns implies y(0) ∈ W cu
loc.

(iii) There exist convex open neighborhoods Nc of 0 in Cc, Nsu of 0 in Csu, and
a Ck-smooth map wc : Nc → Csu so that wc(0) = 0, Dwc(0) = 0, wc(Nc) ⊂
Nsu, the set W c

loc = {z + wc(z) : z ∈ Nc} is invariant with respect to Ψ
relative to Nc + Nsu, and for every trajectory y : R → C of Ψ,

{y(t) : t ∈ R} ⊂ Nc + Nsu implies y(0) ∈ W c
loc.

We show only statement (i) in Theorem 4.2 since the proof of (ii) is analogous,
and (iii) is a consequence of (i) and (ii) by the proof of Theorem 5.4 in [13].

The proof of (i) in Theorem 4.2. Choose a norm | · |cu on the finite-dimensional
Ccu so that | · |cu is C∞-smooth on Ccu \ {0}. Then ||φ|| = max{|PrCs φ|, |PrCcu |cu},
φ ∈ C, defines a new norm on C which is equivalent to the norms || · ||0 and | · |
on C. There are positive constants c1, c2, c3, c4 such that c1|φ| ≤ ||φ|| ≤ c2|φ| and
c3|φ| ≤ ||φ||0 ≤ c4|φ| for all φ ∈ C. For δ > 0 let C(δ) = {φ ∈ C : ||φ|| < δ}.
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Let ρ ∈ R. Fix a γ0 > 0 so that C(2γ0) ⊂ V and all lth derivatives, l ∈ {0, . . . , k},
of F |C(2γ0) are bounded. Let F ∗ : C → X be an extension of F so that F ∗(φ) = 0 for
φ ∈ C \ V1. For each γ ∈ (0, γ0] define Fγ : C → X by

Fγ(φ) = F ∗(φ)ρ

(
|PrCcu φ|cu

γ

)
ρ

(
|PrCs φ|

γ

)
.

Then, for every γ ∈ (0, γ0], Fγ is Ck-smooth on the open set {φ ∈ C : |PrCs
φ| < γ},

and all lth derivatives, l ∈ {0, . . . , k}, of Fγ |{φ∈C:|PrCs φ|<γ} are bounded.
There exits γ1 ∈ (0, γ0] and a nondecreasing function µ : [0, γ1] → [0, 1] (the proof

is the same as that of Proposition II.2 in [19]) with limγ→0+ µ(γ) = 0 = µ(0) such
that for each γ ∈ (0, γ1] and for all φ, ψ in C,

||Fγ(φ)||X ≤ γµ(γ), ||Fγ(φ) − Fγ(ψ)||X ≤ µ(γ)||φ− ψ||0.

There exists a constant M ≥ 1 so that ||B|| ≤ M , and ||T (t)|| ≤ M , ||U(t)|| ≤ M for
all t ∈ [0, τ ].

For each γ ∈ (0, γ1], consider the modification

u̇(t) = ATu(t) + But + Fγ(ut)(4.3)

of equation (4.1). By [32], for every φ ∈ C there exists a unique continuous function
u = uφ,γ : [−r,∞) → X so that u0 = φ and

u(t) = T (t)φ(0) +

∫ t

0

T (t− s) (Bus + Fγ(us)) ds

for all t ≥ 0. The map

Ψγ : [0,∞) × C 	 (t, φ) 
→ uφ,γ
t ∈ C

is a global semiflow on C.
By the Gronwall inequality, from the integral equation of uφ,γ , it is easy to see

that there exists K ≥ 1 such that, for each γ ∈ (0, γ1],

|Ψγ(t, φ)| ≤ K|φ| (t ∈ [0, τ ], φ ∈ C).(4.4)

Set c = max{2,Kc2/c1}, and choose γ2 ∈ (0, γ1] such that

c4 + c

c3
τM2e2τM(M+1)µ(γ2) < 1.

We state that for each γ ∈ (0, γ2],

|U(t)φ− Ψγ(t, φ)| < γ

2
(t ∈ [0, τ ], φ ∈ C).(4.5)

Set us = U(s)φ and vs = Ψγ(s, φ) for s ≥ 0. From the integral equations for u
and v, we get

||ut − vt||0 ≤
∫ t

0

M(M ||us − vs||0 + γµ(γ)) ds ≤ τMγµ(γ) +

∫ t

0

M2||us − vs||0 ds

for t ∈ [0, τ ]. Gronwall’s inequality yields

||ut − vt||0 ≤ τMγµ(γ)eτM
2

<
c3

c4 + c
γ <

c3
2
γ
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for t ∈ [0, τ ]. Now (4.5) follows by the equivalence of the norms || · ||0 and | · |.
We claim that for each γ ∈ (0, γ2],

|PrCs
φ| < γ

2
implies |PrCs

Ψγ(t, φ)| < γ

for all t ∈ [0, τ ] and φ ∈ C.
Applying (4.5) and the exponential trichotomy (4.2) for U , we get for every t ∈

[0, τ ] and for all φ ∈ C with |PrCs φ| < γ/2 that

|PrCs
Ψγ(t, φ)| ≤ |PrCs (Ψγ(t, φ) − U(t)φ) | + |PrCs

U(t)φ|

≤ γ

2
+ eαt|PrCs φ| <

γ

2
+

γ

2
= γ.

The above result and the Ck-smoothness of Fγ |{φ∈C:|PrCs φ|<γ} makes it possible
to prove, for each t ∈ [0, τ ], that the map{

φ ∈ C : |PrCs
φ| < γ

2

}
	 ψ 
→ Ψγ(t, ψ) ∈ C

is Ck-smooth. We omit the proof since it goes as that of Lemma 6.1 in [13].
For γ ∈ (0, γ2], define Rγ : C → C by

Rγ(φ) = Ψγ(τ, φ) − U(τ)φ.

By a standard induction procedure it can be shown that all jth derivatives, j ∈
{0, . . . , k}, of Rγ are bounded on the open set {φ ∈ C : |PrCs

φ| < γ/2}.
Finally we show that Proposition 4.1 can be applied with E = C, Φ = Ψ, L =

U(τ), r = R.
By the equivalence of the norms | · | and || · || in C, and by (4.4), the estimate

||Ψγ(t, φ)|| ≤ c||φ|| (φ ∈ C, t ∈ [0, τ ])(4.6)

holds with c = max{2,Kc2/c1}.
Define δ∗ = γ2/c, and for δ ∈ (0, δ∗] set Φδ = Ψcδ. Then rδ = Rcδ, δ ∈ (0, δ∗],

and obviously E(δ∗) ⊂ V .
Since cδ ≤ cδ∗ = γ2, Φδ : [0,∞) × E → E is a global semiflow for all δ ∈ (0, δ∗].

Hypothesis (c) of Proposition 4.1 follows from (4.4).
Let δ ∈ (0, δ∗] be fixed. If φ ∈ C(δ), that is ||φ|| < δ, then by (4.6)

||Φδ(t, φ)|| = ||Ψcδ(t, φ)|| ≤ c||φ|| < cδ (0 ≤ t ≤ τ).

Using Fcδ|C(cδ) = F |C(cδ), it follows that Fcδ(Ψcδ(t, φ)) = F (Ψ(t, φ)) for all φ ∈ C(δ)
and t ∈ [0, τ ]. Thus, for φ ∈ C(δ), both Ψcδ(t, φ) and Ψ(t, φ) satisfy the same
integral equation on the interval [0, τ ]. By uniqueness, Ψcδ(t, φ) = Ψ(t, φ) follows for
0 ≤ t ≤ τ . As φ ∈ C(δ) and δ ∈ (0, δ∗] were arbitrary, hypothesis (a) of Proposition
4.1 is also satisfied.

We have rδ = Rcδ = Ψcδ(τ, ·) − U(τ) = Φδ(τ, ·) − L, and thus, by using (a),
we get rδ|C(δ) = r|C(δ). For each δ ∈ (0, δ∗], the map Rcδ|{φ∈C:|PrCs φ|<cδ/2} is

Ck-smooth, and its jth derivatives, j ∈ {1, . . . , k}, are bounded. Since δ ≤ cδ/2 it
follows that rδ|{φ∈C:|PrCs φ|<δ} is Ck-smooth, and all jth derivatives, j ∈ {1, . . . , k},
of rδ|{φ∈C:|PrCs φ|<δ} are bounded.
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Define λ : [0, δ∗] → R by

λ(δ) = µ(cδ)
c4 + c

c3
τM2e2τM(M+1).

Then λ is nondecreasing, limδ→0+ λ(δ) = 0 = λ(0), and by the choice of γ2, λ([0, δ∗]) ⊂
[0, 1].

Above we obtained

||rδ(φ)||0 = ||Rcδ(φ)||0 = ||Ψcδ(τ, φ) − U(τ)φ||0 ≤ τMeτM
2

cδµ(cδ) ≤ c3δλ(δ)

for all φ ∈ C. Therefore, |rδ(φ)| ≤ δλ(δ), φ ∈ C.
Let φ, ψ ∈ C, and set ut = U(t)φ, ũt = U(t)ψ, vt = Ψcδ(t, φ), ṽt = Ψcδ(t, ψ) for

0 ≤ t ≤ τ . Then u0 = v0 = φ, ũ0 = ṽ0 = ψ. Using the integral equations for v and ṽ,
v0 = φ, ṽ0 = ψ, the Lipschitz continuity of Fcδ, and µ(cδ) ≤ 1,

||vt − ṽt||0 ≤ M ||φ− ψ||0 +

∫ t

0

M(M + 1)||vs − ṽs||0 ds

follows for 0 ≤ t ≤ τ . The Gronwall inequality yields

|vt − ṽt||0 ≤ MeτM(M+1)||φ− ψ||0 (0 ≤ t ≤ τ).(4.7)

The integral equations for u, ũ, v, ṽ, the Lipschitz continuity of Fcδ, and inequality
(4.7) combined give

||rδ(φ) − rδ(ψ)||0 = ||vt − ut − ṽt + ũt||0

≤
∫ t

0

M2||vs − us − ṽs + ũs||0 ds +

∫ t

0

Mµ(cδ)||vs − ṽs||0 ds

≤ τM2eτM(M+1)µ(cδ)||φ− ψ||0 +

∫ t

0

M2||vs − us − ṽs + ũs||0 ds

for 0 ≤ t ≤ τ . The Gronwall inequality implies

||rδ(φ) − rδ(ψ)||0 ≤ τM2e2τM(M+1)µ(cδ)||φ− ψ||0,

that is

|rδ(φ) − rδ(ψ)| ≤ c4
c3

τM2e2τM(M+1)µ(cδ)|φ− ψ| ≤ λ(δ)|φ− ψ|.

Therefore, the family of mappings rδ, 0 < δ ≤ δ∗, satisfies hypotheses (R1) and (R2),
and thus condition (b) in Proposition 4.1 holds.

Clearly, (4.2) implies that (2.1) is satisfied with E = C and L = U(τ). Con-
sequently, we can apply Theorem 2.1 with some fixed η0 and δ ∈ (0, δ∗∗) to get a
center-stable manifold W cs

loc of the time-τ map Ψ(τ, ·) at 0 as described in statements
(i) and (ii) of Theorem 2.1. The invariance of W cs

loc with respect to Ψ relative to
Nsc + Nu is guaranteed by Proposition 4.1.

Assume that {Ψ(t, φ) : t ≥ 0} ⊂ Nsc +Nu for some φ ∈ C. Then (Ψ(nτ, φ))∞0 is a
trajectory of the time-τ map Ψ(τ, ·) in Nsc +Nu. Theorem 2.1 implies that φ ∈ W cs

loc.
This completes the proof.

Remarks. 1. Some conditions in Theorem 4.2 could be relaxed—for example, the
compactness assumption on the semigroup T (t). However, such a generalization is
not necessary for handling the motivating example (1.2), (1.3).
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2. Theorem 4.2 shows that a variation-of-constants formula in the space X is
sufficient to apply the classical approach of [5]; it is not necessary to have a variation-
of-constants formula in the phase space C([−r, 0];X).

3. Recently Hino et al. [15] proved a “limiting variation-of-constants formula” for
(1.1) in the phase space C([−r, 0];X), and Murakami and Minh [23] used it to get
some Lipschitz continuous invariant manifolds. However, it is not clear whether the
variation-of-constants formula of [15] is suitable for a proof of smooth local center-
stable, center-unstable, and center manifolds of (1.1) at 0.

4. The very recent paper of Minh and Wu [24] constructs smooth local center-
unstable and center manifolds (but not center-stable manifolds) for (1.1) by using the
graph transform method.

Acknowledgment. The author thanks the referees for their useful comments
and suggestions.
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SUPER-BROWNIAN MOTION WITH EXTRA BIRTH
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Abstract. A super-Brownian motion in two and three dimensions is constructed where “parti-
cles” give birth at a higher rate, if they approach the origin. This contradicts the intuition suggested
by the fact that in more than one dimension Brownian particles do not hit a given point. Via a
log-Laplace approach, the construction is based on the work of Albeverio, Brzeźniak, and Dabrowski
[J. Funct. Anal., 130 (1995), pp. 220–254], who calculated the fundamental solutions of the heat
equation with one-point potential in dimensions less than four.

Key words. super-Brownian motion, measure-valued process, heat equation, singular potential,
one-point potential, (1 + β)-branching, log-Laplace approach
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1. Introduction.

1.1. Motivation and background. Measure-valued branching processes, also
called superprocesses, arise naturally as limits of particle branching Markov pro-
cesses. There is an immense literature on this topic; see any of the expositions
[Daw93, Dyn94, LG99, Eth00, Per02], for example. Since these models involve mainly
“noninteracting particles,” many powerful tools are available, and many detailed prop-
erties of these processes are known. Building on this success, many probabilists have
turned their attention to more complicated models, many of which are governed by
singularities. For example, in two or more dimensions, with probability 1, continuous
super-Brownian motion takes values in the space of measures whose closed support
has Lebesgue measure 0. Nevertheless, in certain situations, pairs of such processes
can kill each other when the corresponding “particles” meet (see, e.g., [EP94]).

Another example of singular behavior is catalytic branching. Here, the branching
of the “particles” is controlled by a catalytic measure; the higher the “density” of
this measure, the faster the “particles” branch or die. This catalytic measure can be
supported on a set of Lebesgue measure 0, as long as it is not a polar set of Brownian
motion. In other words, individual “particles” must have a positive probability of
“hitting the measure.” See, e.g., [DF95, Del96, FK99, Kle00].

A further example of singular behavior is mass creation. One could imagine
a “mass creation measure,” which would give rise to new “particles” whenever the
“particles” of the superprocess hit the support of the measure. For the extreme case
of a single point source δ0 in R, see [EF00, ET02]. In particular, a continuous super-
Brownian motion in R with a point source makes sense. In higher dimensions, however,
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at first sight one would expect that a super-Brownian motion with single-point mass
creation degenerates to ordinary super-Brownian motion, since the Brownian particles
do not hit a given point.

Our goal is to disprove this intuition. But first, we mention a deterministic, “one-
particle model,” which already gives a different picture. This model was developed
by mathematical physicists starting in the 1930s; see Albeverio et al. [AGHKH88] for
historical background.

Consider the heat equation in Rd with a one-point potential:

∂u

∂t
= ∆u + δ

(α)
0 u =: ∆(α)u(1.1)

(by f := g or g =: f , we mean that f is defined to be equal to g). Heuristically,

∆(α) = ∆ + δ
(α)
0 is the limit as ε ↓ 0 of the operator

∆(α)
ε := ∆ + h(d, α, ε)ε−d1Bε(0),(1.2)

where Bε(y) denotes the open ball around y ∈ Rd with radius ε, and h(d, α, ε) is some
additional rescaling factor, depending on a parameter α, at least.

For instance, in dimension d = 3,

h(3, α, ε) :=

(
k +

1

2

)2

π2ε− 8π2αε2 − ζε3, α ∈ R, ε > 0,(1.3)

where k is any integer and ζ any real number (we rely on [AGHKH88, (H.74)]). Then,

in a sense, ∆
(α)
ε → ∆(α) as ε ↓ 0, where the limit operator ∆(α) is independent of k

and ζ (so for simplification one could set k = 0 = ζ).
Actually, in the physics literature, primary attention is paid to the Schrödinger

equation, not the heat equation (and the positive definite operator −∆ is preferred
instead of ∆). But note that in the time-stationary case, the Schrödinger and heat
equations coincide. So the operators ∆(α) are relevant in both cases. Physically,
the parameter α is related to the “scattering length” (4πα)−1 (see, for instance,
[AGHKH88, p. 13]). In particular, ∆(α) → ∆ as α ↑ ∞, giving the “free” case. We

understand δ
(α)
0 as λαδ0. In dimension d = 3 the coupling constant λα of the point

source δ0 has to be of the form λα = ε− αε2 with ε “infinitesimal” in a special way.
Even though the number of particles that hit the origin is infinitesimal, one can

imagine that they give raise to a positive mass, provided that the birth rate is high
enough. This explains why the linear ε-term in (1.3) is not allowed to be too small;
in particular, it cannot be negative. In the latter case, particles will simply die,
and nothing else will happen. But since there are only infinitesimally many particles
hitting the origin, their possible deaths will pass unnoticed.

At this point we would like to understand certain questions from a probabilistic
point of view. For instance, in dimensions d = 3, why don’t all sufficiently high
coefficients of the linear ε-term occur, and why is the limit operator ∆(α) independent
of the integer k? Unfortunately, this is outside the scope of the present paper.

Strictly speaking, {∆(α) : α ∈ R} ∪ {∆} is the family of all self-adjoint extensions

on L2(Ṙd,dx), d = 2, 3, of the Laplacian ∆ acting on C(∞)
0 (Ṙd), where Ṙd := Rd\{0}.

See, for instance, [AGHKH88, Chapters I.1 and I.5]. We mention that in dimension
one there is a 4-parameter family of extensions instead (see [ABD95]), whereas for
d ≥ 4 there is no other extension than the Laplacian ∆.



742 KLAUS FLEISCHMANN AND CARL MUELLER

The fundamental solutions Pα to equation

∂u

∂t
= ∆(α)u on (0,∞) × Ṙd, d = 2, 3,(1.4)

have been computed in [ABD95]. Pα is different from the heat kernel for each α ∈ R
(only for α ↑ ∞ one gets back the heat kernel; for the case d = 3, see subsection 2.4
below). Pα is a basic object in the present paper.

1.2. Sketch of result. Based on the preceding analytical results from [ABD95],
the purpose of the present paper is to construct a measure-valued super-Brownian
motion X = {Xt : t ≥ 0} in Ṙd = Rd\{0}, d = 2, 3,1 related to the formal log-Laplace
equation ⎧⎨

⎩
∂v

∂t
= ∆(α)v − ηv1+β on (0,∞) × Ṙd,

v(0+, x) = ϕ(x) ≥ 0, x ∈ Ṙd,
(1.5)

with constants 0 < β ≤ 1, η ≥ 0, and where the ϕ are appropriate test functions. Of
course, X is related to (1.5) via the log-Laplace transition functional

− log P{e−〈Xt,ϕ〉 | X0} = 〈X0, v(t, ·)〉, t > 0,(1.6)

of the Markov process X.
Roughly speaking, we have “many” independent Brownian “particles” which ev-

erywhere undergo critical branching with index 1+β and rate η, but additionally give
birth to new particles if they “approach” the origin 0.

Here is a rough formulation of our main result; a more precise statement will be
given in Theorem 4.4 in subsection 4.3 below.

Theorem 1.1 (existence of X). If d = 2, then let 0 < β ≤ 1, and if d = 3, let
0 < β < 1. Then, for each α ∈ R, there is a (unique in law) nondegenerate measure-
valued (time-homogeneous) Markov process X = Xα having log-Laplace transition
functional (1.6) with v solving (1.5).

We call X a super-Brownian motion in Rd with extra birth at point x = 0. Note
that in the case η = 0, the process degenerates to the deterministic mass flow related
to the kernels Pα, the fundamental solutions to (1.4). At the same time, this mass
flow is identical to the expectation of X for any η. In particular, X = Xα is different
from ordinary super-Brownian motion (corresponding to α = ∞).

Remark 1.2 (open problem). The condition β < 1 in the three-dimensional case,
which excludes finite variance branching as in continuous super-Brownian motion,
looks a bit strange. We need this condition for technical reasons, to handle some
singularities at the point x = 0 where extra birth occurs (see Remark 2.8 below).

It would, of course, be interesting to reveal that this superprocess X has strange
new properties. However, we leave this task for a future paper (see [FV04]) and
present this construction result separately, since it seems to be interesting enough.

1Recall that the one-dimensional super-Brownian motion with extra birth at 0, that is, related
to the log-Laplace equation

∂v

∂t
=

1

2
∆v + δ0 − v2 on (0,∞) × R,

was introduced in [EF00].
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1.3. Outline. In section 2 we give some estimates involving the basic solutions
Pα and the semigroup related to the linear equation (1.4). This semigroup is not
Markovian in the usual sense, since the integral of the kernel Pα is greater than 1.
Then, in section 3, we show that the log-Laplace equation (1.5) is well posed. Here we
use Picard iteration, but for the nonnegativity of solutions we go back to a linearized
equation. For the construction of X in section 4 we use a Trotter product formula,
alternating between purely continuous-state branching (Feller’s branching diffusion if
β = 1) and deterministic mass flow with single-point mass creation (related to the
kernels Pα).

For background from a mathematical physics point of view concerning the oper-
ators ∆(α) we recommend [AGHKH88], and for basic facts on superprocesses we refer
to one of the systematic treatments [Daw93, Dyn94, LG99, Eth00, Per02], which we
have already mentioned.

2. The heat equation with birth at a single point. After introducing the
set Φ of test functions, on which the heat flow acts continuously (Lemma 2.4), we
define the kernel Pα in subsection 2.4 and show the strong continuity of the related
flow Sα on Φ (Corollary 2.10).

2.1. Preliminaries: Test functions and measures. The letter C denotes a
constant which might change its value from occurrence to occurrence. C# and C(#)

refer to specific constants which are defined around Lemma #, say, or formula (#),
respectively.

Let φ denote the weight and reference function

φ(x) := |x|−(d−1)/2, x ∈ Ṙd = Rd\{0}.(2.1)

For each fixed constant � ≥ 1, we introduce the Lebesgue space H = H� =
L�(Ṙd, φ(x)dx) of equivalence classes ϕ of measurable functions on Ṙd for which
‖ϕ‖H < ∞, where2

‖ϕ‖H :=

(∫
Rd

dxφ(x)|ϕ|�(x)

)1/�

.(2.2)

(As usual, we do not distinguish between an equivalence class and its representatives.)
For fixed � ≥ 1, let Φ = Φ� denote the set of all continuous functions ϕ : Ṙd → R

such that ϕ ∈ H and

0 ≤ ϕ ≤ C(2.3)φ for some constant C(2.3) = C(2.3)(ϕ).(2.3)

We endow Φ with the topology inherited from H. Note that the set C+
com = C+

com(Ṙd)
of all nonnegative continuous functions on Ṙd with compact support is contained in
Φ. Note also that ϕ ∈ Φ might have a singularity at x = 0 of order |x|−ξ with
0 < ξ < d−1

2 ∧ d+1
2� . (Later, in Hypothesis 3.2, we will restrict � to be less than d+1

d−1 ;

then at least the singularity orders ξ < d−1
2 are allowed.) The functions in Φ will

serve as test functions in log-Laplace representations.
Let M = M(Ṙd) denote the set of all measures µ defined on Ṙd such that 〈µ, ϕ〉 :=∫

Rd µ(dx)ϕ(x) < ∞ for all ϕ ∈ Φ. We equip M with the vague topology (recall that

2Here and in similar cases we use this simplified integration domain Rd, since in the case of inte-
gration with respect to Lebesgue measure, including or not including the point 0 ∈ Rd of singularity
makes no difference.
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C+
com ⊂ Φ). Of course, each measure µ ∈ M can also be considered as a measure on

Rd with zero mass at 0 ∈ Rd. But in our pairing 〈µ, ϕ〉, ϕ ∈ Φ, we cannot extend to
work with measures µ on Rd allowing positive mass at 0 by the mentioned possible
singularities of the ϕ ∈ Φ.

If µ is a finite measure, we write ‖µ‖ for its total mass. The symbol � denotes the
Lebesgue measure, Ac the complement of A, and a ∨ b the maximum of a and b.

2.2. Heat flow estimates on H. In this subsection we fix a dimension d ≥ 1.
Let P = P (t;x, y) refer to the fundamental solution of the heat equation

∂u

∂t
= ∆u on (0,∞) × Rd.(2.4)

In other words,

P (t;x, y) = (4πt)−d/2e−|y−x|2/4t, t > 0, x, y ∈ Rd.(2.5)

Let S = {St : t ≥ 0} denote the semigroup corresponding to this heat kernel P .
Here is our first estimate (with φ the weight and reference function introduced in

(2.1)).
Lemma 2.1 (a heat flow estimate). There is a constant C2.1 = C2.1(d) such that

Stφ ≤ C2.1φ, t ≥ 0.(2.6)

Proof. Without loss of generality, let t > 0 and x �= 0. We have to show that

1

φ(x)
Stφ(x) =

1

φ(x)

∫
Rd

dyφ(y)
1

(4πt)d/2
e−|y−x|2/4t(2.7)

is bounded in t > 0 and x �= 0. By the change of variables w := t−1/2(y − x), and
with the notation z := −t−1/2x, we get

1

φ(x)
Stφ(x) = C

∫
Rd

dwφ((w − z)/z)e−|w|2/4.(2.8)

We have to show that the right-hand side is bounded in z �= 0. If we restrict the
integration to |w| ≤ |z|/2, then |w − z| ≥ |z|/2, implying φ((w − z)/z) ≤ 2(d−1)/2,
and the whole restricted integral is bounded by a constant. On the other hand, if we
restrict the integration to |w| > |z|/2, the exponential expression can be estimated

from above by e−|z|2/32e−|w|2/8, and for the restricted integral we get the upper bound

C

∫
Rd

dwφ(w − z)e−|w|2/8.(2.9)

But this integral is bounded in z. To see this, distinguish between |w − z| ≤ 1 and
|w − z| > 1. This completes the proof.

We finish this subsection with a simple maximization result.
Lemma 2.2 (maximum in the center). Fix a constant κ > 0. Then

Stφ
κ(x) ≤ Stφ

κ(0), t > 0, x ∈ Rd.(2.10)

Proof. We will use the fact that in the integral∫
Rd

dyP (t;x, y)φκ(y)(2.11)
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the mapping y �→ φκ(y) is radially symmetric and decreasing in |y|. The same is true
for y �→ P (t;x, y), except for a shift by x.

Step 1 (simplification). Let a, b, c, d ≥ 0. Then, by expanding,

(a + b)(c + d) + ac ≥ (a + b)c + a(c + d).(2.12)

Step 2 (functions with n steps). For n ≥ 2, let

fi :=

n∑
j=1

ai,j1Bj ≥ 0, i = 1, 2,(2.13)

be two step functions defined on n ≥ 2 cubes B1, . . . , Bn in Rd of equal volume, say v.
For i = 1, 2, let f̄i be constructed from fi by rearranging the ai,j to āi,1 ≥ · · · ≥ āi,n.
Then ∫

Rd

dxf̄1(x)f̄2(x) ≥
∫

Rd

dxf1(x)f2(x).(2.14)

In fact, ∫
Rd

dxf1(x)f2(x) = v

n∑
j=1

a1,ja2,j .(2.15)

Rearranging if necessary, we may assume that f1 = f̄1, that is, a1,j = ā1,j , 1 ≤ j ≤ n.
Exploiting Step 1, we may switch from f2 to f̄2 by a sequence of rearrangements which
never decrease the integral in (2.15). This then gives the claim (2.14).

Step 3 (approximation). We may assume that the right-hand side of (2.10) is
finite. Then the “integrals” in (2.10) (recall (2.11)) can be approximated by using step
functions as in (2.13). Then (2.10) follows from (2.14) by passing to the limit.

2.3. Strong continuity of the heat flow on H. Next we will prove the fol-
lowing statement.

Lemma 2.3 (estimate of S in case of an additional singularity). Let d ≥ 1,
0 ≤ β ≤ 1, and assume that � in (2.2) satisfies

� >
1

1 − β(d− 1)/2d
.(2.16)

Then there is a constant C2.3 = C2.3(d, β, �) such that for all ϕ ∈ H = H�,

‖St(ϕφ
β)‖�H ≤ C2.3t

−β�(d−1)/4‖ϕ‖�H, t > 0.(2.17)

Proof. Fix d, β, � as in the lemma. For t > 0 and x ∈ R3, we introduce the
measures

µt,x(dy) := tκP (t;x, y)φλ(y)dy,(2.18)

with

κ :=
β�(d− 1)

4(�− 1)
and λ :=

β�

�− 1
.(2.19)

By Lemma 2.2,

‖µt,x‖ ≤ ‖µt,0‖ =

∫
Rd

dyP (1; 0, y)φλ(y) =: C(2.20),(2.20)
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where in the last step we used Brownian scaling and the identity κ− λ(d− 1)/4 = 0.
Note that C(2.20) = C(2.20)(d, β, �) is finite by our assumption (2.16). Therefore, the
measures µt,x are finite with total mass at most C(2.20) independent of t and x. Now,

for each finite measure µ on Rd, and for measurable ϕ, by Hölder’s inequality,[∫
Rd

|ϕ|(y)µ(dy)

]�
≤ ‖µ‖�−1

∫
Rd

µ(dy)|ϕ|�(y).(2.21)

Applied to the measures µt,x we get

|St(ϕφ
β)(x)|� = t−κ�

∣∣∣∣
∫

Rd

µt,x(dy)φβ−λ(y)ϕ(y)

∣∣∣∣
�

≤ t−κ�‖µt,x‖�−1

∫
Rd

µt,x(dy)φ(β−λ)�(y)|ϕ|�(y)(2.22)

≤ t−κ(�−1)C�−1
(2.20)St|ϕ|�(x),

since λ + (β − λ)� = 0 by (2.19). But by Lemma 2.1,∫
Rd

dxφ(x)St|ϕ|�(x) =

∫
Rd

dy|ϕ|�(y)Stφ(y)

(2.23)

≤
∫

Rd

dy|ϕ|�(y)C2.1φ(y) = C2.1‖ϕ‖�H.

Hence,

‖St(ϕφ
β)‖�H ≤ t−κ(�−1)C�−1

(2.20)C2.1‖ϕ‖�H,(2.24)

and the claim follows since κ(�− 1) = β�(d− 1)/4.
Lemma 2.3 with β = 0 yields the following result.
Lemma 2.4 (strong continuity of the heat flow on H). The semigroup S acting

on H = H� is strongly continuous.
Proof. Fix ϕ ∈ H. By linearity, we may assume that ϕ ≥ 0. Consider t ∈ (0, 1].
Step 1 (reducing to bounded functions on compact sets). Fix ε ∈ (0, 1]. We choose

a compact set K ⊂ Rd so large that ‖ϕ1Kc‖H < ε, and then a number N ≥ 1 such
that ‖ϕ1K1{ϕ>N}‖H < ε. Then

‖Stϕ− ϕ‖H ≤ ‖St(ϕ1Kc) − ϕ1Kc‖H + ‖St(ϕ1K1{ϕ>N}) − ϕ1K1{ϕ>N}‖H
+‖St(ϕ1K1{ϕ≤N}) − ϕ1K1{ϕ≤N}‖H(2.25)

≤ Cε + ‖St(ϕ1K1{ϕ≤N}) − ϕ1K1{ϕ≤N}‖H,

where in the last step we used twice Lemma 2.3 with β = 0. Thus, for the rest of the
proof we may assume that ϕ is bounded by N ≥ 1 and vanishes outside a compact
set K ⊂ Rd. That is, from now on in this proof we assume that Rd is replaced by K
in the definition of H.

Step 2 (passing to a continuous function). Fix ε ∈ (0, 1]. Choose a continuous
nonnegative function fε ≤ N (on K) such that ϕ = fε on a measurable set Aε ⊆ K
satisfying �(Ac

ε) ≤ ε. Then, again by twice applying Lemma 2.3 with β = 0,

‖Stϕ− ϕ‖H ≤ ‖St(ϕ1Ac
ε
) − ϕ1Ac

ε
‖H + ‖St(fε1Aε) − fε1Aε‖H

(2.26)
≤ C‖ϕ1Ac

ε
‖H + C‖fε1Ac

ε
‖H + ‖Stfε − fε‖H.
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For x ∈ K fixed, Stfε(x) → fε(x) as t ↓ 0,

sup
t≥0

‖Stfε‖∞ ≤ ‖fε‖∞ < ∞(2.27)

(with ‖ · ‖∞ denoting the supremum norm), and φ is integrable on K. Hence, by
dominated convergence, the third term in (2.26) will vanish as t ↓ 0 for fixed ε.
On the other hand, ‖ϕ1Ac

ε
‖H converges to 0 as ε ↓ 0. Finally, the same is true for

‖fε1Ac
ε
‖H since fε ≤ N . This completes the proof.

2.4. The fundamental solutions P α. Fix α ∈ R. We now introduce the
fundamental solutions Pα = Pα(t;x, y) of the heat equation with one-point potential

δ
(α)
0 , that is, of (1.4).

Step 1 (d = 3). Based on [ABD95, formula array (3.4)], for d = 3, we can define

Pα(t;x, y) := P (t;x, y) +
2t

|x||y|P (t; |x| + |y|)
(2.28)

− 8παt

|x||y|

∫ ∞

0

due−4παuP (t;u + |x| + |y|),

t > 0, x, y �= 0, where with a slight abuse of notation for heat kernel P ,

P (t; r) := (4πt)−d/2 exp(−r2/4t), t, r > 0.(2.29)

Note that the term in (2.28) involving the integral is always finite and that it disap-
pears for α = 0. Otherwise, using the substitution |α|u → u (for α �= 0) one realizes
that Pα(t;x, y) is continuous and decreasing in α, and that Pα ↓ P , the heat kernel,
pointwise as α ↑ ∞, whereas Pα ↑ ∞ pointwise as α ↓ −∞.

Step 2 (d = 2). On the other hand, by [ABD95, formula (3.15)], for d = 2, we
may define

Pα(t;x, y) := P (t;x, y) +

√
4πt√
|x||y|

P (t; |x| + |y|)
(2.30)

×
∫ ∞

0

du
tue−αu

Γ(u)

∫ ∞

0

dr
ru−1e−(|x|+|y|)2/4tr

(r + 1)u+1/2
K̃0

(
|x||y|

2t
(r + 1)

)
,

t > 0, x, y �= 0, where Γ is the Gamma function,

Γ(u) :=

∫ ∞

0

dssu−1e−s, u > 0,(2.31)

and

K̃0(z) := ez(2z/π)1/2K0(z), z ≥ 0,(2.32)

with K0 ≥ 0 the Macdonald function of order 0. In other words, K0 is the modified
Bessel function of the third kind, of order 0. See [Leb65, p. 109].

Recall that Pα (d = 2, 3) is the family of fundamental solutions to (1.4), computed
in [ABD95]. Since ∆(α) is a self-adjoint extension of ∆ on Ṙd, the kernel Pα solves
the heat equation on (0,∞) × Ṙd, as shown in the following corollary.

Corollary 2.5 (solutions of the heat equation). Let d = 2, 3 and α ∈ R. Then

∂

∂t
Pα(t;x, y) = ∆Pα(t;x, y) on (0,∞) × Ṙd,(2.33)
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where the Laplacian acts on x (or y, respectively). In particular, (t, x, y) �→ Pα(t;x, y)
is jointly continuous on (0,∞) × Ṙd.

Let Sα = {Sα
t : t ≥ 0} denote the semigroup corresponding to the kernel Pα,

α ∈ R. As we noted in subsection 1.3, since
∫
Rd dyPα(t;x, y) > 1, this semigroup is

not Markovian in the usual sense.

2.5. Bounds on P α. In this subsection we will derive some bounds for the
kernels Pα introduced in (2.28) and (2.30), respectively. To this end, we set

P̄ (t;x, y) := t−1/2φ(x)φ(y)e−|x|2/4te−|y|2/4t(2.34)

for t > 0 and x, y �= 0 (recall the weight and reference function φ from (2.1)).
Lemma 2.6 (Pα bound). Let d = 2, 3. For each α ∈ R and T > 0, there is a

constant C2.6 = C2.6(d, α, T ) such that

P (t;x, y) ≤ Pα(t;x, y) ≤ P (t;x, y) + C2.6P̄ (t;x, y)(2.35)

for all t ∈ (0, T ] and x, y �= 0.
Proof.
Step 1 (d = 3). By the arguments after (2.29), for α ≥ 0,

P ≤ Pα ≤ P 0 ≤ P + 2(4π)−3/2P̄ ,(2.36)

since

(|x| + |y|)2 ≥ |x|2 + |y|2.(2.37)

So we will restrict our attention to α < 0. Abbreviating

−4πα =:
r

2
> 0 and |x| + |y| =: R ≥ 0(2.38)

and using the last inequality in (2.36) and (2.37), it suffices to verify that∫ ∞

0

du
r

2
e

r
2uP (t;u + R) ≤ C(2.39)P (t;R)(2.39)

(recall notation (2.29)), with a positive constant C(2.39) = C(2.39)(T, r) independent
of t and R. Fix any

u0 > rT and put u1 := u0 − rT > 0.(2.40)

Consider first the integral in (2.39) restricted to u ∈ [0, u0]. Here we can use P (t;u+
R) ≤ P (t;R) and the fact that ∫ u0

0

du
r

2
e

r
2u ≤ e

r
2u0 ,(2.41)

resulting in a positive constant independent of t and R. It remains to deal with∫ ∞

u0

du
r

2
e

r
2u(4πt)−3/2 e−(u+R)2/4t(2.42a)

=
r

2
(4πt)−3/2 e−(2rRt−r2t2)/4t

∫ ∞

u0

due−(u+R−rt)2/4t(2.42b)
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for 0 < t ≤ T . The exponential factor in front of the integral in (2.42b) is bounded
by

er
2T/4 =: C(2.43),(2.43)

which is a positive constant independent of t and R. Substituting u+R− rt → u and
recalling notation (2.40), the integral in (2.42b) can be bounded by∫ ∞

R+u1

due−u2/4t ≤ 2T

u1

∫ ∞

R

du
u

2t
e−u2/4t =

2T

u1
e−R2/4t.(2.44)

Thus for the integral in (2.42a) we found the bound

C(2.43)
r

2

2T

u1
P (t;R),(2.45)

which finishes the proof in the case d = 3.
Step 2 (d = 2). Recall definition (2.32) of K̃0. According to [ABD95, after (3.14)],

lim
z→∞

K̃0(z) = 1.(2.46)

Consulting [Tra69, section 1.15, equation (1.66)], we find that

K0(z) ∼ −γ − log(z/2) ∼ − log z as z ↓ 0,(2.47)

where γ is Euler’s constant. Therefore,

lim
z↓0

K̃0(z) = lim
z↓0

[ez(2z/π)1/2 log z] = 0.(2.48)

Since K̃0 is continuous, relations (2.46) and (2.48) together give

‖K̃0‖∞ < ∞.(2.49)

Fix α ∈ R and consider 0 < t ≤ T . We may assume that T ≥ 1. We start by
estimating the inner integral appearing on the right-hand side of definition (2.30) of
Pα. For u > 0,

∫ ∞

0

dr
ru−1 e−(|x|+|y|)2/4tr

(r + 1)u+1/2
K̃0

(
|x||y|

2t
(r + 1)

)
(2.50)

≤ ‖K̃0‖∞
∫ ∞

0

dr
ru−1

(r + 1)u+1/2
.

If r ≥ 1, drop the 1 in the denominator; otherwise drop the r there. Thus, for the
inner integral in (2.30) we find the bound

‖K̃0‖∞[2 + 1/u].(2.51)

Using this bound, we turn to the outer integral of (2.30). For the Gamma function Γ
of (2.31), Stirling’s formula gives

Γ(u) ∼
√

2π(u− 1)u−1/2e−u+1 as u ↑ ∞.(2.52)
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It follows that, for some constant C(2.53) = C(2.53)(T, α),

∫ ∞

1

du
tue−αu

Γ(u)
≤ C(2.53), 0 ≤ t ≤ T.(2.53)

Next, using integration by parts, we estimate uΓ(u) for u ∈ (0, 1]:

uΓ(u) =

∫ ∞

0

dsusu−1e−s =

∫ ∞

0

dssue−s ≥ e−1

∫ 1

0

dss =: C(2.54).(2.54)

Finally, for some constant C(2.55) = C(2.55)(T, α), since T ≥ 1,

∫ 1

0

du
tue−αu

uΓ(u)
≤ 1

C(2.54)
T e|α| =: C(2.55).(2.55)

Altogether, we found that the double integral appearing on the right-hand side of
definition (2.30) of Pα is bounded by a constant depending only on α, T . This gives
estimate (2.35) also in the case d = 2, since K̃0 ≥ 0, finishing the proof of Lemma
2.6.

2.6. Strong continuity of Sα. We abbreviate

S̄tϕ(x) :=

∫
Rd

dyϕ(y)P̄ (t;x, y), t > 0, x �= 0,(2.56)

with P̄ from (2.34), as long as the right-hand side expression makes sense. The
estimates (2.35) and Minkowski’s inequality then imply that

‖Stϕ‖H ≤ ‖Sα
t ϕ‖H ≤ ‖Stϕ‖H + C2.6‖S̄tϕ‖H, 0 < t ≤ T,(2.57)

for those ϕ for which the right-hand side of (2.57) is meaningful and finite.
Lemma 2.7 (estimate of S̄ in case of an additional singularity). Let d = 2, 3 as

well as 0 ≤ β ≤ 1, and assume

1

1 − β(d− 1)/(d + 1)
< � <

d + 1

d− 1
.(2.58)

Then there is a constant C2.7 = C2.7(d, β, �) such that for all ϕ ∈ H = H�,

‖S̄t(ϕφ
β)‖�H ≤ C2.7ε(t, ϕ)t−β�(d−1)/4‖ϕ‖�H, t > 0,(2.59)

where 0 ≤ ε(t, ϕ) ≤ 1 and ε(t, ϕ) → 0 as t ↓ 0.
Remark 2.8 (restriction to infinite variance branching if d = 3). Note that in

dimension d = 3 condition (2.58) can only be satisfied for some � if β < 1 holds.
Proof of Lemma 2.7. This time we work with the measures

µt(dy) := t−κe−|y|2/4tφλ(y) dy, t > 0,(2.60)

on Rd, where

κ :=
d + 1

4
− (d− 1)β�

4(�− 1)
> 0 and λ := 1 + β�/(�− 1).(2.61)
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Note that the measures µt have a t-independent total mass

‖µt‖ =

∫
Rd

dye−|y|2/4φλ(y) =: C(2.62) = C(2.62)(d, β, �),(2.62)

which is finite by the left-hand inequality in assumption (2.58). Then, by our definition
(2.34) of P̄ , for t > 0 and x �= 0,

|S̄t(ϕφ
β)(x)|� = t−�/2+κ�φ�(x)e−�|x|2/4t

∣∣∣∣
∫

Rd

µt(dy)φ
−λ+β+1(y)ϕ(y)

∣∣∣∣
�

.(2.63)

By (2.21) and the definition of µt we may continue with

|S̄t(ϕφ
β)(x)|� ≤ t−�/2+κ�φ�(x)e−�|x|2/4tC�−1

(2.62)t
−κ

∫
Rd

dye−|y|2/4tφ(y)|ϕ|�(y),(2.64)

since (−λ + β + 1)� + λ = 1. We may assume that ϕ �= 0. Define

ε(t, ϕ) :=
1

‖ϕ‖�H

∫
Rd

dyφ(y)e−|y|2/4t|ϕ|�(y).(2.65)

Note that 0 < ε(t, ϕ) ≤ 1 and that ε(t, ϕ) → 0 as t ↓ 0, by dominated convergence.
Consequently,

|S̄t(ϕφ
β)(x)|� ≤ t−�/2+κ�φ�(x)e−�|x|2/4tC�−1

(2.62)t
−κε(t, ϕ)‖ϕ‖�H.(2.66)

Therefore,

‖S̄t(ϕφ
β)‖�H ≤ C�−1

(2.62)ε(t, ϕ)t−�/2+κ�−κ‖ϕ‖�H
∫

Rd

dxφ�+1(x)e−�|x|2/4t.

But the latter integral is finite since −(�+1)(d−1)/2+d > 0 by the right-hand inequal-
ity in assumption (2.58). Moreover, using a change of variables, the integral gives an
additional factor td/2−(�+1)(d−1)/4, so that the whole t-term equals t−β�(d−1)/4. This
finishes the proof.

Since condition (2.58) is stronger than (2.16), combining Lemmas 2.3 and 2.7
with inequality (2.57) gives the following result.

Corollary 2.9 (estimate of Sα in case of an additional singularity). Let d = 2, 3
as well as 0 ≤ β ≤ 1. Suppose (2.58). To each T > 0 there is a constant C2.9 =
C2.9(d, T, α, β, �) such that for all ϕ ∈ H = H�,

‖Sα
t (ϕφβ)‖H ≤ C2.9t

−β(d−1)/4‖ϕ‖H, 0 < t ≤ T.(2.67)

In particular,

sup
t≤T

‖Sα
t ϕ‖H ≤ C2.9‖ϕ‖H < ∞, ϕ ∈ H.(2.68)

Another consequence of Lemma 2.7 is shown in the following corollary.
Corollary 2.10 (strong continuity of Sα

). Let d = 2, 3. For each α ∈ R, the
semigroup Sα acting on H = H� with � ∈ (1, (d+ 1)/(d− 1)) is strongly continuous.

Proof. Fix ϕ ∈ H. By linearity, we may additionally assume that ϕ ≥ 0. Consider
0 < t ≤ T . Decompose

Sα
t ϕ = Stϕ + (Sα

t − St)ϕ,(2.69)
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where by Lemma 2.6,

0 ≤ (Sα
t − St)ϕ ≤ C2.6S̄tϕ,(2.70)

implying

‖(Sα
t − St)ϕ‖H ≤ C2.6‖S̄tϕ‖H.(2.71)

From (2.69) and (2.71)

‖Sα
t ϕ− ϕ‖H ≤ ‖Stϕ− ϕ‖H + ‖(Sα

t − St)ϕ‖H
(2.72)

≤ ‖Stϕ− ϕ‖H + C2.6‖S̄tϕ‖H.

But by Lemma 2.7 with β = 0, the second term in (2.72) goes to 0 as t ↓ 0, whereas
the first term does by Lemma 2.4. By (2.68), this finishes the proof.

2.7. Sα as a flow on Φ. Recall our set Φ of continuous nonnegative test func-
tions introduced in subsection 2.1. From the proof of Lemma 2.7 we also get the
following result.

Corollary 2.11 (Sα bound). Let d = 2, 3, assume � ∈ (1, (d+ 1)/(d− 1)), and
assume ϕ ∈ H� satisfies3 (2.3). Then, to each T > 0, there is a constant C2.11 =
C2.11(d, T, α, �, ϕ) such that

0 ≤ Sα
t ϕ ≤ C2.11(1 + t−1/2+(d+1)(�−1)/4�)φ, 0 < t ≤ T.(2.73)

In particular, Sα
t ϕ ∈ Φ for all t > 0.

Proof. From Lemma 2.6,

0 ≤ Sα
t ϕ ≤ Stϕ + C2.6S̄tϕ.(2.74)

Moreover, by assumption (2.3) on ϕ and by Lemma 2.1,

Stϕ ≤ C(2.3)Stφ ≤ Cφ.(2.75)

On the other hand, raising estimate (2.66) (with β = 0 there, implying κ = (d+ 1)/4
and λ = 1) into the power 1/� gives

S̄tϕ ≤ Ct−1/2+(d+1)(�−1)/4�φ‖ϕ‖H.(2.76)

Putting together (2.74)–(2.76) yields (2.73). Finally, (t, x) �→ Sα
t ϕ is continuous on

(0,∞) × Ṙd, since it solves the heat equation; recall Corollary 2.5. This finishes the
proof.

Combining Corollaries 2.10 and 2.11, we get the following result.
Corollary 2.12 (Sα acting on Φ). Let d = 2, 3 and � ∈ (1, (d + 1)/(d − 1)).

Then Sα is a strongly continuous linear semigroup acting on Φ = Φ�.

3. Analysis of the log-Laplace equation. The main result of this section is
the well-posedness of the log-Laplace equation (Theorem 3.3). Uniqueness follows
from a contraction argument (Lemma 3.7). Existence is shown via a Picard iteration
(Lemmas 3.8, 3.9, and 3.11), whereas nonnegativity follows using a linearized equation
(Lemma 3.10).

3Of course, an inequality on an element ϕ ∈ H means that the inequality holds for each repre-
sentative in Lebesgue at almost every point.
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3.1. Preliminaries and purpose. Formally, we can rewrite the log-Laplace
equation (1.5) as the following integral equation:4

v(t, x) = Sα
t ϕ(x) − η

∫ t

0

dsSα
t−s(v

1+β(s))(x),(3.1)

t ≥ 0, x �= 0 (with constants α ∈ R, η ≥ 0, 0 < β ≤ 1, and where ϕ ≥ 0 has yet to
be specified). Here in writing v1+β we have in mind that v ≥ 0. Note also that this
nonnegativity implies the following domination:

0 ≤ v(t) ≤ Sα
t ϕ, t ≥ 0.(3.2)

The task of this section is to verify that the log-Laplace equation (3.1) is well posed
in Φ.

Definition 3.1 (Φ-valued solution). Let ϕ ∈ Φ. A measurable map t �→ v(t) =
Vtϕ of R+ into Φ is called a solution of (3.1) if (3.1) is true for all x �= 0 and t ≥ 0.

For convenience, we introduce the following hypothesis.
Hypothesis 3.2 (choice of parameters). Let α ∈ R, η ≥ 0, and

d = 2, 3, 0 < β ≤ 1, and
1

1 − β(d− 1)/(d + 1)
< � <

d + 1

d− 1
.(3.3)

Recall that for d = 3 this requires that β < 1.
Now we are ready to state the main result of this section.
Theorem 3.3 (well-posedness of the log-Laplace equation). If Hypothesis 3.2

holds, and if ϕ ∈ Φ, then (3.1) has a unique Φ-valued solution v = V ϕ = {Vtϕ : t ≥ 0}.
Moreover, V = {Vt : t ≥ 0} is a nonlinear strongly continuous semigroup acting
on Φ.

The rest of this section is devoted to the proof of this theorem.

3.2. First properties of solutions. Now we prepare for the uniqueness proof.
Impose Hypothesis 3.2. Fix an integer T > 0 for a while, and ϕ ∈ Φ. We will also fix
measurable functions ψ1, ψ2 on (0, T ] × Ṙd such that

0 ≤ ψ1(t, x) ≤ M(1 + t−κ)φβ(x),(3.4a)

0 ≤ ψ2(t, x) ≤ Sα
t ϕ(x),(3.4b)

with constants M = M(T, ψ1) > 0 and

κ := β/2 − β(d + 1)(�− 1)/4� ∈ (0, 1).(3.5)

Lemma 3.4 (properties of the nonlinear term). There is a constant C3.4 =
C3.4(d,M, T, α, β, �) such that∥∥∥∥

∫ t

0

dsSα
t−s(ψ1(s)ψ2(s))

∥∥∥∥
H

≤ C3.4‖ϕ‖HI(t), 0 < t ≤ T,(3.6)

where

∞ > I(t) :=

∫ t

0

ds(1 + s−κ)(t− s)−λ ↘
t↓0

0,(3.7)

4We often use notation as v(s) := v(s, ·).
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with

λ := β(d− 1)/4.(3.8)

Moreover, if for fixed t ∈ (0, T ],

Nt(x) :=

∫ t

0

dsSα
t−s(ψ1(s)ψ2(s))(x), x ∈ Ṙd,(3.9)

satisfies

Nt(x) ≤ Sα
t ϕ(x), x ∈ Ṙd,(3.10)

then Nt ∈ Φ.
Proof. First, by Corollary 2.10, we see that

‖Sα
s ϕ‖H ≤ C‖ϕ‖H, 0 ≤ s ≤ T,(3.11)

where C = C(T ). Now, Corollary 2.9 states that

‖Sα
t (φβϕ)‖H ≤ C2.9t

−λ‖ϕ‖H, 0 < t ≤ T.(3.12)

Applying first (3.12) and then (3.11), we obtain

‖Sα
t−s(φ

βSα
s ϕ)‖H ≤ C2.9(t− s)−λ‖ϕ‖H, 0 ≤ s < t ≤ T.(3.13)

Exploiting assumption (3.4), we find

‖Sα
t−s(ψ1(s)ψ2(s))‖H ≤ C(1 + s−κ)(t− s)−λ‖ϕ‖H.(3.14)

However, I(t) from (3.7) can be written as

I(t) =
t1−λ

1 − λ
+ t1−λ−κ

∫ 1

0

dss−κ(1 − s)−λ.(3.15)

The positive numbers κ and λ defined in (3.5) and (3.8), respectively, satisfy κ+λ < 1,
hence (3.6) and (3.7) follow. Thus, the integrals in (3.9) are finite for almost all x.
By assumption (3.10), it remains to show that Nt(x) from (3.9) is continuous in x.

Let δ ∈ (0, t). Then

∫ t−δ

0

dsSα
t−s(ψ1(s)ψ2(s))(x) = Sα

δ

∫ t−δ

0

dsSα
t−δ−s(ψ1(s)ψ2(s))(x).(3.16)

We already showed that the latter integral term belongs to H+. Then by Corollary
2.11, the left-hand side in (3.16) belongs to Φ, and hence is continuous in x for each
δ. To complete the proof, it suffices to show that∫ t

t−δ

dsSα
t−s(ψ1(s)ψ2(s))(x) −→

δ↓0
0 uniformly in x ∈ K,(3.17)

where K is any compact subset of Ṙd and is fixed from now on. Next apply assumption
(3.4b) and Corollary 2.11 to Sα

s ϕ together with the definition (3.5) of κ to get

0 ≤ ψ2(s) ≤ Sα
s ϕ ≤ C2.11(1 + s−κ/β)φ ≤ Cφ,(3.18)
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since s in (3.17) is bounded away from 0. Inserting the assumed upper bound (3.4a)
on ψ1, for the integral in (3.17) we find the estimate

C

∫ t

t−δ

dsSα
t−sφ

β+1(x) = C

∫ δ

0

dsSα
s φ

β+1(x).(3.19)

Hence, it suffices to show that

s �→ max
x∈K

Sα
s φ

β+1(x) is integrable on (0, δ].(3.20)

By Lemma 2.6,

Sα
s φ

β+1 ≤ Ssφ
β+1 + C2.6S̄sφ

β+1, s > 0.(3.21)

Now, (s, x) �→ Ssφ
β+1(x) is finite and satisfies the heat equation on [0, δ]×K, implying

sup
(s,x)∈[0,δ]×K

Ssφ
β+1(x) < ∞.(3.22)

Turning to the second term in (3.21), by definition (2.34),

S̄sφ
β+1(x) = s−1/2φ(x)e−|x|/4s

∫
Rd

dy e−|y|/4sφβ+2(y), s > 0.(3.23)

By the substitution y �→ y
√
s, the latter integral gives an additional power contribu-

tion to s−1/2. Moreover,

sup
x∈K

φ(x)e−|x|/4s ≤ Ce−C/s,(3.24)

which together with s−λ0 is integrable on (0, δ] for each λ0 ∈ R. This finishes the
proof.

Lemma 3.5 (continuity at t = 0). Let ϕ ∈ Φ = Φ� and let v = Vϕ be a Φ-
valued solution to (3.1). Under Hypothesis 3.2, for T ≥ 0 fixed, there is a constant
C3.5 = C3.5(d, T, α, �) such that

‖Vtϕ‖H ≤ C3.5‖ϕ‖H, 0 ≤ t ≤ T.(3.25)

Moreover, V ϕ is strongly continuous at t = 0, where V0ϕ = ϕ.
Proof. By domination (3.2),

‖Vtϕ‖H ≤ ‖Sα
t ϕ‖H.(3.26)

Now (3.25) follows from (2.68). It remains to verify the continuity claim. Clearly, for
t ∈ (0, T ],

|Vtϕ− ϕ| ≤ |Vtϕ− Sα
t ϕ| + |Sα

t ϕ− ϕ|.(3.27)

By Corollary 2.10, it suffices to deal with the first term at the right-hand side. By
(3.1), we have to look at ∣∣∣∣

∫ t

0

dsSα
t−s(v

β(s)v(s))

∣∣∣∣ .(3.28)

But from domination (3.2) and Corollary 2.11,

0 ≤ vβ(s) ≤ C(3.29)(1 + s−κ)φβ , 0 < s ≤ T,(3.29)

with κ from (3.5) and a constant C(3.29) = C(3.29)(T, ϕ) (note that other dependencies
are not important in the present proof). Thus, we can apply (3.6) and (3.7) from
Lemma 3.4 to finish the proof.
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3.3. Uniqueness of solutions. The following lemma will be useful when we
estimate the difference of solutions to (3.1).

Lemma 3.6 (an elementary observation). Let β > 0 and a, b ∈ R. Then

|a(a ∨ 0)β − b(b ∨ 0)β | ≤ (1 + β)(|a| + |b|)β |a− b|.(3.30)

Proof. First assume that a, b ≥ 0. By the mean value theorem, there exists a
number c between a and b such that

|a1+β − b1+β | = (1 + β)cβ |a− b| ≤ (1 + β)(a + b)β |a− b|.(3.31)

This proves (3.30) for a, b ≥ 0.
Now suppose that a, b < 0. In that case the left-hand side in (3.30) disappears,

and hence (3.30) holds trivially.
Finally, it remains to consider the case a < 0 ≤ b. Then

|a(a ∨ 0)β − b(b ∨ 0)β | = b1+β ≤ (1 + β)bβb ≤ (1 + β)(|a| + |b|)β |a− b|,

and the proof is finished.
We are ready to prove uniqueness for solutions to (3.1).
Lemma 3.7 (uniqueness). Impose Hypothesis 3.2. Fix ϕ ∈ Φ. Suppose that u, v

are Φ-valued solutions of (3.1). Then u = v.
Proof. Fix T > 0. It suffices to prove uniqueness on [0, T ]. Let

D(t, x) := u(t, x) − v(t, x), 0 ≤ t ≤ T, x �= 0.(3.32)

Note that by Lemma 3.5,

‖D(t)‖H ≤ 2C3.5‖ϕ‖H, 0 ≤ t ≤ T.(3.33)

By the elementary inequality (3.30),

|D(t, x)| = η

∣∣∣∣
∫ t

0

dsSα
t−s(u

1+β(s) − v1+β(s))(x)

∣∣∣∣
≤ η

∫ t

0

dsSα
t−s|u1+β(s) − v1+β(s)|(x)(3.34)

≤ 2η

∫ t

0

dsSα
t−s([u

β(s) + vβ(s)]|D(s)|)(x).

From (3.29), we get

|D(t, x)| ≤ 4η C(3.29)

∫ t

0

ds(1 + s−κ)Sα
t−s(|D(s)|φβ)(x).(3.35)

Thus

‖D(t)‖H ≤ 4η C(3.29)

∫ t

0

ds(1 + s−κ)‖Sα
t−s(|D(s)|φβ)‖H

(3.36)

≤ 4η C(3.29)

∫ t

0

ds(1 + s−κ)C2.9(t− s)−λ‖D(s)‖H,

0 < t ≤ T , where we used Corollary 2.9 and notation (3.8). Setting

Dt := sup
0<s≤t

‖D(s)‖H, 0 < t ≤ T(3.37)
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(for finiteness, recall (3.33)), since I(t) from (3.7) is increasing in t (recall representa-
tion (3.15)), we find

Dt ≤ C(3.38)DtI(t), 0 < t ≤ T,(3.38)

with some constant C(3.38) = C(3.38)(T, ϕ). Therefore, by (3.7), Dt = 0 for all suffi-
ciently small t, say t < δ(T, ϕ) < T . Since the model is time-homogeneous, we can
repeat the argument finitely often to extend to the whole interval [0, T ]. In fact, when
iterating the argument, we need to use the bound (3.29) with the constant C(3.29)

depending on our original ϕ, not with ϕ replaced by the new initial condition at the
beginning of the new subinterval, since (3.29) holds on the whole (0, T ]. Thus, the
constants C(3.38) will be the same for each subinterval, and thus each subinterval will
have the same length. (For a more complicated time-inhomogeneous situation, see
the proof of Lemma 3.8 below.) Because u and v are Φ-valued, we found u = v on
[0, T ], and the proof is complete.

3.4. Auxiliary functions wN,n. Recall that we fixed T , ϕ, and ψ1 satisfying
(3.4a). For fixed integer N ≥ 2 set

ψN := ψ1 ∧N.(3.39)

We inductively define functions wN,n. First of all,

wN,0(t) := Sα
t ϕ ∈ Φ, 0 ≤ t ≤ T.(3.40)

Assuming that we have defined wN,n for some n, let

wN,n+1(t, x) := Sα
t ϕ(x) −

∫ t

0

dsSα
t−s(ψN (s)wN,n(s))(x),(3.41)

0 ≤ t ≤ T , x ∈ Ṙd, provided the latter integral makes sense.
Lemma 3.8 (properties of wN,n). For all n ≥ 0 and t ∈ [0, T ],

0 ≤ wN,n(t) ≤ Sα
t ϕ, and x �→ wN,n(t, x) is continuous.(3.42)

Proof. For n = 0, the claim is true by (3.40). Suppose that we have verified (3.42)
for some n ≥ 0. Then the integral in (3.41) is nonnegative, and hence

wN,n+1(t) ≤ Sα
t ϕ, t ∈ [0, T ].(3.43)

Assume for the moment that wN,n+1 ≥ 0 under our induction hypothesis. Then by
Lemma 3.4,

wN,n+1(t) ∈ Φ, t ∈ [0, T ],(3.44)

and the proof would be finished.
Next we will verify that wN,n+1 is nonnegative on [0, 1/N ]. Since ψN ≤ N , and

using the induction assumption, it follows that

Sα
t−s(ψN (s)wN,n(s)) ≤ Sα

t−s(NSα
s ϕ) ≤ NSα

t ϕ.(3.45)

Therefore, if 0 ≤ t ≤ 1/N ,

wN,n+1(t) ≥ Sα
t ϕ−N

∫ 1/N

0

dsSα
t ϕ = 0.(3.46)
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Now we prove that wN,n+1 is nonnegative on [0, T ]. We use induction on the time
intervals [k/N, (k + 1)/N ], 0 ≤ k < NT . To begin with, we have already shown that
wN,n+1 is nonnegative on [0, 1/N ]. Also, we know already that wN,n+1(1/N) ∈ Φ.
Suppose that we have shown wN,n+1 is nonnegative on [(k − 1)/N, k/N ] for some
0 ≤ k < NT − 1, and that wN,n+1(k/N) ∈ Φ. We will shift time and define

w
(k)
N,n+1(t) := wN,n+1(t + k/N),(3.47a)

ϕ
(k)
N,n+1(t) := wN,n+1(k/N),(3.47b)

ψ
(k)
N (t) := ψN (t + k/N),(3.47c)

0 ≤ t ≤ 1/N . We claim that

w
(k)
N,n+1(t) := Sα

t ϕ
(k)
N,n+1 −

∫ t

0

dsSα
t−s(ψ

(k)
N (s)w

(k)
N,n(s)), 0 ≤ t ≤ 1

N
.(3.48)

Assume for the moment that (3.48) is true. Then the proof that wN,n+1 ≥ 0 on

[k/N, (k + 1)/N ] reduces to showing that w
(k)
N,n+1 ≥ 0 on [0, 1/N ]. But this follows

from the step we have already done. We are left with showing (3.48).
Using definition (3.41), we get

Sα
t wN,n+1(r) := Sα

t+rϕ−
∫ r

0

dsSα
t+r−s(ψN (s)wN,n(s)).(3.49)

Let r = k/N . Then, for 0 ≤ t ≤ 1/N ,

Sα
t ϕ

(k)
N,n+1 = Sα

t+k/Nϕ−
∫ k/N

0

dsSα
t+k/N−s(ψN (s)wN,n(s)).(3.50)

Also, by a change of variables, for 0 ≤ t ≤ 1/N , we obtain∫ t

0

dsSα
t−s(ψ

(k)
N (s)w

(k)
N,n(s)) =

∫ t+k/N

k/N

dsSα
t+k/N−s(ψN (s)wN,n(s)).(3.51)

Inserting (3.50) and (3.51) into the right-hand side of (3.48), and then using (3.41),
we get

Sα
t ϕ

(k)
N,n+1 −

∫ t

0

dsSα
t−s(ψ

(k)
N (s)w

(k)
N,n(s))

= Sα
t+k/Nϕ−

∫ t+k/N

0

dsSα
t+k/N−s(ψN (s)wN,n(s))(3.52)

= wN,n+1(t + k/N) = w
(k)
N,n+1(t),

which proves (3.48). This finishes the proof.

3.5. Auxiliary functions wn. Recall that we fixed T , ϕ, ψ1 with (3.4a). For
n ≥ 0, we inductively define functions wn as follows. Let

w0(t) := Sα
t ϕ, 0 ≤ t ≤ T,(3.53)

and, given wn, set

wn+1(t, x) := Sα
t ϕ(x) −

∫ t

0

dsSα
t−s(ψ1(s)wn(s))(x),(3.54)

0 ≤ t ≤ T , x ∈ Ṙd. Recall the functions wN,n as in Lemma 3.8.
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Lemma 3.9 (properties of wn). For each n ≥ 0 and t ∈ [0, T ],

lim
N↑∞

|wN,n(t) − wn(t)| = 0(3.55)

pointwise on Ṙd. Moreover,

0 ≤ wn(t) ≤ Sα
t ϕ, and x �→ wn(t, x) is continuous.(3.56)

Proof. Again, we use induction on n. The claims are trivially true for n = 0.
Suppose they hold for n. By definitions (3.41) and (3.54),

|wn+1(t) − wN,n+1(t)| =

∣∣∣∣
∫ t

0

dsSα
t−s(ψ1(s)wn(s) − ψN (s)wN,n(s))

∣∣∣∣
≤

∣∣∣∣
∫ t

0

dsSα
t−s([ψ1(s) − ψN (s)]wn(s))

∣∣∣∣(3.57)

+

∫ t

0

dsSα
t−s(ψ1(s)|wn(s) − wN,n(s)|) =: AN,n + BN,n,

with the obvious correspondence. We will show that both AN+1,n and BN+1,n tend
to 0 as N ↑ ∞, giving (3.55) for n + 1. This then yields also the remaining claims in
Lemma 3.9 for n+ 1. In fact, by Lemma 3.8 then the inequalities hold in (3.56), and
Lemma 3.4 gives the continuity claim.

First note that by the induction hypothesis,

AN,n ≤
∫ t

0

dsSα
t−s([ψ1(s) − ψN (s)]Sα

s ϕ)

(3.58)

≤
∫ t

0

dsSα
t−s(ψ1(s)S

α
s ϕ) < ∞

by Lemma 3.4. Thus, by monotone convergence,

lim
N↑∞

AN,n = 0.(3.59)

By Lemma 3.8 and the induction hypothesis,

|wN,n(t) − wn(t)| ≤ 2Sα
t ϕ.(3.60)

Moreover, by the induction assumption, (3.55) holds. Then, by Lemma 3.4, the
dominated convergence theorem implies that

lim
N↑∞

BN,n = 0,(3.61)

finishing the proof.

3.6. A linearized equation. Next we show that wn converges as n ↑ ∞ to a
solution of a linearized equation.

Lemma 3.10 (linearized equation). Fix again T ≥ 1, ϕ ∈ Φ, and ψ1 : R+×Rd →
R+ satisfying (3.4a). Then, for 0 ≤ t ≤ T , in H the (nonnegative) limit

w(t) := lim
n↑∞

wn(t)(3.62)
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exists and is the unique Φ-valued solution to

w(t) = Sα
t ϕ−

∫ t

0

dsSα
t−s(ψ1(s)w(s)), 0 ≤ t ≤ T,(3.63)

implying

0 ≤ w(t) ≤ Sα
t ϕ, 0 ≤ t ≤ T.(3.64)

Proof. Extending the uniqueness proof (Lemma 3.7) in the obvious way, one can
show that

sup
0<s≤t

‖wn(s) − wm(s)‖H −−−→
n,m↑∞

0,(3.65)

provided that t < δ = δ(T, ϕ) < T . Hence, there is a measurable mapping s �→ w(s) ∈
H on [0, δ] such that

sup
0<s≤t

‖wn(s) − w(s)‖H −→
n↑∞

0.(3.66)

Obviously, for each choice of representatives, w satisfies (3.63). By Lemma 3.4, the
w(s) belong to Φ, and the proof is finished.

3.7. Existence of solutions. Our next goal is to use Lemma 3.10 to prove the
existence of a Φ-valued solution for (3.1). Hypothesis 3.2 is still in force.

Lemma 3.11 (existence). To each ϕ ∈ Φ, there exists a Φ-valued solution v = V ϕ
to the log-Laplace equation (3.1).

Proof. We want to construct a sequence of Φ-valued functions vm satisfying

vm(t) ≤ Sα
t ϕ.(3.67)

In fact, if m = 0, set v0 := Sαϕ. Assume that we have already defined vm for some
m ≥ 0. Note that by Corollary 2.11,

|vβm(t)| ≤ M(1 + t−κ)φβ ,(3.68)

with κ from (3.5). Let vm+1 be the unique Φ-valued solution to

vm+1(t, x) = Sα
t ϕ(x) −

∫ t

0

dsSα
t−s(v

β
m(s)vm+1(s))(x)(3.69)

according to Lemma 3.10, implying (3.67) for m + 1. Altogether, by induction we
defined Φ-valued functions vm satisfying (3.69), (3.67), and (3.68).

For m ≥ 0, let

Dm := vm+1 − vm.(3.70)

Then, as in the proof of Lemma 3.7 (uniqueness), using Lemma 3.6, for fixed T > 0,
we find

|Dm+1(t)| ≤ C

∫ t

0

ds(1 + s−κ)Sα
t−s(|Dm(s)|φβ),(3.71)
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0 ≤ t ≤ T , with a constant C = C(T ), and

‖Dm+1(t)‖H ≤ C

∫ t

0

ds(1 + s−κ)‖Sα
t−s(|Dm(s)|φβ)‖H

(3.72)

≤ C

∫ t

0

ds(1 + s−κ)C2.9(t− s)−λ‖Dm(s)‖H.

Setting

Dm,t := sup
0≤s≤t

‖Dm(s)‖H, 0 ≤ t ≤ T,(3.73)

we found that

Dm+1,t ≤ εtDm,t,(3.74)

where the εt are independent of m, and εt → 0 as t ↓ 0. Thus, if our T > 0 is small
enough, then there exists a constant 0 < γ < 1 such that if 0 ≤ t ≤ T , then

Dm+1,t ≤ γDm,t,(3.75)

and so

Dm,t ≤ γmD0,t.(3.76)

Therefore, we can define

v(t, x) :=

∞∑
m=0

Dm(t, x) = lim
m↑∞

vm(t, x), 0 ≤ t ≤ T, x �= 0,(3.77)

where the limit is taken in H+.
From our construction, it follows that

0 ≤ v(t) ≤ Sα
t ϕ and |vβ(t)| ≤ M(1 + t−κ)φβ .(3.78)

Now we want to show that v satisfies (3.1) for 0 ≤ t ≤ T . We start from definition
(3.69). First, by (3.77),

lim
m→∞

‖vm+1(t) − v(t)‖H = 0, 0 ≤ t ≤ T.(3.79)

As for the integral terms, we first note that for a, b, c ≥ 0, by (3.30) we have

|abβ − c1+β | ≤ |a1+β − c1+β | + |b1+β − c1+β |
(3.80)

≤ (1 + β)(a + c)β |a− c| + (1 + β)(b + c)β |b− c|.

Therefore, using the second part of (3.78), we have∥∥∥∥
∫ t

0

dsSα
t−s(vm+1(s)v

β
m(s)) −

∫ t

0

dsSα
t−sv

1+β(s)

∥∥∥∥
H

≤
∫ t

0

ds‖Sα
t−s|vm+1(s)v

β
m(s) − v1+β(s)|‖H(3.81)

≤ C

∫ t

0

ds(1 + s−κ)‖Sα
t−s(φ

β |vm+1(s) − v(s)| + φβ |vm(s) − v(s)|)‖H.
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By Corollary 2.9, this chain of inequalities can be continued with

≤ C

∫ t

0

ds(1 + s−κ)(t− s)−λ‖vm+1(s) − v(s)‖H
(3.82)

+C

∫ t

0

ds(1 + s−κ)(t− s)−λ‖vm(s) − v(s)‖H.

By dominated convergence, the latter terms converge to 0 as m ↑ ∞. In fact, the
norm expressions tend to 0 by (3.79), the vm and v are dominated by Sαϕ, which are
strongly continuous by Corollary 2.10, and hence bounded in norm on the finite time
interval, and recall (3.7). Thus, v satisfies (3.1) in H+ for t ≤ T and for sufficiently
small T . By induction on intervals, as in the proof of Lemma 3.8, we extend the
solution v from [0, T ] to all times. By Lemma 3.4, the constructed solution v is
Φ-valued.

Completion of the proof of Theorem 3.3. With Lemmas 3.7 and 3.11, we already
proved the uniqueness and existence claims, respectively. The semigroup property
of V follows from the uniqueness of solutions, and the strong continuity of V from
Lemma 3.5.

4. Construction of X. Having available the well-posedness of the log-Laplace
equation (Theorem 3.3) under Hypothesis 3.2, we now construct the desired process
X via a Trotter product approach to the related log-Laplace semigroup. For this
purpose, we introduce an approximating log-Laplace equation related to separating
critical continuous-state branching with index 1+β, and mass flow according to Sα on
alternate small time intervals (Lemma 4.1). The main work consists in showing that
its solutions converge to the solutions to the true log-Laplace equation (Proposition
4.3). Then, in the final subsection, all pieces can easily put together to get our main
result, the existence theorem, Theorem 4.4.

4.1. Approximating equation. We continue to impose Hypothesis 3.2. Fix
n ≥ 1 and ϕ ∈ Φ. We inductively define measurable functions v̄n on R+ × Ṙd. First
of all,

v̄n(0) := Sα
1/nϕ.(4.1)

Assume for the moment v̄n( k
n ) is defined for some k ≥ 0. For k

n ≤ t < k+1
n , set

v̄n(t, x) :=
v̄n( k

n , x)[
1 + ηβv̄βn( k

n , x)(t− k
n )

]1/β
, x �= 0.(4.2)

Note that

∂

∂t
v̄n(t, x) = −ηv̄1+β

n (t, x) on

(
k

n
,
k + 1

n

)
× Ṙd,(4.3)

that v̄n( k
n+, x) = v̄n( k

n , x), and that also the limit v̄n(k+1
n −, x) exists. Note also that

for x �= 0 fixed, (4.2) gives the log-Laplace transition function of a critical continuous-
state branching process (on R+) with index 1 + β (see, for instance, [Lam67]). Put

v̄n

(
k + 1

n
, x

)
:= Sα

1/nv̄n

(
k + 1

n
−, ·

)
(x), x �= 0.(4.4)
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Lemma 4.1 (approximating log-Laplace equation). The function v̄n ≥ 0 we have
just defined satisfies

v̄n(t, x) = Sα
(1+[tn])/nϕ(x) − η

∫ t

0

dsSα
([tn]−[sn])/n(v̄1+β

n (s))(x)(4.5)

on R+ × Ṙd.
Proof. Differentiating equation (4.5) to t �= k

n , k ≥ 0, gives the true statement

(4.3). On the other hand, for t = k
n , k ≥ 0,

v̄n

(
k

n

)
= Sα

(1+k)/nϕ− η

k∑
i=1

[
Sα

(k−(i−1))/n

∫ i/n

(i−1)/n

dsv̄1+β
n (s)

]
.(4.6)

By (4.3) and the fundamental theorem of calculus, the right-hand side of the latter
equation equals v̄n( k

n ), finishing the proof.
Set

tn := [tn]/n.(4.7)

Since v̄n is nonnegative, from (4.5) we get the domination

0 ≤ v̄n(t) ≤ Sα
1/n+tn

ϕ, t ≥ 0, n ≥ 1,(4.8)

implying by Corollary 2.9 with β = 0,

‖v̄n(t)‖H ≤ C(4.9)‖ϕ‖, 0 ≤ t ≤ T, n ≥ 1,(4.9)

for each T > 0, and where C(4.9) = C(4.9)(T ). In particular, v̄n is H+-valued. Our
aim is to show that the v̄n converge to the unique solution to (3.1). For this purpose,
we will need the following estimate.

Lemma 4.2 (pointwise bound). Impose Hypothesis 3.2. To each ϕ ∈ H+ and
T > 0, there is a ϕ0 = ϕ0(d, T, α, ϕ, �) in H+, such that

sup
T/2≤t≤T

Sα
t ϕ ≤ ϕ0.(4.10)

Proof. Recall from (2.35) that

Pα(t;x, y) ≤ P (t;x, y) + C2.6P̄ (t;x, y).(4.11)

Choose a constant C(4.12) = C(4.12)(d, T ) such that, for T/2 ≤ t ≤ T ,

P (t;x, y) ≤ C(4.12)P (T ;x, y)(4.12)

and

P̄ (t;x, y) = t−1/2φ(x)φ(y)e−|x|2/4te−|y|2/4t ≤ C(4.12)P̄ (T ;x, y)(4.13)

(recall (2.34)). From Lemma 2.3 (with β = 0) we conclude that STϕ belongs to H+,
whereas Lemma 2.7 (with β = 0) gives S̄Tϕ ∈ H+. Therefore, we may set

ϕ0 := C(4.12)(STϕ + C2.6S̄Tϕ)(4.14)

to finish the proof.
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4.2. Convergence to the limit equation. With the functions v̄n we may pass
to the limit.

Proposition 4.3 (convergence to the limit equation). Fix ϕ ∈ Φ. Define v̄n
as in (4.1)–(4.4). Let v = V ϕ be the unique Φ-valued solution to (3.1) according to
Theorem 3.3. Then, for each t ≥ 0,

lim
n↑∞

‖v(t) − v̄n(t)‖H = 0.(4.15)

Proof. We may restrict our attention to t ∈ [0, T ] for any fixed T > 1. For n ≥ 1
and with tn defined in (4.7), from (3.1) and (4.5) we have

‖v(t) − v̄n(t)‖H ≤ ‖Sα
t ϕ− Sα

1/n+tn
ϕ‖H

+ η

∫ tn

0

ds‖Sα
t−sv

1+β(s) − Sα
tn−snv

1+β(s)‖H

+ η

∫ tn

0

ds‖Sα
tn−sn |v

1+β(s) − v̄1+β
n (s)|‖H(4.16)

+ η

∥∥∥∥
∫ t

tn

dsSα
t−sv

1+β(s)

∥∥∥∥
H

+ η

∥∥∥∥
∫ t

tn

dsSα
tn−sn v̄

1+β
n (s)

∥∥∥∥
H

=: An(t) + Bn(t) + Cn(t) + Dn(t) + En(t),

with the obvious correspondence. We will deal with each of these terms separately.
Step 1 (An(t)). From the semigroup property and boundedness (2.68),

An(t) = ‖Sα
t ϕ− Sα

1/n+tn
ϕ‖H ≤ C2.9‖Sα

|t−1/n−tn|ϕ− ϕ‖H.(4.17)

But ∣∣∣∣t− 1

n
− tn

∣∣∣∣ ≤ 1

n
, t ≥ 0.(4.18)

Hence,

sup
0≤t≤T

An(t) ≤ C2.9 sup
0≤s≤2/n

‖Sα
s ϕ− ϕ‖H −→

n↑∞
0(4.19)

by strong continuity according to Corollary 2.10.
Step 2 (Dn(t)). Clearly, by our estimates (recall (3.29) and (2.67)),

Dn(t) ≤ C(ϕ)η

∫ t

tn

ds(1 + s−κ)(t− s)−λ‖ϕ‖H.(4.20)

By scaling, the integral equals

t1−λ

∫ 1

tn/t

ds(1 − s)−λ + t1−κ−λ

∫ 1

tn/t

dss−κ(1 − s)−λ =: In(t) + IIn(t),

with the obvious correspondence. Take ε ∈ (0, T ) and let n > 1/ε. Since

tn
t

≥ 1 − 1

tn
≥ 1 − 1

εn
, ε ≤ t ≤ T,(4.21)
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we get

sup
ε≤t≤T

In(t) ≤ T 1−λ

∫ 1

1−1/εn

ds(1 − s)−λ −→
n↑∞

0,(4.22)

whereas

sup
0≤t≤ε

In(t) ≤ ε1−λ

∫ 1

0

ds(1 − s)−λ ≤ Cε1−λ.(4.23)

Now ε was arbitrary, and consequently,

sup
0≤t≤T

In(t) −→
n↑∞

0,(4.24)

and the same reasoning leads to the analogous statement on IIn(t). Summarizing,

sup
0≤t≤T

Dn(t) −→
n↑∞

0.(4.25)

Step 3 (En(t)). We may assume that t > tn. By (4.5),

En(t) = ‖v̄n(t) − v̄n(tn)‖H.(4.26)

According to the definition (4.2) of v̄n(t),

0 ≤ v̄n(tn, x) − v̄n(t, x) = v̄n(tn, x)

(
1 − 1

[1 + ηβv̄βn(tn, x)(t− tn)]1/β

)
.(4.27)

Since t is fixed, it follows that for n large enough, t/2 < tn. Using domination and
Lemma 4.2, there is a ϕ0 = ϕ0(d, t, α, ϕ, �) ∈ H+ such that

v̄n(tn, x) ≤ Sα
1/n+tn

ϕ(x) ≤ ϕ0.(4.28)

But (4.27) is increasing in v̄n(tn, x), so we may insert (4.28) to obtain

0 ≤ v̄n(tn, x) − v̄n(t, x) ≤ ϕ0(x)

(
1 − 1

[1 + ηβϕβ
0 (x)/n]1/β

)
≤ ϕ0(x),

since 0 ≤ t− tn ≤ 1/n. Then, from dominated convergence we get

lim
n→∞

En(t) = 0(4.29)

for our fixed t.
Step 4 (Bn(t)). First of all, we want to deal with Bn(t) for small t. Clearly, for

0 < s < tn,

‖Sα
t−sv

1+β(s)‖H ≤ C(1 + s−κ)(t− s)−λ‖ϕ‖H(4.30)

and

‖Sα
tn−snv

1+β(s)‖H ≤ C(1 + s−κ)(tn − s)−λ‖ϕ‖H(4.31)
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since

tn − sn ≥ tn − s > 0.(4.32)

Let 0 < ε < T . Using notation (3.7), from (4.30) and (4.31), for 0 ≤ t ≤ ε,

Bn(t) ≤ C[I(t) + I(tn)].(4.33)

Moreover, since I is increasing (recall (3.15)),

sup
n≥1

sup
0≤t≤ε

Bn(t) ≤ C sup
0≤t≤ε

I(t) −→
ε↓0

0.(4.34)

Now we may restrict our attention to t ∈ [ε, T ]. We want to exploit the strong
continuity of the semigroup Sα acting on H+ (Corollary 2.10). To this end, we
truncate v1+β to a function in H+, and consider a small time interval around tn
separately to get rid of the varying upper integration bound. Here are the details.

Take δ ∈ (0, ε) and N ≥ 1. Set

v1,N (t) := (v(t) ∧N)1BN (0),(4.35a)

v2,N (t) := v(t) − v1,N (t).(4.35b)

Then for ε ≤ t ≤ T ,

Bn(t) ≤
∫ t−δ

0

ds‖Sα
t−sv

1+β
1,N (s) − Sα

tn−snv
1+β
1,N (s)‖H

+

∫ t

t−δ

ds‖Sα
t−sv

1+β(s)‖H +

∫ tn

t−δ

ds‖Sα
tn−snv

1+β(s)‖H
(4.36)

+

∫ t−δ

0

ds‖Sα
t−sv

1+β
2,N (s)‖H +

∫ t−δ

0

ds‖Sα
tn−snv

1+β
2,N (s)‖H

=: B(1)
n (t) + · · · + B(5)

n (t)

in the obvious correspondence. Again, we deal with all terms separately.

Step 4.1 (B
(2)
n (t)). From (4.30) and scaling,

B(2)
n (t) ≤ C

∫ 1

1−δ/t

ds(1 − s)−λ + C

∫ 1

1−δ/t

dss−κ(1 − s)−λ.(4.37)

But 1 − δ/t ≥ 1 − δ/ε, and hence

sup
n

sup
ε≤t≤T

B(2)
n (t) −→

δ↓0
0.(4.38)

Step 4.2 (B
(3)
n (t)). Similarly, from (4.31) and (4.32),

B(3)
n (t) ≤ C

∫ tn

t−δ

ds(1 + s−κ)(tn − s)−λ.(4.39)

Now

t ≥ tn ≥ t− 1

n
≥ ε− 1

n
≥ δ,(4.40)
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provided that n ≥ 1/(ε − δ). Thus, the lower integration bound can be replaced by
tn − δ, and by scaling,

B(3)
n (t) ≤ C

∫ 1

1−δ/tn

ds(1 − s)−λ + C

∫ 1

1−δ/tn

dss−κ(1 − s)−λ.(4.41)

By (4.40), the lower integration bounds can be changed to 1 − δ/(ε− 1/n), implying

lim sup
n↑∞

sup
ε≤t≤T

B(3)
n (t) −→

δ↓0
0.(4.42)

Step 4.3 (B
(4)
n (t) and B

(5)
n (t)). By domination and Corollary 2.11,

vβ2,N (s) ≤ vβ(s) ≤ (Sα
s ϕ)β ≤ C(1 + s)−κφβ .(4.43)

Note that for s ∈ [0, t− δ],

t− s and tn − sn belong to [δ/2, t] if n > 2/δ(4.44)

(for instance, tn − sn ≥ t− 1
n − s ≥ − 1

n + δ ≥ δ). Then, for r ∈ [δ/2, t] and n > 2/δ,

‖Sα
r v

1+β
2,N (s)‖H ≤ C(1 + s)−κ‖Sα

r (v2,N (s)φβ)‖H ≤ C(1 + s)−κ‖v2,N (s)‖H,

where in the last step we used Lemma 2.7 with ϕ replaced by v2,N (s). Now by
domination and boundedness, for 0 ≤ s ≤ T ,

‖v2,N (s)‖H ≤ ‖Sα
s ϕ‖H ≤ C‖ϕ‖H(4.45)

and

‖v2,N (s)‖H ↘
N↑∞

0.(4.46)

Therefore,

lim sup
n↑∞

sup
ε≤t≤T

(B(4)
n (t) + B(5)

n (t))

(4.47)

≤ C

∫ T

0

ds(1 + s)−κ‖v2,N (s)‖H ↘
N↑∞

0,

by monotone convergence, for the fixed ε and δ.

Step 4.4 (B
(1)
n (t)). It remains to deal with B

(1)
n (t). By the semigroup property,

boundedness, and strong continuity,

‖Sα
t−sv

1+β
1,N (s) − Sα

tn−snv
1+β
1,N (s)‖H

(4.48)
≤ C sup

0≤r≤2/n

‖Sα
r v

1+β
1,N (s) − v1+β

1,N (s)‖H ↘
N↑∞

0

for all s and N , since by definition

v1+β
1,N (s) ≤ N1+β1BN (0) ∈ H+.(4.49)

Moreover, the supremum in (4.48) is bounded from above by

2N1+β‖1BN (0)‖H.(4.50)



768 KLAUS FLEISCHMANN AND CARL MUELLER

Therefore,

sup
ε≤t≤T

B(1)
n (t) ≤

∫ T

0

ds sup
0≤r≤2/n

‖Sα
r v

1+β
1,N (s) − v1+β

1,N (s)‖H ↘
n↑∞

0,(4.51)

by monotone convergence, for all our N , ε, δ.
Step 4.5 (conclusion). Putting together (4.34), (4.38), (4.42), (4.47), and (4.51),

sup
0≤t≤T

Bn(t) −→
n↑∞

0.(4.52)

Step 5 (Cn(t)). First note that

Cn(t) = 0 for t ≤ 1/n.(4.53)

So we may assume that t ≥ 1/n. Next we apply Lemma 3.6 to get for the term in
abstract value sign in the definition of Cn(t) the bound

C[|v|β(s) + |v̄n|β(s)]|v(s) − v̄n(s)|.(4.54)

From domination, the expression in square brackets is bounded by

(Sα
s ϕ)β + (Sα

1/n+sn
ϕ)β ≤ C(1 + s−κ)φβ ,(4.55)

where we used Corollary 2.11 and 1/n + sn ≥ s. But by Corollary 2.9,

‖Sα
tn−sn |v(s) − v̄n(s)|φβ‖H ≤ C(tn − sn)−λ‖v(s) − v̄n(s)‖H.(4.56)

Setting

Fn(t) := sup
s≤t

‖v(s) − v̄n(s)‖H,(4.57)

we found for 1
n ≤ t ≤ T ,∫ tn

0

ds‖Sα
tn−sn |v

1+β(s) − v̄1+β
n (s)|‖H

(4.58)

≤ CFn(t)

∫ tn

0

ds(1 + s−κ)(tn − s)−λ ≤ CFn(t)I(t)

(recall (3.7)).
Step 6 (completion of the proof ). By (4.19), (4.25), (4.29), (4.52), and (4.58),

from estimate (4.16) we obtain

‖v(t) − v̄n(t)‖H ≤ εn + CFn(t)I(t)(4.59)

for the fixed t ≤ T , where C = C(T ) and where εn = εn(t, T ) tends to 0 as n ↑ ∞.
Imposing additionally on t that CI(t) < 1

2 (recall (3.7)), we get

Fn(t) ≤ εn +
1

2
Fn(t), that is, Fn(t) ≤ 2εn −→

n↑∞
0.(4.60)

Consequently,

‖v(t) − v̄n(t)‖H −→
n↑∞

0 for all sufficiently small t.(4.61)

Repeating the argument, we can lift up for t ∈ [0, T ]. Since T was arbitrary, the proof
of Proposition 4.3 is finished altogether.



SUPER-BROWNIAN MOTION WITH EXTRA BIRTH AT ONE POINT 769

4.3. Construction of the process. Here is now the more precise formulation
of our main result, announced in Theorem 1.1.

Theorem 4.4 (existence of X). Under Hypothesis 3.2, there is a (unique in law)
nondegenerate M(Ṙd)-valued (time-homogeneous) Markov process X = (X,Pµ, µ ∈
M) with log-Laplace transition functional (1.6) using test functions ϕ ∈ Φ and where
v = V ϕ is the unique Φ-valued solution to (3.1).

Remark 4.5 (nondegeneracy). It is easy to see that the following expectation
formula holds:

Pµ〈Xt, ϕ〉 = 〈µ, Sα
t ϕ〉 =: 〈Sα

t µ, ϕ〉, µ ∈ M, t ≥ 0, ϕ ∈ Φ.(4.62)

But

Vtϕ �= Sα
t ϕ, t > 0, ϕ ∈ Φ, ϕ �= 0.(4.63)

Hence, the log-Laplace formula (1.6) shows that X is different from its expectation;
that is, it is nondegenerate.

Proof of Theorem 4.4. For the moment, fix µ ∈ M and n ≥ 1. Our first purpose is,
for t ≥ 0 fixed, to construct a random measure Xn

t in M with log-Laplace functional

− log Pe−〈Xn
t ,ϕ〉 = 〈µ, v̄n(t)〉, ϕ ∈ Φ,(4.64)

where v̄n =: V nϕ is taken from definitions (4.1)–(4.4). Then we later let n ↑ ∞ and
obtain (for the fixed t) a random measure Xt in M with log-Laplace functional

− log Pe−〈Xt,ϕ〉 = 〈µ, v(t)〉, ϕ ∈ Φ.(4.65)

Actually, we will get a probability kernel Qt, say, in M, which as a function in t
turns out to satisfy Chapman–Kolmogorov. Trivially, Q is then the transition kernel
of a time-homogeneous Markov process X, say, in M, regardless of its possible path
properties (which are not considered in the theorem) and whether, for fixed n, the
family of the Xn

t , t ≥ 0, is defined on a common probability space (which is necessary
to form a random process) or not. Now the details will follow.

As the v̄n had been constructed by alternating operations of mass flow and
continuous-state branching on time intervals of length 1

n , we will construct also the
Xn

t by such an alternation procedure. Note, however, since the two alternating op-
erations do not commute, on the dual level of measures we have to interchange the
order of operations.

An essential tool in our construction of the Xn
t will be an M-valued process Y

that we will introduce next. As already noted in the beginning of subsection 4.1, the
unique solutions g to the ordinary differential equation

dg

dt
(t) = −ηg1+β(t) on R+ with g(0) = θ(4.66)

yield the log-Laplace transition functions of a critical continuous-state branching pro-
cess, say y = {yt : t ≥ 0}, with index 1 + β:

− log P{e−ytθ | y0 = a} = ag(t)(4.67)

(see [Lam67]). (Clearly, for β = 1, we have the famous critical Feller’s branching
diffusion; otherwise the yt have infinite variance.) We want to let such processes evolve
independently at each spatial point x �= 0. More precisely, consider the M-valued
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(time-homogeneous) Markov process {Yt : t ≥ 0} with càdlàg paths and log-Laplace
transition functional

− log P{e−〈Yt,ϕ〉 | Y0 = µ} = 〈µ,Gtϕ〉, t ≥ 0, ϕ ∈ Φ, µ ∈ M,(4.68)

where

Gtϕ(x) := g(t, x), t ≥ 0, x �= 0,(4.69)

and for each x �= 0 fixed, t �→ g(t, x) solves (4.66) with θ replaced by ϕ(x). This
process Y can also be obtained by starting from a critical super-Brownian motion on
Rd with (1 + β)-branching and letting the migration constant of the super-Brownian
motion tend to zero; see [DF88, Theorem 5.8]. Although started from any measure
Y0 = µ ∈ M, at positive times t the random measures Yt are atomic, where the
(closed) support of Yt forms a Poisson point field on Rd, whereas the weights of the
atoms evolve in time independently as critical continuous-state branching processes y
of index 1 + β (see [DF88, discussion after Theorem 3.1]).

For fixed µ ∈ M, and n ≥ 1, we now want inductively to introduce the random
measures Xn

t satisfying (4.64). First of all, for t ∈ [0, 1
n ) set

Xn
t := Sα

1/nYt, where Y starts from Y0 := µ.(4.70)

Here we used the notation of smearing out measures according to the flow Sα intro-
duced in (4.62), and Lemma 4.2. Then by (4.68),

Pe−〈Xn
t ,ϕ〉 = Pe−〈Yt,S

α
1/nϕ〉 = e−〈µ,GtS

α
1/nϕ〉, ϕ ∈ Φ.(4.71)

But by uniqueness of the solutions to (4.66) and by (4.3) in the case k = 0, we get
GtS

α
1/nϕ = v̄n(t). Consequently, (4.64) is true for 0 ≤ t < 1

n .

Assume now that for some k ≥ 0 the random measures Xn
t , t ∈ [ kn ,

k+1
n ), are

defined (not necessarily on a common probability space) and satisfy (4.64). Recall
that this is true for k = 0. Then, for fixed t ∈ [k+1

n , k+2
n ), conditionally on Xn

t−1/n,
we set

Xn
t := Sα

1/nY1/n, where Y starts from Y0 := Xn
t−1/n.(4.72)

Now (4.68) implies

Pe−〈Xn
t ,ϕ〉 = PP{e−〈Y1/n,S

α
1/nϕ〉 | Y0 = Xn

t−1/n} = Pe−〈Xn
t−1/n,G1/nS

α
1/nϕ〉.(4.73)

By the induction hypothesis, the chain of equations (4.73) can be continued with

= e−〈µ,v̄n(t−1/n)〉, ϕ ∈ Φ,(4.74)

but where v̄n(0) = Sα
1/nG1/nS

α
1/nϕ instead of Sα

1/nϕ. However, by the constructions

in the beginning of subsection 4.1, the new v̄n(t − 1
n ) coincides with the original

v̄n(t), yielding (4.64). Consequently, by induction we obtained random measures Xn
t

satisfying (4.64) for any t ≥ 0.
Next we want to let n ↑ ∞. According to Proposition 4.3, for t ≥ 0 fixed,

v̄n(t) → v(t) as n ↑ ∞, implying that the right-hand sides of (4.64) converge to
〈µ, v(t)〉. Therefore, the log-Laplace transforms at the left-hand side of (4.64) converge
to 〈µ, v(t)〉, too. Now, by domination as in (3.2), we get 〈µ, v(t)〉 ↓ 0 as ϕ ↓ 0.
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Therefore, the limit of the log-Laplace transforms in (4.64) is again a log-Laplace
transform of a random measure in M, say Xt (see, for instance, [Dyn94, section 3.3.4,
pp. 50–51]; in other words, there is no loss of probability mass, that is, the laws of the
random measures Xn

t are relatively compact). Consequently, for t fixed, Xn
t → Xt

in law as n ↑ ∞. Since the map µ �→ 〈µ, Vtϕ〉 is measurable, via µ �→ Xt we get a
probability kernel Qt in M for the fixed t. From the semigroup property of V ϕ it
follows that the family Q := {Qt : t > 0} satisfies Chapman–Kolmogorov. Hence, Q
is the transition kernel of a time-homogeneous Markov process in M, which is the
desired superprocess X. This finishes the proof of Theorem 4.4.

Remark 4.6 (convergence theorem on càdlàg path space). The previous proofs
should be modified and refined as the superprocess X is constructed as a Markov
process via convergence of the one-, hence finite-dimensional, distributions of approx-
imating processes Xn with càdlàg paths, say. Now the processes Xn and X should
have finite moments of all orders θ ∈ (0, 1 + β). Using martingale methods, via Al-
dous’s criterion it should be possible to prove tightness of the laws of the processes
Xn on Skorohod path space, then sharpening Theorem 4.4 to a convergence theorem
on path space with a limiting càdlàg superprocess X.

Acknowledgments. We would like to thank Sergio Albeverio, Zdzis�law Brzeź-
niak, Werner Kirsch, and Karl-Theodor Sturm for discussions on the operators ∆(α).
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RANDOM SAMPLING OF MULTIVARIATE TRIGONOMETRIC
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Abstract. We investigate when a trigonometric polynomial p of degree M in d variables is
uniquely determined by its sampled values p(xj) on a random set of points xj in the unit cube
(the “sampling problem for trigonometric polynomials”) and estimate the probability distribution of
the condition number for the associated Vandermonde-type and Toeplitz-like matrices. The results
provide a solid theoretical foundation for some efficient numerical algorithms that are already in use.

Key words. sampling, band-limited functions, multivariate trigonometric polynomials, random
sampling, block Toeplitz matrix, Vandermonde matrix, condition number, metric entropy
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60G99
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1. Introduction. The reconstruction, interpolation, or approximation of a func-
tion (signal, image) from a given data set is a central task in many problems of data
processing. The mathematical problem is to find a function f(x) in a suitable func-
tion space V that interpolates or approximates the given data yj = f(xj). The set
X = {xj : j = 1, . . . , r} ⊆ R

d is the sampling set, and the function space V comes
from the mathematical modeling of signals or images (e.g., band-limitedness, smooth-
ness). The numerical and theoretical analysis of the sampling problem depends, of
course, heavily on the signal model V .

In this paper we focus almost exclusively on multivariate trigonometric polyno-
mials as our model. While this is by no means the only possible model, it is conve-
nient, interesting, and occurs in many applications where standard uniform sampling
is not possible. Specifically, the model of trigonometric polynomials has been used
in cardiology (one-dimensional) [39]; geophysics (two-dimensional) [30]; image pro-
cessing (two-dimensional) [37]; as a nonuniform discrete Fourier transform (one- and
two-dimensional) [8, 14, 15, 29, 35]; and in computer tomography (two- and three-
dimensional) [3, 28, 33]. Furthermore the space of trigonometric polynomials of fixed
degree is the appropriate finite-dimensional model for the approximation of band-
limited functions from a finite number of samples [20,21].

Clearly, the sampling operator f → {f(xj) : j = 1, . . . , r} is linear, and, for
a finite-dimensional model space, it can therefore be described by a matrix. For
the model of trigonometric polynomials of fixed degree, this matrix possesses an ad-
ditional structure; namely, it is either a rectangular Vandermonde-like matrix or a
square Toeplitz-like matrix. This structure is the basis for efficient and fast numer-
ical algorithms. For dimension d = 1 we refer to [8, 16, 17, 31, 38], and for higher
dimensions to [28, 30, 33, 37]. These algorithms are fast, stable, and robust, but only
in dimension d = 1 do the numerical algorithms possess a solid theoretical basis
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(invertibility, estimates of condition numbers, and rates of convergence for iterative
algorithms).

In higher dimensions, there is only numerical evidence that the existing algo-
rithms work; except for some isolated results [19, 23] there has been no theoretical
justification for the success of these numerical methods. The main reason for this
disparity lies in the nature of zero sets of trigonometric polynomials in one and higher
dimensions. In dimension d = 1 the zero set of a trigonometric polynomial is finite
by the fundamental theorem of algebra, whereas the zero set of a trigonometric poly-
nomial in several variables is an algebraic variety. This difference makes it almost
impossible to determine effectively whether the reconstruction problem {f(xj)} → f
is solvable for a fixed multidimensional sampling set X ⊆ R

d. It seems even more
difficult to estimate the condition numbers of the associated matrices. On the other
hand, numerical experiments and successful applications make it plausible that for
generic sampling sets X ⊆ R

d the sampling problem is solvable and well-conditioned.
Our goal is to achieve some understanding for the success of existing numerical

methods and to provide more insight into the theoretical issues. To do this we adopt a
probabilistic point of view: Instead of seeking analytic statements for a fixed sampling
set, we consider the collection of all sampling sets of size r and assume that the
sampling set consists of a finite sequence of independent random variables. Instead
of worst-case estimates, i.e., inequalities within mathematical analysis, we will seek
probabilistic estimates (from the realm of probability theory). With this underlying
philosophy, we will pursue the following objectives:

(a) We seek to explain and predict the performance of the existing numerical
algorithms.

(b) We estimate the distribution of the condition numbers of the associated
Vandermonde-like and Toeplitz-like matrices.

(c) We investigate the asymptotic behavior of condition numbers as the number
of samples r tends to infinity.

The randomization of the sampling points seems to be a new idea in the investiga-
tion of numerical sampling algorithms. So far random sampling has been investigated
by Seip and Ulanovskii [32], Chistyakov and Lyubarskii [9], Chistyakov, Lyubarskii,
and Pastur [10] for entire functions of exponential type of one complex variable. These
results rely on the deep characterization of deterministic sampling sets [26, 27] and,
to our knowledge, cannot be extended to higher dimensions. In a different direc-
tion, Smale and Zhou [34] have recently used probabilistic methods from learning
theory [12] to investigate sampling in reproducing kernel Hilbert spaces.

By contrast, our main contribution is to sampling theory for functions of several
variables. In higher dimensions there is currently no satisfactory deterministic theory,
and our analysis provides the first clues that existing algorithms and methods do really
work. From a more applied point of view, our results suggest that random sampling
of images or higher-dimensional objects may be a successful strategy to capture the
essential information of multidimensional objects while preserving numerical efficiency
and stability.

Description of results. We now describe the main results.
Let PM be the space of trigonometric polynomials on R

d of degree M and period
1, that is, PM consists of all functions on R

d of the form

p(x) =
∑

k∈[−M,M ]∩Zd

ake
2πik·x.(1)
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Note that the (distributional) Fourier transform of p ∈ PM is p̂ =∑
k∈[−M,M ]∩Zd akδk, so supp p̂ ⊆ [−M,M ]d. The parameter M can be interpreted as

the “bandwidth,” and indeed trigonometric polynomials have been shown to be the
appropriate finite-dimensional model for band-limited functions [20,21].

Now assume that the samples p(xj), j = 1, . . . , r, of some trigonometric polyno-
mial p ∈ PM are given for some sampling set X = {xj : j = 1, . . . , r}. By our normal-
ization, we may assume that the sampling set X is contained in the unit cube [0, 1]d.
Our goal is to reconstruct or to approximate p. Equivalently, we want to determine
the coefficients ak of p from the samples p(xj). This task can be seen as a nonuniform
discrete Fourier transform and is a frequent task in data processing [8, 14,15,29,35].

In its simplest form, the reconstruction of p amounts to solving the r equations∑
k∈[−M,M ]d∩Zd

ake
2πik·xj = p(xj) = yj , j = 1, . . . , r,

for the coefficient vector a = (ak)k∈Zd∩[−M,M ]d . This system of equations can be
written in matrix form as

Ua = y,(2)

where U is the matrix with entries Ujk = e2πik·xj , k ∈ Z
d ∩ [−M,M ]d, j = 1, . . . , r,

and y is the target vector y = (yj)j=1,...,r. Alternatively, one may try to find a from
the normal equations [18]

U∗Ua = U∗y.(3)

In this case the matrix T = U∗U has entries

Tkl =

r∑
j=1

e−2πi(k−l)·xj , k, l ∈ [−M,M ]d ∩ Z
d.

The matrices of these linear systems are highly structured, U is a Vandermonde-like
matrix, and T is a positive semidefinite D×D matrix with a block Toeplitz structure.
Both structures have been successfully exploited for fast numerical algorithms [17,23,
29,37].

However, before the numerical analysis of the sampling problem can be under-
taken, we need to settle a fundamental theoretical issue: Is either of the equations (2)
or (3) solvable? Note that both matrices U and T depend on the sampling points
xj as parameters. Therefore we ask more precisely, for which sampling set X does U
have full rank, or, equivalently, when is T invertible?

In dimension d = 1, T is invertible if and only if r ≥ 2M + 1 (the number of
sampling points is greater than the dimension of the space). In higher dimensions no
criterion for the invertibility of T is known, and useful results are sparse. See [23] for
a discussion.

In the spirit of probability theory we model the sampling set as a sequence of
independent, identically distributed (i.i.d.) random variables in [0, 1]d. This means
that we treat the sampling points as a sequence of functions xj = xj(ω) on some
probability space (Ω,P). Thus the matrices U and T are now random matrices, and
their determinants, eigenvalues, and singular values are random variables on (Ω,P)
that depend on the sampling set in a rather complicated way.

The first theorem guarantees the generic invertibility of T .
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Theorem 1.1. Assume that the finite sequence of random variables x1, . . . , xr

satisfies the following properties:
(a) r ≥ (2M + 1)d.
(b) The xj’s are independent.
(c) The distribution µj of each xj is absolutely continuous with respect to Lebesgue

measure on [0, 1]d.
Then with probability one the Toeplitz-like matrix T is invertible.

Estimates for the condition number. For a stable numerical solution of either
of the systems (2) and (3) we need effective invertibility of T . This is usually measured
by the condition number κ(T ) of T . (The condition number κ(M) of a rectangular
matrix is the ratio of largest to smallest singular value [18]; for a positive-definite
square matrix, this is simply the ratio of the largest to the smallest eigenvalue.) To
estimate the condition numbers of U and T we observe that

r∑
j=1

|p(xj)|2 = 〈y,y〉 = 〈Ua,Ua〉 = 〈U∗Ua,a〉 = 〈T a,a〉.(4)

Consequently, if we can prove an inequality of the form

A‖p‖2
2 ≤

r∑
j=1

|p(xj)|2 ≤ B‖p‖2
2 ∀p ∈ PM ,(5)

then the largest (smallest) eigenvalue of T is at most B (at least A), since ‖p‖2 = ‖a‖2.
Consequently, (5) implies the estimates

κ(T ) ≤ B

A
and κ(U) ≤

(B
A

)1/2

.(6)

Our main theorem is the following asymptotic estimate for the condition numbers
of T or U as r → ∞.

Theorem 1.2. Assume that X = {xj : j ∈ N} is a sequence of i.i.d. random
variables uniformly distributed over [0, 1]d. There exist constants A,B > 0 depending
only on the bandwidth M and the dimension d such that for any µ ∈ (0, 1), the
sampling inequality

(1 − µ)r‖p‖2
2 ≤

r∑
j=1

|p(xj)|2 ≤ (1 + µ)r‖p‖2
2 ∀p ∈ PM(7)

holds with probability at least

1 −Ae−Br µ2

1+µ .

Consequently, with the same probability estimate, the Toeplitz-type matrix T has con-
dition number κ(T ) ≤ 1+µ

1−µ and the Vandermonde-like matrix U has condition number

κ(U) ≤
√

1 + µ/
√

1 − µ.
For a fixed threshold θ > 1, the probability that κ(T ) ≤ θ converges to 1 expo-

nentially fast as the number of samples increases. With some poetic license, we may
therefore say that oversampling improves the condition number.

We will give two proofs of this result. The first proof is by reduction to a determin-
istic result. We estimate the probability that the conditions of an existing deterministic
result from [23] are satisfied. With this approach we obtain explicit estimates for the



RANDOM SAMPLING OF TRIGONOMETRIC POLYNOMIALS 777

constants. The second proof uses a version of the powerful metric entropy method;
see [4, 5, 13] for just a few of its applications to probability theory. This approach
is genuinely asymptotic and does not yield effective estimates of the constants. The
main advantage of this method is its flexibility and generality. To demonstrate the
power of this approach we will formulate versions of Theorem 1.2 for ordinary polyno-
mials in several variables, for almost periodic functions, and for spherical harmonics
on the sphere (section 6).

As a consequence of Theorem 1.2 we obtain the following law of the iterated
logarithm.

Corollary 1.3. If {xj : j ∈ N} is a sequence of i.i.d. random variables that are
uniformly distributed over [0, 1]d, then

lim sup
r→∞

supp∈P |
∑r

j=1[|p(xj)|2 − ‖p‖2
2]|√

r log log r‖p‖2
2

= c a.s.(8)

for some positive constant c of order D = (2M + 1)d.
With less precision, but more intuitively, the corollary says that with probability

one, the condition number of the sampling problem is

κ(T ) ≤ (r + c
√
r log log r)/(r − c

√
r log log r) ≈ 1 + 2c

(
log log r

r

)1/2

,

whenever r is large enough.
Our main theorems validate existing numerical algorithms for nonuniform sam-

pling sets in higher dimensions. Furthermore, they make precise in which sense ran-
dom sampling of multidimensional objects is better than deterministic sampling.

The paper is organized as follows. In section 2 we collect some facts about mul-
tivariate trigonometric polynomials and explain the idea of the simplest numerical
algorithms. In section 3 we prove Theorem 1.1 about the almost certain solvability of
the sampling problem. In section 4 we provide the first proof of Theorem 1.2 and show
a probabilistic covering result that may be of independent interest. In section 5 we
develop the metric entropy approach and give a second proof of Theorem 1.2 for the
asymptotic estimate of the condition number. Furthermore, we develop some conse-
quences of our main theorem. In section 6 we discuss extensions of the metric entropy
method to other sampling problems.

2. Sampling of trigonometric polynomials. We first collect the background
information on sampling of trigonometric polynomials and some of the numerical
aspects that motivated our investigation.

By X = {xj : j = 1, . . . , r} we denote a sampling set of r (distinct) points in
[0, 1]d.

The space of trigonometric polynomials on R
d of degree M and period 1 in each

variable is

PM =

{
p : p(x) =

∑
k∈[−M,M ]d∩Zd

ake
2πik·x

}
.(9)

Remarks. (1) The vector space PM has dimension D = (2M + 1)d. This implies
that we need at least (2M +1)d data points in order to recover a polynomial p ∈ PM .

(2) The parameter M can be interpreted as the “bandwidth” and measures the
permissible amount of oscillation (smoothness). We will assume that M is given, but
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note that the determination of the optimal bandwidth is an important step in the
practical application of sampling algorithms [38].

(3) On PM the following estimates between equivalent norms hold:

‖p‖2
2 =

∫
[0,1]d

|p(x)|2 dx = ‖a‖2,

‖p‖∞ ≤ D1/2 ‖a‖2 = D1/2 ‖p‖2,(10)

‖p‖4
4 ≤ ‖p‖2

∞‖p‖2
2 ≤ D‖p‖4

2.

The reconstruction of p ∈ PM from given samples {p(xj) : j = 1, . . . , r} amounts
to solving the following system of r equations:∑

k∈[−M,M ]d∩Zd

ake
2πik·xj = f(xj) = yj , j = 1, . . . , r.(11)

Introducing the matrices U and T with entries

Ujk = e2πik·xj , j = 1, . . . , r, k ∈ [−M,M ]d ∩ Z
d,(12)

Tkl = (U∗U)kl =

r∑
j=1

e−2πi(k−l)·xj , k, l ∈ [−M,M ]d ∩ Z
d,(13)

we can then formulate the sampling problem for PM in several distinct ways.
Lemma 2.1. The following are equivalent:
(i) The equations (11) possess a unique solution in PM .
(ii) The Vandermonde-type matrix has full rank and r ≥ D.
(iii) There exist A,B > 0 such that

A‖a‖2 ≤ ‖Ua‖2 ≤ B‖a‖2 ∀a ∈ C
D.

(iv) The D ×D Toeplitz-like matrix T is invertible.
(v) There exist A,B > 0 such that

A‖p‖2 ≤
r∑

j=1

|p(xj)|2 ≤ B‖p‖2 ∀p ∈ PM .(14)

If any of (i)–(v) hold, we say that X is a set of stable sampling for PM [25].
Despite its lack of mathematical substance, this lemma is useful because each of

the criteria may be used as a starting point for the theoretical or numerical investiga-
tion of the sampling problem. For the mathematical analysis the sampling inequality
(14) is most appropriate, because it invites the use of analytic methods. For the
numerical solution of the sampling problem, the linear algebra criteria (ii), (iii), and
(iv) are most useful, because the theory of structured matrices offers fast solution
techniques.

A numerical algorithm for the solution of (11) could then be based on the following
steps.

Algorithm.

Input. Given a sampling set X = {xj : j = 1, . . . , r} ⊆ [0, 1]d and a data vector
y = {yj : j = 1, . . . , r}, assume that T defined in (13) is invertible.
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Step 1. Compute b = U∗y, i.e.,

bk =

r∑
j=1

e−2πik·xj yj for k ∈ [−M,M ]d ∩ Z
d.(15)

Step 2. Solve the system of equations

a = T −1b.(16)

Step 3. Compute p ∈ PM by

p(x) =
∑

k∈[−M,M ]d∩Zd

ake
2πik·x.(17)

Then p is the (unique) least squares approximation of the given data vector y in
the sense that

r∑
j=1

|yj − p(xj)|2 = min
q∈PM

r∑
j=1

|yj − q(xj)|2.(18)

If y arises as the sampled vector of a polynomial p ∈ PM , i.e., yj = p(xj), then
this algorithm provides the exact reconstruction of p.

Remarks. (1) The numerical implementation of this idea is often referred to as
the ACT-algorithm. The decisive step is the solution of matrix equation T a = b
in Step 2. Since T is a positive-definite Toeplitz-like matrix, the exploitation of this
structure in conjunction with block Toeplitz solvers and conjugate gradient algorithms
has led to fast and efficient reconstruction algorithms in higher dimensions [30, 37].
For numerical issues and real applications we refer to [23].

(2) Since the condition numbers of U and T are related by κ(T ) = κ(U)2, it may
be better to solve the Vandermonde-type system Ua = y directly; see the work of
Potts and Steidl [28].

3. Invertibility almost surely. We first establish that the reconstruction algo-
rithm discussed in section 2 works almost surely. In dimension d = 1, T is invertible
if and only if r ≥ 2M + 1. In higher dimensions, a complete and effective character-
ization of the invertibility seems out of reach. For this reason we use a probabilistic
approach.

First we provide a lemma in which λ will denote Lebesgue measure.
Lemma 3.1. Let p ∈ PM be a trigonometric polynomial in d variables. Then its

zero set Z(p) = {x ∈ [0, 1]d : p(x) = 0} has Lebesgue measure 0.
Proof. This fact is well known; we provide its easy proof for the sake of complete-

ness.
Fix x1, . . . , xd−1 ∈ [0, 1]d; then P (x1, . . . , xd−1, xd) is a trigonometric polynomial

in one variable xd of degree M and thus has at most 2M + 1 zeros. The set {x ∈
[0, 1] : (x1, . . . , xd−1, x) ∈ Z(p)} has Lebesgue measure 0. This is true for every choice
of x1, . . . , xd−1, so by Fubini’s theorem, we obtain that

λ(Z(p)) =

∫
[0,1]d−1

(∫
[0,1]

χZ(p)(x1, . . . , xd−1, x) dx
)
dx1 . . . dxd−1 = 0 ,

as desired.
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The following result is a first indication why in practice no serious problems have
occurred in the application of multidimensional sampling algorithms.

Theorem 3.2. Assume that the random variables {x1, . . . , xr} are independent
and that the distribution µj of each xj is absolutely continuous with respect to Lebesgue
measure on [0, 1]d.

Then the Vandermonde-like matrix U is of full rank almost surely. If, in addition,
r ≥ D = (2M +1)d, then the Toeplitz-like matrix T = U∗U is invertible almost surely.

Proof. Let m1, . . . ,mD be an enumeration of the index set [−M,M ] ∩ Z
d over

which we are summing, and let CN be the N ×N matrix with entries

C�j = eim�·xj , 1 ≤ �, j ≤ N.

Then CN depends on the sampling points x1, . . . xN , and we may define the “bad”
set

BN = {(x1, . . . , xN ) ∈ ([0, 1]d)N : detCN = 0}.

We claim that λ(BN ) = 0 for all N ≤ min(r,D) and prove this by induction
over N . This is certainly true for N = 1. So assume that N < min(r,D) and that
(x1, . . . , xN ) /∈ BN .

Let a� = (C�,1, . . . , C�,N ), �≤N , be the �th row of CN and let aN+1 = (CN+1,1, . . . ,
CN+1,N ). Since CN is invertible, there exist coefficients b� = b�(x1, . . . , xN ) ∈ C, not
all 0, such that

aN+1 = b1a1 + · · · + bNaN .

By looking at the (N + 1)st column of CN+1, we find that CN+1 is invertible if and
only if CN+1,N+1 �= b1C1,N+1 + · · · + bNCN,N+1, or if and only if

eimN+1·xN+1 �= b1e
im1·xN+1 + · · · + bNeimN ·xN+1 .

In other words, CN+1 is invertible if xN+1 is not in the set

DN = DN (x1, . . . , xN ) = {x ∈ [0, 1]d : eimN+1·x = b1e
im1·x + · · · + bNeimN ·x} .

For fixed (x1, . . . , xN ) ∈ ([0, 1]d)N , DN is the zero set of some trigonometric polyno-
mial, and by Lemma 3.1 DN has Lebesgue measure 0 in [0, 1]d.

Since the bad set BN+1 is contained in {(x1, . . . , xN , xN+1) ∈ ([0, 1]d)N+1 :
xN+1 ∈ DN (x1, . . . , xN )}, we see by Fubini’s theorem that

λ(BN+1) =

∫
([0,1]d)N

(∫
[0,1]d

χBN+1
(x1, . . . , xN , xN+1) dxN+1

)
dx1, . . . , dxN

≤
∫

([0,1]d)N

∫
[0,1]d

λ(DN (x1, . . . , xN ))dx1, . . . , dxN = 0.

The induction step is proved.
If r ≤ D, then Cr is invertible for almost every choice of x1, . . . , xD, where “almost

every” is with respect to Lebesgue measure λ. Consequently, the r×D matrix U has
full rank. If r ≥ D, this also implies that the D × D square matrix T = U∗U is
invertible for almost every choice of x1, . . . , xD.

Since the distribution µj of xj is absolutely continuous with respect to λ, the bad
set BD also has measure 0 with respect to µ1 × · · · × µD.
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Corollary 3.3. The Toeplitz-like matrix T is invertible under each of the fol-
lowing hypotheses on the sampling set:

(a) The xj , j = 1, . . . , r, are i.i.d. random variables, each of which is uniformly
distributed over [0, 1]d.

(b) The sampling set is a random perturbation of a uniform sampling set, i.e., it
is some enumeration of { 1

N k + δk : k ∈ Z
d ∩ [0, N − 1]d}, where N ≥ 2M + 1 and the

δk are i.i.d. random variables uniformly distributed over a neighborhood of 0.

4. A covering results and reduction to deterministic estimates. Theo-
rem 1.1 guarantees that an implementation of the algorithm in section 2 will work in
principle. However, numerical invertibility requires a reasonable bound on the condi-
tion number of T or of U .

This is already a serious problem in dimension d = 1. It is easy to construct
sampling sets in [0, 1] for which the corresponding Toeplitz matrix has condition
number of the order 1015 [17]. While such a matrix is invertible in theory, for practical
purposes it may be considered to be noninvertible.

As a next step we therefore turn to estimates for the condition number of the block
Toeplitz matrix T . For this we combine a deterministic result with a probabilistic
statement on coverings.

We work with the metric d(x, y) = mink∈Zd ‖x−y+k‖∞ on the torus T
d ∼ [0, 1)d

and the associated cubes of side-length 2ρ,

B(x, ρ) = {y ∈ [0, 1]d : d(y, x) ≤ ρ} = x + [−ρ, ρ]d.

To every sequence of sampling points {xj : j ∈ N} ⊆ [0, 1]d, let {Vj} we assign the
“distance function”

δ(r) = inf

{
s :

r⋃
j=1

B(xi, s) ⊃ [0, 1]d

}
.(19)

The quantity 2δ(r) can be interpreted as the maximum distance of any of the first r
sampling points xj to its next neighbor. Let Vj , j = 1, . . . , r, be Voronoi regions

Vj = {y ∈ [0, 1]d : d(y, xj) ≤ d(y, xk), k �= j, 1 ≤ j, k ≤ r}

and wj = λ(Vj) and consider the weighted Toeplitz-like matrix T w with entries

T w
kl = (U∗U)kl =

r∑
j=1

wje
−2πi(k−l)·xj , k, l ∈ [−M,M ]d ∩ Z

d.

Then it is possible to show the following deterministic theorem [19,23].
Theorem 4.1. If

δ(r) <
log 2

2πMd
,(20)

then, for all p ∈ PM ,

(2 − e2πdMδ)2‖p‖2
2 ≤

r∑
j=1

|p(xj)|2wj = 〈a, T wa〉 ≤ 4‖p‖2
2.(21)
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Consequently, the condition number of T w can be estimated by

κ(T w) ≤ 4

(2 − e2πdMδ)2
,(22)

and both T and T w are invertible.
Remarks. (1) The specific choice of weights wj is crucial for the explicit esti-

mate (22). In the numerical implementation of the algorithm of section 2, they serve
as a simple and cheap preconditioner.

(2) In higher dimensions, (22) is far from being optimal, since it depends on the
dimension d. It is an open problem to obtain improvements to this estimate. For a
related result for band-limited functions, see [7].

We next suppose that the sampling points form an infinite sequence of i.i.d.
independent random variables xj , j ∈ N. We first investigate how the distribution of
the associated sequence of random variables δ(r) depends on the number of sampling
points r.

Theorem 4.2. If X = {xj : j ∈ N} is a sequence of i.i.d. random variables
uniformly distributed over [0, 1]d, then for every r,N ∈ N

P(δ(r) > 1/N) ≤ Nd(1 −N−d)r ≤ Nde−r/Nd

.(23)

Consequently, κ(T w) ≤ 4(2 − e2πMd/N )−2 and both T w and T are invertible with
probability at least

1 −Nd(1 −N−d)r ≥ 1 −Nde−r/Nd

.

Proof. Divide [0, 1]d into Nd disjoint subcubes of side-length 1/N , i.e., [0, 1]d =⋃r
j=1 B(cj ,

1
2N ), where the cj are the centers of these subcubes. Note that if a subcube

contains a point xj , then that subcube is contained in B(xj , 1/N). So if each of these
subcubes contains at least one of the xj , we conclude δ(r) ≤ 1/N .

Since the xj , j = 1, . . . , r, are chosen independently and uniformly, the number of
xj ’s in any cube is a binomial random variable. Thus the probability that a particular
subcube is empty is

(1 −N−d)r

(since N−d is the probability that any particular xj is in this subcube and there are
r points). Since there are Nd subcubes altogether, the probability that at least one
of the subcubes is empty is bounded by

Nd(1 −N−d)r.(24)

If δ(r) > 1/N , then at least one of the subcubes must be empty, which proves the
left-hand inequality of (23). The right-hand side follows from the obvious inequality

(1 −N−d)r = er log(1−N−d) ≤ e−r/Nd

.
The estimate for the condition number of T w and the invertibility of T now follow

from Theorem 4.1.
Remark. For (20) we need that 1

N < log 2
2πMd ; this means that we need at least r =

Nd ≥
(

2πMd
log 2

)d ≈
(

πd
log 2

)d
D sampling points before Theorem 4.2 becomes effective.

Next we derive an asymptotic result for δ(r), which may be of independent
interest.
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Theorem 4.3. Assume that {xj : j ∈ N} is a sequence of i.i.d. points uniformly
distributed in [0, 1]d. Then

lim sup
r→∞

δ(r)

(log r/r)1/d
= c a.s.(25)

for some constant c ∈ [ 14 , 2
1+1/d].

Thus for r sampling points the maximum distance to the nearest neighbor is
roughly (log r/r)1/d. For comparison, for the r = Nd equispaced points { k

N : k ∈
[0, N ]∩Z

d}, we have δ(r) = 1
2N = 1

2r
−1/d. For r randomly distributed points we need

an additional logarithmic term.
Proof of Theorem 4.3.
Step 1. We first show that

lim sup
r→∞

δ(r)

(log r/r)1/d
≤ 21+1/d a.s.(26)

Choose rk = 2k as the number of points, and let Nk be the greatest integer less than
( rk
2 log rk

)1/d. We divide [0, 1]d into Nd
k disjoint subcubes of side-length N−1

k . Let Ak

be the event that at least one of the subcubes contains none of the xj , j = 1, . . . , rk.
By (24) we have

P(Ak) ≤ Nd
k e

−rk/N
d
k ≤ rk

2 log rk
e−2 log rk =

1

2rk log rk
=

1

2k+1k log 2
.(27)

Therefore
∑∞

k=1 P(Ak) < ∞, and so the Borel–Cantelli lemma [11] implies that the
probability of Ak infinitely often is 0. This means for almost every ω ∈ Ω there is a
k0 depending on ω such that for k ≥ k0, each of the subcubes of side-length N−1

k will
contain at least one of the points of x1, . . . , xrk .

Now for r arbitrary and sufficiently large (depending on ω), choose k such that
rk ≤ r < rk+1. Then each of the subcubes of side-length N−1

k will contain at least one
of the points x1, . . . , xrk , and hence at least one of the points x1, . . . , xr. Consequently

δ(r) ≤ 1

Nk
,

and thus(
r

log r

)1/d

δ(r) ≤
(

rk+1

log rk+1

)1/d

δ(r) ≤ 21/d(2Nk + 1)δ(r) ≤ 21/d

(
2 +

1

Nk

)
.

Taking r → ∞ proves (26).
We prove the converse inequality

lim sup
r→∞

δ(r)

(log r/r)1/d
≥ 1

4
a.s.(28)

in several steps.
Step 2. Assume for the moment that we have already chosen a sequence rk

(number of sampling points) and Nk. Then we divide [0, 1]d into Nd
k subcubes of

side-length N−1
k , and we enumerate the cubes as C1, C2, . . . , CNd

k
. Let Dj be the

event that the cube Cj does not contain any of the points xrk−1+1, . . . , xrk . As in (24)
the probability of Dj is given by

P(Dj) = (1 −N−d
k )rk−rk−1 .(29)
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For j �= k, Dj ∩Dk is the event that the region Cj ∪ Ck does not contain any of the
points xrk−1+1, . . . , xrk . Therefore as in (24) we obtain that

P(Dj ∩Dk) = (1 − 2N−d
k )rk−rk−1

≤ (1 −N−d
k )2(rk−rk−1) = P(Dj)P(Dk),(30)

since 1 − 2x ≤ (1 − x)2 for x ∈ [0, 1].
Step 3. Now let Bk be the event that at least one of the first Nk (out of a

total of Nd
k ) cubes C1, . . . , CNk

does not contain any of the points xrk−1
, . . . , xrk . (In

dimension d = 1 we take the first Nα
k of Nk cubes for some α, 1/2 < α < 1− 1/e, and

modify the following argument slightly.) If we define the random variable Yk by

Yk =

Nk∑
j=1

1Dj ,

then Bk = {Yk > 0}. To find a lower estimate for the probability of Bk, we use an
argument due to Kochen and Stone [24]. Using Cauchy–Schwarz we find that

EYk =

Nk∑
l=1

l P(Yk = l)

≤
(

Nk∑
l=1

l2P(Yk = l)

)1/2 (
Nk∑
l=1

P(Yk = l)

)1/2

= (EY 2
k )1/2(P(Yk > 0))1/2,

whence

P(Bk) = P(Yk > 0) ≥ (EYk)
2

EY 2
k

.(31)

On the other hand,

EYk =

Nk∑
j=1

P(Dj) = NkP(Dj)

and by (30)

EY 2
k =

Nk∑
j=1

P(Dj) +
∑
k �=j

P(Dj ∩Dk)

≤ EYk +
∑
k �=j

P(Dj)P(Dk)

≤ EYk + (EYk)
2.

Substituting into (31), we obtain

P(Bk) ≥
EYk

1 + EYk
.(32)
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Step 4. Finally we choose rk = ee
k

and Nk the least integer ≥ (2drk/ log rk)
1/d.

Then

P(Dj) = (1 −N−d
k )rk−rk−1 ≥

(
1 − log rk

2drk

)rk

.

Since limx→∞ x1/2d(
1 − log x

2dx

)x
= 1, we have

(
1 − log x

2dx

)x ≥ 1
2x

−1/2d

for x sufficiently
large, and consequently

EYk = NkP(Dj) ≥
(

2drk
log rk

)1/d
1

2
r
−1/2d

k = r
1
d−

1

2d

k /(log rk)
1/d ≥ 1(33)

for sufficiently large k (k ≥ 3). Now (32) implies that P(Bk) ≥ 1/2 and so
∑∞

k=1

P(Bk) = ∞. Finally we observe that the events Bk are independent, because they
depend on disjoint segments of the sequence xj , j ∈ N. Therefore the second part of
the Borel–Cantelli lemma [11] implies that the probability of Bk infinitely often is 1.
This means that for almost every ω there is an infinite subsequence of k’s (depending
on ω) such that ω ∈ Bk.

Step 5. It remains to consider the event Ek that one of the points x1, . . . , xrk−1
is

in
⋃Nk

j=1 Cj . Since the volume of
⋃Nk

j=1 Cj is Nk ·N−d
k , the probability that a particular

xj is in this set is N1−d
k . There are rk−1 points to consider, so as in (24)

P(Ek) ≤ rk−1N
1−d
k .

By our choices of rk and Nk, we have
∑∞

k=1 P(Ek) < ∞, and so by the Borel–Cantelli
lemma once again, the probability of Ek infinitely often is 0.

Combining Steps 4 and 5 we conclude that with probability 1, infinitely often at
least one of the C� with � ≤ Nk will contain none of the points x1, . . . , xrk . Since C�

contains none of these xj , the center of C� is not contained in
⋃rk

j=1 B(xj , 1/(2Nk)).
Consequently δ(rk) > 1/(2Nk) for infinitely many k almost surely. So

δ(rk)

(
rk

log rk

)1/d

≥ δ(rk)Nk/2 ≥ 1/4

and (28) is proved.
Step 6. It is clear that if we omit the first M points x1, . . . , xM for any fixed

integer M , then this will not affect the value of lim sup δ(r)/(log r/r)1/d. Therefore
this random variable is measurable with respect to the tail σ-field of the sequence
x1, x2, . . . . By the Kolmogorov’s 0-1 law, the value of this random variable must be
constant almost surely [11, p. 254]. This completes the proof.

5. Asymptotic estimates of the condition number. In the previous section
we have combined a deterministic argument with a covering argument. Essentially
we have calculated the probability that a random sampling set satisfies the sufficient
condition already known from deterministic sampling theory.

In this section we develop an alternative approach that is based on a metric
entropy argument such as the ones used in [13]. This approach does not rely on
deterministic sampling results and can therefore be adapted to other sampling models.
On the other hand, it is difficult to keep track of the constants involved, and thus the
results are only efficient for large sampling sets.

Once again we start with an infinite sequence of i.i.d. random variables {xj : j ∈
N}, each of which is uniformly distributed over [0, 1]d. Our goal is to estimate the
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quantity
∑r

j=1 |p(xj)|2 − r‖p‖2
2 and its distribution as a function of the number of

sampling points r.
For every p ∈ PM we introduce the random variable Yj(p) = |p(xj)|2 − ‖p‖2

2. To
obtain a sampling inequality of the form A‖p‖2

2 ≤
∑r

j=1 |p(xj)|2 ≤ B‖p‖2
2, we have to

estimate the probability distribution of the random variable

sup
p∈PM ,‖p‖2=1

r∑
j=1

Yj(p).

This is accomplished in the following theorem.
Theorem 5.1. If {xj : j ∈ N} is a sequence of i.i.d. random variables that are

uniformly distributed over [0, 1]d, then there exist constants A,B > 0 depending on d
and M , such that

P

(
sup

p∈PM ,‖p‖2=1

sup
s≤r

∣∣∣∣
s∑

j=1

Yj(p)

∣∣∣∣ ≥ λ

)
≤ A exp

(
−B

λ2

r + λ

)
(34)

for r ∈ N and λ ≥ 0.
For the distribution of a sum of random variables we use Bernstein’s inequality [6]

in the following form.
Proposition 5.2. Let Yj , j = 1, . . . , r, be a sequence of bounded, independent

random variables with EYj = 0, Var Yj = σ2, and ‖Yj‖∞ ≤ M for j = 1, . . . , r. Then

P

(∣∣∣∣
r∑

j=1

Yj

∣∣∣∣ ≥ λ

)
≤ 2 exp

(
− λ2

2rσ2 + 2
3Mλ

)
.(35)

To apply (35) to the Yj(p), we need several simple estimates. It suffices to work
with the unit ball of PM , which we denote by P0 = {p ∈ PM : ‖p‖2 ≤ 1}.

Lemma 5.3. Let p, q ∈ P0 and j ∈ N. Then the following identities and inequal-
ities hold:

EYj(p) = 0,(36)

VarYj(p) = ‖p‖4
4 − ‖p‖4

2 ≤ D − 1,(37)

Var (Yj(p) − Yj(q)) ≤ 8‖p− q‖2
∞,(38)

‖Yj(p)‖∞ ≤ ‖p‖2
∞ − ‖p‖2

2 ≤ (D − 1),(39)

‖Yj(p) − Yj(q)‖∞ ≤ 2(D1/2 + 1)‖p− q‖∞.(40)

Proof. Since each xj is uniformly distributed over [0, 1]d, we have

E (Yj(p)) =

∫
[0,1]d

(
|p(x)|2 − ‖p‖2

2

)
dx = 0

and consequently (also using (10))

VarYj(p) = E [Yj(p)
2] =

∫
[0,1]d

(
|p(x)|2 − ‖p‖2

2

)2
dx

= ‖p‖4
4 − ‖p‖4

2 ≤ D − 1,

since ‖p‖2 = 1. Similarly, we obtain

‖Yj(p)‖∞ = sup
ω∈Ω

∣∣∣ |p(xj(ω))|2 − ‖p‖2
2

∣∣∣ ≤ ∣∣∣‖p‖2
∞ − ‖p‖2

2

∣∣∣ ≤ D − 1.
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Next, since EYj(p) = 0, we obtain

Var (Yj(p) − Yj(q)) = E ((Yj(p) − Yj(q))
2)

=

∫
[0,1]d

(
|p(x)|2 − |q(x)|2

)2
dx− (‖p‖2

2 − ‖q‖2
2)

2

≤ ‖p− q‖2
∞ ‖ |p| + |q| ‖2

2 + ‖p− q‖2
2

(
‖p‖2

2 + ‖q‖2
2

)
≤ 8‖p− q‖2

∞.

The last estimate follows similarly from

‖Yj(p) − Yj(q)‖∞ ≤ sup
ω∈Ω

∣∣∣ |p(xj(ω))|2 − |q(xj(ω))|2
∣∣∣ +

∣∣∣‖q‖2
2 − ‖p‖2

2

∣∣∣
≤ ‖p− q‖∞

(
‖p‖∞ + ‖q‖∞

)
+ ‖q − p‖2

(
‖p‖2 + ‖q‖2

)
≤ ‖p− q‖∞ D1/2

(
‖p‖2 + ‖q‖2

)
+ ‖q − p‖∞

(
‖p‖2 + ‖q‖2

)
= 2(D1/2 + 1) ‖p− q‖∞.

Proof of Theorem 5.1.
Step 1: A metric entropy argument. For a given δ > 0, we construct a δ-net

for P0 with respect to the L∞-norm as follows. Given p ∈ P0 with coefficients a =
(ak)k∈Zd∩[−M,M ]d and ‖a‖2 ≤ 1, we approximate the real and imaginary parts of

each ak by a number δ√
2D

�, � ∈ Z; in other words, we choose a vector b of the

form b = δ√
2D

(� + im), �,m ∈ Z
d, to approximate a. Then for each coordinate

ak, k ∈ [−M,M ]d ∩ Z
d, we have

|ak − bk| ≤
δ

D
,

and so

‖a − b‖2 ≤
(
Dmax

k
|ak − bk|2

)1/2
=

δ√
D

.

Setting q(x) =
∑

k∈IM
bke

2πik·x, we obtain

‖p− q‖∞ ≤ D1/2‖p− q‖2 ≤ D1/2‖a − b‖2 = δ.

We denote the δ-net of all q ∈ P0 with coefficients of the form b = δ√
2D

(� + im),

�,m ∈ Z
d, ‖b‖2 ≤ 1, by A(δ). The cardinality of A(δ) is estimated as follows:

cardA(δ) = card

{
b =

δ√
2D

(� + im), �,m ∈ Z
D, ‖b‖2 ≤ 1

}

= card

{
k ∈ Z

2D : ‖k‖2 ≤
√

2D

δ

}
≤ c1δ

−2D,

where the constant c1 ≈ (2π)D

D D2D is roughly the number of integer lattice points in

a ball of radius
√

2D in R
2D.

Given p ∈ P0, let pj be the polynomial in A(2−j) that is closest to p in L∞-norm,
with some convention for breaking ties. Since ‖p− pj‖2 → 0, we can write

Yj(p) = Yj(p0) + (Yj(p1) − Yj(p0)) + (Yj(p2) − Yj(p1)) + · · · .

If supp∈P0 sups≤r |
∑s

j=1 Yj(p)| ≥ λ, then either
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(a) sups≤r |
∑s

j=1 Yj(p)| ≥ λ/2 for some p ∈ A(1); or

(b) for some � ≥ 1, some p ∈ A(2−�), and some q ∈ A(2−�+1) with ‖p − q‖∞ ≤
3 · 2−� we have sups≤r |

∑s
j=1

(
Yj(p) − Yj(q)

)
| ≥ λ/2(� + 1)2.

(Possibly both (a) and (b) hold.)
If this were not the case, then

sup
s≤r

∣∣∣∣∣
s∑

j=1

Yj(p)

∣∣∣∣∣ ≤ sup
s≤r

∣∣∣∣∣
s∑

j=1

Yj(p0)

∣∣∣∣∣ + sup
s≤r

∞∑
�=1

∣∣∣∣∣
s∑

j=1

(Yj(p�) − Yj(p�−1))

∣∣∣∣∣
≤

∞∑
�=1

λ

2�2
=

π2

12
λ < λ.

So far the construction is purely deterministic. Now we estimate the probability
of each of the events in (a) and (b).

Step 2. For fixed p ∈ A(1), the probability of the event in (a) is bounded, using
Bernstein’s inequality (35) and Lemma 5.3, by

2 exp

(
− λ2

2rVarYj(p) + 2
3λ‖Yj(p)‖∞

)

≤ 2 exp

(
− λ2

2r(D − 1) + 2
3 (D − 1)λ

)
.

There are at most c1 polynomials in A(1), so the probability of (a) is bounded by

2c1 exp

(
− λ2

(D − 1)(2r + 2
3λ)

)
.(41)

Step 3. We estimate (b) in a similar fashion using Lemma 5.3, (38), and (40). If
p ∈ A(2−�) and q ∈ A(2−�+1) with ‖p− q‖∞ ≤ 3 · 2−�, we have

P

(
sup
s≤r

∣∣∣∣
s∑

j=1

(Yj(p) − Yj(q))

∣∣∣∣ > λ

2(� + 1)2

)

≤ 2 exp

(
− λ2/4(� + 1)4

144r2−2� + 4 · 2−�D1/2λ/(� + 1)2)

)

≤ 2 exp

(
− 2�

λ2

c3(r(� + 1)42−� + D1/2λ(� + 1)2)

)
.

There are c12
(2�−2)D trigonometric polynomials in A(2−�+1), and for each q the

number of trigonometric polynomials p ∈ A(2−�) satisfying ‖p − q‖∞ ≤ 3 · 2−� is
bounded by a constant c2 independent of q and j. (Similar to the count in Step 1,

c2 ≈ (6π)D

D D2D is roughly the number of integer lattice points in a ball of radius 3
√

2D
in R

2D.) Finally, this can happen for any �. So the probability in (b) is bounded by

∞∑
�=1

2c1c22
(2�−2)D exp

(
−2�

λ2

c3(r(� + 1)42−� + D1/2λ(� + 1)2)

)
.(42)

Step 4. Estimate of the sum (42).
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Since (�+1)42−� is bounded above and 2�/2/(�+1)2 is bounded below, the above
sum is bounded by

∞∑
�=1

c4 exp

(
−2�/2

λ2

c5(r + λ)
+ (2�− 2)D log 2

)
= (�).(43)

We distinguish two cases. In the first,

λ2

c5(r + λ)
≥ 64D.(44)

Then

2�/2
λ2

c5(r + λ)
≥ 2(2�− 2)D log 2 ∀ � ≥ 1,

and so

(�) ≤
∞∑
�=1

c4 exp

(
− 2�/2

λ2

2c5(r + λ)

)
.

Now we use the fact that
∑∞

�=1 e
−a�x ≤ c6e

−x for any a > 1 and x ≥ 1 (with c6
depending only on a). Consequently the sum in (43) is bounded by

(�) ≤ c7 exp

(
− λ2

c8(r + λ)

)
.

In the second case, (44) does not hold. But then the probability of the event in (b) is
at most 1, which is certainly less than or equal to

e64D exp

(
− λ2

c8(r + λ)

)
.

In either case, we have that the probability of the event in (b) is bounded by

c9 exp

(
− λ2

c8(r + λ)

)
.

Step 5. The statement now follows by combining the bounds for (a) and (b), and
so we have

P

(
sup
p∈P0

sup
s≤r

∣∣∣∣
s∑

j=1

Yj(p)

∣∣∣∣ ≥ λ

)
≤ A exp

(
−B

λ2

r + λ

)
.(45)

Corollary 5.4. If {xj : j ∈ N} is a sequence of i.i.d. random variables that are
uniformly distributed over [0, 1]d and 0 < µ < 1, then the sampling inequality

(1 − µ)r‖p‖2
2 ≤

r∑
j=1

|p(xj)|2 ≤ (1 + µ)r‖p‖2
2 ∀p ∈ PM(46)

holds with probability at least

1 −Ae−Br µ2

1+µ .
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Consequently with the same probability estimate the Toeplitz-type matrix T has con-
dition number κ(T ) ≤ 1+µ

1−µ and also κ(U) ≤ ( 1+µ
1−µ )1/2

Proof. Choose λ = rµ in Theorem 5.1 and observe that the inequality∣∣∣∣∣
r∑

j=1

|p(xj)|2 − r

∣∣∣∣∣ ≤ rµ

for all p ∈ P0 is equivalent to the sampling inequality (46) for all p ∈ PM .
From Theorem 5.1 it is straightforward to obtain a law of the iterated logarithm.
Corollary 5.5. If {xj : j ∈ N} is a sequence of i.i.d. random variables that are

uniformly distributed over [0, 1]d, then

lim sup
r→∞

supp∈P |
∑r

j=1[|p(xj)|2 − ‖p‖2
2]|√

r log log r ‖p‖2
2

= c a.s.(47)

for some constant c ∈ [
(

2
π

)d
D − 1,∞).

Proof. Let rk = 2k and λk = 2√
B

√
rk log log rk, where B is the constant from

(34). Let

Ck =

{
sup
p∈P0

sup
s≤rk

∣∣∣∣∣
s∑

j=1

Yj(p)

∣∣∣∣∣ > λk

}
.

Then for k large enough, we have rk > λk. So the probability of Ck is bounded by

P(Ck) ≤ A exp

(
−B

λ2
k

rk + λk

)

≤ A exp

(
−B

λ2
k

2rk

)

≤ A exp

(
−B

4

B

rk log log rk
2rk

)

≤ A exp(−2 log k) =
A

k2
.

So
∑∞

k=1 P(Ck) < ∞, and by the Borel–Cantelli lemma, the probability of Ck hap-
pening infinitely often is 0.

If |
∑r

j=1 Yj(p)| > 2√
B

√
r log log r for some r, we choose k so that rk−1 ≤ r < rk

and observe that Ck holds. (This is the only place where we need the estimate for
sups≤r |

∑s
j=1 Yj(p)| instead of just |

∑r
j=1 Yj(p)|.) So this inequality cannot happen

for infinitely many r and we therefore have

lim sup
r→∞

supp∈P0 |
∑r

j=1[|p(xj)|2 − r|
√
r log log r

≤ c′ a.s.

for some constant c′ > 0.
For fixed p ∈ P0 the classical law of the iterated logarithm [11, p. 232] says that

lim sup
r→∞

∣∣∣∑r
j=1 Yj(p)

∣∣∣
√

2r log log r
=

√
VarYj(p) = ‖p‖4

4 − 1 a.s.
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Choosing p(x) = D−1/2
∑

k∈[−M,M ]d∩Zd e2πik·x, we have ‖p‖2 = 1 and the elementary

estimate ‖p‖4 ≥ 2
πD

1/4. So

lim sup
r→∞

supp∈P0 |
∑r

j=1[|p(xj)|2 − r]|
√
r log log r

≥
(

2

π

)4

D − 1 .

The conclusion follows as in the proof of Theorem 4.3 by applying Kolmogorov’s 0-1
law.

This result can be summarized by saying that for large enough r (r depending on
ω) we always have the sampling inequality

(r − c
√
r log log r)‖p‖2

2 ≤
r∑

j=1

|p(xj)|2 ≤ (r + c
√
r log log r)‖p‖2

2 ∀p ∈ PM .(48)

The condition number of the random matrix T is therefore

κ ≤ (r + c
√
r log log r)/(r − c

√
r log log r) ≈ 1 + 2c

(
log log r√

r

)1/2

almost surely for some constant c of order D.

6. A universal sampling theorem and examples. The main statements
(Theorems 4.2 and 5.1 and Corollary 5.4) reach similar conclusions. At first glance,
Theorem 4.2 seems preferable because of its elementary proof and the explicit con-
stants. In this section we focus on the merits of the metric entropy method. This
method is extremely flexible and works for many other sampling problems. We for-
mulate a general framework for finite-dimensional sampling theorems and derive a
universal sampling theorem in the style of Corollary 5.4. We then will discuss several
examples of practical interest.

To begin, we note that the proofs of Theorem 5.1 and Corollary 5.4 do not use
any specific properties of trigonometric polynomials. In fact, we have used only the
following (interrelated) properties of PM .

(a) The space PM is finite-dimensional and possesses a basis of continuous func-
tions.

(b) All norms on PM are equivalent; in the proofs we have used the norms
‖p‖2, ‖p‖4, ‖p‖∞, and ‖a‖2 and the associated equivalence constants. As a conse-
quence the random variables related to the samples |p(xj)|2 satisfy the uniform esti-
mates of Lemma 5.3.

(c) The unit ball of PM is compact. This fact enables the construction of the
δ-nets A(δ) and suitable estimates for their cardinality.

It is evident that Theorem 5.1 and Corollary 5.4 can be obtained under much
more general conditions.

A general framework. We make the following assumptions.
1. Let S ⊆ R

d be a compact set and let ν be a probability measure on S with
supp ν = S.

2. Let B be a finite-dimensional subspace of L2(S, ν) with a basis {ek : k =
1, . . . , D} of continuous functions. Often this basis is chosen as a finite subset of a
Riesz basis for L2(S, ν) and in this sense B may be interpreted as a space of band-

limited functions in L2(S, ν). Since p =
∑D

k=1 akek for every p ∈ B, all functions in
B are continuous.



792 RICHARD F. BASS AND KARLHEINZ GRÖCHENIG

The sampling problem in B. The task is now to interpolate or to approximate
a given data set {(xj , p(xj)) : j = 1, . . . , r} by a function in B. As in section 2 this
amounts to solving the system of linear equations

D∑
k=1

akek(xj) = p(xj) = yj , j = 1, . . . , r.

Let Ujk = ek(xj) and

Tkl = (U∗U)kl =

r∑
j=1

ek(xj)el(xj);(49)

then we need to solve either the r ×D system

Ua = y

or the D ×D normal equations

T a = U∗Ua = U∗y.

Assume that we can prove the sampling inequality

A‖p‖2
2,ν ≤

r∑
j=1

|p(xj)|2 = 〈T a,a〉 ≤ B‖p‖2
2,ν ∀p ∈ B.(50)

Inserting the norm equivalence α‖a‖2 ≤ ‖p‖2,ν ≤ β‖a‖2, (50) then implies the esti-
mates

κ(T ) ≤ β2B

α2A
and κ(U) ≤

(β2B

α2A

)1/2

(51)

for the condition numbers of these matrices. Furthermore, p ∈ B is uniquely deter-
mined by its samples, if and only if T is invertible, or if and only if r ≥ D and U has
full rank.

We can now formulate our main theorem for random sampling in finite-dimen-
sional spaces of band-limited functions.

Theorem 6.1. If {xj : j ∈ N} is a sequence of i.i.d. random variables and if
each xj is ν-distributed over S, then there exist constants A,B > 0 depending on S, ν,
and D, such that for all µ ∈ (0, 1), the sampling inequality

(1 − µ)r‖p‖2
2,ν ≤

r∑
j=1

|p(xj)|2 ≤ (1 + µ)r‖p‖2
2,ν ∀p ∈ B(52)

holds with probability at least

1 −Ae−Br µ2

1+µ .

With the same probability estimate the matrix T has condition number κ(T ) ≤ β2(1+µ)
α2(1−µ)

and also κ(U) ≤ ( β2(1+µ)
α2(1−µ) )

1/2

Proof. We have already done all the work when we proved Theorem 5.1 and
Corollary 5.4. The only minor modifications occur in the constants in Lemma 5.3 and
in Step 1 of the proof. We now use the random variables Yj(p) = |p(xj)|2 − ‖p‖2

2,ν =
|p(xj)|2 − E [|p(xj)|2].
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We present the following examples where the general hypotheses are satisfied, and
so Theorem 6.1 is applicable. Each example yields a new result on random sampling.
In some of these examples it seems to be extremely difficult to derive quantitative
deterministic results in the style of Theorem 4.1.

Example 1. Trigonometric polynomials revisited. Choose a closed set
S ⊆ [0, 1]d of positive Lebesgue measure and a probability measure ν with supp ν = S
and equivalent to λ on S. If p ∈ PM vanishes on S, then by Lemma 3.1 p ≡ 0 and,

consequently, ‖pχS‖2,ν =
( ∫

S
|p(x)|2 dν(x)

)1/2
is equivalent to the L2-norm on PM ;

i.e., there exist constants α, β > 0 such that

α‖p‖2 ≤ ‖pχS‖2,ν ≤ β‖p‖2 ∀p ∈ PM .

We state the conclusion of Theorem 6.1 explicitly.
Theorem 6.2. Suppose that {xj : j ∈ N} ⊆ S is a sequence of i.i.d. random

variables that are ν-distributed over S. Then there exist constants A,B > 0 depending
on S, ν, and D, such that for all µ ∈ (0, 1) the sampling inequality

α2(1 − µ)r‖p‖2
2 ≤

r∑
j=1

|p(xj)|2 ≤ β2 (1 + µ)r‖p‖2
2 ∀p ∈ PM(53)

holds with probability at least

1 −Ae−Br µ2

1+µ .

With the same probability estimate we have κ(T ) ≤ β2(1+µ)
α2(1−µ) .

Comparing with Theorem 5.1 we have been able to change the distribution of the
random variables xj and the target set S in which the samples are taken.

Example 2. Almost periodic functions and trigonometric polynomials
with arbitrary frequencies. Assume that S ⊆ R

d is compact and has positive
Lebesgue measure and that ν is equivalent to λ on S. Choose exponentials eiλk·x with
arbitrary frequencies λk ∈ R

d (λk ∈ Z
d is the case of trigonometric polynomials) and

consider the subspace of almost periodic functions (trigonometric polynomials) on S,

B = {p ∈ L2(S) : p(x) =

D∑
k=1

ake
iλk·x χS(x).

Then Theorem 6.1 applies.

Example 3. Algebraic polynomials. Again assume that S ⊆ R
d has positive

Lebesgue measure and that ν is equivalent to λ on S. Choose a finite set F ⊆ (N∩{0})d
and consider the space of algebraic polynomials on a compact set S ⊆ R

d defined as

PF = {p ∈ L2(S) : p(x) =
∑
k∈F

akx
α χS(x).

Thus Theorem 6.1 applies also to algebraic polynomials of several variables.

Example 4. Local shift-invariant spaces. Let φ be a continuous function on
R

d with suppφ ⊆ [−σ, σ]d ⊆ S. The local shift-invariant space V (φ, S) is defined by

V (φ, S) =

{
f ∈ L2(S) : f(x) =

∑
k∈(S+[−σ,σ]d)∩Zd

akφ(x− k)

}
.
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If we assume that 0 < a ≤
∑

k∈Zd |φ̂(ω − k)|2 ≤ b for all ω ∈ R
d, then the translates

φ(x − k), k ∈ Z
d, form a Riesz basis for the generated subspace, and so any finite

subset is linearly independent. Thus Theorem 6.1 applies. In dimension d = 1 and
for certain “generators” φ this model is well understood both numerically [22] and
theoretically [1]. In dimension d > 1, however, there are no quantitative deterministic
estimates. Theorem 6.1 gives the first hint that the numerical methods of [22] also
work in higher dimensions. See [2] for a survey of sampling in shift-invariant spaces.

Example 5. Sampling on the sphere and spherical harmonics. Let Sd =
{x ∈ R

d+1 : |x| = 1} be the unit sphere in R
d+1 with surface measure νd. We choose

the sequence J� of suitably normalized spherical harmonics [36] as an orthonormal
basis for L2(Sd, νd) and consider the space of band-limited functions on the sphere,
namely,

B =

{
p ∈ L2(Sd, νd) : p =

D∑
�=1

a�J�

}
.

Then the conclusions of Theorem 6.1 hold for every sequence of i.i.d. random variables
xj on Sd with xj being νd-distributed.

Remark. Whereas the asymptotic results for the distribution number hold uni-
versally in finite-dimensional vector spaces, the generalization of Theorem 3.2 is more
subtle and depends on the support properties of the basis functions. The same proof
as in section 3 shows that the system matrix T defined in (49) is invertible with
probability 1 in Examples 1, 2, and 3 whenever r ≥ D. On the other hand, for Ex-
ample 4 it can be shown that T is always singular with positive probability. As this
probability depends on the number of samples r, this observation does not contradict
Theorem 6.1.
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[21] K. Gröchenig, Non-uniform sampling in higher dimensions: From trigonometric polynomi-

als to bandlimited functions, in Modern Sampling Theory, Appl. Numer. Harmon. Anal.,
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ON THE TWO-DIMENSIONAL HYDROSTATIC
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Abstract. This paper concerns some mathematical results on the two-dimensional hydro-
static equations, also called the primitive equations. The uniqueness of weak solutions of the
two-dimensional Navier–Stokes equations is well known. Such a result is not known on the two-
dimensional hydrostatic equations with Dirichlet boundary condition on the bottom. These equations
are derived from the Navier–Stokes equations replacing the vertical component of the momentum
equations by the hydrostatic equation on the pressure. We give here some partial answers on the
uniqueness, the global strong existence of solutions, and the exponential decay in time of the energy.
We assume a basin with a strictly positive depth. The degenerate case, in which the depth vanishes
on the shore, remains open.

Key words. thin domains, geophysics, hydrostatic equation, global existence and uniqueness,
overdetermined and underdetermined equations
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1. Introduction. The hydrostatic Navier–Stokes equations correspond to the
primitive equations used in oceanography that assume the density to be constant;
see [10], [11]. They are obtained from the Navier–Stokes equations with anisotropic
viscosity by an asymptotic analysis as the aspect ratio of the domain δ = depth/width
tends to 0. The reader interested in such asymptotic analysis is referred, for example,
to [1], [9]. We also mentioned the different works [12], [13], where they study the hy-
drostatic Navier–Stokes equations in thin rectangular domains and spherical domains.
See also [2], [5] for the hydrostatic Euler equations in the two-dimensional case.

The uniqueness of weak solutions of two-dimensional Navier–Stokes equations is
well known. See, for instance, [4] for a survey of uniqueness results and related fields
on Navier–Stokes equations. This is not the case for the two-dimensional hydrostatic
Navier–Stokes equations. Some partial results have been obtained in several recent
papers, such as [6], [3].

The first paper [6] concerns the global strong solutions (u, p) of the hydrostatic
equations and a weak strong uniqueness result in two and three space dimensions with
Dirichlet condition on the bottom. In the two-dimensional case, they prove that if
one has two weak solutions u1 = (v1, w1) and u2 = (v2, w2) of the two-dimensional
hydrostatic equations such that v1 satisfies ∂zv1 ∈ L4(0, T ;L2(Ω)), these solutions
coincide. Moreover they prove a global strong existence result, assuming the data are
small enough.

The second paper [3] concerns the existence and uniqueness of weak solutions,
assuming that the vertical derivative of the initial data is square integrable and using

∗Received by the editors February 3, 2003; accepted for publication (in revised form) February 6,
2004; published electronically October 14, 2004.

http://www.siam.org/journals/sima/36-3/42224.html
†Laboratoire de Modélisation et Calcul, IMAG-CNRS, U.M.R. 5523, Université Joseph Fourier,
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a Chezye condition on the bottom and on the surface, which means a condition of the
type ∂zv = αv with u · n = 0. The domain is assumed to be with a depth vanishing
on the shore. Regularity on the pressure has to be derived and Hardy’s inequality
must be used. Such a Chezye condition is used, for instance, in limnology; see, for
instance, [8]. This kind of boundary condition is important in the proof. Let us remark
that the problem of global existence and uniqueness with the same assumption as for
the Navier–Stokes equations is an open problem.

The reader interested in some regularity results concerning the stationary hydro-
static Stokes equations is referred to [14]. We give here a regularity result on the
nonstationary hydrostatic Navier–Stokes equations.

We consider the case with a Dirichlet condition on the bottom. At first, we
establish a global existence result on v such that v and ∂zv have a weak regularity.
The key of the proof is to find an appropriate boundary condition for ∂zv on the
bottom using the hydrostatic condition and the fact that the integration of v with
respect to the vertical coordinate is equal to 0, and we deduce existence of a global
strong solution assuming initial data regular enough but without assuming that the
data are small enough, as was done in [6]. In conclusion, we give some results related
to the uniqueness of weak solutions. Note that our results remain valid if variable
density or temperature is introduced.

2. The model. Let s (the horizontal section) denote an open interval and let
h : [0, 1] → R+ denote a nonnegative continuous function on [0, 1] with h ≥ c > 0.
Let us consider the two-dimensional domain Ω defined by

Ω = {(x, z) : x ∈ (0, 1),−h(x) < z < 0}.

The boundary of the domain is ∂Ω = b ∪ s ∪ l, where the bottom b is defined by

b = {(x,−h(x)) ∈ R
2 : x ∈ (0, 1)}.

The surface s and lateral side l are given by

s = {(x, 0) : x ∈ (0, 1)}, l = {(0, z) : z ∈ (−h(0), 0)} ∪ {(1, z) : z ∈ (−h(1), 0)}.

Let us consider that the velocity (v, w) and the pressure p satisfy the following
problem in Ω: ⎧⎪⎪⎨

⎪⎪⎩
∂tv − ν∆v + v∂xv + w∂zv + ∂xp = 0,

∂zp = 0,

∂xv + ∂zw = 0.

(1)

System (1) is supplemented with the boundary condition on the surface,

∂zv = 0, w = 0 on s,

the Dirichlet condition on the bottom,

(v, w) = 0 on b,

and the following condition on the lateral wall side:

v = 0 on l.
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In addition, we consider the initial data u|t=0 = (v0, w0) with w0(x, z) =
∫ 0

z
∂xv0(x, ξ) dξ

and
∫ 0

−h
v0 dz = 0. In fact w is given from v by the relation

w = −
∫ z

0

∂xv.

This will give a system on (v, p) that we will write, in the next section, in another
form (2).

Let us remark that the boundary condition on the lateral-side walls corresponds
to a condition on the normal velocity and gives a condition on ∂zv. Indeed v = 0 on l
implies ∂zv = 0 on the vertical lateral sides l.

Another way to write the system. Throughout the paper, we choose the
viscosity ν equal to 1. Then we can write the system (1) as follows. The horizontal
velocity v has to satisfy the following system:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tv − ∆v + v∂xv +

(∫ 0

z

∂xv

)
∂zv + ∂xp = 0 in Ω,

∫ 0

−h

v dz = 0 in s,

∂zv = 0 on s, v = 0 on b ∪ l,

v|t=0 = v0.

(2)

The vertical velocity w will be given by

w =

∫ 0

z

∂xv.

We remark that system (2) concerns only the horizontal component of the velocity.

3. Main results. This section is devoted to the functional setting of the hydro-
static equations (2) and to the main results. We introduce the space

V =
{
ϕ ∈ C∞

b,l(Ω) : 〈ϕ〉 = 0 in s
}
,

where 〈ϕ〉 =
∫ 0

−h
ϕdz and C∞

b l (Ω) denotes the space of all smooth (C∞) functions on Ω
that vanish in a neighborhood of l ∪ b. Then the space H (resp., V ) is the closure
of V in L2(Ω) (resp., H1(Ω)). We can easily check that

H =
{
ϕ ∈ L2(Ω) : 〈ϕ〉 = 0 in s

}
, V =

{
ϕ ∈ H1(Ω) : 〈ϕ〉 = 0 in s, ϕ = 0 on b ∪ l

}
.

The goal of this paper is to prove the following theorems.
Theorem 1. Let us assume v0 ∈ H with ∂zv0 ∈ L2(Ω) and h ∈ W 2,∞(0, 1) with

h ≥ c > 0. Then there exists a unique global solution v of system (2) such that

v ∈ L2(0,∞;V ) ∩ L∞(0,∞;H)

and

∂zv ∈ L2(0,∞;H1(Ω)) ∩ L∞(0,∞;L2(Ω)).
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The definition of a global solution is a weak solution in the classical way (see, for
instance, [6]) such that ∂zv has a weak regularity.

Remark. It is important to note that, in Theorems 1 and 2, if h′′ < 0 (which
means that Ω is convex), then h′′ must not be assumed to be bounded. See the
estimate (39) below.

Moreover, we can prove the following regularity result.
Theorem 2. Let us assume v0 ∈ V and h ∈ W 2,∞(0, 1) with h ≥ c > 0. Then

there exists a unique global strong solution v of system (2) such that

v ∈ L2(0,∞;H2(Ω) ∩ V ) ∩ L∞(0,∞;V ),

∂tv ∈ L2(0,∞;H),

∂xp ∈ L2(0,∞;Lq(Ω)) for all q < ∞.

A global strong solution is a weak solution with the previous extra regularities, the
pressure being given by the de Rham theorem as usual for the hydrostatic equation;
see, for instance, [14].

Using the previous theorem and the energy estimates, we can prove the following
exponential decay in time of the solution.

Corollary 3. Let us assume v0 ∈ V and h ∈ W 2,∞(0, 1) with h ≥ c > 0. Then
the energy of the unique global strong solution v of system (2) decays exponentially
fast in time. This means that there exists t0 such that for all t ≥ t0,

‖∇v(t)‖(L2(Ω))2 ≤ c1‖∇v0‖(L2(Ω))2 exp(−c2t),

with c1 and c2 two nonnegative constants.
At the end, we consider the domain Ω = (0, 1)×(0, π). We define the space L2

xH
α
z

by

L2
xH

α
z =

⎧⎨
⎩v =

∞∑
k=1

ak(x)ϕk(z) :

( ∞∑
k=1

‖λα/2
k ak(x)‖2

L2(0,1)

)1/2

< ∞

⎫⎬
⎭ ,

with α = ±1 and {ϕk, λk} the L2
z orthogonal basis associated to the Stokes operator⎧⎪⎪⎪⎨

⎪⎪⎪⎩
∂2
zϕk − ∂xpk + λ2

kϕk = 0, ∂zpk = 0,∫ π

0

ϕk dz = 0,

∂zϕk|z=π = 0, ϕk|z=0 = 0.

We prove the following result.

Theorem 4. Let us assume v0 ∈ L2
xH

1/2
z . Then there exists a unique global weak

solution v of the system (2) such that

∂zv ∈ L4(0,∞;L2(Ω)),

the boundary condition on ∂zv being satisfied in a weak sense.
We divide the proofs into three sections. Section 4 is devoted to the case of

a domain with constant depth (h = 1), for didactic purposes. We will also prove
Theorems 1 and 2 and Corollary 3 in this section. Section 5 concerns the case where
h is a nonconstant function. We will only prove the compatibility condition and the
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energy estimate on ∂zv, the rest being similar to the case of a constant depth. In the

last section, we look at the uniqueness result and prove that v0 ∈ L2
xH

1/2
z ensures

uniqueness.
Remark. We can assume to have a traction condition ∂zv = f on s, as was done

in [6]. Then it is possible to establish the same kind of global existence and uniqueness
result with some regularity assumptions on f .

Remark. If we consider the homogeneous Chezye condition ∂zv = 0 on b instead
of the Dirichlet condition, all previous results remain true.

It would be interesting to consider a depth vanishing on the shore, i.e., h(0) =
h(1) = 0. This will be done in a forthcoming work since it seems difficult to control
the left-hand side of (39), which gives the weak regularity of ω = ∂zv.

4. Domain with a constant depth. In this section we consider h = 1. The
system (2) is equivalent to the systems⎧⎪⎪⎨

⎪⎪⎩
∂tω − ∆ω + v∂xω + w∂zω = 0,

ω = 0 on s ∪ l,

ω|t=0 = ∂zv0

(3)

and ⎧⎪⎪⎨
⎪⎪⎩

∂2
zΨ = ω,

Ψ|∂Ω = 0,

∂zΨ|b = 0,

(4)

with v = ∂zΨ. The first system comes from the derivative, with respect to z, of the
momentum equation satisfied by v using the fact that ∂zp = 0. The second one comes
from the fact that (v, w) = (∂zΨ,−∂xΨ). The boundary condition on Ψ on s and b
comes from the fact that w = 0 on s and b, v = 0 on 
, w = −∂xΨ, and v = ∂zΨ.

Remark. We note that normally Ψ|∂Ω must be equal to a constant c(t). We choose
c(t) = 0 since u is defined from Ψ by its derivative with respect to z. We then choose
a particular stream function.

The existence proof is classically obtained using a Faedo–Galerkin method on ω
after finding an appropriate boundary condition on ω = ∂zv.

A compatibility condition. The first system is underdetermined and the sec-
ond one is overdetermined. Let us show how to obtain a compatibility condition
between ω and Ψ to ensure existence of global strong solution.

A simple proof. At first, let us integrate the momentum equation (2)1 with
respect to z from −1 to 0. We get, using the boundary condition satisfied by v and

the fact that
∫ 0

−1
∂xpdz = ∂xp, the following equality:

∂xp = −ω|z=−1 −
∫ 0

−1

∂x|v|2 dz.(5)

Moreover we have ∂xp|z=−1 = ∂xp; therefore by taking the trace on the bottom of
equation (2)1, we get

∂xp = ∂zω|z=−1.(6)
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Using (5)–(6), this gives

∂zω|z=−1 + ω|z=−1 + 2

∫ 0

−1

wωdz = 0.

This boundary condition will be used to ensure an energy estimate on the vorticity ω.

Another way to prove the compatibility condition. We integrate equa-
tion (4) with respect to z, obtaining

Ψz =

∫ z

−1

ω(t, x, ξ) dξ

since Ψz = 0 on b. Therefore

Ψ =

∫ z

−1

(∫ y

−1

ω(t, x, ξ) dξ

)
dy =

∫ z

−1

(z − ξ)ω(t, x, ξ) dξ

since Ψ = 0 on b. Thus to ensure Ψ|z=0 = 0, we imply

∫ 0

−1

ξω(t, x, ξ) dξ = 0.

So we have to provide ∫ 0

−1

zω dz = 0 for all t > 0.

This gives ∫ 0

−1

z∂tω dz = 0

and ∫ 0

−1

z∂2
xω dz = 0.

Therefore, using equation (3)1, we find

∫ 0

−1

z
(
∂2
zω − ∂z(∂x|v|2) + ∂2

z (w v)
)
dz = 0,

and thus, integrating by parts, since∫ 0

−1

z∂2
z (w v) dz = 0,

we get

∂zω|z=−1 + ω|z=−1 + 2

∫ 0

−1

wω dz = 0.(7)

This gives the result.
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A priori estimates. Let us give the a priori estimates which allow us to prove
the global existence result.

Energy estimate on v. Choosing v as a test function in (2)1, we get

1

2

d

dt
‖v‖2

L2(Ω) + ‖∇v‖2
(L2(Ω))2 ≤ 0.(8)

Energy estimate on ω. We choose now ω as a test function in (3)1. Using the
compatibility condition (7), we get

d

dt
‖ω‖2

L2(Ω) + ‖∇ω‖2
(L2(Ω))2 ≤

∫ 1

0

|ω|z=−1|2 dx + 2I,(9)

with

I =

∣∣∣∣
∫ 1

0

(
ω|z=−1

∫ 0

−1

wωdz

)
dx

∣∣∣∣ .(10)

Let us prove that this inequality joint with the weak regularity of v will give the
weak estimate on ω. At first we remark that

(
ω|z=−1

)2
= −2

∫ 0

−1

ω∂zω dz ≤ c‖ω‖L2
z
‖∂zω‖L2

z
,

so ∣∣ω|z=−1

∣∣ ≤ c‖ω‖1/2
L2

z
‖∂zω‖1/2

L2
z
.(11)

Thus the first term in the right-hand side of (9) is bounded as follows:∫ 1

0

|ω|z=−1|2 dx ≤ ε‖∇ω‖2
(L2(Ω))2 + c‖ω‖2

L2(Ω).(12)

Moreover we have

‖ω‖2
L∞

x L2
z
≤ 2

∫ 1

0

∫ 0

−1

|ω∂xω|dzdx ≤ c‖ω‖L2(Ω)‖∂xω‖L2(Ω);

then

‖ω‖1/2
L∞

x L2
z
≤ c‖ω‖1/4

L2(Ω)‖∂xω‖
1/4
L2(Ω).(13)

Therefore, using (10), (11), and (13), we get

I ≤ c‖ω‖1/4
L2(Ω)‖∂xω‖

1/4
L2(Ω)

∫ 1

0

(
‖∂zω‖1/2

L2
z

∣∣∣∣
∫ 0

−1

wωdz

∣∣∣∣
)
dx.(14)

Since ω = ∂zv, we get∣∣∣∣
∫ 0

−1

wω dz

∣∣∣∣ =

∣∣∣∣
∫ 0

−1

w∂zv dz

∣∣∣∣ =

∣∣∣∣
∫ 0

−1

v∂zw dz

∣∣∣∣ ≤ ‖v‖L2
z
‖∂zw‖L2

z
.(15)

Moreover

‖∂zw‖2
L2

z
= −

∫ 0

−1

w∂2
zw dz =

∫ 0

−1

w∂xω dz ≤ ‖w‖L2
z
‖∂xω‖L2

z
.
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So, using (15), we get ∣∣∣∣
∫ 0

−1

wω

∣∣∣∣ ≤ ‖v‖L2
z
‖w‖1/2

L2
z
‖∂xω‖1/2

L2
z
.(16)

This implies, using (14) and (16), that

I ≤ c‖ω‖1/4
L2(Ω)‖∂xω‖

1/4
L2(Ω)

∫ 1

0

(
‖∂zω‖1/2

L2
z
‖∂xω‖1/2

L2
z
‖v‖L2

z
‖w‖1/2

L2
z

)
dx

and thus

I ≤ c‖ω‖1/4
L2(Ω)‖∂xω‖

1/4
L2(Ω)

∫ 1

0

(
‖∇ω‖L2

z
‖v‖L2

z
‖w‖1/2

L2
z

)
dx.(17)

Using the Hölder inequality on (17), we find

I ≤ c‖ω‖1/4
L2(Ω)‖∇ω‖1/4

(L2(Ω))2‖∇ω‖(L2(Ω))2 ‖w‖1/2
L2(Ω)

(∫ 1

0

‖v‖4
L2

z
dx

)1/4

.(18)

Next, we bound ∫ 1

0

‖v‖4
L2

z
dx ≤ ‖v‖2

L2(Ω)‖v‖2
L∞

x L2
z

and

‖v‖2
L∞

x L2
z
≤ c‖v‖L2(Ω)‖∂xv‖L2(Ω).

So we get

I ≤ c‖ω‖1/4
L2(Ω)‖∇ω‖5/4

(L2(Ω))2‖v‖
1/4
L2(Ω)‖∂xv‖

1/4
L2(Ω)‖v‖

1/2
L2(Ω)‖w‖

1/2
L2(Ω),

which implies

I ≤ ε‖∇ω‖2
(L2(Ω))2 + c‖v‖2

L2(Ω)‖ω‖
2/3
L2(Ω)‖∂xv‖

2/3
L2(Ω)‖w‖

4/3
L2(Ω).

This gives, using inequalities (9) and (12),

d

dt
‖ω‖2

L2(Ω) +
1

2
‖∇ω‖2

(L2(Ω))2 ≤ c‖v‖2
L2(Ω)‖∂xv‖

2/3
L2(Ω)‖w‖

4/3
L2(Ω)‖ω‖

2/3
L2(Ω) + c‖ω‖2

L2(Ω),

(19)

with c independent on t.

Weak strong solution. The first inequality, (8), gives, if v0 ∈ H, that

v ∈ L2(0,∞;V ) ∩ L∞(0,∞;H).

Assuming that v0 ∈ L2(Ω) and ∂zv0 ∈ L2(Ω), we see that

‖v‖2
L2(Ω)‖∂xv‖

2/3
L2(Ω)‖w‖

4/3
L2(Ω) ∈ L1(0,∞).

Inequality (19) will give the weak regularity on ∂zv, meaning that

∂zv ∈ L∞(0,∞;L2(Ω)) ∩ L2(0,∞;H1(Ω)).
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Indeed ‖ω‖2
L2(Ω) = ‖∂zv‖2

L2(Ω) ∈ L1(0,∞). The verification is straightforward, using

the weak regularity of v, the exponential decaying property of ‖v(t)‖L2(Ω) (which
will be proved later on), and the relation between ω, ∇ω, and v. Indeed we have
v ∈ L∞(0,∞;L2(Ω)) and∫ ∞

0

‖∂xv‖2/3
L2(Ω) ‖w‖

4/3
L2(Ω) dt ≤

(∫ ∞

0

‖vx‖2
L2(Ω) dt

)1/3 (∫ ∞

0

‖w‖2
L2(Ω) dt

)2/3

.

Remark. Therefore (5) implies that ∂xp ∈ L2(0,∞;L1
xL

∞
z ).

Uniqueness. This energy estimate on ∂zv allows us to prove the existence of a
weak strong solution when v0 ∈ H and ∂zv0 ∈ L2(Ω); this means a solution such that

v ∈ L2(0,∞;V ) ∩ L∞(0,∞;H),

∂zv ∈ L2(0,∞;H1(Ω)) ∩ L∞(0,∞;L2(Ω)).

The uniqueness follows from the fact that if we consider two weak solutions, one of
which has the regularity ∂zv ∈ L4(0, T ;L2(Ω)), then they coincide; see [6]. Denoting
v1 and v2 as the two weak solutions, with v2 satisfying the extra regularity and
w1 = −

∫ z

0
v1 and w2 = −

∫ z

0
v2 making the difference of the two momentum equations,

this result is easy to check by classical energy estimates using anisotropic estimates
on the nonlinear quantity

I1 =

∫
Ω

(v1 − v2)
2∂xv2 + (w1 − w2)∂zv2(v1 − v2).

More precisely, we use the fact that

I1 ≤ ‖v1 − v2‖L2
xL

∞
z
‖v1 − v2‖L∞

x L2
z
‖∂xv2‖L2 + ‖v1 − v2‖L∞

x L2
z
‖∂zv2‖L2‖w1 − w2‖L2

xL
∞
z
,

and therefore

I1 ≤ ν

2

∫
Ω

(∂x(v1 − v2))
2 + c1(‖∂xv2‖2

L2(Ω) + ‖∂zv2‖4
L2(Ω))‖v1 − v2‖2

L2(Ω).

Therefore we obtain the first global existence and uniqueness result with the
Dirichlet boundary condition at the bottom for a domain with a constant depth.
We do not have to assume a smallness assumption on the data. We will prove in
the next section how to obtain the same result for a domain with h ≥ c > 0 and
h′′ ∈ W 2,∞(0, 1).

Exponential decay in time on ‖v‖L2(Ω) and ‖ω‖L2(Ω). Equation (8) gives
the exponential decay in time of ‖v‖2

L2(Ω). Therefore, denoting y = ‖ω‖2
L2(Ω) and

f = ‖∂xv‖2/3
L2(Ω)‖w‖

4/3
L2(Ω) ∈ L1(0,∞), equation (19) gives

y′ + cy ≤ c exp(−ct)f(t)y
1
3 + c‖ω‖2

L2(Ω).

Now, using the inequality ‖ω‖2
L2(Ω) ≤ ‖v‖L2(Ω)‖∂zω‖L2(Ω), we obtain

c‖ω‖2
L2(Ω) ≤ cy

1
3 exp(−ct)g(t),

with g(t) ∈ L1(0,∞) (since for all α > 0, ‖v‖αL2(Ω) ∈ L1(0,∞) and ‖∂zω‖L2(Ω) ∈
L2(0,∞)). Thus we have

y′ + cy ≤ c exp(−ct)h(t)y
1
3 ,

with h(t) = f(t) + g(t) ∈ L1(0,∞), and therefore y = ‖ω‖2
L2(Ω) decays exponentially

fast in time.
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Regularity. We can prove, if we assume v0 ∈ V , that there exists a unique weak
solution such that

v ∈ L2(0,∞;H2(Ω) ∩ V ) ∩ L∞(0,∞;V ), ∂tv ∈ L2(0,∞;H),

∂xp ∈ L2(0,∞;Lq(Ω)) for all q < ∞.

Let us recall that if v0 ∈ H with ∂zv0 ∈ L2(Ω), then we have weak estimates
on ω = ∂zv. Using ∂tv as a test function, we get ∂tv ∈ L2(0,∞;L2(Ω)) and
v ∈ L∞(0,∞;H1(Ω)). Therefore (5) gives ∂xp ∈ L2(0,∞;L2(Ω)). Then we ob-
tain by regularity v ∈ L2(0,∞;H2(Ω)). Now using the regularity on v, this gives the
regularity on ∂xp with the help of (5).

Regularity on ∂xp. Since v ∈ L∞(0,∞;V ), we get v ∈ L∞(0,∞;L∞
x L2

z). On
the one hand, ∂xv ∈ L2(0,∞;H1(Ω)), and then ∂xv ∈ L2(0,∞;L∞

x L2
z). Then∫ 0

−1
∂x|v|2 dz ∈ L2(0,∞;L∞

x ). This gives

∫ 0

−1

∂x|v|2 dz ∈ L2(0,∞;L∞(Ω)).

On the other hand ω = ∂xv ∈ L2(0,∞;H1(Ω)), and then ω|z=−1 ∈ L2(0,∞;H
1
2 (b)).

Since H
1
2 (b) ⊂ Lq(b) for all q ∈ [1,+∞[ (d = 2), this gives, for all q ∈ [1,+∞[ ,

ω|z=−1 ∈ L2(0,∞;Lq(b)); then

ω|z=−1 ∈ L2(0,∞;Lq(Ω)).

Therefore, using (5), this ends the proof.
Regularity on ∂tv and ∇v. For the reader’s convenience, let us give the estimate

on ∂tv and on ∇v, for which we will use the regularity obtained on ∂zv. We multiply
the momentum equation satisfied by v by ∂tv, giving∫

Ω

|∂tv|2 +
1

2

d

dt

∫
Ω

|∇v|2 +

∫
Ω

(v∂xv∂tv + w∂zv∂tv) = 0.(20)

Let us estimate the two last terms. We have∣∣∣∣
∫

Ω

v∂xv∂tv

∣∣∣∣ ≤ ε‖∂tv‖2
L2(Ω) + c‖v∂xv‖2

L2(Ω).(21)

Since

‖v∂xv‖2
L2(Ω) ≤ ‖∂xv‖2

L∞
z L2

x
‖v‖2

L2
zL

∞
x
,

we get, using (13),

‖v∂xv‖2
L2(Ω) ≤ c‖∂xω‖L2(Ω)‖v‖L2(Ω)‖∂xv‖2

L2(Ω).(22)

Let us now look at the last term of (20). We have∣∣∣∣
∫

Ω

w∂zv∂tv

∣∣∣∣ ≤ ε‖∂tv‖2
L2(Ω) + c‖wω‖2

L2(Ω).(23)

Since

‖wω‖2
L2(Ω) ≤

∫ 1

0

(
‖w‖2

L∞
z

∫ 0

−1

|ω|2 dz
)
dx,
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we get

‖wω‖2
L2(Ω) ≤ ‖ω‖2

L∞
x L2

z
‖∂xv‖2

L2(Ω),

and therefore

‖wω‖2
L2(Ω) ≤ ‖ω‖L2(Ω)‖∂xω‖L2(Ω)‖∂xv‖2

L2(Ω).(24)

Now using (20)–(24), we find∫
Ω

|∂tv|2 +
d

dt

∫
Ω

|∇v|2 ≤ c(t)

∫
Ω

|∇v|2,(25)

with

c(t) = ‖∂xω‖L2(Ω)(‖ω‖L2(Ω) + ‖v‖L2(Ω)) ∈ L1(0,∞).

This gives ∂tv ∈ L2(0,∞;L2(Ω)) and v ∈ L∞(0,∞;H1(Ω)) if v0 ∈ H1(Ω).
Let us now look at the regularity v ∈ L2(0,∞;H2(Ω)). We have

−∆v = −∂tv − ∂xp− v∂xv − w∂zv.

Using the regularity on ∂tv, v, and ∂xp, we get an elliptic equations with a right-hand
side in L2(0,∞;L2(Ω)). Therefore, using [14], v ∈ L2(0,∞;H2(Ω)). Now using the
expression (5) of ∂xp, we conclude that ∂xp ∈ L2(0,∞;Lq(Ω)) for all q < ∞.

Exponential decay in time on ‖∇v‖(L2(Ω))2 . Using the energy inequalities
(19), (25), we can prove the exponential decay in time of ‖∇v‖2

(L2(Ω))2 since ‖v‖2
L2(Ω)

and ‖ω‖2
L2(Ω) decay exponentially fast. Let us give the proof for the reader’s conve-

nience. We have ∫
Ω

|∂tv|2 +
d

dt

∫
Ω

|∇v|2 ≤ c(t)

∫
Ω

|∇v|2,(dec2)

with

c(t) = ‖∂xω‖L2(Ω)(‖ω‖L2(Ω) + ‖v‖L2(Ω))

and ‖v‖2
L2(Ω) and ‖ω‖2

L2(Ω) with exponential decaying properties. Therefore, there

exists (c1, c2) ∈ (R+)2 such that∫
Ω

|∂tv|2 +
d

dt

∫
Ω

|∇v|2 ≤ c1e
−c2t‖∂xω‖L2(Ω)

∫
Ω

|∇v|2.(dec3)

On the other hand, we have

d

dt
‖v‖2

L2(Ω) + ‖∇v‖2
(L2(Ω))2 ≤ 0;(dec4)

then

‖∇v‖2
(L2(Ω))2 ≤

∫
Ω

|∂tv|2 +

∫
Ω

|v|2.

By reinjecting in (dec3), we get∫
Ω

|∇v|2 +
d

dt

∫
Ω

|∇v|2 ≤ c1e
−c2t‖∂xω‖L2(Ω)

∫
Ω

|∇v|2 +

∫
Ω

|v|2.
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Since
∫
Ω
|v|2 ≤ ce−c3t with c3 ≤ 1, then

B(t)

∫
Ω

|∇v|2 +
d

dt

∫
Ω

|∇v|2 ≤ ce−c3t,

where B(t) = 1 − c1e
−c2t‖∂xω‖L2(Ω). Then we get

d

dt

(∫
Ω

|∇v|2e
∫ t
0
B(τ) dτ

)
≤ ce

∫ t
0
B(τ) dτ−c3t.

Estimation of
∫ t

0
B(τ) dτ . We have, for all t > 0,

∫ t

0

e−c2τ‖∂xω‖L2(Ω) dτ ≤
(∫ t

0

e−2c2τ dτ

) 1
2
(∫ t

0

‖∂xω‖2
L2(Ω) dτ

) 1
2

≤ 1√
2c2

(1 − e−2c2t)
1
2

(∫ t

0

‖∂xω‖2
L2(Ω) dτ

) 1
2

.

Then for t ≥ 1,∫ t

0

e−c2τ‖∂xω‖L2(Ω) dτ ≤ te−c2ξ

(∫ ∞

0

‖∂xω‖2
L2(Ω) dτ

) 1
2

,

with limt→∞ ξ = +∞; and then, for t ≥ t0,∫ t

0

e−c2τ‖∂xω‖L2(Ω) dτ ≤ c3
2c1

t.

In conclusion we get, for all t ≥ t0,(
1 − c3

2

)
t ≤

∫ t

0

B(τ) dτ ≤ t.

This gives, for all t ≥ t0,

d

dt

(∫
Ω

|∇v|2e
∫ t
0
B(τ) dτ

)
≤ ce(1−c3)t;

then∫
Ω

|∇v|2(t) ≤ c‖∇v(t0)‖2
L2(Ω)2(e

(1−c3)t − 1)e(−1+
c3
2 )t ≤ c‖∇v(t0)‖2

L2(Ω)2e
− c3

2 t

since c3 ≤ 1. Using the fact that ∇v is bounded in (L2(0, T ;L2(Ω))9), this ends the
proof.

5. A domain with a nonconstant depth. Let us now consider a domain with
a nonconstant depth, and let us give the compatibility condition, which will be more
complicated than that for a domain with constant depth.

Before beginning to search for such compatibility condition, let us recall for the
reader’s convenience the definition of the anisotropic spaces L∞

x L2
z.

Definition of the anisotropic space. A function belongs to L∞
x L2

z if

u(x, .) ∈ L2(−h(x), 0) and ‖u(x, .)‖L2(−h(x),0) ∈ L∞.

Moreover its norm is given by

‖u‖L∞
x L2

z
= sup

x∈(0,1)

(
‖u(x, .)‖L2(−h(x),0)

)
.
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The compatibility condition. We will use the first kind of proof given in
section 1 in the case of a constant depth. At first, let us integrate the momentum
equation on v from −h to 0 with x fixed. We get, using the boundary condition

satisfied by v and the fact that
∫ 0

−h
∂xp dz = h∂xp, the following equality:

h∂xp−
∫ 0

−h

∂2
xv dz + ω|z=−h +

∫ 0

−h

(v∂xv + w∂zv) dz = 0.(26)

Let us calculate the term on ∂2
xv. After some calculations and using that

∂x
(
v(x,−h(x))

)
=

(
∂xv

)
(x,−h(x)) − h′ (∂zv)(x,−h(x))(27)

and v = 0 on b, we get

∫ 0

−h

∂2
xv dz = −(h′)2 ω|b.(28)

We have, using the divergence-free condition on u = (v, w) and the boundary condition
satisfied by w,

∫ 0

−h

(v∂xv + w∂zv) dz =

∫ 0

−h

∂x|v|2 dz = 2

∫ 0

−h

wω dz.(29)

If we use (26), (28), and (29), we get

h∂xp + (1 + (h′)2)ω|b + 2

∫ 0

−h

ωw dz = 0.(30)

Let us now take the trace on the bottom of the momentum equation. Since
(v, w) = 0 on b, we get

(∂tv + v∂xv + w∂zv)|b = 0.

It remains that

∂xp = (∂2
xv + ∂2

zv)|b.(31)

Let us calculate the right-hand side in terms of ω. We have by definition of ω

(∂2
zv)|b = (∂zω)|b.(32)

Let us look at the ∂2
xv. We have

∂x
(
(∂xv)(x,−h(x))

)
=

(
∂2
xv

)
(x,−h(x)) − h′(∂x∂zv)(x,−h(x)).

Therefore, using (27), we get

(∂2
xv)(x,−h(x)) = ∂x

(
h′ ω(x,−h(x))

)
+ h′(∂xω)(x,−h(x)).

Thus we get

(∂2
xv)|b = 2h′(∂xω)|b − (h′)2(∂zω)|b + h′′ω|b.(33)
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Thus using (31), (32), and (33), we get

∂xp = 2h′(∂xω)|b + (1 − (h′)2)(∂zω)|b + h′′ω|b.(34)

Finally, using (26) and (34), we get the following compatibility condition:

(
hh′′ +

(
1 + (h′)2

))
ω|b + 2

∫ 0

−h

(ωw) dz + 2hh′(∂xω)|b + h
(
1 − (h′)2

)
(∂zω)|b = 0.

(35)

Let us rewrite this condition in terms of the normal derivative and the tangential
derivative of ω. Recall that

∂ω/∂n = −
(
h′(∂xω)|b + (∂zω)|b

)
/
(
1 + (h′)2

)1/2
and

∂ω/∂τ =
(
(∂xω)|b − h′(∂zω)|b

)
/
(
1 + (h′)2

)1/2
.

Then the compatibility condition may be written as

−h∂ω/∂n + hh′∂ω/∂τ + (1 + h′2)−1/2

((
hh′′ +

(
1 + (h′)2

))
ω|b + 2

∫ 0

−h

(ωw) dz

)
= 0.

(36)

A priori estimates. Let us give the a priori estimates, which allows us to prove
the global existence result.

Energy estimate on v. Taking v as a test function on the momentum equation,
we get, as in the constant depth assumption,

d

dt
‖v‖2

L2(Ω) + ‖∇v‖2
(L2(Ω))2 ≤ 0.(37)

Energy estimate on ω. Let us multiply by ω the equation satisfied by ω; we
then get

d

dt
‖ω‖2

L2(Ω) + ‖∇ω‖2
(L2(Ω))2 =

∫
b

∂ω

∂n
ω.(38)

Let us remark that the compatibility condition (36) allows us to replace the normal
derivative by the tangential derivative and ω|b. We get

∫
b

∂ω

∂n
ω =

∫
b

h′ ∂ω

∂τ
ω +

∫
b

(1 + h′2)−1/2

(
h′′ +

1 + (h′)2

h

)
|ω|2

+ 2

∫
b

1

h
√

1 + h′2

(∫ 0

−h

(ωw) dz

)
ω,

and using the fact that ∫
b

h′ ∂ω

∂τ
ω = −1

2

∫
b

h′′

(1 + h′2)1/2
|ω|2,
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we finally obtain

d

dt
‖ω‖2

L2(Ω) + ‖∇ω‖2
(L2(Ω))2 ≤

∫
b

(√
1 + h′2

h
+

h′′

2
√

1 + h′2

)
|ω|2

+ 2

∫
b

1

h
√

1 + h′2

(∫ 0

−h

(ωw) dz

)
ω.

(39)

Remark. If we choose h = 1 in (39), we get exactly inequality (10) found in
section 2.

Assuming that h ∈ W 2,∞(0, 1), the first term in the right-hand side of (39) is
bounded as follows:∫

b

(√
1 + h′2

h
+

h′′

2
√

1 + h′2

)
|ω|2 ≤ c‖ω‖L2(Ω)‖∇ω‖(L2(Ω))2 ,

with c depending only on h. The second term in the right-hand side of (39) is bounded,
as was done in the case of constant depth, assuming that h ≥ c > 0. This gives the
global existence and uniqueness mentioned in Theorem 1.

The regularity and exponential decay in time given in Theorem 2 and Corollary 3
follow as in the case of constant depth.

Remark. If h′′ < 0, meaning Ω is convex, then we do not have to assume that h ∈
W 2,∞(0, 1) since the term containing h′′ in the right-hand side is therefore negative.

6. Some remarks on the uniqueness result. The result in this section is in
the same spirit as [7], where they consider u0 in (H1/2(Ω))3 for the Navier–Stokes
equations in the three-dimensional case.

We have recalled in the previous sections that we have uniqueness if we prove
the regularity ∂zv ∈ L4(0,∞;L2(Ω)). With v0 ∈ H, we have a weak solution of
system (2),

v ∈ L2(0,∞;V ) ∩ L∞(0,∞;H),

and if we assume v0 ∈ H with ∂zv0 ∈ L2(Ω), we get a weak solution of (2) such that

v ∈ L2(0,∞;V ) ∩ L∞(0,∞;H),

∂zv ∈ L2(0,∞;H1(Ω)) ∩ L∞(0,∞;L2(Ω)).

This last regularity result is not optimal but just ensures uniqueness. Studying

the linear problem, we see by interpolation that it is enough to suppose v0 ∈ L2
xH

1/2
z

to prove that ∂zv ∈ L4(0,∞;L2(Ω)). This is what we want to prove in this section
on the nonlinear system.

For didactic considerations, we begin by study the nonlinear problem with ∂zv|z=π

= 0 and ∂zv|z=0 = 0.

Nonlinear problem with ∂zv|z=π = 0 and ∂zv|z=0 = 0. We write the
initial data v0 as v0 =

∑∞
n=1 bn(x) cos(nz) and look at a solution v on the form

v =
∑∞

n=1 an cos(nz) with an = an(x, t). Let us multiply equation (2)1 satisfied by v

by ∂zv =
∑∞

n=1 nan cos(nz), and let us prove that it will give us the estimate on ∂
1/2
z v

if v0 ∈ L2
xH

1/2
z , meaning that

∂1/2
z v ∈ L2(0,∞;H1(Ω)) ∩ L∞(0,∞;L2(Ω)).
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This will give

∂zv ∈ L2(0,∞;L2
xH

1/2
z ) ∩ L∞(0,∞;L2

xH
−1/2
z ),

and thus, by interpolation,

∂zv ∈ L4(0,∞;L2(Ω)).

This ensures the uniqueness.

We multiply equation (2)1 by ∂zv and obtain, since
∫ π

0
∂zv dz = 0 and ∂zp = 0,

∫
Ω

∂tv∂zv +

∫
Ω

∇v · ∇∂zv +

∫
Ω

v∂xv∂zv +

∫
Ω

w∂zv∂zv = 0.

The third term reads

∫
Ω

v∂xv∂zv =
∑

l,m,n≥0

∫ 1

0

ala
′
mnan

∫ π

0

cos(lz) cos(mz) cos(nz).

The only remaining terms are such that l +m− n = 0, l−m− n = 0, l−m+ n = 0.
Therefore every time we can upperbound n by n1/2(l1/2 + m1/2). This will give

∣∣∣∣
∫

Ω

v∂xv∂zv

∣∣∣∣ ≤ ‖∂1/2
z v‖L2(Ω)‖∇∂1/2

z v‖(L2(Ω))2‖∂xv‖L2(Ω)

+ ‖v‖1/2
L2(Ω)‖∂zv‖

1/2
L2(Ω)‖∇∂1/2

z v‖3/2
(L2(Ω))2‖∂

1/2
z v‖1/2

L2(Ω).

(40)

We prove in the same manner that the fourth term is controlled as follows:∣∣∣∣
∫

Ω

w∂zv∂zv

∣∣∣∣ ≤ ‖∂x∂1/2
z v‖3/2

L2(Ω)‖v‖
1/2
L2(Ω)‖∂zv‖

1/2
L2(Ω)‖∂

1/2
z v‖1/2

L2(Ω)

+ ‖∂xv‖L2(Ω)‖∂1/2
z v‖L2(Ω)‖∇∂1/2

z v‖(L2(Ω))2 .

(41)

These inequalities will provide us with the estimate

d

dt
‖∂1/2

z v‖2
L2(Ω) + ‖∇∂1/2

z v‖2
(L2(Ω))2 ≤ c(t)‖∂1/2

z v‖2
L2(Ω),(42)

with c ∈ L1(0,∞). Therefore, assuming the regularity v0 ∈ L2
xH

1/2
z , we get the result.

Proof of estimate (41). We have

∫
Ω

w∂zv∂zv = −
∑

l,m,n≥0

∫ 1

0

a′l
l
nanmam

∫ π

0

sin(lz) sin(nz) cos(mz).

We recall that

sin(lz) sin(nz) cos(mz) =
1

4

(
cos

(
(l − n−m)z

)
+ cos

(
(l − n + m)z

)
− cos

(
(l + n−m)z

)
− cos

(
(l + n + m)z

))
.
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The only terms which do not vanish are the ones such that l−n−m = 0, l−n+m = 0,
l + n−m = 0. This gives∣∣∣∣

∫
Ω

w∂zv∂zv

∣∣∣∣ =
π

4

∑
l−n−m=0

∫ 1

0

a′l
l
nanmam +

π

4

∑
l−n+m=0

∫ 1

0

a′l
l
nanmam

− π

4

∑
l+n−m=0

∫ 1

0

a′l
l
nanmam

=
π

4

∑
l−n−m=0

∫ 1

0

|a′l|
l
nanmam.

Let us now estimate the right-hand side. We have, since m ≤ m1/2(l1/2 + n1/2),

∑
l−n−m=0

∫ 1

0

a′l
l
nanmam ≤ π

4

∑
l−n−m=0

∫ 1

0

|a′l|
l1/2

n|an|m1/2|am|

+
π

4

∑
l−n−m=0

∫ 1

0

|a′l|
l
n3/2|an|m1/2|am|.

Moreover, since when l − n−m = 0, n ≤ l,

π

4

∑
l−n−m=0

∫ 1

0

|a′l|
l1/2

n|an|m1/2|am| ≤ π

4

∑
l−n−m=0

∫ 1

0

l1/2|a′l||an|m1/2|am|

≤
∑
l,n,m

∫ 1

0

∫ π

0

l1/2|a′l| sin(lz)|an| sin(nz)m1/2|am| cos(mz)

≤
∥∥∥∥∥
∑
l

l1/2|a′l| sin lz

∥∥∥∥∥
2

∥∥∥∥∥
∑
n

|an| sinnz

∥∥∥∥∥
L2

xL
∞
z

∥∥∥∥∥
∑
m

m1/2|am| cosmz

∥∥∥∥∥
L∞

x L2
z

≤ ‖∂x∂1/2
z v‖2

∥∥∥∥∥
∑
n

|an| sinnz

∥∥∥∥∥
1/2

2

∥∥∥∥∥
∑
n

n|an| sinnz

∥∥∥∥∥
1/2

2∥∥∥∥∥
∑
m

m1/2|am| cosmz

∥∥∥∥∥
1/2

2

∥∥∥∥∥
∑
m

m1/2|a′m| cosmz

∥∥∥∥∥
1/2

2

≤ ‖∂x∂1/2
z v‖3/2

L2(Ω)‖v‖
1/2
L2(Ω)‖∂zv‖

1/2
L2(Ω)‖∂

1/2
z v‖1/2

L2(Ω).

Moreover, since if l − n−m = 0, n < l, we have

π

4

∑
l−n−m=0

∫ 1

0

|a′l|
l
n3/2|an|m1/2|am| ≤ π

4

∑
l−n−m=0

∫ 1

0

|a′l|n1/2anm
1/2am

≤
∑
l,n,m

∫ 1

0

∫ π

0

|a′l| sin(lz)n1/2|an| sin(nz)m1/2|am| cos(mz)

≤
∑
l,n,m

∫ 1

0

∫ π

0

|a′l| sin(lz)n1/2|an| sin(nz)m1/2|am| cos(mz)

≤ ‖∂xv‖2

∥∥∥∥∥
∑
n

n1/2|an| sinnz

∥∥∥∥∥
L2

xL
∞
z

∥∥∥∥∥
∑
m

m1/2|am| cosmz

∥∥∥∥∥
L∞

x L2
z
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≤ ‖∂xv‖2

∥∥∥∥∥
∑
n

n1/2|an| sinnz

∥∥∥∥∥
1/2

2

∥∥∥∥∥
∑
n

n3/2|an| sinnz

∥∥∥∥∥
1/2

2∥∥∥∥∥
∑
m

m1/2|am| cosmz

∥∥∥∥∥
1/2

2

∥∥∥∥∥
∑
m

m1/2|a′m| cosmz

∥∥∥∥∥
1/2

2

≤ ‖∂xv‖L2(Ω)‖∂1/2
z v‖L2(Ω)‖∇∂1/2

z v‖(L2(Ω))2 ,

and in conclusion,∣∣∣∣
∫

Ω

w∂zv∂zv

∣∣∣∣ ≤ ‖∂x∂1/2
z v‖3/2

L2(Ω)‖v‖
1/2
L2(Ω)‖∂zv‖

1/2
L2(Ω)‖∂

1/2
z v‖1/2

L2(Ω)

+ ‖∂xv‖L2(Ω)‖∂1/2
z v‖L2(Ω)‖∇∂1/2

z v‖(L2(Ω))2 .

Summary. (i) We have∥∥∥∥∥
∑
n

|an| sinnz

∥∥∥∥∥
2

=

∥∥∥∥∥
∑
n

|an| cosnz

∥∥∥∥∥
2

.

(ii) If f(0) = 0, we have |f(x)| =
∫ x

0
∂x|f |2 ≤ c‖∂xf‖1/2

2 ‖f‖1/2
2 , and then

‖f(x)‖∞ ≤ c‖∂xf‖1/2
2 ‖f‖1/2

2 .

Let us now look at the Dirichlet boundary condition on the bottom.

Nonlinear problem with ∂zv|z=π = 0 and Dirichlet condition v|z=0 = 0.
Let us look at the following eigenvalues problem:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
∂2
zvk − ∂xpk + λ2

kvk = 0, ∂zpk = 0,∫ π

0

vk dz = 0,

∂zvk|z=π = 0, vk|z=0 = 0.

Writing the system on ωk with the compatibility condition (∂zωk + 1
πωk)|z=0 = 0, we

find (vk, λk) given by

vk =
1

sin(λkπ)

(
cos

(
λk(z − π)

)
− cos(λkπ)

)
,

with λk satisfying

tan (λk π) = λkπ.

Let us remark that (vk)k is an orthogonal basis of L2
z. Then we search the weak solu-

tion v of system (2) on the form v =
∑

n≥0 anvn with an = an(t, x), and we multiply

the momentum equation by ∂zv =
∑∞

n=1 λnan(t, x)vn(z). After some computations,
we prove similar estimates to (40) and (41). We get an estimate similar to (42). This
gives the results on the regularity and therefore the uniqueness.
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PERIODIC SOLUTIONS OF THE KORTEWEG–DE VRIES
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Abstract. We consider a Korteweg–de Vries equation perturbed by a noise term on a bounded
interval with periodic boundary conditions. The noise is additive, white in time, and “almost white
in space.” We get a local existence and uniqueness result for the solutions of this equation. In order
to obtain the result, we use the precise regularity of the Brownian motion in Besov spaces, and the
method which was introduced by Bourgain, but based here on Besov spaces.

Key words. Korteweg–de Vries equation, stochastic partial differential equations, white noise,
Besov spaces

AMS subject classifications. 35Q53, 60H15, 76B35
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1. Introduction. The Korteweg–de Vries (KdV) equation, which models the
propagation of unidirectional weakly nonlinear waves in an infinite channel, is an ideal
model, and it is natural to consider perturbations of this model. In this direction,
stochastic perturbations of this equation were introduced in [5], [12], [19] to model
the propagation of weakly nonlinear waves in a noisy plasma.

Here, we consider as in [2], [3] a KdV equation with a stochastic perturbation
which is Gaussian and of white noise–type in time. Contrary to the previous works
[2] and [3], we will set the equation on a bounded space interval with periodic boundary
conditions. Although the derivation of the KdV equation is usually done with x ∈ R,
there is no reason to confine oneself to localized solutions. It is also well known that
the KdV equation possesses spatially periodic traveling waves solutions. The study
of the periodic boundary conditions case is also of importance when dealing with
numerical computations, since these are necessarily performed on a bounded interval.

Our aim in the present paper is to study the Cauchy problem for a stochastic
KdV equation with an additive noise as previously described, and which has spatial
correlations “as rough” as our techniques allow, the aim being to stay as close as
possible to the space-time white noise.

The equation is then written as

∂tu + ∂3
xu + u∂xu = φ

∂2B

∂t∂x
,(1.1)

where u is a random process defined for (t, x) ∈ R
+ × T, T being a one-dimensional

torus, and φ is a bounded linear operator on L2(T) that will be described in more
detail later. Also, B is a two parameter Brownian motion on R

+ × T, that is, a zero
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mean Gaussian process whose correlation function is given by

E(B(t, x)B(s, y)) = (t ∧ s)(x ∧ y)

for t, s ≥ 0, x, y ∈ T.
Note that in the case where φ is defined by a kernel k(x, y), the correlation function

of the noise is

E

(
φ
∂2B

∂t∂x
(t, x)φ

∂2B

∂t∂x
(s, y)

)
= c(x, y)δt−s,

with δ the Dirac δ-function and

c(x, y) =

∫
T

k(x, z)k(y, z)dz.

In this formalism, the case φ = Id, i.e., c(x, y) = δ(x− y), corresponds to the space-
time white noise. This is the case we would like to treat. However, our result needs
a slightly more restrictive assumption, and we are only able to treat a noise which is
“almost” delta correlated in space.

Except in [2] and [3], equations of the type (1.1) have essentially been studied by
using inverse scattering theory (and only in cases where the noise is space independent)
or by perturbation arguments near the integrable case (see [12], [16], [21], [22]).

A great deal of attention has been paid to the (deterministic) KdV equation on
the real line (see [1], [4], [13], [18]) and improvements made on the regularity needed
on the initial value to get local existence of solutions have occurred step by step. On
the other hand, for the periodic case, up to the famous work of Bourgain on the KdV
equation (see [4]), existence results in Hs(T) were restricted to the case s > 3/2.
Then, using functions spaces based on the linear group, Bourgain was able to prove
global well-posedness in L2(T). Making use of the same spaces, and improving the
nonlinear estimate, Kenig, Ponce, and Vega (see [15]) proved local well-posedness in
Hs(T) for s > −1/2 (see Colliander et al. [7] for s = −1/2). After that, using a
splitting into high and low Fourier frequencies of the solution, together with almost
conserved quantities and rescaling arguments, Colliander et al. [7] were able to prove
global existence in Hs(T) for s ≥ −1/2.

Using Bourgain-type spaces, we were able in [3] to prove local existence of solu-
tions for (1.1) in the real line case, when the noise is a “localized space-time white
noise,” that is, when its correlation function has the form

E

(
φ
∂2B

∂t∂x
(t, x)φ

∂2B

∂t∂x
(s, y)

)
= k(x)k(y)δx−yδt−s,

k being an L2 function. It is indeed hopeless in the real line case to be able to get
even local existence of solutions in Hs(R), with a pure space-time white noise. The
obstruction is not due to the lack of spatial regularity of the noise, but rather to its
homogeneity (see [3]). In the periodic case, however, there is no such obstruction, and
we are able to treat homogeneous noises, i.e., noises whose spatial correlation function
depends only on x− y (or such that φ is a convolution operator); also, thanks to the
use of Bourgain’s method adapted to Besov spaces, we are able to treat noises which
have spatial correlations in Hs, s > −1/2. The main difficulty encountered in the
application of Bourgain’s method in our case is that it needs time regularity of order
1/2. However, it is well known that this regularity does not hold for Brownian motions
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unless Besov spaces are considered. This is why we use this method in the context
of Besov spaces—see below for details. The problem of global existence of solutions
for such noises in spaces with negative regularity is not considered here, but could
probably be handled with the use of the method previously mentioned [7].

Before stating our result precisely, we introduce some notation and assumptions.
We consider W̃ (t) = ∂B

∂x a cylindrical Wiener process on L2(T) which may be writ-

ten as W̃ (t) =
∑

j∈N
βjej , where (ej)j∈N is a complete orthonormal system in L2(T),

and (βj)j∈N is a sequence of mutually independent real-valued Brownian motions in
a fixed probability space (Ω,F ,P) associated with a filtration (Ft)t≥0.

The process W = φW̃ is then a φφ∗-Wiener process (recall that φ is a lin-
ear bounded operator in L2(T)), that is, (W (t))t≥0 is a Gaussian process with law
(N (0, tφφ∗)t≥0).

We then consider (1.1) in its Itô form,

du + (∂3
xu + u∂xu)dt = dW, x ∈ T, t ≥ 0,(1.2)

supplemented with the initial condition

u(0, x) = u0(x), x ∈ T.(1.3)

Consider the Fourier transform

f̂(n) =
1√
2π

∫
T

einxf(x)dx

for functions f defined on T, and for s ∈ R, let Hs(T) be the Sobolev space of
functions f such that the norm

|f |Hs(T) :=

(∑
n∈Z

(1 + n2)s|f̂(n)|2
)1/2

is finite. We also define, for s ∈ R, the Besov space Bs
2,1(T) as the space of functions f

defined on T for which the norm

|f |Bs
2,1(T) = |f̂(0)| +

∑
n∈N

2sn

( ∑
2n−1≤|n′|≤2n+1

|f̂(n′)|2
)1/2

is finite.
Let U(t) = e−t∂3

x be the group associated with the linear equation on L2(T), that
is, v(t) = U(t)u0 satisfies {

∂tv + ∂3
xv = 0,

v(0, x) = u0(x), x ∈ T.

Then the solution of {
dw + ∂3

xw dt = dW,

w(0, x) = 0, x ∈ T,

is given by the stochastic convolution

w(t) =

∫ t

0

U(t− s)dW (s).(1.4)
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Note that U(t) is a unitary group on Hs(T) for any s ∈ R, so that w(t) lies in Hs(T)
almost surely if and only if φφ∗ has finite trace from L2(T) into Hs(T). This clearly
holds in the case where φ is the identical operator on L2(T) if and only if s < −1/2.

The difficulty in the use of Bourgain’s spaces here is the smoothness in time.
Indeed, let Y s,b be the space of functions f such that U(−t)f(t, ·) ∈ Hs,b, where Hs,b

is a space-time Sobolev space, s being the regularity in space, and b the regularity in
time (see [15] for a precise definition of Y s,b). Then, as was proved in [15], the only
possible value of b for which a bilinear estimate holds, which allows us to handle the
nonlinear term ∂x(u2) in the KdV equation using a straightforward iteration scheme,
in the periodic case, is b = 1/2. Writing then the expression of w(t) defined by (1.4) as

w(t) =
∑
j∈N

∫ t

0

U(t− s)(φej)dβj(s),

one can compute the spatial Fourier transform of h(t) = U(−t)w(t):

ĥ(t, n) =
∑
j∈N

∫ t

0

eisn
3

φ̂ej(n)dβj(s).

But there is no hope that this term lives in H1/2[0, T ] in the time variable, because
the Brownian motions βj do not. Indeed,

E

(
|ĥ(t, n)|2

H
1/2
t

)

=
∑
j∈N

|φ̂ej(n)|2E

∣∣∣∣
∫ t

0

eisn
3

dβj(s)

∣∣∣∣
2

H
1/2
t

=
∑
j∈N

|φ̂ej(n)|2
{

E

∫ T

0

∣∣∣∣
∫ t

0

eisn
3

dβj(s)

∣∣∣∣
2

dt

+ E

∫ ∫
(0,T )2

|
∫ t1
0

eisn
3

dβj(s) −
∫ t2
0

eisn
3

dβj(s)|2

|t1 − t2|2
dt1dt2

}
.

The first term in the right-hand side above is obviously equal to T 2

2

∑
j∈N

|φ̂ej(n)|2,
while the contribution of each j to the second term in the right-hand side above is
infinite, due to the fact that

E

∣∣∣∣
∫ t2

t1

eisn
3

dβj(s)

∣∣∣∣
2

= |t2 − t1|.

However, H1/2 is a limiting case concerning the regularity of the Brownian motion,
as far as Sobolev spaces are concerned. It is then natural to try to replace Sobolev
spaces here by other spaces which describe more precisely the regularity in time of the
Brownian motions. This is exactly what we will do here, using Besov spaces instead
of Sobolev spaces in time. Indeed, it is known (see [6], [17]) that the Brownian motion

lies almost surely in B
1/2
p,q ([0, T ]) if and only if 1 ≤ p < +∞ and q = +∞. Trying to

derive some bilinear estimate which would allow us to handle in the same time both
w(t) defined by (1.4) and the nonlinear term,∫ t

0

U(t− s)(∂x(u2)(s))ds,

we were led to consider also Besov spaces in the space variable.
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We now turn to give precise definitions of these spaces. We denote by 〈·, ·〉 the
L2 space-time duality product, that is,

〈f, g〉 =

∫
T

∫
R

f(t, x)g(t, x)dt dx

=
∑
n∈Z

∫
R

f̂(τ, n)ĝ(τ, n)dτ

by the Plancherel formula; here, and in all that follows, we denote by f̂ (resp., ĝ)
the Fourier transform of f (resp., g) with respect to both variables. We also use the
notation 〈τ〉 = (1 + |τ |2)1/2 for τ ∈ R. The spaces that we will use are defined as
follows. Consider first functions f defined on R × T such that f(·, x) ∈ S ′(R) for any

x ∈ T, and such that f̂(τ, 0) = 0 for any τ ∈ R.

We denote by Xs,b
1,1 the space of such functions f for which in addition the norm

|f |Xs,b
1,1

=

∞∑
n=0

2sn
∞∑
k=0

⎛
⎝ ∑

2n−1≤|n′|≤2n+1

∫ 2k+1

2k−1

|〈τ − n′3〉bf̂(τ, n′)|2dτ

⎞
⎠

1/2

+

∞∑
n=0

2sn

⎛
⎝ ∑

2n−1≤|n′|≤2n+1

∫ 1

0

|〈τ − n′3〉bf̂(τ, n′)|2dτ

⎞
⎠

1/2

is finite. In the same way, we will denote by Xs,b
1,∞ the space of such functions f for

which in addition the norm

|f |Xs,b
1,∞

=

∞∑
n=0

2sn sup
k∈N

⎛
⎝ ∑

2n−1≤|n′|≤2n+1

∫ 2k+1

2k−1

|〈τ − n′3〉bf̂(τ, n′)|2dτ

⎞
⎠

1/2

+

∞∑
n=0

2sn

⎛
⎝ ∑

2n−1≤|n′|≤2n+1

∫ 1

0

|〈τ − n′3〉bf̂(τ, n′)|2dτ

⎞
⎠

1/2

is finite.
The basic space in which we will solve the Cauchy problem for the stochastic KdV

equation is Xs,b
1,1. However, we will make use, at intermediate steps, of other spaces

of the same type: X̃s,b
1,1 (resp., X̃s,b

1,∞) is the space of functions f such that f(t, ·) =

U(t)g(t, ·) with g in the “space-time Besov space” (Bs,b
2,1)x,t (resp., (Bs

2,1)x(Bb
2,∞)t),

where (Bs,b
2,1)x,t is defined by the norm

|f |(Bs,b
2,1)x,t

=

∞∑
n=0

∞∑
k=0

2sn+kb

⎛
⎝ ∑

2n−1≤|n′|≤2n+1

∫ 2k+1

2k−1

|f̂(τ, n′)|2dτ

⎞
⎠

1/2

+

∞∑
n=0

2sn

⎛
⎝ ∑

2n−1≤|n′|≤2n+1

∫ 1

0

|f̂(τ, n′)|2dτ

⎞
⎠

1/2
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and (Bs
2,1)x(Bb

2,∞)t is defined by the norm

|f |(Bs
2,1)x(Bb

2,∞)t =

∞∑
n=0

sup
k∈N

2sn+kb

⎛
⎝ ∑

2n−1≤|n′|≤2n+1

∫ 2k+1

2k−1

|f̂(τ, n′)|2dτ

⎞
⎠

1/2

+

∞∑
n=0

2sn

⎛
⎝ ∑

2n−1≤|n′|≤2n+1

∫ 1

0

|f̂(τ, n′)|2dτ

⎞
⎠

1/2

.

Remark 1.1. Note that the spaces Xs,b
1,1 and X̃s,b

1,1 are different and there is no

inclusion relation between them: an alternative definition of the norm in X̃s,b
1,1 is

|f |
X̃s,b

1,1

=

∞∑
n=0

2sn
∞∑
k=0

⎛
⎝ ∑

2n−1≤|n′|≤2n+1

∫
2k−1≤|τ−n′3|≤2k+1

|〈τ − n′3〉bf̂(τ, n′)|2dτ

⎞
⎠

1/2

+

∞∑
n=0

2sn

⎛
⎝ ∑

2n−1≤|n′|≤2n+1

∫
|τ−n′3|≤1

|〈τ − n′3〉bf̂(τ, n′)|2dτ

⎞
⎠

1/2

;

here, the dyadic decomposition is made on |τ − n′3| and not on |τ |. However, em-
beddings do hold between these spaces with some small loss of space regularity, as is
stated in Lemma 1.6, at the end of this section.

Since all those definitions have to be used only locally in time, we will actually
consider, for T ≥ 0 fixed, the spaces Xs,b,T

1,1 and Xs,b,T
1,∞ of restrictions on [0, T ] of

functions of Xs,b
1,1 (resp., Xs,b

1,∞). They are endowed with the natural norm

|f |Xs,b,T
1,1

= inf
{
|f̃ |Xs,b

1,1
, f̃ ∈ Xs,b

1,1 and f = f̃|[0,T ]

}
,

and the equivalent for Xs,b,T
1,∞ .

To handle the integral estimate in Duhamel’s formula, we will need to make use,
as is classical, of another space which is defined as the space of zero (spatial) mean
functions with finite corresponding norm, where

|f |Ys =

∞∑
n=0

2sn

⎛
⎝ ∑

2n−1≤|n′|≤2n+1

(∫
R

|f̂(τ, n′)|
〈τ − n′3〉

dτ

)2
⎞
⎠

1/2

.

A local space Ys,T is also defined, in the same way as for X
s,1/2,T
1,1 .

Throughout the paper, we will use the notation |n′| ∼ 2n for 2n−1 ≤ |n′| ≤ 2n+1,
and |τ | ∼ 2k for 2k−1 ≤ |τ | ≤ 2k+1 if k ≥ 1 and |τ | ≤ 2 if k = 0.

As previously mentioned, we will be led to assume1 that the operator φ is a
Hilbert–Schmidt operator (or equivalently that φφ∗ has finite trace) from L2(T) into
Hs(T) for some negative s with s > −1/2. We will denote by L0,s

2 the space of such
operators, which is endowed by its natural norm,

‖φ‖L0,s
2

=

(∑
i∈N

|φei|2Hs

)1/2

,

1Note that this assumption excludes the identical operator on L2(T).
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where (ei)i∈N is any complete orthonormal system in L2(T). For convenience, in all
that follows, we take as (ei)i∈N the usual complete orthonormal system of L2(T) given
by

e2k(x) =
1√
π

cos kx, k ≥ 1, e0(x) =
1√
2π

,

e2k+1(x) =
1√
π

sin kx.

We consider the mild form of (1.2), (1.3), that is,

u(t) = U(t)u0 −
1

2

∫ t

0

U(t− s)∂x(u2(s))ds +

∫ t

0

U(t− s)dW (s).(1.5)

Our main result, which concerns local existence in a situation where W is arbitrarily
close to a cylindrical Wiener process, is the following.

Theorem 1.2. Assume that Imφ ⊂ span{ej , j ≥ 1} and that φ ∈ L0,s
2 for some

s with s > −1/2. Let u0 be F0-measurable, with u0 in the Besov space Bσ
2,1(T) almost

surely for some σ with −1/2 ≤ σ < s; then there is a stopping time Tω > 0 and a
unique process u solution of the forced KdV equation (1.5) which satisfies

u ∈ C([0, Tω];Bσ
2,1(T)) ∩X

σ,1/2,Tω

1,1 almost surely .

Remark 1.3. The assumption Imφ ⊂ span{ej , j ≥ 1} says that the spatial mean
of the noise is zero at any time. This assumption is necessary to perform the fixed
point procedure, because we work in a space of functions with zero spatial mean. We
will actually remove this assumption at the end of the paper (see Proposition 4.3) by
changing the unknown function u and the noise. At that place, we will have to deal
with a non-Gaussian noise.

Remark 1.4. One can show by using classical arguments and looking more care-
fully into the proof of Proposition 3.1 (see section 3) that the regularity is preserved
in Theorem 1.2, i.e., if φ ∈ L0,s

2 and u0 ∈ Bσ
2,1(T) with −1/2 ≤ σ′ ≤ σ < s, then the

existence times of the solution in Bσ′

2,1(T) and in Bσ
2,1(T) are the same.

Naturally, when the noise is such that the Wiener process lies in L2(T), we get a
global existence result thanks to the invariance of the L2 norm for the deterministic
equation and the embedding L2(T) ⊂ Bσ

2,1(T) for any σ < 0.

Theorem 1.5. Assume that, in addition, φ ∈ L0,0
2 ; if u0 ∈ L2(Ω;L2(T)), the so-

lution given by Theorem 1.2 is globally defined in time and lies in L2(Ω;L∞(0, T ;L2(T)))
and in C(R+;Bσ

2,1(T)) almost surely for any T > 0 and σ < 0.
As was previously mentioned, Theorem 1.2 allows us to handle a situation arbi-

trarily close to the space-time white noise case, since this latter case corresponds to
φ = id, which is a Hilbert–Schmidt operator from L2(T) into Hs(T) for any s < −1/2.

Theorem 1.2 will be proved by using a fixed point argument in the space X
σ,1/2,T
1,1

for T small enough. We need the assumption s > −1/2 because we will need that
s > σ ≥ −1/2. Indeed, to show that the fixed point works, we will first prove that

the stochastic integral lies almost surely in X
σ,1/2
1,∞ . At that point, we have already

lost some spatial regularity. We then prove a bilinear estimate, allowing us to handle

such a term as ∂x(fg) with f ∈ X
σ,1/2
1,1 and g ∈ X

σ,1/2
1,∞ . To treat the term ∂x(g2)

in the same space, we again have to sacrifice an arbitrarily small amount of spatial
regularity.
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It is not difficult to see that when φ = id, the stochastic integral w(t) given by

(1.4) lies almost surely in X
−1/2,1/2
∞,∞ , where this latest space is defined by changing

the norm in the definition of X
−1/2,1/2
1,∞ in an obvious way. Unfortunately, a bilinear

estimate which would handle terms like ∂x(g2) in X
−1/2,−1/2
∞,∞ with g in X

−1/2,1/2
∞,∞

seems to fail.
The paper is organized as follows. In section 2, we prove an estimate which shows

that the stochastic integral lives in X
σ,1/2
1,∞ almost surely when φ is in L0,s

2 with σ < s

(we will actually prove that the stochastic integral lies in X̃
σ,1/2
1,∞ , which is enough,

thanks to Lemma 1.6 below). This result is based on the works of Cieselskii [6] and
Roynette [17], but we will use a different characterization of Besov spaces than in [17].

In section 3, we prove some bilinear estimates which are needed in the proof of

Theorem 1.2. The main one is an estimate of ∂x(fg) in X
σ,−1/2
1,1 when f ∈ X

σ,1/2
1,1 and

g ∈ X
σ,1/2
1,∞ . Other easier bilinear estimates are proved in that section too.

Section 4 is devoted to the proofs of Theorems 1.2 and 1.5. Once we have the
bilinear estimates in hand, together with the estimate on the stochastic integral, it
mainly remains to prove that we gain one degree of regularity in time when passing
from ∂x(fg) to

∫ t

0
U(t− s)∂x(fg)(s)ds. The proof of this fact has to be done because

we do not stand in the usual context of Sobolev spaces, but we deal with Besov spaces.
However, the proof closely follows that of the Sobolev case.

We end the present section by giving the lemma relating the spaces Xs,b
1,1 and

X̃s,b
1,∞.

Lemma 1.6. For any s1 > s2 > s3,

X̃s1,b
1,1 ⊂ Xs2,b

1,1 ⊂ X̃s3,b
1,1 and X̃s1,b

1,∞ ⊂ Xs2,b
1,∞ ⊂ X̃s3,b

1,∞.

Proof. We show only that X̃s1,b
1,∞ ⊂ Xs2,b

1,∞, and all the other embeddings are proved

similarly. Let f ∈ X̃s1,b
1,∞ and let us decompose the norm of f in Xs2,b

1,∞ as

|f |
X

s2,b

1,∞
≤
∑
n∈N

2s2n sup
k<3n−4

⎛
⎝ ∑

|n′|∼2n

∫
|τ |∼2k

〈τ − n′3〉2b|f̂(τ, n′)|2 dτ

⎞
⎠

1/2

+
∑
n∈N

2s2n sup
3n−4≤k≤3n+4

⎛
⎝ ∑

|n′|∼2n

∫
|τ |∼2k

〈τ − n′3〉2b|f̂(τ, n′)|2 dτ

⎞
⎠

1/2

+
∑
n∈N

2s2n sup
k>3n+4

⎛
⎝ ∑

|n′|∼2n

∫
|τ |∼2k

〈τ − n′3〉2b|f̂(τ, n′)|2 dτ

⎞
⎠

1/2

≤ I + II + III.

If k > 3n + 4, |n′| ∼ 2n and |τ | ∼ 2k, then 1
8 |τ | ≤ |τ − n′3| ≤ 3

2 |τ |; hence we easily
have

III ≤ C
∑
n∈N

2s2n sup
k∈N

⎛
⎝ ∑

|n′|∼2n

∫
|τ−n′3|∼2k

〈τ − n′3〉2b|f̂(τ, n′)|2 dτ

⎞
⎠

1/2

≤ C|f |
X̃

s2,b

1,∞
.
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On the other hand, if k < 3n−4, |n′| ∼ 2n and |τ | ∼ 2k, then 23n−4 ≤ |τ−n′3| ≤ 23n+4;
hence

I ≤
∑
n∈N

2s2n

⎛
⎝ ∑

|n′|∼2n

∫
23n−4≤|τ−n′3|≤23n+4

〈τ − n′3〉2b|f̂(τ, n′)|2 dτ

⎞
⎠

1/2

≤ 8|f |
X̃

s2,b

1,∞
.

Finally, if 3n − 4 ≤ k ≤ 3n + 4, |n′| ∼ 2n, and |τ | ∼ 2k, then 0 ≤ |τ − n′3| ≤ 23n+6;
hence

II ≤
∑
n∈N

2s2n

⎛
⎝ ∑

|n′|∼2n

3n+5∑
k=0

∫
|τ−n′3|∼2k

〈τ − n′3〉2b|f̂(τ, n′)|2 dτ

⎞
⎠

1/2

≤
∑
n∈N

2s2n(3n + 5) sup
k∈N

⎛
⎝ ∑

|n′|∼2n

∫
|τ−n′3|∼2k

〈τ − n′3〉2b|f̂(τ, n′)|2 dτ

⎞
⎠

1/2

≤ C
∑
n∈N

2s1n sup
k∈N

⎛
⎝ ∑

|n′|∼2n

∫
|τ−n′3|∼2k

〈τ − n′3〉2b|f̂(τ, n′)|2 dτ

⎞
⎠

1/2

since s2 < s1. The result follows.

2. Estimate on the stochastic integral. In this section, we prove an estimate
on the stochastic integral—that is, the last term in (1.5)—which will enable us to use
a fixed point procedure to solve (1.5) in an appropriate space of functions of the space

and time variables. This latest space will actually be of the form X
σ,1/2
1,1 for some well

chosen σ.
Although, for the sake of clarity, we did not assume that the covariance operator

φφ∗ of the noise could be random or could depend on the time variable t in Theo-
rem 1.2, we will state here a proposition where φ is allowed to depend on both t and ω,

but under the condition that the L0,σ′

2 norm of φ(·) is bounded in both t and ω. This
will indeed be useful in order to prove that our result generalizes to the case where
the noise does not have a zero spatial mean value (see Proposition 4.3).

We need to use a cut-off function in the time variable: we consider a function
θ : R −→ R

+ such that θ(t) ≡ 0 for t ≤ −1, and t ≥ 2, θ(t) ≡ 1 for t ∈ [0, 1], and
θ ∈ C∞

0 (R).
Also, to state precisely our estimate on the stochastic integral, we define, for

n ∈ N, the operator ∆n acting on L2(T) by

∆̂nu(n′) = 1l{2n−1≤|n′|≤2n+1}û(n′)

for u ∈ L2(T) and for any n′ ∈ Z.
We now state our proposition.
Proposition 2.1. Let s′ ∈ R, and assume that φ is predictable and lies in

L∞([0, T ] × Ω;L0,s′

2 ) for some T with 0 < T ≤ 1; let θ and ∆n be as above; then
the stochastic integral w(t) defined by (1.4) satisfies, for any σ′ < σ < s′, θw ∈
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L1(Ω;X
σ′,1/2,T
1,∞ ) and

E

(
|θw|

X
σ′,1/2,T
1,∞

)
≤ C(θ)

∑
n∈N

‖∆nφ‖L∞([0,T ]×Ω;L0,σ
2 )

≤ C(θ, σ, s′)‖φ‖
L∞([0,T ]×Ω;L0,s′

2 )
,

where C(θ) is a constant depending only on the function θ.

Proof. We first prove that θw ∈ L1(Ω; X̃
σ,1/2,T
1,∞ ) and that

E

(
|θw|

X̃
σ,1/2,T
1,∞

)
≤ C(θ)

∑
n∈N

‖∆nφ‖L∞([0,T ]×Ω;L0,σ
2 )

and then make use of Lemma 1.6.
Let g(t, ·) = θ(t)

∫ t

0
U(−s)dW (s) so that θ(t)w(t) = U(t)g(t, ·); we also set, for

s ∈ R, n ∈ Z, and 
 ∈ N,

ϕn,�(s) =

{
0 if s < 0 or s ≥ T,

φ̂(s)e�(n) if s ∈ [0, T ],

and we assume that each β� has been extended to a Brownian motion on R, in such
a way that the family (β�)�∈N is still an independent family. We then have, for any
t ∈ [0, T ] and n ∈ Z,

Fng(t)(n) =
∑
�∈N

θ(t)In,�(t),

with In,�(t) =
∫ t

−∞ θ(s)eins
3

ϕn,�(s) dβ�(s), Fn being the Fourier transform in space.

In view of the equivalent definition of the space X̃
σ,1/2
1,∞ , we have to show that

E

⎛
⎜⎝ ∞∑

n=0

sup
k∈N

2σn+k/2

⎛
⎝ ∑

|n′|∼2n

∫
|τ |∼2k

|ĝ(τ, n′)|2 dτ

⎞
⎠

1/2
⎞
⎟⎠

+ E

⎛
⎜⎝ ∞∑

n=0

2σn

⎛
⎝ ∑

|n′|∼2n

∫
|τ |≤1

|ĝ(τ, n′)|2 dτ

⎞
⎠

1/2
⎞
⎟⎠(2.1)

≤ C(θ)
∞∑

n=0

‖∆nφ‖L∞([0,T ]×Ω;L0,σ
2 ).

We first estimate the second term in (2.1).

E

⎛
⎜⎝ ∞∑

n=0

2σn

⎛
⎝ ∑

|n′|∼2n

∫
|τ |≤1

∣∣∣∣∣
∑
�∈N

θ̂In′,�(τ)

∣∣∣∣∣
2

dτ

⎞
⎠

1/2
⎞
⎟⎠

≤
∞∑

n=0

2σn

⎛
⎝ ∑

|n′|∼2n

E

∫
|τ |≤1

∣∣∣∣∣
∑
�∈N

∫
R

θ(t)

∫ t

−∞
θ(s)eisn

′3
ϕn′,�(s) dβ�(s)e

−iτtdt

∣∣∣∣∣
2

dτ

⎞
⎠

1/2

≤
∞∑

n=0

2σn

⎛
⎝ ∑

|n′|∼2n

∫
|τ |≤1

E

∣∣∣∣∣
∑
�∈N

∫
R

θ(s)ϕn′,�(s)e
isn′3

∫ +∞

s

θ(t)e−iτt dt dβ�(s)

∣∣∣∣∣
2

dτ

⎞
⎠

1/2

,
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and using the independence of the (β�)�∈N, the above term is bounded by

∞∑
n=0

2σn

⎛
⎝ ∑

|n′|∼2n

∫
|τ |≤1

∑
�∈N

∫
R

E(θ2(s)|ϕn′,�(s)|2)
∣∣∣∣
∫ +∞

s

θ(t)e−iτt dt

∣∣∣∣
2

ds dτ

⎞
⎠

1/2

≤ 2|θ|2L1(R)|θ|2L2(R)

+∞∑
n=0

2σn sup
s∈R

∣∣∣∣∣∣E
⎛
⎝∑

�∈N

∑
|n′|∼2n

|ϕn′,�(s)|2
⎞
⎠
∣∣∣∣∣∣
1/2

≤ C(θ)

+∞∑
n=0

sup
s∈R

∣∣∣E(‖∆nφ(s)‖2
L0,σ

2

)∣∣∣1/2

≤ C(θ)

+∞∑
n=0

‖∆nφ(·)‖L∞([0,T ]×Ω;L0,σ
2 ),

and this proves the estimate on the second term in (2.1).
In what follows, we assume that |τ | ≥ 1/2; by the stochastic Fubini theorem and

using an integration by parts, we easily get, for n ∈ Z, 
 ∈ N, and |τ | ≥ 1/2,

θ̂In,�(τ) = An,�(τ) + Bn,�(τ),

with

An,�(τ) =

∫
R

θ2(s)eisn
3

ϕn,�(s)
e−iτs

iτ
dβ�(s)

and

Bn,�(τ) =

∫
R

θ(s)eisn
3

ϕn,�(s)

∫ +∞

s

θ′(t)
e−iτt

iτ
dt dβ�(s).

Hence, two terms will be involved in the estimate of the second term in (2.1), which
are

I = E

⎛
⎜⎝ ∞∑

n=0

sup
k∈N

2σn+k/2

⎛
⎝ ∑

|n′|∼2n

∫
|τ |∼2k

∣∣∣∣∣
∞∑
�=0

An′,�(τ)

∣∣∣∣∣
2

dτ

⎞
⎠

1/2
⎞
⎟⎠

and

II = E

⎛
⎜⎝ ∞∑

n=0

sup
k∈N

2σn+k/2

⎛
⎝ ∑

|n′|∼2n

∫
|τ |∼2k

∣∣∣∣∣
∞∑
�=0

Bn′,�(τ)

∣∣∣∣∣
2

dτ

⎞
⎠

1/2
⎞
⎟⎠ .

We may assume that σ = 0, replacing ϕn′,� by 2σnϕn′,� in the estimate we want to
prove. We first estimate the second term above. With this aim in view, we first write,
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for k ≥ 0 and n ≥ 0,

E

⎛
⎝2k

∑
|n′|∼2n

∫
|τ |∼2k

∣∣∣∣∣
∞∑
�=0

Bn′,�(τ)

∣∣∣∣∣
2

dτ

⎞
⎠

= 2k
∫
|τ |∼2k

∑
|n′|∼2n

E

∣∣∣∣∣
∞∑
�=0

∫
R

θ(s)eisn
′3
ϕn′,�(s)

∫ +∞

s

θ′(t)
e−iτt

iτ
dt dβ�(s)

∣∣∣∣∣
2

dτ

= 2k
∫
|τ |∼2k

∞∑
�=0

∑
|n′|∼2n

∫
R

|θ(s)|2E(|ϕn′,�(s)|2)
∣∣∣∣
∫ +∞

s

θ′(t)
e−iτt

iτ
dt

∣∣∣∣
2

ds dτ,

where we have used again the independence of the family (β�)�≥0. Now, for |τ | in
[2k−1, 2k+1], we have

∣∣∣∣
∫ +∞

s

θ′(t)
e−iτt

iτ
dt

∣∣∣∣ ≤
∣∣∣∣θ′(s)τ2

∣∣∣∣+
∣∣∣∣
∫ +∞

s

θ′′(t)
e−iτt

τ2
dt

∣∣∣∣ ≤ C(θ)

22k
;

hence we get, for k, n ≥ 0,

E

⎛
⎝2k

∑
|n′|∼2n

∫
|τ |∼2k

∣∣∣∣∣
∞∑
�=0

Bn′,�(τ)

∣∣∣∣∣
2

dτ

⎞
⎠

≤ C(θ)2−3k

∫
|τ |∼2k

∣∣∣E(‖∆nφ(s)‖2
L0,0

2

)∣∣∣
L∞

s

dτ

≤ C(θ)2−2k‖∆nφ(·)‖2
L∞([0,T ]×Ω;L0,0

2 )
,

and using the Cauchy–Schwarz inequality, we get

II =

+∞∑
n=0

sup
k∈N

E

⎛
⎜⎝2k/2

⎛
⎝ ∑

|n′|∼2n

∫
|τ |∼2k

∣∣∣∣∣
∞∑
�=0

Bn′,�(τ)

∣∣∣∣∣
2

dτ

⎞
⎠

1/2
⎞
⎟⎠

≤
∞∑

n=0

∑
k∈N

⎛
⎝E

⎛
⎝2k

∑
|n′|∼2n

∫
|τ |∼2k

∣∣∣∣∣
∞∑
�=0

Bn′,�(τ)

∣∣∣∣∣
2

dτ

⎞
⎠
⎞
⎠

1/2

≤ C(θ)

∞∑
n=0

∑
k∈N

2−k‖∆nφ(·)‖L∞([0,T ]×Ω;L0,0
2 )

≤ C(θ)

∞∑
n=0

‖∆nφ(·)‖L∞([0,T ]×Ω;L0,0
2 ).

(2.2)
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Our aim is now to estimate I. We set

An′,�(τ, s) =

∫ s

−∞
θ2(t)eitn

′3
ϕn′,�(t)

e−iτt

iτ
dβ�(t)

so that

An′,�(τ) =

∫ +∞

−∞
dAn′,�(τ, s).

Moreover, using the Itô formula, we have

∣∣∣∣∣
+∞∑
�=0

An′,�(τ)

∣∣∣∣∣
2

=

∫
R

d

∣∣∣∣∣
∑
�∈N

An′,�(τ, t)

∣∣∣∣∣
2

=2 Re

⎛
⎝ ∞∑

�,m=0

∫
R

∫ t

−∞
θ2(s)eisn

′3
ϕn′,�(s)

e−iτs

iτ
dβ�(s)

× θ2(t)e−itn′3
ϕn′,m(t)

eiτt

−iτ
dβm(t)

⎞
⎠+
∑
�∈N

∫
R

θ4(t)
ϕ2
n′,�(t)

τ2
dt

=I1
n′(τ) + I2

n′(τ).

Hence, again, two terms are involved in the estimate of I. The estimate of the second
term is immediate. Indeed, we have

E

⎛
⎜⎝ ∞∑

n=0

sup
k∈N

2k/2

⎛
⎝ ∑

|n′|∼2n

∫
|τ |∼2k

I2
n′(τ)dτ

⎞
⎠

1/2
⎞
⎟⎠

= E

⎛
⎜⎝ ∞∑

n=0

sup
k∈N

2k/2

⎛
⎝ ∑

|n′|∼2n

∫
|τ |∼2k

∑
�∈N

∫
R

θ4(t)
ϕ2
n′,�(τ)

τ2
dt dτ

⎞
⎠

1/2
⎞
⎟⎠

≤ C(θ)
∞∑

n=0

sup
k∈N

2k/2

⎛
⎜⎝∫

|τ |∼2k

1

τ2

∣∣∣∣∣∣
∑

|n′|∼2n

∑
�∈N

ϕ2
n′,�(·)

∣∣∣∣∣∣
L∞([0,T ]×Ω)

dτ

⎞
⎟⎠

1/2

≤ C(θ)

∞∑
n=0

‖∆nφ(·)‖L∞([0,T ]×Ω;L0,0
2 ).

(2.3)

In order to estimate the contribution of the stochastic integral, i.e., of I1
n′(τ) in the

bound of I, we start with the estimate
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(2.4)

E

⎛
⎜⎝
∣∣∣∣∣∣
∑

|n′|∼2n

∫
|τ |∼2k

I1
n′(τ)dτ

∣∣∣∣∣∣
2
⎞
⎟⎠

= E

⎛
⎜⎝
∣∣∣∣∣∣
∑

|n′|∼2n

∫
|τ |∼2k

2 Re

⎛
⎝ ∞∑

�,m=0

∫
R

∫ t

−∞
θ2(s)eisn

′3
ϕn′,�(s)

e−iτs

iτ
dβ�(s)

× θ2(t)e−itn′3
ϕn′,m(t)

eiτt

−iτ
dβm(t)

⎞
⎠ dτ

∣∣∣∣∣∣
2
⎞
⎟⎠

= E

⎛
⎜⎝
∣∣∣∣∣∣

∞∑
m=0

∫
R

∑
|n′|∼2n

∞∑
�=0

∫ t

−∞
2 Re

(
θ2(s)e−i(t−s)n′3

∫
|τ |∼2k

eiτ(t−s)

τ2
dτ

× θ2(t)

)
ϕn′,�(s) dβ�(s)ϕn′,m(t) dβm(t)

∣∣∣∣∣∣
2
⎞
⎟⎠

=
∞∑

m=0

∫
R

E

∣∣∣∣∣∣
∑

|n′|∼2n

∞∑
�=0

∫ t

−∞
2 Re

(
θ2(s)θ2(t)e−i(t−s)n′3

∫
|τ |∼2k

eiτ(t−s)

τ2
dτ

)

×ϕn′,�(s)dβ�(s)ϕn′,m(t)

∣∣∣∣∣∣
2

dt,

where we have used again the independence of the family (βm)m∈N. Using now the
Cauchy–Schwarz inequality in n′, the above term is bounded by

(2.5)

∞∑
m=0

∫
R

E

⎛
⎝ ∑

|n′|∼2n

( ∞∑
�=0

∫ t

−∞
2 Re

(
θ2(s)θ2(t)e−i(t−s)n′3

×
∫
|τ |∼2k

eiτ(t−s)

τ2
dτ

)
ϕn′,�(s)dβ�(s)

)2 ∑
|n′|∼2n

ϕ2
n′,m(t)

⎞
⎠dt

≤

⎛
⎝ sup

[0,t]×Ω

∑
|n′|∼2n

∞∑
m=0

|ϕn′,m(t)|2
⎞
⎠

×
∫

R

E

∑
|n′|∼2n

( ∞∑
�=0

∫ t

−∞
2 Re

(
θ2(s)θ2(t)e−i(t−s)n′3

∫
|τ |∼2k

eiτ(t−s)

τ2
dτ

)

×ϕn′,�(s) dβ�(s)

)2

dt.
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Concerning the first term in the right-hand side above, we have

sup
[0,T ]×Ω

∑
|n′|∼2n

∞∑
m=0

|ϕn′,m(t)|2

≤ sup
[0,T ]×Ω

∞∑
m=0

∑
|n′|∼2n

|φ(t)em(n′)|2

≤ sup
[0,T ]×Ω

∞∑
m=0

|∆nφ(t)em|2L2(T) = ‖∆nφ(·)‖2
L∞([0,T ]×Ω;L0,0

2 ),

while the remaining term in (2.5) is bounded above by

∫
R

∑
|n′|∼2n

∞∑
�=0

∫ t

−∞
θ4(t)θ4(s)

∣∣∣∣∣
∫
|τ |∼2k

eiτ(t−s)

τ2
dτ

∣∣∣∣∣
2

E(|ϕn′,�(s)|2)ds dt

≤ ‖∆nφ(·)‖2
L∞([0,T ]×Ω;L0,0

2 )

∫
R

∫ t

−∞
θ4(t)θ4(s)

∣∣∣∣∣
∫
|τ |∼2k

eiτ(t−s)

τ2
dτ

∣∣∣∣∣
2

ds dt.

We then notice that, by interpolation between the cases α = 0 and α = 1, for any
α ∈ [0, 1] there is a positive constant Cα such that

∣∣∣∣∣
∫
|τ |∼2k

eiτ(t−s)

τ2
dτ

∣∣∣∣∣ ≤ Cα

|t− s|α 2−(1+α)k.

Applying this with α = 1/4, we get that the second term in (2.5) is bounded above
by

C2−
5
2k‖∆nφ(·)‖2

L∞([0,T ]×Ω;L0,0
2 )

∫
R

∫ t

−∞

θ4(t)θ4(s)√
t− s

ds dt

≤ C(θ)2−
5
2k‖∆nφ(·)‖2

L∞([0,T ]×Ω;L0,0
2 )

.

Collecting all these estimates from (2.4), we get

E

⎛
⎜⎝
∣∣∣∣∣∣
∑

|n′|∼2n

∫
|τ |∼2k

I1
n′(τ)dτ

∣∣∣∣∣∣
2
⎞
⎟⎠ ≤ C(θ)2−

5
2k‖∆nφ(·)‖4

L∞([0,T ]×Ω;L0,0
2 )

and we deduce from this latest inequality that
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E

⎛
⎜⎝ ∞∑

n=0

sup
k∈N

2k/2

⎛
⎝ ∑

|n′|∼2n

∫
|τ |∼2k

I1
n′(τ)dτ

⎞
⎠

1/2
⎞
⎟⎠

≤ E

⎛
⎜⎝ ∞∑

n=0

∞∑
k=0

2k/2

⎛
⎝ ∑

|n′|∼2n

∫
|τ |∼2k

I1
n′(τ)dτ

⎞
⎠

1/2
⎞
⎟⎠

≤
∞∑

n=0

∞∑
k=0

2k/2

⎡
⎢⎣E

⎛
⎜⎝
⎛
⎝ ∑

|n′|∼2n

∫
|τ |∼2k

I1
n′(τ)dτ

⎞
⎠

2
⎞
⎟⎠
⎤
⎥⎦

1/4

≤ C(θ)

∞∑
n=0

( ∞∑
k=0

2−
k
8

)
‖∆nφ(·)‖L∞([0,T ]×Ω;L0,0

2 ),

where we have used Hölder’s inequality at the third line; this, together with (2.3),
completes the proof of the estimate of I.

In this way, the first inequality in Proposition 2.1 is proved after an application
of Lemma 1.6, with σ′ < σ. The second inequality follows from the obvious fact that

∞∑
n=0

‖∆nφ(·)‖2
L∞([0,T ]×Ω;L0,σ

2 )

=

∞∑
n=0

2σn‖∆nφ(·)‖2
L∞([0,T ]×Ω;L0,0

2 )

≤
( ∞∑

n=0

2−2(s′−σ)n

)1/2( ∞∑
n=0

2s
′n‖∆nφ(·)‖2

L∞([0,T ]×Ω;L0,0
2 )

)1/2

≤ C(s′, σ)‖φ(·)‖
L∞([0,T ]×Ω;L0,s′

2 )
.

3. Bilinear estimates. We now turn to prove some bilinear estimates which will
allow us to handle the nonlinear term in (1.5). The next one is the crucial estimate.

Proposition 3.1. Let − 1
2 ≤ s ≤ 0 and f ∈ X

s,1/2
1,1 , g ∈ X

s,1/2
1,∞ ; then ∂x(fg) ∈

X
s,−1/2
1,1 and there is a constant C > 0 such that

|∂x(fg)|
X

s,−1/2
1,1

≤ C|f |
X

s,1/2
1,1

|g|
X

s,1/2
1,∞

.

Proof. Let f and g be as above; using a duality argument, it is sufficient, as

usually, to prove that for some constant C > 0, and for any function h in X
−s,1/2
∞,∞ —

where X
−s,1/2
∞,∞ is defined in an obvious way by modifying the definition of X

−s,1/2
1,1 —we

have

|〈∂x(fg), h〉| ≤ C|f |
X

s,1/2
1,1

|g|
X

s,1/2
1,∞

|h|
X

−s,1/2
∞,∞

.

Using the Plancherel theorem, one has

|〈∂x(fg), h〉| =

∣∣∣∣∣∣∣∣∣
∑
n′ 	=0

∑
n′

1 	=0

n′
1 	=n′

∫
τ∈R

∫
τ1∈R

n′ ¯̂h(τ, n′)ĝ(τ1, n
′
1)f̂(τ − τ1, n

′ − n′
1)dτ1 dτ

∣∣∣∣∣∣∣∣∣
.
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We will denote σ = σ(τ, n′) = τ − n′3, σ1 = σ(τ1, n
′
1), σ2 = σ(τ − τ1, n

′ − n′
1).

We also set Ĝ(τ, n′) = n′s〈σ〉1/2ĝ(τ, n′), F̂ (τ, n′) = n′s〈σ〉1/2f̂(τ, n′), and Ĥ(τ, n′) =

n′−s〈σ〉1/2 ¯̂
h(τ, n′), so that F , G, and H lie, respectively, in X0,0

1,1 , X0,0
1,∞, and X0,0

∞,∞.
It suffices to prove that

(3.1)∑
n′ 	=0

∑
n′

1 	=0

n′
1 	=n′

∫
τ∈R

∫
τ1∈R

|n′|1+s|n′
1|−s|n′ − n′

1|−s|Ĥτ,n′ | |Ĝτ1,n′
1
| |F̂τ−τ1,n′−n′

1
|

〈σ〉1/2〈σ1〉1/2〈σ2〉1/2
dτ1 dτ

≤ C|H|X0,0
∞,∞

|G|X0,0
1,∞

|F |X0,0
1,1

,

where we use Ĥτ,n′ for Ĥ(τ, n′) and so on. We divide the region (n′, n′
1, τ, τ1) ∈

(Z \ {0})2 × R
2 arising in the left-hand side of (3.1) into three subregions,

(Region I) 〈σ1〉 = max{〈σ〉, 〈σ1〉, 〈σ2〉},
(Region II) 〈σ〉 = max{〈σ〉, 〈σ1〉, 〈σ2〉},
(Region III) 〈σ2〉 = max{〈σ〉, 〈σ1〉, 〈σ2〉},

and we estimate separately the contributions of each of these regions to the left-hand
side of (3.1).

Region I. From the identity

3|n′| |n′
1| |n′ − n′

1| = |τ − n′3 − (τ1 − n′
1
3
) − ((τ − τ1) − (n′ − n′

1)
3)|

we get as usual that in Region I,

1

2
|n′|2 ≤ |n′| |n′

1| |n′ − n′
1| ≤ 〈σ1〉,

so that for any s ∈ [− 1
2 , 0],

|n′|1+s|n′
1|−s|n′ − n′

1|−s ≤ C〈σ1〉1/2.

Hence, it is sufficient to prove that the contribution of Region I to

I =
∑
n′ 	=0

∑
n′

1 	=0,

n′
1 	=n′

∫
τ∈R

∫
τ1∈R

|Ĥτ,n′ | |Ĝτ1,n′
1
| |F̂τ−τ1,n′−n′

1
|

〈σ〉1/2〈σ2〉1/2
dτ1 dτ

is bounded above by C|H|X0,0
∞,∞

|G|X0,0
1,∞

|F |X0,0
1,1

. Again, we will divide Region I into
several subregions.

Region I-a. We consider here the subregion for which 〈σ〉 ≥ 1
4n

′2.
We then estimate the contribution of this region to I; it is bounded above by its

contribution to

∑
n,n1∈N

∑
k,k1∈N

∑
|n′|∼2n

|n′
1|∼2n1

n′ 	=n′
1

∫
|τ |∼2k

∫
|τ1|∼2k1

|Ĥτ,n′ | |Ĝτ1,n′
1
| |F̂τ−τ1,n′−n′

1
|

〈σ〉1/2〈σ2〉1/2
dτ1 dτ,(3.2)
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with the convention that for k = 0, |τ | ∼ 2k means |τ | ≤ 2. This latest term is
bounded above, using the Cauchy–Schwarz inequality, by

∑
n,n1∈N

∑
k,k1∈N

⎛
⎝ ∑

|n′
1|∼2n1

∫
|τ1|∼2k1

|Ĝτ1,n′
1
|2dτ1

⎞
⎠

1/2

(3.3)

×

⎛
⎜⎝ ∑

|n′
1|∼2n1

∫
|τ1|∼2k1

⎛
⎝ ∑

|n′|∼2n

∫
|τ |∼2k

|Ĥτ,n′ | |F̂τ−τ1,n′−n′
1
|

〈σ〉1/2〈σ2〉1/2
dτ

⎞
⎠

2

dτ1

⎞
⎟⎠

1/2

.

Now, we use the fact that in Region I-a, we have, for ε > 0 small, which will be chosen
more precisely later,

1

〈σ(τ, n′)〉1/2 ≤ C|n′|−ε 1

〈σ(τ, n′)〉1/2−ε/2
,

and using the Cauchy–Schwarz inequality in (τ, n′) in (3.3), it is bounded above by

(3.4)

C
∑

n,n1∈N

∑
k,k1∈N

⎛
⎝ ∑

|n′
1|∼2n1

∫
|τ1|∼2k1

|Ĝτ1,n′
1
|2dτ1

⎞
⎠

1/2

×

⎡
⎣ ∑
|n′

1|∼2n1

∫
|τ1|∼2k1

⎛
⎝ ∑

|n′|∼2n

∫
|τ |∼2k

|n′|−2ε〈στ,n′〉−ε|Ĥτ,n′ |2|F̂τ−τ1,n′−n′
1
|2dτ

⎞
⎠

×

⎛
⎝ ∑

|n′|∼2n

∫
|τ∼2k

dτ

〈στ,n′〉1−2ε〈στ−τ1,n′−n′
1
〉

⎞
⎠ dτ1

⎤
⎦

1/2

≤ C
∑
n1∈N

⎡
⎢⎣ sup
k1∈N

⎛
⎝ ∑

|n′
1|∼2n1

∫
|τ1|∼2k1

|Ĝτ1,n′
1
|2dτ1

⎞
⎠

1/2

× sup
k1,n,k∈N

sup
|n′

1|∼2n1

sup
|τ1|∼2k1

⎛
⎝ ∑

|n′|∼2n

∫
|τ |∼2k

dτ

〈στ,n′〉1−2ε〈στ−τ1,n′−n′
1
〉

⎞
⎠

1/2

×
∑

k1,n,k∈N

⎛
⎝ ∑

|n′
1|∼2n1

∫
|τ1|∼2k1

∑
|n′|∼2n

∫
|τ |∼2k

|n′|−2ε〈στ,n′〉−ε|Ĥτ,n′ |2

× |F̂τ−τ1,n′−n′
1
|2dτdτ1

⎞
⎠

1/2
⎤
⎥⎦ .

But now, the fact that

∫ +∞

−∞

dθ

(1 + |θ|)1−2ε(1 + |θ − a|) ≤ C

(1 + |a|)1−4ε
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for a ∈ R and the proof of Lemma 5.1 in [15] show that there is a constant C > 0
such that

sup
n1∈Z∗

sup
τ1∈R

sup
n,k∈N

⎛
⎝ ∑

|n′|∼2n

∫
|τ |∼2k

dτ

〈στ,n′〉1−2ε〈στ−τ1,n′−n1
〉

⎞
⎠

≤ sup
n1∈Z∗

sup
τ1∈R

⎛
⎜⎜⎝ ∑

n∈Z\{0}
n 	=n1

∫
τ∈R

dτ

〈στ,n〉1−2ε〈στ−τ1,n−n1〉

⎞
⎟⎟⎠

≤ C

for any ε > 0 such that 1 − 4ε ≥ 3/4, i.e., for any ε ≤ 1/16. On the other hand the
last line in (3.4) is bounded above by

∑
n,n1∈N

k,k1∈N

⎡
⎢⎣
⎛
⎝ ∑

|n′|∼2n

∫
|τ |∼2k

|n′|−ε〈σ〉−ε/2|Ĥτ,n′ |2dτ

⎞
⎠

1/2

× sup
|n′|∼2n

sup
|τ |∼2k

⎛
⎝ ∑

|n′
1|∼2n1

∫
|τ1|∼2k1

|n′|−ε〈σ〉−ε/2|F̂τ−τ1,n′−n′
1
|2dτ1

⎞
⎠

1/2
⎤
⎥⎦

≤ sup
n,k∈N

∑
n1,k1∈N

sup
|n′|∼2n

|τ |∼2k

⎛
⎝ ∑

|n′
1|∼2n1

∫
|τ1|∼2k1

|n′|−ε〈σ〉−ε/2|F̂τ−τ1,n′−n′
1
|2dτ1

⎞
⎠

1/2

×
∑

n,k∈N

⎛
⎝ ∑

|n′|∼2n

∫
|τ |∼2k

|n′|−ε〈σ〉−ε/2|Ĥτ,n′ |2dτ

⎞
⎠

1/2

≤ Cε|H|X0,0
∞,∞

× sup
n,k∈N

∑
n1,k1∈N

⎛
⎜⎜⎝ sup

|n′|∼2n

|τ |∼2k

⎛
⎝ ∑

|n′
1|∼2n1

∫
|t1|∼2k1

|n′|−ε〈σ〉−ε/2|F̂τ−τ1,n′−n′
1
|2dτ1

⎞
⎠

1/2
⎞
⎟⎟⎠ .

One may then notice that if |n′
1| ≥ 4|n′|, then |n′ − n′

1| ∼ 2n1 , and if |τ1| ≥ 4|τ |, then
|τ − τ1| ∼ 2k1 , so that for any n, k ∈ N,

∑
n1,k1∈N

sup
|n′|∼2n

|τ |∼2k

⎛
⎜⎜⎜⎝

∑
|n′

1|∼2n1

|n′
1|≥4|n′|

∫
|τ1|∼2k1

|τ1|≥4|τ |

|n′|−ε〈σ〉−ε/2|F̂τ−τ1,n′−n′
1
|2dτ1

⎞
⎟⎟⎟⎠

1/2

≤ C
∑

n1,k1∈N

⎛
⎝ ∑

|n′
1|∼2n1

∫
|τ1|∼2k1

|F̂τ1,n′
1
|2dτ1

⎞
⎠

1/2

≤ C|F |X0,0
1,1

,
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while if |n′
1| ≤ 4|n′| (still with |τ1| ≥ 4|τ |), then |n′|−ε ≤ C|n′

1|−ε and for all n, k,∈ N,

∑
n1,k1∈N

sup
|n′|∼2n

|τ |∼2k

⎛
⎜⎜⎜⎝

∑
|n′

1|∼2n1

|n′
1|≤4|n′|

∫
|τ1|∼2k1

|τ1|≥4|τ |

|n′|−ε〈σ〉−ε/2|F̂τ−τ1,n′−n′
1
|2dτ1

⎞
⎟⎟⎟⎠

1/2

≤ C
∑
n1∈N

(
sup

|n′
1|∼2n1

|n′
1|−ε

) ∑
k1∈N

sup
|n′|∼2n

⎛
⎝ ∑

|n′
1|∼2n1

∫
|τ1|∼2k1

|F̂τ1,n′−n′
1
|2dτ1

⎞
⎠

1/2

≤ Cε

∑
k1∈N

(∑
�∈Z

∫
|τ1|∼2k1

|F̂τ,�|2dτ
)1/2

≤ Cε

∑
k1∈N

∑
�∈N

⎛
⎝ ∑

|�′|∼2�

∫
|τ1|∼2k1

|F̂τ,�′ |2dτ

⎞
⎠

1/2

≤ Cε|F |X0,0
1,1

.

The cases for which |τ1| ≤ 4|τ | are treated in the same way as the latest case above,

using the fact that in this case, 〈σ〉−ε ≤ C〈τ1 − n′3〉−ε, so that the sum over k1

converges.
It follows from these estimates that (3.4) is bounded above by

C|G|X0,0
∞,∞

|H|X0,0
∞,∞

|F |X0,0
1,1

≤ C|G|X0,0
1,∞

|H|X0,0
∞,∞

|F |X0,0
1,1

,

and this achieves the estimate of the contribution of Region I-a.
Region I-b. Assume here that 〈σ2〉 ≥ 1

4n
′2.

We may then proceed as in Region I-a by noticing that here we have, for ε > 0
small,

1

〈σ〉1/2〈σ2〉1/2
≤ Cε|n′|−ε〈σ〉−ε/2 1

〈σ〉1/2−ε/2〈σ2〉1/2−ε/2

and that

sup
n,k∈N

n′
1∈Z\{0}
τ1∈R

⎛
⎝ ∑

|n′|∼2n

∫
|τ |∼2k

dτ

〈σ(τ, n′)〉1−ε〈σ(τ − τ1, n′ − n′
1)〉1−ε

⎞
⎠ < +∞

for any ε ≤ 1/8.

Region I-c. We consider now the region where 〈σ〉 ≤ 1
4n

′2 and 〈σ2〉 ≤ 1
4n

′2.
The contribution of this region to I will be the most difficult to estimate. Again,

we use in (3.2) the Cauchy–Schwarz inequality in (τ, n′) to bound the contribution of
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Region I-c to (3.2) by its contribution to

∑
n,n1∈N

∑
k,k1∈N

⎛
⎝ ∑

|n′
1|∼2n1

∫
|τ1|∼2k1

|Ĝτ1,n′
1
|2dτ1

⎞
⎠

1/2

×

⎡
⎣ ∑
|n′

1|∼2n1

∫
|τ1|∼2k1

⎛
⎝ ∑

|n′|∼2n

∫
|τ |∼2k

|Ĥτ,n′ |2|F̂τ−τ1,n′−n′
1
|2dτ

⎞
⎠

×

⎛
⎝ ∑

|n′|∼2n

∫
|τ |∼2k

dτ

〈σ〉〈σ2〉

⎞
⎠
⎤
⎦

1/2

≤
∑
n1∈N

⎡
⎢⎣ sup
k1∈N

⎛
⎝ ∑

|n′
1|∼2n1

∫
|τ1|∼2k1

|Ĝτ1,n′
1
|2dτ1

⎞
⎠

1/2

×
∑
n∈N

∑
k1∈N

∑
k∈N

⎧⎪⎨
⎪⎩ sup

|n′
1|∼2n1

sup
|τ1|∼2k1

⎛
⎝ ∑

|n′|∼2n

∫
|τ |∼2k

dτ

〈σ〉〈σ2〉

⎞
⎠

1/2

×

⎛
⎝ ∑

|n′
1|∼2n1

∫
|τ1|∼2k1

∑
|n′|∼2n

∫
|τ |∼2k

|Ĥτ,n′ |2|F̂τ−τ1,n′−n′
1
|2dτ dτ1

⎞
⎠

1/2
⎫⎪⎬
⎪⎭
⎤
⎥⎦

≤
∑
n1∈N

⎡
⎢⎣ sup
k1∈N

⎛
⎝ ∑

|n′
1|∼2n1

∫
|τ1|∼2k1

|Ĝτ1,n′
1
|2dτ1

⎞
⎠

1/2

×
∑
n∈N

∑
k1∈N

⎧⎪⎨
⎪⎩
∑
k∈N

sup
|n′

1|∼2n1

sup
|τ1|∼2k1

⎛
⎝ ∑

|n′|∼2n

∫
|τ |∼2k

dτ

〈σ〉〈σ2〉

⎞
⎠

1/2

× sup
k∈N

⎛
⎝ ∑

|n′
1|∼2n1

∫
|τ1|∼2k1

∑
|n′|∼2n

∫
|τ |∼2k

|Ĥτ,n′ |2|F̂τ−τ1,n′−n′
1
|2dτ dτ1

⎞
⎠

1/2
⎫⎪⎬
⎪⎭
⎤
⎥⎦ ,

and using the Cauchy–Schwarz inequality in n, this is bounded above by

(3.5)

∑
n1∈N

⎧⎪⎨
⎪⎩ sup

k1∈N

⎛
⎝ ∑

|n′
1|∼2n1

∫
|τ1|∼2k1

|Ĝτ1,n′
1
|2dτ1

⎞
⎠

1/2

×
∑
k1∈N

⎡
⎢⎣
⎛
⎝∑

n∈N

(∑
k∈N

B(n1, k1, n, k)

)2
⎞
⎠

1/2

×

⎛
⎝∑

n∈N

sup
k∈N

∑
|n′

1|∼2n1

∫
|τ1|∼2k1

∑
|n′|∼2n

∫
|τ |∼2k

|Ĥτ,n′ |2|F̂τ−τ1,n′−n′
1
|2dτ dτ1

⎞
⎠

1/2
⎤
⎥⎦
⎫⎪⎬
⎪⎭ ,
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with

B(n1, k1, n, k) = sup
|n′

1|∼2n1

|τ1|∼2k1

⎛
⎝ ∑

|n′|∼2n

∫
|τ |∼2k

dτ

〈σ〉〈σ2〉

⎞
⎠

1/2

.(3.6)

We will then make use of the following lemma.
Lemma 3.2. Let N be an integer, k0 a function of (n1, k1, n) ∈ N

3 with values
in N, and n0 a function of (n1, k1) ∈ N

2 with values in N. Denote by A(N,n1, k1) the
region in N

2 given by

A(N,n1, k1) = {(n, k) ∈ N
2, k0(n1, k1, n) ≤ k ≤ k0(n1, k1, n) + N,

n0(n1, k1) ≤ n ≤ n0(n1, k1) + N}.

Then there is a constant C(N) depending only on N such that

sup
n1,k1∈N

∑
(n,k)∈A(N,n1,k1)

B(n1, k1, n, k) ≤ C(N),

where B(n1, k1, n, k) is defined by (3.6).
Proof of Lemma 3.2. It follows easily from Lemma 5.1 in [15], since

sup
k1,n1∈N

∑
(n,k)

∈A(N,n1,k1)

B(n1, k1, n, k)

≤ N2 sup
k1,n1∈N

sup
n,k∈N

B(n1, k1, n, k)

≤ N2 sup
k1,n1∈N

⎛
⎜⎜⎝ ∑

n∈Z\{0}
n 	=n1

∫
R

dτ

〈σ(τ, n)〉〈σ(τ − τ1, n− n1)〉

⎞
⎟⎟⎠

1/2

< +∞

by Lemma 5.1 in [15].
Now, in order to apply Lemma 3.2, we need to show that Region I-c is embedded

in a region of the form

{(n, k, n1, k1) ∈ N
4, (n, k) ∈ A(N,n1, k1)}

for some N and for some functions n0(n1, k1) and k0(n1, k1, n).
Note that we have, in Region I-c,

|τ − n′3| ≤ 〈σ(τ, n)〉 ≤ 1

4
n′2 ≤ 1

4
|n′|3;

hence

3

4
|n′|3 ≤ |τ | ≤ 5

4
|n′|3

and the property 3n − 4 ≤ k ≤ 3n + 4 follows easily. Hence, to prove the preceding
result, we only have to find n0(n1, k1) and N such that for any (n, k, n1, k1) in Region
I-c,
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n0(n1, k1) ≤ n ≤ n0(n1, k1) + N.

In order to prove this fact, we again use a partition of Region I-c into three
subregions.

• Region I-c-1: 2−12|n′
1| ≤ |n′| ≤ 212|n′

1|. In this region, we obviously have the
result with n0(n1, k1) = n1 − 4.

• Region I-c-2: |n′| ≤ 2−12|n′
1|. We recall that

|σ − σ1 − σ2| = 3|n′| |n′
1| |n′ − n′

1|,

from which it follows that (since 〈σ1〉 is dominant)

|n′
1| |n′| |n′ − n′

1| ≤ 〈σ1〉 ≤ 3|n′
1| |n′| |n′ − n′

1| + 〈σ〉 + 〈σ2〉;

using the fact that |n′| ≤ 1
2 |n′

1| and that 〈σ〉 ≤ 1
4 |n′|2 and 〈σ2〉 ≤ 1

4 |n′|2, from the
preceding inequality we easily get

1

2
|n′

1|2|n′| ≤ 〈σ1〉 ≤ 5|n′
1|2|n′|,

and the property follows easily with

n0(n1, k1) =
ln |2k1 − 23n1 |

ln 2
− ln 5

ln 2
− 2n1.

• Region I-c-3: |n′| ≥ 212|n′
1|. We infer here, from the inequality

|n′| |n′
1| |n′ − n′

1| ≤ 〈σ1〉 ≤ 3|n′| |n′
1| |n′ − n′

1| + 〈σ〉 + 〈σ2〉,

that

1

2
|n′|2|n′

1| ≤ 〈σ1〉 ≤ 5|n′|2|n′
1|,

and we conclude as in the preceding case.
Now, going back to (3.5), we may use Lemma 3.2 to show that the contribution

of Region I-c to

sup
n1,k1∈N

⎛
⎝∑

n∈N

(∑
k∈N

B(n1, k1, n, k)

)2
⎞
⎠

1/2

≤ sup
n1,k1∈N

∑
n,k∈N

B(n1, k1, n, k)

is bounded above by an absolute constant.
Hence, each of the contributions of Regions I-c-1, I-c-2, and I-c-3 to (3.5) is

bounded above by
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(3.7)

C
∑
n1∈N

⎧⎪⎨
⎪⎩ sup

k1∈N

⎛
⎝ ∑

|n′
1|∼2n1

∫
|τ1|∼2k1

|Ĝτ1,n1 |2dτ1

⎞
⎠

1/2

×
∑
k1∈N

⎡
⎣ n0+N∑
n=n0(n1,k1)

sup
k0(n)≤k≤k0(n)+N

∑
|n′

1|∼2n1

∫
|τ1|∼2k1

∑
|n′|∼2n

∫
|τ |∼2k

|Ĥτ,n′ |2

× |F̂τ−τ1,n′−n′
1
|2dτ dτ1

⎤
⎦

1/2
⎫⎪⎬
⎪⎭

≤ CN
∑
n1∈N

sup
k1∈N

⎛
⎝ ∑

|n′
1|∼2n1

∫
|τ1|∼2k1

|Ĝτ1,n′
1
|2dτ1

⎞
⎠

1/2

× sup
n1∈N

k1∈N

sup
n0≤n≤n0+N
k0≤k≤k0+N

⎛
⎝ ∑

|n′|∼2n

∫
|τ |∼2k

|Ĥτ,n′ |2dτ

⎞
⎠

1/2

× sup
n1∈N

∑
k1∈N

sup
n0≤n≤n0+N
k0≤k≤k0+N

sup
|n′|∼2n

|τ |∼2k

⎛
⎝ ∑

|n′
1|∼2n1

∫
|τ1|∼2k1

|F̂τ−τ1,n′−n′
1
|2dτ1

⎞
⎠

1/2

≤ CN |G|X0,0
1,∞

|H|X0,0
∞,∞

× sup
n1∈N

∑
k1∈N

sup
n0≤n≤n0+N
k0≤k≤k0+N

sup
|n′|∼2n

|τ |∼2k

⎛
⎝ ∑

|n′
1|∼2n1

∫
|τ1|∼2k1

|F̂τ−τ1,n′−n′
1
|2dτ1

⎞
⎠

1/2

.

It remains to bound the last term in the right-hand side above by C|F |X0,0
1,1

. However,

this is not completely obvious, and we again have to consider separately each of the
Regions I-c-1, I-c-2, and I-c-3.

Region I-c-2. Recall that we have here |n′| ≤ 2−12|n′
1|.

Then the last term in the right-hand side of the above inequality is clearly bounded
by

2 sup
n1∈N

∑
k1∈N

n0+N∑
n=n0(n1,k1)
n≤n1−10

k0+N∑
k=k0

⎛
⎝ ∑

|n′
1|∼2n1

∫
|τ1|∼2k1

|F̂τ−τ1,n′−n′
1
|2dτ1

⎞
⎠

1/2

.

• The contribution to this term of the k and k1 for which k ≤ k1−4 or k ≥ k1+4
is clearly bounded above by

2N2 sup
n1∈N

∑
k∈N

⎛
⎝ ∑

|n′
1|∼2n1

∫
|τ |∼2k

|F̂τ,n′
1
|2dτ

⎞
⎠

1/2

≤ 2N2|F |X0,0
1,1

.
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• It remains to consider the sum in k1 and k, the contribution of the terms
for which k1 − 4 ≤ k ≤ k1 + 4. Since for such terms, τ − τ1 may stay bounded, we
need to show that there are only a finite number of possibilities for k1. We recall
that in Region I-c, k ≤ 3n + 4, while in Region I-c-2, n ≤ n1 − 10; it follows easily
that if in addition k1 − 4 ≤ k ≤ k1 + 4, then k1 ≤ 3n1 − 4. Hence, n0(n1, k1) =

ln |2k1−23n1 |
ln 2 − 2n1 = n1 − 1 and the region is actually empty.

Region I-c-3: |n′| ≥ 212|n′
1|. Again, the last term in (3.7) is easily bounded above

by

2 sup
n1∈N

∑
k1∈N

n0+N∑
n=n0(n1,k1)

n≥n1+3

k0+N∑
k=k0

sup
|τ |∼2k

⎛
⎝ ∑

|n′|∼2n

∫
|τ1|∼2k1

|F̂τ−τ1,n′ |2dτ1

⎞
⎠

1/2

.

• In the same way as before, the contribution in this sum of the terms for which
k ≤ k1 − 4 or k ≥ k1 + 4 is bounded by

2N2 sup
n∈N

∑
k∈N

⎛
⎝ ∑

|n′|∼2n

∫
|τ |∼2k

|F̂τ,n′ |2dτ

⎞
⎠

1/2

≤ 2N2|F |X0,0
1,1

.

• In the region where k1−4 ≤ k ≤ k1 +4, we easily get k1 ≥ 3n1 +4, and from
the expression of n0(n1, k1) in Region I-c-3, we get n0(n1, k1) = 1

2 (k1 − n1). Hence,
n ≥ 1

2 (3n− 8) − 1
2n1, from which it follows that n1 ≥ n− 8, and again the region is

empty, since n ≥ n1 + 10.
Region I-c-1: 2−12|n′

1| ≤ |n′| ≤ 212|n′
1|. This is the most difficult part; clearly, we

can take in this region n0(n1, k1) = n1. Again, we will divide the region into three
subregions depending on the size of k and k1 compared to each other.

• k ≤ k1 − 4: the contribution of this region to the last term in (3.7) is then
bounded above by

2 sup
n1∈N

∑
k1∈N

n1+N∑
n=n1

sup
|n′|∼2n

⎛
⎝ ∑

|n′
1|∼2n1

∫
|τ1|∼2k1

|F̂τ1,n′−n′
1
|2dτ1

⎞
⎠

1/2

.

Now, since, for each n1, k1, n, and n′ such that |n′| ∼ 2n, one has

⎛
⎝ ∑

|n′
1|∼2n1

∫
|τ1|∼2k1

|F̂τ1,n′−n′
1
|2dτ1

⎞
⎠

1/2

≤
∑
�∈N

⎛
⎝ ∑

|�′|∼2�

∫
|τ1|∼2k1

|F̂τ1,�′ |2dτ1

⎞
⎠

1/2

,

the preceding term is easily bounded above by

2 sup
n1∈N

n1+N∑
n=n1

∑
k1∈N

∑
�∈N

⎛
⎝ ∑

|�′|∼2�

∫
|τ1|∼2k1

|F̂τ1,�′ |2dτ1

⎞
⎠

1/2

≤ 2N |F |X0,0
1,1

.
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• k1 − 4 ≤ k ≤ k1 + 4: Using again the arguments immediately above, the
contribution of this region to the last term in (3.7) may be bounded above by

sup
n1∈N

∑
k1∈N

sup
n1≤n≤n1+N
3n≤k≤3n+N
k1−4≤k≤k1+4

sup
|τ |∼2k

∑
�∈N

⎛
⎝ ∑

|�′|∼2�

∫
|τ1|∼2k1

|F̂τ−τ1,�′ |2dτ1

⎞
⎠

1/2

≤ sup
n1∈N

∑
k1∈N

sup
3n1≤k≤3n1+4N
k1−4≤k≤k1+4

sup
|τ |∼2k

∑
�∈N

⎛
⎝ ∑

|�′|∼2�

∫
|τ1|∼2k1

|F̂τ−τ1,�′ |2dτ1

⎞
⎠

1/2

.

Here again, τ − τ1 may stay bounded even for large k and k1; however, for a fixed
n1, the number of k1 for which the right-hand side gives a nonzero contribution is
bounded by the total number of k1 for which there exists at least one k such that
3n1 ≤ k ≤ 3n1 + 4N and k1 − 4 ≤ k ≤ k1 + 4. This number is bounded by 4N + 8.
In this way, the term above is bounded by

(4N + 8) sup
n1∈N

sup
k,k1∈N

sup
|τ |∼2k

∑
�∈N

⎛
⎝ ∑

|�′|∼2�

∫
|τ1|∼2k1

|F̂τ−τ1,�′ |2dτ1

⎞
⎠

1/2

≤ (4N + 8)
∑
�∈N

∑
j∈N

⎛
⎝ ∑

|�′|∼2�

∫
|τ |∼2j

|F̂τ,�′ |2dτ

⎞
⎠

1/2

≤ (4N + 8)|F |X0,0
1,1

.

• k ≥ k1 + 4: This region is a little bit more delicate than the preceding ones
to handle. In the same way as before, we may bound above the contribution of the
present region to the last term in the right-hand side of (3.7) by

sup
n1∈N

∑
k1∈N

sup
3n1≤k≤3n1+2N

k≥k1+4

sup
|τ |∼2k

∑
�∈N

⎛
⎝ ∑

|�′|∼2�

∫
|τ1|∼2k1

|F̂τ−τ1,�′ |2dτ1

⎞
⎠

1/2

(3.8)

≤ 2 sup
n1∈N

∑
k1∈N

sup
3n1≤k≤3n1+2N

k≥k1+4

∑
�∈N

⎛
⎝ ∑

|�′|∼2�

∫
|τ |∼2k

|F̂τ,�′ |2dτ

⎞
⎠

1/2

.

Again, we have to show that the number of possible k1 (or n or n1) in this region is

finite. We recall that here, n and n′ are of the same order; moreover, since |τ −n′3| ≤
1
4 |n′|2 and |τ − τ1− (n′−n′

1)
3| ≤ 1

4 |n′|2, it follows that |τ | is of the order of |n′|3; then
|τ1|, which is negligible compared with |τ |, is negligible compared with |n′|3. Hence

τ1 − n′
1
3 ∼ −n′

1
3

for n1 sufficiently large. Now, we have the relation

τ1 − n′
1
3 − τ + n′3 + τ − τ1 − (n′ − n′

1)
3 = 3n′n′

1(n
′ − n′

1).(3.9)

• Consider first the case where n′ and n′
1 have opposite signs. Then, taking

into account the preceding considerations, one may note that the left-hand side in
(3.9) is of the order of −n′

1
3

(for |n′
1| large), while the right-hand side has the sign of

n′
1
3
. Hence (3.9) cannot remain true for large |n′

1|, which implies that the number of
n′

1 in this region is finite.
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• Now, if n′ and n′
1 have the same sign, then comparing the signs of both sides

in (3.9) shows that if |n′
1| is large, then necessarily n′ − n′

1 has a sign opposite to

that of n′
1. But then, for |n′| (or equivalently for |n′

1|) large, the facts that τ ∼ n′3,
τ − τ1 ∼ (n′ − n′

1)
3, and τ1 is negligible compared with τ lead again to incompatible

signs.
This shows that, in any case, the number of possible n1 (or n, or k1) in this region

is finite. Hence, (3.8) is bounded above by

C sup
n1

sup
k1

sup
3n1≤k≤3n1+2N

∑
�

⎛
⎝ ∑

|�′|∼2�

∫
|τ |∼2k

|F̂τ,�′ |2dτ

⎞
⎠

1/2

≤ C|F |X0,0
1,1

.

This ends the proof of the required estimate in Region I, that is, when 〈σ1〉 dominates.
Region II. Here, we use the fact that

1

2
|n′|2 ≤ |n′n′

1(n
′ − n′

1)| ≤ 〈σ〉

so that for any s ∈ [− 1
2 , 0],

|n′|1+s|n′
1|−s|n′ − n′

1|−s ≤ C〈σ〉1/2.

Exchanging then the roles of n′ and n′
1—and hence the roles of Ĝ and Ĥ—we are

led back to proving that the contribution of Region I to I is bounded above by
C|H|X0,0

1,∞
|G|X0,0

∞,∞
|F |X0,0

1,1
.

For Regions I-a and I-b, this was already done, since the contribution of Regions
I-a and I-b to I was actually bounded above by C|H|X0,0

∞,∞
|G|X0,0

∞,∞
|F |X0,0

1,1
.

It remains only to consider the case of Region I-c. Again, the same computations
as before lead to bounding the contribution of Region I-c to I as in (3.7), except that
the sum over n1 will be supported by Ĥ or F̂ , so that this contribution is bounded
by (see (3.7))

(3.10)

CN sup
n1∈N

sup
k1∈N

⎛
⎝ ∑

|n′
1|∼2n1

∫
|τ1|∼2k1

|Ĝτ1,n′
1
|2dτ1

⎞
⎠

1/2

×
∑
n1∈N

⎧⎪⎨
⎪⎩ sup

k1∈N

sup
n0≤n≤n0+N

sup
k0≤k≤k0+N

⎛
⎝ ∑

|n′|∼2n

∫
|τ |∼2k

|Ĥτ,n′ |2dτ

⎞
⎠

1/2

×
∑
k1∈N

sup
n0≤n≤n0+n

sup
k0≤k≤k0+N

sup
|n′|∼2n

|τ |∼2k

⎛
⎝ ∑

|n′
1|∼2n1

∫
|τ1|∼2k1

|F̂τ−τ1,n′−n′
1
|2dτ1

⎞
⎠

1/2
⎫⎪⎪⎬
⎪⎪⎭.

Hence, we have to bound above the last two lines in (3.10) by C|H|X0,0
1,∞

|F |X0,0
1,1

.

Considering the way we have estimated the contribution of Regions I-c-2 and
I-c-3 to (3.7), it is clear that the sum over k1 in these regions can be supported by
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|F̂τ−τ1,n′−n′
1
|2; in Region I-c-1, we have 2−12|n′

1| ≤ |n′| ≤ 212|n′
1| so that n0(n1, k1) =

n1 and

∑
n1∈N

sup
k1∈N

sup
n0≤n≤n0+N

sup
k0≤k≤k0+N

⎛
⎝ ∑

|n′|∼2n

∫
|τ |∼2k

|Ĥτ,n′ |2dτ

⎞
⎠

1/2

≤ C
∑
n1∈N

sup
k1∈N

⎛
⎝ ∑

|n′|∼2n1

∫
|τ1|∼2k1

|Ĥτ1,n′
1
|2dτ1

⎞
⎠

1/2

≤ C|H|X0,0
1,∞

.

We may conclude as before.
Region III. Again, exchanging the roles of Ĝ and F̂ , we are led back to proving

that the contribution of Region I to I is bounded above by C|G|X0,0
1,1

|H|X0,0
∞,∞

|F |X0,0
1,∞

,

but this is easily done by using the same analysis as for Region I. Hence, the proof of
Proposition 3.1 is complete.

We now prove that when local in time spaces are considered, that is, when X
s,−1/2
1,1

is replaced by X
s,−1/2,T
1,1 , a small power of T can be recovered in the right-hand side

of the estimate in Proposition 3.1. This will be useful in the contraction procedure,
since as is now classical, no small power of T is gained, but on the contrary a lnT
factor is lost in the estimate of the integral convolution with the linear semigroup
when dealing with spaces of regularity 1/2 in time.

The argument of the proof of the next proposition relies, as usual, on the fact
that we have wasted a small power of 〈σ〉 or 〈σ2〉 in Lemma 3.2. Actually, looking
carefully to the proof shows that Lemma 3.2 is still true with B(n1, k1, n, k) replaced
by

B̃(n1, k1, n, k) = sup
|n′

1|∼2n1

|τ1|∼2k1

⎛
⎝ ∑

|n′|∼2n

∫
|τ |∼2k

dτ

〈σ〉1−ε〈σ2〉1−ε

⎞
⎠

1/2

for any ε < 1/4.

Proposition 3.3. Let −1/2 ≤ s ≤ 0 and f ∈ X
s,1/2,T
1,1 , g ∈ X

s,1/2,T
1,∞ ; then for

any α < 1/16, there is a constant Cα such that

|∂x(fg)|
X

s,−1/2,T
1,1

≤ CαT
α|f |

X
s,1/2,T
1,1

|g|
X

s,1/2,T
1,∞

.

Proof. Let f ∈ X
s,1/2
1,1 , g ∈ X

s,1/2
1,∞ , s ≥ 1/2, both with support in [−2T, 2T ].

Using the arguments immediately above shows that we have actually proved, during
the course of the proof of Proposition 3.1, that

|∂x(fg)|
X

s,−1/2
1,1

≤ C
(
|f |

X
s,1/2
1,1

|g|Xs,δ
1,∞

+ |f |Xs,δ
1,1

|g|
X

s,1/2
1,∞

)
for any δ > 3/8. Let s = 0 (the arguments are exactly the same if s < 0) and let δ be
such that 3/8 < δ < 1/2. By an obvious interpolation inequality, one gets

|g|X0,δ
1,∞

≤ C|g|1−2δ

X0,0
1,∞

|g|2δ
X

0,1/2
1,∞

.
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On the other hand, using the notation introduced at the beginning of section 2, we
have

|g|X0,0
1,∞

=

∞∑
n=0

sup
k∈N

⎛
⎝ ∑

n′∈N\{0}

∫
|τ |∼2k

|∆̂ng(τ, n
′)|2dτ

⎞
⎠

1/2

≤
∞∑

n=0

|∆ng|L2
x,t([−2T,2T ]×T)

≤ CT 1/4
∞∑

n=0

|∆ng|L4
x,t([−2T,2T ]×T)

≤ CT 1/4
∞∑

n=0

⎛
⎝ ∑

n′∈N\{0}

∫
τ∈R

〈σ〉2/3|∆̂ng(τ, n
′)|2dτ

⎞
⎠

1/2

,

where we have used in the last line above the Strichartz estimate proved in [4]. It
follows readily that

|g|X0,0
1,∞

≤ CT 1/4|g|
X

0,1/3
1,2

≤ CT 1/4|g|
X

0,1/2
1,∞

,

and from the above interpolation inequality,

|g|X0,δ
1,∞

≤ CT (1−2δ)/4|g|
X

0,1/2
1,∞

.

In the same way, we estimate f as follows: taking a small positive ε, one has

|f |X0,δ
1,1

≤ C|f |(1−2δ)/(1+2ε)

X0,−ε
1,1

|f |2(ε+δ)/(1+2ε)

X
0,1/2
1,1

and

|f |X0,−ε
1,1

≤ C|f |X0,0
1,2

≤ CT 1/4|f |
X

0,1/3
1,2

by again using the estimate in [4] for ∆nf ; it follows that

|f |X0,−ε
1,1

≤ CT 1/4|f |
X

0,1/2
1,1

.

Finally,

|∂x(fg)|
X

0,−1/2
1,1

≤ CαT
α|f |

X
0,1/2
1,1

|g|
X

0,1/2
1,∞

,

where α is chosen such that α < (1 − 2δ)/4, with δ > 3/8, so that at the very end,
α < 1/16, and since f and g have supports in [−2T, 2T ], the proof of Proposition 3.3
follows.

We now prove an estimate of the same type as those in Propositions 3.1 and 3.3,
but in Ys spaces. We recall that the use of these spaces is needed to handle the integral
estimate in Duhamel’s formula (see Proposition 4.1).

Proposition 3.4. Let −1/2 ≤ s ≤ 0, f ∈ X
s,1/2
1,1 , g ∈ X

s,1/2
1,∞ ; then ∂x(fg) ∈ Ys.

Moreover, for any α < 1/16, there is a constant Cα > 0 such that

|∂x(fg)|Ys,T
≤ CαT

α|f |
X

s,1/2,T
1,1

|g|
X

s,1/2,T
1,∞

.
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Proof. We only sketch the proof, since it is a slight modification of the proof of

Proposition 3.1, using, e.g., the arguments in [20]. Let f ∈ X
s,1/2
1,1 and g ∈ X

s,1/2
1,∞ .

We prove only the estimate

|∂x(fg)|Ys
≤ C|f |

X
s,1/2
1,1

|g|
X

s,1/2
1,∞

;

the Tα factor can indeed be recovered exactly as in the proof of Proposition 3.3.
By a duality argument, the estimate will be proved if we show that there is a

constant C > 0 such that for any function w (of the space variable x) lying in the
Besov space B−s

2,∞, one has∣∣∣∣∣∣
∑
n′ 	=0

|n′|
∫

R

f̂g(τ, n′)

〈σ(τ, n′)〉dτŵ(n′)

∣∣∣∣∣∣ ≤ C|f |
X

s,1/2
1,1

|g|
X

s,1/2
1,∞

|w|B−s
2,∞

.

Setting as above F̂ (τ, n′) = n′s〈σ(τ, n′)〉1/2f̂(τ, n′), Ĝ = n′s〈σ〉1/2ĝ, and Ŵ = n′−s
ŵ,

it suffices to prove that

(3.11)∑
n′ 	=0

∑
n′

1 	=0

n′
1 	=n′

∫
τ∈R

∫
τ1∈R

|n′|1+s|n′
1|−s|n′ − n′

1|−s|F̂τ−τ1,n′−n′
1
| |Ĝτ1,n′

1
| |Ŵn′ |

〈σ(τ, n′)〉〈σ(τ − τ1, n′ − n′
1)〉1/2〈σ(τ1, n′

1)〉1/2
dτ dτ1

≤ C|F |X0,0
1,1

|G|X0,0
1,∞

|W |B0
2,∞

.

Again, we will consider separately the three regions defined at the beginning of the
proof of Proposition 3.1.

Region I: 〈σ1〉 = max(〈σ〉, 〈σ1〉, 〈σ2〉). As already noted, we have in this region

|n′|1+s|n′
1|−s|n′ − n′

1|−s ≤ C〈σ(τ1, n
′
1)〉1/2.

Hence, taking ε > 0 small, we have

|n′|1+s|n′
1|−s|n′ − n′

1|−s|F̂τ−τ1,n′−n′
1
| |Ĝτ1,n′

1
| |Ŵn′ |

〈σ(τ, n′)〉〈σ(τ − τ1, n′ − n′
1)〉1/2〈σ(τ1, n′

1)〉1/2

≤ C
|Ŵn′ |

〈σ(τ, n′)〉1/2+ε

|F̂τ−τ1,n′−n′
1
| |Ĝτ1,n′

1
|

〈σ(τ, n′)〉1/2−ε〈σ(τ − τ1, n′ − n′
1)〉1/2

,

and we conclude as in the proof of Proposition 3.1, using the fact that F−1( Ŵ
〈σ〉1/2+ε )∈

X0,0
∞,∞, with ∣∣∣∣∣F−1

(
Ŵ

〈σ〉1/2+ε

)∣∣∣∣∣
X0,0

∞,∞

≤ Cε|W |B0
2,∞

and using again the fact that Lemma 3.2 is still true with a smaller power of σ(τ, n′).
Region III, that is, 〈σ2〉 = max(〈σ〉, 〈σ1〉, 〈σ2〉), is treated in the same way.
Region II: 〈σ〉 = max(〈σ〉, 〈σ1〉, 〈σ2〉). Here, we have

|n′|1+s|n′
1|−s|n′ − n′

1|−s ≤ C〈σ(τ, n′)〉1/2
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and it follows that

1

〈σ(τ, n′)〉 ≤ C

〈σ(τ, n′)〉 + |n′|2+2s|n′
1|−2s|n′ − n′

1|−2s
.

Hence, going back to the way we have proved Proposition 3.1, it suffices to show that
for a fixed n′

1,

F−1

(
|n′|1+s|n′

1|−s|n′ − n′
1|−sŴ (n′)

〈σ(τ, n′)〉 + |n′|2+2s|n′
1|−2s|n′ − n′

1|−2s

)
∈ X0,0

∞,∞,

with ∣∣∣∣∣F−1

(
|n′|1+s|n′

1|−s|n′ − n′
1|−sŴ (n′)

〈σ(τ, n′)〉 + |n′|2+2s|n′
1|−2s|n′ − n′

1|−2s

)∣∣∣∣∣
X0,0

∞,∞

≤ C|W |B0
2,∞

and a constant C that does not depend on n′
1.

But this follows from the next easy computation, once we have noticed that∫
R

dτ
(〈τ〉+a2)2 ≤ C

a2 :

∣∣∣∣∣F−1

(
|n′|1+s|n′

1|−s|n′ − n′
1|−sŴ (n′)

〈σ(τ, n′)〉 + |n′|2+2s|n′
1|−2s|n′ − n′

1|−2s

)∣∣∣∣∣
2

X0,0
∞,∞

= sup
n,k

∑
|n′|∼2n

∫
|τ |∼2k

|n′|2+2s|n′
1|−2s|n′ − n′

1|−2s|Ŵ (n′)|2
(〈σ(τ, n′)〉 + |n′|2+2s|n′

1|−2s|n′ − n′
1|−2s)2

≤ sup
n

⎛
⎝ ∑

|n′|∼2n

|n′|2+2s|n′
1|−2s|n′ − n′

1|−2s|Ŵ (n′)|2

×
∫

R

dτ

(〈σ(τ, n′)〉 + |n′|2+2s|n′
1|−2s|n′ − n′

1|−2s)2

⎞
⎠

≤ C|W |2B0
2,∞

.

This ends the proof of Proposition 3.4.
As a last, but easy, bilinear estimate, we briefly show that we can handle terms

like ∂x(g2) in X
s,−1/2
1,1 if g is only in X

s+ε,1/2
∞,∞ (the ε loss of regularity seems to be

necessary here). Our motivation to treat such terms arises from the fact that the
stochastic convolution which was studied in Proposition 2.1 belongs to such spaces

(or even to X
s+ε,1/2
1,∞ ) if sufficient regularity is assumed on the operator φ, but never

belongs to X
s,1/2
1,1 , due to the lack of regularity of the Brownian motion.

Proposition 3.5. Let −1/2 ≤ s ≤ 0 and ε > 0; then there is a constant C > 0

such that for any g ∈ X
s+ε,1/2
∞,∞ ,

|∂x(g2)|
X

s,−1/2
1,1

≤ C|g|2
X

s+ε,1/2
∞,∞

.

If, moreover, g is supported in [−2T, 2T ] and ∂x(g2) is considered in X
s,−1/2,T
1,1 , then

a factor Tα can be recovered in the right-hand side above for any α < 1/16.
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Finally, the same estimate holds if in the left-hand side, X
s,−1/2
1,1 (resp., X

s,−1/2,T
1,1 )

is replaced by Ys (resp., Ys,T ).
Proof. Here again, we only sketch the proof, since the arguments are the same as

in the easiest cases of the proof of Proposition 3.1, that is, when some small power of
〈σ〉 or 〈σ1〉 can be lost.

Indeed, taking f, g∈X
s+ε,1/2
∞,∞ , h∈X

−s,1/2
∞,∞ , and setting as before F̂ =n′s+ε〈σ〉1/2f̂ ,

Ĝ = n′s+ε〈σ〉1/2ĝ, and Ĥ = n′−s〈σ〉1/2ĥ, we need to show that

∑
n′ 	=0

∑
n′

1 	=0

n′
1 	=n′

∫
τ∈R

∫
τ1∈R

|n′|1+s|n′
1|−s−ε|n′ − n′

1|−s−ε

〈σ〉1/2〈σ1〉1/2〈σ2〉1/2
|Ĥτ,n′ | |Ĝτ1,n′

1
| |F̂τ−τ1,n′−n′

1
|dτdτ1

≤ C|H|X0,0
∞,∞

|F |X0,0
∞,∞

|G|X0,0
∞,∞

.

Consider, e.g., Region I, where 〈σ1〉 dominates, and where we have the inequality

|n′|1+s|n′
1|−s|n′ − n′

1|−s ≤ C〈σ1〉1/2,

so that we are led to estimate

∑
n′ 	=0

∑
n′

1 	=0

n′
1 	=n′

∫
τ∈R

∫
τ1∈R

|n′
1|−ε|n′ − n′

1|−ε

〈σ〉1/2〈σ2〉1/2
|Ĥτ,n′ | |Ĝτ1,n′

1
| |F̂τ−τ1,n′−n′

1
|dτdτ1.

This latest term is then handled by the same arguments as those used in Region I-a
in the proof of Proposition 3.1, keeping in addition a small power of 〈σ2〉 to be able
to sum over k, and hence to replace the norm |F |X0,0

1,1
by |F |X0,0

∞,∞
(the sum over n

being handled by using |n′ − n′
1|−ε).

All the other regions are treated in the same way, and the arguments for the
other statements of Proposition 3.5 are exactly the same as those of Propositions 3.3
and 3.4.

4. Proofs of Theorems 1.2 and 1.5. As was pointed out in the introduction,
it mainly remains to show that we may gain one degree of regularity in time when
passing from ∂x(gf) to

∫ t

0
U(t − s)∂x(fg)(s)ds. The result is stated in the next

proposition.

Proposition 4.1. There is a constant C > 0 such that if f ∈ X
s,−1/2
1,1 ∩ Ys,

s ∈ R, then t �→
∫ t

0
U(t− s)f(s)ds ∈ X

s,1/2,T
1,1 and∣∣∣∣

∫ ·

0

U(· − s)f(s)ds

∣∣∣∣
X

s,1/2,T
1,1

≤ C
(
|f |

X
s,−1/2
1,1

+ |f |Ys

)

for any T ≤ 1.
Moreover, for any f ∈ Ys, the map t �→

∫ t

0
U(t − s)f(s)ds is continuous with

values in Bs
2,1(T) and there is a constant C > 0 such that

sup
t∈[−T,T ]

∣∣∣∣
∫ t

0

U(t− s)f(s)ds

∣∣∣∣
Bs

2,1

≤ C|f |Ys .

Proof. The arguments of the proof are similar to those in [14]. We consider a
cut-off function ψ with ψ ≡ 1 on [0, 1] and suppψ ⊂ [−1, 2]; it is sufficient to prove



PERIODIC STOCHASTIC KdV EQUATION 847

that

∣∣∣∣ψ
∫ ·

0

U(· − s)f(s)ds

∣∣∣∣
X

s,1/2
1,1

≤ C
(
|f |

X
s,−1/2
1,1

+ |f |Ys

)
.

We first write

ψ(t)

∫ t

0

U(t− s)f(s)ds

= ψ(t)
∑
n′∈Z

∫
|τ1−n′3|≤1

eixn
′
f̂(τ1, n

′)
eit(τ1−n′3) − 1

τ1 − n′3 eitn
′3
dτ1

+ψ(t)
∑
n′∈Z

∫
|τ1−n′3|≥1

eixn
′
f̂(τ1, n

′)
eitτ1 − eitn

′3

τ1 − n′3 dτ1

= g1(t, x) + g2(t, x).

To estimate g1, we expand the exponential as

eit(τ1−n′3) − 1

τ1 − n′3 =

∞∑
k=1

iktk(τ1 − n′3)k

k!

so that

g1(t, x) =

∞∑
k=1

iktk

k!
ψ(t)

∑
n′∈Z

∫
|τ1−n′3|≤1

eixn
′+itn′3

f̂(τ1, n
′)(τ1 − n′3)kdτ1.

Let ϕk(t) = tkψ(t); then

ĝ1(τ, n
′) =

∞∑
k=1

ik

k!

∫
|τ1−n′3|≤1

ϕ̂k(τ − n′3)f̂(τ1, n
′)(τ1 − n′3)kdτ1

and it follows that

|g1|Xs,1/2
1,1

=
∑
n∈N

2sn
∞∑
�=0

⎛
⎝ ∑

|n′|∼2n

∫
|τ |∼2�

|〈τ − n′3〉1/2ĝ1(τ, n
′)|2dτ

⎞
⎠

1/2

=
∑
n∈N

2sn
∞∑
�=0

⎛
⎝ ∑

|n′|∼2n

∫
|τ |∼2�

〈τ − n′3〉

×
[∫

|τ1−n′3|≤1

∞∑
k=1

ik

k!
ϕ̂k(τ −n′3)f̂(τ1, n

′)(τ1−n′3)kdτ1

]2

dτ

⎞
⎠

1/2

.
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Now,

∑
|n′|∼2n

∫
|τ |∼2�

〈τ − n′3〉
[∫

|τ1−n′3|≤1

∞∑
k=1

ik

k!
ϕ̂k(τ − n′3)f̂(τ1, n

′)(τ1 − n′3)kdτ1

]2

dτ

≤
∑

|n′|∼2n

∫
|τ |∼2�

〈τ − n′3〉
( ∞∑

k=1

|ϕ̂k(τ − n′3)|
k!

)2

dτ

(∫
|τ1−n′3|≤1

|f̂(τ1, n
′)|2dτ1

)

≤ sup
|n′|∼2n

∫
|τ |∼2�

〈τ −n′3〉
( ∞∑

k=1

|ϕ̂k(τ −n′3)|
k!

)2

dτ

⎛
⎝ ∑

|n′|∼2n

∫
|τ1−n′3|≤1

|f̂(τ1, n
′)|2dτ1

⎞
⎠.

We deduce that

|g1|Xs,1/2
1,1

≤ sup
n∈N

∞∑
�=0

⎛
⎝ sup

|n′|∼2n

∫
|τ |∼2�

〈τ − n′3〉
( ∞∑

k=1

|ϕ̂k(τ − n′3)|
k!

)2

dτ

⎞
⎠

1/2

×
∑
n∈N

2sn

⎛
⎝ ∑

|n′|∼2n

∫
|τ1−n′3|≤1

|f̂(τ1, n
′)|2dτ1

⎞
⎠

1/2

.

Now, we have, for ε > 0,

sup
n∈N

∞∑
�=0

sup
|n′|∼2n

∫
|τ |∼2�

〈τ − n′3〉
( ∞∑

k=1

|ϕ̂k(τ − n′3)|
k!

)2

dτ

≤ sup
n∈N

∑
�∈N

sup
|n′|∼2n

(
sup

|τ |∼2�

〈τ − n′3〉−ε

)∫
|τ |∼2�

〈τ − n′3〉1+ε

( ∞∑
k=1

|ϕ̂k(τ − n′3)|
k!

)2

dτ

≤ C

(
sup
n∈N

∑
�∈N

〈2� − 23n〉−ε

)
sup
n′∈N

∫
R

〈τ − n′3〉1+ε

( ∞∑
k=1

|ϕ̂k(τ − n′3)|
k!

)2

dτ

≤ C

∣∣∣∣∣
∞∑
k=1

ϕk

k!

∣∣∣∣∣
H1/2+ε/2

.

Hence

|g1|Xs,1/2
1,1

≤ C

∣∣∣∣∣
∞∑
k=1

ϕk

k!

∣∣∣∣∣
H1/2+ε/2

|f |Xs,0
1,1

.

In order to estimate the norm of g2, we write

g2(t, x) = g2,1(t, x) + g2,2(t, x),

with

g2,1(t, x) = ψ(t)
∑
n′∈Z

∫
|τ1−n′3|≥1

eixn
′
f̂(τ1, n

′)
eitτ1

τ1 − n′3 dτ1
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and

g2,2(t, x) = −ψ(t)
∑
n′∈Z

∫
|τ1−n′3|≥1

eixn
′
f̂(τ1, n

′)
eitn

′3

τ1 − n′3 dτ1.

We have

ĝ2,1(τ, n
′) =

∫
|τ1−n′3|≥1

ψ̂(τ − τ1)
f̂(τ1, n

′)

τ1 − n′3 dτ1,

and ∑
|n′|∼2n

∫
|τ |∼2k

〈τ − n′3〉|ĝ2,1(τ, n
′)|2dτ

≤ C
∑

|n′|∼2n

∫
|τ |∼2k

[∫
|τ1−n′3|≥1

〈τ1 − n′3〉1/2|ψ̂(τ − τ1)|
∣∣∣∣∣ f̂(τ1, n

′)

τ1 − n′3

∣∣∣∣∣ dτ1
]2

dτ

+C
∑

|n′|∼2n

∫
|τ |∼2k

[∫
|τ1−n′3|≥1

〈τ − τ1〉1/2|ψ̂(τ − τ1)|
∣∣∣∣∣ f̂(τ1, n

′)

τ1 − n′3

∣∣∣∣∣ dτ1
]2

dτ

≤ I + II.

For the term I, we have

I ≤ C
∑

|n′|∼2n

∫
|τ |∼2k

[∫
R

|ψ̂(τ1)|
|f̂(τ − τ1, n

′)|
〈τ − τ1 − n′3〉1/2

dτ1

]2

dτ.

Let ĥ ∈ L2
τ,n′ ; then∣∣∣∣∣∣

∑
|n′|∼2n

∫
|τ |∼2k

ĥ(τ, n′)

∫
R

|ψ̂(τ1)|
|f̂(τ − τ1, n

′)|
〈τ − τ1 − n′3〉1/2

dτ1dτ

∣∣∣∣∣∣
≤
∫

R

|ψ̂(τ1)|

⎛
⎝ ∑

|n′|∼2n

∫
|τ |∼2k

|ĥ(τ, n′)|2dτ

⎞
⎠

1/2

×

⎛
⎝ ∑

|n′|∼2n

∫
|τ |∼2k

|f̂(τ − τ1, n
′)|2

〈τ − τ1 − n′3〉
dτ

⎞
⎠

1/2

dτ1.

We deduce from the preceding estimate that

I ≤ C

⎛
⎜⎝∫

R

|ψ(τ1)|

⎛
⎝ ∑

|n′|∼2n

∫
|τ̃+τ1|∼2k

|f̂(τ̃ , n′)|2

〈τ̃ − n′3〉
dτ̃

⎞
⎠

1/2

dτ1

⎞
⎟⎠

2

.

In the same way, we can prove that

II ≤ C

⎛
⎜⎝∫

R

〈τ1〉1/2|ψ(τ1)|

⎛
⎝ ∑

|n′|∼2n

∫
|τ̃+τ1|∼2k

|f̂(τ̃ , n′)|2

〈τ̃ − n′3〉2
dτ̃

⎞
⎠

1/2

dτ1

⎞
⎟⎠

2

.
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Hence we have

I + II ≤ C

⎛
⎜⎝∫

R

〈τ1〉1/2|ψ(τ1)|

⎛
⎝ ∑

|n′|∼2n

∫
|τ̃+τ1|∼2k

|f̂(τ̃ , n′)|2

〈τ̃ − n′3〉
dτ̃

⎞
⎠

1/2

dτ1

⎞
⎟⎠

2

and we deduce that

∞∑
k=0

⎛
⎝ ∑

|n′|∼2n

∫
|τ |∼2k

〈τ − n′3〉|ĝ2,1(τ, n
′)|2dτ

⎞
⎠

1/2

≤C

∞∑
k=0

∫
R

〈τ1〉1/2|ψ̂(τ1)|

⎛
⎝ ∑

|n′|∼2n

∫
|τ̃+τ1|∼2k

|f̂(τ̃ , n′)|2

〈τ̃ − n′3〉
dτ̃

⎞
⎠

1/2

dτ1

≤C

∞∑
k1=0

∫
|τ1|∼2k1

〈τ1〉1/2|ψ̂(τ1)|

×

⎛
⎝ ∑

k<k1−4

+
∑

k1−4≤k≤k1+4

+
∑

k>k1+4

⎞
⎠
⎛
⎝ ∑

|n′|∼2n

∫
|τ̃+τ1|∼2k

|f̂(τ̃ , n′)|2

〈τ̃ − n′3〉
dτ̃

⎞
⎠

1/2

dτ1.

Since ⎛
⎝ ∑

k<k1−4

+
∑

k1−4≤k≤k1+4

+
∑

k>k1+4

⎞
⎠
⎛
⎝ ∑

|n′|∼2n

∫
|τ̃+τ1|∼2k

|f̂(τ̃ , n′)|2

〈τ̃ − n′3〉
dτ̃

⎞
⎠

1/2

≤ C(k1 − 4)

⎛
⎝ ∑

|n′|∼2n

+1∑
j=−1

∫
|τ̃ |∼2k1+j

|f̂(τ̃ , n′)|2

〈τ̃ − n′3〉
dτ̃

⎞
⎠

1/2

+ 8

⎛
⎝ ∑

|n′|∼2n

∫
|τ̃ |∼2k1+5

|f̂(τ̃ , n′)|2

〈τ̃ − n′3〉
dτ̃

⎞
⎠

1/2

+C
∑
k∈N

⎛
⎝ ∑

|n′|∼2n

∫
|τ̃ |∼2k

|f̂(τ̃ , n′)|2

〈τ̃ − n′3〉
dτ̃

⎞
⎠

1/2

,

we may easily bound the preceding term by

C

∞∑
k1=0

∫
|τ1|∼2k1

(1 + k1)2
k1/2|ψ̂(τ1)|dτ1

∞∑
k=0

⎛
⎝ ∑

|n′|∼2n

∫
|τ |∼2k

|f̂(τ̃ , n′)|2

〈τ̃ − n′3〉
dτ̃

⎞
⎠

1/2

≤ Cε|〈τ〉1/2+εψ̂|L1(R)

∞∑
k=0

⎛
⎝ ∑

|n′|∼2n

∫
|τ |∼2k

|f̂(τ̃ , n′)|2

〈τ̃ − n′3〉
dτ̃

⎞
⎠

1/2

,

and thus

|g2,1|Xs,1/2
1,1

≤ Cε|〈τ〉1/2+εψ̂|L1(R)|f |Xs,−1/2
1,1

.
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At last,

ĝ2,2(τ, n
′) = ψ̂(τ − n′3)

∫
|τ1−n′3|≥1

f̂(τ1, n
′)

τ1 − n′3 dτ1,

and hence

∑
n∈N

2sn
∑
k∈N

⎛
⎝∫

|τ |∼2k

∑
|n′|∼2n

〈τ − n′3〉|ĝ2,2(τ, n
′)|2dτ

⎞
⎠

1/2

≤
∑
n∈N

2sn
∑
k∈N

(
sup

|n′|∼2n

∫
|τ |∼2k

〈τ − n′3〉|ψ̂(τ − n′3)|2dτ
)1/2

×

⎛
⎝ ∑

|n′|∼2n

(∫
R

|f̂(τ1, n
′)|

〈τ1 − n′3〉
dτ1

)2
⎞
⎠

1/2

≤ C
∑
n∈N

2sn

(∑
k∈N

〈2k − 23n〉−ε

)

×
(

sup
|n′|∼2n

∫
R

〈τ − n′3〉1+ε|ψ̂(τ − n′3)|2dτ
)1/2

×

⎛
⎝ ∑

|n′|∼2n

(∫
R

|f̂(τ1, n
′)|

〈τ1 − n′3〉
dτ1

)2
⎞
⎠

1/2

≤ C|ψ|H1/2+ε/2 |f |Ys .

This ends the proof of the first estimate in Proposition 4.1. The proof of continuity
with values in Bs

2,1 and the second estimate follow in an obvious way from a slight
modification of the proof of Lemma 2.2 in [10].

The next lemma shows that the free term in (1.5) belongs to X
σ,1/2,T
1,1 if u0 is in

Bσ
2,1(T).

Lemma 4.2. Let u0 ∈ Bσ
2,1(T) and T ≤ 1. Then U(t)u0 ∈ X

σ,1/2,T
1,1 and there is

a constant C > 0 such that

|U(t)u0|Xσ,1/2,T
1,1

≤ C|u0|Bσ
2,1

.

Proof. Let ψ be a cut-off function with ψ ≡ 1 on [0, 1] and let us prove that
|ψU(t)u0|Xσ,1/2

1,1

≤ C|u0|Bσ
2,1

.

We use the fact that X
σ,1/2+ε
1,∞ ⊂ X

σ,1/2
1,1 for any ε > 0, and that

̂ψU(t)u0(τ, n
′) = û0(n

′)ψ(τ − n′3)
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to get the following bound:

|ψU(t)u0|Xσ,1/2
1,1

≤ Cε|ψU(t)u0|Xσ,1/2+ε
1,∞

≤Cε

∞∑
n=0

2σn sup
k≥0

⎛
⎝ ∑

|n′|∼2n

∫
|τ |∼2k

〈τ − n′3〉1+2ε|û0(n
′)|2|ψ̂(τ − n′3)|2dτ

⎞
⎠

1/2

≤Cε

∞∑
n=0

2σn sup
k≥0

⎛
⎝ ∑

|n′|∼2n

∞∑
j=0

∫
|τ |∼2k

|τ−n′3|∼2j

〈τ − n′3〉1+2ε|û0(n
′)|2|ψ̂(τ − n′3)|2dτ

⎞
⎠

1/2

≤Cε

∞∑
n=0

2σn
∞∑
j=0

⎛
⎝ ∑

|n′|∼2n

∫
|τ−n′3|∼2j

〈τ − n′3〉1+2ε|û0(n
′)|2|ψ̂(τ − n′3)|2dτ

⎞
⎠

1/2

≤Cε

∞∑
n=0

2σn

⎛
⎝ ∑

|n′|∼2n

|û0(n
′)|2
⎞
⎠

1/2
∞∑
j=0

(∫
|τ |∼2j

〈τ〉1+2ε|ψ̂(τ)|2dτ
)1/2

≤ Cε|u0|Bσ
2,1

|ψ|
B

1/2+ε
2,1

.

Proof of Theorem 1.2. We now have all the estimates in hand, and we proceed
exactly as in [3]; we work pathwise on (1.5), using a fixed point argument in the space

X
σ,1/2,T
1,1 with −1/2 ≤ σ < s, s being defined by the assumption on φ, and T ≤ 1

sufficiently small.
Let u0 be F0-measurable with u0 ∈ Bσ

2,1(T) almost surely, σ as above, and assume
first that û0(0) = 0 almost surely. We set

z(t) = U(t)u0;(4.1)

then by Lemma 4.2, z ∈ X
σ,1/2,T
1,1 for any T ≤ 1 almost surely, and

|z|
X

σ,1/2,T
1,1

≤ C|u0|Bσ
2,1

almost surely.(4.2)

Let w(t) be defined by (1.4). By Proposition 2.1, w ∈ X
σ′,1/2,T
1,∞ ⊂ X

σ′,1/2,T
∞,∞ almost

surely for any σ′ with σ < σ′ < s. We fix such a σ′ and consider ω ∈ Ω such that

u0 ∈ Bσ
2,1(T) and w ∈ X

σ′,1/2,T
1,∞ for any T ≤ 1 almost surely.

In terms of v(t) = u(t) − z(t) − w(t), (1.5) is written as

v(t) = T v(t) := −1

2

∫ t

0

U(t− s)∂x(v2 + w2 + z2 + 2vw + 2vz + 2wz)(s)ds.(4.3)

Taking 0 < α < 1/16 in Propositions 3.3, 3.4, and 3.5, and applying Proposition 4.1,
we easily get the existence of a constant Cα > 0 such that

|T v|
X

σ,1/2,T
1,1

≤ CαT
α
(
|v|2

X
σ,1/2,T
1,1

+ |w|2
X

σ,1/2,T
1,∞

+ |u0|2Bσ
2,1

)
.

In the same way, if v1, v2 ∈ X
σ,1/2,T
1,1 , then

|T v1 − T v2|Xσ,1/2,T
1,1

≤ CαT
α
(
|v1|Xσ,1/2,T

1,1

+ |v2|Xσ,1/2,T
1,1

+ |w|
X

σ,1/2,T
1,∞

+ |u0|Bσ
2,1

)
|v1 − v2|Xσ,1/2,T

1,1

.
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Hence, first setting

Rt
ω = |w|

X
σ,1/2,t
1,∞

+ |u0|Bσ
2,1

and then defining the stopping time Tω by

Tω = inf{t > 0, 2Cαt
αRt

ω ≥ 1/2}

it is easily checked that T maps the ball of radius RTω
ω in X

σ,1/2,Tω

1,1 into itself, and
that

|T v1 − T v2|Xσ,1/2,Tω
1,1

≤ 3

4
|v1 − v2|Xσ,1/2,Tω

1,1

.

Hence T has a unique fixed point, which is the unique solution of (4.3) in X
σ,1/2,Tω

1,1 .
It follows from classical arguments and the second part of Proposition 4.1 that z

and v are in C([0, Tω];Bσ
2,1(T)) almost surely. On the other hand, since φ ∈ L0,s

2 and
U(t) is a unitary group in Hs(T), we have w ∈ C([0, Tω];Hs(T)) ⊂ C([0, Tω];Bσ

2,1(T))
by Theorem 6.10 in [8]. Hence, the solution u = v + z + w of (1.5) is almost surely
continuous with values in Bσ

2,1(T).
One classically gets rid of the condition û0(0) = 0 almost surely by considering

v(t, x) = u(t, x + α0t) − α0 with α0 =
∫

T
u0(x)dx; indeed, v then satisfies the KdV

equation (1.2) and the condition v̂0(0) = 0.
This ends the proof of Theorem 1.2.
We now explain how we can get rid of the condition that the spatial mean of the

noise is zero almost surely at any time.
Proposition 4.3. The conclusion of Theorem 1.2 is still true without the as-

sumption that Imφ ⊂ span{ej , j ≥ 1}.
Proof. Let P be the orthogonal projector on span{e0} in L2(T), i.e., (Pu)(x) =

(u, e0)e0 for u ∈ L2(T), where (·, ·) denotes the inner product in L2(T). Then, clearly,

φ̃ = (I − P )φ satisfies Im φ̃ ⊂ span{ej , j ≥ 1}; on the other hand, W = PφW̃ + φ̃W̃ ,

and β̃(t) = PφW̃ (t) =
∑

k∈N
(φek, e0)βk(t)e0 is a real-valued Brownian motion since∑

k∈N
(φek, e0)

2 = |φ∗e0|2L2(T) < +∞.

Let v = u− β̃; then if u satisfies the KdV equation (1.2), v satisfies{
dv + (∂3

xv + (v + β̃)∂xv)dt = φ̃dW̃ ,

v(0) = u0,

and setting ṽ(t, x) = v(t, x +
∫ t

0
β̃(s)ds), we get the equation for ṽ{

dṽ + (∂3
xṽ + ṽ∂xṽ)dt = dŴ ,

ṽ(0) = u0,
(4.4)

with Ŵ (t, x) =
∑

k∈N
(φ̃ek)(x −

∫ t

0
β̃(s)ds)βk(t), and it is clear that we can apply

all the arguments of the proof of Theorem 1.2 to (4.4), leading to the existence and
uniqueness of ṽ from which we deduce the existence and uniqueness of u. Indeed, note
that in Proposition 2.1, φ was allowed to depend on t and ω provided that it was in
L∞((0, T ) × Ω;L0,s

2 ), which is obviously the case here.
Proof of Theorem 1.5. The arguments are exactly the same as in [3]: let T > 0

be fixed; under the assumptions of Theorem 1.5, considering a sequence φn in L0,4
2
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such that φn → φ in L0,0
2 and a sequence u0,n in L2(Ω;H3(T)) such that u0,n → u0

in L2(Ω;L2(T)), one can easily prove (see [2]) the existence of a unique solution un

in C([0, T ];H3(T)) of

un(t) = U(t)u0,n − 1

2

∫ t

0

U(t− s)∂x(u2
n(s))ds +

∫ t

0

U(t− s)φndW̃ (s).

Using Itô’s formula on |un|2L2(T) and a martingale inequality, one gets as in [3]

E

(
sup

t∈[0,T ]

|un(t)|2L2(T)

)
≤ E(|u0,n|2L2(T)) + C(T )‖φn‖2

L0,0
2

;

hence, up to a subsequence, un converges in L2(Ω;L∞(0, T ;L2(T))) weak star to some
process ũ. Then if Tn is defined in the same way as T in the proof of Theorem 1.2,
replacing u0 and φ, respectively, by u0,n and φn, one shows that, given σ < 0, Tn
is a uniform contraction in the ball of radius RTω

ω in X
σ,1/2,Tω

1,1 ; moreover the unique
fixed point of Tn is equal to un, which, as a result, converges to u (the solution given

by Theorem 1.2) in X
σ,1/2,Tω

1,1 for any σ < 0. It follows that u = ũ almost surely on
[0, Tω], and that

|u(Tω)|Bσ
2,1(T) ≤ Cσ|u(Tω)|L2(T) ≤ |ũ|L∞(0,T ;L2(T)) almost surely.

so that u may be extended to [0, T ] almost surely, giving the result.

Acknowledgment. The authors would like to thank Professor Masayoshi Take-
da for mentioning the regularity in Besov spaces of Brownian motion to them.
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Abstract. We are interested, with respect to the small parameter ε, in the behavior of solutions
ρε of the conservative advection-diffusion equation ∂tρε + ∇x · (ρεuε) = η∆xρε, driven by a large
velocity field, |uε| = O(1/ε), which oscillates periodically with respect to time and space variables.
The novelty of our approach compared to that of previous works is that we deal with the periodic case
in its full generality. In particular, the cell equation which allows us to compute effective coefficients
is parabolic and not elliptic. We also derive estimates on the homogenized solution via entropy
methods.
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1. Introduction. We consider the evolution of a scalar physical field ρ(t, x)
submitted to convection by a velocity field u(t, x) and molecular diffusion with a
diffusion coefficient η > 0. We are led to the classical equation

∂tρ + divx(ρu) = η∆xρ.(1.1)

For instance, ρ can be the mass density or the temperature in a fluid. We can also
interpret (1.1) as the Fokker–Planck equation for the probability density ρ(t, x) of
particles whose trajectories obey the differential Langevin equation

dX(t) = u(t,X(t)) dt +
√

2η dW (t),(1.2)

W being a Brownian motion. We are interested in the effects of microscopic dynamics
at large scale: the given velocity field u is an oscillating quantity with a very fast
period. The fluctuations of u can be either deterministic or random. Without being
more precise for the time being, we suppose that the variation of u depends on a
characteristic scale ε, small compared to the large (macroscopic) scale of observation
of the scalar field ρ. Therefore we are interested in deriving the bulk properties of ρ
from the microscopic behavior of u, a homogenization problem.

While the problem (1.1) is linear, determination of the evolution of the average
quantity 〈ρ〉 requires the knowledge of the correlation 〈ρu〉. Indeed, averaging (1.1)
yields

∂t〈ρ〉 = divx〈ρu〉 + η∆x〈ρ〉.

The “turbulent moment closure problem” consists of looking for a relation between
this correlation function and the average quantity 〈ρ〉. Classically, a simple linear
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relation is postulated,

〈ρu〉 = 〈u〉 〈ρ〉 + α〈ρ〉 + β∇x〈ρ〉,

involving effective tensors α, β. It yields the average (effective) equation

∂t〈ρ〉 = divx

(
(〈u〉 + α)〈ρ〉

)
+ divx

(
(η + β)∇x〈ρ〉

)
with a modification of both convection and diffusion terms by the homogenization
process. The aim of this work is to determine the effective coefficients α, β and to prove
rigorously (in the mathematical sense) the convergence of average concentrations 〈ρ〉
towards solutions of the above effective equation.

The question of homogenizing transport equations with highly oscillating coeffi-
cients has motivated many works. Such a problem is related to the propagation of
oscillations in fluid dynamics equations; see Di Perna and Majda [12]. Clearly limit
processes depend strongly on the scaling used in the equation; some examples are
provided in McLaughlin, Papanicolaou, and Pironneau [29]. We also mention the
very complete and deep presentation of these problems in the recent review paper of
Kramer and Majda [24]. We also refer to the classical book of Bensoussan, Lions,
and Papanicolaou [6], or more recently Jikov, Kozlov, and Oleinik [22], for a presen-
tation of homogenization problems and of the classical mathematical methods used
to solve it.

The modeling of the fast oscillating (turbulent) velocity field u can be done in two
different ways. The first consists of considering deterministic fields which are periodic
with respect to some fast variables. The second corresponds to random fields. In
this paper we focus on the former case (concerning the latter, general situations are
treated by Kesten and Papanicolaou [23]; the interested reader will find details and
more references, for instance, in [24]). Let us give some of the known results in this
field.

The periodic case can induce resonant phenomena which make the problem con-
siderably more difficult when the molecular diffusivity η vanishes. When η = 0, the
problem of determining the limit of the solutions of the transport equation when the
periodicity vanishes is a challenging open question. It has been attacked only by con-
sidering simplified geometry of the characteristics associated to u. The first studies
are concerned essentially with shear flows: oscillations of the velocity field hold in a
direction transverse to the variable of derivation of the scalar field. The approach ini-
tiated by Tartar [31, 32] has permitted one to bring out memory effects induced by the
homogenization procedure as in the papers of Mascarenhas [28], Amirat, Hamdache,
and Ziani [2, 3], Hamdache [19, 20] and others. These effects can also be interpreted
as an increase in the order of the equation. The second simplified geometry situation
which has been studied is the case of divergence free field in 2 space dimensions. The
field is then a curl of a potential and the characteristics are level sets of this potential.
This situation has been investigated in the works by Brenier [7], Hou and Xin [21],
and E [13]. It cannot be generalized in higher dimension. Actually a common mistake
is to assume a Fredholm alternative for transport equations with periodic conditions
which does not hold in general.

When η �= 0, the positive diffusivity changes completely the asymptotic regime.
The case which has been the most studied is when the velocity field is divergence free.
The divergence-free case is much easier from a mathematical point of view. Indeed
we have in this situation L2 and H1 estimates which are uniform with respect to u
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thanks to the relation

d

dt

∫
|ρ(t)|2 dx + 2η

∫
|∇ρ(t)|2 dx = 0.

The compactness properties induced by this relation help a lot to mathematically jus-
tify the homogenized limit (see, for instance, [6]). When dealing with divergence-free
velocity fields, the original diffusion is enhanced by the homogenization process. On
the contrary, compressible velocity fields can give rise to a diffusion coefficient which
can be depleted in the limit. From a physical point of view this role of compressibility
has been pointed out recently by Avellaneda and Vergassola [5]. There do not seem
to be mathematical results in this case, and the present work is an attempt to fill this
gap.

In this work the homogenization of advection-diffusion equations (η �= 0) with
periodic oscillation situations is investigated. The most general situation is consid-
ered. The velocity field depends on fast variables in time and space but depends
also on the slow variables. The equation is written in conservative form. The scaling
assumption leads to large fluctuations of the velocity field (order 1/ε, with ε the scale
of space fluctuations of the velocity). It corresponds to the invariant scaling of the
Navier–Stokes equation. Therefore this scaling is particularly relevant for the study
of turbulent flows. In such a case, we cannot obtain compactness properties on the
solutions ρ, and the only available estimate is in L1. We use a method of oscillating
test functions (in the spirit of Tartar [11, 31] or Evans [14, 15]).

Under the assumption that a certain mean value of the velocity field (the ballis-
tic velocity) vanishes, we prove the convergence of the solutions to those of a drift-
diffusion equation. According to [5], the effective diffusion coefficient is positive, but
it can be depleted compared to the original one. The concentration is factorized by
a bulk concentration times a given fast oscillating function. We also obtain uniform
estimates on the bulk component, which allows us to obtain the uniqueness of the
limit.

We also give partial answers to the problem when the ballistic velocity does not
vanish. Actually when the velocity does not depend on the macroscopic variables we
give a complete description of the homogenized limit. To the best of our knowledge
this result is new even from a physical viewpoint.

The two main mathematical difficulties in this work are the following:
• The first one is, when considering oscillating in time velocities, that the cell

equation is parabolic and not elliptic as usual. However, considering periodic
boundary conditions, the corresponding operators are proved to satisfy the
Fredholm alternative.

• The second one relies on the lack of regularity of the sequence of solutions.
The only available estimate is in L1. This is not sufficient to guarantee
the uniqueness of the limit. To overcome this difficulty we obtain uniform
estimates on the bulk component of the solutions by using an entropy method.
It allows us to obtain enough regularity on the homogenized limit to justify
the uniqueness of this limit.

2. The periodic homogenization problem. In this section we consider a
passive scalar field,

ρε : (t, x) ∈ [0,∞) × R
N �−→ ρε(t, x) ∈ R

+.
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It represents a physical quantity whose evolution is driven by a fluid flow. The velocity
field of the fluid is

uε : (t, x) ∈ [0,∞) × R
N �−→ uε(t, x) ∈ R

N ,

which is parametrized by ε > 0. The parameter ε represents the length scale of
oscillations of the velocity field uε. The scalar quantity is advected by the fluid and is
also possibly subject to a diffusion process with a diffusion coefficient η ≥ 0. Therefore,
the scalar field ρε is a solution of the following advection-diffusion equation:

∂tρ
ε(t, x) + divx

(
ρεuε

)
(t, x) = η ∆xρ

ε(t, x) ∀(t, x) ∈ (0,∞) × R
N ,(2.1)

ρε(0, x) = ρεI(x) ∀x ∈ R
N .(2.2)

The scalar field ρεI : R
N → R

+ is a given initial data.
We are interested in situations where the velocity field can be a model for turbu-

lence. In order to obtain in the limit ε → 0 an effective turbulent diffusion coefficient
due to the velocity field, the strength of |uε| should be large, of order 1/ε. On the
other hand, the velocity field gives rise to an effective drift term u, which is the mean
over fluctuations of uε. Therefore, the average value of uε should remain of order 1.
Let us make these considerations more precise. We get uε of the form

uε(t, x) =
1

ε

(
u0

(
t, x;

t

ε2
,
x

ε

)
+ ε u1

(
t, x;

t

ε2
,
x

ε

))
.(2.3)

The velocity fields

u0,1 : (t, x; τ, y) ∈ [0,∞) × R
N × R

N+1 �−→ u0,1(t, x; τ, y) ∈ R
N

are periodic with respect to the fast variables τ, y:

∀(t, x; τ, y) ∈ [0,∞) × R
N × R

N+1, ∀n = (n0, n
′) ∈ Z × Z

N ,

u0,1(t, x; τ + n0, y + n′) = u0,1(t, x; τ, y).(2.4)

Finally, setting Y = (0, 1)N+1, the situation is very different if u0 has a vanishing or
not vanishing mean value

∀(t, x) ∈ [0,∞) × R
N ,

∫
Y

u0(t, x; τ, y) dµ(τ, y)(2.5)

for a measure dµ(τ, y), which will be made more precise later on. This mean value
is the so-called ballistic velocity. Hence, in the vanishing ballistic velocity case, the
quantity u(t, x) =

∫
Y
u1(t, x; τ, y) dµ(τ, y) corresponds to the mean value of the veloc-

ity field uε.
Remark 1. The scaling we use in the fast variables, u → uε = 1

εu( t
ε2 ,

x
ε ), is the

invariant scaling of the incompressible Navier–Stokes equation. (If u is a solution of
the Navier–Stokes equation, uε is also a solution of the same equation.) It shows the
relevance of this scaling for studying turbulence in fluids.

Remark 2. Actually, we are working with dimensionless equations, obtained
from the original variables (t′, x′) by setting t = t′/T , x = x′/L, where T and L are
characteristic values of time and length, respectively, under which the evolution of ρ is
studied. We point out that the choice of T and L is free. Let us denote by � the typical
length of microscopic variations of the velocity field and by τ0 its typical time scale
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of variation. The typical value for the mean velocity field is denoted by Um and for
the fluctuations by Ufl. We define the parameter ε as ε = Um

Ufl
. It is natural to choose

the scale T and L such that Um = L
T . If we want that the fluctuations of the velocity

field give rise to a diffusion process, Ufl should be scaled as a parabolic scaling. Then

L and T are completely determined by the relation Ufl = L2

T
1
� . Consequently, we

have ε = �
L .

Up to now there has been no physical assumption. The regime we are studying
in this work corresponds to the assumption Ufl � Um or, in other words, ε � 1.
It is also natural to assume that the path of a particle with velocity Ufl during the
microscopic time period τ0 is of order �. It leads to

Ufl τ0 =
L2

�

τ0
T

= �,
τ0
T

=
�2

L2
= ε2.

We have also to assume that the molecular diffusivity acts at the macroscopic scale
L and T . If η′ stands for the diffusion coefficient in the physical variables, it means

that η′ has the same order as L2

T = Ufl�, while η = η′ T
L2 . This physical situation

corresponds to the so-called weak mean field approximation.
Remark 3. The case of a purely periodic and divergence-free velocity field with

null average,

uε(x) =
1

ε
u(x/ε),

∫
Y

u(y) d(y) = 0, divy(u) = 0,

can actually be recast into a more classical question of homogenization of parabolic
equation. Indeed, in such a case, we can associate to u a skew-symmetric matrix B
by solving ∆yB = ∇yu. Using Fourier expansion yields

Bij(y) =
∑
n �=0

e2iπn·y i

|n|2
(
niûj(n) − nj ûi(n)

)
.

We have Divy(B) = u(y) so that

1

ε
u(x/ε) · ∇xρ + η∆ρ = ∇x · ((η + B(x/ε))∇xρ).

This remark is used, for instance, in [4]. Difficulties arise when
∫
Y
u d(y) �= 0. This

kind of problem arises, for instance, in neutron transport theory; we refer to Capde-
boscq [8, 9] for a treatment of the spectral problem.

3. Formal asymptotics. As usual (see [6]), we try to guess the result with a
formal double-scale ansatz,

ρε(t, x) = R0(t, x; t/ε2, x/ε) + εR1(t, x; t/ε2, x/ε) + ε2R2(t, x; t/ε2, x/ε) + · · · ,

where the Ri(t, x; τ, y)’s are Y -periodic. The action of the operator

Tε = ∂t(·) + divx

(
uε ·

)
− η∆x(·)

on functions of the form rε(x) = R(t, x; t/ε2, x/ε) reads as

Tε(rε)
(
t, x;

t

ε2
,
x

ε

)
= ε−2T0(R)

(
t, x;

t

ε2
,
x

ε

)
+ ε−1T1(R)

(
t, x;

t

ε2
,
x

ε

)

+ T2(R)

(
t, x;

t

ε2
,
x

ε

)
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with ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

T0(R)(t, x; τ, y) =
(
∂τR + divy

(
u0R

)
− η∆yR

)
(t, x; τ, y),

T1(R)(t, x; τ, y) =
(
divy

(
u1R

)
+ divx

(
u0R

)
− 2η∇x · ∇yR

)
(t, x; τ, y),

T2(R)(t, x; τ, y) =
(
∂tR + divx

(
u1R

)
− η∆xR

)
(t, x; τ, y).

Plugging the double-scale ansatz into (2.1) and identifying the terms with the same
power of ε yield

ε−2term: T0R
0 = 0,

ε−1term: T0R
1 = −T1R

0,

ε−0term: T0R
2 = −T2R

0 − T1R
1.

These relations can be generically written as T0R
p = Sp, where Sp depends only on

R0, . . . , Rp−1. We also remark that the operator T0 is a differential operator in the
variables τ, y, parametrized by t and x. Thus, we are dealing with cell equations with
variable (τ, y) ∈ Y and periodic boundary conditions. At least formally, we aim at
solving recursively these cell equations.

However, by integrating over Y , we realize that
∫
Y
S d(τ, y) = 0 is a necessary

condition for the cell problem T0R = S to have a solution. We also note that the kernel
of the adjoint operator T �

0 = −∂τ − u0 · ∇y − η∆y contains the constants. Actually
it can be shown that T0 is a Fredholm operator of index 0. Hence, the condition∫
Y
S d(τ, y) = 0 is also sufficient, and we will solve the cell equations by means of the

Fredholm alternative. At this point a difficulty should be pointed out. When η = 0
the cell problem is no more of Fredholm type. The ergodic property that the null space
of T �

0 is spanned by the constants (with respect to y) is not sufficient to guarantee
that the problem T0R = S has a solution under the condition

∫
Y
S d(τ, y) = 0. These

facts will be detailed in the following subsection concerning rigorous proofs.
Now let us assume the following facts:
(A) For (t, x) ∈ [0,∞)×R

N fixed, 0 is a simple eigenvalue of T0 and the nullspace
is spanned by a normalized function

Ker(T0) = Span{Θ},
∫
Y

Θ d(τ, y) = 1.

(B) The cell problem T0R = S has a unique solution (up to elements of Ker(T0))
under the necessary and sufficient condition

∫
Y
S d(τ, y) = 0.

From the ε−2 equation and (A), we infer that the leading term R0 ∈ Ker(T0) reads

R0(t, x; τ, y) = ρ(t, x) Θ(t, x; τ, y).

Next, the ε−1 equation becomes

T0R
1 = −T1(R

0) = −
(
divx(u0 Θ) + divy(u

1 Θ) − 2η∇x · ∇yΘ
)
ρ

−
(
Θ u0 − 2η∇yΘ

)
· ∇xρ.

Let us define χ(t, x; τ, y) = (χ1, . . . , χN ) ∈ R
N as the solution (with zero mean) of

the auxiliary cell problem

T0χj = Θ u0
j − 2η∂yj

Θ(3.1)
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and κ(t, x; τ, y) the solution of

T0κ = −divx(u0 Θ) − divy(u
1 Θ) + 2η∇x · ∇yΘ.

Remark that, in view of (B), these problems can be solved under the condition∫
Y

u0 Θ d(τ, y) = 0.(3.2)

Therefore, the measure mentioned in (2.5) is nothing but dµ(τ, y) = Θ d(τ, y). This
condition is referred to as the “vanishing ballistic velocity condition.” From now on
we assume this relation holds true. Thus, the ε−1 equation is solved by

R1(t, x; τ, y) = −χ(t, x; τ, y) · ∇xρ(t, x) + κ(t, x; τ, y)ρ(t, x) + S1(t, x)Θ(t, x; τ, y),

where S1 is an arbitrary function of (t, x). We will see that the choice of S1 is
irrelevant to obtaining the equation on R0. As usual in two-scale asymptotics, the
determination of S1 is only necessary to obtain the equation for R1. Now, let us look
at the ε0 term, which provides the equation satisfied by ρ. The solvability condition
yields ∫

Y

T2R
0 d(τ, y) +

∫
Y

T1R
1 d(τ, y) = 0.

Besides, we have∫
Y

T2R
0 d(τ, y) = ∂tρ(t, x) + divx

(∫
Y

u1 Θ(t, x; τ, y) d(τ, y) ρ(t, x)

)
− ∆xρ(t, x),∫

Y

T1R
1 d(τ, y) = divx

(∫
Y

u0R1 d(τ, y)

)

= − divx

(∫
Y

u0 ⊗ χ(t, x; τ, y) d(τ, y) · ∇xρ(t, x)

)

+ divx

(∫
Y

u0κ(t, x; τ, y) d(τ, y) ρ(t, x)

)
.

Let us define the turbulent diffusion matrix D by

D(t, x) =

∫
Y

u0(t, x; τ, y) ⊗ χ(t, x; τ, y) d(τ, y)(3.3)

and the effective drift term by

v(t, x) =

∫
Y

(
u1 Θ(t, x; τ, y) + u0 κ(t, x; τ, y)

)
d(τ, y).(3.4)

We are finally led to the following effective equation for ρ(t, x) = limε→0 ρ
ε(t, x):

∂tρ(t, x) + divx

(
ρ v

)
(t, x) − divx ((D + ηIN ) · ∇xρ) (t, x) = 0.

The matrix IN is the N×N identity matrix. Therefore, the homogenization procedure
induces an effective diffusion which is the sum of the original diffusion ηI with the
matrix D.
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Remark 4. We might wonder if the effects of the turbulent velocity field are
to increase the molecular diffusivity and if the (symmetric part of the) matrix D is
nonnegative. This is not true in general. Actually, considering potential flow, we
will see that D is negative. This fact has been already noticed by Avellaneda and
Vergassola [5]. However, we will check that ηIN + D remains nonnegative.

Also the above asymptotic is based on the vanishing ballistic velocity assump-
tion (3.2). The problem of what happens when (3.2) does not hold is addressed in
subsection 4.5.

4. Rigorous results.

4.1. Functional preliminaries. First, let us introduce some functional spaces.
Let Ω ⊂ R

D, and let p, q ∈ N. The set Cp
#(Ω × R

N+1) is the set of p-times

continuously differentiable functions on Ω×R
N+1 which are Y -periodic with respect to

the last variable. Similarly, Cp
b,#(Ω×R

N+1) and Cp
c,#(Ω×R

N+1) are the subspaces of

functions having bounded derivatives up to order p, and being supported in K×R
N+1

for some compact subset K of Ω, respectively. We also define anisotropic spaces

C
[p;q,α]
# ([0,∞)×R

N ×R
N+1) to be the spaces of continuous functions u = u(t, x, τ, y)

such that
• (∂t)

r(∂x)su exist and are continuous for 2r + s ≤ p, where (∂x)s denotes any
partial derivative of order s with respect to x ∈ R

N , and (∂t)
r stands for the

rth derivative with respect to t ≥ 0;
• (∂τ )

r(∂y)
su exist and are continuous for 2r + s ≤ q, where (∂y)

s denotes any
partial derivative of order s with respect to y ∈ R

N , and (∂τ )
r stands for the

rth derivative with respect to τ ∈ R;
• (∂τ )

r(∂y)
su for 2r+s = q are Hölder continuous with exponent α with respect

to y and with exponent α/2 with respect to τ .

Finally, we also need C
[p;q,α]
c,# ([0,∞)×Ω×R

N ), the subspaces of functions with compact
support with respect to the first two variables.

The formal limit obtained in the previous section can be rigorously justified by
using the double-scale techniques as developed by Nguetseng [30] and Allaire [1].
This technique is quite equivalent to the method of oscillating test functions of Tartar
[11, 31] and Evans [14, 15] and can be seen as a systematic way (but restricted to
periodic situations) to choose the “good” test functions. In the present problem there
is no a priori L2-estimates, except if the ui’s are divergence free. Then the natural
framework is an L1-setting. We will adapt the results of [1, 30] to this setting. Now
let us introduce some definitions and basic results about the family of parametrized
measures.

Definition 4.1. Let I be an interval of R. A family {µ(t); t ∈ I} of Radon
measures on R

N is said to be vaguely continuous if and only if

∀ϕ ∈ C0
c (RN ), t �−→

∫
RN

ϕ(x) µ(t, x) dx is a continuous function on I.

Definition 4.2. A sequence {µn(t); t ∈ I, n ∈ N} is said to be equibounded and
vaguely equicontinuous on I if and only if

(i) there exists M > 0 such that

sup
t∈I, n∈N

|µn|(t,RN ) ≤ M ;

(ii) for any ϕ ∈ C0
c (RN ), the sequence of functions

(
t �−→

∫
RN ϕ(x) µn(t, x) dx

)
n∈N

is equicontinuous on I.
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We recall the following classical compactness result.
Proposition 4.3. Let I be an interval of R. Let

(
µn(t)

)
n∈N

be a sequence of

Radon measures on R
N , equibounded and vaguely equicontinuous on I.

Then there exist a measure µ(t) vaguely continuous on I and a subsequence(
µnk

(t)
)
k∈N

such that

∀ϕ ∈ C0
c (I × R

N ),

∫
RN

ϕ(t, x) µnk
(t, x) dx −−−→

k→∞

∫
RN

ϕ(t, x) µ(t, x) dx,

uniformly with respect to t ∈ I. We say that sequence
(
µnk

(t)
)
k∈N

converges vaguely

to µ(t) locally, uniformly on I.
Then we also have the existence of a double-scale limit, in the spirit of Allaire [1]

and Nguetseng [30].
Proposition 4.4. Let

(
εn
)
n∈N

be a sequence of positive numbers converging to 0.

Let
(
µn(t))n∈N be a sequence of measures on R

N , equibounded on an interval I ⊂ R.

Then there exist a subsequence
(
µnk

(t))k∈N and a measure M on I × R × R
N × Y

such that for any ϕ ∈ C0
c,#(I × R

N × R
N+1), we have

∫
I

∫
RN

ϕ(t, x; t/ε2nk
, x/εnk

) µnk
(t, x) dxdt

−−−→
k→∞

∫
I

∫
RN

∫
Y

ϕ(t, x; τ, y) M(t, x; τ, y) d(τ, y) dxdt.

We say that the measure M is the double-scale limit of the sequence
(
µnk

(t))k∈N.
This proposition is nothing but a consequence of the Banach–Alaoglu theorem

applied to the sequence of measures Mn defined by∫
I

∫
RN

∫
Y

ϕ(t, x; τ, y) Mn(t, x; τ, y) d(τ, y) dxdt :=

∫
I

∫
RN

ϕ(t, x; t/ε2n, x/εn) µn(t, x) dxdt.

The double-scale limit captures the periodic oscillations of µn with frequency 1/εn in
x and 1/ε2n in t. By using test functions of the form ϕ(t, x; τ, y) = ψ(t, x), we also
obtain immediately that the vague limit µ(t) of µnk

(t) dt is given by the marginal

µ(t, x) =

∫
Y

M(t, x; τ, y) d(τ, y) ∈ M1(I × R
N ).

4.2. Cell problems. Next, we are concerned with cell problems. In particular
we discuss properties (A) and (B) stated in the previous section.

Proposition 4.5. Let u0 ∈ C
[2;1,α]
# ([0,∞) × R

N × R
N+1). Then the following

assertions hold:
(i) There exists a unique function Θ ∈ C

[2;2,α]
# ([0,∞) × R

N × R
N+1) such that

⎧⎪⎪⎨
⎪⎪⎩

T0(Θ) =
(
∂τΘ + divy(u

0 Θ) − η ∆yΘ
)
(t, x; τ, y) = 0

∀(t, x; τ, y) ∈ [0,∞) × R
N × R

N ,∫
Y

Θ(t, x; τ, y) d(τ, y) = 1 ∀(t, x) ∈ [0,∞) × R
N .

Furthermore, we have Θ(t, x; τ, y) > 0 for all (t, x; τ, y).
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(ii) For any S ∈ C
[p;0,α]
# ([0,∞) × R

N × R
N+1) with p = 0, 1, 2 the cell problem

T0(R) = ∂τR + divy(u
0R) − η∆yR = S,

∫
Y

R d(τ, y) = 0

has a unique solution R ∈ C
[p;2,α]
# ([0,∞) × R

N × R
N+1) under the necessary

and sufficient orthogonality condition∫
Y

S(t, x; τ, y) d(τ, y) = 0 ∀(t, x) ∈ [0,∞) × R
N .(4.1)

(iii) For any H ∈ C
[p;0,α]
# ([0,∞) × R

N × R
N+1) with p = 0, 1, 2 the cell problem

−∂τΦ − u0 · ∇yΦ − η∆yΦ = H,

∫
Y

Φ d(τ, y) = 0

has a unique solution Φ ∈ C
[p;2,α]
# ([0,∞) × R

N × R
N+1) under the necessary

and sufficient orthogonality condition∫
Y

H(t, x; τ, y) Θ(t, x; τ, y) d(τ, y) = 0 ∀(t, x) ∈ [0,∞) × R
N .(4.2)

Proof. Let (t, x) ∈ [0,∞) × R
N be fixed. We denote by

T �
0 (Φ) = −∂τΦ − u0 · ∇yΦ − η∆yΦ

the adjoint operator of T0. Obviously, constants belong to the kernel of T �
0 . For λ > 0

large enough we shall see that the resolvant Rλ = (λ+T �
0 )−1 (resp., Sλ = (λ+T0)

−1)
is well defined and we rewrite the problems T �

0 (Φ) = H (resp., T0(R) = S) as

(I − λRλ)Φ = RλH(4.3)

(resp., (I−λSλ)Φ = SλH). We wish to conclude by applying the Fredholm alternative.
We are thus led to investigate compactness and spectral properties of the resolvant
operator Rλ (resp., Sλ).

Hence, we are interested in the problem

(T �
0 + λ)Φ = H ∈ L2

#(Y )(4.4)

for some λ > 0 and domain D(T �
0 ), which will be made precise later on. Assuming

existence in H1
#(Y ), uniqueness of the solution follows from the positivity of the

energy functional

a0(Φ,Φ) =

∫
Y

(T �
0 + λ)Φ Φ d(τ, y)

=

∫
Y

(
λ +

1

2
divyu

0

)
Φ2 d(τ, y) + η

∫
Y

|∇yΦ|2 d(τ, y),

provided λ satisfies λ > max(τ,y)∈Y max(0,− 1
2divyu

0). From now on, we fix λ, which
fulfills this relation. It remains to justify the existence of a solution of (4.4).

To this end, we introduce an elliptic regularization of T �
0 . Let T �

0 µ, µ > 0, be the
operator

T �
0 µ(Φ) = −µ∂2

τ,τΦ − ∂τΦ − u0 · ∇yΦ − η∆Φ
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with domain D(T �
0 µ) = H2

#(Y ), the space of functions Y -periodic, belonging to

H2
loc(R

N+1). For λ > 1
2 maxτ,y{0,−divyu0}, the associated energy functional

aµ(Φ,Φ) =

∫
Y

Φ(T �
0 µ(Φ) + λΦ) d(τ, y)

= µ

∫
Y

|∂τΦ|2 d(τ, y) +

∫
Y

(
λ +

1

2
divy(u

0)

)
Φ2 d(τ, y) + η

∫
Y

|∇yΦ|2 d(τ, y)

is coercive on the space H1
#(Y ). A direct application of the Lax–Milgram theorem

guarantees, for any data H ∈ L2
#(Y ), the existence-uniqueness of a solution Φ ∈

H1
#(Y ) of the cell problem T �

0 µ(Φµ) + λΦµ = H in H1
#(Y ). Then µ∂2

τ,τΦ + η∆Φ ∈
L2

#(Y ), which implies that Φµ belongs to H2
#(Y ) = D(T �

0 µ). We also have Φµ ≥ 0
when H ≥ 0 by the maximum principle. Then (4.4) will be solved by passing to the
limit µ → 0.

By using the relation aµ(Φµ,Φµ) =
∫
Y
H Φµ d(τ, y), we obtain that Φµ and ∇yΦµ

are uniformly bounded in L2
#(Y ). Multiplying the equation T �

0 µ(Φµ) + λΦµ = H by
∂τΦµ and integrating by parts give∫

Y

|∂τΦµ|2 d(τ, y) = −
∫
Y

u0 · ∇yΦµ∂τΦµ d(τ, y) −
∫
Y

H ∂τΦµ d(τ, y).

We deduce that ∂τΦµ is also uniformly bounded in L2
#(Y ). Hence, Φµ is bounded in

H1
#(Y ). The cluster points of the sequence Φµ as µ → 0 are solutions in H1

#(Y ) of

(4.4). Such a solution satisfies ∆yΦ ∈ L2
#(Y ). Defining D(T �

0 ) = {Φ ∈ H1
#(Y ), ∆yΦ ∈

L2
#(Y )}, we have obtained the existence of a compact resolvant Rλ = (T �

0 + λ)−1 .
Then, in order to apply the Fredholm alternative for (4.3), it remains to deter-

mine the compatibility relation, and in particular the dimension of the eigenspace
Ker(T �

0 ) = Ker(Rλ − 1/λ)) (resp., Ker(T0) = Ker(Sλ − 1/λ)). We use the fact that
Rλ preserves nonnegativity: for H ≥ 0, Φ = Rλ(H) ≥ 0. The Krein–Rutman theo-
rem (see [25]) applies and the spectral radius ρ of Rλ is an eigenvalue, associated to
a nonnegative eigenfunction. Reasoning similarly for the adjoint operator, we obtain
the existence of a function Θ ∈ H1

#(Y ), Θ ≥ 0, verifying SλΘ = ρΘ. However, we
have remarked that (1/λ, 1l) is an eigenpair for Rλ. Hence, we get

ρ

∫
Y

Θ d(τ, y) =

∫
Y

1l Sλ(Θ) d(τ, y) =

∫
Y

Rλ(1l) Θ d(τ, y) =
1

λ

∫
Y

Θ d(τ, y);

i.e., ρ = 1/λ is the principal eigenvalue of Rλ, Sλ and Θ satisfies T0(Θ) = 0.
Then we make use of regularity results and the maximum principle for parabolic

equations. We first remark that the functions of D(T0) = D(T �
0 ) are continuous with

respect to time τ with value in L2
#([0, 1]N ), and their first derivatives with respect

to y belong to L2
#(Y ). With the notation of [27], such functions belong to V 1,0

2 .
Therefore, since the coefficients are smooth we can apply [27, Theorem 12.1, p. 223].

We deduce that Rλ(H) = Φ ∈ C
[2,α]
# (Y ) (H2+α,1+α/2(Y ) in the terminology of [27])

for H ∈ C
[0,α]
# (Y ). Similarly, we have Θ ∈ C

[2,α]
# (Y ). Thus, the maximum principle

applies (see [16, Theorem 5, p. 39]) and we obtain Θ > 0, and Rλ(H) = Φ > 0 for
H ≥ 0. Suppose now there exists a Φ ∈ Ker(T �

0 ) with
∫
Y

Φ d(τ, y) = 0. Then Φ

is also in C
[2,α]
# (Y ) and the positive and negative parts Φ± are continuous functions

nonidentically zero. By the maximum principle RλΦ± > 0. We deduce that |Φ| <
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λRλ(|Φ|). It would imply
∫
Y

Θ|Φ|d(τ, y) = λ
∫
Y

ΘRλ(|Φ|) d(τ, y) >
∫
Y

Θ|Φ|d(τ, y), a
contradiction. Thus, the kernel of T �

0 (resp., T0) is monodimensional and spanned by
1l (resp., Θ > 0).

We conclude by applying the Fredholm alternative. The solution of T0(R) = S
exists if and only if S is orthogonal to the kernel of the adjoint that is

∫
Y
S d(τ, y) = 0.

The solution is unique if we impose
∫
Y
R d(τ, y) = 0. The same is true for T �

0 : the
equation T �

0 (Φ) = S has a solution if and only if
∫
Y
S Θ d(τ, y) = 0 and the uniqueness

is assured by the condition
∫
Y
R d(τ, y) = 0. By applying [27, Theorem 12.1, p. 223],

we obtain that Θ, R, and Φ belong to C
[2,α]
# (Y ) if S, H ∈ C

[0,α]
# (Y ) for fixed (t, x).

We study now the dependency with respect to these parameters (t, x). Letting
δh be a finite difference operator in the variables (t, x), we have

T �
0 (δh(Φ)) = −δh(u0) · ∇y(Φ) + δh(H).

The right-hand side is bounded in C
[0,α]
# (Y ) uniformly with respect to h. Then the

sequence
(
δh(Φ)

)
h>0

is bounded in C2,α
# (RN ) uniformly with respect to h. This

implies that (t, x) �−→ Φ(t, x, .) is differentiable with respect to (t, x) with values in

C
[2,α]
# (Y ). In particular Φ ∈ C0([0,∞) × R

N ;C
[2,α]
# (Y )). If ∂Φ denotes a derivative

with respect to t or x, we have, letting h → 0,

T �
0 (∂Φ) = −∂u0 · ∇y(Φ) + ∂H.

Since the right-hand side is continuous with respect to the parameter (t, x), it yields
the continuity of ∂Φ. We obtain the same result for the derivatives up to order 2 by
repeating the argument once. The regularity of the solution R and of the eigenfunction
Θ are obtained in the same way.

Remark 5. Of course, when the velocity field u0 does not oscillate with respect
to time (i.e., u0,ε = u0(t, x;x/ε)), the corresponding solution of the cell problem Θ
does not depend on the fast time variable τ .

4.3. Effective coefficients. Our proof of the homogenization result is based on
the expansion of the dual equation. Therefore, we obtain the diffusion matrix and the
drift velocity, given by (3.3) and (3.4), respectively, by means of dual formulae. Let
us introduce χ�, solution of the dual problem of (3.1), namely,

T �
0 (χ�) = −∂τχ

� − u0 · ∇yχ
� − η∆yχ

� = u0,

∫
Y

χ� d(τ, y) = 0.(4.5)

We can express D and v with χ� as follows. On the one hand, we have

D =

∫
Y

u0 ⊗ χd(τ, y) =

∫
Y

T �
0 (χ�) ⊗ χd(τ, y)

=

∫
Y

χ� ⊗ T0(χ) d(τ, y) =

∫
Y

χ� ⊗ (Θu0 − 2η∇yΘ) d(τ, y),

(4.6)

and on the other hand,

v −
∫
Y

u1Θ d(τ, y) =

∫
Y

u0 κd(τ, y) =

∫
Y

T �
0 (χ�) κd(τ, y) =

∫
Y

χ�T0(κ) d(τ, y)

=

∫
Y

χ�
(
− divx(Θu0) − divy(Θu1) + 2η∇x · ∇yΘ

)
d(τ, y).

(4.7)
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Of course, the crucial question relies on the positiveness of the diffusion coefficient.
Actually, we shall see that (the symmetric part of) D can be nonpositive, while the
sum η+D remains nonnegative. To this end, it is particularly illuminating to consider
the following fundamental examples.

The divergence free case. Suppose that divy(u
0) = 0. In this case, Θ = 1 and

the vanishing ballistic velocity condition is nothing but∫
Y

u0 d(τ, y) = 0.

The function χ satisfies

T0(χ) = u0Θ = u0.

Then, for ξ ∈ R
N\{0}, we have

Dξ · ξ =

∫
Y

u0 · ξ χ · ξ d(τ, y) =

∫
Y

T0(χ · ξ) χ · ξ d(τ, y)

= η

∫
Y

|∇y(χ · ξ)|2 d(τ, y) ≥ 0.

The potential case. Suppose that u0 does not depend on the variable τ and is of
the form u0(t, x; y) = ∇yV (t, x; y) for some potential function V : R

+×R
N×R

N → R,
[0, 1]N -periodic with respect to the last variable. Then the operator T0 recasts in the
symmetric form

T0(R) = ∂τR− η divy

(
eV/η ∇y(e

−V/η R)
)

so that ∫
Y

T0(R)R e−V/η d(τ, y) = η

∫
Y

eV/η |∇y(Re−V/η)|2 d(τ, y).

We deduce that

Ker(T0) = Span{eV/η}, Θ = ZeV/η,

Z = (
∫
Y
eV/η d(τ, y))−1 being a normalization constant. Notice that the vanishing

ballistic velocity condition is fulfilled since∫
Y

u0 Θ d(τ, y) = ηZ

∫
Y

∇y(e
V/η) d(τ, y) = 0.

Finally, the equation for χ reads

T0(χ) = u0Θ − 2η∇yΘ = −Z∇yV eV/η = −u0Θ.

(Notice the change of sign in the right-hand side in comparison to the divergence-free
case.) Then, for ξ ∈ R

N\{0}, we have

Dξ · ξ =

∫
Y

u0 · ξ χ · ξ d(τ, y) = −
∫
Y

(−u0Θ · ξ) χ · ξ Θ−1 d(τ, y)

= −
∫
Y

T0(χ · ξ) χ · ξ Θ−1 d(τ, y) = −η

∫
Y

Θ |∇y(χ · ξΘ−1)|2 d(τ, y) ≤ 0,
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which reveals an antidiffusive effect. However, Avellaneda and Vergassola [5] pointed
out that, in this potential case, the total diffusivity remains nonnegative, (η+D)ξ ·ξ ≥
0. Their argument can be generalized, as shown by the following statement.

Proposition 4.6. Let D be the matrix defined in (3.3). Then, for any ξ ∈
R

N\{0}, one has

(η + D)ξ · ξ > 0.

Proof. The proof starts with the dissipativity property of T �
0 , using an inner

product with weight Θ. It was pointed out to us by Collet [10] that this property
is general and applies for any elliptic operator of order 2 and more generally for any
operator coming from Markovian processes (see Kubo [26]). We have∫

Y

T �
0 (Φ) Φ Θ d(τ, y) =

∫
Y

(−∂τΦ − u0 · ∇yΦ − η∆yΦ)Φ Θ d(τ, y)

= −
∫
Y

(
∂τ

(
Φ2

2

)
+ u0 · ∇y

(
Φ2

2

))
Θ d(τ, y)

+ η

∫
Y

∇y

(
Φ2

2

)
· ∇yΘ d(τ, y) + η

∫
Y

|∇yΦ|2 Θ d(τ, y)

=

∫
Y

Φ2

2
T0Θ d(τ, y) + η

∫
Y

|∇yΦ|2 Θ d(τ, y)

= η

∫
Y

|∇yΦ|2 Θ d(τ, y) ≥ 0.

Then let us use the expression of D obtained in (4.6). We get

Dξ · ξ =

∫
Y

χ� · ξ u0 · ξ Θ d(τ, y) − 2η

∫
Y

χ� · ξ ∇yΘ · ξ d(τ, y)

=

∫
Y

χ� · ξ T �
0 (χ� · ξ) Θ d(τ, y) + 2η

∫
Y

Θ ξ · ∇y

(
χ� · ξ

)
d(τ, y)

= η

∫
Y

|∇y(χ
� · ξ)|2 Θ d(τ, y) + 2η

∫
Y

Θ ξ · ∇y

(
χ� · ξ

)
d(τ, y).

Thus, we obtain

(η + D)ξ · ξ = η

∫
Y

|ξ + ∇y(χ
� · ξ)|2Θ d(τ, y) ≥ 0

= η

(∫
Y

(I + ∇yχ
�) (I + ∇yχ

�)T Θ d(τ, y)

)
ξ · ξ,

since
∫
Y

Θ d(τ, y) = 1. The above integral vanishes when for a.e. (τ, y) ∈ Y, ∇y(χ
� ·

ξ) = −ξ does not depend on τ, y. By using the periodicity, it follows that 0 =∫
Y
∇y(χ

� · ξ) d(τ, y) = −ξ|Y |; thus ξ = 0. We conclude that the symmetric part of D
is positive definite.

Remark 6. It should be pointed out that it is crucial to take into account a
positive diffusivity coefficient η > 0, even for the simple divergence-free case. In this
case, we have Θ = 1. Suppose there exists a vector-valued function χ solution of
∂τχ + u0 · ∇yχ = u0. Then if η = 0, it is readily checked that Dξ · ξ = 0, i.e., the
“effective diffusion matrix” vanishes! Turbulent diffusivity strongly depends on the
molecular diffusivity.
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We have two kinds of results depending on whether or not u0 satisfies the orthog-
onality relation

∫
Y
u0 Θ d(τ, y) = 0. We have seen that if u0 is divergence free, this

condition is nothing but the fact that u0 has a zero mean value and that the condition
is always satisfied in the potential case. When the orthogonality relation is satisfied,
the result is complete. When it is not, the result is not complete in the sense that we
do not know if the effective equations we obtain give rise to a well-posed problem.

4.4. Vanishing ballistic velocity. Let us first investigate the case of a vanish-
ing ballistic velocity.

Theorem 4.7. Let η > 0. Let u0, u1 ∈ C
[2;1,α]
# ([0,∞) × R

N × R
N+1). Let Θ be

defined as in Proposition 4.5 and suppose that∫
Y

u0(t, x; τ, y) Θ(t, x; τ, y) d(τ, y) = 0 ∀(t, x) ∈ [0,∞) × R
N(4.8)

holds. Let
(
ρεI
)
ε>0

be a bounded sequence of nonnegative measures on R
N . We suppose

that
(
ρεI
)
ε>0

converges vaguely to ρI . Let ρε(t) be the solutions of the advection

diffusion problem (2.1), (2.2) with

uε(t, x) =
1

ε

(
u0

(
t, x,

t

ε2
,
x

ε

)
+ εu1

(
t, x,

t

ε2
,
x

ε

))
.

Then, up to the extraction of a subsequence, ρε(t) ≥ 0 converges vaguely to ρ(t) ≥ 0
locally and uniformly, and the limit ρ(t) is a solution of

∂tρ(t, x) + divx

(
ρ v

)
(t, x) − divx ((D + ηIN ) · ∇xρ) (t, x) = 0(4.9)

in the sense of distributions with the Cauchy data ρ(0) = ρI . The coefficients are
given by

v(t, x) =

∫
Y

u1 Θ(t, x; τ, y) d(τ, y)

−
∫
Y

χ�
(
divx(Θ u0) + divy(Θ u1) − 2η∇x · ∇yΘ

)
(t, x; τ, y) d(τ, y),

D(t, x) =

∫
Y

χ� ⊗ (Θ u0 − 2η∇yΘ)(t, x; τ, y) d(τ, y),

and χ� is the solution of

−∂τχ
� − u0 · ∇yχ

� − η∆yχ
� = u0,

∫
Y

χ� d(τ, y) = 0.

Remark 7. The statement can be strengthened when the velocity fields satisfy
the divergence-free condition divx,yu

0,1 = 0. In this case, recall that Θ = 1. Assume
the initial condition is converging in L2(RN ): ρεI → ρI . Then one has L2-estimates
on both ρε and ∇xρ

ε. Consequently, one has convergence of the solutions ρε to ρ
in L2(0, T ;H1(RN )) weakly, and in C0([0, T ];L2(RN )-weak), and for a.e. t ∈ [0, T ],
ρε(t) → ρ(t) strongly in L2(K) for any compact set K ⊂ R

N .
Proof. By using standard results for parabolic equations, the solutions ρε satisfy⎧⎪⎨

⎪⎩
∀(t, x) ∈ [0,∞) × R

N , ρε(t, x) ≥ 0,

∀t ∈ [0,∞),

∫
RN

ρε(t, x) dx ≤
∫

RN

ρεI(x) dx ≤ M,
(4.10)
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where M = supε>0 ρεI(R
N ) is finite by assumption. Note that the conservation of

mass
∫

RN ρε(t, x) dx =
∫

RN ρεI(x) dx, which can be expected from formal arguments,
is not obvious at all. To obtain this conservation law, an additional bound on |uε| is
necessary. For instance, we have to assume |u0(t, x; τ, y)| + |u1(t, x; τ, y)| ≤ C|x| for
some constant C > 0. We will not address this problem in this work.

We cannot immediately use Proposition 4.3 for ρε(t) since the equicontinuity
with respect to time is far from clear: there is no obvious bound for ∂tρ

ε because
of the singular term 1

εdivx(u0ρε). Actually we will use crucially the condition (4.8)
to prove that the sequence ρε(t) is equicontinuous. The idea is to recover the formal
asymptotics of the previous subsection, but this time working on the test functions for
the adjoint equation. Hence, let us define for any ϕ ∈ C2

#(RN × R
N+1) the following

operators:

T �
0 (ϕ)(t, x; τ, y) = −∂τϕ(x; τ, y) − u0(t, x; τ, y) · ∇yϕ(x; τ, y) − η∆yϕ(x; τ, y),

T �
1 (ϕ)(t, x; τ, y) = −u1(t, x; τ, y) · ∇yϕ(x; τ, y) − u0(t, x; τ, y) · ∇xϕ(x; τ, y)

−2η∇x · ∇yϕ(x; τ, y),

T �
2 (ϕ)(t, x; τ, y) = −u1(t, x; τ, y) · ∇xϕ(x; τ, y) − η∆xϕ(x; τ, y).

Step 1. Let ϕ ∈ C2
c,#([0,∞) × R

N × R
N+1). By multiplying the equation by

ε2 ϕ(t, x; t/ε2, x/ε), we get

∫
RN

T �
0 (ϕ)(t, x; t/ε2, x/ε) ρε(t, x) dx = − ε

∫
RN

(T �
1 + εT �

2 )(ϕ)(t, x; t/ε2, x/ε) ρε(t, x) dx

− ε2
d

dt

∫
RN

ϕ(t, x; t/ε2, x/ε) ρε(t, x) dx + ε2
∫

RN

∂tϕ(t, x; t/ε2, x/ε) ρε(t, x) dx.

(4.11)

Then we obtain

lim
ε→0

(∫
RN

T �
0 (ϕ)(t, x; t/ε2, x/ε) ρε(t, x) dx

)
= 0 in D′(0,∞)(4.12)

for any ϕ ∈ C2
c,#([0,∞) × R

N × R
N+1).

Step 2. In order to get rid of the leading term in the dual equation (4.11), we
choose the test function of the form ϕ(t, x; t/ε2, x/ε) = ψ(x) + ε φ(t, x; t/ε2, x/ε). We
obtain

d

dt

∫
RN

(ψ + ε φ) (t, x; t/ε2, x/ε)ρε(t, x) dx

= −1

ε

∫
RN

(T �
1 (ψ) + T �

0 (φ)) (t, x; t/ε2, x/ε) ρε(t, x) dx

−
∫

RN

(T �
2 (ψ) + T �

1 (φ)) (t, x; t/ε2, x/ε) ρε(t, x) dx

+ ε

∫
RN

(∂tφ− T �
2 (φ)) (t, x; t/ε2, x/ε) ρε(t, x) dx.(4.13)

Since ψ does not depend on the fast variables (τ, y), we remark that T �
1 (ψ) = −u0 ·

∇xψ. Consequently, multiplying by ε, passing to the limit, and using (4.12) yield

lim
ε→0

(∫
RN

(
T �

1 (ψ) + T �
0 (φ)(t, x; t/ε2, x/ε)

)
ρε(t, x) dx

)
= 0

= lim
ε→0

(∫
RN

u0(t, x; t/ε2, x/ε) · ∇xψ(x) ρε(t, x) dx

)
.

(4.14)
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Up to now, condition (4.8) has not been used. We shall use the condition to write
u0 ·∇xψ as T �

0 (φ) for a convenient choice of the function φ. Therefore, we realize that
(4.14) is already contained in (4.12).

In order to go further we have to get rid of the term of order 1/ε in (4.13). Let us

introduce the vector-valued function χ�(t, x; τ, y) ∈
(
C

[2;2,α]
# ([0,∞)× R

N × R
N+1)

)N
as the solution of the adjoint cell problem

T �
0 (χ�) = −∂τ − u0 · ∇yχ

� − η∆yχ
� = u0,

∫
Y

χ� d(τ, y) = 0.

The function χ� is well defined thanks to Proposition 4.5 and to condition (4.8). We
choose the test function φ depending on ψ as follows:

φ(t, x; τ, y) = χ�(t, x; τ, y) · ∇xψ(x).

Assuming ψ ∈ C3
c (RN ), we have φ ∈ C

[2;2,α]
c,# ([0, T ]×R

N ×R
N+1) for any T > 0. The

crucial fact is that T �
0 (φ) = T �

0 (χ�) · ∇xψ = u0 · ∇xψ = −T �
1 (ψ). Consequently, we

recover (4.12) from (4.14). Furthermore, the 1
ε term in (4.13) vanishes. We deduce

the estimate ∣∣∣ d

dt

∫
RN

(ψ + ε φ) (t, x; t/ε2, x/ε) ρε(t, x) dx
∣∣∣ ≤ C(ψ).(4.15)

Moreover, passing to the limit ε → 0, we are led to

lim
ε→0

(
d

dt

∫
RN

ψ(x) ρε(t, x) dx +

∫
RN

(T �
2 (ψ) + T �

1 (φ)) (t, x; t/ε2, x/ε) ρε(t, x) dx

)
= 0

(4.16)

for any ψ ∈ C3
c (RN ) with φ(t, x; τ, y) = χ�(t, x; τ, y) · ∇xψ(x).

Step 3. We are now ready to obtain the equicontinuity of ρε(t). Indeed, the bound
(4.15) shows that for any ψ ∈ C3

c (RN ) the sequence of functions

t �−→
∫

RN

(ψ + ε φ) (t, x; t/ε2, x/ε) ρε(t, x) dx

is equicontinuous on [0,∞). Since the family of functions

t �−→
∫

RN

ψ(x) ρε(t, x) dx

is close, up to ε, to the previous sequence, it is also equicontinuous. The density
of C3

c (RN ) in C0
c (RN ) allows us to conclude that ρε(t) is vaguely equicontinuous on

[0,∞). Thanks to (4.10) we can apply Propositions 4.3 and 4.4 to the sequence ρε(t).
Step 4. Up to a subsequence there is a double-scale limit R of ρε(t) and the vague

limit of ρε(t) is given by the marginal ρ(t, x) =
∫
Y
R(t, x; τ, y) d(τ, y). The limits

(4.12) and (4.16) now become∫ ∞

0

∫
RN

∫
Y

T �
0 (ϕ)(t, x; τ, y) R(t, x; τ, y) d(τ, y) dxdt = 0(4.17)

∀ϕ ∈ C2
c,#([0,∞) × R

N × R
N+1),
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and, in the distribution sense on [0,∞),

d

dt

∫
RN

ψ(x) ρ(t, x) dx +

∫
RN

∫
Y

(T �
2 (ψ) + T �

1 (φ)) R (t, x; τ, y) d(τ, y) dx = 0

∀ψ ∈ C3
c (RN ) with φ = χ�(t, x; τ, y) · ∇xψ(x),(4.18)

respectively. By formally using Proposition 4.5, (4.17) means that the double-scale
limit R lies in the orthogonal set of Ran(T �

0 ) = (Ker(T0))
⊥ = (Span{Θ})⊥; thus

R ∈ Span{Θ}, which corresponds to the first step of the formal asymptotics. Let us
make this argument rigorous (it does not work due to the lack of regularity of the
limit R).

Thanks to Proposition 4.5, we obtain from (4.17) that, for any H ∈ C
[0;0,α]
# ([0,∞)×

R
N × R

N+1) verifying
∫
Y
H Θ d(τ, y) = 0, we have

∫ ∞

0

∫
RN

∫
Y

H(t, x; τ, y) R(t, x; τ, y) d(τ, y) dxdt = 0.

Let ϕ ∈ C
[0;0,α]
# ([0,∞) × R

N × R
N+1). We write

ϕ(t, x; τ, y) = cϕ(t, x)Θ(t, x; τ, y) + (ϕ(t, x; τ, y) − cϕ(t, x)Θ(t, x; τ, y)),

where

cϕ(t, x) =

(∫
Y

ϕ(t, x; z) Θ(t, x; z) dz

) / (∫
Y

Θ(t, x; τ, y)2 d(τ, y)

)
.

Since
∫
Y

(ϕ− cϕΘ) R d(τ, y) = 0, we obtain

∫ ∞

0

∫
RN

∫
Y

ϕ (t, x; τ, y) R(t, x; τ, y) d(τ, y) dxdt

=

∫ ∞

0

∫
RN

cϕ(t, x)

(∫
Y

Θ(t, x; τ, y)R(t, x; τ, y) d(τ, y)

)
dxdt

=

∫ ∞

0

∫
RN

∫
Y

ϕ(t, x; τ, y) ρ̃(t, x)Θ(t, x; τ, y) d(τ, y) dxdt,

where ρ̃(t, x) =
∫
Y

Θ(t, x; τ, y)R(t, x; τ, y) d(τ, y)×
( ∫

Y
Θ(t, x; τ, y)2 d(τ, y)

)−1
. Hence,

it shows that R(t, x; τ, y) = ρ̃(t, x)Θ(t, x; τ, y). Furthermore, using
∫
Y

Θ d(τ, y) = 1,
we have ρ̃ = ρ, the weak limit of ρε. Plugging this result into (4.18) gives the desired
equation for ρ(t, x) and ends the proof of Theorem 4.7. Note that in this way we
obtain the diffusion matrix and the drift velocity with the dual formulae (4.6) and
(4.7), respectively.

4.5. Nonvanishing ballistic velocity. We can follow step by step the same
strategy without assuming condition (4.8). Of course, we cannot define in this situ-
ation χ� by (4.5) since the right-hand side does not fulfill the solvability condition.
We have to take into account the ballistic velocity

c(t, x) =

∫
Y

u0 Θ(t, x; τ, y) d(τ, y) �= 0.

Then we are led to the following statement.
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Theorem 4.8. Let the assumptions of Theorem 4.7 be fulfilled, except for (4.8).
Then, up to a subsequence, ρε ≥ 0 converges to ρ in the vague sense for measures on
[0,∞) × R

N . The limit ρ satisfies

divx(c ρ) = 0

in the sense of distributions on [0,∞)×R
N . Moreover, for any ψ ∈ C2

c ([0,∞)×R
N )

which satisfies c(t, x) · ∇xψ(t, x) = 0 for all (t, x) ∈ [0,∞) × R
N , we have∫

RN

ψ(t, x) ρε(t, x) dx −−→
ε→0

∫
RN

ψ(t, x) ρ(t, x) dx,

uniformly on any interval [0, T ], 0 < T < ∞. Furthermore, for any such test function
ψ, the limit satisfies

d

dt

∫
RN

ψρ(t, x) dx =

∫
RN

(
∂tψ + v · ∇xψ + divx

(
DT · ∇xψ

)
+ η∆xψ

)
ρdx,∫

RN

ψρ(0, x) dx =

∫
RN

ψρI(x) dx,

where DT is the transpose of the matrix D. Here D and v are defined as in Theo-
rem 4.7 but with χ� as the solution of

T �
0 (χ�) = u0 − c,

∫
Y

χ� d(τ, y) = 0.(4.19)

Proof. The L∞(0, T ;L1(RN )) ⊂ L1((0, T ) × R
N ) estimate on ρε allows us to

assume that, for a subsequence, ρε ⇀ ρ vaguely in M1((0, T ) × R
N ). In Step 2, we

rewrite (4.14) as∫ T

0

∫
RN

(
(c− u0) · ∇xψ + T �

0 (φ)
)
(t, x; t/ε2, x/ε) ρε dxdt

−
∫ T

0

∫
RN

c · ∇xψ ρε dxdt → 0 as ε → 0.

For a given function ψ, we choose φ such that the first integral in this expression
vanishes. Namely, we set φ(t, x; τ, y) = χ�(t, x; τ, y) · ∇xψ(t, x), χ� being defined by
(4.19). We deduce that ∫ T

0

∫
RN

c · ∇xψ ρ dxdt = 0

for any test function ψ. Then, considering now a test function verifying c · ∇xψ = 0,
we can reproduce the arguments of the proof of Theorem 4.7.

Let q be a (scalar) distribution on (0, T ) × R
N . Clearly, T = divx(c q) belongs

to the orthogonal of E = {ψ : R × R
N → R, such that c · ∇xψ = 0}. At least

formally, the elements T of E⊥ always have this form. Indeed, let us introduce
the symmetric degenerate elliptic operator A(ψ) = −divx(c ⊗ c∇xψ). Remarking
that

∫
RN A(ψ) ψ dx =

∫
RN |c · ∇xψ|2 dx, we have E = Ker(A). Thus, formally, a

distribution T ∈ E⊥ lies in the range of A. This means that T = A(p) = divx(cq),
with q = −c∇xp. In these conditions the equations for ρ read{

divx(c ρ) = 0,

∂tρ + divx(v ρ) − divx

(
(D + ηIN )∇xρ

)
= divx(c q)

and q appears as a Lagrange multiplier associated to the constraint divx(c ρ) = 0.
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Actually it is possible that the second part of the statement is meaningless. For
instance, consider the simple case c = (1, 0, . . . ) ∈ R

N . Thus, divx(cρ) = 0 = ∂x1ρ = 0
means that ρ does not depend on the first variable. Since ρ is a bounded measure
on R

N , this implies that ρ = 0! According to this example, the set of compactly
supported test functions verifying c · ∇xψ = 0 can be reduced to {0} (this is the
case in the autonomous case with characteristics curves verifying |X(s, x)| → ∞ as
s → ∞ . . . ).

The simplest way to treat this difficulty consists of changing the time scale. Let
us define s = t/ε. Then we study

1

ε
∂sρ

ε(s, x) +
1

ε
divx

(
(u0 + εu1)(εs, x; s/ε, x/ε) ρε(s, x)

)
= η ∆xρ

ε(s, x)

instead of (2.1), (2.3). At least formally we can replace ui(εs) by ui(0). In this case
we have only to consider velocities fields independent on the time scale s. For the
sake of generality we consider the problem

1

ε
∂sρ

ε(s, x) +
1

ε
divx

(
(u0 + εu1)(s, x; s/ε, x/ε) ρε(s, x)

)
= η ∆xρ

ε(s, x)(4.20)

∀(s, x) ∈ (0,∞) × R
N ,

ρε(0, x) = ρεI(x) ∀x ∈ R
N .(4.21)

The initial data ρεI is still assumed to be a bounded sequence of nonnegative mea-
sures which converges vaguely to ρI . Therefore, the sequence of solution satisfies the
uniform estimate (4.10). The behavior as ε goes to 0 is then simply described by the
transport equation with velocity c(s, x) =

∫
Y
u0 Θ d(τ, y).

Theorem 4.9. Let ρε be the solution of (4.20), (4.21). We assume that ρεI is a
bounded sequence of nonnegative measures which converges vaguely to ρI . Then ρε

converges vaguely locally, uniformly on R
+ to ρ, the solution of the transport equation

∂sρ + divx(cρ) = 0

with initial data ρI .
Proof. We still follow the strategy of the proof of Theorem 4.7. Multiplying (4.20)

by ϕ(s, x; s/ε, x/ε) yields

∫
RN

T �
0 (ϕ)(s, x; s/ε, x/ε) ρε(s, x) dx = −ε

∫
RN

(T �
1 + εT �

2 )(ϕ)(s, x; s/ε, x/ε) ρε(s, x) dx

− ε
d

ds

∫
RN

ϕ(s, x; s/ε, x/ε) ρε(s, x) dx + ε

∫
RN

∂sϕ(s, x; s/ε, x/ε) ρε(s, x) dx.

(4.22)

Hence, we recover (4.12). Then we use ϕ(s, x; τ, y) = ψ(x) + εφ(s, x; τ, y) as a test
function so that the ε0 term in (4.22) disappears. We get

d

ds

∫
RN

(ψ + εφ)(s, x; s/ε, x/ε) ρε(s, x) dx− ε

∫
RN

∂sφ(s, x; s/ε, x/ε) ρε(s, x) dx

=

∫
RN

(u0 · ∇xψ − T �
0 (φ))(s, x; s/ε, x/ε) ρε(s, x) dx

+ ε

∫
RN

(
(u1 · ∇xψ + η∆xψ) + (T �

1 + εT �
2 )(φ)

)
(s, x; s/ε, x/ε) ρε(s, x) dx.

(4.23)



876 THIERRY GOUDON AND FRÉDÉRIC POUPAUD

We deduce that (s �→
∫

RN ψρε dx)ε>0 is equicontinuous on R
+, and thus we prove the

compactness of ρε. Next, the last term in (4.23) goes to 0 as ε → 0. The first term in
the right-hand side can be recast as∫

RN

(
(u0 − c) · ∇xψ − T �

0 (φ)
)
(s, x; s/ε, x/ε) ρε(s, x) dx +

∫
RN

c(s, x) · ∇xψ ρε(s, x) dx.

Hence, we choose φ depending on ψ so that the first integral vanishes. Namely, we
set φ = χ� · ∇xψ with T �

0 (χ�) = (u0 − c). Then, letting ε → 0, we obtain the relation

d

ds

∫
RN

ψ ρ(s, x) dx−
∫

RN

c(s, x) · ∇xψ ρ(s, x) dx = 0,

which ends the proof.
Remark 8. The situation we observe is reminiscent to the hydrodynamic limits

in kinetic theory. There, the small parameter is related to the Knudsen number, i.e.,
the ratio of the mean-free path over some characteristic length. When the flux associ-
ated to the equilibrium states of the equation vanishes, a parabolic scaling has to be
considered. It corresponds to the vanishing ballistic velocity in this work. Conversely,
when the flux does not vanish (nonvanishing ballistic velocity), a hyperbolic scaling
has to be used which corresponds to a faster time scale. We refer to the lecture notes
of Golse [17] for a presentation of these questions.

More precise information can be given when we restrict ourselves to purely peri-
odic velocity fields. Namely, we assume that u0,1 do not depend on t, x but only on
the fast variables (τ, y) ∈ Y . Consequently, the ballistic velocity c is constant. In such
a case, there is no mixing of the time scales, and we can give a result incorporating
both the transport through the ballistic velocity and the diffusion at the parabolic
time scale. A similar approach has been introduced by Mellet in kinetic theory; see
[18]. We also mention the interesting attempts due to Capdeboscq [8, 9].

Theorem 4.10. Let η > 0 and let u0, u1 ∈ C
[1,α]
# (RN+1). Let

(
ρεI
)
ε>0

be a

bounded sequence of nonnegative measures on R
N . We suppose that

(
ρεI
)
ε>0

converges

vaguely to ρI . Let ρε(t) be the solutions of the advection diffusion problem (2.1), (2.2)
with

uε(t, x) =
1

ε

(
u0

(
t

ε2
,
x

ε

)
+ εu1

(
t

ε2
,
x

ε

))
.

Then, up to a subsequence, ρ̃ε(t, x) = ρε(t, x + ct/ε) converges vaguely locally, uni-
formly on R

+ to ρ̃, the solution of the drift-diffusion equation

∂tρ̃ + divx(vρ̃−D∇xρ̃) = 0

with initial data ρI . The velocity v is defined as in Theorem 4.7, while

D =

∫
Y

χ� ⊗
(
Θ(u0 − c) − 2η∇yΘ

)
d(τ, y)

with χ� solution of T �
0 (χ�) = u0 − c.

Proof. We remark that ρ̃ε is the solution of the advection-diffusion problem (2.1),
(2.2), with uε replaced by

ũε(t, x) =
1

ε

(
ũ0

(
t

ε2
,
x

ε

)
+ εũ1

(
t

ε2
,
x

ε

))
,

ũ0(τ, y) = u0(τ, y + cτ) − c, ũ1(τ, y) = u1(τ, y + cτ).
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The functions ũi, i = 1, 2, are not Y -periodic. But if (e0, e1, . . . , eN ) is the canonical
basis of R

N+1, the new cell basis is (e0 − c, e1, . . . , eN ) corresponding to the cell

Ỹ = {(τ, y)/τ ∈ (0, 1), y ∈ −c τ + (0, 1)N}.

The functions ũi, i = 1, 2, are Ỹ -periodic. It is easily checked that the null function
of the new cell problem is then Θ̃(τ, y) = Θ(τ, y + cτ). As a consequence we have∫

Ỹ

ũ0 Θ̃(τ, y) d(τ, y) =

∫
Y

(u0 − c)Θ(τ, y) d(τ, y) = 0.

Then ũ0 satisfies the vanishing ballistic velocity condition and we can apply Theo-
rem 4.7. This leads to the result. Note that it is crucial that u0,1 depends only on
(τ, y) and c is constant.

5. Dissipation properties. The only immediate estimate on ρε(t) is in the
space L1, by using the conservative form of the equation. The asymptotic behavior
stated in Theorem 4.7 is obtained for a limit ρ(t), which is a priori only a measure. In
this functional framework, there is no uniqueness of the solution of the limit effective
advection-diffusion problem. In this subsection we want to recover uniqueness (and
regularity) of the limit. Assuming more bounds on the initial data, it is possible to
obtain more involved dissipation properties of the equation. Actually, quantities like∫

H(ρε/Ψε) Ψε dx

can be uniformly bounded for convex functions H and a suitable choice of Ψε > 0.
As a preliminary, we establish a general dissipation property which is a conse-

quence of dissipativity of Markovian processes (see [26]) as it is explained by Collet
in [10].

Proposition 5.1. Let

T = ∂t · +
N∑
i=1

∂xi
(ui(t, x)·) −

N∑
i,j=1

∂xi
(aij(t, x)∂xj

·)

with bounded coefficients ui, aij verifying
∑

ij aijξiξj ≥ 0 for any ξ ∈ R
N . Let H :

R → R be a C2 convex function. Let ρ and Ψ be in H1
loc(R

N+1), with Ψ > 0. Then
we have

T
(
H

( ρ

Ψ

)
Ψ
)
−H ′

( ρ

Ψ

)
T (ρ) −G

( ρ

Ψ

)
T (Ψ)

= −
N∑

i,j=1

H ′′
( ρ

Ψ

)
Ψ aij∂i

( ρ

Ψ

)
∂j

( ρ

Ψ

)
≤ 0,

with G(s) = H(s) − sH ′(s).
The assumptions on ρ and Ψ allow us to use the chain rule for the functions ρ, Ψ,

and ρ
Ψ . Then the above proposition is a consequence of two computations whose

results are given in the following lemma.
Lemma 5.2. Let ρ,Ψ : R

N+1 → R be as in Proposition 5.1. Let a : R
N+1 → R be

a bounded coefficient. Let H : R → R be a C2 function. Denote by ∂ any derivative
in R

N+1. We have

∂
(
H

( ρ

Ψ

)
a Ψ

)
= G

( ρ

Ψ

)
∂(aΨ) + H ′

( ρ

Ψ

)
∂(aρ)

with G(s) = H(s) − sH ′(s).
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Proof. We compute

∂
(
H

( ρ

Ψ

)
a Ψ

)
= H ′

( ρ

Ψ

)
∂
( ρ

Ψ

)
a Ψ + H

( ρ

Ψ

)
∂(aΨ)

= H ′
( ρ

Ψ

) (
∂
( ρ

Ψ
a Ψ

)
− ρ

Ψ
∂(aΨ)

)
+ H

( ρ

Ψ

)
∂(aΨ)

=
(
H

( ρ

Ψ

)
− ρ

Ψ
H ′

( ρ

Ψ

))
∂(aΨ) + H ′

( ρ

Ψ

)
∂(aρ).

Lemma 5.3. We keep the notation of Lemma 5.2. Denote by ∂i, ∂j any derivatives
in R

N+1. We have

∂i

(
a∂j

[
H

( ρ

Ψ

)
Ψ
])

= G
( ρ

Ψ

)
∂i(a∂jΨ) + H ′

( ρ

Ψ

)
∂i(a∂jρ)

+ H ′′
( ρ

Ψ

)
aΨ ∂i

( ρ

Ψ

)
∂j

( ρ

Ψ

)
.

Proof. We compute

∂i

(
a∂j

[
H

( ρ

Ψ

)
Ψ
])

= ∂i

(
aH ′

( ρ

Ψ

)
∂j

( ρ

Ψ

)
Ψ + aH

( ρ

Ψ

)
∂jΨ

)
= aΨ H ′′

( ρ

Ψ

)
∂i

( ρ

Ψ

)
∂j

( ρ

Ψ

)
+ H ′

( ρ

Ψ

) [
∂i

(
a∂j

( ρ

Ψ

)
Ψ
)

+ ∂i

( ρ

Ψ

)
a∂jΨ

]
+ H

( ρ

Ψ

)
∂i
(
a∂jΨ).

Then we observe that

∂i

(
a∂j

( ρ

Ψ

)
Ψ
)

= ∂i

(
a∂j

( ρ

Ψ
Ψ
))

− a
ρ

Ψ
∂jΨ

)
= ∂i(a∂jρ) −

ρ

Ψ
∂i(a∂jΨ) − ∂i

( ρ

Ψ

)
a∂jΨ.

Hence, we get

∂i

(
a∂j

[
H

( ρ

Ψ

)
Ψ
])

= aΨ H ′′
( ρ

Ψ

)
∂i

( ρ

Ψ

)
∂j

( ρ

Ψ

)
+ H ′

( ρ

Ψ

) [
∂i(a∂jρ) −

ρ

Ψ
∂i(a∂jΨ)

]
+ H

( ρ

Ψ

)
∂i
(
a∂jΨ)

= aΨ H ′′
( ρ

Ψ

)
∂i

( ρ

Ψ

)
∂j

( ρ

Ψ

)
+ H ′

( ρ

Ψ

)
∂i(a∂jρ)

+
(
H

( ρ

Ψ

)
− ρ

Ψ
H ′

( ρ

Ψ

))
∂i
(
a∂jΨ).

Then we apply Proposition 5.1 with the operator Tε, ρε, and Ψε = (Θ + εκ)(t, x;
t/ε2, x/ε), where we recall that κ is the solution of the cell problem T0(κ) = −T1(Θ).
We know (Proposition 4.5) that Θ and κ are continuous function and that Θ is
positive. Therefore on every compact K of R

n+1 they are bounded and Θ is bounded
from below. It guarantees that on K, for ε small enough, Ψε is bounded from above
and below. Of course, positivity of Ψε is not guaranteed in the whole space. For that
we have to assume a uniform behavior of u0,1 at infinity. This problem disappears
if the problem (2.1), (2.2) is posed on a bounded domain with periodic or Dirichlet
conditions. We deduce the following corollary.
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Corollary 5.4. With the same assumption as in Theorem 4.7, let ρε be the
solution of the problem (2.1), (2.2) on [0,∞) × Ω. Let us assume the following:

• Ω = R
N , and the functions Θ, κ and their derivatives are bounded and Θ is

bounded from below; or
• Ω is a cell or a smooth bounded domain, and the problem is completed by

periodic or Dirichlet conditions.
Set Ψε(t, x) = (Θ + εκ)(t, x; t/ε2, x/ε) > 0, which is bounded from above and below
for t ∈ (0, T ), x ∈ R

N , ε ∈ (0, ε0). Let H be a C2 convex function, satisfying, for all
s ≥ 0, |sH ′(s)| ≤ CH(s) for some constant C > 0. Suppose that initially

sup
ε>0

∫
H

(
ρεI
Ψε

)
Ψε dx ≤ C < ∞.

Then the quantities

⎧⎪⎪⎨
⎪⎪⎩

∫
H

(
ρε

Ψε

)
Ψε dx,∫ t

0

∫
H ′′

(
ρε

Ψε

) ∣∣∣∣∇x

(
ρε

Ψε

)∣∣∣∣
2

dxds

are bounded on (0, T ), uniformly with respect to 0 < ε < ε0.
Proof. We integrate with respect to x the relation given by Proposition 5.1 and

get

d

dt

∫
H

(
ρε

Ψε

)
Ψε dx +

∫
H ′′

(
ρε

Ψε

) ∣∣∣∣∇x

(
ρε

Ψε

)∣∣∣∣
2

dx =

∫
G

(
ρε

Ψε

)
Tε(Ψε) dx

≤ (1 + C)

∫
H

(
ρε

Ψε

)
Ψε

∣∣∣Tε(Ψε)

Ψε

∣∣∣ dx.
We have Tε(Ψε) = (T2(Θ+εκ)+T1(κ))(t, x; t

ε2 ,
x
ε ), which is a bounded function. Then

the Gronwall lemma concludes the proof.
This result allows us to improve the regularity of the limit function. Indeed,

with H(s) = s2/2, we get that µε(t, x) = ρε/Ψε is bounded in L∞(0, T ;L2(Ω)) ∩
L2(0, T ;H1(Ω)) (actually, we can obtain bound in any Lp). The double-scale limit of
µε is

R(t, x; τ, y)/Θ(t, x; τ, y) = ρ(t, x).

Hence µε converges to ρ(t, x), which thus belongs to L∞(0, T ;L2(Ω))∩L2(0, T ;H1(Ω))
(or L2(0, T ;H1

0 (Ω))). In this class, there is uniqueness of the solution of the effective
advection-diffusion problem. As a consequence, we deduce that the whole sequence
converges to a unique cluster point. Let us also remark that ρε = µε Ψε is bounded
in L∞(0, T ;L2(Ω)), which implies as in the proof of Theorem 4.7 the convergence of
ρε in C0([0, T ];L2(Ω)-weak). We point out that we cannot have a convergence in
L2-strong due to the oscillating factor Ψε.

Corollary 5.5. With the same assumption as in Corollary 5.4, suppose that the
initial data is bounded in L2(Ω). Then ρε converges to ρ in C0([0, T ];L2(Ω)-weak), the
unique solution in L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)) of (4.9) with the corresponding
boundary conditions and the initial condition ρI .
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A FREE BOUNDARY PROBLEM WITH UNILATERAL
CONSTRAINTS DESCRIBING THE EVOLUTION OF A TUMOR
CORD UNDER THE INFLUENCE OF CELL KILLING AGENTS∗
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Abstract. A system of tumor cords is schematized by an array of identical cords, each one
having approximately a rotational symmetry around its central blood vessel. A mathematical model
for the evolution of the cord is presented, taking into account the influence of a limiting nutrient on
the proliferation and death of the cells, the volume reduction of the necrotic material due to fluid loss
from the cord, and the influence of chemotherapy or radiation treatment. Both the steady state and
the evolution problem are considered, showing existence and uniqueness of the solution. A peculiar
feature of the evolution model is that the boundary conditions for nutrient concentration on the
interface between viable cord and the necrotic region may change during the response to treatment,
depending on whether or not new cells enter the necrotic region.

Key words. tumor growth, cancer treatment, free boundary problems for PDEs

AMS subject classifications. 35R35, 92C37, 92C50

DOI. 10.1137/S003614002406060

1. Introduction and model formulation. In some human and experimental
tumors, tumor cells appear to be arranged in cylindrical structures around central
blood vessels, generally surrounded by necrosis. These structures are named tumor
cords [19, 15, 18]. Oxygen and/or nutrient deprivation in cells remote from the central
vessel are likely to play a decisive role in the decrease of cell proliferation rate within
the cord and in the occurrence of necrosis. Mathematical models, describing the
spatial distribution of proliferating and quiescent cells and the outward directed flux
of cells induced by proliferation in a tumor cord at the stationary state, have been
recently proposed [3, 5, 12]. The authors represented the proliferating cells as an
age- or maturity-structured cell population or as discrete maturity compartments.
Existence and uniqueness of the steady-state age density of the cell population within
the cord have been shown in [20]. The growth of an isolated tumor cord within the
normal tissue, when nutrient is supplied by the central vessel and by a distributed
peripheral source that mimics surrounding vessels, has been analyzed in [4].

In the present paper we propose a mathematical model that describes, using the
continuum approach, the behavior of a fully developed system of tumor cords under
the influence of a therapeutic treatment. The existence of a unique stationary state
in the absence of therapy will be shown, as well as the existence and uniqueness
of the solution of the evolutive problem that arises following the perturbation of the
stationary state. This problem is characterized by the presence of free boundaries, the
most important being the ones that confine the necrotic zone: the external boundary is
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Fig. 1. Schematic geometry of the tumor cord with the viable region indicated in gray (symbols
explained in the text).

always a no-flux material surface, whereas the internal boundary may be a nonmaterial
or a material surface, depending on the evolution of the whole cord.

We concentrate on one cord in the core of the system, supposing that (i) we have
symmetry around the axis of the central blood vessel of the cord; (ii) all the quantities
describing the cord structure and the concentrations of the various chemical species
are independent of the axial coordinate; (iii) there is a cylindrical boundary around
the cord where there is no radial exchange of matter (cells, necrotic material, and
diffusible chemicals) with the environment. Such a geometry of the outer boundary
can be considered a reasonable approximation by viewing the cord inside an array of
parallel, identical cords. Figure 1 shows a schematic representation of a tumor cord.
As in previous works on the growth of spherical tumors [14, 1, 11, 13] and in [4, 7],
we consider for simplicity just one species of “nutrient” with concentration σ. Here
we keep the simplified picture in which the system is considered a continuum where
we define the concentrations of the various diffusing substances in a global sense, i.e.,
without distinguishing interstitial and intracellular concentrations. Cells are assumed
to die if σ reaches a death threshold σN . Moreover, we assume a certain degree of
spontaneous cell death within the cord, according to a rate µ(σ), in addition to cell
death induced by the treatment. Accordingly, within the cord we have viable cells,
dead cells, and extracellular fluids, the respective volume fractions νV , νN , and νE
adding to one.

Cells proliferate at the maximum rate χ0 when σ ≥ σP > σN and νE is beyond
some threshold ν̄E . We introduce another threshold σQ ∈ (σN , σP ) below which
the progression of cells across cell cycle is arrested and all cells become quiescent,
maintaining, however, the capacity to resume the proliferation. The properties of the
proliferation rate χ(σ) and of the death rate µ(σ) are stated as follows (see Figure 2):

(H1) χ(σ), µ(σ) continuous and piecewise C1 functions in [σN , σ�],with bounded
first derivatives and with σ�>σP

(H2) χ(σ)=χ0 for σ≥σP , and χ(σ)=0 for σ≤σQ

(H3) χ′(σ)>0 for σ∈(σQ, σP )
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Fig. 2. Possible graphs of χ (solid line) and µ (dashed line) as functions of σ. For the meaning
of the parameters see the text.

(H4) µ(σ)=µmin≥0 for σ≥σµ, with σµ≤σP

(H5) µ′(σ)≤0; if σµ>σN , µ′(σ)<0 only in an interval (σ̄µ, σµ), with σµ>σ̄µ≥σN

(H6) χ0>µmin .

Some generalizations are possible, but (H1)–(H6) are physically natural and simplify
the exposition. Owing to (i)–(ii) we may consider that the volume fractions and the
concentrations of the chemicals depend on the time t and on the radial coordinate
r, measured from the axis of the central blood vessel of radius r0. In the system
we distinguish the following regions from inner to outer: P (fully proliferating zone),
σ(r, t)≥σP ; T (transition zone), σP >σ(r, t)>σQ; Q (quiescent zone), σQ≥σ(r, t)>
σN ; and N (purely necrotic zone), νV = 0. We denote by ρN (t) the radius of the
interface between the viable cord (the P∪T∪Q region) and the N region, and by B(t)
the radius of the exterior boundary of N. The necrotic zone has σ(r, t) = σN in the
usually observed conditions, that is, in the steady state of untreated cord, and, as a
matter of fact, σ never goes below σN if σ(r0, t) remains above σN . However, we shall
see that during the treatment σ may exceed σN in N. Concerning the dead cells, we
assume that they decay to a liquid material at a constant rate:

(H7) µN >0 in P ∪ T ∪ Q, µ̃N >0 in N.

Such different values reflect the different modes of cell death, i.e., apoptosis within
the cord versus necrosis when σ falls to the death threshold. We shall also consider
in section 2 the case in which the region N is absent. We denote by u the velocity
field of the cellular component (here assumed to be the same for both living and dead
cells) and by v the velocity of the extracellular fluid. Assuming equal densities for
viable cells, dead cells, and extracellular fluid, the increment of cellular volume during
proliferation is due to the incorporation of an equal volume of extracellular material.
Thus, the governing equations for the three volume fractions in P∪T∪Q are

∂νV
∂t

+ ∇ · (u νV ) = χ(σ)νV − [µ(σ) + µC(c, σ) + µR(σ, t)] νV ,(1.1)
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∂νN
∂t

+ ∇ · (u νN ) = [µ(σ) + µC(c, σ) + µR(σ, t)] νV − µNνN ,(1.2)

∂νE
∂t

+ ∇ · (v νE) = −χ(σ)νV + µNνN ,(1.3)

as long as νE > ν̄E (otherwise χ(σ) should be reduced by a factor tending to zero
when νE → 0). In (1.1)–(1.3), c is the concentration of a cytotoxic chemical, and
µC(c, σ) is the chemically induced death rate. The dependence of µC on σ allows
us to represent the different sensitivity to treatment of cycling cells with respect to
quiescent cells. The last term in (1.1) describes the cell killing rate by radiation: the
dependence of µR on t takes into account the schedule of radiation treatment and the
delayed effects following the delivery of a single dose. The death rates µC and µR are
assumed bounded. In the region N, since νV =0, the balance equations reduce to

∂νN
∂t

+ ∇ · (u νN ) = −µ̃NνN ,(1.4)

∂νE
∂t

+ ∇ · (v νE) = µ̃NνN .(1.5)

Summing up (1.1)–(1.3) and (1.4)–(1.5), and imposing νV +νN +νE =1, we find

∇ · [u(νV + νN ) + vνE ] = 0 ,(1.6)

which expresses total mass conservation. To model the transport of the nutrient we
assume, as previously mentioned, a common concentration within the cells and in the
extracellular fluid, and uniform diffusivity throughout the system. This proves to be
the case for fast diffusing substances like oxygen. In such a way we can write the mass
balance equation as follows:

∂σ

∂t
−D∆σ + ∇ · (σ[u(νV + νN ) + vνE ]) = −ϕ(σ)νV ,(1.7)

where ϕ(σ) is the consumption rate of viable cells and D is the diffusion coefficient;
ϕ(σ) may be assumed to be a function of Michaelis–Menten type. Thus,

(H8) ϕ(σ) is a bounded, twice continuously differentiable increasing function for

σ≥σN , and ϕ(σN )>0.

To express the velocity fields in (1.1)–(1.7), one should describe the dynamics
of the mixture of cells and extracellular fluids, writing the momentum balance and
including the interactions among the components [2]. To avoid new assumptions
necessary to express the stress tensor and to take full advantage of the simplified
geometry, we decided instead to remain in a purely kinematic framework, introducing
the further approximation νE = constant. This assumption appears to be reasonable
in view of experimental observations in the untreated cord [18], although νE is likely to
take different values in P∪T∪Q and in N, and to transiently increase during treatments
inducing cell death. Thus we set

νE = 1 − ν�, ν� = constant,
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which amounts to saying that both living and dead cells, despite their volume loss,
keep a uniform spatial arrangement. As a result of this simplification, from (1.1),
(1.2), and (1.4) we can deduce the following equation for the velocity field u:

∇ · u =

{
χ(σ)

νV
ν�

− µN (1 − νV
ν�

) in P ∪ T ∪ Q,

−µ̃N in N.
(1.8)

From now on, we will set

νV
ν�

= ν , ν ∈ [0, 1] .(1.9)

Moreover, we assume that u has a negligible component along the axis of the cord
(this simplification is justifiable away from the ends of the cord). Thus, denoting by
u(r, t) the radial component of u, we write

div u =
1

r

∂

∂r
(ru) =

{
(χ(σ) + µN )ν − µN in P ∪ T ∪ Q,
−µ̃N in N.

(1.10)

Inserting (1.10) in div(νu)=νdiv u+ u∂ν/∂r, we finally get for ν the following equa-
tion:

∂ν

∂t
+ u

∂ν

∂r
+ ν

[
µ + µC + µR − (χ + µN )(1 − ν)

]
= 0 in P ∪ T ∪ Q ,(1.11)

and, integrating (1.10) with the condition u(r0, t)=0, we find

ru =

∫ r

r0

r′[(χ(σ) + µN )ν − µN ] dr′ .(1.12)

Since the necrotic material cannot be converted back to living cells, the following
condition on ρN (t) must be satisfied:

u(ρN , t) ≥ ρ̇N ,(1.13)

with u(ρN , t)−ρ̇N being the feeding rate per unit surface of the necrotic zone. Con-
dition (1.13) has a central role in the model.

Concerning the equation for σ, by (1.6) and the assumption ∂σ/∂z=0 (z being
the axial coordinate) that eliminates from (1.7) the axial component of v, we derive

∂σ

∂t
−D∆σ +

∂σ

∂r
[uν� + v̄(1 − ν�)] = −ϕ(σ)ν�ν ,(1.14)

where by v̄(r, t) we denote the average along the axial direction of the radial com-
ponent of the field v over the cord length. We may indirectly estimate the value
of v̄ at the vessel wall from the observation of a fluid loss rate from the vascula-
ture ranging from 0.14 to 0.22 cm3/h per gram of tissue in experimental tumors [8].
Assuming an overall surface of exchanging vasculature of 20 cm2/gram, we obtain
(1 − ν�)v̄ � 70 ÷ 110 µm/h, while a typical value for u is of the order of 1 µm/h.
Thus we can compare the coefficients of ∂σ/∂r in (1.14), concluding that diffusion
with D>5·10−8 cm2/s (D�2·10−5 cm2/s for oxygen [19]) is dominant in cords whose
radius is of the order of 100µm. Moreover, in the typical time scale of cord evolution,



FREE BOUNDARY PROBLEM FOR TUMOR CORD EVOLUTION 887

the whole transport process can be considered quasi-stationary. Therefore (1.14) is
effectively replaced by

∆σ = f(σ)ν ,(1.15)

where f(σ)=ϕ(σ)ν�/D. The interfaces r=ρP (t), r=ρQ(t) bounding the zone T are
defined implicitly as

σ(ρP (t), t) = σP , σ(ρQ(t), t) = σQ .(1.16)

At the inner boundary, i.e., at the vessel wall, we prescribe

σ(r0, t) = σ� .(1.17)

When the cells at the boundary ρN (t) enter the necrotic zone, that is, when

u(ρN , t) > ρ̇N ,(1.18)

the free boundary between viable cord and N carries the conditions

σ(ρN (t), t) = σN ,(1.19)

σr(ρN (t), t) = 0 ,(1.20)

and so the interface is defined implicitly and is not a material surface. We stress that
the massive death occurring when the cells cross ρN can only be caused by insufficient
nutrient, because the treatment was assumed to kill the cells according to bounded
rate constants. Thus (1.19) must hold. However, if the treatment kills a sufficiently
large number of cells in a sufficiently short time, the sudden decrease of nutrient
absorption tends to push outward the free boundary defined by (1.19)–(1.20) with
a speed that can easily exceed that of the cells. This possibility cannot be allowed
because of (1.13). Therefore, when inequality (1.18) tends to be reversed, we must
modify the free boundary conditions, giving up condition (1.19) and replacing it by
the equation

ρ̇N = u(ρN , t) ,(1.21)

which expresses that the interface has become a material surface. Condition (1.20) is
maintained as the second free boundary condition. When such a switch intervenes,
σ(ρN , t) will rise above σN : it is in fact the relative nutrient abundance which is
responsible for the switch. Of course, the new constraint

σ(ρN (t), t) ≥ σN(1.22)

must be imposed, because no cell can be alive if σ<σN , and thus when (1.22) tends to
be violated we must revert to the previous formulation. We remark that the possibility
for the free boundary r = ρN (t) to be nonmaterial or material at different times is a
particular feature of this model.

We must also define the exterior boundary, B(t), where there is no exchange of
matter. This boundary is defined as

Ḃ = u(B, t),(1.23)
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B(0) = B0(1.24)

and is an additional free boundary in the problem.
The discussion about the initial condition for (1.11) and the selection of B0 is

rather delicate (note that (1.11) requires no boundary condition for r = r0, where
u vanishes). We denote by ν0(r), σ0(r), B0 the steady-state solution of the system
(1.11), (1.12), (1.15), (1.17), (1.19), (1.20), (1.23) in the absence of treatment (µC =
µR =0). We will devote section 2 to determining the triple (σ0, ν0, B0). To describe
the response to a treatment starting at t = 0 of a fully developed tumor cord, we
assume

ν(r, 0) = ν0(r),(1.25)

which implies

σ(r, 0) = σ0(r) .(1.26)

The evolution problem must be complemented with the transport equation for
the drug concentration c. Also for the cytotoxic chemical we do not distinguish the
concentrations inside and outside the cells, and we assume uniform diffusivity. We
can thus perform a discussion parallel to the one made for σ. However, we must
remark that 1) the boundary condition at r0 can be rapidly changing due to the
pharmacokinetics of the drug (for instance, the half-life in plasma of the drug 5-
fluorouracyl is around 10 min), so the process cannot in general be considered quasi-
stationary; 2) if the drug diffusivity, DC , is lower than 5·10−8 cm2/s, the model should
be considerably modified because the field v̄ could become important. Neglecting
the convective term (as possible, for instance, for the drug tirapazamine, which has
DC = 7.0 ·10−7 cm2/s [16]), we may write for c the following diffusion-absorption
equation:

∂c

∂t
−DC∆c = −ϕC(c, σ)ν�ν − λc(1.27)

with

c(r0, t) = c�(t),(1.28)

cr(B(t), t) = 0 ,(1.29)

c(r, 0) = 0 .(1.30)

In (1.27), ϕC(c, σ) is a continuously differentiable function, positive for c > 0 and
vanishing for c = 0, that represents drug loss by cellular uptake and metabolism.
Through the dependence of ϕC on σ it is possible to take into account the different
drug uptake into cycling and quiescent cells, whereas the dependence on c accounts
for the modality of uptake (for instance, the dependence on c may be of Michaelis–
Menten type). The coefficient λ≥0 may be associated with a possible natural decay of
c (if the substance is chemically unstable). The function c�(t) in (1.28) will represent
the pharmacokinetics of the drug in the tumor vasculature.

We summarize here the statement of the evolution problem.
Problem P . Find the following field functions and interfaces with the specified

regularity and satisfying the quoted equations:
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• ν(r, t): differential equation (1.11), initial condition (1.25), ν(r, t) ∈ [0, 1],
ν∈C1 for r∈ [r0, ρN (t)] and t∈ [0, T ];

• u(r, t): integral equation (1.12) for r0≤r≤ρN (t) and divu=−µ̃N for ρN (t)<
r<B(t), continuous across the interface, ∂u/∂r continuous separately in the
two domains;

• σ(r, t): differential equation (1.15), condition on the fixed boundary (1.17),
either free boundary conditions (1.19)–(1.20) under the constraint (1.18), or
(1.20)–(1.21) if the latter is violated, with (1.22) becoming the new constraint;
σ, ∂σ/∂r, ∂2σ/∂r2 continuous, and ∂σ/∂t piecewise continuous w.r.t. t, for
r∈ [r0, ρN (t)] and t∈ [0, T ];

• c(r, t): satisfies the differential equation (1.27) in the classical sense separately
in the N region and its complement, with initial condition (1.30) and boundary
conditions (1.28)–(1.29). Moreover, c∈H1+α,(1+α)/2 in the whole domain for
any α∈(0, 1) (the notation of the functional space is taken from [17]);

• ρN (t): defined either implicitly through the Cauchy conditions (1.19)–(1.20)
or as a material surface by (1.21), continuous and piecewise continuously
differentiable;

• B(t): differential equation (1.23), initial condition (1.24), B(t) having Lips-
chitz continuous first derivative.

The interfaces ρP (t), ρQ(t) are implicitly defined as the level curves σ=σP , σ=σQ.

2. The stationary solution. In this section we investigate the stationary so-
lution of the untreated system, to be used as initial data for the evolution problem.
For ease of notation in this section we will drop the subscript “0” previously used to
denote the stationary solution. Although the typical experimental situation, to which
we made specific reference in the formulation of the evolution problem, is character-
ized by the presence of a necrotic region around viable cells, in the study of the steady
state we also envisage the possibility that such a necrotic region may be absent. Both
cases may occur, depending on the values of the parameters involved.

Case I: The stationary problem with a necrotic region. Find the triple (σ, ν, u)
and the boundaries ρN ,B of the necrotic zone, with B > ρN , σ(r) > 0, ν(r) ∈ [0, 1],
and u(r)>0 in (r0, B), satisfying

∆σ = f(σ)ν , r0 < r < ρN ,(2.1)

σ(r0) = σ� ,(2.2)

σ(ρN ) = σN ,(2.3)

σr(ρN ) = 0 ,(2.4)

∂ν

∂r
+ Aν = 0 , r0 < r < ρN(2.5)

with A given by

A =
1

u
[µ(σ) − (χ(σ) + µN )(1 − ν)] ,(2.6)

ru =

⎧⎨
⎩

∫ r

r0

r′[(χ(σ) + µN )ν − µN ] dr′ , r0 ≤ r ≤ ρN ,

ρNu(ρN ) − (µ̃N/2)(r2 − ρ2
N ) , ρN < r ≤ B ,

(2.7)



890 A. BERTUZZI, A. FASANO, AND A. GANDOLFI

u(B) = 0 .(2.8)

Case II: The stationary problem without a necrotic region. The unknowns are
(σ, ν, u) and the outer boundary B, again with σ(r) > 0, ν(r) ∈ [0, 1], and u(r) > 0
in (r0, B), such that the following equations are satisfied: (2.1), (2.5), (2.6), the first
equation in (2.7), all for r0<r<B, (2.2), (2.8), and

σ(B) ≥ σN , σ > σN for r0 ≤ r < B ,(2.3′)

σr(B) = 0 .(2.4′)

We expect that the latter case occurs when µN is sufficiently large and µ is sufficiently
large in Q.

We remark that assumption (H8), i.e., f(σN )>0, is necessary in Case I (otherwise
problem (2.1), (2.3), (2.4) for any finite ρN can have only the constant solution σ≡
σN ). Moreover, in both cases we may say a priori that σr < 0 (in (r0, ρN ) or in
(r0, B), respectively) and that, as we shall see very soon, the right derivative of u at
r0 is equal to χ0−µmin, pointing out that χ0 > µmin is a necessary condition for a
positive velocity field.

We shall prove an existence and uniqueness theorem treating Cases I and II
simultaneously.

Theorem 2.1. Under the previously stated assumptions (H1)–(H8), the station-
ary problem has one unique solution.

Since u vanishes for r = r0, (2.5) becomes degenerate and we cannot prescribe
ν for r = r0. We circumvent this difficulty by noting that when σ > σP equations
(2.5)–(2.6) are satisfied by ν=νmax with

νmax = 1 − µmin

χ0 + µN

.(2.9)

If µmin = 0, νmax = 1; otherwise νmax ∈ (0, 1) thanks to (H6). We can state the
following lemma that will prove fundamental in establishing uniqueness.

Lemma 2.2. When χ(σ) = χ0 and µ(σ) = µmin, (2.9) is the only nontrivial
bounded solution of (2.5), (2.6).

Proof. If the limit of ν for r→ r+
0 exists bounded and different from νmax and

zero, then the derivative of ν has a nonintegrable singularity near r0, contradicting
the existence of a bounded limit for ν. We can also exclude ν→0 because ∂ν/∂r and
ν would have the opposite sign in a neighborhood of r0, where A>0. If ν has no limit,
ν can oscillate only if all its maxima are equal to νmax and all its minima are equal to
zero. However, if ν = νmax at any point separated from r0 (A is then bounded), the
only compatible solution of (2.5) is ν ≡ νmax. Therefore, we must examine only the
case in which ν 	=νmax for r>r0 and ν tends to νmax. In that case, in the proximity
of r0, u� (χ0−µmin)(r−r0) and from (2.5) we can see that ν cannot exceed νmax.
Setting ν=νmax−ν̃ and using the above first-order approximation for u, we can write
a differential equation that describes the behavior of ν̃ at the leading order in r−r0, on
which we impose the condition ν̃→ 0 as r→ r+

0 . Integrating this equation backward
from a point r̄0>r0, where we suppose ν̃(r̄0)= ν̃0<νmax with ν̃0>0, we obtain

1

νmax

log

∣∣∣∣ ν̃(νmax − ν̃0)

ν̃0(νmax − ν̃)

∣∣∣∣ = − χ0 + µN

χ0 − µmin

log
r − r0
r̄0 − r0

,
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and for any ν̃0>0 we have a sign incompatibility in the limit r→r+
0 . Hence, it must

necessarily be ν̃0 =0 and ν≡νmax.
Thus we put ν ≡ νmax as long as σ≥ σP , i.e., for r ∈ [r0, ρP ], and we work with

the (nondegenerate) system (2.5), (2.6) for r>ρP , with the condition

ν(ρP ) = νmax .(2.10)

A useful a priori result concerning the stationary solution is the following.
Lemma 2.3. For any solution of the stationary problem, in Case I ν is positive,

continuously differentiable, and nonincreasing in [r0, ρN ]. More precisely,
(a) if µ≡0, then ν≡1 in [r0, ρN ];
(b) if µ=0 for σ≥σµ, with σµ∈ (σN , σP ] and µ>0 for σ<σµ, then ν(r)=1 for

r0≤r≤ρµ, with ρµ defined by σ(ρµ)=σµ, and ν′(r)<0 for ρµ<r<ρN ;
(c) if µ=µmin>0 for σ≥σµ, with σµ∈(σN , σP ], then ν′(r)<0 for ρP <r<ρN .

Moreover, if µN >µmax, with µmax being the maximal value of µ(σ), then ν > νmin

with

νmin = 1 − µmax

µN

.(2.11)

In Case II, ν is positive, continuously differentiable, and nonincreasing in [r0, B).
Either (b) or (c) holds after substituting B for ρN .

Proof. The continuity of ν′(r) is an immediate consequence of ν=νmax in [r0, ρP ]
and of (2.5)–(2.7). We start with Case I. First of all, dealing a priori with a solution,
we may use the properties u(r)≥ û>0 and σr<0 in (ρP , ρN ). Therefore, the formal
integration of (2.5) for r > ρP with ν(ρP ) = νmax provides ν > 0 and, in particular,
ν(ρN )>0. Case (a) is trivial: since χ+µN >0, when µ≡0 the only solution of (2.5)
with ν(ρP )=νmax=1 is ν≡1. We note that when µ≡0, only a solution of the type of
Case I is possible. To deal with (b) and (c), let us consider the function ν̂(r) defined
by the condition A(r)=0, that is,

ν̂(r) = 1 − µ(σ(r))

χ(σ(r)) + µN

.(2.12)

Since µN >0, ν̂(r) also is defined in Q.
In case (b) we have ν= ν̂=1 up to r=ρµ. Computing

ν̂′(r) =
σr

χ + µN

[
µχ′

χ + µN

− µ′
]
,

we see that ν̂′(r) < 0 in the union I of the intervals where µχ′ > 0 and/or µ′ < 0,
which by (H5) includes a right neighborhood of ρµ and is connected. If σµ∈(σQ, σP ],
it is indeed I = (ρµ,max[ρQ, ρ̄µ]), with ρ̄µ being such that σ(ρ̄µ) = σ̄µ, whereas if
σµ ∈ (σN , σQ], it is I = (ρµ, ρ̄µ). Now we prove that as long as ν̂′ < 0 we must have
ν > ν̂ and consequently A > 0, implying ν′ < 0. Suppose that for some r̄ ∈ I we
have ν(r̄) < ν̂(r̄), implying A(r̄) < 0 and ν′(r̄) > 0. As a consequence, there must
be a point r� ∈ (ρµ, r̄) in which ν has a local minimum and thus A(r�) = 0 and
ν(r�) < ν̂(r�), which is impossible. Also, we can exclude that ν equals ν̂ at some
point r̄ of I, because at such a point A = 0 and thus we are back to the previous
contradiction in a left neighborhood of r̄. Therefore ν>ν̂ and ν′<0 in I. If ρ̄µ=ρN ,
then ν′ < 0 for r ∈ (ρµ, ρN ). If not, in the interval [ρ�, ρN ), where ρ� = max[ρQ, ρ̄µ],
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we have µ = µmax > 0 and ν̂ = 1−µmax/µN . We investigate the behavior of ν in
the interval [ρ�, ρN ). If µN ≤ µmax, it is ν̂ ≤ 0 and necessarily ν > ν̂ and ν′ < 0
in [ρ�, ρN ). If µN > µmax, it is ν̂ = νmin and, if ν(ρ�) > νmin, we have ν > νmin

and ν′ < 0 in (ρ�, ρN ), because otherwise, integrating (2.5) backward from a point
where ν=νmin, we conclude that ν(ρ�)=νmin against our assumption. Suppose now
that ν(ρ�) = νmin, which would imply ν = νmin in [ρ�, ρN ), and take the difference
ν̃=ν−νmin. Recalling that νmin=1−µmax/µN , for r<ρ� we have

ν̃′ + Ãν̃ = δ

with

Ã =
1

u

[
µ− χ

(
µmax

µN

− ν̃ − νmin

)
− 2µmax + µN + µN ν̃

]
,

δ =
1

u

(
µmax − µ + χ

µmax

µN

)
νmin .

For ρ�−r > 0 sufficiently small, we have Ã > 0, because Ã(ρ�)> 0 since µ−µmax =
µN ν̃=0 for r=ρ�. Also, δ>0 in the same interval. Therefore, integrating the ODE
for ν̃ backward from r=ρ� with ν̃(ρ�)=0, we obtain ν̃ <0, contradicting the already
established result ν̃ >0 for r<ρ�.

In case (c) the set I is not necessarily connected, but it includes at least the
interval (ρP , ρQ); thus ν′< 0 in the region T. If µ is constant, then I coincides with
T and, to extend the result ν′<0 to Q, we may argue as in case (b). If there is a gap
between T and the set where µ′<0, the same argument applies there, leading to the
same conclusion.

In Case II, as in Case I, since it is a priori known that u(r)> 0 for r0 < r <B,
the formal integration of (2.5) starting from r = ρP , where ν = νmax, gives ν > 0
for r ∈ (r0, B). We note preliminarily that in case (b) it is B > ρµ, because u is
positive for r0 < r≤ ρµ. The same cannot be guaranteed in case (c). Following the
above arguments with the necessary slight modifications, the stated properties can be
demonstrated.

The proof of Theorem 2.1 is based on the following argument. First we consider
the auxiliary problem in which, in place of conditions (2.3), (2.4), we prescribe

σr(r0) = Σ� < 0(2.13)

and we look for (σ, ν, u) having the required properties up to r = ρ̂, which is the
minimum among the points where u or σr vanishes for the first time or where σ takes
the value σN . In such a way σ is never increasing and σrr >0 as long as σr <0, and
u>0 for r0<r<ρ̂.

A basic property of the auxiliary problem is that, setting ν=νmax, we can reduce
the system (2.1), (2.2), (2.13) for σ to the nonlinear Volterra integral equation

σ = σ� + r0Σ
� log

r

r0
+ νmax

∫ r

r0

r′f(σ) log
r

r′
dr′ ,(2.14)

up to the point ρP (Σ�) at which σ takes the value σP , which is defined if Σ� is less
than some negative constant. We also find that in the same interval (r0, ρP )

σr = Σ� r0
r

+ νmax

∫ r

r0

f(σ)
r′

r
dr′ ,(2.15)
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ru =
1

2
(χ0 − µmin)(r2 − r2

0) .(2.16)

Therefore, ν and u are independent of Σ� as long as σ≥σP , and differentiating (2.14)
w.r.t. Σ� we obtain a linear integral equation in ∂σ/∂Σ�:

∂σ

∂Σ�
= r0 log

r

r0
+ νmax

∫ r

r0

r′f ′(σ)
∂σ

∂Σ�
log

r

r′
dr′ ,(2.17)

showing that ∂σ/∂Σ� > 0. The fact that ∂σr/∂Σ� > 0 in the same interval is now a
consequence of (2.15). It is also easy to conclude that ρP (Σ�) is increasing.

Then, we shall go through the following steps:
1) We show that, for r>ρP (Σ�) and Σ� in a suitable interval, we can continue

the solution (σ, ν, u) in a unique way up to r= ρ̂.
2) We prove that σ, σr, ν, and u depend monotonically on Σ� also for r>ρP .
3) We establish that there is a unique choice of Σ� such that (2.3), (2.4) or (2.3′),

(2.4′) are satisfied.
We start by looking for a priori bounds on Σ�.

Lemma 2.4. The value of Σ� such that (2.3), (2.4) or (2.3′), (2.4′) are satisfied
lies in a suitable interval (Σ1,Σ2) which can be computed a priori.

Proof. If we consider the Cauchy problem

∆σ = f(σ)νmax , σ(r0) = σ� , σr(r0) = Σ� ,

we realize that both σ and σr depend monotonically on Σ� and that we can choose
Σ�=Σ2 in such a way that ∂σ/∂r vanishes where σ takes the value σP . From (2.16)
we note that u(ρP ) > 0. If (2.3), (2.4) or (2.3′), (2.4′) are to be fulfilled, we must
necessarily have Σ� < Σ2. We note that, for all Σ� < Σ2, the function ρP (Σ�) is
uniquely defined in a monotone fashion.

Let us now establish a lower bound for Σ�. For any fixed Σ� < Σ2, as long as
σ > σP , the auxiliary problem is reduced to the integral equation (2.14). We also
know that beyond ρP the volume fraction ν does not exceed νmax. We compare the
continuation of σ(r) for r>ρP with the function ω(r) satisfying for r>ρP

∆ω = f(σP )νmax , ω(ρP ) = σP , ωr(ρP ) = Σ̄ < 0 ,(2.18)

with Σ̄ chosen in such a way that ωr vanishes where ω = σN . If σr(ρP ) ≤ Σ̄, then
ω > σ, ωr > σr, and therefore σr < 0 where σ = σN . If we denote by Σ1 a Cauchy
datum for σr(r0) which produces σr(ρP )=Σ̄, then we have Σ�>Σ1.

To prove the existence of Σ1 we write explicitly the function ω for any ρP > r0
and any Σ̄<0:

ω = σP + ρP Σ̄ log
r

ρP
+

1

2
S

(
r2 − ρ2

P

2
− ρ2

P log
r

ρP

)

with S=f(σP )νmax. Imposing that ωr vanishes where ω=σN , we obtain an algebraic
system for the pair (ρ̄N , Σ̄), with ρ̄N being the point such that ω(ρ̄N )=σN . Setting
y= ρ̄N/ρP , y>1, such a system can be written in the following form:

Σ̄ = −1

2
SρP (y2 − 1) ,(2.19)
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y2 log y − y2 − 1

2
=

2

Sρ2
P

(σP − σN ) ,(2.20)

the derivative of the left-hand side of (2.20) w.r.t. y being positive for y>1. Thus for
ρP ∈(r0, ρP (Σ2)) there is a one-to-one mapping between ρP and y, through which we
can define the continuous function Σ̄ = h(ρP ) with range in a finite interval Σ̄min ≤
Σ̄≤ Σ̄max < 0. Going back to the determination of Σ1, we note that it corresponds
to finding a value of Σ� with the property that the function Σ�, defined as Σ�(Σ

�)=
σr(ρP (Σ�)), takes precisely the value of Σ̄ corresponding to ρP (Σ�). Since

Σ� = Σ� r0
ρP

+
νmax

ρP

∫ ρP

r0

f(σ)r dr < 0

for Σ� ∈ (−∞,Σ2), it is easy to see that dΣ�/dΣ
� is positive, and we conclude that

Σ� grows from −∞ to 0 as Σ� varies from −∞ to Σ2. Hence, we can define a C1

function ρP = g(Σ�), monotonically increasing from r0 to ρP (Σ2), over the interval
(−∞, 0). Therefore, in the plane (Σ̄, ρP ) the two graphs ρP = g(Σ̄) and Σ̄ = h(ρP )
must have at least one intersection. To each intersection we associate a value of Σ1

via the mapping ρP → Σ�, and our final definition of Σ1 is the largest in the set of
the values above.

Now we turn our attention to the solution of the auxiliary problem (step 1).
Lemma 2.5. The auxiliary problem (2.1), (2.2), (2.13), (2.5), (2.6), (2.7) is

uniquely solvable for any Σ�∈(Σ1,Σ2) up to r= ρ̂.
Proof. For each Σ� ∈ (Σ1,Σ2), we find σ(r) in (r0, ρP (Σ�)), and beyond ρP we

consider the continuation ω(r) obtained by solving (2.18) with Σ̄ =σr(ρ
−
P ). For any

given function ν(r) taking values in (0, νmax] the solution of ∆σ = f(σ)ν with the
same Cauchy data in ρP as for ω is such that σ ≤ ω, σr ≤ ωr. In particular, σ is
decreasing as long as ω is decreasing. So we have an estimate (ρP , r1), with r1 being
such that ωr(r1) = 0, of the interval in which σ is decreasing. Also, we note that
u(ρP )>0 can be computed from (2.16), and that for r>ρP

u(r) >
1

r

[
χ0 − µmin

2
(ρ2

P − r2
0) −

µN

2
(r2 − ρ2

P )

]
= F (r) .(2.21)

Thus for any um∈(0, u(ρP )) we can define r2 such that F (r2)=um.
At this point we set up a fixed point argument to prove existence in (ρP , r̄), with

r̄=min(r1, r2). Let us introduce the set of functions

N =

{
ν∈C([ρP , r̄]) | ν(ρP )=νmax, ν nonincreasing, ν∈ [0, νmax],Lip ν≤ µmaxνmax

um

}
,

which, if µ=0, reduces to the only element ν=1. For ν given in N , solve the problem

∆σ = f(σ)ν , σ(ρP ) = σP , σr(ρ
+
P ) = σr(ρ

−
P ) , r > ρP(2.22)

and define ν̃(r) as the solution of

∂ν̃

∂r
+ Ãν̃ = 0 , Ã=

1

u
[µ(σ)−(χ(σ)+µN )(1−ν̃)]/u , ν̃(ρP ) = νmax(2.23)

with

ru = ρPu(ρP ) +

∫ r

ρ
P

r′[(χ(σ) + µN )ν − µN ] dr′ ,(2.24)
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where σ is the solution of (2.22) and ν is the chosen element of N . If µ = 0, the
trivial fixed point is ν = 1. We know that in (ρP , r̄) σ is decreasing and u>um > 0.
Rereading the proof of Lemma 2.2, we see that this is all we need to conclude that
ν̃ is nonincreasing and with range in (0, νmax]. In addition, since Ã≥ 0, we can say
that Ã ≤µmax/um and therefore ν̃∈N .

Now take ν1, ν2 ∈ N and consider the corresponding functions ν̃1, ν̃2 as well as
Ã1, Ã2, σ1, σ2, u1, u2. We set δ=ν1−ν2, δ̃= ν̃1−ν̃2. It is not difficult to show that δ̃
satisfies

∂δ̃

∂r
+

[
Ã1 +

ν̃2

u2

(χ2 + µN )

]
δ̃ =

ν̃2

u2

[
χ′ (σ1 − σ2)(1 − ν̃1)

+ (u1 − u2)Ã1 − µ′(σ1 − σ2)

]
,(2.25)

with χ′ and µ′ evaluated at values between σ1 and σ2 and δ̃(ρP ) = 0, and that the
estimates

sup
(ρ

P
,r)

|σ1 − σ2| ≤ C1(r)

∫ r

ρ
P

δ(r′) dr′ ,(2.26)

sup
(ρ

P
,r)

|u1 − u2| ≤ C2(r)

∫ r

ρ
P

δ(r′) dr′ ,(2.27)

where C1(r) and C2(r) are known increasing functions of r vanishing for r=ρP , can
be obtained by standard arguments. Thus we obtain the inequality

|δ̃(r)| ≤
∫ r

ρ
P

C3(r
′)

∫ r′

ρ
P

δ(r′′) dr′′ dr′ ,(2.28)

concluding that the mapping ν→ ν̃ is continuous in the sup-norm and contractive for
r close enough to ρP , which provides existence and uniqueness up to r̄. To conclude
the proof, we apply the same procedure for r>r̄, redefining ω(r) as the solution of

∆ω = f(σ(r̄))ν(r̄) , ω(r̄+) = σ(r̄−) , ωr(r̄
+) = σr(r̄

−) ,(2.29)

thus shifting r1 to the right, and redefining F (r) as F (r) = [r̄u(r̄)− µN

2 (r2− r̄2)]/r ,
which provides a new value of r2 through F (r2) = um, um ∈ (0, u(r̄)). Since we can
take um arbitrarily close to zero, by repeating this procedure we obtain precisely the
desired result.

We remark that the function ν(r) obtained as the solution of the auxiliary problem
is positive and nonincreasing in (r0, ρ̂). Moreover, if µmin > 0, it is ν′ < 0 in (ρP , ρ̂),
whereas if µmin = 0, it is ν′ < 0 in (ρµ, ρ̂) for the values of Σ� such that σ(ρ̂) < σµ.
These properties can be checked following the argument of Lemma 2.2.

The monotonicity result (step 2) is now stated by the following lemma.
Lemma 2.6. The functions σ, ν, and u solving the auxiliary problem depend

monotonically on Σ�. Indeed, ∂σ/∂Σ�>0, ∂σr/∂Σ�>0, ∂ν/∂Σ�≥0 (∂ν/∂Σ�>0 in
the interval in which ν is decreasing), and ∂u/∂Σ�≥0.

Proof. The auxiliary problem is equivalently rewritten as

σ = σ� + r0Σ
� log

r

r0
+

∫ r

r0

r′f(σ)ν log
r

r′
dr′ , r0 ≤ r ≤ ρ̂(Σ�),(2.30)
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ν = νmax exp

(
−
∫ r

ρ
P

Adr′
)
, ρP ≤ r ≤ ρ̂(Σ�),(2.31)

together with the expression (2.7) for u. We recall that A contains u, σ and ν, so that
(2.31) is just a formal way of representing ν. Differentiating (2.30), (2.7), and (2.31)
with respect to Σ�, we obtain

∂σ

∂Σ�
= r0 log

r

r0
+

∫ r

r0

r′
[
f ′(σ)

∂σ

∂Σ�
ν + f(σ)

∂ν

∂Σ�

]
log

r

r′
dr′ ,(2.32)

r
∂u

∂Σ�
=

∫ r

r0

r′
[
χ′ ∂σ

∂Σ�
ν + (χ + µN )

∂ν

∂Σ�

]
dr′ ,(2.33)

∂ν

∂Σ�
= −ν

∫ r

ρ
P

∂A

∂Σ�
dr′ ,(2.34)

where we have used A(ρP )=0. Next we compute

∂A

∂Σ�
= −A

u

∂u

∂Σ�
− 1

u

[
χ′ ∂σ

∂Σ�
(1 − ν) − (χ + µN )

∂ν

∂Σ�
− µ′ ∂σ

∂Σ�

]
(2.35)

in which we may eliminate ∂u/∂Σ� making use of (2.33). We recall that the problem
for σ is uncoupled up to r = ρP (because ν = νmax) and that ∂σ/∂Σ� > 0 in that
interval, as it is easily deduced from (2.32) itself and as it was already mentioned.
Thus the monotone dependence must in fact be shown for r > ρP (Σ�) (ρP is an
increasing function of Σ�). For this reason, for r>ρP we rewrite (2.32) in the form

∂σ

∂Σ�
=

∂σ

∂Σ�

∣∣∣∣
r=ρ

P
(Σ�)

+r0 log
r

ρP
+

∫ r

ρ
P

r′ log
r

r′
f ′ν

∂σ

∂Σ�
dr′+

∫ r

ρ
P

r′ log
r

r′
f

∂ν

∂Σ�
dr′ ,

(2.36)

while (2.34) becomes, using (2.35) and after some algebra,

1

ν

∂ν

∂Σ�
=

∫ r

ρ
P

[(
r′F (r′, r)ν +

1

u
(1 − ν)

)
χ′ − µ′

u

]
∂σ

∂Σ�
dr′

+

∫ r

ρ
P

[
r′F (r′, r) − 1

u

]
(χ + µN )

∂ν

∂Σ�
dr′(2.37)

with

F (r′, r) =

∫ r

r′

1

r′′
A

u
dr′′ , r > r′ .(2.38)

As we said, the term ∂σ/∂Σ�|r=ρ
P

(Σ�) in (2.36) is strictly positive, while ∂ν/∂Σ�

is zero at the same point. We have obtained a system of linear Volterra integral
equations for the pair ∂σ/∂Σ�, ∂ν/∂Σ� and we restrict r to staying far from the
possible singularity of 1/u. Let us distinguish the same three cases (a), (b), and (c)
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as in the proof of Lemma 2.2. Case (a): µ ≡ 0 implies ∂ν/∂Σ� ≡ 0, implying also
that ∂σ/∂Σ� > 0. Case (b): ∂ν/∂Σ� = 0 up to r = ρµ, and we may rewrite (2.37)
replacing ρP by ρµ. Note that the problem for σ is uncoupled in (r0, ρµ), where we
can easily see that ∂σ/∂Σ�>0. We consider the modified version of (2.37) for r>ρµ
and sufficiently close to ρµ, so that ∂σ/∂Σ�>0. If (1−ν)χ′−µ′ =−µ′>0 for r=ρ+

µ ,

then
∫ r

ρµ
(1/u)[(1−ν)χ′ − µ′](∂σ/∂Σ�) dr′>0 is the only term of order r−ρµ, all the

remaining ones being at least O[(r−ρµ)2]. Thus ∂ν/∂Σ� > 0 for a sufficiently small
interval on the right of ρµ. If µ′=0 at r=ρ+

µ , we rewrite (2.37) in the form

Y (r) = Θ(r) + Ξ(r) −
∫ r

ρµ

1

u
ν(χ + µN )Y dr′ ,(2.39)

having defined

Y (r) =
1

ν

∂ν

∂Σ�
, Θ(r) =

∫ r

ρµ

1

u
[(1 − ν)χ′ − µ′]

∂σ

∂Σ�
dr′ ,

Ξ(r) =

∫ r

ρµ

r′F (r′, r)ν

[
∂σ

∂Σ�
+ (χ + µN )Y

]
dr′ .

We note that Θ(r)>0, at least as long as ∂σ/∂Σ�>0, and Ξ(r)>0 for r not too far
from ρµ (note that A>0 for r>ρµ (see Lemma 2.2), implying F >0, and Y (ρµ)=0).
Hence (2.39) can be written as

Y (r) +

∫ r

ρµ

a(r′)Y (r′) dr′ = Z(r)(2.40)

with Z = Θ+Ξ > 0, a = ν(χ+µN )/u≥ 0. From (2.40) we conclude that Y has the
same sign as Z in a neighborhood of ρµ. In case (c), either (1−ν)χ′−µ′ is positive for
r=ρP , or it is positive in a right neighborhood of it and we can repeat the argument
above. Clearly ∂σ/∂Σ� remains positive if ∂ν/∂Σ� > 0 and even in a larger interval
beyond the possible sign inversion of ∂ν/∂Σ�.

Let us now suppose that ∂ν/∂Σ� vanishes for the first time in some r = r̂ after
it has become positive. Consider first the case (c) with r̂∈ (ρP , ρQ]. From (2.37) we
have∫ r̂

ρ
P

[(
r′F (r′, r̂)ν+

1

u
(1−ν)

)
χ′− µ′

u

]
∂σ

∂Σ�
dr′+

∫ r̂

ρ
P

[
r′F (r′, r̂)−1

u

]
(χ+µN )

∂ν

∂Σ�
dr′ = 0

and for r>r̂ we can write

1

ν

∂ν

∂Σ�
=

∫ r̂

ρ
P

r′Φ(r, r̂)νχ′ ∂σ

∂Σ�
dr′ +

∫ r̂

ρ
P

r′Φ(r, r̂)(χ + µN )
∂ν

∂Σ�
dr′

+

∫ r

r̂

[(
r′F (r′, r)ν+

1

u
(1−ν)

)
χ′−µ′

u

]
∂σ

∂Σ�
dr′+

∫ r

r̂

[
r′F (r′, r)− 1

u

]
(χ+µN )

∂ν

∂Σ�
dr′

(2.41)
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with

Φ(r, r̂) = F (r′, r) − F (r′, r̂) =

∫ r

r̂

1

r′′
A

u
dr′′ > 0 .

The first three terms are positive. Since χ′>0 in some interval and Φ(r, r̂)=O(r−r̂)
(remember that A is strictly positive near r̂), we can say that the first and the third
terms are O(r− r̂), thus dominating the last term, whose sign is uncertain. In other
words, we have proved that ∂(∂ log ν/∂Σ�)/∂r is positive in r̂, contradicting the fact
that ∂ν/∂Σ� has attained a minimum there in [ρP , r̂]. If we are still in case (c), but
r̂>ρQ, (2.41) can be simplified, taking into account that χ=χ′=0 for ρQ<r<r̂, and
a similar conclusion can be reached. Passing to case (b), we can argue in the same
way if ρµ∈(ρP , ρQ). If instead ρµ≥ρQ, we have to modify (2.41) to

1

ν

∂ν

∂Σ�
=

∫ r̂

ρµ

r′Φ(r, r̂)µN

∂ν

∂Σ�
dr′ +

∫ r

r̂

[
r′F (r′, r) − 1

u

]
µN

∂ν

∂Σ�
dr′ −

∫ r

r̂

µ′

u

∂σ

∂Σ�
dr′ ,

and we infer the desired conclusion since µN >0.
Once we have seen that ∂σ/∂Σ� > 0, ∂ν/∂Σ� > 0, it is straightforward to check

that ∂σr/∂Σ�>0 by differentiating rσr =r0Σ
� +

∫ r

r0
r′f(σ)ν dr′ w.r.t. Σ�.

Now we can complete the proof of Theorem 2.1, on the basis of the monotonicity
results obtained in the previous lemma.

Proof of Theorem 2.1. In view of Lemma 2.4, we have obtained a one-parameter
family of solutions of the auxiliary problem, including all possible solutions of the
original problem. The reason why a solution of that family is not a solution of the
original problem is related to its behavior at the terminal radial coordinate ρ̂. Namely,
we may distinguish the following three disjoint classes of solutions of the auxiliary
problem not solving the original problem:

(α) σr(ρ̂)=0, σ(ρ̂)>σN , u(ρ̂)>0;
(β) σr(ρ̂)<0, σ(ρ̂)=σN , u(ρ̂)>0;
(γ) σr(ρ̂)<0, u(ρ̂)=0.

The class (α) is certainly not empty because it contains all the solutions with Σ�

sufficiently close to Σ2. One of the classes (β) or (γ) may be empty. The class (α) may
confine with (β) or with (γ). In the former case, (α) and (β) are generally separated
by a solution of type I. In the latter case, (α) and (γ) are separated by a solution of
Case II. Classes (β) and (γ) both may exist, but a boundary element, corresponding
to some Σ� =Σβγ , generally belongs to (γ) and therefore is not a solution. However,
there can be the exceptional case in which such a boundary element is precisely the
limit solution of Case II characterized by σr(ρN )=0, σ(ρN )=σN , u(ρN )=0, and also
confining with class (α). We can approach the solution of our problem from above
or from below, making Σ� decrease from Σ2 or increase from Σ1, respectively. We
recall that ∂σ/∂Σ� > 0 and that ∂ν/∂Σ� ≥ 0 is not identically zero in (r0, ρ̂), except
for the trivial case µ≡0. This implies that ∂u/∂Σ� (always nonnegative) is also not
identically zero and in particular is strictly positive near the end point ρ̂ (see (2.33)).

1) Σ� decreasing from Σ2. Obviously we are moving through the class (α). Taking
into account that σr(ρ̂) = 0 and σ(ρ̂) is strictly decreasing as long as u(ρ̂) > 0, two
cases are possible: either u(ρ̂) remains positive until σ(ρ̂) reaches σN or u(ρ̂) vanishes
before (or possibly when σ(ρ̂) reaches σN ). In the first case, for the corresponding
value of Σ�, a solution of type I is found; otherwise we have obtained a solution of
type II.
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2) Σ� increasing from Σ1. For Σ� close to Σ1 we may have solutions in (β) or
in (γ). Suppose we start with class (β). Increasing Σ�, either u(ρ̂) remains positive
and then we reach exactly the same solution of type I approached from above, or
u(ρ̂) vanishes for some Σ�, meaning that we are shifting to class (γ), unless σr(ρ̂)
also vanishes, so that we have recovered the limit solution of type II having σr(ρ̂)=0,
σ(ρ̂) = σN , u(ρ̂) = 0. Moving within (γ) (possibly from Σ� = Σ1), an increase of Σ�

produces a positive velocity and ρ̂ is shifted to the right. The procedure stops when
we reach a ρ̂ such that not only u(ρ̂)=0, but also σr(ρ̂)=0, so that (2.3′), (2.4′) are
satisfied.

As a result of the discussion above, we can say that the interval (Σ1,Σ2) is
partitioned in one of the following ways:

(Σ1,Σβγ) ∪ [Σβγ ,Σ
II
sol) ∪ {ΣII

sol} ∪ (ΣII
sol,Σ2) ≡ Iβ ∪ Iγ ∪ {ΣII

sol} ∪ Iα,(2.42)

(Σ1,Σ
I
sol) ∪ {ΣI

sol} ∪ (ΣI
sol,Σ2) ≡ Iβ ∪ {ΣI

sol} ∪ Iα .(2.43)

In (2.42) the intervals Iβ , Iγ , Iα correspond to solutions in the respective classes, and

ΣII
sol is the value of Σ� providing a solution of type II. The interval Iβ is possibly

empty. In (2.43) ΣI
sol is the value of Σ� providing a solution of type I. It is evident

that the monotone structure of the family of solutions has implied the uniqueness of
the solution to the original free boundary problem.

All we need to complete the description of the solution of Case I is to calculate
the velocity field in the region N according to (2.7). As u(B) = 0, this gives the
steady-state value of B,

B =

[
ρ2
N +

2

µ̃N

ρNu(ρN )

]1/2

.(2.44)

3. Existence and uniqueness for the evolution problem. We suppose that
at t=0 the system is in equilibrium and a purely necrotic region is present (Case I).
In addition to (H1)–(H8), we make the following assumptions:

(H9) µC(c, σ) is a nonnegative, twice continuously differentiable, bounded function,
increasing with respect to c and vanishing for c=0.

(H10) µR(σ, t), t ≥ 0, is a nonnegative, twice continuously differentiable, bounded
function, with µR(σ, 0)=0.

(H11) c�(t), t≥0, is a nonnegative, continuously differentiable and bounded function
with c�(0) = 0.

For technical reasons, we need to extend the definition of the consumption coefficient
ϕ(σ) for values of σ less than σN :
(H12) ϕ(σ) is extended for 0 ≤ σ < σN in such a way that it possesses the same

regularity stated in (H8) and it remains strictly positive.
The aim of this section is to prove the existence and uniqueness of the solution

of Problem P stated at the end of section 1. We have the following theorem.
Theorem 3.1. Under the assumptions (H1)–(H12), Problem P has a solution

(ν, σ, u, ρN , B, c) in an arbitrarily large time interval.
Theorem 3.2. Under the assumptions (H1)–(H12), and supposing that

‖f ′‖
[
R2

2 log
R2

r0
− 1

2
(R2

2 − r2
0)

]
< 1 ,(3.1)
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where R2 is an upper bound for ρN (t), Problem P has one unique solution.
An upper bound for ρN (t) will be found later (Lemma 3.2).
To prove existence, we approximate the solution of the evolution problem using

a step-by-step procedure. For a given time interval [0, T ] we partition it into n equal
parts; to simplify notation, we will omit the index “n” in the variables of the approx-
imation of order n. Let us now describe our approximation scheme, starting from the
first interval [0, θ], with θ=T/n. All the quantities referring to the steady state are
denoted with the subscript “0” as in section 1.

1. Compute the curves γ(r̂) : r=η(r̂, t) integrating

η̇ = u0(η) , η(r̂, 0) = r̂ , r̂ ∈ [r0, B0] .(3.2)

Note that η(B0, t) = B0; that is, B(t) is equal to B0 in [0, θ]. The characteristic
lines do not intersect because (3.2) has a unique solution forward and backward
(u0 is indeed Lipschitz continuous), and the equation r = η(r̂, t) defines r̂ = ζ(r, t)
uniquely. Moreover, ∂η/∂r̂>0 and, more precisely, from ∂(∂η/∂r̂)/∂t=u′

0(η)(∂η/∂r̂),

∂η/∂r̂|t=0 =1, we can say that ∂η/∂r̂=exp[
∫ t

0
u′

0(η(r̂, τ)) dτ ], giving a positive lower
(and upper) bound for ∂η/∂r̂. Also, we write 0 = (∂η/∂r̂)(∂ζ/∂t) + ∂η/∂t, giv-
ing ∂ζ/∂t = −u0/(∂η/∂r̂), which is obviously a priori bounded. Similarly we have
1 = (∂η/∂r̂)(∂ζ/∂r), implying ∂ζ/∂r = (∂η/∂r̂)−1, positive and a priori bounded.
Moreover, ∂ζ/∂r and ∂ζ/∂t are continuous.

2. In the domain [r0, B0]×[0, θ] solve the problem (1.27)–(1.30) for c, with B=B0

and omitting the consumption term because in the first step we put c≡ c(r, 0)=0 in
ϕC(c, σ). This problem is standard, and it is well known that 0≤c≤sup[0,θ] c

�(t) and

that |cr| can be estimated in terms of sup[0,θ] |ċ�(t)|.
3. Integrate the equation

Duν = −ν
[
µ(σ0) + µR(σ0, t) + µC(c, σ0) − (χ(σ0) + µN )(1 − ν̄0)

]
(3.3)

≡ −νH(t, c, σ0, ν̄
0)

along the curves γ(r̂), where Du is the derivative along the characteristic lines (in this
interval Du = ∂/∂t+u0 ∂/∂r) and we have denoted ν̄0(r, t) = ν0(ζ(r, t)). The initial
datum is ν(r̂, 0) = ν0(r̂), r̂ ∈ [r0, ρN0], and ν(r̂, 0) = 0, r̂ ∈ (ρN0, B0], with ρN0 being
the stationary value of ρN . Setting H(r̂, t)=H|r=η(r̂,t), we have

ν(r, t) = ν0(ζ(r, t)) exp

(
−
∫ t

0

H(ζ(r, t), τ) dτ

)
.(3.4)

Since ν0 is strictly positive for r̂ ∈ [r0, ρN0] and H is bounded, ν(r, t) also is strictly
positive for r≤η(ρN0, t). From (3.4) we may calculate ∂ν/∂r and ∂ν/∂t as follows:

∂ν

∂r
= ν

∂ζ

∂r

(
ν′0
ν0

−
∫ t

0

∂H
∂r̂

dτ

)
,(3.5)

∂ν

∂t
= −νH + ν

∂ζ

∂t

(
ν′0
ν0

−
∫ t

0

∂H
∂r̂

dτ

)
.(3.6)

The right-hand sides of (3.5)–(3.6) contain σ0, ν0, c and their first derivatives w.r.t. r.
4. Find σ(r, t) and ρ̃N (t) such that

∆σ = f(σ)ν , r0 < r < ρ̃N (t) ,(3.7)



FREE BOUNDARY PROBLEM FOR TUMOR CORD EVOLUTION 901

σ(r0, t) = σ� ,(3.8)

σ(ρ̃N , t) = σN ,(3.9)

σr(ρ̃N , t) = 0 .(3.10)

Equations (3.7)–(3.10) are equivalent to

σ − σN =

∫ ρ̃N (t)

r

r′ log
r′

r
f(σ)ν dr′ ,(3.11)

and

σ� − σN =

∫ ρ̃N (t)

r0

r log
r

r0
f(σ)ν dr .(3.12)

We want to show that the pair (σ, ρ̃N ) can be found with ρ̃N (0) = ρN0 and ρ̃N (t)<
η(ρN0, t) in some interval (0, t̂ ), t̂≤θ. It is easily seen that (3.7)–(3.10) have a unique
solution (σ, ρ̃N ) provided that ν does not approach zero. To fulfill this condition,
for the moment we give ν a positive continuous extension for r > η(ρN0, t), setting
ν(r, t)= ν(η(ρN0, t), t). Then we recall that ν → ν0 (provided that ν0 is extended in
the same way) and ∂ν/∂t → 0 as t → 0 in view of (1.30) and (H9)–(H11), and because
of (3.6) and (2.5)–(2.6). We may also establish the continuity of ∂σ/∂t, noting that
it satisfies the equation ∆(∂σ/∂t)=f ′(σ)(∂σ/∂t)ν+f(σ)(∂ν/∂t), r0<r<ρ̃N (t), with
zero boundary values at r=r0, r= ρ̃N (t). In particular, since ∂ν/∂t vanishes for t=0,

so does ∂σ/∂t. Now we compute
.
ρ̃N by differentiation of (3.12), obtaining

.
ρ̃N ρ̃N [f(σ)ν]

∣∣∣∣
r=ρ̃

N
(t)

log
ρ̃N
r0

= −
∫ ρ̃N

r0

r log
r

r0

∂

∂t
[f(σ)ν] dr .(3.13)

Owing to the remarks above, (3.13) implies
.
ρ̃N (0)=0<u0(ρN0). Therefore, in some

time interval [0, t̂ ], t̂ ≤ θ, the pair (σ, ρ̃N ) is actually the solution of (3.11)–(3.12),
where no use is made of the extension of ν (in other words, ν is precisely the function

calculated in step 3). Moreover, (3.13) shows the continuity of
.
ρ̃N .

Starting from t = 0, as long as u0(ρ̃N ) ≥
.
ρ̃N , we set ρN (t) = ρ̃N (t) and accept

the solution σ given by (3.11) up to the time t̄ such that either a right neighborhood

of t̄ exists in which u0(ρ̃N ) <
.
ρ̃N , or in any right neighborhood of t̄ the difference

u0(ρ̃N )−
.
ρ̃N undergoes infinite sign changes. In the first case, for t > t̄ we force ρN

to coincide with the characteristic line tangent to r = ρ̃N (t) at t = t̄; that is, we
set ρ̇N = u0(ρN ). In this case ρN becomes known and we redefine σ by solving the
problem (3.7)–(3.8) and (3.10) (with ρ̃N changed to ρN ). We have

σ − σ(ρN (t), t) =

∫ ρN (t)

r

r′ log
r′

r
f(σ)ν dr′ ,(3.14)

σ� − σ(ρN (t), t) =

∫ ρN (t)

r0

r log
r

r0
f(σ)ν dr ,(3.15)
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Fig. 3. The construction of ρN (t) (thick line) in the first time step. The characteristic lines

are indicated by dashed lines and ρ̃N (t) by a thin continuous line. In this example t̂=θ.

and it can be easily seen that σ(ρN (t), t) > σN in an open right neighborhood of t̄.
In the second case, we must artificially reconstruct the possibility of computing the
continuation of the approximate solution over a finite time interval. To this end, we
select a velocity utol as a small fraction of u0(ρP ) and we consider the time interval

in which u0(ρ̃N ) >
.
ρ̃N −utol/n. Here we choose one of the zeros of the difference

u0(ρ̃N )−
.
ρ̃N beyond which such a quantity becomes negative. At that time we switch

to the condition ρ̇N =u0(ρN ), replacing (3.11)–(3.12) with (3.14)–(3.15). Of course,
we have to switch back to ρN (t) = ρ̃N (t) from the possible time t̃ after which (3.15)

can be satisfied only with σ(ρN (t), t)<σN , and we will again have u0(ρ̃N )>
.
ρ̃N in an

open right neighborhood of t̃ with a possible discontinuity of ρ̇N at t= t̃. If after t̃ the
difference σ(ρN , t)−σN has infinitely many sign changes in any right neighborhood,
after selecting σtol<σN , we consider the time interval in which σ(ρN , t)>σN −σtol/n,
switching to ρN (t)= ρ̃N (t) at one of the zeros of σ(ρN , t)−σN beyond which σ(ρN , t)−
σN <0.

We remark that if t̂ < θ, or t̂= θ and ρN (t̂ )=η(ρN0, θ), the time t̄ < t̂ previously
defined will exist. Indeed, in this case we may identify t̂ as the time instant such that

σ� − σN =

∫ η(ρN0,t̂ )

r0

r log
r

r0
f(σ)ν dr .

Therefore, for t∈ (0, t̂ ), we have η(ρN0, t)>ρ̃N (t) and η(ρN0, 0)= ρ̃N (0), η(ρN0, t̂ )=
ρ̃N (t̂ ). In this situation the curve r = ρ̃N (t) becomes tangent to one of the charac-
teristic lines η(r̂, t) for some r̂ < ρN0 at some time smaller than t̂. Since the curve
r= ρ̃N (t) cannot lie on this characteristic line up to t̂, it will leave the characteristic
line at some t̄< t̂. However, t̄ may exist even if t̂=θ and ρN (t̂)<η(ρN0, θ). Figure 3
shows an example of the construction of ρN (t).

5. We set ν equal to zero and σ(r, t) = σ(ρN (t), t) for r > ρN (t), and this is the
final form of ν and σ in the step. Moreover, we continue c(r, t) for r >B by setting
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c(r, t)=c(B(t), t).
6. With the new values of σ, ν we compute the new velocity field on the basis of

(1.10) as follows:

ru =

⎧⎨
⎩

∫ r

r0

r′[(χ(σ) + µN )ν − µN ] dr′ , r0 ≤ r ≤ ρN (t),

ρNu(ρN ) − (µ̃N/2)(r2 − ρ2
N ) , r > ρN (t),

(3.16)

where we have extended the definition of u beyond r=B(t) because we may need it
in what follows.

We are now ready to go to the second time step (θ, 2θ], in which we have
1. Continuation of the characteristic lines r = η(r̂, t). Starting with the value

η(r̂, θ) we integrate

η̇(t) = u(η(t), t− θ), t ∈ (θ, 2θ) .(3.17)

From the continuation of the characteristic line r= η(r̂, t), the function r̂= ζ(r, t) is
also defined for t∈(θ, 2θ]. Likewise we continue the external boundary as

Ḃ(t) = u(B(t), t− θ) , B(θ+) = B(θ−) .(3.18)

2. Computation of c according to

∂c

∂t
−DC∆c = −ϕC(cθ, σθ)ν�ν̄θ − λc ,(3.19)

c(r0, t) = c�(t) ,(3.20)

cr(B(t), t) = 0 ,(3.21)

c(r, θ+) = c(r, θ−) , r ∈ (r0, B(θ)] .(3.22)

Here and in what follows, we denote cθ(r, t) = c(r, t−θ), σθ(r, t) = σ(r, t−θ), and
ν̄θ(r, t)=ν(η(ζ(r, t), t−θ), t−θ). Note that ν̄θ(r, t)>0 if r≤η(ζ(ρN (θ), θ), t); otherwise
ν̄θ =0. Therefore, the consumption term in (3.19) is discontinuous. The solution exists
in the space W 2,1

q (for any q>1) and is in fact in the Hölder space H1+α,(1+α)/2 for
any α∈(0, 1) (see [17, Chap. 4]).

3. Computation of ν:

Duν = −νH(t, c, σθ, ν̄θ) ,(3.23)

the initial values for ν being provided by continuity through t=θ. Thus, (3.4) can be
extended to the interval (θ, 2θ].

4. Computation of σ and ρN as described in the corresponding point of the first
step, the velocity field now being u(r, t−θ). In the comparison between u(ρ̃N (t), t−θ)

and
.
ρ̃N (t), the expression of

.
ρ̃N (t) at the general step is still given by (3.13). Note

that the existence of ρN (t), such that u(ρN , t−θ)>ρ̇N (t) in a right neighborhood of
t=θ, is now not guaranteed.
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5. The function ν is set equal to zero and σ ≡ σ(ρN (t), t) for r > ρN (t). The
function c(r, t) is also continued as in the first step.

6. Computation of u by means of (3.16).
Precisely the same scheme can be iterated up to t = T . In the following, when we
refer to ∂ν/∂t, we mean that it is calculated in the positivity set of ν. In particular,
the sup-norm ‖∂ν/∂t‖ is likewise referred to the support of ν.

Remark 3.1. In the approximating solutions constructed above, it is not difficult to
see that the function B(t) together with all the characteristic lines is C1[0, T ], whereas
the interface ρN (t) is not in general continuously differentiable at the switching points.
The function ν(r, t) is C1 for r∈ [r0, ρN ] and for r∈(ρN ,∞), t∈ [0, T ]. The functions
σ(r, t), u(r, t), and c(r, t) are continuous in [r0,∞)×[0, T ]. Moreover, as we shall see,
the function c belongs to H1+α,(1+α)/2, α ∈ (0, 1). The functions u(r, t) and ρN (t)
satisfy u(ρN (t), t−θ)− ρ̇N (t)>−utol/n (with t−θ set to zero for t < θ), so they will
not necessarily satisfy inequality (1.13). Also, it may happen that σ<σN and ν > 0
at the same (r, t) point; the approximating solutions may therefore be “nonphysical.”

Our aim is now to show that the sequence of approximating solutions so gener-
ated defines sets of functions that, when restricted to suitable compact domains, are
compact in the sup-norm. First, we establish the following properties.

Lemma 3.3. In the family of approximating solutions, the functions ν for r ∈
[r0, ρN (t)] and t∈ [0, T ] satisfy the inequalities

0 < N1 ≤ ν(r, t) ≤ N2 ,(3.24)

where

N1 = inf
r∈[r0,ρN0

]
ν0(r)e

−‖H‖T , N2 = sup
r∈[r0,ρN0

]

ν0(r)e
‖H‖T(3.25)

and ‖H‖ denotes the sup of |H|.
Proof. Having defined the characteristic line r=η(r̂, t) in the whole interval [0, T ],

we can define the function r̂ = ζ(r, t) for r ∈ [r0, B(t)] and t ∈ [0, T ]. Thus, we can
extend (3.4) for r∈ [r0, ρN (t)], t∈ [0, T ], namely,

ν(r, t) = ν0(ζ(r, t)) exp

(
−
∫ t

0

H(ζ(r, t), τ) dτ

)
,(3.26)

where ζ(r, t)∈ [r0, ρN0]. From (3.26), the inequalities (3.24) follow immediately con-
sidering that ‖H‖ ≤ max[maxµ+maxµR+maxµC , χ0+µN ].

Lemma 3.4. In the family of approximating solutions, ρN (t) satisfies the inequal-
ities

r0 < R1 < ρN (t) < R2 ,(3.27)

where

R1 =
[
r2
0 + (R̂2

1 − r2
0)e

−µNmaxT
]1/2

(3.28)

with µNmax=max[µN , µ̃N ], with R̂1 being the unique solution larger than r0 of

x2 log
x

r0
− 1

2
(x2 − r2

0) = 2
σ� − σN

f(σ�)N2

(3.29)
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and R2 the unique solution larger than r0 of

x2 log
x

r0
− 1

2
(x2 − r2

0) = 2
σ�

f(σN )N1

.(3.30)

Moreover,

B(t) > ρN (t) .(3.31)

Proof. Let T1 be the set of values of t ∈ [0, T ] such that σ(ρN (t), t) = σN . For
t∈T1, we have from (3.12) that

σ� − σN ≤ f(σ�)
N2

2

[
ρ2
N log

ρN
r0

− 1

2
(ρ2

N−r2
0)

]
,(3.32)

so that ρN (t)≥ R̂1>R1>r0. Recalling the construction of ρN , at the time points of
the set T2 =[0, T ]−T1 (if not empty) the curve r=ρN (t) is tangent to a characteristic
line. Let us now consider a generic characteristic line r=η(t) passing through (t′, r′).
For t≥ t′, η(t) satisfies

η̇ = u(η(t), t− θ) , η(t′) = r′(3.33)

(t−θ set to zero when t<θ). From (3.16) we have

ru(r, t− θ) > −µNmax

2
(r2 − r2

0)(3.34)

and thus

ηη̇ > −µNmax

2
(η2 − r2

0) ,(3.35)

which implies

η(t)2 − r2
0 > (r′2 − r2

0)e
−µNmax(t−t′) .(3.36)

If T2 is not empty, for t ∈ T2 let T1t be the subset of T1 such that t > τ for each
τ ∈ T1t, and let st = sup T1t. The characteristic line to which (t, ρN (t)) belongs will
pass through (st, ρN (st)), so from (3.36) we have

ρN (t)2 − r2
0 > (ρN (st)

2 − r2
0)e

−µNmax(t−st) .(3.37)

Since ρN (st)≥ R̂1, it follows that ρN (t)>R1 also in T2. Turning now to the upper
bound, we have from (3.15) for t∈ [0, T ]

σ� − σ(ρN (t), t) ≥ f(σN )
N1

2

[
ρ2
N log

ρN
r0

− 1

2
(ρ2

N−r2
0)

]
,(3.38)

so that ρN (t) is smaller than the solution larger than r0 of

1

2
x2 log

x

r0
− 1

4
(x2 − r2

0) = max
t∈[0,T ]

σ� − σ(ρN (t), t)

f(σN )N1

,(3.39)

which is smaller than the solution R2 of (3.30).
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To prove B(t)>ρN (t), it is enough to recognize that for each t∈ [0, T ] there exists
r̂t∈(r0, ρN0] such that ρN (t)=η(r̂t, t). Taking into account that B0>r0 and that the
characteristic lines do not intersect each other, the property (3.31) follows.

Moreover, we have the following lemma.
Lemma 3.5. In the family of approximating solutions, the functions ρN , B, and

Ḃ are uniformly bounded and uniformly Lipschitz continuous. The functions σ, u
are uniformly bounded and uniformly Lipschitz continuous in [r0,MB ]× [0, T ], MB

denoting a uniform upper bound of B. The function ν has the same property in
r0 ≤ r ≤ ρN (t), t ∈ [0, T ]. The function c is estimated uniformly in H1+α,(1+α)/2,
α∈(0, 1), for (r, t)∈ [r0,MB ]×[0, T ]. In addition, in any domain whose closure has a
positive distance from the boundary r= r0 and from the interface r=ρN (t), we have
uniform estimates of the norm of c in the space H2+α,1+α/2.

Proof. The uniform boundedness of ν and ρN is given by Lemmas 3.1 and 3.2,
respectively. Moreover, c(r, t) takes values between 0 and sup[0,T ] c

�(t), owing to the
maximum principle. Again from the maximum principle, we can say that 0<σ≤σ�.
Recalling (3.16) and taking into account the uniform boundedness of ν and ρN , the
uniform boundedness of u, B, and Ḃ easily follows. Since H is uniformly bounded,
and because of (3.24), Duν is also uniformly bounded.

In order to prove that ν is uniformly Lipschitz in r0≤r≤ρN (t), t∈ [0, T ], we note
that (3.5)–(3.6) are also valid in the whole domain, with σθ, ν̄θ suitably replacing
σ0, ν̄0 in the expression of H. First we use (3.5), noting that ∂H/∂r̂ involves the
derivatives ∂σθ/∂r, ∂c/∂r, and ∂ν̄θ/∂r multiplied by ∂η/∂r̂, which can be easily
estimated for each t as done in the first step. The derivatives ∂ζ/∂r, ∂ζ/∂t also are
bounded, as explained in the first step. Thus, from (3.5), we can derive a Gronwall-
type inequality for sup[0,t] |∂ν/∂r|γ(r̂), leading to an estimate of sup |∂ν/∂r| in terms

of ν0, ν′0 and the sup of |∂σθ/∂r| and |∂c/∂r|. Uniform bounds on σθ, |∂σθ/∂r|,
|∂2σθ/∂r2| are trivial. To find a bound on |∂c/∂r|, take the transformation

r̃ − r0 =
R− r0

B(t) − r0
(r − r0)(3.40)

that carries the domain r0 < r < B(t), 0 < t < T into a fixed domain r0 < r̃ < R,
0<t<T . Defining c̃(r̃, t)=c(r(r̃), t), the operator Lc=∂c/∂t−DC∆c becomes

L̃c̃ =
∂c̃

∂t
− ∂c̃

∂r̃

[
Ḃ(r̃−r0)

B − r0
+ DC

R− r0
B − r0

(
(r̃−r0)

B − r0
R− r0

+ r0

)−1]

− DC

(
R− r0
B − r0

)2
∂2c̃

∂r̃2
,(3.41)

and the problem (3.19)–(3.22) for c can be rewritten for c̃. Since c, σ, ν are bounded
and Ḃ/(B−r0), (R−r0)/(B−r0), (B−r0)/(R−r0) are a priori bounded (B−r0 has
indeed a positive lower bound; see Lemma 3.2), we can apply well-known results (see
Theorem 9.1 and the remark at the end of section 9 in [17, Chap. 4]) guaranteeing
uniform estimates for the norms of c̃ (and hence of c) at least in the spaces W 2,1

q

(for any q > 1) and H1+α,(1+α)/2 (for any α∈ (0, 1)). In particular we now have the
uniform bound for |∂c/∂r|, needed to obtain a uniform bound for |∂ν/∂r|. Thus, we
get a uniform bound for |∂ν/∂t| using just (3.6).

The less trivial step is to establish uniform bounds on |∂σ/∂t| and |ρ̇N |, needed
to complete the proof of compactness. Let z(r, t)=∂σ/∂t. Differentiating ∆σ=f(σ)ν
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w.r.t. time, we obtain

∂2z

∂r2
+

1

r

∂z

∂r
= f ′(σ)zν + f(σ)

∂ν

∂t
.(3.42)

At a possible maximum of z in (r0, ρN ), it must be ∂z/∂r= 0, ∂2z/∂r2 ≤ 0, so that
from (3.42) it follows f ′(σ)zν ≤−f(σ)(∂ν/∂t). Denoting by z̄max the value of z at
such local maximum, and being that fmax = maxσ f(σ) and f ′

min = minσ f
′(σ), the

previous inequality gives

z̄max ≤ − f(σ)

f ′(σ)

1

ν

∂ν

∂t
≤ fmax

f ′
min

1

N1

∥∥∥∥∂ν∂t
∥∥∥∥ .(3.43)

At a possible minimum of z in (r0, ρN ), it must be that

z̄min ≥ − f(σ)

f ′(σ)

1

ν

∂ν

∂t
≥ −fmax

f ′
min

1

N1

∥∥∥∥∂ν∂t
∥∥∥∥ ,(3.44)

where z̄min is the value of z at such local minimum.
When σ(ρN (t), t)=σN , since z=0 for r=r0 and r=ρN (t), we can conclude that∣∣∣∣∂σ∂t

∣∣∣∣ ≤ fmax

f ′
min

1

N1

∥∥∥∥∂ν∂t
∥∥∥∥ .(3.45)

Thus, from (3.13) written for ρN (t), we get a uniform bound for |ρ̇N |.
When ρN is a material surface, i.e., ρ̇N = u(ρN , t−θ), the desired estimate for

|ρ̇N | is provided by the uniform boundedness of u. Moreover, since ∂σ/∂r|r=ρ
N

(t) =0,

differentiating w.r.t. time we obtain

∂2σ

∂r2

∣∣∣∣
r=ρ

N
(t)

ρ̇N +
∂2σ

∂r∂t

∣∣∣∣
r=ρ

N
(t)

= 0 .(3.46)

Also, we know that

∂2σ

∂r2

∣∣∣∣
r=ρ

N
(t)

= [f(σ)ν]

∣∣∣∣
r=ρ

N
(t)

≡ g(t) ,(3.47)

which is positive and bounded. Therefore, at each step, we can construct the solution
of the problem

∆z =
∂

∂t
[f(σ)ν] , z(r0, t) = 0 , zr(ρN , t) = −gρ̇N .(3.48)

The solution will satisfy

z = −ρ̇NρNg log
r

r0
−
∫ r

r0

1

r′

(∫ ρN

r′
r′′

∂

∂t
[f(σ)ν] dr′′

)
dr′

= −ρ̇NρNg log
r

r0
−
∫ ρN

r0

r′ log
min[r′, r]

r0

∂

∂t
[f(σ)ν] dr′ .(3.49)
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Let us suppose that ρ̇N < 0. Then, from (3.47) and (3.48), zr(ρN , t)> 0 and z may
have an absolute maximum at r= ρN . If zmax = z(ρN ), from (3.49) and taking into
account (3.44) we obtain

zmax ≤ −ρ̇NρNg log
ρN
r0

+ fmax

∥∥∥∥∂ν∂t
∥∥∥∥
∫ ρN

r0

r′ log
r′

r0
dr′

(
1 +

f ′
max

f ′
min

N2

N1

)
,(3.50)

which, together with (3.43)–(3.44), guarantees the uniform boundedness of |∂σ/∂t|. If
ρ̇N >0, zr(ρN , t)<0 and z may have an absolute minimum at r=ρN . If zmin=z(ρN ),
we can obtain similarly

zmin ≥ −ρ̇NρNg log
ρN
r0

− fmax

∥∥∥∥∂ν∂t
∥∥∥∥
∫ ρN

r0

r′ log
r′

r0
dr′

(
1 +

f ′
max

f ′
min

N2

N1

)
,(3.51)

leading to the parallel conclusion about the lower bound. If ρ̇N =0, z may have either
a maximum or a minimum at r = ρN . In such cases (3.50) or (3.51) applies, still
confirming the boundedness of |∂σ/∂t|.

From the above estimates, it also follows that u(r, t) is uniformly Lipschitz contin-
uous. Finally, concerning c̃, we can say that we have uniform inner Schauder estimates
on both sides of the discontinuity curve of the consumption term (see [17, Chap. 4]).
As a matter of fact, the Lipschitz continuity of Ḃ(t) allows us to extend such an
estimate to the outer boundary r =B(t). Therefore, uniform estimates for c in the
norm H2+α,1+α/2 are available in all the domains whose closure does not touch r=r0
or the interface r=ρN (t).

Now we can prove Theorem 3.1.
Proof of Theorem 3.1. Let us indicate here by the subscript “n” the approximation

of order n. The existence can be established simply thanks to Lemma 3.3, which
provides enough compactness of the family of approximating solutions. Indeed, we
can select a subsequence of indices, say, {nk}, for which we have uniform convergence
of ρNnk

,Bnk
to ρN ,B, and of the functions νnk

to ν in r0≤r≤ρN (t) and of σnk
, cnk

to

σ, c in r0≤r≤B(t), t∈ [0, T ]. We notice that the convergence of the approximations
νnk

has to be intended as

lim
k→∞

sup
(r,t)∈Dnk

∩D

|νnk
(r, t) − ν(r, t)| = 0 ,

where Dn={(r, t) : r∈ [r0, ρNn
(t)], t∈ [0, T ]} and D={(r, t) : r∈ [r0, ρN (t)], t∈ [0, T ]}.

In turn, through (3.16), this implies the uniform convergence of the corresponding se-
quence unk

(and ∂unk
/∂r). Although the constraints (1.13) and (1.22) in the approx-

imating scheme are not used as written, but rather with a time shift, and moreover
they can be applied with the respective tolerances utol/n and σtol/n, it is clear that
the correct inequalities are obtained in the limit. Similarly we have the uniform con-
vergence of the characteristic lines and we can pass to the limit in equation (3.26).
At the same time we can pass to the limit in (3.11)–(3.12) (with ρ̃N (t) = ρN (t)) or
(3.14)–(3.15), showing that the limit functions satisfy the same equations, so that in
particular the limit ρN preserves the properties characterizing the boundary of the
necrotic region. Thus we see that the limit functions ν, σ, u satisfy the governing
equations of the model in their integral form. From the integral form we can go back
to the original differential statement of the problem, just performing the derivatives
and checking that all the governing differential equations, as well as the initial and
boundary conditions, are satisfied. Concerning c, the Schauder estimates allow us to
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pass to the limit directly in the parabolic differential equation, separately in P∪T∪Q
and in N, while the differential equation is satisfied in the whole domain in the sense of
W 2,1

q for any q>1, thus guaranteeing the Hölder continuity of ∂c/∂r. Therefore, any
convergent subsequence in the family of approximating solutions provides a solution
to the original problem.

The approximating procedure previously described becomes constructive if we
can say that the whole sequence is convergent. In turn, this is guaranteed if we prove
uniqueness. First we prove the following property of the solution.

Lemma 3.6. The solution ν, for r∈ [r0, ρN (t)], satisfies the inequalities

0 < N1 ≤ ν(r, t) ≤ 1 , t ∈ [0, T ] ,(3.52)

where N1 is defined by (3.25).
Proof. We observe preliminarily that, as we did for the approximating solutions,

we can also define for the actual solution the function r̂=ζ(r, t) for r∈ [r0, ρN (t)] and
t∈ [0, T ], such that r = η(ζ(r, t), t), with η(r̂, t) being the characteristic line starting
from r̂. In particular, we can interpret (1.11) as Duν=−νH(t, c, σ, ν) on the charac-
teristic lines (including r=r0), and we can see that Duν<0 at all points where ν>1.
Since ν0≤1 everywhere, this implies that ν cannot take values greater than 1. Since
the lower bound N1 holds for all the approximations of ν, it will also hold for their
limit.

Let us pass to the following proof of uniqueness.
Proof of Theorem 3.2 We notice that, for a certain time interval starting from

t=0, the difference u(ρN , t)−ρ̇N (t) is positive for all possible solutions (the argument
is the same one we applied for the approximate solutions during the first time step).
Therefore we start comparing two solutions of this type.

Let us consider two possible solutions of type (1.18)–(1.19) in a time inter-
val (0, t̂ ), t̂ ≤ T , and let us denote by δν, δu, δσ, δρN , δc, δB the differences of
the respective quantities. Using the labels 1 and 2 for the two solutions (so that
δν(r, t) = ν1(r, t)− ν2(r, t), and so on) and setting ρmin(t) = min[ρN1

(t), ρN2
(t)],

ρmax(t) = max[ρN1
(t), ρN2

(t)], we have the following equation (where µ1, µR1
, µC1

,
χ1 mean that the quantities are evaluated for solution 1, and the overbar means that
the derivative is computed at a suitable point between the values of the independent
variables for solutions 1 and 2):

Du1
δν +

[
µ1 + µR1

+ µC1
− (χ1 + µN ) + (χ1 + µN )(ν1 + ν2)

]
δν +

∂ν2

∂r
δu

+ν2

[
∂µ

∂σ
+

∂µR

∂σ
+

∂µC

∂σ
− χ′(1 − ν2)

]
δσ + ν2

∂µC

∂c
δc = 0(3.53)

with zero initial condition and with δν continued in (ρmin, ρmax) as (−1)j+1νj , with
j=1 if ρN1

≥ρN2
and j=2 otherwise. Of course δν=0 in the intersection of the two

regions N1, N2. Moreover we have

(3.54)

rδu =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∫ r

r0

r′
[
δν(χ1 + µN ) + ν2χ

′δσ
]
dr′ , r ∈ [r0, ρmin],∫ ρmin

r0

r
[
δν(χ1+µN ) + ν2χ

′δσ
]
dr + (−1)j+1

∫ r

ρ
min

r′
[
νj(χj+µN ) − µN ] dr′

+(−1)j+1 µ̃N

2 (r2 − ρ2
min) , r ∈ (ρmin, ρmax] .
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Taking into account that for σi, i=1, 2, we have

σi(r, t) − σN =

∫ ρNi
(t)

r

r′ log
r′

r
f(σi)νi dr

′ ,(3.55)

σ� − σN =

∫ ρNi
(t)

r0

r log
r

r0
f(σi)νi dr ,(3.56)

we obtain from (3.56)

(−1)j
∫ ρmax

ρ
min

r log
r

r0
f(σj)νj dr =

∫ ρmin

r0

r log
r

r0
[f(σ1)ν1 − f(σ2)ν2] dr .(3.57)

From (3.55), for r∈(r0, ρmin] we have

δσ = ( − 1)j+1

∫ ρmax

ρ
min

r′ log
r′

r
f(σj)νj dr

′

+

∫ ρmin

r

r′ log
r′

r
[f(σ1)ν1 − f(σ2)ν2] dr

′ ,(3.58)

whereas, for r∈(ρmin, ρmax],

δσ = (−1)j+1

∫ ρmax

r

r′ log
r′

r
f(σj)νj dr

′ .(3.59)

Because there exists a positive lower bound of the product fν, a lower estimate of
the left-hand side of (3.57) can be written as (fν)min ρmin log(ρmin/r0)|δρN |. Since
(3.56) gives a lower estimate for ρN (as in Lemma 3.2), from (3.57) we get

|δρN | ≤ K1

∫ ρmin

r0

r
(
‖f‖ |δν| + ‖f ′‖ |δσ|

)
log

r

r0
dr,(3.60)

where K1 is a known constant. From (3.58)–(3.59), we see that for r∈(r0, ρmax]

|δσ| ≤
∫ ρmax

ρ
min

r log
r

r0
f(σj)νj dr +

∫ ρmin

r

r′ log
r′

r
|f(σ1)ν1 − f(σ2)ν2| dr′ ,

and, taking into account (3.57) and that ν≤1 (see Lemma 3.4), we obtain

|δσ| ≤ 2‖f ′‖
∫ ρmin

r0

r log
r

r0
|δσ| dr + 2‖f‖

∫ ρmin

r0

r log
r

r0
|δν| dr .(3.61)

Provided that

2‖f ′‖
∫ ρmin

r0

r log
r

r0
dr = ‖f ′‖

[
ρ2
min log

ρmin

r0
− 1

2
(ρ2

min − r2
0)

]
< 1 ,(3.62)

as guaranteed by hypothesis (3.1), from (3.61) we obtain

‖δσ‖t ≤ K2‖δν‖t ,(3.63)
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where ‖ · ‖t means the sup w.r.t. r and to time in [0, t]. Concerning the equation for
δc, to be satisfied in r0<r<Bmin(t), 0<t<t̂, Bmin denoting min[B1, B2], we have

∂δc

∂t
−DC∆δc = −ϕC1

ν�δν −
(
∂ϕC

∂c

)
ν�ν2δc−

(
∂ϕC

∂σ

)
ν�ν2δσ − λδc ,(3.64)

δc(r0, t) = 0 ,(3.65)

δc(r, 0) = 0 .(3.66)

If t̂ is sufficiently small to guarantee that the differences Bi−ρNj
, i = 1, 2, j = 1, 2,

remain strictly positive, we also have

∂δc

∂r

∣∣∣∣
r=Bmin(t)

= (−1)k+1 ∂
2ck
∂r2

∣∣∣∣
r=r̄(t)

|δB| ,(3.67)

where r̄(t) is a suitable point between the boundaries B1(t),B2(t), and k=1 if B1≥B2

and k=2 otherwise. The coefficient of |δB| in (3.67) is a priori bounded since c1,c2
possess the same properties stated for the approximating functions in Lemma 3.3.

Now we are able to write the following chain of inequalities, starting with

‖δν‖t ≤
∫ t

0

(
k1‖δu‖τ + k2‖δσ‖τ + k3‖δc‖τ

)
dτ,(3.68)

that can be obtained from (3.53). From (3.54) we see that ‖δu‖τ can be estimated in
terms of ‖δρN‖τ , ‖δσ‖τ , ‖δν‖τ and, ultimately, because of (3.60) and (3.63), in terms
of ‖δν‖τ . So (3.68) implies

‖δν‖t ≤
∫ t

0

(
k3‖δc‖τ + k4‖δν‖τ

)
dτ .(3.69)

Going back to problem (3.64)–(3.67), for which an estimate of ∂2ck/∂r
2 is available

in the region between Bmin and Bmax=max[B1, B2], taking into account that |δB| ≤∫ t

0
‖δu‖τ dτ , and exploiting the estimates already used for δσ and δu, we obtain by

classical means the inequality

‖δc‖t ≤
∫ t

0

(
k5‖δν‖τ + k6‖δc‖τ

)
dτ,(3.70)

which, together with (3.69), immediately yields ‖δc‖t = ‖δν‖t = 0. Thus we may
conclude that the solution is unique in a suitably small time interval, and by extension
up to a possible time point t̄ such that in any right neighborhood (1.18)–(1.19) cannot
hold.

Let us now suppose that after t̄ we have in some interval two solutions for which
the interface r= ρN (t) is a material surface. Arguments similar to those seen above
can be repeated, taking into account that in the present case we have (i=1, 2)

σi(r, t) − σi(ρNi
(t), t) =

∫ ρNi
(t)

r

r′ log
r′

r
f(σi)νi dr

′ ,(3.71)
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σ� − σi(ρNi
(t), t) =

∫ ρNi
(t)

r0

r log
r

r0
f(σi)νi dr ,(3.72)

implying

σi − σ� =

∫ ρNi

r

r′ log
r′

r
f(σi)νi dr

′ −
∫ ρNi

r0

r log
r

r0
f(σi)νi dr .(3.73)

Moreover, since ρN1
(t̄ )=ρN2

(t̄ ), we have for t>t̄

δρN =

∫ t

t̄

[u1(ρN1
(τ), τ) − u2(ρN2

(τ), τ)] dτ ;(3.74)

thus

|δρN | ≤
∫ t

t̄

(
|δu|r=ρmin(τ) +

∥∥∥∥∂u∂r
∥∥∥∥ |δρN (τ)|

)
dτ .(3.75)

Now, using easy estimates on δu, δσ, δν, and the boundedness of |∂u/∂r|, we can
infer uniqueness until r = ρN (t) is a material boundary. The procedures previously
described can be applied after each switch to solutions having the interface ρN of the
same type (both nonmaterial or both material).

We observe now that the evolutive problem in which constraint (1.13) is not
imposed, and ρN and σ are defined by (1.15), (1.17), (1.19)–(1.20), cannot have more
than one solution (the comparison technique is the same as the one used above). The
same holds for the evolutive problem in which constraint (1.22) is not imposed, ρN
is defined by (1.21), and σ is defined by (1.15), (1.17), and (1.20). Therefore, we can
exclude that after t̄, or any other switching point, there can be a time interval in
which our problem has a solution of one type and another solution of different type.
This, in fact, would imply that two different unconstrained solutions exist in a time
interval after t̄, since it is the behavior of such unconstrained solutions that governs
the switch of ρN from one type to the other.

Hence, it remains only to examine the case of two solutions having infinitely many
switching points in any right neighborhood of the time t̄ (the reader can observe that
the comparison between two solutions of different type after t̄, which we avoided on
the basis of the argument above, is de facto included in the analysis that follows). The
argument proceeds in a similar way, the main difference occurring in the comparison
of σ1,σ2 and ρN1

,ρN2
. Let us consider an interval (t̄, t̄+ε) and its partition in intervals

in which the two solutions are both of the same type and in intervals in which they
are of different type. We fix our attention on the second class of intervals and, to be
specific, let us assume that ρN is nonmaterial for solution 1 and material for solution
2. Subtracting (3.72) with i=2 from (3.56) with i=1, we get

σ2(ρN2
(t), t) − σN =

∫ ρmin

r0

r log
r

r0
[f(σ1)ν1 − f(σ2)ν2] dr

+(−1)j+1

∫ ρmax

ρ
min

r log
r

r0
f(σj)νj dr,(3.76)
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which replaces (3.57). Thus we may derive an inequality similar to (3.60):

|δρN | ≤ K1

∫ ρmin

r0

r
(
‖f‖ |δν| + ‖f ′‖ |δσ|

)
log

r

r0
dr

+ K1|σ2(ρN2
(t), t)−σN | .(3.77)

Now we can write

|σ2(ρN2
, t) − σN | ≤ |δσ(ρN2

, t)| + σ1(ρN2
, t) − σN ,(3.78)

if, e.g., ρN1
>ρN2

. Moreover,

σ1(ρN2
, t) − σN =

∣∣∣∣∂σ1

∂r
(r̄, t)

∣∣∣∣ |δρN |(3.79)

with r̄ between ρN2
and ρN1

. Since ∂σ1/∂r vanishes for r=ρN1
, we can also say that∣∣∣∣∂σ1

∂r
(r̄, t)

∣∣∣∣ ≤
∥∥∥∥∂2σ1

∂r2

∥∥∥∥ |δρN | .

If, instead, ρN1
< ρN2

, we have similar inequalities with the indices interchanged.
Thus from (3.78) we deduce

|σ2(ρN2
, t) − σN | ≤ |δσ(ρN2

, t)| + C|δρN |2(3.80)

with C>0 known a priori. On the other hand, we may take ε so small that in (t̄, t̄+ε)
we have K1C|δρN |<1/2, thanks to the fact that for both solutions we know an upper
bound for |ρ̇Ni

|. Thus, we may rewrite (3.77) in the form

|δρN | ≤ 2K1

∫ ρmin

r0

r
(
‖f‖ |δν| + ‖f ′‖ |δσ|

)
log

r

r0
dr + 2K1|δσ(ρN2

(t), t)| .(3.81)

We must now replace (3.58) by

δσ + σ2(ρN2
(t), t) − σN = (−1)j+1

∫ ρmax

ρ
min

r′ log
r′

r
f(σj)νj dr

′

+

∫ ρmin

r

r′ log
r′

r
[f(σ1)ν1 − f(σ2)ν2] dr

′ .(3.82)

Combining (3.82) and (3.76) we obtain the same inequality (3.61), eventually implying
(3.63) with the norm referring to the appropriate time interval.

For the first class of intervals, i.e., the intervals in which the two solutions are both
of the same type, the estimates for |δσ| and |δρN | are the same ones we have already
used, except for a small change concerning the comparison of solutions which both
have a material ρN interface. Indeed, in (3.74) the term δρN (t̂ ) (where t̂ now denotes
the initial time of the interval we are considering) must be added on the right-hand
side. Such a term is inherited from the previous interval in which the solutions are
of different type and therefore it is expressed in the way we have just seen, that is,
by means of (3.81). Therefore, we can conclude that also in this case the solution is
unique.
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4. Concluding comments. As a final comment, we stress that some of the sim-
plifying assumptions made in the development of the present model could be relaxed
with some further refinements. For simplicity, we have taken σ� constant here, but
the whole theory can be extended to the case of σ� variable with the time, provided it
remains strictly above σP . We could also consider a flux condition instead of (1.17).
Similarly, condition (1.28) has no crucial role in the treatment and could be replaced
with a flux condition. Finally, a dependence of cell proliferation on treatment could
be taken into account by representing the proliferation rate as a function χ(σ, c, t).
The numerical solution of the evolutive problem under various therapeutic treatment
modalities will be presented in a forthcoming paper [6]. The numerical results show
that the switching from a nonmaterial ρN interface to a material interface, and vice
versa, does occur under usual treatment modalities.
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Abstract. Existence and stability of stationary internal layered solutions to a rescaled diblock
copolymer equation are studied in higher dimensional space. Rescaling is necessary since the char-
acteristic domain size of any stable pattern eventually vanishes in an appropriate singular limit. A
general sufficient condition for the existence of singularly perturbed solutions and the associated
stability criterion are given in the form of linear operators acting only on the limiting location of the
interface. Applying the results to radially symmetric and planar patterns, we can show, for instance,
stability of radially symmetric patterns when one of the components of diblock copolymer dominates
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1. Introduction. In this paper, we shall discuss two basic problems of singu-
larly perturbed solutions to the fourth order equation (1.1) arising in modelling the
dynamics of diblock copolymer melts in higher dimensional space, namely Under
what conditions existence of stationary singularly perturbed solution is guaranteed?
and How is the stability of it?. The former is related to the possible morphological
forms, and the latter is crucial for observability. We shall see that both problems
are eventually reduced to solving the equations on the interface in the singular limit.
Especially, the spectral problem on the interface called the SLEP equation in higher
dimensional space (see (1.13) and (4.22)), is a generalization of a one-dimensional
version for reaction diffusion systems discussed in [11] and [10]. The model equation
(1.1) below looks very special; however, the method employed here is quite general
and can be extended to the activator-inhibitor systems treated in [11] and [10], in fact
the mechanisms causing pattern formation have common features in both models.
Our model takes the following form:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut = −∆{d2∆u + f(u) − σ(−∆N )−1(u− u)}
(X, t) ∈ Ω̂ × (0,∞),

= −∆{d2∆u + f(u)} − σ(u− u),

∂u

∂n
=

∂(∆u)

∂n
= 0, (X, t) ∈ ∂Ω̂ × (0,∞),

1

|Ω̂|

∫
Ω̂

udX = u,

(1.1)

where u is the order parameter which represents the ratio of two homopolymers, f is
basically a bistable nonlinearity (typically u−u3), d and σ are positive constants, ∆N

is the Laplace operator under the Neumann boundary condition, and Ω̂ is a smooth
bounded domain in RN (N ≥ 2). Originally, the model system was given by the
energy functional form in [16] (see also [1]), and then reformulated in the above form
by [12], which triggered many interesting rigorous works such as [25] and [26]. The
associated Euler–Lagrange equation with the functional is given by (1.1). Diblock
copolymer is a chain where two different homopolymers are connected, and the con-
nectivity causes a long range interaction. In fact, its effect is reflected by the nonlocal
term σ(−∆N )−1(u − u), where σ is proportional to the inverse of the polymeriza-
tion index (i.e., length of the chain). Due to the nonlocal term σ(−∆N )−1(u − u),
(1.1) displays a variety of stationary mesoscopic patterns including lamellar, column,
spherical, double gyroid morphologies and so on (see, for instance, [24] and the refer-
ence therein). Here the mesoscopic means an intermediate scale between micro and
macro, and it becomes very fine as d tends to zero as in the following proposition.
This makes a sharp contrast with the case σ ≡ 0, i.e., Cahn–Hilliard equation. For
experimental observation, see [6, 7, 8]. Note also that the nonlocal effect is similar to
the role of the inhibitor field for activator-inhibitor system, and hence our analysis
basically encompasses such a system as we shall see in section 5.

In order to have a reasonable singular limit, some sort of scaling law is necessary
and we adopt the following one, which was originally proposed in [12] in the above
setting and was proved rigorously by [14] for one-dimensional case and by [2] for higher
dimensional case.

Proposition 1.1. (Theorem 3.2 in [12]). In order to have a well-defined limiting
stationary problem of (1.1) as d ↓ 0, which is independent of parameters d and σ, there
exists a unique scaling with respect to space and time given by: x := X/(d1/3σ−1/3),
τ := σt. The characteristic domain size is proportional to (d/σ)1/3 and the morphology
of pattern is determined by solving (1.7)–(1.9) (see assumption (A4)).

This scaling law is not only a sufficient condition in order to have a well-defined
singular limit problem of (1.1) as d ↓ 0 (see [12] for details), but also can be justified
from a view point of statistical physics (see [3]). In terms of the new variables x
and τ , the equations in (1.1) are recast as

uτ = ∆

{
−ε∆u− 1

ε
f(u)

}
− (u− u), (x, τ) ∈ Ω × (0,∞),(1.2)

where ε := d2/3σ1/3 and Ω is a magnified unit domain. Here we implicitly assume
that the patterns are periodic in space (in the original scaling), and we focus on a
unit cell of this periodic structure.
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On the other hand, a typical activator-inhibitor system is given by⎧⎨
⎩

ut = d2∆u + f(u) − v,

(x, t) ∈ Ω̂ × (0,∞),
vt = D∆v + g(u, v),

(1.3)

where typically (f, g) = (u−u3, u−γv)(γ > 0). It was proved in [13] that if (1.3) has
a d-family of stationary matched asymptotic solutions whose interface is smooth up
to d = 0, then it must become unstable for small d. It is observed numerically that
stable patterns become finer and finer when d becomes small (see also a recent work
[15]), which strongly suggests the necessity for rescaling in order to track the stable
patterns. It was also shown in [13] that the characteristic size of stable patterns is of
order d1/3 by formal computation. Magnifying the system (1.3) with this scaling, the
rescaled system is given by⎧⎨

⎩
ut = ε2∆u + f(u) − v,

(x, t) ∈ Ω × (0,∞),
εvt = D∆v + εg(u, v),

(1.4)

where ε = d2/3. (See [4, 18, 19, 20, 21, 23].)
At first sight there is no resemblance between (1.2) and (1.4); however, rewriting

(1.2) by introducing new variable v := ε2∆u + f(u) and new time t̃ := τ/ε, the
resulting system becomes⎧⎨

⎩
0 = ε2∆u + f(u) − v,

(x, t̃) ∈ Ω × (0,∞),
0 = ∆v + ε(u− u) + ut̃,

(1.5)

∂u

∂n
= 0 =

∂v

∂n
, (x, t̃) ∈ ∂Ω × (0,∞).(1.6)

Now it is clear that (1.2) is similar to (1.4) as far as stationary solutions are concerned.
Similarity in fact can be extended to dynamical level (i.e., stability), which will be
discussed in section 5.

As a consequence of the above discussion, (1.5) is expected to have a well-defined
smooth interface in the singular limit. The next issue is to locate such an interface
by solving, what is called, the reduced problem of (1.5) (see (1.7)–(1.9)); however, it
is in general quite difficult to solve (1.7)–(1.9) and obtain its explicit profile. The
results listed below will be, therefore, stated under the assumption that such reduced
solutions exist. Nevertheless, this assumption can be checked explicitly for simple but
basic cases when Ω has a spherical or planar geometry, which will be shown in later
sections.

Now we shall state the assumptions and introduce several key notation and op-
erators for later use.

(A1) f is a smooth bistable nonlinearity. The equation f(u) − v = 0 has three
sub-branches of solutions

C+ = {(u, v)|u = h+(v), v ∈ I+}, C− = {(u, v)|u = h−(v), v ∈ I−} and

C0 = {(u, v)|u = h0(v), v ∈ I+ ∩ I−}

such that h−(v) < h0(v) < h+(v) for v ∈ I+ ∩ I−.
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(A2) fu(h±(v)) = d
duf(h±(v)) < 0 on I±.

(A3) J(v) :=
∫ h+(v)

h−(v)
[f(s) − v]ds, v ∈ I0, has an isolated zero v∗ ∈ I0 such that

J ′(v∗) < 0.

(A1)–(A3) with (A4′) and (A7) assumed later are the sufficient conditions for the exis-
tence and stability of transition layer solutions to one-dimensional activator-inhibitor
system (1.3) (see [10] and [11]).

We assume that the domain Ω is simply connected, and Γ is either one of the
following two cases.

Case I. Ω ∈ RN (N ≥ 2) has smooth boundary and define a set F by

F =
{
Γ ⊂ Ω | Γ is an N − 1 dimensional smooth compact
connected manifold without boundary

}
.

Each Γ ∈ F divides Ω into two connected components. We denote by Ω+(Γ) the
component of Ω\Γ which has ∂Ω as part of its boundary. The other component is
defined by Ω−(Γ). Therefore we have

∂Ω+(Γ) = ∂Ω ∪ Γ and ∂Ω−(Γ) = Γ.

Case II. Ω ∈ R2 is a rectangle (0, X) × (0, Y ). Then we define F by

F =
{
Γ ⊂ Ω | Γ is a line, which is parallel to the y-axis
and touches transversely with the boundary ∂Ω

}
.

Then Ω is divided into two connected components Ω−(Γ) = (0, x0) × (0, Y ) and
Ω+(Γ) = (x0, X)×(0, Y ), where Γ = {(x0, y) ∈ R2 | 0 ≤ y ≤ Y } for some x0 ∈ (0, X).
For later use we introduce the aspect ratio κ of Ω, i.e., κ := X/Y .

Let us introduce a local coordinate system in the neighborhood of Γ. By the
implicit function theorem there exists a d0 > 0 such that the map p : [−d0, d0]×Γ →
Γd0 defined by

p(r, y) = y + rν(y)

is a diffeomorphism, where Γd0
= {x ∈ Ω|dist(x,Γ) < d0}, ν = ν(y) is the unit normal

vector on Γ (y ∈ Γ) which points the interior of Ω+(Γ). Using this diffeomorphism,
we identify x ∈ Γd0 with (r, y) ∈ [−d0, d0] × Γd0

and write u(r, y) or u(y + rν(y)) for
u(x) (x ∈ Γd0

). We denote by H(r, y) the mean curvature of the manifold

Γ(r) := {x ∈ Ω|x = y + rν(y) y ∈ Γ}

at y ∈ Γ. Then H(0, y) stands for the mean curvature of the manifold Γ at y ∈ Γ.
Such an interface Γ ∈ F is determined by solving the following equations called

the rescaled reduced problem:{
∆V − + h−(v∗) − u = 0 in Ω−(Γ),

V − = b∗1(y) on Γ,
(1.7)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∆V + + h+(v∗) − u = 0 in Ω+(Γ),

V + = b∗1(y) on Γ,

∂V +

∂n
= 0 on ∂Ω,

(1.8)
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∂V +

∂ν
=

∂V −

∂ν
on Γ,(1.9)

where

b∗1(y) :=
m2

[h]
(N − 1)H(0, y), m2 :=

∫ ∞

−∞
[u∗

ξ(ξ)]
2dξ

and [h] denotes the jump of two branches u = h±(v) at v = v∗, i.e.,

[h] := h+(v∗) − h−(v∗).

Here u = u∗(ξ) is the unique solution of

uξξ + f(u) − v∗ = 0, ξ ∈ R, u(0) = h0(v∗), lim
ξ→±∞

u(ξ) = h±(v∗).

When Γ is a rectangle, we add the boundary condition

∂V −

∂n
= 0 on ∂Ω ∩ ∂Ω−(Γ)

to (1.7) and replace the boundary condition for ∂V +

∂n in (1.8) by

∂V +

∂n
= 0 on ∂Ω ∩ ∂Ω+(Γ).

Roughly speaking, the interface Γ is a set on which the limiting function of the
stationary solution uε as ε ↓ 0 becomes discontinuous in the normal direction. For
more discussions on (1.7)–(1.9), see [12]. We assume the existence of a solution
(V ∗,Γ∗) of (1.7)–(1.9).

(A4) There exists a solution (V ∗,Γ∗) ∈ C1(Ω) ×F of (1.7)–(1.9), where

V ∗(x) =

{
V −(x), x ∈ Ω−(Γ∗),

V +(x), x ∈ Ω+(Γ∗).

V ± are smooth solutions of (1.7) and (1.8), respectively, satisfying (1.9).
In order to state a sufficient condition for the existence and the SLEP equation,

we need to define several operators. Let us consider the following linear boundary
value problem: {

∆Z− = 0 in Ω−(Γ∗),

Z− = q on Γ∗,
(1.10)

⎧⎨
⎩

∆Z+ = 0 in Ω+(Γ∗),

∂Z+

∂n
= 0 on ∂Ω, Z+ = q on Γ∗,

(1.11)

where Γ∗ ∈ F is a solution of (1.7)–(1.9). When Γ∗ is a rectangle, we add the boundary
condition

∂Z−

∂n
= 0 on ∂Ω ∩ ∂Ω−(Γ∗)
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to (1.10) and replace the boundary condition for ∂Z+

∂n in (1.11) by

∂Z+

∂n
= 0 on ∂Ω ∩ ∂Ω+(Γ∗).

For q ∈ C2,α(Γ∗) (0 < α < 1), the problem (1.10) and (1.11) have a unique solution
denoted by P−q and P+q, respectively, satisfying P±q ∈ C2,α(Ω), and define normal
derivative operator Π± : C2,α(Γ∗) → C1,α(Γ∗) by

Π−q =
∂

∂ν
(P−q)

∣∣∣∣
Γ∗

, Π+q = − ∂

∂ν
(P+q)

∣∣∣∣
Γ∗

.

Note that Π := Π− + Π+ is self-adjoint and the null space N (Π) is one-dimensional
spanned by a constant function. Then there is a bounded operator

T : (I − P )C1,α(Γ∗) → (I − P )C2,α(Γ∗)

satisfying ΠT = I on (I − P )C1,α(Γ∗) and T Π = I − P on C2,α(Γ∗), where P is
a projection defined by Pθ := 1

|Γ∗|
∫
Γ∗ θ dS for θ ∈ Cα(Γ∗) and |Γ∗| is surface area

of Γ∗.
Concerning the existence of the stationary solution, we have the following

theorem.
Theorem 1.2 (existence). Assume that (A1)–(A4) are satisfied. Moreover, we

assume that

(A5) There is a bounded linear operator L† : (I − P )Cα(Γ∗) → (I − P )C2,α(Γ∗)
which is the inverse of the operator

L := ∆Γ∗
+ H∗(y) − 1

m2
J ′(v∗)V ∗

r (0, y) +
1

m2
[h]J ′(v∗)T (·)

such that LL† = I on (I − P )Cα(Γ∗) and L†L = I − P on (I − P )C2,α(Γ∗).
Here, ∆Γ∗

is the Laplace–Beltrami operator on Γ∗, H∗(y) the sum of the
square of the principal curvature of Γ∗, V ∗

r (0, y) = ∂V ∗

∂ν , and [h] denotes the
aforementioned jump at v = v∗.

Then, there is an ε0 > 0 such that (1.5)–(1.6) have an ε-family of stationary solutions
(uε, vε) for ε ∈ (0, ε0] satisfying

(i) limε→0 v
ε(x) = v∗ uniformly on Ω,

(ii) for each δ > 0,

lim
ε→0

uε(x) =

⎧⎨
⎩

h−(v∗), x ∈ Ω−(Γ∗)\Γ∗
δ

h+(v∗), x ∈ Ω+(Γ∗)\Γ∗
δ

uniformly,

where Γ∗
δ is a tubular neighborhood of Γ∗,

(iii) for each K > 0,

lim
ε→0

uε(y + εξν(y)) = u∗(ξ + s∗(y)) in C2[−K,K]

uniformly in y ∈ Γ∗ for some s∗ ∈ C2,α(Γ∗).
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The stability property of the stationary solutions is determined by the spectrum
of the following associated linearized problem:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 = ε2∆w + f ε
uw − z,

in Ω,
0 = ∆z + εw + λεw,

∂w

∂n
= 0 =

∂z

∂n
on ∂Ω,

(1.12)

where f ε
u := d

duf(uε). We assume the following for (1.12).

(A6) Each eigenvalue λε and the associated eigenfunctions (wε, zε) of (1.12) have
the following asymptotic forms:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

λε = ελ∗ + o(ε),

wε(x) =

2∑
i=0

εiW±,i(x) + ω(r) ·
2∑

i=0

εiw±,i(r/ε, y) + o(ε2),

in Ω±(Γ∗),

zε(x) =

2∑
i=0

εiZ±,i(x) + ω(r) ·
5∑

j=3

εjz±,j(r/ε, y) + o(ε2),

where W±,i(x) ∈ C2,α(Ω±(Γ∗)) and Z±,i(x) ∈ C2,α(Ω±(Γ∗)) are outer ex-
pansions, w±,i(ξ, y) and z±,j(ξ, y) are inner expansions bounded for ±ξ ∈
(0,∞), and y ∈ Γ∗, x = (r, y) is a local coordinate system in the neighbor-
hood of Γ∗, and ω(r) is a smooth cutoff function such that

ω(r) = 1, |r| ≤ d0

2
ω(r) = 0, |r| ≥ d0.

For more details, see section 3.

Here we are interested in only the critical case, i.e., the expansion starts from ελ∗,
which is justified by Lemma 3.1.

Concerning (1.12), we have the following theorem.
Theorem 1.3 (SLEP equation). Suppose the conditions (A1)–(A6) are valid.

Then the principal part of the critical eigenvalues is given by ελ∗, where λ∗ is the
eigenvalue of the following problem:

Lθ∗ +
1

m2
λ∗[h]J ′(v∗)T (θ∗) = 0(1.13)

for θ∗ ∈ (I − P )C2,α(Γ∗). [h] denotes the aforementioned jump at v = v∗.
Theorem 1.3 gives us a general form which characterizes the asymptotic form of

critical eigenvalues. When Γ∗ has a special geometry such as spherical or planar shape
with f(u) = u−u3, then we can rigorously prove that the critical eigenvalues λε given
by the form λε = ελ∗ + o(1), and determine the stability properties. More precisely
we have the following results (see section 4 for details).

Theorem 1.4 (stability of radially symmetric patterns). Let Ω be a ball of radius
R. Then the following hold:

(i) For any fixed R ∈ (0,∞), there exists u0 = u0(R) ∈ (−1, 1) such that the
radially symmetric solution is stable for u ∈ (u0, 1).
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(a) (b) (c)

(d) (e) (f)

Fig. 1. Evolution of the interfaces slightly perturbed from the homogeneous state u = u, where
X = Y = 2.0, ε = 0.03, u = 7.10992 × 10−5. Since u is very close to 0, lamellar shape is preferable:
(a) t̃ = 0.05, (b) t̃ = 0.15, (c) t̃ = 0.3, (d) t̃ = 1.5, (e) t̃ = 6.0, (f) t̃ = 15.0.

(ii) For any fixed u ∈ (−1, 1), there exists R0 = R0(u) > 0 such that the radially
symmetric solution is unstable for R > R0.

Note that here the location of interface is given by Γ∗ = {x ∈ RN | |x| =
r0}, where r0 = r0(u) is a monotone decreasing function of u, and Ω−(Γ∗) = {x ∈
RN | |x| < r0}. See section 4 for details.

Theorem 1.5 (stability of planar patterns). Let Ω be a rectangle (0, X)× (0, Y )
and κ := X/Y be the aspect ratio defined before. Then the following hold:

(i) For any u ∈ (−1, 1), there exists X = X(u) > 0 such that the planar solution
is stable for any X < X and κ > 0.

(ii) For any fixed κ > 0 and u ∈ (−1, 1), there exists X = X(κ, u) > 0 such that
the planar solution is unstable for X > X.

The results of Theorems 1.4 and 1.5 are useful to understand how the morphology
depends on the ratio u. For instance, Theorem 1.4 (i) implies that the system prefers
spherical patterns when either one of the homopolymers dominates the system, which
is consistent with the numerics as in Figures 1 and 2. The result of Theorem 1.5 (i)
seems against our intuition at first sight; in fact, recalling that the interface is parallel
to y-axis, it indicates that very long interface in a slender domain with any small
aspect ratio can be stabilized, which makes a sharp contrast to the lamellar patterns
arising in activator-inhibitor systems (see [22]). This is, however, consistent with the
experimental results as well as numerics, because very fine lamellar structure in the
original scaling becomes a long strip after rescaling.

The article is organized as follows. The construction of stationary solution of (1.5)
and (1.6) is discussed in section 2 by using the matched asymptotic expansion method.
In section 3, the linearized eigenvalue problem (1.12) is reduced to an eigenvalue
problem on the interface Γ∗. By using these results, we study the stability properties
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(a) (b) (c)

(d) (e) (f)

Fig. 2. Evolution of the interfaces slightly perturbed from the homogeneous state u = u, where
X = Y = 2.0, ε = 0.03, u = −0.399929. Since u is away from 0, spherical shape is preferable: (a)
t̃ = 0.15, (b) t̃ = 0.5, (c) t̃ = 1.0, (d) t̃ = 4.0, (e) t̃ = 12.0, (f) t̃ = 15.0.

of the lamellar and radially symmetric patterns in section 4. Finally, in section 5, we
derive similar results for the activator-inhibitor system (1.4).

2. Construction of stationary solutions by matched asymptotic expan-
sion. In this section, we prove Theorem 1.2. The strategy is as follows. First, we
divide the stationary problem for (1.5) and (1.6) into two problems. That is, for
a0(y), b0(y), b1(y), b2(y) ∈ C2,α(Γ∗), consider the following two problems:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ε2∆u− + f(u−) − v− = 0,
in Ω−(Γ∗),

∆v− + ε(u− − u) = 0,

u− = a0(y), v− = b0(y) + εb1(y) + ε2b2(y) on Γ∗,

(2.1)−

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ε2∆u+ + f(u+) − v+ = 0,
in Ω+(Γ∗),

∆v+ + ε(u+ − u) = 0,

u+ = a0(y), v+ = b0(y) + εb1(y) + ε2b2(y) on Γ∗,

∂u+

∂n
= 0 =

∂v+

∂n
on ∂Ω.

(2.1)+

Here, the interface is regarded as the boundary layer at Γ∗.
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Let (u±,ε(x), v±,ε(x)) be the solution of (2.1)± and define (uε(x), vε(x)) as

(uε(x), vε(x)) =

⎧⎨
⎩

(u−,ε(x), v−,ε(x)), x ∈ Ω−(Γ∗),

(u+,ε(x), v+,ε(x)), x ∈ Ω+(Γ∗).

Since they are continuous on Γ∗ and satisfy (2.1)± in each domain Ω±(Γ∗), they
become a stationary solution of (1.5) and (1.6) if and only if their normal derivatives
are continuous on Γ∗. So we determine a0(s), b0(s), b1(s), and b2(s) in order that
the C1-matching condition is satisfied in subsection 3.3. In fact, by taking account of
the C1-matching condition of order O(1) and O(ε), we can see that b0(y) = v∗ and
b1(y) = b∗1(y).

In Theorem 2.1 below, the symbol C2,α
ε (Ω) stands for the function space C2,α(Ω)

endowed with the weighted norm defined by

‖u‖C2,α
ε (Ω) :=

2∑
j=0

εj |u|j,Ω + ε2+α|u|2+α,Ω,

where

|u|j,Ω = max
|σ|=j

sup
x∈Ω

|∂σu(x)|, |u|k+α,Ω = max
|σ|=k

sup
x,y∈Ω

|∂σu(x) − ∂σu(y)|
|x− y|α

and σ denote the usual multi-indices.
Theorem 2.1 (Ikeda [9]). Suppose the conditions (A1)–(A4) are valid and set

b0(y) = v∗ and b1(y) = b∗1(y). Then for ε ∈ (0, ε0] and a0, b2 ∈ C2,α(Γ∗) satisfying
a0(y) ∈ (h−(v∗), h+(v∗)), there exist two families of solutions,

(u−,ε, v−,ε) ∈ C2,α
ε (Ω−(Γ∗)) × C2,α(Ω−(Γ∗))

and

(u+,ε, v+,ε) ∈ C2,α
ε (Ω+(Γ∗)) × C2,α(Ω+(Γ∗))

of (2.1)− and (2.1)+, respectively, satisfying the following properties:
(1) limε→0 v

±,ε(x) = v∗ uniformly on Ω±(Γ∗).
(2) For an arbitrary δ > 0, limε→0 u

±,ε(x) = h±(v∗) uniformly on Ω±(Γ∗)\Γ∗
δ .

(3) The solutions (u±,ε, v±,ε) have an asymptotic characterization as follows:
There exists a constant such that the estimates below are valid uniformly in ε ∈ (0, ε0]:

‖u±,ε − U±,ε‖C2,α
ε (Ω±(Γ∗)) ≤ Cε3−α,

‖v±,ε − V±,ε‖C2,α(Ω±(Γ∗)) ≤ Cε3−α,

where (U±,ε,V±,ε) are approximate solutions (for more precise information, see (2.7)
and the subsequent subsections).

In the next two subsections, we show the procedures of the asymptotic expansion.

2.1. Outer expansion. Substituting the expansion

U±,ε(x) = U±,0(x) + εU±,1(x) + ε2U±,2(x),

V ±,ε(x) = V ±,0(x) + εV ±,1(x) + ε2V ±,2(x)
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into (2.1)± and equating like powers of εk, we have the following problem for (U±,k(x),
V ±,k(x)) (k = 0, 1, 2):{

f(U±,0) − V ±,0 = 0,

∆V ±,0 = 0,{
f±,0
u U±,1 − V ±,1 = 0,

∆V ±,1 + U±,0 − u = 0,⎧⎨
⎩ f±,0

u U±,2 − V ±,2 +
1

2
f±,0
uu (U±,1)2 = 0,

∆V ±,2 + U±,1 = 0,

where f±,0
u = d

duf(U±,0(x)) and others are similarly defined. V −,0 and V +,0 are
uniquely determined under the boundary conditions

V ±,0 = b0 on Γ∗,
∂V +,0

∂n
= 0 on ∂Ω,

respectively. They are represented as V ±,0 = P±b0. Then we define U±,0 as

U±,0 = h±(V ±,0),

where h±(v) is sub-branch of f(u) − v = 0 defined in section 1.
The equation for V ±,1 with the boundary conditions is recast as⎧⎪⎪⎪⎨

⎪⎪⎪⎩

∆V ±,1 + h±(V ±,0) − u = 0 in Ω±(Γ∗),

V ±,1 = b1(y) on Γ∗,

∂V +,1

∂n
= 0 on ∂Ω,

(2.2)±

respectively. It is not difficult to show that (2.2)± has a unique solution, V ±,1. Then,
by using V ±,1, U±,1 are determined as

U±,1 = h±
v (V ±,0)V ±,1,

where h±
v (v) = d

dvh
±(v). As for the equations for (U±,2, V ±,2), we obtain the

following:

U±,2(x) = h±
v (V ±,0)V ±,2 +

1

2
h±
vv(V

±,0)(V ±,1)2

and ⎧⎨
⎩

0 = ∆V ±,2 + h±
v (V ±,0)V ±,1(x) in Ω±(Γ∗),

∂V +,2

∂n
= 0 on ∂Ω, V ±,2 = b2(y) on Γ∗.

The boundary value problems for V ±,2 are uniquely solvable for arbitrary b2 ∈
C2,α(Γ∗). They are expressed as

V ±,2 = P±b2 + W±,
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where W± ∈ C2,α(Ω±(Γ∗)) are solutions of

⎧⎪⎨
⎪⎩

∆W± = −h±
v (V ±,0(x))V ±,1(x) in Ω±(Γ∗),

W± = 0 on Γ∗,
∂W+

∂n
= 0 on ∂Ω,

respectively. Once V ±,2 is known, U±,2 is uniquely determined by the expression
above.

In this way, we have obtained the following outer expansion:⎧⎨
⎩

V ±,ε(x) = V ±,0(x) + εV ±,1(x) + ε2(P±b2 + W±),
x ∈ Ω±(Γ∗).

U±,ε(x) = h±(V ±,0(x)) + εh±
v (V ±,0(x))V ±,1(x) + ε2U±,2(x),

This expansion is due to the lack of the layer part, in fact, U+,ε and U−,ε are not
continuous on Γ∗. So we need a new variable that stretches a neighborhood of the
interface.

2.2. Inner expansion. Since the outer expansion U+,ε and U−,ε are not contin-
uous on Γ∗, we need to introduce the stretched variable and make another expansion
in the neighborhood of Γ∗.

Let us introduce a local coordinate system in the neighborhood of Γ∗. By the
implicit function theorem there exists a d0 > 0 such that the map p : [−d0, d0]×Γ∗ →
Γ∗
d0

defined by

p(r, y) = y + rν(y)

is a diffeomorphism, where Γ∗
d0

= {x ∈ Ω | dist(x,Γ∗) < d0}. Using this diffeomor-
phism, we identify x ∈ Γ∗

d0
with (r, y) ∈ [−d0, d0] × Γ∗

d0
and write u(r, y) for u(x)

(x ∈ Γ∗
d0

). With this representation, the suitable magnification of Γ∗
d0

corresponds to
the scaling: r = εξ. In terms of the variables ξ and y ∈ Γ∗, the equations in (1.5) are
recast as {

0 = uξξ + ε(N − 1)H(εξ, y)uξ + ε2∆(εξ)u + f(u) − v,

0 = vξξ + ε(N − 1)H(εξ, y)vξ + ε2∆(εξ)v + ε3(u− u).
(2.3)

Here, H(r, y) stands for the mean curvature of the manifold

Γ∗(r) := {x ∈ Ω|x = y + rν(y) y ∈ Γ∗},

and ∆(r) for the Laplace–Beltrami operator on Γ∗(r) (for more details, see Sakamoto
[17]).

We now determine the functions u±,i (i = 0, 1, 2), v±,j (j = 3, 4) in the following
expressions: {

u = U±,ε(εξ, y) + u±,0(ξ, y) + εu±,1(ξ, y) + ε2u±,2(ξ, y),

v = V ±,ε(εξ, y) + ε3v±,3(ξ, y) + ε4v±,4(ξ, y).
(2.4)

The reason why we go to third order v±,3(ξ, y) in ε is that the inhomogeneous term
of the equation for v appears in O(ε)-term. We expand the mean curvature H(εξ, y)
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and the Laplace–Beltrami operator ∆(εξ) of manifold Γ∗(εξ) as

H(εξ, y) =
∑
i≥0

εi Hi(ξ, y), Hi(ξ, y) :=
1

i!

di

dεi
H(εξ, y)

∣∣∣∣
ε=0

,

∆(εξ) =
∑
i≥0

εi ∆i(ξ), ∆i(ξ) :=
1

i!

di

dεi
∆(εξ)

∣∣∣∣
ε=0

.

Here we take account of O(1)-term of the C1-matching condition for v. It is given by

∂V −,0

∂ν
=

∂V +,0

∂ν
on Γ∗.

Combining the result of subsection 2.1, we can see that V ±,0 is a constant function,
that is,

V −,0(x) = V +,0(x) = b0

and b0(y) = b0 for some b0 ∈ R. In the following, we will use this fact.
Substituting (2.4) and the expansions of H(εξ, y) and ∆(εξ) into (2.3), equating

like powers of ε, we have equations for u±,i (i = 0, 1, 2), v±,j (j = 3, 4). We present
them only for u−,i, v−,j below, and omit the superscript “-” of u−,i and v−,j .

The equation for u0 is

u0
ξξ + f(h−(b0) + u0) − b0 = 0, ξ ∈ (−∞, 0).

In view of the boundary conditions in (2.1)−, we impose boundary conditions

u0(0, y) + h−(b0) = a0(y), lim
ξ→−∞

u0(ξ, y) = 0.

Let u±,∗(ξ; v) be the unique solution of

u±,∗
ξξ + f(u±,∗) − v = 0, ξ ∈ ±(0,∞), u±,∗(0; v) = h0(v), lim

ξ→±∞
u±,∗(ξ; v) = h±(v).

By using these functions, u−,0(ξ, y) is given by

u0(ξ, y) = u−,∗(s−0 (y) + ξ; b0) − h−(b0),

where s−0 ∈ C2,α(Γ∗) is related to a0 ∈ C2,α(Γ∗) via the equation

a0(y) = u−,∗(s−0 (y); b0), y ∈ Γ∗.

The equation for (u−,1, v−,3) is⎧⎨
⎩

0 = u1
ξξ + f̃uu

1 + p1(ξ, y),

ξ ∈ (−∞, 0),
0 = v3

ξξ + u0(ξ, y),
(2.5)

where

p1(ξ, y) = (N − 1)H(0, y)u0
ξ(ξ, y) + f̃uU

1(0, y) − V 1(0, y),
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f̃u = d
duf(u−,∗(s0(y)+ ξ; b0)) and others are similarly defined. We emphasize the fact

p1(ξ, y) decays exponentially to zero as ξ → −∞ uniformly in y ∈ Γ∗. If we impose
the boundary conditions

u1(0, y) = −U−,1(0, y) = −h−
v (v∗)b∗1(y), lim

ξ→−∞
u1(ξ, y) = 0,

then the first equation of (2.5) has a unique solution given by

u1(ξ, y) = −U1(0, y)
u0
ξ(ξ, y)

u0
ξ(0, y)

− u0
ξ(ξ, y)

∫ ξ

0

1

[u0
ξ(τ, y)]

2

∫ τ

−∞
p1(s, y)u

0
ξ(s, y)dsdτ.

The boundary conditions for v3 are

v3(0, y) = 0, lim
ξ→−∞

v3(ξ, y) = 0,

and v3 is uniquely determined as

v3(ξ, y) = −
∫ ξ

−∞

∫ τ

−∞
u0(s, y)dsdτ.

Finally, we treat the equation for (u−,2, v−,4)⎧⎨
⎩

0 = u2
ξξ + f̃uu

2 + p2(ξ, y),

ξ ∈ (−∞, 0),
0 = v4

ξξ + q4(ξ, y),
(2.6)

where

p2(ξ, y) = (N − 1)H(0, y)u1
ξ + ∆(0)u0 + (N − 1)Hr(0, y)ξu

0
ξ

+
1

2
f̃uu[U1(0, y) + u1]2 + f̃u[ξU1

r (0, y) + U2(0, y) + u2]

− [ξV 1
r (0, y) + V 2(0, y)],

q4(ξ, y) = (N − 1)H(0, y)v1
ξ + u1,

and U1
r (0, y) = ∂

∂rU
1(0, y) and others are similarly defined. We note the fact that

p2(ξ, y) and q4(ξ, y) decay exponentially to zero as ξ → −∞ uniformly in y ∈ Γ∗. If
we impose the boundary conditions

u2(0, y) = −U−,2(0, y) = −h−
v (v∗)b2(y) −

1

2
h−
vv(v

∗)(b1(y))
2, lim

ξ→−∞
u2(ξ, y) = 0,

v4(0, y) = 0, lim
ξ→−∞

v4(ξ, y) = 0,

then the equations in (2.6) have unique solutions given by

u2(ξ, y) = −U2(0, y)
u0
ξ(ξ, y)

u0
ξ(0, y)

− u0
ξ(ξ, y)

∫ ξ

0

1

[u0
ξ(τ, y)]

2

∫ τ

−∞
p2(s, y)u

0
ξ(s, y)dsdτ

and

v4(ξ, y) = −
∫ ξ

−∞

∫ τ

−∞
q4(s, y)dsdτ.
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The same type of arguments can be applied to u+,i (i = 0, 1, 2) and v+,j (j = 3, 4),
which leads to the following approximation:{U±,ε(x) = U±,ε(x) + {u±,0(r/ε, y) + εu±,1(r/ε, y) + ε2u±,2(r/ε, y)} · ω(r),

V±,ε(x) = V ±,ε(x) + {ε3v±,3(r/ε, y) + ε4v±,4(r/ε, y)} · ω(r),
(2.7)

where ω(r) is a smooth cutoff function such that

ω(r) = 1, |r| ≤ d0

2
ω(r) = 0, |r| ≥ d0.

2.3. C1-matching of normal derivatives on Γ∗. In this subsection, we make
stationary solutions with the internal transition layer on a whole domain Ω by match-
ing the normal derivatives of (u±,ε(x), v±,ε(x)) on Γ∗.

The normal derivatives U±,ε and V±,ε on Γ∗ are computed as

∂

∂ν
U±,ε

∣∣∣∣
Γ∗

= εU±,1
r (0, y) + ε2U±,2

r (0, y) +
1

ε
u±,0
ξ (0, y) + u±,1

ξ (0, y) + εu±,2
ξ (0, y),

∂

∂ν
V±,ε

∣∣∣∣
Γ∗

= εV ∗
r (0, y) + ε2

∂

∂ν
(P±b2) + ε2W±

r (0, y) + ε2v±,3
ξ (0, y) + ε3v±,4

ξ (0, y).

Then O( 1
ε ) and O(1)-term of u−,ε

r (0, y) − u+,ε
r (0, y) are given by

u−,0
ξ (0, y) − u+,0

ξ (0, y) and u−,1
ξ (0, y) − u+,1

ξ (0, y).

Multiplying u±,0
ξ by the equation of u±,0 and integrating it from ±∞ to 0, we have

1

2
[u±,0

ξ (0, y)]2 +

∫ a0(y)

h±(b0)

[f(u) − b0]du = 0.

Noting that u±,0(ξ, y) is a monotonically increasing function with respect to ξ, we
can see that u−,0

ξ (0, y) − u+,0
ξ (0, y) = 0 is equivalent to

J(b0) =

∫ h+(b0)

h−(b0)

[f(u) − b0]du = 0.

We can conclude from (A3) that

b0(y) ≡ b0 = v∗ = 0.

In the following, we set b0 = v∗. Then we can see that u±,0(ξ, y) is represented as

u±,0(ξ, y) = u∗(ξ + s0(y)) − h±(v∗),

where u∗(ξ) is the function defined in section 1 and s0 ∈ C2,α(Γ∗) is a function related
to a0 ∈ C2,α(Γ∗) via the equation

a0(y) = u∗(s0(y)), y ∈ Γ∗.

Also we obtain s0(y) = s−0 (y) = s+
0 (y).
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Since u±,1
ξ (0, y) is computed as

u±,1
ξ (0, y) = − 1

u∗
ξ(s0)

∫ 0

±∞

[
(N − 1)H(0, y)u∗

ξ(ξ + s0(y)) − b1(y)
]
u∗
ξ(s + s0)ds,

we can see that u−,1
ξ (0, y) − u+,1

ξ (0, y) = 0 is equivalent to

0 =
1

u∗
ξ(s0)

[
(N − 1)H(0, y)

∫ ∞

−∞
[u∗

ξ(ξ)]
2dξ − b1(y)[h]

]
.

Thus we obtain

b1(y) = b∗1(y) =
m2

[h]
(N − 1)H(0, y).

Concerning the normal derivatives of u−,ε(x) and v−,ε(x), we have the following
proposition.

Proposition 2.2. Set b0(y) = v∗ and b1(y) = b∗1(y). For the derivatives of
(u±,ε(x), v±,ε(x)) on Γ∗, we have the following relations:

v−,ε
r (0, y) − v+,ε

r (0, y) = ε2 [Π−b2 + Π+b2 − s0[h] − Ψ∗
0] + ε3−αRε

1(s0, b2),(2.8)

u∗
ξ(s0)[u

−,ε
r (0, y) − u+,ε

r (0, y)]

= ε
[
(−m2∆(0) −m2H∗(y) + J ′(v∗)Vr(0, y))s0 − J ′(v∗)b2 − Φ∗

0

]
+ ε2−αRε

2(s0, b2),

(2.9)

where

m2 =

∫ ∞

−∞
[u∗

ξ(ξ)]
2dξ, H∗(y) := −(N − 1)

∂

∂r
H(0, y) =

N−1∑
j=1

κ2
j ,

Ψ∗
0 = W+

r (0, y) −W−
r (0, y) +

∫ 0

−∞
[u∗(ξ) − h−(v∗)]dξ −

∫ 0

∞
[u∗(ξ) − h+(v∗)]dξ,

Φ∗
0 = −H∗(y)

∫ ∞

−∞
ξ[u∗

ξ(ξ)]
2dξ − V 1

r (0, y)

∫ ∞

−∞
ξu∗

ξ(ξ)dξ

+

∫ ∞

−∞
ξ[(N − 1)H(0, y)u∗

ξ(ξ) − b∗1(y)]u
∗
ξ(ξ)dξ −

1

2
[b∗1(y)]

2[h+(v∗) − h−(v∗)],

κj (j = 1, 2, . . . , N − 1) are the principal curvatures of Γ∗. Moreover, Rε
1(s0, b2) and

Rε
2(s0, b2) satisfy

‖Rε
1(s0, b2)‖C1,α(Γ∗) = O(1), ‖Rε

2(s0, b2)‖Cα(Γ∗) = O(1) as ε → 0.

Proof. See Appendix A.
Lemma 2.3. The operators Rε

1(s0, b2) and Rε
2(s0, b2) are Lipschitz continuous in

(s0, b2). More precisely, there exists a C > 0, independent of ε ∈ (0, ε0], such that

‖Rε
1(s

1, b1) −Rε
1(s

2, b2)‖C1,α(Γ∗) ≤ C[‖s1 − s2‖C2,α(Γ∗) + ‖b1 − b2‖C2,α(Γ∗)],

‖Rε
2(s

1, b1) −Rε
2(s

2, b2)‖Cα(Γ∗) ≤ C[‖s1 − s2‖C2,α(Γ∗) + ‖b1 − b2‖C2,α(Γ∗)].
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Proof of Lemma 2.3. We can prove this lemma in the same manner as the proof
of Theorem 3.1 in [17].

Let us solve the following equations for s0 and b2 under the conditions b0(y) = v∗

and b1(y) = b∗1(y):⎧⎪⎪⎨
⎪⎪⎩

Φ(s0, b2, ε) := − 1

m2ε
u∗
ξ(s0)[u

−,ε
r (0, y) − u+,ε

r (0, y)] = 0,

Ψ(s0, b2, ε) :=
1

ε2
[v−,ε

r (0, y) − v+,ε
r (0, y)] = 0.

(2.10)

The next proposition guarantees that the normal derivatives of u±,ε and v±,ε on Γ∗

are matched continuously for an appropriate pair (sε0, b
ε
2).

Proposition 2.4. Suppose the conditions (A1)–(A5) are valid. There exists a
pair (sε0, b

ε
2) ∈ C2,α(Γ∗) × C2,α(Γ∗) satisfying (2.10) for small ε > 0.

Proof. When ε = 0, (2.10) can be rewritten as⎧⎨
⎩

Ms +
1

m2
J ′(v∗)b +

1

m2
Φ∗

0 = 0,

Πb− [h]s− Ψ∗
0 = 0,

(2.11)

where

M := ∆Γ∗
+ H∗(y) − 1

m2
J ′(v∗)Vr(0, y).

Let P be a projection onto the null space N (Π), i.e.,

Pa :=
1

|Γ∗|

∫
Γ∗

a dS for a ∈ C2,α(Γ∗).

Then (2.11) is equivalent to the following system:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

PM(sN + s†) +
1

m2
J ′(v∗)bN +

1

m2
PΦ∗

0 = 0,

(I − P )M(sN + s†) +
1

m2
J ′(v∗)b† +

1

m2
(I − P )Φ∗

0 = 0,

−[h]sN − PΨ∗
0 = 0,

Πb† − [h]s† − (I − P )Ψ∗
0 = 0,

(2.12)

where s = sN + s†, b = bN + b†, sN , bN ∈ PC2,α(Γ∗), and s†, b† ∈ (I − P )C2,α(Γ∗).
Solving the third and fourth equations in (2.12) with respect to sN and b†, respectively,
we have ⎧⎨

⎩
s∗N = − 1

[h]
PΨ∗

0,

b† = [h]T s† + T (I − P )Ψ∗
0.

(2.13)

Substituting (2.13) into the first and second equations in (2.12), we obtain⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

PM(s∗N + s†) +
1

m2
J ′(v∗)bN +

1

m2
PΦ∗

0 = 0,

(I − P )Ms† +
1

m2
[h]J ′(v∗)T s† + (I − P )Ms∗N

+
1

m2
J ′(v∗)T (I − P )Ψ∗

0 +
1

m2
(I − P )Φ∗

0 = 0.

(2.14)
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By using the assumption (A5), we can solve the second equation in (2.14) with respect
to s†.

s∗† = −L†
[
(I − P )Ms∗N +

1

m2
J ′(v∗)T (I − P )Ψ∗

0 +
1

m2
(I − P )Φ∗

0

]
.

Then bN and b† are determined as

b∗N = − 1

J ′(v∗)
[m2PM(s∗N + s∗†) − PΦ∗

0], b∗† = [h]T s∗† + T (I − P )Ψ∗
0.

Now we find solutions of (2.10). Substituting

s0 = s∗N + s∗† + σN + σ† and b2 = b∗N + b∗† + βN + β†

into (2.10) and operating P and I − P to the equations, we have

PM(σN + σ†) +
1

m2
J ′(v∗)βN − ε1−αPR̂ε

2(σN , σ†, βN , β†) = 0,(2.15)

(I − P )M(σN + σ†) +
1

m2
J ′(v∗)β† − ε1−α(I − P )R̂ε

2(σN , σ†, βN , β†) = 0,(2.16)

−[h]σN + ε1−αPR̂ε
1(σN , σ†, βN , β†) = 0,(2.17)

Πβ† − [h]σ† + ε1−α(I − P )R̂ε
1(σN , σ†, βN , β†) = 0,(2.18)

where

R̂ε
1(σN , σ†, βN , β†) = Rε

1(s
∗
N + s∗† + σN + σ†, b

∗
N + b∗† + βN + β†),

R̂ε
2(σN , σ†, βN , β†) =

1

m2
Rε

2(s
∗
N + s∗† + σN + σ†, b

∗
N + b∗† + βN + β†).

We can solve (2.17) with respect to σN when ε > 0 is small.

σN = σ̃ε
N (σ†, βN , β†) =

ε1−α

[h]
PR̂ε

1(σ̃
ε
N (σ†, βN , β†), σ†, βN , β†).(2.19)

Substituting (2.19) into (2.18), we have

Πβ† − [h]σ† + ε1−α(I − P )R̂ε
1(σ̃

ε
N (σ†, βN , β†), σ†, βN , β†) = 0.(2.20)

When ε > 0 is small, (2.20) is solvable in β† as

β† = βε
†(σ†, βN )

= [h]T σ† − ε1−αT (I − P )R̂ε
1(σ̃N (σ†, βN , βε

†(σ†, βN )), σ†, βN , βε
†(σ†, βN )).

(2.21)

By using (2.21), σN is represented as

σN = σε
N (σ†, βN ) := σ̃ε

N (σ†, βN , βε
†(σ†, βN )).(2.22)
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Here note that σε
N (σ†, βN ) and βε

†(σ†, βN ) are Lipschitz continuous in (σ†, βN ) since
Rε

j(s0, b2) are Lipschitz continuous in (s0, b2). Moreover, they have the following
properties:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

|σε
N (σ1

† , β
1
N ) − σε

N (σ2
† , β

2
N )| ≤ ε1−αC[‖σ1

† − σ2
†‖C2,α(Γ∗) + ε1−α|β1

N − β2
N |],

‖βε
†(σ

1
† , β

1
N ) − βε

†(σ
2
† , β

2
N )‖C2,α(Γ∗) ≤ C[‖σ1

† − σ2
†‖C2,α(Γ∗) + ε1−α|β1

N − β2
N |],

‖Bε
†(σ

1
† , β

1
N ) −Bε

†(σ
2
† , β

2
N )‖C2,α(Γ∗) ≤ ε1−αC[‖σ1

† − σ2
†‖C2,α(Γ∗) + ε1−α|β1

N − β2
N |],

(2.23)

where

Bε
†(σ†, βN ) := βε

†(σ†, βN ) − [h]T σ†,

|σε
N | = O(ε1−α), ‖Bε

†‖C2,α(Γ∗) = O(ε1−α) as ε → 0.

Substituting (2.21) and (2.22) into (2.16), we obtain

(I − P )Lσ† = −(I − P )Mσε
N (σ†, βN ) − 1

m2
J ′(v∗)Bε

†(σ†, βN )

+ ε1−α(I − P )R̂ε
2(σ

ε
N (σ†, βN ), σ†, βN , βε

†(σ†, βN )).

(2.24)

From the assumption (A5), there exists a constant C0 > 0 such that

‖L†‖Cα(Γ∗)−→C2,α(Γ∗) ≤ C0,(2.25)

and (2.24) is recast as

σ† = −L†(I − P )Mσε
N (σ†, βN ) − 1

m2
J ′(v∗)L†Bε

†(σ†, βN )

+ ε1−αL†(I − P )R̂ε
2(σ

ε
N (σ†, βN ), σ†, βN , βε

†(σ†, βN )).

(2.26)

It follows from (2.23) and (2.25) that the right-hand side of (2.26) is a contraction
on B := {σ† ∈ (I − P )C2,α(Γ∗) | ‖σ†‖C2,α(Γ∗) ≤ 1} with Lipschitz constant O(ε1−α).
Therefore, (2.26) has a unique solution σ† = σε

†(βN ) ∈ B with the property,

‖σε
†‖C2,α(Γ∗) = O(ε1−α) as ε → 0.

Finally, substituting (2.21), (2.22), and σ† = σε
†(βN ) into (2.15), we obtain an equation

of βN , which is solvable in βN .
Proof of Theorem 1.2. By virtue of Theorem 2.1 and Proposition 2.4, we obtain

the statements of Theorem 1.2.

3. Linearized eigenvalue problem. In this section, we study the linearized
eigenvalue problem around a stationary solution (uε(x), vε(x)),⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 = ε2∆w + f ε
uw − z,

in Ω,
0 = ∆z + εw + λεw,

∂w

∂n
= 0 =

∂z

∂n
on ∂Ω.

(3.1)
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Our goal in this section is to prove Theorem 1.3. Roughly speaking, the SLEP equa-
tion (1.13) in Theorem 1.3 becomes a sufficient condition for C1-matching conditions
of the concerning eigenfunctions.

We first divide (3.1) into the following two parts:⎧⎪⎪⎨
⎪⎪⎩

ε2∆w−,ε + f ε
uw

−,ε − z−,ε = 0,
in Ω−(Γ∗),

∆z−,ε + εw−,ε + λεw−,ε = 0,

w−,ε(y) = Θε(y), z−,ε(y) = qε(y), y ∈ Γ∗,

(3.2)−

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ε2∆w+,ε + f ε
uw

+,ε − z+,ε = 0,
in Ω+(Γ∗),

∆z+,ε + εw+,ε + λεw+,ε = 0,

∂w+,ε

∂n
= 0 =

∂z+,ε

∂n
on ∂Ω,

w+,ε(y) = Θε(y), z+,ε(y) = qε(y), y ∈ Γ∗,

(3.2)+

where

qε(y) = q0(y) + εq1(y) + ε2q2(y), λε = ελ1.

Θε, q0, q1, q2 ∈ C2,α(Γ∗) are unknown boundary data and λ1 ∈ C are regarded as
parameters. Here we choose ελ1 as the principal term in order that we can successively
expand (3.2)± and determine the parameters one after another. In fact, we have the
following lemma:

Lemma 3.1. Suppose that λε = λ0 + ελ1. Then, if we can expand (3.2)± and
determine the parameters Θε(y), qε(y) and λε one after another, we have either Re
λ0 < 0 or λ0 = 0.

Proof. This result is proved by using the formal matched asymptotic expansions
starting from O(1). See Appendix B.

Let us first construct the solutions (w±,ε, z±,ε) of (3.2)±, namely, the following.
Theorem 3.2 (see [9]). Suppose the conditions (A1)–(A5) are valid. Then, for

ε ∈ (0, ε0], λ1 ∈ C, Θε = Θ ∈ C2,α(Γ∗), q0, q1, q2 ∈ C2,α(Γ∗), there exist two families
of solutions

(w−,ε, z−,ε) ∈ C2,α
ε (Ω−(Γ∗)) × C2,α(Ω−(Γ∗))

and

(w+,ε, z+,ε) ∈ C2,α
ε (Ω+(Γ∗)) × C2,α(Ω+(Γ∗))

of (3.2)− and (3.2)+, respectively, which have the following asymptotic characteriza-
tion: There exists a constant C > 0 such that the estimates below are valid uniformly
in ε ∈ (0, ε0]: ∥∥w±,ε −W±,ε

2

∥∥
C2,α

ε (Ω±(Γ∗))
≤ Cε3−α,

∥∥z±,ε −Z±,ε
2

∥∥
C2,α(Ω±(Γ∗))

≤ Cε3−α,

where (W±,ε
2 ,Z±,ε

2 ) are approximate solutions (see (3.18) for the details). Here C2,α
ε

is the same Banach space defined in section 2.
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In the next two subsections, we only construct the approximate solutions of (3.2)−
and omit the superscript (or subscript) + (or −).

3.1. Outer expansion. Let us substitute

w(x) = W 0(x) + εW 1(x) + ε2W 2(x), z(x) = Z0(x) + εZ1(x) + ε2Z2(x)

into (3.2)− and equate like powers of ε. Then we have the following problem for
W−,i(x) and Z−,j(x) (i = 0, 1, 2):{

f0
uW

0 − Z0 = 0,

∆Z0 = 0,

{
f0
uW

1 + f1
uW

0 − Z1 = 0,

∆Z1 + (1 + λ1)W
0 = 0,

(3.3)

{
f0
uW

2 + f1
uW

j + f2
uW

0 + ∆W 0 − Z2 = 0,

∆Z2 = −(1 + λ1)W
1,

(3.4)

where

f i
u :=

1

i!

di

dεi
fu

(
2∑

i=0

εiU i(x)

)∣∣∣∣∣
ε=0

.

Z0 is uniquely determined under the boundary condition

Z0 = q0 on Γ∗.

That is represented as Z0 = P−q0. By using Z0, W 0 is determined as

W 0 =
1

f0
u

Z0 = h−
v (v∗)Z0.

Here we used the fact that f(h−(v)) − v = 0 and f0
u = fu(h−(v∗)) �= 0 (see (A1)).

Then, (3.3) can be rewritten as

⎧⎪⎨
⎪⎩

W 1 =
1

f0
u

[−f1
uW

0 + Z1],

in Ω−(Γ∗).
∆Z1 = −(1 + λ1)h

−
v (v∗)Z0,

(3.5)

Once W 0 and Z0 are known, the second equation of (3.5) is Poisson equation associ-
ated with Z1. Therefore, Z1 is uniquely determined under the boundary conditions

Z1 = q1 on Γ∗.

That is represented as

Z1 = P−q1 + Ẑ1,
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where Ẑ1 is the unique solution of{
∆Ẑ1 = −(1 + λ1)h

−
v (v∗)Z0 in Ω−(Γ∗),

Ẑ1 = 0 on Γ∗.

Once Z1 is known, W 1 is uniquely determined by the first equation of (3.5).
Noting that the boundary conditions for Z2 is given by Z2 = q2 on Γ∗, we can

solve Z2 as

Z2 = P−q2 + Ẑ2,

where Ẑ2 is the unique solutions of⎧⎨
⎩∆Ẑ2 = −(1 + λ1)

Z1 − f1
uW

0

f0
u

in Ω−(Γ∗),

Ẑ2 = 0 on Γ∗.

Once Z2 is known, W 2 is uniquely determined by the first equation of (3.4).
In this way, we have obtained the following outer expansion of order O(ε2):

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Z−,ε
2 (x) = P−q0 +

2∑
i=1

εi(P−qi + Ẑi).

x ∈ Ω−(Γ∗).

W−,ε
2 (x) =

2∑
j=0

εjW j(x),

In the same way as above, we can obtain an outer expansion also for (3.2)+. Since
W+,ε

2 and W−,ε
2 are not continuous on Γ∗, we introduce a new variable ξ = r/ε and

construct the inner part.

3.2. Inner expansion. In terms of the variables ξ and y ∈ Γ∗, the equations in
(3.1) are recast as{

wξξ + ε(N − 1)H(εξ, y)wξ + ε2∆(εξ)w + f ε
uw − z = 0,

zξξ + ε(N − 1)H(εξ, y)zξ + ε2∆(εξ)z + ε3w + ε2λεw = 0.
(3.6)

We now determine the functions w−,i (i = 0, 1, 2), z−,j (j = 0, 1, . . . , 5) in the following
expressions:

w =
2∑

i=0

εiW i(εξ, y) +

2∑
i=0

εiwi(ξ, y) =

2∑
i=0

εiW̃ i(ξ, y) +

2∑
i=0

εiwi(ξ, y),

z =

2∑
i=0

εiZi(εξ, y) +

5∑
i=0

εizi(ξ, y) =

2∑
i=0

εiZ̃i(ξ, y) +

5∑
i=0

εizi(ξ, y),

(3.7)

where

W̃ i :=
1

i!

di

dεi

(
2∑

k=0

εkW k(εξ, y)

)∣∣∣∣∣
ε=0

, Z̃i :=
1

i!

di

dεi

(
2∑

k=0

εkZk(εξ, y)

)∣∣∣∣∣
ε=0

.
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Also we expand the mean curvature H(εξ, y) and the Laplace–Beltrami operator ∆(εξ)
of manifold Γ∗(εξ) as in subsection 2.2. Substituting (3.7) into (3.6) and equating like
powers of ε, we have equations for w−,i (i = 0, 1, 2) and z−,j (j = 0, 1, . . . , 5) as
follows: ⎧⎨

⎩
w0

ξξ + f̃0
uw

0 + f̃0
uW̃

0 − (Z̃0 + z0) = 0, ξ ∈ (−∞, 0),

w0(0, y) = Θ(y) −W 0(0, y), lim
ξ→−∞

w0(ξ, y) = 0,

⎧⎪⎨
⎪⎩

w1
ξξ + f̃0

uw
1 + (N − 1)H(0, y)w0

ξ + f̃0
uW̃

1 + f̃1
u(W̃ 0 + w0) − (Z̃1 + z1) = 0,

ξ ∈ (−∞, 0),
w1(0, y) = −W 1(0, y), lim

ξ→−∞
w1(ξ, y) = 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

w2
ξξ + f̃0

uw
2 + (N − 1)

∑
i+j=1

Hiwj
ξ + ∆0w0 + (value of ∆W 0 on Γ∗)

+f̃0
uW̃

2 +
∑

i+j=2,i≥1

f̃ i
u(W̃ j + wj) − (Z̃2 + z2) = 0, ξ ∈ (−∞, 0),

w2(0, y) = −W 2(0, y), lim
ξ→−∞

w2(ξ, y) = 0,

(3.8)

where

f̃ i
u :=

1

i!

di

dεi
fu

⎛
⎝U±,ε(εξ, y) +

2∑
j=0

εju±,j(ξ, y)

⎞
⎠
∣∣∣∣∣∣
ε=0

(i = 0, 1, 2),

⎧⎨
⎩

z0
ξξ = 0, ξ ∈ (−∞, 0),

z0(0, y) = 0, lim
ξ→−∞

z0(ξ, y) = 0,
(3.9)

⎧⎨
⎩

z1
ξξ + (N − 1)H(0, y)z0

ξ = 0, ξ ∈ (−∞, 0),

z1(0, y) = 0, lim
ξ→−∞

z1(ξ, y) = 0,
(3.10)

⎧⎨
⎩

z2
ξξ + (N − 1)(H0z1

ξ + H1z0
ξ ) + ∆0z0 = 0, ξ ∈ (−∞, 0),

z2(0, y) = 0, lim
ξ→−∞

z2(ξ, y) = 0,
(3.11)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

znξξ + (N − 1)
∑

i+j=n−1

Hizjξ +
∑

i+j=n−2

∆izj + (1 + λ1)w
n−3 = 0, ξ ∈ (−∞, 0),

(n = 3, 4, 5),
zn(0, y) = 0, lim

ξ→−∞
zn(ξ, y) = 0.

(3.12)
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The equations (3.9), (3.10), and (3.11) imply that zj(ξ, y) ≡ 0 (j = 0, 1, 2).
The equation for w0 is recast as

w0
ξξ + f̃0

uw
0 + P0(ξ, y) = 0, ξ ∈ (−∞, 0),(3.13)

where

P0(ξ, y) = f̃0
uW

0(0, y) − q0(y), f̃0
u = fu(u∗(ξ + s0(y))).

In view of the boundary conditions in (3.2)−, we impose boundary conditions

w0(0, y) = Θ(y) −W 0(0, y), lim
ξ→−∞

w0(ξ, y) = 0.

By using the fact that u∗
ξ(ξ+s0(y)) is a fundamental solution of (3.13), w0 is uniquely

determined as

w0(ξ, y) = [Θ(y) −W 0(0, y)]
u∗
ξ(ξ + s0)

u∗
ξ(s0)

− u∗
ξ(ξ + s0)

∫ ξ

0

1

[u∗
ξ(τ + s0)]2

∫ τ

−∞
P0(s, y)u

∗
ξ(s + s0)dsdτ

(3.14)

with s0 = s0(y). Noting that w0 decays exponentially to zero as ξ → −∞, we can
solve z3 as

z3(ξ, y) = −(1 + λ1)

∫ ξ

−∞

∫ τ

−∞
w0(s, y)dsdτ.(3.15)

The equations for (w1, z4) are⎧⎨
⎩

0 = w1
ξξ + f̃uw

1 + P1(ξ, y),

ξ ∈ (−∞, 0),
0 = z4

ξξ + Q1(ξ, y),
(3.16)

where

P1(ξ, y) = (N − 1)H(0, y)w0
ξ + f̃0

uW̃
1 + f̃1

u(W̃ 0 + w0) − Z̃1,

Q1(ξ, y) = (N − 1)H(0, y)z3
ξ + (1 + λ1)w

1.

We emphasize the fact P1(ξ, y) decays exponentially to zero as ξ → −∞ uniformly in
y ∈ Γ∗. Therefore, the first equation in (3.16) has a unique solution given by

w1(ξ, y) = −W 1(0, y)
u∗
ξ(ξ + s0)

u∗
ξ(s0)

−u∗
ξ(ξ + s0)

∫ ξ

0

1

[u∗
ξ(τ + s0)]2

∫ τ

−∞
P1(s, y)u

∗
ξ(s + s0)dsdτ

with s0 = s0(y). Once z3 and w1 are determined, z4 is uniquely determined as

z4(ξ, y) = −
∫ ξ

−∞

∫ τ

−∞
Q1(s, y)dsdτ.
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Here we used the fact that Q1(ξ, y) decays exponentially to zero as ξ → −∞ uniformly
in y ∈ Γ∗.

By using the above results, w2 and z5 are solved as

w2(ξ, y) = −W 2(0, y)
u∗
ξ(ξ + s0)

u∗
ξ(s0)

− u∗
ξ(ξ + s0)

∫ ξ

0

1

[u∗
ξ(τ + s0)]2

∫ τ

−∞
P2(s, y)u

∗
ξ(s + s0)dsdτ,

z5(ξ, y) = −
∫ ξ

−∞

∫ τ

−∞
Q2(s, y)dsdτ.

(3.17)

with s0 = s0(y). Here we used the fact P2(ξ, y) and Q5(ξ, y) decays exponentially to
zero as ξ → −∞ uniformly in y ∈ Γ∗.

The same type of arguments as above apply to w+,i (i = 0, 1, 2) and z+,j

(j = 0, 1, . . . , 5). Now we have obtained the approximation of order O(ε2),⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

W±,ε
2 (x) = W±,ε

2 (x) + ω(r) ·
2∑

i=0

εiw±,i(r/ε, y),

Z±,ε
2 (x) = Z±,ε

2 (x) + ω(r) ·
5∑

j=3

εjz±,j(r/ε, y),

(3.18)

where ω(r) is a smooth cutoff function such that

ω(r) = 1, |r| ≤ d0

2
ω(r) = 0, |r| ≥ d0.

3.3. Matching of normal derivatives on Γ∗. Now we are ready to make the
eigenfunctions on a whole domain by matching the normal derivatives of (w±,ε, z±,ε).
That is, θ(y) := Θ(y)/u∗

ξ(s0(y)), qi(y) (i = 0, 1, 2) ∈ C2,α(Γ∗), and λ1 ∈ C must

satisfy the following C1-matching conditions:

Φ(θ, q0, q1, q2, λ1, ε) = 0, Ψ(θ, q0, q1, q2, λ1, ε) = 0 on Γ∗,(3.19)

where

Φ(θ, q0, q1, q2, λ1, ε)(y) = εu∗
ξ(s0(y))[w

−,ε
r (0, y) − w+,ε

r (0, y)]

= u∗
ξ(s0(y))[w

−,0
ξ (0, y) − w+,0

ξ (0, y)]

+u∗
ξ(s0(y))

1∑
i=0

εi+1[W−,i
r (0, y) + w−,i+1

ξ (0, y)

−W+,i
r (0, y) − w+,i+1

ξ (0, y)] + ε3−αRε
2(θ, q0, q1, q2, λ1),

Ψ(θ, q0, q1, q2, λ1, ε)(y) = z−,ε
r (0, y) − z+,ε

r (0, y)

= Z−,0
r (0, y) − Z+,0

r (0, y) + ε[Z−,1
r (0, y) − Z+,1

r (0, y)]

+ ε2[Z−,2
r (0, y) + z−,3

ξ (0, y) − Z+,2
r (0, y) − z+,3

ξ (0, y)]

+ ε3−αRε
1(θ, q0, q1, q2, λ1).
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The crucial part of (3.19) will turn out to be O(ε2), which leads to the conclusion
(1.13). We first compute O(1) and O(ε) terms of (3.19).

Lemma 3.3. When ε = 0, (3.19) is equivalent to

u∗
ξ(s0(y))[w

−,0
ξ (0, y) − w+,0

ξ (0, y)] = q0(y)[h] = 0,(3.20)

Z−,0
r (0, y) − Z+,0

r (0, y) = (Π− + Π+)q0 = 0,(3.21)

where [h] = h+(v∗) − h−(v∗).
Proof. Differentiating the representation of w±,1(ξ, y) at ξ = 0,

u∗
ξ(s0)w

±,0
ξ (0, y) = [θ(y)u∗

ξ(s0) −W±,0(0, y)]u∗
ξξ(s0)

−
∫ 0

±∞
[fu(u∗(ξ + s0))W

±,0(0, y) − q0(y)]u
∗
ξ(ξ + s0)dξ

= θ(y)u∗
ξ(s0)u

∗
ξξ(s0) + q0(y)(u

∗(s0) − h±(v∗)).

Here we used the fact that u∗
ξξξ(s0) + fu(u∗(ξ + s0))u

∗
ξ(ξ + s0) = 0. Thus we obtain

(3.20). (3.21) is obvious.
Lemma 3.3 implies that q0(y) ≡ 0. Then we see that

W±,0(x) ≡ 0 ≡ Z±,0(x)

and w±,0 is represented as

w±,0(ξ, y) = u∗
ξ(ξ + s0(y))θ(y).(3.22)

In the following, we omit the superscript ± of w±,0(ξ, y).
Next we consider the O(ε)-term of (3.19).
Lemma 3.4. O(ε)-terms of (3.19) are equivalent to

u∗
ξ(s0(y))[W

−,0
r (0, y) + w−,1

ξ (0, y) −W+,0
r (0, y) − w+,1

ξ (0, y)] = q1(y)[h] = 0,(3.23)

Z−,1
r (0, y) − Z+,1

r (0, y) = (Π− + Π+)q1 = 0.(3.24)

Proof. In view of (3.22), the equation for w±,1 is recast as

w±,1
ξξ + fu(u∗(ξ + s0))w

±,1

+(N − 1)H(0, y)w0
ξ + fu(u∗(ξ + s0))W

±,1(0, y) + f̃1
uw

0
ξ − q1(y) = 0.

Differentiating the representation of w±,1(ξ, y) at ξ = 0,

−u∗
ξ(s0)w

±,1
ξ (0, y) = θ(y)

∫ 0

±∞
[(N − 1)H(0, y)u∗

ξξ(ξ + s0) + f̃1
uu

∗
ξ(ξ + s0)]

×u∗
ξ(ξ + s0)dξ − q1(y)

∫ 0

±∞
u∗
ξ(ξ + s0)dξ

= θ(y)[u±,1
ξ (0, y)u∗

ξξ(s0) − u∗
ξ(s0)u

±,1
ξξ (0, y)]

− q1(y)

∫ 0

±∞
u∗
ξ(ξ + s0)dξ.
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Here we used the fact proved in Appendix D that∫ 0

±∞
[(N − 1)H(0, y)u∗

ξξ(ξ + s0) + f̃1
uu

∗
ξ(ξ + s0)]u

∗
ξ(ξ + s0)dξ

= u±,1
ξ (0, y)u∗

ξξ(s0) − u∗
ξ(s0)u

±,1
ξξ (0, y).

(3.25)

By using the facts that u−,1
ξ (0, y) = u+,1

ξ (0, y) and u−,1
ξξ (0, y) = u+,1

ξξ (0, y), we have

u∗
ξ(s0(y))[w

−,1
ξ (0, y) − w+,1

ξ (0, y)] = q1(y)

∫ ∞

−∞
u∗
ξ(ξ)dξ = q1(y)[h].

Thus we obtain (3.23). Equation (3.24) is obvious.
Lemma 3.4 implies that q1(y) ≡ 0, and then we see that

W±,1(x) ≡ 0 ≡ Z±,1(x).

Let us define new functions Φ̃ and Ψ̃ as follows:

Φ̃(θ, q2, λ1, ε) :=
1

ε2
Φ(θ, 0, 0, q2, λ1, ε), Ψ̃(θ, q2, λ1, ε) :=

1

ε2
Ψ(θ, 0, 0, q2, λ1, ε).

Lemma 3.5. Φ̃(θ, q2, λ1, 0) = 0 and Ψ̃(θ, q2, λ1, 0) = 0 are equivalent to

[m2∆Γ∗
+ m2H∗(y) − V 1

r (0, y)J ′(v∗)]θ + J ′(v∗)q2(y) = 0,(3.26)

(Π− + Π+)q2 − (1 + λ1)[h]θ = 0.(3.27)

Proof. See Appendix C.
Proof of Theorem 1.3. Using Lemma 3.5, we obtain (1.13).

4. Applications. In this section, we apply the results of the previous sections
to the case where the domain Ω is a ball or a rectangle. In the following, we assume
that the nonlinearity takes the form

f(u) = u− u3.

First we note that the constants appeared in the previous section are computed as
follows.

Lemma 4.1.

v∗ = 0, h±(v∗) = ±1, J ′(v∗) = −2, [h] = 2, m2 =
2
√

2

3
=

4

3
√

2
.

Proof. This is proved by straightforward computation.

4.1. Stability of radially symmetric solutions. In this subsection, we study
the radially symmetric solution when Ω is a ball of radius R. It is convenient to
introduce new coordinate system x = (r, y), where x = ry for r ∈ [0, R] and y ∈ ∂Ω =
SN−1.

Then the rescaled reduced problem (1.7)–(1.9) can be rewritten as⎧⎪⎪⎨
⎪⎪⎩

V +
rr +

N − 1

r
V +
r + G+ = 0, r0 < r < R,

V +(r0) =
m2(N − 1)

J ′(v∗)r0
, V +

r (1) = 0,

(4.1)+
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⎧⎪⎪⎨
⎪⎪⎩

V −
rr +

N − 1

r
V −
r + G− = 0, 0 < r < r0,

V −
r (0) = 0, V −(r0) =

m2(N − 1)

J ′(v∗)r0
,

(4.1)−

and

V −
r (r0) = V +

r (r0),(4.2)

where G± := ±1 − u. Here V −(r, y), V +(r, y) and r0 are unknown functions and a
parameter, respectively. The solutions of (4.1)± have the following expressions:

V +(r) =
m2(N − 1)

J ′(v∗)r0
+

G+

N

∫ r

r0

(RN t1−N − t)dt,

V −(r) =
m2(N − 1)

J ′(v∗)r0
+

G−

2N
(r2

0 − r2).

Then, by using the condition (4.2), r0 is uniquely determined as

r0 =

(
G+

[h]

)1/N

R,

and the interface Γ∗ is defined by

Γ∗ = {x ∈ RN | |x| = r0}.

The following existence theorem can be proved in a similar way as in [5], so we omit
it (see also [19]).

Theorem 4.2. There exists a constant ε0 > 0 such that (1.5) and (1.6) have an
ε-family of radially symmetric layer solutions (uε(r), vε(r)) for ε ∈ (0, ε0] satisfying
the following:

(i) limε→0 v
ε = v∗ uniformly on Ω.

(ii) For each δ > 0,

lim
ε→0

uε(r) =

{
−1, 0 ≤ r ≤ r0 − δ,

1, r0 + δ ≤ r ≤ R.

The asymptotic form of (U ε(r), vε(r)) is given in section 2.
Using Lemma 4.1 and the above results, we can find that the operator L is recast

as

L =
1

r2
0

∆S +
N − 1

r2
0

+
3
√

2

2

1 + u

N
r0 − 3

√
2T (·).

We prepare two lemmas before we state the key proposition.
Lemma 4.3. All the eigenvalues of T and L are real. More precisely,
(i) the jth eigenvalue Λj of T is given by

Λj = αRΛ̂(j, α),(4.3)

where

Λ̂(z, α) =
(z + N − 2)α2z+N−2 + z

z(2z + N − 2)
, r0 = αR, α = α(u) =

(
1 − u

2

)1/N

.(4.4)

Then the associated eigenfunction βm
j (y) is the harmonic function of degree m.
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(ii) The jth eigenvalue L is real and given by Σj = Σ(j, α,R), where

Σ(z, α,R) =
1

α2R2
[−z2 − (N − 1)z + N − 1] + 3

√
2

[
1 − αN

N
− Λ̂(z, α)

]
αR.(4.5)

Then the associated eigenfunction is the same as that of T .
Proof. See Appendix E.
Lemma 4.4 (properties of Λ̂(z, α) and Σ(z, α,R)).
(i) For z ≥ 1 and α ∈ (0, 1),

∂

∂z
Λ̂(z, α) < 0,

∂2

∂z2
Λ̂(z, α) > 0.

(ii)

∂

∂z
Σ(1, α,R)=− N

α2R2

−3
√

2αR

N2
[−αN{2+4(N − 2) + (N − 2)2}+2(N − 1)NαN logα− 2],

Σ(1, α,R)=−3
√

2αN+1R < 0 for α ∈ (0, 1),

∂2

∂z2
Σ(z, α,R) < 0 for z ≥ 1 and α ∈ (0, 1).

Proof. These results can be obtained by direct calculations.
The following proposition is a key to prove Theorem 1.4.
Proposition 4.5.

(i) The jth principal eigenvalue λ∗
j of (1.13) is given by the following form.

λ∗
j = λ∗

j (α, u) =
1

3
√

2
· Σ(j, α(u), R)

αRΛ̂(j, α(u), R)
.(4.6)

Moreover, it holds that
(ii) for any fixed R ∈ (0,∞), there exists u0 = u0(R) ∈ (−1, 1) such that

Σ(z, α(u), R) < 0 for u ∈ (0, u0) and z ≥ 1.

(iii) For any fixed u ∈ (−1, 1), there exist R0 = R0(u) > 0 and integer z0 ≥ 1
such that

Σ(z0, α(u), R0) > 0.

Proof. (i) Noting that L and T have the same eigenfunctions {βj(y)}∞j=1, we can
rewrite (1.13) as

Lβj = 3
√

2λ∗T (βj),

which leads to (4.6).
(ii) Note that α(u) is a monotone decreasing function of u. Since ∂

∂zΣ(1, α,R) < 0

and ∂2

∂z2 Σ(z, α,R) < 0 for sufficiently small α, we obtain (ii).

(iii) For fixed α, we choose z0 satisfying 1−αN

N − Λ̂(z0, α) > 0. Then the sign of
the first term of (4.5) is negative and that of the second one is positive. Therefore,
for sufficiently large R, it holds that Σ(z0, α,R) > 0.
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Proof of Theorem 1.4. It is a direct consequence of Proposition 4.5.

4.2. Stability of planar solutions. Let Ω be a rectangle in (x, y)-plane Ω :=
(0, X) × (0, Y ). Then the rescaled reduced problem (1.7)–(1.9) is recast as{

V +
xx + G+ = 0, x0 < x < X,

V +(x0) = 0, V +
x (X) = 0,

(4.7)+

{
V −
xx + G− = 0, 0 < x < x0,

V −
x (0) = 0, V −(x0) = 0,

(4.7)−

and

V −
x (x0) = V +

x (x0),(4.8)

where G± := ±1 − u, Ω+(Γ∗) = {(x, y) ∈ R2 | x0 < x < X, 0 < y < Y }, Ω−(Γ∗) =
{(x, y) ∈ R2 | 0 < x < x0, 0 < y < Y }, and Γ∗ = {(x0, y) ∈ R2 | 0 < y < Y }. Here
we used the fact that H1(y) = 0. We can easily show that (4.7)− and (4.7)+ have
unique solutions given by

V −(x) = −1

2
G−[x2 − x2

0],

V +(x) = −G+

[
1

2
(x2 − x2

0) −X(x− x0)

]
.

Then, by using the C1-matching condition (4.8), we can uniquely determine x0 as

x0 =
G+X

[h]
,

so the derivative Vx(x0) is given by

Vx(x0) = −G+G−X

[h]
=

1

2
X(1 − u)(1 + u).

The existence results of the planar solution to (1.5) and (1.6) is given by Taniguchi
and Nishiura [23].

Theorem 4.6 (see [23]). There exists a constant ε0 > 0 such that (1.5) and (1.6)
have an ε-family of stationary planar solutions (uε(x), vε(x)) independent of y ∈ [0, Y ]
for ε ∈ (0, ε0] satisfying the following:

(i) limε→0 v
ε = v∗ uniformly on Ω.

(ii) For each δ > 0,

lim
ε→0

uε(x) =

{
−1, 0 ≤ x ≤ x0 − δ,

1, x0 + δ ≤ x ≤ X.

Using Lemma 4.1 and the above results, we can find that the operator L is recast
as

L =
d2

dy2
− 3

√
2

2

[
1

2
X(u− 1)(u + 1) + 2T (·)

]
.
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The spectral properties of L and T are given in the following two lemmas.
Lemma 4.7. All the eigenvalues of T and L are real. More precisely,
(i) the jth eigenvalue Λj of T is given by

Λj = XΛ(κπj, u),(4.9)

where

Λ(z, u) :=
cosh z + coshuz

2z sinh z
(4.10)

and κ := X/Y . Then the associated eigenfunction is βj(y) = cos(τjy), where τj =
πj/Y .

(ii) The jth eigenvalue of L is real and given by Σj = Σ(κπj,X, u), where

Σ(z,X, u) := −
( z

X

)2

+
3
√

2

2
X

[
1

2
(1 − u)(1 + u) − 2Λ(z, u)

]
.

Then the associated eigenfunction is the same as that of T .
Proof. See Appendix F.
Lemma 4.8 (properties of Λ(z, u)). For u ∈ (−1, 1) and z > 0,

Λ(z, u) > 0,
∂

∂z
Λ(z, u) < 0,

∂2

∂z2
Λ(z, u) > 0,

lim
z→+0

Λ(z, u) = ∞, lim
z→∞

zΛ(z, u) =
1

2
.

Proof. These results can be obtained by direct calculations.
Using the above two lemmas, we can prove the following proposition.
Proposition 4.9. (i) The jth principal eigenvalue λ∗

j of (1.13) is given by the
following form:

λ∗
j = λ∗

j (κ,X, u) =
1

3
√

2
· Σ(κπj,X, u)

XΛ(κπj, u)
.(4.11)

(ii) The nullcline of Σ(z,X, u) as a function of z > 0 and X > 0 is given by
{(z,X(z, u)) | z > z0}, where z0 is a unique zero of 1

2 (1 − u2) − 2Λ(z, u) = 0 and

X(z;u) =

(√
2

3

)1/3

z2/3

[
1

2
(1 − u2) − 2Λ(z, u)

]−1/3

.(4.12)

Moreover, X(z;u) has the following properties:

lim
z→z0+0

X(z;u) = ∞,(4.13)

lim
z→∞

⎡
⎣X(z;u) −

(
2
√

2

3

)1/3

(1 − u2)−1/3z2/3

⎤
⎦ = 0,(4.14)

dX

dz

⎧⎨
⎩

< 0 for z0 < z < z1,
= 0 for z = z1,
> 0 for z1 < z,

(4.15)

for some z1 = z1(u).
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Proof. (i) Noting that L and T have the same eigenfunctions {βj(y)}∞j=1, we can
rewrite (1.13) as

Lβj = 3
√

2λ∗T (βj),

which leads to (4.11).
(ii) We define a function g of z and X on (0,∞) × (0,∞) by

g(z,X, u) := X2Σ(z,X, u) = −z2 +
3
√

2

2
X3

[
1

2
(1 − u2) − Λ(z, u)

]
.

Using Lemma 4.8, we see that p(z, u) := 1
2 (1−u2)−Λ(z, u) has a unique zero z = z0(u)

and p(z, u) > 0 for z > z0. Then we can solve g(z,X, u) = 0 in X as (4.12). Noting
the properties of Λ(z, u), we obtain (4.13) and (4.14).

By using the implicit function theorem, we see that

dX

dz
= −∂g

∂z

/ ∂g

∂X

and ∂g
∂X = 9

√
2

2 X2[(1−u2)/2−Λ(z, u)] > 0. Noting that ∂g
∂z = −2z−3

√
2X3Λz, (4.13)

and (4.14), we have

lim
z→z0+0

∂g

∂z
(z,X(z;u);u) = ∞, lim

z→∞

∂g

∂z
(z,X(z;u);u) = −∞.

Combining the above facts and ∂2g
∂z2 = −2− 3

√
2X3Λzz < 0, we can see that ∂g

∂z has a

unique zero z = z1 and dX
dz satisfies (4.15).

Proof of Theorem 1.5. The proof follows from Proposition 4.9.

4.3. Justification of the SLEP equation for the planar case. In subsection
3.3, we derived the SLEP equation for the principal parts of the critical eigenvalues
and eigenfunctions. Since our method is constructive, it is not a priori clear that there
are no other dangerous eigenvalues. But, fortunately, when the domain Ω is a ball or
a rectangle, we can justify our results. Precisely speaking, the principal parts of all
dangerous eigenvalues are reduced to the solutions to (1.13).

In this subsection, we outline the justification of (1.13) when Ω is a rectangle
(0, X)× (0, Y ). When Ω is a ball, we can justify (1.13) in a parallel way. See [19] and
[20] for the activator-inhibitor case.

By using a complete orthonormal system {Φj(y)}∞j=0 in L2(0, Y ), where

Φj(y) =

{
1/
√
Y , j = 0,√

2/Y cos(πjy/Y ), j > 0,

(w, z) is expanded as

w(x, y) =
∞∑
j=0

wj(x)Φj(y), z(x, y) =

∞∑
j=0

zj(x)Φj(y),

where

wj(x) =

∫ Y

0

w(x, y)Φj(y)dy, zj(x) =

∫ Y

0

z(x, y)Φj(y)dy
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in L2(Ω). By using the above notation, the eigenvalue problem (3.1) is rewritten as⎧⎨
⎩

0 = Lε,jwj − zj ,
x ∈ I := (0, X),

0 = M jzj + εwj + λwj ,
(4.16)

with the boundary condition

dwj

dx
(0) = 0 =

dwj

dx
(X),

dzj
dx

(0) = 0 =
dzj
dx

(X)

for j = 0, 1, . . . , where

Lε,j := ε2
d2

dx2
+ f ε

u − ε2µj , M j :=
d2

dx2
− µj , µj =

(
πj

Y

)2

.

Then the condition
∫∫

Ω
w dxdy = 0 is equivalent to either

(i)

∫ X

0

w0(x) dx = 0 (w0(x) �≡ 0)

or

(ii) w0(x) ≡ 0

since
∫ Y

0
Φj(y)dy = 0 for j = 1, 2, . . . .

First, we consider the former case. Let {φε,j
k }k≥0 be the complete orthonormal

set in L2(I) consisting of the eigenfunctions of Lε,j , and {ζε,jk }k≥0 the associated
eigenvalues. They have the following properties.

Lemma 4.10 (Nishiura [10] and [11]).
(i) It holds that

ζε,j0 > 0 > −δ > ζε,j1 > ζε,j2 > · · ·

for sufficiently small ε > 0, where δ is a positive constant independent of j ≥ 0 and
ε > 0.

(ii) limε↓0
ζε,j
0

ε2 = ζ̂∗0 − µj, where ζ̂∗0 = − 1
m2 J

′(v∗)Vx(x0).

(iii) limε↓0
φε,j

0√
ε

= [h]
m δx0 in H−1(I)-sense,

where δx0 is a Dirac’s δ-function at x = x0.
We decompose w as

w = (Lε,j)−1z =
〈z, φε,j

0 〉
ζε,j0

φε,j
0 + (Lε,j)†(z),

where

(Lε,j)† :=
∑
n≥1

〈 · , φε,j
n 〉

ζε,jn

φε,j
n .

(Lε,j)† has the following properties.
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Lemma 4.11 (Nishiura [10] and [11]). There exists a constant ε0 > 0 such that
(Lε,j)† is a uniformly L2-bounded operator for ε ∈ (0, ε0) and j ≥ 0. Moreover, the
following property holds:

lim
ε→0

(Lε,j)†p =
p

f∗
u

strongly in L2 − sense,

where p ∈ L2(I) ∩ L∞(I) and f∗
u := fu(h±(v∗)).

The eigenvalue problem (4.16) and the condition
∫∫

Ω
w dxdy = 0 with j = 0 are

recast as

zxx + (ε + λ)

[
〈z, φε,0

0 〉
ζε,00

φε,0
0 + (Lε,0)†(z)

]
= 0(4.17)

and

〈z, φε,0
0 /

√
ε〉

ε

∫ X

0

1

ζε0/ε
2

φε,0
0√
ε
dx +

∫ X

0

(Lε,0)†(z)dx = 0.

In view of Lemmas 4.10 and 4.11, we see that

lim
ε→0

∫ X

0

1

ζε0/ε
2

φε,0
0√
ε
dx =

[h]

mζ̂∗0

and limε→0

∫X

0
(Lε,0)†(z)dx is bounded. Consequently, the following limits exist:

ẑ∗ :=
m

[h]
lim
ε↓0

1

ε
〈z, φε,0

0 /
√
ε〉, 0 = lim

ε↓0
〈z, φε,0

0 /
√
ε〉.

Now we rewrite (4.17) in a weak form

− 〈zx, ψx〉 + (ε + λ)

[
〈z, φε,0

0 /
√
ε〉/ε

ζε0/ε
2

〈φε,0
0 /

√
ε, ψ〉 + 〈(Lε,0)†(z), ψ〉

]
= 0,

z ∈ H1
N (I), ψ ∈ H1(I),

where H1
N (I) is the space of closure of {cos(nπx/X)}∞n=0 in H1(I). Then the limit

function z∗ = limε→0 z must exist and satisfy the following limit equation:

−〈z∗x, ψx〉 + λ

[
[h]2ẑ∗

m2ζ̂∗0
〈δx0 , ψ〉 +

1

f∗
u

〈z∗, ψ〉
]

= 0, z∗(x0) = 0.

This is equivalent to the next system:⎧⎨
⎩Z−

xx +
λ

f∗
u

Z− = 0, x ∈ (0, x0),

Z−
x (0) = 0, Z−(x0) = 0,

(4.18)

⎧⎨
⎩Z+

xx +
λ

f∗
u

Z+ = 0, x ∈ (x0, X),

Z+(x0) = 0, Z+
x (X) = 0,

(4.19)
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Z+
x (x0) − Z−

x (x0) = −λ
[h]2ẑ∗

m2ζ̂∗0
.(4.20)

Lemma 4.12. There exists a constant δ > 0 such that (4.18)–(4.20) have no

nontrivial solutions for λ > −δ for the case (i), i.e.,
∫X

0
w0(x) dx = 0 (w0(x) �≡ 0).

Proof. When λ = 0, (4.18)–(4.20) have a unique solution Z−(x) ≡ 0 and
Z+(x) ≡ 0.

If λ > 0, the general solution Z(x) of (4.18) is represented as

Z(x) = A exp(αx) + B exp(−αx),

where α2 = −λ/f∗
u , α > 0. Then, by using the boundary conditions, we obtain A = 0

and B = 0. Similarly, we can prove that (4.19) has no nonhomogeneous solutions.

If −δ < λ < 0, where −δ := π2

X2 f
∗
u , the general solutions Z−(x) = C− cosβx and

Z+(x) = C+ cosβ(X − x), where β2 = λ/f∗
u and β > 0, cannot satisfy the boundary

conditions Z−(x0) = 0 and Z+(x0) = 0 simultaneously.
Next, we consider the case (ii) w0(x) ≡ 0. The eigenvalue problem (4.16) with

j > 0 is recast as

−〈zx, ψx〉 − µj〈z, ψ〉 +
ε + λ

ε

[
〈z, φε,j

0 /
√
ε〉

ζε,j0 /ε2
〈φε,j

0 /
√
ε, ψ〉 + ε〈(Lε,j)†(z), ψ〉

]
= 0,

where z ∈ H1
N (I), ψ ∈ H1(I).

By Lemmas 4.10 and 4.11, we see that λ = O(ε) and the limit function z∗ =
limε→0 z must exist. Then z∗ satisfies the following limit equation:

−〈z∗x, ψx〉 − µj〈z∗, ψ〉 + (1 + λ̂)
[h]2

m2

〈z∗, δx0
〉

ζ̂∗0 − µj

〈δx0
, ψ〉 = 0,(4.21)

where λ̂=limε→0 λ/ε. Hereafter, we normalize the limit eigenfunction z∗ as 〈z∗, δ0〉=1.
Then (4.21) is equivalent to the next system:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

z∗xx − µjz
∗ = 0, x ∈ (0, x0) ∪ (x0, X),

lim
x→x0+0

z∗x(x) − lim
x→x0−0

z∗x(x) = −(1 + λ̂)
[h]2

m2(ζ̂∗0 − µj)
,

z∗(x0) = 1, z∗x(0) = 0 = z∗x(X).

(4.22)

Proposition 4.13. The eigenvalue λ̂ of (4.22) is given by (4.11) for the case
(ii), i.e., w0(x) �≡ 0.

Proof. Note that z∗ is determined by the first equation with the third and fourth
condition of (4.22). In fact, after simple computations, we have

z∗(x) =

⎧⎪⎪⎨
⎪⎪⎩

cosh τjx

cosh τjx0
, 0 < x < x0,

cosh τj(x−X)

cosh τj(X − x0)
, x0 < x < X.
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Here we used the facts that µj = τ2
j = (πj/Y )2. Then

lim
x→x0+0

z∗(x) − lim
x→x0−0

z∗(x) =
τ sinh τj(x−X)

cosh τj(X − x0)
− τ sinh τjx

cosh τjx0

= − 1

X

2τjX sinh τjX

cosh τjX + coshuτjX

= − 1

XΛ(κπj, u)
.

Solving the second equation of (4.22) in λ̂, we have

λ̂ =
m2

[h]2XΛ(κπj, u)

[
−µj + ζ̂∗0 − [h]2

m2
XΛ(κπj, u)

]
.

Noting the facts that

κ =
X

Y
, µj =

(
κπj

X

)2

, ζ̂∗0 =
3
√

2

4
X(1 − u)(1 + u),

[h]2

m2
= 3

√
2,

we obtain (4.11). Thus we complete the proof.
In view of Lemma 4.12 and Proposition 4.13, it is clear that all dangerous eigenval-

ues to stability are controlled by the SLEP equation (1.13) (or, equivalently, (4.22)).

5. Concluding remarks—activator-inhibitor case. In the preceding sec-
tions, we have discussed the stability of mesoscopic patterns in diblock copolymers.
Here we show that our approach also works well for the activator-inhibitor system
(1.4) under the Neumann boundary condition. We assume the following for the non-
linearity g(u, v):

±g(h±(v∗), v∗) > 0, gu(h±(v∗), v∗) > 0,
d

dv
g(h±(v), v)

∣∣∣∣
v=v∗

< 0.(A7)

In the following, we will use the same notation defined in the previous sections
without explanation. The reduced problem to (1.4) is given by⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

D∆V − = −g(h−(v∗), v∗) in Ω−(Γ),

V − = −m2(N − 1)

J ′(v∗)
H(0, y) on Γ,

∂V −

∂n
= 0 on ∂Ω,

(5.1)

⎧⎪⎨
⎪⎩

D∆V + = −g(h+(v∗), v∗) in Ω+(Γ),

V + = −m2(N − 1)

J ′(v∗)
H(0, y) on Γ,

(5.2)

∂V +

∂ν
=

∂V −

∂ν
on Γ.(5.3)

Concerning the existence of stationary solutions, we have the following corollary.
Corollary of Theorem 1.2. Assume that (A1)–(A3) in section 1, (A7), and

the following (A4′)–(A5′) are satisfied:
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(A4′) There exists a solution (V ∗,Γ∗) ∈ C1(Ω) ×F of (5.1)–(5.3), where

V ∗(x) =

⎧⎨
⎩

V −(x), x ∈ Ω−(Γ∗),

V +(x), x ∈ Ω+(Γ∗).

V ± are smooth solutions of (5.1) and (5.2), respectively, satisfying (5.3).
(A5′) There is a bounded linear operator L† : (I − P )Cα(Γ∗) → (I − P )C2,α(Γ∗)

called the inverse of the operator

L := ∆Γ∗
+ H∗(y) − 1

m2
J ′(v∗)V ∗

r (0, y) +
1

Dm2
[g]J ′(v∗)T (·)

such that LL† = I on (I − P )Cα(Γ∗) and L†L = I − P on (I − P )C2,α(Γ∗).
Here, ∆Γ∗

is the Laplace–Beltrami operator on Γ∗, H∗(y) sum of the square
of the principal curvature of Γ∗, and [g] := g(h+(v∗), v∗) − g(h−(v∗), v∗).

Then, there is an ε0 > 0 such that (1.4) have an ε-family of stationary solutions (uε, vε)
for ε ∈ (0, ε0] satisfying the following:

(i) limε→0 v
ε(x) = v∗ uniformly on Ω.

(ii) For each δ > 0,

lim
ε→0

uε(x) =

⎧⎨
⎩

h−(v∗), x ∈ Ω−(Γ∗)\Γ∗
δ ,

h+(v∗), x ∈ Ω+(Γ∗)\Γ∗
δ ,

uniformly ,

where Γ∗
δ is a tubular neighborhood of Γ∗.

(iii) For each K > 0,

lim
ε→0

uε(y + εξν(y)) = u∗(ξ + s∗(y)) in C2[−K,K],

uniformly in y ∈ Γ∗ for some s∗ ∈ C2,α(Γ∗).
The associated linearized problem of (1.4) is of the form⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

λεw = ε2∆w + f ε
uw − z,

in Ω,
ελεz = D∆z + εgεuw + εgεvz,

∂w

∂n
= 0 =

∂z

∂n
on ∂Ω.

(5.4)

Here we focus only on the critical eigenvalues. So we assume the following for (5.4):
(A6′) There exists an integer m∗ ≥ 1 such that each eigenvalue λε and the associated

eigenfunctions (wε, zε) of (5.4) have the following asymptotic forms:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λε = ελ1 + ε2λ2 + o(ε2),

wε(x) =

m∗∑
j=0

εjW±,j(x) + ω(r) ·
m∗∑
j=0

εjw±,j(r/ε, y) + o(εm
∗
),

in Ω±(Γ∗),

zε(x) =

m∗∑
j=0

εjZ±,j(x) + ω(r) · ε2
m∗∑
j=0

εjz±,j(r/ε, y) + o(εm
∗
),

where W±,i(x) ∈ C2,α(Ω±(Γ∗)) and Z±,i(x) ∈ C2,α(Ω±(Γ∗)) are outer ex-
pansions, w±,i(ξ, y) and z±,j(ξ, y) are inner expansions bounded for ± ξ ∈
(0,∞) and y ∈ Γ∗.
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In the activator-inhibitor case, the principal parts of C1-matching conditions to
eigenfunctions become

u∗
ξ(s0(y))[w

−,0
ξ (0, y) − w+,0

ξ (0, y)] = m2λ1θ(y) − J ′(v∗)q0(y) = 0,

Z−,0
r (0, y) − Z+,0

r (0, y) = (Π− + Π+)q0 = 0.

Then, the following two cases are considered.
Case I. qc �= 0 and θ is a constant function θ(y) = θc(�= 0). Then λ1 is given by

λ1 =
J ′(v∗)qc
m2θc

.

Case II. qc = 0 and λ1 = 0.
Concerning Case I, we have the following a priori estimate for λ1.

Lemma 5.1 (a priori estimate for λ1). Assume that the principal eigenvalue λε

and the associated eigenfunctions have the following asymptotic forms:

λε = ελ1(ε) and lim
ε↓0

λ1(ε) =
J ′(v∗)qc
m2θc

,

w ≈ εh±
v (v∗)qc + (w0(r/ε, y) + εw±,1(r/ε, y)) · ω(r),

z ≈ qc + εZ±,2(x) + ε2(z±,1(r/ε, y) + εz±,2(r/ε, y)) · ω(r)

on Ω±(Γ∗). Then the real part of λ1(ε) is strictly negative.
Proof. See Appendix G.
In view of Lemma 5.1, we expand λε as λε = ε2λ2 + o(ε2). For the eigenvalues of

(5.4), we have the following result.
Corollary of Theorem 1.3. Assume that (A1)–(A3) in section 1, (A4′)–(A6′)

with λ1 = 0 and (A7) are satisfied. Then the principal part of the critical eigenvalues
is given by ε2λ∗, where λ∗ is the eigenvalue of the following problem:

Lθ∗ = λ∗θ∗(5.5)

for θ∗ ∈ (I − P )C2,α(Γ∗).
We assume, for simplicity, that the nonlinearity takes the form (f, g) = (u − u3,

u− γv), γ > 3/2. Then the constants are precisely computed as

v∗ = 0, h±(v∗) = ±1, J ′(v∗) = −2, m2 =
2
√

2

3
=

4

3
√

2
.

For example, when Ω is a rectangle in (x, y)-plane Ω = (0, X) × (0, Y ), the reduced
ploblems (5.1)–(5.3) are recast as{

DV +
xx + G+ = 0, x0 < x < X,

V +(x0) = 0, V +
x (X) = 0,

(5.6)+

{
DV −

xx + G− = 0, 0 < x < x0,

V −
x (0) = 0, V −(x0) = 0,

(5.6)−
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V −
x (x0) = V +

x (x0),(5.7)

where G± := g(h±(v∗), v∗) = ±1, Ω+(Γ∗) = {(x, y) ∈ R2 |x0 < x < X, 0 < y < Y },
Ω−(Γ∗) = {(x, y) ∈ R2 | 0 < x < x0, 0 < y < Y }, and Γ∗ = {(x0, y) ∈ R2 | 0 < y <
Y }. Here we used the fact that H∗(y) = 0. We can easily show that (5.6)− and (5.6)+
have unique solutions given by

V −(x) = − 1

2D
G−[x2 − x2

0],

V +(x) = −G+

D

[
1

2
(x2 − x2

0) −X(x− x0)

]
.

Then, by using the C1-matching condition (5.7), we can uniquely determine x0 and
Vx(x0) as

x0 =
G+X

[g]
and Vx(x0) = −G+G−X

D[g]
,

where [g] = G+ − G−. The existence results of the planar solution to (1.4) is given
by Taniguchi and Nishiura [23] (see Theorem 4.6 in section 4).

The jth eigenvalue Λj of T is given by Λj = XΛ(κπj), where

Λ(z) =
cosh z + cosh pz

2z sinh z
, p = −G−

[g]
, κ =

X

Y
.

Then the associated eigenfunction is βj(y) = cos(τjy), where τj = πj/Y . Therefore,
the jth eigenvalue of L is real and given by Σj = Σ(κπj,X,D), where

Σ(z,X,D) := −
( z

X

)2

− J ′(v∗)X

Dm2

[
−G+G−

[g]
+ [g]Λ(z)

]
.

The associated eigenfunction is the same as that of T . Σ(z,X,D) have the following
properties.

Lemma 5.2. The nullcline of Σ(z,X,D) as a function of z > 0 and X > 0 is

given by {(z,X(z,D)) | z > z0}, where z0 is a unique zero of −G+G−

[g] + [g]Λ(z) = 0

and

X(z,D) =

(
Dm2

−J ′(v∗)

)1/3 [
−G+G−

[g]
+ [g]Λ(z)

]−1/3

z2/3.

Moreover, X(z,D) has the following properties:

lim
z→z0+0

X(z,D) = ∞,

lim
z→∞

[
X(z,D) −

(
Dm2

−J ′(v∗)

)1/3(
−G+G−

[g]

)−1/3

z2/3

]
= 0,

dX

dz

⎧⎨
⎩

< 0 for z0 < z < z1,
= 0 for z = z1,
> 0 for z1 < z,

for some z1 = z1(D).



SLEP EQUATION AND MORPHOLOGICAL STABILITY 955

By using Lemma 5.2, we obtain the following corollary.
Corollary of Theorem 1.5. (i) For any D > 0, there exists X = X(D) > 0

such that the planar solution is stable for X < X and κ > 0.
(ii) For any fixed κ > 0 and D > 0, there exists X = X(κ,D) > 0 such that the

planar solution is unstable for X > X.
Note. After finishing our paper, the anonymous referee noted us an interesting

preprint, “On the spectra of 3-D lamellar solutions of the diblock copolymer problem,”
by X. Ren and J. Wei, which now appears in [27]. Their results are consistent with
the part of our stability results for the lamellar patterns, although they employed a
different Euler–Lagrange equation and methods for stability analysis.

Appendix A. (proof of Proposition 2.2). First we compute u±,2
ξ (0, y).

u±,2
ξ (0, y) = −U±,2(0, y)

u∗
ξξ(s0)

u∗
ξ(s0)

− 1

u∗
ξ(s0)

∫ 0

±∞

[
p±2,1 + p±2,2 + p±2,3 + p±2,4 + p±2,5

]
u∗
ξ(ξ + s0)dξ,

(A.1)

where

p±2,1 = (N − 1)H(0, y)u1
ξ ,

p±2,2 = ∆(0)u0 + (N − 1)Hr(0, y)ξu
0
ξ ,

p±2,3 =
1

2
f̃uu[U1(0, y) + u1]2,

p±2,4 = f̃u[ξU1
r (0, y) + U2(0, y)],

p±2,5 = −[ξV 1
r (0, y) + V 2(0, y)].

In the following, we compute each term of the integral part in (A.1):∫ 0

±∞
p2,2(ξ, y)u

∗
ξ(ξ + s0)dξ = ∆(0)s0

∫ s0

±∞
[u∗

ξ(ξ)]
2dξ + (N − 1)Hr(0, y)∫ s0

±∞
(ξ − s0)[u

∗
ξ(ξ)]

2dξ

∫ 0

±∞
p2,3(ξ, y)u

∗
ξ(ξ + s0)dξ

= −1

2
f∗
u [U1(0, y)]2 −

∫ 0

±∞
fu(u∗(ξ + s0))[U

1(0, y) + u1(ξ, y)]u1
ξ(ξ, y)dξ

= −1

2
f∗
u [U1(0, y)]2 +

∫ 0

±∞
[u1

ξξ(ξ, y) + (N − 1)H(0, y)u∗
ξ(ξ + s0)]u

1
ξ(ξ, y)dξ

=
1

2
U1(0, y)b∗1(y) +

1

2
[u1,±

ξ (0, y)]2 + (N − 1)H(0, y)

∫ 0

±∞
u1
ξ(ξ, y)u

∗
ξ(ξ + s0)dξ,

where f∗
u = d

duf(h±(v∗)) and we used the fact that f∗
uU

1(y, 0) − b∗1(y) = 0.

∫ 0

±∞
p2,4(ξ, y)u

∗
ξ(ξ + s0)dξ=f(u∗(s0))U

2(0, y) − U1
r (0, y)

∫ 0

±∞
f(u∗(ξ + s0))dξ

=f(u∗(s0))U
2(0, y) + U1

r (0, y)u∗
ξ(s0)∫ 0

±∞
p2,5(ξ, y)u

∗
ξ(ξ + s0)dξ=−V 1

r (0, y)

∫ s0

±∞
(ξ − s0)u

∗
ξ(ξ)dξ − b2(y)[u

∗(s0) − h±(v∗)].
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Concerning p2,1, we have∫ 0

±∞
u1
ξ(ξ, y)u

∗
ξ(ξ + s0)dξ = −U1(0, y)

u∗
ξ(s0)

∫ 0

±∞
u∗
ξξ(ξ + s0)u

∗
ξ(ξ + s0)dξ

−
∫ 0

±∞
u∗
ξξ(ξ + s0)u

∗
ξ(ξ + s0)dξ

∫ ξ

0

[u∗
ξ(τ + s0)]

−2

∫ τ

±∞
[∗ ∗ ∗]u∗

ξ(s + s0)dsdτdξ

−
∫ 0

±∞

∫ ξ

±∞
[∗ ∗ ∗]u∗

ξ(s + s0)dτdξ

=
1

2
U1,±(0, y)u∗

ξ(s0)
A

− 1

2

∫ 0

±∞

∫ ξ

±∞
[(N − 1)H(0, y)u∗

ξ(τ + s0)

+fu(u∗(τ + s0))U
1(0, y)

A
− b∗1(y)]u

∗
ξ(τ + s0)dτdξ

= −1

2

∫ 0

±∞
1

∫ ξ

±∞
[(N − 1)H(0, y)u∗

ξ(τ + s0) − b∗1(y)]u
∗
ξ(τ + s0)dτdξ

=
1

2

∫ s0

±∞
(ξ − s0)[(N − 1)H(0, y)u∗

ξ(ξ) − b∗1(y)]u
∗
ξ(ξ)dξ.

The underlined terms cancel pairwise. By using the above expression,∫ 0

−∞
u−,1
ξ (ξ, y)u∗

ξ(ξ + s0)dξ −
∫ 0

∞
u+,1
ξ (ξ, y)u∗

ξ(ξ + s0)dξ

=
1

2

∫ ∞

−∞
ξ[(N − 1)H(0, y)u∗

ξ(ξ) − b∗1(y)]u
∗
ξ(ξ)dξ.

Here we used the fact that b∗1(y) = −m2(N − 1)H(0, y)/J ′(v∗).
Combining the above computations, we have

−u∗
ξ(s0)[u

±,2
ξ (0, y) + U±,1

r (0, y)]

= 2(N − 1)H(0, y)

∫ 0

±∞
u±,1
ξ (ξ, y)u∗

ξ(ξ + s0)dξ

+ [∆(0)s0 − (N − 1)Hr(0, y)s0]

∫ s0

±∞
[u∗

ξ(ξ)]
2dξ + (N − 1)Hr(0, y)

∫ s0

±∞
ξ[u∗

ξ(ξ)]
2dξ

+
1

2
U±,1(0, y)b∗1(y) +

1

2
[u±,1

ξ (0, y)]2 + s0V
1
r (0, y)

∫ s0

±∞
u∗
ξ(ξ)dξ

−V 1
r (0, y)

∫ s0

±∞
ξu∗

ξ(ξ)dξ − b2(y)

∫ s0

±∞
u∗
ξ(ξ)dξ,

u∗
ξ(s0)[u

+,2
ξ (0, y) + U+,1

r (0, y) − u−,2
ξ (0, y) − U−,1

r (0, y)]

= (N − 1)

∫ ∞

−∞
ξ[(N − 1)H(0, y)u∗

ξ(ξ) − b∗1(y)]u
∗
ξ(ξ)dξ

+ [∆(0)s0 − (N − 1)Hr(0, y)s0]

∫ ∞

−∞
[u∗

ξ(ξ)]
2dξ + (N − 1)Hr(0, y)

∫ ∞

−∞
ξ[u∗

ξ(ξ)]
2dξ

− 1

2
b∗1(y)

[
U+,1(0, y)−U−,1(0, y)

]
+ s0V

1
r (0, y)[h]−V 1

r (0, y)

∫ ∞

−∞
ξu∗

ξ(ξ)dξ− b2(y)[h].

Substituting the above results into ∂
∂rU+,ε(0, y) − ∂

∂rU−,ε(0, y), we have (2.9).
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Concerning (2.8), we note only the following:

v±,3
ξ (ξ, y) = −

∫ s0

±∞
[u∗(τ) − h±(v∗)]dτ

= −
∫ 0

±∞
[u∗(τ) − h±(v∗)]dτ −

∫ s0

0

u∗(τ)dτ + h±(v∗)s0,

v−,3
ξ (ξ, y) − v+,3

ξ (ξ, y) = −
∫ 0

−∞
[u∗(τ) − h−(v∗)]dτ +

∫ 0

∞
[u∗(τ) − h+(v∗)]dτ − [h]s0.

Appendix B. (proof of Lemma 3.1). We can assume without loss of generality
that the O(1)-terms W 0, Z0, w0 and z0 are not equivalent to zero at the same time.
We note that when λε = λ0 + ελ1, the expansions for w and C1-matching conditions
are the same as in subsections 3.1, 3.2, and 3.3. Also, we easily see that z0 ≡ 0 and
z1 ≡ 0 (see (3.9) and (3.10)) and the equation for z±,2 becomes⎧⎪⎨

⎪⎩
z±,2
ξξ + λ0w

±,0 = 0,

z±,2(0, y) = 0, lim
ξ→±∞

z±,2(ξ, y) = 0.

If λε = λ0 + ελ1, the equations of W 0 and Z0 become⎧⎨
⎩

f0
uW

0 − Z0 = 0,
in Ω±(Γ∗),

∆Z0 + λ0W
0 = 0,

and these equations are rewritten as

∆Z0 +
1

f0
u

λ0Z
0 = 0,

since f0
u < 0. On the other hand, we see Z0(0, y) = q0(y) ≡ 0 from Lemma 3.4. So

we conclude (i) Z0 ≡ 0 (hence W 0 ≡ 0) and Re λ0 ≥ 0, or (ii) Z0 �= 0 and Re λ0 < 0.
If Z0 ≡ 0, the equation of Z1 becomes

∆Z1 +
1

f0
u

λ0Z
1 = 0.

Then the O(ε)-term of C1-matching conditions (3.19) become

u∗
ξ(s0(y))[W

−,0
r (0, y) + w−,1

ξ (0, y) −W+,0
r (0, y) − w+,1

ξ (0, y)] = q1(y)[h] = 0,(B.1)

Z−,1
r (0, y) + z−,2

ξ (0, y) − Z+,1
r (0, y) − z+,2

ξ (0, y)

= (Π− + Π+)q1 − λ0[h]θ(y) = 0.
(B.2)

From (B.1) and (B.2), we have Z1(0, y) = q1(y) ≡ 0, and (a) λ0 = 0 or (b) λ0 �= 0
and θ(y) ≡ 0. In the case (b), we obtain that w0 ≡ 0 since w0 is given by

w0(ξ, y) = Θ(y)
u∗
ξ(ξ + s0)

u∗
ξ(s0)

= θ(y)u∗
ξ(ξ + s0)
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(see (3.14)). This contradicts our assumption. Thus we conclude that Re λ0 < 0 or
λ0 = 0.

Appendix C. (proof of Lemma 3.5). Φ̃(θ, q2, λ1, 0) = 0 is equivalent to

u∗
ξ(s0(y))[w

−,2
ξ (0, y) − w+,2

ξ (0, y)] = 0.

In order to calculate w±,2
ξ (0, y), we display the equation and the boundary conditions

of w±,2
ξ again

w2
ξξ + (N − 1)H(0, y)w1

ξ + [(N − 1)Hr(0, y)ξ∂ξ + ∆Γ]w0

+f̃0
u [w2 + W 2(0, y)] + f̃1

uw
1 + f̃2

uw
0 − Z2(0, y) = 0,

w±,2(0, y) = −W±,2(0, y), limξ→±∞ w±,2(ξ, y) = 0,

where

f̃±,2
u = f̃uu[p2,1] +

1

2
f̃uuu[p2,3]

2

p2,1 := ξU1
r (0, y) + U2(0, y) + u2, p2,3 := U1(0, y) + u1.

Using the expression (3.17) for w±,2(ξ, y), we have

w2
ξ(0, y) = − 1

u∗
ξ(s0)

∫ 0

±∞
[(N − 1)H(0, y)w1

ξ
(i)

+ (N − 1)Hr(0, y)ξ∂ξw
0

(ii)

+ ∆Γ∗
w0

(iii) + f̃1
uw

1

(iv)
+ f̃2

uw
0

(v)
− Z2(0, y)]u∗

ξ(s + s0)dξ.

(C.1)

In the following, we calculate each term of integral in (C.1):
Computation of (i). By using

w±,1(ξ, y) = −θ(y)u∗
ξ(ξ + s0)

∫ ξ

0

[u∗
ξ(t + s0)]

−2

×
∫ t

±∞
[(N − 1)H(0, y)u∗

ξξ(s + s0) + f̃1
uu

∗
ξ(s + s0)]u

∗
ξ(s + s0)dsdt,

we have∫ 0

±∞
w1

ξ(ξ, y)u
∗
ξ(ξ + s0)dξ = −

∫ 0

±∞
w1(ξ, y)u∗

ξξ(ξ + s0)dξ

= −1

2
θ(y)

∫ 0

±∞

∫ ξ

±∞
[(N − 1)H(0, y)u∗

ξξ(s + s0)

+f̃1
uu

∗
ξ(s + s0)]u

∗
ξ(s + s0)dsdξ

=
1

2
θ(y)[u±,1

ξ (0, y)u∗
ξ(s0) − 2I±3 ].

Here we used the fact that

−
∫ 0

±∞

∫ ξ

±∞
[(N − 1)H(0, y)u∗

ξξ(s + s0) + f̃1
uu

∗
ξ(s + s0)]u

∗
ξ(s + s0)dsdξ

= u±,1
ξ (0, y)u∗

ξ(s0) − 2I±3 ,

(C.2)
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where

I±3 :=

∫ 0

±∞
u1
ξ(ξ, y)u

∗
ξξ(ξ + s0)dξ.

Equation (C.2) is proved in Appendix D.
Computation of (ii).∫ 0

±∞
ξw0

ξ(ξ, y)u
∗
ξ(ξ + s0)dξ = θ(y)

∫ 0

±∞
ξu∗

ξξ(ξ + s0)u
∗
ξ(ξ + s0)dξ

= −1

2
θ(y)

∫ 0

±∞
[u∗

ξ(ξ + s0)]
2dξ.

Computation of (iii).

∆Γ∗
w0 = ∆Γ∗

(θu∗
ξ)

= u∗
ξ∆

Γ∗
θ + 2u∗

ξξ∇Γθ · ∇s0 + u∗
ξξθ∆

Γ∗
s0 + u∗

ξξξθ|∇Γs0|2.

Here note that u∗
ξ , u

∗
ξξ, etc., are all evaluated at ξ + s0. Then multiplying ∆Γ∗

w0 by
u∗
ξ , we have∫ 0

±∞
(∆Γ∗

w0)u∗
ξdξ = ∆Γ∗

θ

∫ 0

±∞
[u∗

ξ(ξ + s0)]
2dξ + [u∗

ξ(s0)]
2

[
∇Γθ · ∇s0 +

1

2
θ∆Γ∗

s0

]

+

[
u∗
ξξ(s0)u

∗
ξ(s0) −

∫ 0

±∞
[u∗

ξξ(ξ + s0)]
2dξ

]
θ|∇Γs0|2.

Computation of (iv).∫ 0

±∞
f̃1
uu

∗
ξ(ξ + s0)w

1(ξ, y)dsdξ

= −
∫ 0

±∞
[(N − 1)H(0, y)u∗

ξξ(ξ + s0) + u1
ξξξ(ξ, y) + f̃uu

1
ξ(ξ, y)]w

1(ξ, y)dξ

×(u1
ξξξ + f̃uu

1
ξ + (N − 1)H(0, y)u∗

ξξ + f̃1
uu

∗
ξ = 0 is used)

= (N − 1)H(0, y)

∫ 0

±∞
u∗
ξ(ξ + s0)w

1
ξ(ξ, y)dξ + u±,1

ξ (0, y)w±,1
ξ (0, y)

−
∫ 0

±∞
[w±,1

ξξ (ξ, y) + f̃uw
±,1(ξ, y)]u±,1

ξ dξ

×(w1
ξξ + f̃uw

1 + (N − 1)H(0, y)w0
ξ + f̃1

uw
0 = 0 and w0 = θu∗

ξ will be used)

= (N − 1)H(0, y)

∫ 0

±∞
u∗
ξ(ξ + s0)w

1
ξ(ξ, y)dξ + u±,1

ξ (0, y)w±,1
ξ (0, y)

+ θ(y)

∫ 0

±∞
[(N − 1)H(0, y)u∗

ξξ(ξ + s0) + f̃1
uu

∗
ξ(ξ + s0)]u

±,1
ξ (ξ, y)dξ

= (N − 1)H(0, y)

∫ 0

±∞
u∗
ξ(ξ + s0)w

1
ξ(ξ, y)dξ + u±,1

ξ (0, y)w±,1
ξ (0, y)

+ θ(y)[(N − 1)H(0, y)I±3 + I±4 ],
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where

I±4 :=

∫ 0

±∞
f̃1
uu

∗
ξ(ξ + s0)u

±,1
ξ (ξ, y)dξ =

∫ 0

±∞
f̃uu[U1(0, y) + u1]u1

ξ(ξ, y)u
∗
ξ(ξ + s0)dξ.

Computation of (v).

∫ 0

±∞
f̃±,2
u w0u∗

ξdξ = θ(y)

∫ 0

±∞
f̃±,2
u [u∗

ξ ]
2dξ,

∫ 0

±∞
f̃±,2
u [u∗

ξ ]
2dξ

=
[
f̃uu

∗
ξp2,1

]0
±∞

−
∫ 0

±∞
[U1

r (0, y) + u2
ξ ]f̃uu

∗
ξdξ −

∫ 0

±∞
f̃up2,1u

∗
ξξdξ

A

+

[
1

2
f̃uuu

∗
ξ [p2,3]

2

]0

±∞
−
∫ 0

±∞
f̃uu[U1(0, y) + u1]u1

ξu
∗
ξdξ

C

−
∫ 0

±∞

1

2
f̃uu[p2,3]

2u∗
ξξdξ

A

= −
∫ 0

±∞

[
u±,2
ξξ + f̃up2,1 +

1

2
f̃uu[p2,3]

2

]
u∗
ξξdξ

A

+u∗
ξξ(s0)[U

±,1
r (0, y) + u±,2

ξ (0, y)] −
∫ 0

±∞
f̃uu[U1(0, y) + u1]u1

ξu
∗
ξdξ

C

=

∫ 0

±∞
[(N − 1)H(0, y)u1

ξ + ∆(0)u0 + (N − 1)Hr(0, y)ξu
0
ξ ]u

∗
ξξdξ + V 1

r (0, y)

∫ 0

±∞
u∗
ξdξ

+u∗
ξξ(s0)[U

±,1
r (0, y) + u±,2

ξ (0, y)] − I±4 .

Here we used the equation of u±,1.

∫ 0

±∞
[(N − 1)H(0, y)u1

ξ + ∆(0)u0 + (N − 1)Hr(0, y)ξu
0
ξ ]u

∗
ξξdξ

= (N − 1)H(0, y)I±3 + |∇Γ∗
s0|2

∫ 0

±∞
[u∗

ξξ(ξ + s0)]
2dξ +

1

2
[u∗

ξ(s0)]
2∆Γs0

−1

2
(N − 1)Hr(0, y)

∫ 0

±∞
[u∗

ξ(ξ + s0)]
2dξ.

Here we used the fact that ∆(0)u0 = |∇Γ∗
s0|2u∗

ξξ + ∆Γ∗
u∗
ξ .
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Combining the above computations, we obtain

−u∗
ξ(s0)w

±,2
ξ (0, y) =

∫ 0

±
P2(ξ, y)u

∗
ξ(ξ + s0)dξ

=
1

2
(N − 1)H(0, y)[u±,1

ξ (0, y)u∗
ξ(s0) − 2I±3 ]θ

− 1

2
(N − 1)Hr(0, y)[m

±]2θ

+ [m±]2∆Γ∗
θ + [u∗

ξ(s0)]
2

[
∇Γ∗

θ · ∇Γ∗
s0 +

1

2
θ∆Γ∗

s0

]

+ [u∗
ξξ(s0)u

∗
ξ(s0) − [n±]2]|∇Γ∗

s0|2θ

+
1

2
(N−1)H(0, y)[u±,1

ξ (0, y)u∗
ξ(s0)− 2I±3 ]θ+u±,1

ξ (0, y)w±,1
ξ (0, y)

+[(N − 1)H(0, y)I±3 + I±4 ]θ

+

[
(N − 1)H(0, y)I±3 + |∇Γ∗

s0|2[n±]2 +
1

2
[u∗

ξ(s0)]
2∆Γ∗

s0 −
1

2
(N − 1)Hr(0, y)[m

±]2

+u∗
ξξ(s0)[U

±,1
r (0, y) + u±,2

ξ (0, y)] − I±4 + V 1
r (0, y)

∫ 0

±∞
u∗
ξ(ξ + s0)dξ

]
θ,

−Z2(0, y)

∫ 0

±∞
u∗
ξ(ξ + s0)dξ

= [m±]2∆Γ∗
θ − (N − 1)Hr(0, y)[m

±]2θ + V 1
r (0, y)θ

∫ 0

±∞
u∗
ξ(ξ + s0)dξ

−Z2(0, y)

∫ 0

±∞
u∗
ξ(ξ + s0)dξ + (N − 1)H(0, y)u±,1

ξ (0, y)u∗
ξ(s0)θ

+ [u∗
ξ(s0)]

2[∇Γ∗
θ · ∇Γ∗

s0 + θ∆Γ∗
s0] + u∗

ξξ(s0)u
∗
ξ(s0)|∇Γ∗

s0|2θ

+u±,1
ξ (0, y)w±,1

ξ (0, y) + u∗
ξξ(s0)[U

±,1
r (0, y) + u±,2

ξ (0, y)],

where

m± :=

[∫ 0

±∞
[u∗

ξ(ξ + s0)]
2dξ

]1/2

and n± :=

[∫ 0

±∞
[u∗

ξξ(ξ + s0)]
2dξ

]1/2

.

Finally, by using the relations

u+,1
ξ (0, y) = u−,1

ξ (0, y), w+,1
ξ (0, y) = w−,1

ξ (0, y),

U+,1
r (0, y) + u+,1

ξ (0, y) = U−,1
r (0, y) + u−,1

ξ (0, y),
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we obtain

−u∗
ξ(s0)[w

−,2
ξ (0, y) − w+,2

ξ (0, y)]d = m2∆Γ∗
θ + m2H∗(y)θ

−V 1
r (0, y)J ′(v∗)θ + J ′(v∗)Z2(0, y),

where

H∗(y) := −(N − 1)Hr(0, y) =

N−1∑
j=1

[κj ]
2,

κj (j = 1, . . . , N − 1), are the principal curvatures of Γ∗. Thus we obtain (3.26).
Next we prove (3.27). By using the fact that W±,0(x) ≡ 0 ≡ Z±,0(x) and

W±,1(x) ≡ 0 ≡ Z±,1(x), we see that Z±,2 satisfies the following equation:⎧⎪⎨
⎪⎩

∆Z±,2 = 0 in Ω±(Γ∗),

Z±,2 = q2 on Γ∗,
∂Z−,2

∂n
= 0 on ∂Ω.

Then we have

Z−,2
r (0, y) − Z+,2

r (0, y) =
∂

∂ν
(P−q2)

∣∣∣∣
Γ∗

+
∂

∂ν
(P+q2)

∣∣∣∣
Γ∗

= (Π− + Π+)q2.(C.3)

In view of (3.15) and (3.22), we have

z−,3
ξ (0, y) − z+,3

ξ (0, y) = (1 + λ1)[h]θ(y).(C.4)

Combining (C.3) and (C.4), we obtain

Z−,2
r (0, y) − Z+,2

r (0, y) + z−,3
ξ (0, y) − z+,3

ξ (0, y) = (Π− + Π+)q2 − (1 + λ1)[h]θ(y).

Appendix D. (proof of (3.25) and (C.2)). By using

u1
ξξξ + f̃uu

1
ξ + (N − 1)H(0, y)u∗

ξξ + f̃1
uu

∗
ξ = 0 and u∗

ξξξ + f̃uu
∗
ξ = 0,

we have ∫ 0

±∞

[
(N − 1)H(0, y)u∗

ξξ(ξ + s0) + f̃1
uu

∗
ξ(ξ + s0)

]
u∗
ξ(ξ + s0)dξ

= u±,1
ξ (0, y)u∗

ξξ(s0) − u∗
ξ(s0)u

±,1
ξξ (0, y)

and

−
∫ 0

±∞

∫ ξ

±∞
[(N − 1)H(0, y)u∗

ξξ(s + s0) + f̃1
uu

∗
ξ(s + s0)]u

∗
ξ(s + s0)dsdξ

=

∫ 0

±∞
[u1

ξξ(ξ, y)u
∗
ξ(ξ + s0) − u1

ξ(ξ, y)u
∗
ξξ(ξ + s0)]dξ

= u±,1
ξ (0, y)u∗

ξ(s0) − 2I±3 .
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Appendix E. (proof of Lemma 4.3). (i) We study the operator Π− + Π+

instead of T . The problems (1.11) and (1.10) are rewritten as

⎧⎨
⎩Z+

rr +
N − 1

r
Z+
r +

1

r2
∆SZ+ = 0, r0 < r < R,

Z+(r0, y) = q, Z+
r (R, y) = 0, y ∈ S,

(E.1)+

⎧⎨
⎩Z−

rr +
N − 1

r
Z−
r +

1

r2
∆SZ− = 0, 0 < r < r0,

Z−
r (0, y) = 0, Z−(r0, y) = q, y ∈ S,

(E.1)−

where ∆S is the Laplacian on S = SN−1. Note that Π± have the same complete
system of eigenfunctions as that of ∆S .

Let {�j , βm
j (y)}∞j=1 be the complete system of an eigenpair for −∆S , where �j =

j(j +N − 2), j = 1, 2, . . . . If we take q = βj , then the solutions of (E.1)± separate as
Z±(r, y) = R±,j(r)βj(y). The equations for R±,j(r) are, respectively,

⎧⎨
⎩R+,j

rr +
N − 1

r
R+,j

r − lj
r2

R+,j = 0, r0 < r < R,

R+,j(r0) = 1, R+,j
r (R) = 0, y ∈ S,

⎧⎨
⎩R−,j

rr +
N − 1

r
R−,j

r − lj
r2

R−,j = 0, 0 < r < r0,

R−,j
r (0) = 0, R−,j(r0) = 1, y ∈ S.

In terms of the solutions R±,j , the operator Π− + Π+ acting on βj are expressed
as

(Π− + Π+)βj = (R−,j
r (r0) −R+,j

r (r0)) · βj .

By using the fundamental solutions rj and r−(j+N−2), we have

R−,j(r) =
1

rj0
rj , R+,j(r) = A+,jrj + B+,jr−(j+N−2),

where

A+,j =
(j + N − 2)R−(j+N−1)

∆
, B+,j =

jRj−1

∆
,

∆ = (j + N − 2)rj0R
−(j+N−1) + jr

−(j+N−2)
0 Rj−1.

Then, we have

R−,j
r (r0) −R+,j

r (r0) =
j(2j + N − 2)

∆rj+N−1
0 R−(j−1)

(E.2)

for j ≥ 1. Therefore, the eigenvalue of T is given by (4.3) and (4.4) since it is defined
by the inverse of the right-hand side of (E.2).

(ii) This can be shown by simple computation so we omit the proof.
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Appendix F. (proof of Lemma 4.7). (i) We study the operator Π− + Π+

instead of T . The problems (1.11) and (1.10) are recast as⎧⎨
⎩

Z+
xx + Z+

yy = 0, (x, y) ∈ (x0, X) × (0, Y ),

Z+(x0, y) = q, Z+
r (X, y) = 0, y ∈ (0, Y ),

(F.1)+

⎧⎨
⎩

Z−
xx + Z−

yy = 0, (x, y) ∈ (0, x0) × (0, Y ),

Z−
r (0, y) = 0, Z−(x0, y) = q, y ∈ (0, Y ).

(F.1)−

Note that Π± have the same complete system of eigenfunctions as that of − d2

dy2 under
the Neumann boundary condition.

Let {τ2
j , βj(y)}∞j=1 be the complete system of an eigenpair for − d2

dy2 , where

βj(y) = cos(τjy), τj :=
πj

Y
.

If we take q = βj , then the solutions of (F.1)± separate as Z±(x, y) = ζ±,j(x)βj(y).
The equations for ζ±,j(x) are, respectively,⎧⎨

⎩
ζ+,j
xx − τ2

j ζ
+,j = 0, x0 < x < X,

ζ+,j(x0) = 1, ζ+,j
x (X) = 0,

⎧⎨
⎩

ζ−,j
xx − τ2

j ζ
−,j = 0, 0 < x < x0,

ζ−,j
x (0) = 0, ζ−,j(x0) = 1.

In terms of the solutions ζ±,j , the operator Π− + Π+ acting on βj are expressed as,

(Π− + Π+)βj = (ζ−,j
x (x0) − ζ+,j

x (x0)) · βj .

By using the fundamental solutions eτjx and e−τjx, we have

ζ±,j(x) = c±1 e
τjx + c±2 e

−τjx,

where [
c−1

c−2

]
=

1

∆−

[
1

1

]
,

[
c+1

c+2

]
=

1

∆+

[
e−τjX

eτjX

]
,

∆− := ex0τj + e−x0τj , ∆+ := e(X−x0)τj + e−(X−x0)τj .

Then, we have

ζ−,j
x (x0) − ζ+,j

x (x0) =
2τj sinhXτj

coshXτj + coshuXτj
(F.2)

for j ≥ 1. Therefore, the eigenvalue of T is given by (4.9) and (4.10) since it is defined
by the inverse of the right-hand side of (F.2).

(ii) This can be shown by simple computation so we omit the proof.
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Appendix G. (proof of Lemma 5.1). Without loss of generality, we can
normalize θc as θc = 1. Multiplying z (complex conjugate of z) to the second equation
of (5.4) and integrating by parts, we obtain

−D

∫
Ω

|∇z|2dx +

∫
Ω

guwzdx + ε

∫
Ω

gv|z|2dx = ε2λ1(ε)

∫
Ω

|z|2dx,(G.1)

where

|∇z|2 :=

N∑
i=1

∂z

∂xi

∂z

∂xi
, |z|2 := zz.

Noting that w±,i(ξ, y) (i = 0, 1) decays exponentially as |ξ| → ∞, we have∫
Ω

guwzdx =

∫
Ω+(Γ∗)

guw
+z+dx +

∫
Ω−(Γ∗)

guw
−z−dx

= g∗,+u

∫
Ω+(Γ∗)

[εh+
v (v∗)qc + w0(r, y)ω(r)]qcdx

+ g∗,−u

∫
Ω−(Γ∗)

[εh−
v (v∗)qc + w0(r, y)ω(r)]qcdx + O(ε2)

= ε[g∗,+u h+
v (v∗)|Ω+(Γ∗)| + g∗,−u h−

v (v∗)|Ω−(Γ∗)|]|qc|2

+ ε[C+(ε) + C−(ε)]qc + O(ε2),

where |Ω±(Γ∗)| is volume of domain Ω±(Γ∗),

C±(ε) :=
g∗,±u

ε

∫
Ω±(Γ∗)

w0(r/ε, y)ω(r)dx =
g∗,±u

ε

∫
Ω±(Γ∗)

u∗
ξ(r/ε)ω(r)dx > 0

for small ε > 0 and g∗,±u = gu(h±(v∗), v∗). Using the fact that

sup
x∈Ω

|∇z| = O(ε) and

∫
Ω

|z|2dx = O(1) as ε ↓ 0,

and dividing (G.1) by ε, we have

(C+(ε) + C−(ε))qc = −(g∗,+u h+
v (v∗)|Ω+(Γ∗)| + g∗,−u h−

v (v∗)|Ω−(Γ∗)|)|qc|2

+(g∗,+u |Ω+(Γ∗)| + g∗,−u |Ω−(Γ∗)|)|qc|2 + O(ε).

This implies Re qc < 0 since g∗,±u > 0, g∗,±v = gv(h
±(v∗), v∗) < 0, and h±

v (v∗) =
1/fu(h±(v∗), v∗) < 0. Then we conclude that

Re λ∗
1 = Re

J ′(v∗)qc
m2

< 0.
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ON THE EXISTENCE OF INFINITELY MANY MODES OF A
NONLOCAL NONLINEAR SCHRÖDINGER EQUATION RELATED

TO DISPERSION-MANAGED SOLITONS∗

MICHAEL KURTH†

SIAM J. MATH. ANAL. c© 2004 Society for Industrial and Applied Mathematics
Vol. 36, No. 3, pp. 967–985

Abstract. We present a comprehensive study of a nonlinear Schrödinger equation with addi-
tional quadratic potential and general, possibly highly nonlocal, cubic nonlinearity. In particular,
this equation arises in a variety of applications and is known as the Gross–Pitaevskii equation in the
context of Bose–Einstein condensates with parabolic traps or as a model equation describing average
pulse propagation in dispersion-managed fibers. Both global and local bifurcation behavior is deter-
mined showing the existence of infinitely many symmetric modes of the equation. In particular, our
theory provides a strict theoretical proof of the existence of a symmetric bi-soliton which recently
was found by numerical simulations.

Key words. nonlinear Schrödinger equation, harmonic potential, dispersion management,
global bifurcation theorem
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1. Introduction and main results. In this paper we consider the nonlinear
Schrödinger equation (NLS) with additional quadratic potential

iut + uxx − x2u = F (u), x ∈ R, t ≥ 0,(1.1)

where F (u) is a cubic, possibly nonlocal, nonlinearity satisfying some assumptions
given later in this paper. Nonlocality of the nonlinearity is an important factor in
many applications, often approximated by a simpler local nonlinearity. In this paper
we will explain that it is possible to determine the full bifurcation behavior without
the assumption that F is local.

Equation (1.3) models a variety of phenomena and is known as the Gross–
Pitaevskii (GP) equation in context of Bose–Einstein condensates (BEC) with para-
bolic traps. Assuming a highly anisotropic trap Kivshar, Alexander, and Turitsyn [10]
derived the one-dimensional GP-equation (1.1) with F (u) = ±|u|2u as model equa-
tion for the macroscopic dynamics of cooled atoms confined in a three-dimensional
parabolic potential created by a magnetic trap. Using an approximation technique
they explain the existence of infinitely many nonlinear modes of the equation. In
the present paper we rigorously prove the existence of such modes identifying them as
bifurcating solutions from the eigenvalues of the linear harmonic oscillator. Moreover,
the shape of the mode is determined by the corresponding Gauss–Hermite eigenfunc-
tions.

In most applications, including BEC with ultracold atomic gases, the origin of
the nonlinearity is nonlocal; cf. [2, 5] and references therein. Usually the nonlocal
nonlinearity is assumed to be of Hartree type, i.e.,

F (u) = (K ∗ |u|2)u,
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where the kernel K is in some Lp-space and ∗ denotes evolution. The standard local
GP-equation is an approximation of the nonlocal model in the sense that it arises by
approximating the kernel with a δ-function. Thus, the NLS with local nonlinearity
can be considered as a simplified model and is of interest to understand the original
nonlocal problem, although in most applications it is hard to get a clue on properties
of the kernel. It should be mentioned that the analysis given in this paper also includes
the Hartree-type nonlinearity; for details we refer to [1].

Our main interest, however, lies in the context of nonlinear fiber optics. Modern
optical transmission systems successfully use the so-called dispersion management
(DM) technique. The idea of DM is to use a dispersion-compensating fiber to overcome
the dispersion of the standard monomode fiber which causes dispersive broadening of
a pulse. If the residual dispersion is small the signal should evolve nearly periodical,
this situation is called strong DM. Numerical and experimental results show that the
corresponding pulse is stable over hundreds of periods; analogous to the traditional
NLS, it is called the DM-soliton. Using the so-called lens transformation and an
averaging technique developed by Zharnitsky et al. [26] we have shown in [13] that
the master equation can be transformed into (1.1) with nonlocal nonlinearity of the
following form (after normalization):

F (u) := −
∫ 1

0

S−1(z)

(
1

T (z)
|S(z)u|2S(z)u

)
dz,(1.2)

with S(z) := U(Reff(z)), where U(z) denotes the group generated by the harmonic
oscillator, T (z) is a characteristic pulse width, and Reff(z) is the effective residual
dispersion (for details see section 2 below).

Regarding (1.1) we notice that the linear part is nothing other than the har-
monic oscillator which has the well-known basis of Gauss–Hermite eigenfunctions.
The presence of the quadratic potential helps us to overcome the problems due to the
unboundedness of the underlying spatial domain such as the noncompactness or the
continuous spectrum of the original problem.

In this paper we are interested in the existence of nonlinear bound states; the cor-
responding ansatz u(t, x) = exp(−λt)v(x) results in the nonlinear eigenvalue problem

−uxx + x2u + F (u) = λu,(1.3)

where we have required F (exp(iθ)u) = exp(iθ)F (u) to derive the equation. The
natural space to consider (1.3) is the weighted Hilbert space [9, 12]

X :=

{
u ∈ H1(R)

∣∣∣∣
∫

R

x2|u|2dx < ∞
}

(1.4)

with inner product 〈u, v〉X := (ux, vx) + (xu, xv), where (·, ·) denotes the standard
inner product in L2(R) and corresponding energy norm

‖u‖2
X =

∫
R

|ux|2 + x2|u|2dx = ‖ux‖2
2 + ‖xu‖2

2.(1.5)

The main conditions on the nonlinearity are the following.
(F1) F : X → L2(R) : F (exp(iθ)u) = exp(iθ)F (u) and u : R → R ⇒ F ◦u : R → R.
(F2) There exist 0 < α < 7/2, β ≥ 4 − α such that

‖F (u) − F (v)‖2
2 ≤C(‖u‖αX‖u‖β2 + ‖v‖αX‖v‖β2 )‖u− v‖1/2

X ‖u− v‖3/2
2 ∀u, v ∈ X.

(F3) F is sufficiently smooth, i.e., F ∈ C1(X,L2).
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By virtue of assumption (F1) we have

〈F (u), u〉 ∈ R ∀u ∈ XC =

{
u ∈ H1(R, C)

∣∣∣∣
∫

R

x2|u|2dx < ∞
}

and hence we consider throughout the paper only real-valued functions and conse-
quently X instead of XC. Assumption (F2) is a general growth condition for a cubic
nonlinearity which appears quite natural, resulting in F (u) = O(‖u‖3

2) for u → 0.
(F3) is a minimum smoothness condition which will later be replaced by some stronger
condition in order to determine the local bifurcation behavior. Necessary for the va-
lidity of the variational approach is the potential property of F , that is, the following
assumption:

(F4) There exists G ∈ C1(X,R) with G(0) = 0 such that
G′(u)v = (F (u), v) ∀u, v ∈ X.

Later we will restrict ourselves to the practical relevant case, where ground states
exist. In order to determine the direction of bifurcation one has to fix the sign of
the nonlinearity, that is to consider only “focusing” nonlinearities with an additional
technical assumption, i.e.,

(F5) G(u) < 0 ∀u ∈ X \ {0} and (F (su), u) ≥ sδ(F (u), u) for 0 < s < 1 and δ > 1.

Moreover, we are interested in the symmetry of the solutions. Thus we consider at
some stage only symmetric potentials

(F6) G(u(x)) = G(u(−x)) and G(u(x)) = G(−u(−x)).

The above assumptions allow us to determine the direction of bifurcation and orbital
stability of the solution. It should be noted that in our applications G(u) is only
(F (u), u)/4 which is typically of one sign, but much more general nonlinearities can
be treated as well.

Note that the nonlinearity F (u) = σ|u|2u with σ < 0 satisfies assumptions (F1)–
(F6). Equation (1.3) with standard cubic nonlinearity was investigated by several
authors in the past: Existence and stability of the solutions of (1.3) was discussed
by Fukuizumi [4], Oh [17], and Zhang [28]. Kivshar, Alexander, and Turitsyn [10]
observe the existence of infinitely many nonlinear modes of (1.3), but they did not
give a theoretical explanation. The NLS with quadratic potential is also discussed in
section 9.3 in the book by Cazenave [1]. Both global and local bifurcation results are
obtained by Kunze et al. [12]. Moreover, the corresponding solutions decay very fast,
i.e., Gaussian-like, and there exists a positive solution [6, 9].

Allowing the nonlinearity to be nonlocal, we will explain in this paper that some
results and methods can be adapted, whereas other properties of the solutions are
lost, e.g., the Gaussian decay. The main result of this paper can be summarized
as follows: In each eigenvalue of the harmonic oscillator bifurcates an unbounded
branch of nonlinear bound states in the sense of the global bifurcation theorem of
Rabinowitz which give rise to the existence of infinitely many nonlinear modes. Un-
der slightly more restrictive conditions on the nonlinearity, the bifurcating solutions
can be characterized as minimizers (resp., saddle points) of the corresponding energy
functional. Moreover, there exist infinitely many even (resp., odd solutions). Further-
more, stability and decay properties of the solutions are discussed. These assertions
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‖v‖2

λ

λ0 λ1 λ2

C0

C1
C2

Fig. 1.1. Bifurcation diagram of −vxx + x2v + F (v) = λv.

can be visualized in a bifurcation diagram as shown in Figure 1.1, the direction of
bifurcation depends on the sign of the nonlinearity.

In the context of fiber optics the ground state of the corresponding energy func-
tional is close to the true DM-soliton in the sense of the averaging procedure, whereas
the other branches correspond to modes of arbitrary order. Our method guarantees
the uniqueness (up to a phase factor) of the ground state close to the bifurcation point
for fixed energy and shows that it is even. This is a new theoretical result, well sup-
ported by numerical simulations. The DM-soliton as a ground state of a macroscopic
quantum oscillator as (1.3) has recently been studied by Schäfer et al. [24], but they
consider only reduced models and consequently our results are a verification of their
approximation method.

Of great practical interest is the theoretical verification that DM-systems support
the bi-soliton in addition to the well-known single-soliton. The bi-soliton was recently
numerically observed by Maruta et al. [15]; see also the paper of Pare and Belanger
[21]. It is a promising candidate for the improvement of today’s systems and will help
to increase transmission rates by using new encoding schemes.

2. Derivation of the main equation in the case of strong DM. In this
section a brief motivation of the nonlinear eigenvalue problem (1.1) with nonlinearity
(2.7) for the application of dispersion-managed optical fibers is given. For a more
detailed derivation we refer to [13]. From a mathematical point of view the model
equation describing pulse propagation in optical fibers with dispersion management
is given by the cubic nonlinear Schrödinger equation (DM-NLS) with periodically
varying coefficients

iAz(z, t) + D(z)Att(z, t) + c|A(z, t)|2A(z, t) = 0.(2.1)

Here, A is the complex envelope of the electric field, t is retarded time, z is
propagation distance, D is the dispersion coefficient, and c > 0 represents loss and
influence of the amplifiers and is assumed to be constant (loss-less model). The disper-
sion profile D is periodic with normalized period one. In the case of strong dispersion
management the residual dispersion 〈D〉 is small compared to local dispersion, i.e.,
〈D〉  D, where 〈·〉 denotes averaging over one period. Equation (2.1) is mostly
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studied for dispersion profiles having the form of a symmetric two-step map:

D(z) = Dloc + 〈D〉 =

{
d + 〈D〉 : 0 ≤ z ≤ L, 1 − L ≤ z ≤ 1,

−d + 〈D〉 : L < z < 1 − L
(2.2)

with 〈Dloc〉 = 0. Throughout the paper we restrict ourselves to the case of positive
residual dispersion, i.e., we require 〈D〉 > 0. In a series of papers Turitsyn and
Gabitov (cf. [25]) suggest applying the following transformation to (2.1), which is
known as lens transformation or pseudo-conformal transformation:

A(z, t) = N
Q(z, t/T (z))√

T (z)
exp

(
it2

M(z)

T (z)

)
.(2.3)

Here (T,M) is a periodic solution of the so-called nonlinear TM -equations which arise
in the context of lens transformation (see [13, 25] for details):

T ′(z) = 4D(z)M(z), T (0) = T0 > 0,(2.4)

M ′(z) =
D(z)

T (z)3
− N2

T (z)2
, M(0) = 0.(2.5)

Thereby, T0 has to be determined in such a way that for a given N2 the corresponding
solution is periodic or vice versa. T and M have the physical meaning of pulse width
and chirp, N2 is the pulse energy. In [13] it was shown that after applying lens
transformation to the (strong) dispersion managed NLS (2.1) with a two-step map
as in (2.2) and averaging of the resulting equation one arrives at a Schrödinger-type
equation with additional quadratic potential, i.e.,

iuz + auxx − bx2u +

∫ 1

0

S−1(z)

(
N2

T (z)
|S(z)u|2S(z)u

)
dz = 0,

z ≥ 0, x ∈ R,

(2.6)

where

a =

〈
D

T 2

〉
−N2

〈
1 − cos(4Reff)

2T

〉
,

b =

〈
D

T 2

〉
−N2

〈
1 + cos(4Reff)

2T

〉
.

In (2.6), S(z) is defined as S(z) = U(Reff(z)), where Reff has the physical meaning
of accumulative effective dispersion, i.e., Reff(z) =

∫ z

0
Dloc/T

2
lin. Furthermore, Tlin is

the periodic solution of the linear TM -equations

T ′
lin(z) = 4Dloc(z)Mlin(z), Tlin(0) = T0 > 0,

M ′
lin(z) =

Dloc(z)

Tlin(z)3
, Mlin(0) = 0,

which is explicitly known. U(z) denotes the group generated by the harmonic oscilla-
tor, i.e., U(z) = exp(iAz) with Au = �u−x2u. It is essential for the whole approach
that S(z) is 1-periodic since 〈Dloc/T

2
lin〉 = 0. Equation (2.6) describes averaged pulse

propagation in a strong dispersion-managed system after lens transformation. In the
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region of moderate energy values N2 < N2(〈D〉) we have shown by numerical simu-
lations in [13] that

a, b > 0

in contrast to former discussions of the problem (see [25] for details), and hence the
potential is attracting. In order to transform (2.6) to the standard bifurcation problem
(1.3) we consider steady-state solutions of the following form:

u(x, z) = φ(γx) exp(−i
√
abλz), with γ =

(
b

a

)1/4

.

In the new variable ξ = γx we have −φξξ + ξ2φ + F (φ) = λφ with

F (φ) := − N2

√
ab

∫ 1

0

S−1(z)

(
1

T (z)
|S(z)φ|2S(z)φ

)
dz.(2.7)

Writing again u instead of φ and x instead of ξ we end up at (1.3) with a highly
nonlocal nonlinearity which can be expressed in terms of Mehler’s kernel and satisfies
all the assumptions (F1) throughout (F6); see the appendix.

3. Analysis of the nonlinear eigenvalue problem. In this section we present
the analysis of the nonlinear eigenvalue problem (1.3) and state our main results.
Thereby the developed theory is sufficiently general to cover both applications, BEC
and dispersion-managed optical fibers. However, our main goals are to generalize the
bifurcation result of Kunze et al. [12] to nonlocal nonlinearities and to characterize
the bifurcating solutions more precisely by variational arguments.

3.1. Bifurcation analysis. In this subsection we investigate the bifurcation
behavior of (1.3). We strongly rely on the paper by Kunze et al. [12].

3.1.1. Preliminaries. The key property of the space X is the following [28].
Lemma 3.1. The embedding X ↪→ Lq(R) is compact for 2 ≤ q < ∞.
Next we consider the linear problem corresponding to (1.3), i.e.,

−uxx + x2u− λu = 0.(3.1)

The following properties of the linear harmonic oscillator are well known [12].
Lemma 3.2. Let λn = 2n + 1, n ∈ N0, and

un(x) :=
1√

2nn!
√
π

exp(−x2/2)Hn(x),

where Hn is the nth Hermite polynomial

Hn(x) := (−1)n exp(x2)
dn

dxn
exp(−x2).

(i) λn are exactly the eigenvalues of (3.1). They are simple and the corresponding
eigenfunctions are given by un ∈ X.

(ii) The eigenfunctions un of (3.1) form a complete orthonormal system of L2(R).
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3.1.2. Global bifurcation behavior. In this section we apply the global bifur-
cation theorem of Rabinowitz [22] to (1.3). The proof is similar to the one by Kunze
et al. [12]. Due to the potential property of F we can define a weak solution. Let

S0 := {(λ, u) ∈ R ×X : u �= 0 is a weak solution of − uxx + x2u + F (u) = λu}

denote the set of all nontrivial solutions of (1.3) and S = S0
R×X

denote its closure.
It is clear that u ∈ X ⊂ H1(R) implies u ∈ C0

0 (R), the set of continuous functions
on R vanishing for x ± ∞. Using a bootstrapping argument it follows then that
u ∈ C∞(R), cf. [26], and consequently a weak solution is a classical solution. Our
global bifurcation result then reads as follows

Theorem 3.3. Let F satisfy assumptions (F1)–(F3). Then for all n ∈ N0, (λn, 0)
is a bifurcation point. Let Cn denote the component of S with (λn, 0) ∈ Cn. Then the
following alternative holds: Either

(i) Cn is unbounded in R ×X or
(ii) Cn is compact and there exists m �= n such that (λm, 0) ∈ Cn.
Proof. Using the Green’s function g(x, ξ) the problem is transformed to an integral

problem; see [12] for details. To apply the global bifurcation theorem of Rabinowitz
the resulting nonlinearity should be compact and of higher order. Roughly speaking,
this is guaranteed by the growth condition together with the compact embedding. In
particular, assumptions (F2), (F3) yield the assertions of Lemma 5 in [12]; the proof
then is along the lines of [12].

Usually the second alternative is ruled out by nodal arguments; see [12] for de-
tails. These arguments are no longer valid for nonlocal nonlinearities. However, in
section 3.2 we will show by variational arguments that the bifurcating branches are
unbounded.

3.1.3. Local bifurcation behavior and orbital stability. In order to de-
termine the local behavior in the vicinity of (λn, 0) we introduce a nondegeneracy
condition on the nonlinearity

(Fn
3 ) F ∈ C3(X,L2) with 〈δ3F (0)[un]3, un〉 �= 0.

Note that by virtue of (F2), (F3) the first derivatives of F vanish, i.e., δF (0)[un] = 0
and δ2F (0)[un]2 = 0. The local bifurcation behavior then can be determined as
follows.

Lemma 3.4. Let F satisfy (F1), (F2), (Fn
3 ). Then there exists ε > 0 such that

(λ, u) ∈ Cn ∩ Uε(λn, 0) implies

λ = λn + λ(s), u = sun + svn(s),

where 0 < |s| < ε and λ(0) = 0, λ′(0) = 0, and

sgn (λ′′(0)) = sgn
(
〈δ3F (0)[un]3, un〉

)
.(3.2)

Moreover, vn(0) = 0 with (vn(s), un)X = 0.
Proof. The assertions follow by standard Lyapunov–Schmidt theory since the

eigenvalues are simple.
Thus, the direction of bifurcation is determined by the sign of λ′′(0). In the

case of negative sign the bifurcating solutions from the smallest eigenvalue λ0 are
orbitally stable by the method of Rose and Weinstein [23]; otherwise they are unstable.
Instead of discussing this in detail we refer to the next section where the solutions
are characterized as ground states of the energy functional in the situation where the
nonlinearity is focusing.
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3.2. Variational calculus. In this section we characterize the bifurcating so-
lutions by variational arguments and identify them as minimizers or saddle points of
the corresponding energy functional. Throughout the section we assume that F has
the potential property.

Considering the energy functional corresponding to (1.3)

J(u) =
1

2
‖u‖2

X + G(u),(3.3)

it is easy to observe that critical points of J correspond to nonlinear bound states of
(1.3). Now we are in a position to state our main theorem, which characterizes the
bifurcating solutions. In particular, it shows the existence of infinitely many nonlinear
modes of arbitrary energy.

Theorem 3.5. Suppose (F1)–(F6) are satisfied and ω > 0 is given. Then there
exists an unbounded sequence {uω

n}n∈N0 ⊂ X of critical points of J with ‖u‖2
2 = ω

and corresponding Lagrange multipliers λω
n ≤ λn with the following properties:

(i) uω
0 is the ground state of the energy functional, and it is even and orbitally

stable. Moreover, (λω
0 , u

ω
0 ) ∈ C0.

(ii) uω
1 is odd and minimizes J among all odd functions. Furthermore, we have

(λω
1 , u

ω
1 ) ∈ C1.

(iii) The uω
n with n > 1 are saddle points with (λω

n , u
ω
n) ∈ Cn. Moreover, uω

2k is
even and uω

2k+1 is odd.
In the case of a simple nonlinearity F (u) = −|u|2u, it is shown that the ground

states are positive [6], using Kato’s inequality and maximum principle. Moreover, the
solutions of the simpler equation decay like a Gaussian and are unique. However, all
these arguments need information about nodal properties of the solutions, which are
not at hand for the nonlocal nonlinearity we have in mind.

In particular the second alternative of the global bifurcation theorem can be ruled
out by Theorem 3.5.

Corollary 3.6.

1. Cn is unbounded in both u and λ.
2. Cn ∩ Cm = ∅ for n �= m.

Proof of Theorem 3.5. In order to increase the clarity and due to the practical
importance of the first two modes, the proof is divided into three parts.

Since the ground states of the equation are of fundamental importance, we discuss
them first. Define Γu as Γu(x) = u(−x). Due to assumption (F6) the functional J is
invariant under Γ. With XΓ := {u ∈ X|Γu = u} the following lemma holds.

Lemma 3.7 (characterization of the ground state). For all ω > 0 the minimiza-
tion problem

Jω
Γ = min{J(u)|u ∈ XΓ, ‖u‖2

2 = ω}(3.4)

has a nontrivial solution uω ∈ XΓ which corresponds to a weak solution of (1.3).
Moreover, uω is orbitally stable as the ground state of the equation, that is,

J(uω) = min{J(u)|u ∈ X, ‖u‖2
2 = ω}.(3.5)

Furthermore, {(λω, uω)|ω ∈ (0,∞)} ⊂ C0.
Proof. The proof relies on the principle of symmetric criticality [18], which allows

us to reduce the problem to even functions, i.e., a minimizer of problem (3.4) is a
critical point for the whole problem; see [11] for a similar result. The following lemma
is essential to show that J is bounded from below.
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Lemma 3.8. For u, v ∈ X the following estimate holds with α′ := α/2 + 1/4 < 2
and β′ = β/2 + 3/4:

|G(u) −G(v)| ≤ C(‖u‖α′

X + ‖v‖α′

X )(‖u‖β
′

2 + ‖v‖β
′

2 )‖u− v‖2.(3.6)

Proof. We calculate as follows:

|G(u) −G(v)| =

∣∣∣∣
∫ 1

0

d

ds
G(su + (1 − s)v)ds

∣∣∣∣ =

∣∣∣∣
∫ 1

0

G′(su + (1 − s)v)(u− v)ds

∣∣∣∣
=

∫ 1

0

|(F (su + (1 − s)v), u)|ds ≤ C

∫ 1

0

‖F (su + (1 − s)v)‖2‖u− v‖2ds

≤ C

∫ 1

0

‖su + (1 − s)v‖α/2+1/4
X ‖su + (1 − s)v‖β/2+3/4

2 ‖u− v‖2ds

≤ C(‖u‖α′

X + ‖v‖α′

X )(‖u‖β
′

2 + ‖v‖β
′

2 )‖u− v‖2

which is the assertion of the lemma.
The above lemma together with assumption (F2) shows

J(u) =
1

2
‖u‖2

X + G(u) ≥ 1

2
‖u‖2

X − C‖u‖α′

Xω(β′+1)/2(3.7)

which is bounded from below since α′ < 2. Making use of the fact that the embedding
XΓ ⊂⊂ Lp(R) is compact for p ≥ 2 we are able to show that a minimizer on XΓ

exists. Let {un} be a minimizing sequence; that is, ‖un‖2
2 = ω and J(un) → Jω

Γ ,
which implies that J(un) is bounded, say J(un) ≤ M , and using (3.7) we conclude
that un is bounded in X. Passing to a subsequence we may assume that un ⇀ u
weakly in X and un → u strongly in L2(R), which yields ‖u‖2

2 = ω. From (3.6) we
obtain

|G(un) −G(u)| ≤ C‖u− v‖2(3.8)

since un, u are bounded in X. Finally, it follows that J(u) ≤ limn→∞ J(un) = Jω
Γ , and

accordingly u ∈ XΓ is the desired minimizer. The principle of symmetric criticality
then reveals that u is a critical point of J and, consequently, a weak solution of (1.3)
with Lagrange-multiplier λω.

−uω
xx + x2uω + F (uω) = λωu.(3.9)

Next we show limω→0 λ
ω = λ0, where λ0 is the eigenvalue of the harmonic oscillator

corresponding to u0.
Therefore, we take the inner product of the Euler–Lagrange equation (3.9) with

uω to obtain

‖uω‖2
X + (F (uω), ω) = λωω; hence λω =

‖uω‖2
X

ω
+

(F (uω), uω)

ω
.(3.10)

Note that λ0 can be characterized by the Rayleigh quotient as follows [3]:

λ0 = ‖u0‖2
X = inf

{
‖u‖2

X

‖u‖2
2

∣∣∣∣u ∈ X,u �= 0

}
= inf

{
‖u‖2

X

‖u‖2
2

∣∣∣∣u ∈ XΓ, u �= 0

}
,
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where the last equality holds since u0 is even. Accordingly, since β′ > 3/4

λω ≥ λ0 +
(F (uω), uω)

ω
≥ λ0 −

‖F (uω)‖2√
ω

≥ λ0 − ‖uω‖α′

X ‖uω‖β
′−1/2

2 ≥ λ0 − ωβ′/2−1/4 → λ0 for ω → 0.

On the other hand G can be written as

0 > G(u) =

∫ 1

0

(F (su), u)ds ≥
∫ 1

0

sδds(F (u), u) =
1

δ + 1
(F (u), u)

which shows, in particular, (F (u), u) < 0. By definition of Jω we can write

λω = 2
J(uω) −G(uω)

ω
+

(F (uω), ω)

ω
≤ 2

J(
√
ωu0)

ω
+

(F (uω), ω) − 2G(uω)

ω

= λ0 +
2G(

√
ωu0) − 2G(uω) + (F (uω), uω)

ω
(3.11)

≤ λ0 +
2G(

√
ωu0)

ω
+

(
1 − 2

δ + 1

)
(F (uω), uω) ≤ λ0.

Thus we have shown λω → λ0 for ω → 0 which implies that the uω are bifurcating
from the first eigenvalue. Moreover, due to λω ≤ λ0 the direction of bifurcation
is determined. In a similar way to the argument of Zhang [28] it follows that the
bifurcating solutions are orbitally stable.

The uniqueness of the bifurcating solutions from the global bifurcation theorem
(up to phase translation) and the fact that the same arguments apply for the (possibly
nonsymmetric) ground state ũω lead to uω = ũω at least for small ω and hence the
ground states are even. In addition the solutions uω exist for arbitrary ω > 0, and
consequently the branch is unbounded in L2(R) and hence also in X which rules out
the second alternative of the global bifurcation theorem.

Next we will show that the solutions bifurcating in the second eigenvalue λ1 are
odd. It should be noted that these modes are somewhat orbitally stable among all
odd functions which yields their practical relevance. In order to find odd solutions
we introduce the action Γ2u(x) = −u(−x) and the corresponding space XΓ2

of fixed
points of Γ2 and apply the principle of symmetric criticality again to obtain the
following lemma.

Lemma 3.9. For all ω > 0 the minimization problem

Jω
Γ2

= min{J(u)|u ∈ XΓ2 , ‖u‖2
2 = ω}(3.12)

has a nontrivial solution uω ∈ XΓ2 , which corresponds to a weak solution of (1.3).
Furthermore, {(λω, uω, )|ω ∈ (0,∞)} ⊂ C1.

Proof. The proof of the existence of a minimizer can be adapted by replacing XΓ

with XΓ2 from Lemma 3.7. It remains to verify the behavior for ω → 0. Note that
λ1 can be characterized as

λ1 = ‖u1‖2
X = inf

{
‖u‖2

X

‖u‖2
2

∣∣∣∣u ∈ XΓ2
, u �= 0

}
.

and using (3.10) it follows that

λω ≥ λ1 − ‖uω‖α′

X ‖uω‖β
′−1/2

2 ≥ λ1 − ωβ′/2−1/4 → λ1 for ω → 0.

In the same way as in (3.11) we then can verify the direction of bifurcation, i.e.,
λω ≤ λ1. Hence λω → λ1.
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Next we show the existence of infinitely many modes of the equation which cor-
respond to saddle points of the energy functional J . Obviously this includes the
previously discussed situations, but the proof is more technical and we have therefore
discussed the previous cases separately.

Lemma 3.10. For arbitrary ω > 0 there exists an unbounded sequence of even
(odd) solutions un ∈ X of (1.3) with ‖u‖2

2 = ω.
The proof relies on the following result [8] which is a generalization of the theorem

of Ljusternik–Schnirelmann for infinite-dimensional Hilbert spaces.
Theorem 3.11. Let X be an infinite-dimensional Hilbert space, J,K ∈ C1(X,R)

with K ′(v) �= 0 for all v ∈ X − {0} and S := {v ∈ X : K(v) = 0}. If J |S is even and
bounded from below and satisfies the Palais–Smale condition on S, then there exist
infinitely many critical values, that is, ck ∈ R with limk→∞ ck = ∞ and for all k ∈ N

there exists a pair (λk, vk) ∈ R × S with J(vk) = ck and J ′(vk) − λkK
′(uk) = 0.

Moreover, ck → ∞.
Proof of Lemma 3.10. We apply the theorem with K(u) = ‖u‖2

2 − ω and J(u)
defined as in (3.3) for X = XΓ (resp., X = XΓ2) separately. It suffices to show that J
satisfies the Palais–Smale condition on S. Let (un, λn) be a Palais–Smale sequence,
that is,

J(un) → c ∈ R, J ′(un) − λnK
′(un) → 0 in X ′,

where X ′ denotes the dual space of X. We have to show the existence of a strongly
convergent subsequence. As in the proof of Lemma 3.7 we can extract a subsequence
still denoted as (un, λn) with un ⇀ u weakly in X and un → u strongly in X. It
remains to show un → u strongly in X. Therefore we calculate

‖un − u‖2
X = (J ′(un) − J ′(u)) (un − u) − (F (un) − F (u), un − u)

≤ C‖J ′(un)‖X′ + |J ′(u)(un − u)| + ‖F (un) − F (u)‖2‖un − u‖2

≤ C‖J ′(un)‖X′ + |J ′(u)(un − u)| + C‖un − u‖1/4
X ‖un − u‖7/4

2 .

Thus, it follows that un → u in X, and from (3.10) it follows that

|λn − λ| ≤
∣∣‖un‖2

X − ‖u‖2
X

∣∣ + ‖(F (un), un) − (F (u), u)‖
≤

∣∣‖un‖2
X − ‖u‖2

X

∣∣ + |(F (un) − F (u), un)| + |(F (u), un − u)|

which together with (F2) and un → u ∈ X yields the desired convergence.
We still have to show (λω

n , u
ω
n) ∈ Cn. Instead of discussing this in detail we refer

to the characterization of the critical values in [8],

cωn = inf
A∈Bn

max
u∈A

J(u)

ω
, where Bn := {A ∈ s(X) : A ⊂ S, compact with γ(A) ≥ k},

and s(X) denotes the set of all nonempty, closed subsets S of X which are symmetric
to the origin and satisfy 0 �∈ S. Moreover, γ(A) denotes the genus of A, i.e.,

γ(A) := inf{n ≥ 1 : ∃φ : A → R
n − {0} continuous and odd}.

Using (3.10) and calculating as in (3.11) give λω
n ≤ 2cωn . The assertion then again

follows from G(u) < 0 combined with the min-max characterization of the eigenvalues,
i.e.,

inf
A∈Bn

max
v∈A

‖u‖2
X

‖u‖2
2

= min
Xn⊂X

max
u∈Xn

‖u‖2
X

‖u‖2
2

= max
Xn−1⊂X

min
u∈X⊥

n−1

‖u‖2
X

‖u‖2
2

= λn,(3.13)



978 MICHAEL KURTH

where Xn denotes a subspace of X of dimension n. Thereby, the first equation can
be found in [9], while the second holds due to the equivalence of the principle of
Courant–Fischer and the characterization of the nth eigenvalue by Poincare; cf. [3].
Again, (3.13) implies λ0 ≤ limω→0 λ

ω
n ≤ λn. Hence λω

n must converge to an eigenvalue
which must be λn by induction.

Thus, all statements of the theorem are proven.
For some applications it may be of interest to fix the wave-number. Due to the

direction of bifurcation we have the following corollary.
Corollary 3.12. For all λ ∈ R (1.3) has infinitely many solutions {uλ

n}n∈N0 .
Proof. Since all the branches are unbounded in both u and λ, the existence of

infinitely many solutions un with fixed wave-number λ is obvious. Note that due to
λω
n ≤ λn we have λω

n → −∞ for ω → ∞.
Remark 3.13. Requiring ‖u‖p ≤ |G(u)| for some p ≥ 2 one can verify that the

sequence {uλ
n} is unbounded in X [14].

4. Exponential decay of the bound states. In this section it is shown that
in case of the nonlinearity (2.7) arising from the context of fiber optics all solutions
decay exponentially fast as x → ∞.

Theorem 4.1. Let (λ, u) be a solution of the nonlinear eigenvalue problem (1.3)
with nonlinearity (2.7). Then there exists C > 0 such that

|u(x)| + |ux(x)| ≤ C exp(−|x|/2).

Remark 4.2. It is not clear to us whether the decay rate is sharp or not in a
rigorous mathematical way. But regarding numerical results or reduced models it
turns out that the solution indeed decays only exponentially fast. In fact it is well
known that the DM-soliton has a Gaussian kernel and the envelope of its oscillating
tails decays exponentially; cf. ([24, 25]). Thus, the above decay rate is the best
that one can expect. In conclusion, the Gaussian decay which occurs for simpler
nonlinearities is lost due to the nonlocal properties of F .

Proof. The proof is similar to Theorem 8.1.1 in [1], where exponential decay is
verified without potential. For ε > 0 define the function

f ε(x) := exp

(
x

1 + εx

)

which has the following properties [1]:
• f ε is bounded for all ε > 0,
• f ε

x(x) ≤ f ε(x),
• limε→0 f

ε(x) = exp(x).
Multiplication of (1.3) with f εu and integration give in the real part∫

R

(x2 − λ)f ε|u|2dx = I −�
(∫

R

ux(f εu)xdx

)
,(4.1)

I := �
(∫ 1

0

∫
R

S−1(z)

(
1

T (z)
|S(z)u|2S(z)u

)
f εudzdx

)
.(4.2)

At first we bound the left-hand side from below. Defining R1 :=
√

|λ| + 1 we find∫
R

(x2 − λ)f ε|u|2dx ≥
∫
|x|≤R1

(x2 − λ)f ε|u|2dx + (R2
1 − λ)

∫
|x|>R1

f ε|u|2dx(4.3)
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which due to R2
1 − λ ≥ 1 implies the inequality∫
|x|>R1

f ε|u|2dx ≤
∫

R

(x2 − λ)f ε|u|2dx−
∫
|x|≤R1

f ε|u|2dx.(4.4)

Next we estimate the right-hand side: The second term is bounded in ε, whereas for
the first term, regarding (4.1) and using f ε

x ≤ f ε,

�
(∫

R

ux(f εu)xdx

)
= �

(∫
R

f ε|ux|2 + f ε
xuxudx

)
≥

∫
R

f ε|ux|2 − f ε|u||ux|dx

≥
∫

R

f ε|ux|2dx−
(∫

R

f ε|ux|2dx
)1/2 (∫

R

f ε|u|2dx
)1/2

≥
∫

R

f ε|ux|2dx− 1

2

(∫
R

f ε|u|2dx +

∫
R

f ε|ux|2dx
)
.

Hence, by collecting all the terms and splitting the last integral we can conclude that

1

2

(∫
R

f ε|ux|2dx +

∫
|x|>R1

f ε|u|2dx
)

≤ I −
∫
|x|≤R1

(x2 − λ)f ε|u|2dx +
1

2

∫
|x|≤R1

f ε|u|2dx

and it remains to estimate I. Splitting the integral into |x| ≤ R and |x| > R with
R > R1 to be determined later, the following is true due to f εu ∈ X for all ε > 0:∣∣∣∣∣

∫ 1

0

∫
|x|>R

S−1(z)

(
1

T (z)
|S(z)u|2S(z)u

)
f εudxdz

∣∣∣∣∣
≤ max

z∈[0,1]

(∥∥∥∥ 1

T (z)
S(z)u

∥∥∥∥
2

L∞(x>R)

)∣∣∣∣
∫ 1

0

∫
x>R

S(z)uS(z) (f εu)dxdz

∣∣∣∣
= max

z∈[0,1]

(
1

T (z)
‖S(z)u‖2

L∞(x>R)

)∫
|x|>R

f ε|u|2dx.

Since S(z)u ∈ L2(R) in particular S(z)u(x) → 0 for x → ±∞. Accordingly there
exists R2 > R1 with

max
z∈[0,1]

(
1

T (z)
‖S(z)u‖2

L∞(x>R2)

)
<

1

4
.

Using

1

4

∫
|x|>R2

f ε|u|2dx ≤ 1

2

∫
|x|>R1

f ε|u|2dx− 1

4

∫
|x|>R2

f ε|u|2dx

the following estimate holds:

1

2

∫
R

f ε|ux|2dx +
1

4

∫
|x|>R2

f ε|u|2dx ≤ −
∫
|x|≤R1

(x2 − λ)f ε|u|2dx +
1

2

∫
|x|≤R1

f ε|u|2dx

+

∣∣∣∣∣
∫ 1

0

∫
|x|≤R2

S−1(z)

(
1

T (z)
|S(z)u|2S(z)u

)
dzf εudx

∣∣∣∣∣.
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On the right-hand side the limit ε → 0 is finite due to the boundedness of the domain
of integration. Hence∫

x>R2

exp(|x|)|u(x)|2dx < ∞ and

∫
R

exp(|x|)|ux|2dx < ∞,

which implies ∫
R

exp(|x|)(|u(x)|2 + |ux(x)|2)dx < ∞.(4.5)

Using the Lipschitz continuity of u, we are then able to derive exactly as in [1] the
existence of a C > 0 with

exp(|x|)(|u(x)|2 + |ux(x)|2) < C ∀x ∈ R,

which gives the desired decay estimate.

5. Conclusion. In this section we explain the meaning of the derived results in
the context of dispersion-managed optical fibers and discuss their practical relevance.

Since N2 in the nonlinear TM -equations has the physical meaning of pulse energy,
we are interested in unit-norm solutions of the DM-NLS after lens tranformation.
Accordingly we apply our main theorem with ω = 1 to obtain the following.

Theorem 5.1. There exists a sequence {λn, un} of solutions of the averaged
equation (2.6) having the form

un(x, z) = φn(γx) exp(−i
√
abλz), γ =

(
b

a

)1/4

,

where φ2k is even and φ2k+1 is odd. Moreover, there exists C > 0 such that

|φn(x)| + |φ′
n(x)| < C exp

(
−γ

|x|
3

)
.

Thereby, the well-known Gaussian decay [9] which occurs for F (u) = −|u|2u is lost
due to the nonlocal properties of F which prevents nodal arguments or a maximum
principle. Thus we have shown the existence of infinitely many even (resp., odd)
solutions of (1.3). Note that symmetry of the DM-soliton was not rigorously proven
up to now. Kunze [11] considered only the case of two spatial dimensions, but in the
context of nonlinear optics space and time variables are interchanged and hence the
one-dimensional case is of practical interest.

It should be noted that a rigorous averaging theorem as in [26] is not at hand due
to the problem of expanding the parameters a and b in powers of ε = 〈D〉. However,
heuristically it is clear that a similar averaging theorem is valid, i.e., the solution of the
averaged equation is ε-close to the solution of the original (lens transformed) problem
on the time scale 1/ε in some Hs-space. Consequently, we expect the periodic solution
of the averaged problem to be close to the original pulse and the approximation to be
accurate if z is not too large.

Before discussing the relevance of our results to dispersion-managed solitons, we
compare them to the relevant publications and add some comments on the differences.

(i) In recent publications (cf. [19, 20, 27]), it is explained that DM-solitons do not
exist as an exactly periodic solution of the original DM-NLS (2.1) due to parametric
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resonance. Using a perturbation series expansion, a coupling between bound states
and linear Bloch waves is observed which results in a decay of the DM pulse for
z → ∞. In contrast, the averaged equation possesses a true periodic solution which
is close to the solution of the original problem in terms of the averaging procedure.

(ii) Due to the lens transformation the continuous spectrum of the DM-NLS
becomes discrete due to the parabolic potential and the parametric resonance is de-
stroyed. Therefore, we have been able to apply standard bifurcation theory to our
problem in contrast to the equation considered by Zharnitsky et al. [26].

This can be understood as follows: Since the lens transformation makes use of
some well-known properties of the DM-soliton some resonant terms in the leading
order are removed. Of course the problems with and without lens transformation are
equivalent before averaging, but regarding the averaged variational principle it turns
out that we reduce the problem to particular solutions, i.e., bound states. Neverthe-
less, both averaged models give raise to solutions close to the real DM pulse but they
describe different problems; i.e., they lead to different approximations for the solution.
Hence, it is not surprising that the spectrum has changed. Another way to understand
the discrepancy is that some characteristic features of the DM-soliton as the existence
of a pulse chirp are implemented in the lens transformation, and consequently, the
equation studied in our paper is a better approximation from a practical point of view.
However, in a rigorous mathematical way both are just first order approximations of
the same equation.

Finally, we discuss the relevance of our result to the original problem. We have
shown the existence of infinitely many solutions of the original problem which are
close

A(z, t) =
N2

T (z)
U(Reff(z)) {exp(iλz)un(t/T (z))} exp

(
it2

M(z)

T (z)

)
,

where un decays exponentially fast. Note that the ground state obtained by Zharnit-
sky et al. [26] was only shown to be in L2(R). The relevance of our theoretical results
can be summarized as follows:

• The ground state φ0 corresponds to the DM-soliton; we have shown that it is
an even function at least for small input energies. This is a new theoretical
result already known from numerical simulations.

• Moreover, it is shown that the DM-soliton decays exponentially fast and has
a Gaussian core. Numerical simulations show the existence of an “optimal”
energy N2, where γ and, accordingly, the decay rate is maximized [14].

• Uniqueness of the DM-soliton is still an open question, reduced models in-
dicate that the DM-solitons form a one-parameter family. We have shown
in the present paper the uniqueness of the DM-soliton close to the bifur-
cation point (that is for small energies), but there could exist a secondary
(symmetry-breaking) bifurcation.

• The odd solution φ1 corresponds to the bi-soliton which was first observed by
Maruta, Nonaka, and Yoshika [16] by numerical simulations; see also the work
of Pare and Belanger [21]. It minimizes the energy functional with respect
to all odd functions and is hence stable against odd perturbations. It is a
promising candidate for the reduction of intrachannel interactions which play
an important role in todays multichannel systems. Numerical simulations
[15] show that the bi-soliton propagates stable over long distances and the
bit rate is increased significantly by a new encoding scheme.
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• Furthermore, we have verified the existence of modes of arbitrary order, a
fact which was unknown up to now. Similar to the basis of Gauss–Hermite
functions for the linear oscillator there exists a family of nonlinear modes
with shape close to the corresponding eigenfunction. Maruta et al. [15] also
observed a tri-soliton which corresponds to solutions on the third branch in
the bifurcation diagram. They conjectured the existence of a periodic pulse
of arbitrary order which is guaranteed by our result.

• A very effective way to derive approxmiations of the DM-soliton is to use a
Hermite–Gaussian ansatz in the lens transformed equation; cf. [24]. From the
results derived in this paper it is now clear why this method gives reasonable
results. We have shown that the DM-soliton in the averaged equation is close
to the first eigenmode. In [24], u is expanded in terms of the Gauss–Hermite
eigenfunctions, the expansion is truncated after a few modes. Bearing the
bifurcation result in mind it is now obvious that the error is small although
infinitely many modes are omitted. With this method it should also be pos-
sible to obtain approximations for the solutions bifurcating from the other
eigenvalues by considering the corresponding eigenfunction and its neighbors
as perturbations.

In conclusion we have explained various facts on the DM-soliton which were only
known from numerical simulations in an analytical way.

Appendix: Verification of assumptions. In this section we show that F as in
(1.2) satisfies assumptions (F1) to (F6). The same holds obviously for the nonlinearity
F (u) = σ|u|2u with σ < 0.

(F1): By definition we have S(z) = U(Reff(z)), where U(t) denotes the group of
the harmonic oscillator. Using

U(−t)u = U(t)u

together with −Reff(z) = Reff(z + 1/2) implies

S(z)u = U(Reff(z))u = U(−Reff(z))u = U(Reff(z + 1/2))u.

Hence, by S−1(z) = U(−Reff(z)),

S−1(z)

(
1

T (z)
|S(z)u|2S(z)u

)

= S−1

(
z +

1

2

)(
1

T (z)

∣∣∣∣S
(
z +

1

2

)
u

∣∣∣∣
2

S

(
z +

1

2

)
u

)
.

Due to symmetry T (z) = T (z + 1/2) we can conclude

F (u) = −
∫ 1

0

S−1(z + 1/2)

(
1

T (z + 1/2)
|S(z + 1/2)u|2S(z + 1/2)u

)
dz

= −
∫ 3/2

1/2

S−1(z)

(
1

T (z)
|S(z)u|2S(z)u

)
dz = F (u),

where the last equality holds due to the 1-periodicity of S and T which gives
the assertion for real-valued u.
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(F2): Due to ‖u‖L1(0,1) ≤ ‖u‖L2(0,1) we can estimate in the following way:

‖F (u) − F (v)‖2
2 ≤ C

∫
R

(∫ 1

0

|S−1(z)
(
|S(z)u|2S(z)u− |S(z)v|2S(z)v

)
|dz

)2

dx

≤
∫

R

(∫ 1

0

∣∣S−1(z)
(
|S(z)u|2S(z)u− |S(z)v|2S(z)v

)∣∣2dz) dx

=

∫ 1

0

‖|S(z)u|2S(z)u− |S(z)v|2S(z)v‖2
2 dz.

Making use of the inequality
∣∣|a|2a− |b|2b

∣∣ ≤ 3
2 (|a|2 + |b|2)|a− b| which holds

for a, b ∈ C and the Cauchy–Schwarz inequality we conclude

‖|S(z)u|2S(z)u− |S(z)v|2S(z)v‖2
2

≤ C ‖
(
|S(z)u|2 + |S(z)v|2

)
|S(z)u− S(z)v| ‖2

2

≤ C ‖(|S(z)u|2 + |S(z)v|2)2‖2‖|S(z)(u− v)|2‖2

≤ C
(
‖ |S(z)u|4‖2 + ‖|S(z)v|4‖2

)
‖|S(z)(u− v)|2‖2

= C
(
‖S(z)u‖4

8 + ‖S(z)v‖4
8

)
‖S(z)(u− v)‖2

4.

From Oh [17] it is known that S(z) is a bounded operator from Lp(R) to
Lq(R), where q = p/(p− 1). Since X is compactly embedded in Lp(R) for all
p ≥ 2 we have S(z)u ∈ Lq(R) for all q ≥ 2. Estimating the terms separately
we interpolate

‖S(z)u‖8 ≤ ‖S(z)u‖λ4‖S(z)u‖1−λ
q ,

where

λ =
1/8 − 1/q

1/4 − 1/q
.

Using the estimate of Sobolev type ‖v‖4
4 ≤ C‖vx‖2‖v‖3

2 we obtain

‖S(z)u‖8 ≤ C(‖S(z)ux‖2‖S(z)u‖3
2)

λ/4‖S(z)u‖1−λ
X

≤ C‖u‖λ/4X ‖u‖1−λ
X ‖u‖3λ/4

2 = C‖u‖1−3λ/4
X ‖u‖3λ/4

2 .

In the same way it follows that

‖S(z)(u− v)‖2
4 ≤ C‖u− v‖1/2

X ‖u− v‖3/2
2 .

Hence, by collecting all the terms,

‖F (u) − F (v)‖2
2 ≤ C

(
‖u‖4−3λ

X ‖u‖3λ
2 + ‖v‖4−3λ

X ‖v‖3λ
2

)
‖u− v‖1/2

X ‖u− v‖3/2
2 .

We still have the freedom to choose q. In order to satisfy α = 4 − 3λ < 7/2
we need λ > 1/6 which holds for q > 10. Note that a choice q = 16 would
give α = 3, β = 1.

(F3): It is easy to observe that F ∈ C3(X,L2) with δF (0)[un] = 0, δ2F (0)[un]2 = 0
and

δ3F (0)[un]3 = −6

∫ 1

0

S−1(z)

(
1

T (z)
|S(z)un|2S(z)un

)
dz.(5.1)
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For a normalized eigenfunction (‖un‖2 = 1) we have

(δ3F (0)[un]3, un)L2 = −6

∫ 1

0

(
S−1(z)

(
1

T (z)
|S(z)un|2S(z)un

)
, un

)
L2

dz

= −6

∫ 1

0

1

T (z)
‖S(z)un‖4

4 dz < 0.

(F4): Defining G(u) = (F (u), u)/4 gives

G(u) = −1

4

∫ 1

0

1

T (z)
‖S(z)u‖4

4dz

with G′(u)v = (F (u), v).
(F5): This assumption is fulfilled with δ = 3.
(F6): With Γu(x) = u(−x) we have to show G(u) = G(Γu). This is true since

S(z) and Γ commute which is shown as follows: Let v(z) := ΓS(z)u, then
v(0) = Γu holds and with Au = uxx − x2u one can observe that

ivz = iΓ
(
iReff(z)AS(z)u

)
= −Reff(z)AΓS(z)u,

which gives the assertion for Γ, and the same arguments apply for Γ2.
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ADIABATIC APPROXIMATION OF THE SCHRÖDINGER–POISSON
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Abstract. Asymptotic quantum transport models of a two-dimensional electron gas are pre-
sented. The starting point is a singular perturbation of the three-dimensional Schrödinger–Poisson
system. The small parameter ε is the scaled width of the electron gas and appears as the lengthscale
on which a one-dimensional confining potential varies. The rigorous ε → 0 limit is performed by
projecting the three-dimensional wavefunction on the eigenfunctions corresponding to the confining
potential. This leads to a two-dimensional Schrödinger–Poisson system with a modified Poisson
equation keeping track of the third dimension. This limit model is proven to be a first-order ap-
proximation of the initial model. An intermediate model, called the “2.5D adiabatic model” is then
introduced. It shares the same structure as the limit model but is shown to be a second-order
approximation of the three-dimensional model.

Key words. adiabatic approximation, energy estimates, Strichartz estimates, error estimates,
nonlinear analysis, two-dimensional electron gas
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1. Introduction. Systems with reduced dimensionality are the basis of oper-
ation of most of nanoscale electronic devices. Among them is the two-dimensional
electron gas (2DEG) [1, 2, 9], in which the electrons are strongly confined in one di-
rection so that collisionless transport is allowed in the two remaining ones. Although
the transport is quasi bidimensional, the Coulomb interaction results in a fully three-
dimensional structure. Indeed, the particle density is a sheet density concentrated
on the two-dimensional electron gas plane, which generates through mean field in-
teraction a fully three-dimensional potential. In [17], an approximate Schrödinger–
Poisson model taking into account the quasi-bidimensional nature of electron trans-
port, while maintaining a three-dimensional description of the electrostatic potential,
was proposed and numerically implemented in the stationary framework for electron
waveguide structures. The model has been shown to be numerically in very good
agreement with the fully three-dimensional Schrödinger–Poisson system, while hav-
ing a much lower numerical complexity. The aim of this paper is to prove by a rigorous
asymptotic analysis that the model introduced in [17] is a good approximation of the
fully three-dimensional model and quantify the discrepancy between the two models.
In order to simplify the setting and to avoid additional technicalities induced by sta-
tionarity and by boundary effects, we shall consider the time-dependent problem in
the whole space. The case of stationary boundary value problems will be the subject
of a forthcoming work by the third author of this paper [16].

Denoting by z the confined direction, we shall consider the following singularly
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perturbed Schrödinger–Poisson system:

i∂tψ
ε = −1

2
∆x,z ψ

ε +
1

ε2
Vc

(z
ε

)
ψε + V εψε,(1.1)

ψε(0, x, z) = ψε
0(x, z),(1.2)

V ε =
1

4πr
∗
(
|ψε|2

)
,(1.3)

where x ∈ R
2, z ∈ R, r =

√
|x|2 + z2, the potential V ε is the self-consistent potential

due to space charge effects, and the external confinement potential V ε
c (z) = 1

ε2Vc

(
z
ε

)
is given. In this work, the asymptotic behavior of the solution of this nonlinear system
is studied when ε goes to 0. Two approximate models are exhibited: the limit model
(2D surface density model) and an intermediate ε-dependent model (2.5D adiabatic
model), which is shown to be a more accurate approximation of the initial model.

Quantum systems confined on a surface have been studied previously in [8, 10,
15, 21]. Starting from a similar scaling on the transverse Hamiltonian, these authors
consider the linear Schrödinger equation with a confinement on a general surface and
derive an effective Hamiltonian which locally depends on the curvature properties of
the surface. In our case, the effective Hamiltonian at the leading order is trivial since
the surface is the plane z = 0. The main difficulty here stems from the nonlinear
character of the problem due to the self-consistent potential.

As remarked in [21], quantum constrained systems can be linked to the Born–
Oppenheimer approximation in molecular dynamics [12, 19, 21]. In order to analyze
this link, let us rescale the variables z, t by setting z̃ = z

ε , t̃ = t
ε and let x̃ = x. To

keep densities of order O(1), we also need to rescale ψ by a factor 1√
ε
; hence the

self-consistent potential is rescaled by 1
ε . Denoting again (with an abuse of notation)

by ψε and V ε the functions of the new variables, the system takes the form

iε∂t̃ψ
ε = −ε2

2
∆x̃ψ

ε − 1

2
∂2
z̃ψ

ε + (Vc + εV ε)ψε.(1.4)

The above problem (in the linear case) has been studied in particular in [3, 19].
However, the problem (1.1)–(1.3) is not just a rescaling of the Born–Oppenheimer
asymptotics for two reasons. The first reason is, again, the nonlinear character of this
system, which might induce rapid time oscillations of V ε. The second reason is the
time scale. Indeed, if the asymptotics is done for times t̃ of order 1 for the Born–
Oppenheimer problem (1.4), then t is of order ε in the initial problem (1.1)–(1.3).
Therefore, since we are here interested in time intervals of order 1 for the variable
t, working in the variable t̃ would necessitate longer time intervals (of the order of
1/ε) which is more difficult. The two problems, however, share similar properties of
adiabatic decoupling. The systems can be diagonalized by using the eigenspaces of
the transverse Hamiltonian − 1

2∂
2
z + V (in which t and x are frozen). Within each

eigenspace the dynamics is governed by an effective potential and is quantum in our
case, wheras semiclassical behavior is expected in the Born–Oppenheimer approxima-
tion.

The paper is organized as follows. In section 2, we first make precise the properties
of the confinement operator and define the two approximate models (namely, the
two-dimensional and 2.5D models). Then we state the main results of this paper,
namely Theorems 2.5, 2.6, and 2.7. Section 3 is devoted to the proof of ε-independent
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estimates for (1.1)–(1.3). In section 4, we put both approximate models into a more
general framework allowing us to prove existence and uniqueness of their solutions.
The 2.5D adiabatic model is shown to be a second-order approximation in section 5,
while in section 6 the 2D surface density model is proven to be only a first-order
approximation. Finally, the appendices contains some basic results on the Schrödinger
equation and the Poisson equation which are used throughout the paper.

Remark on the scaling. Before going further, and in order to make clear the phys-
ical assumptions made here, let us show how the system (1.1)–(1.3) can be obtained
by a rescaling of the Schrödinger–Poisson system written in the physical dimensional
variables. Let Ψ(T,X,Z), V(T,X,Z) be the solution of

i�∂TΨ = − �
2

2m
∆X,Z Ψ + (Vc + V)Ψ,(1.5)

V =
e2

4πεM

1√
|X|2 + Z2

∗
(
|Ψ|2

)
,(1.6)

where m is the effective mass, e is the elementary charge of the electrons, and εM is
the electric permittivity of the material. We introduce two characteristic energies, Ec

and E, which are, respectively, the typical energy of the confinement and the typical
kinetic energy of the electrons. The assumption of a strong confinement is

ε2 =
E

Ec
� 1.(1.7)

The confinement operator is the partial Hamiltonian defined on R by − �
2

2m
∂2

∂Z2 + Vc.
Hence we deduce that the typical length Lc of the confinement, defined as the spatial

extension of the eigenvalues of this operator, satisfies �
2

2mL2
c

= Ec , and the confinement

potential takes the form Vc(Z) = EcVc(
Z
Lc

), where Vc denotes a dimensionless poten-
tial. Since we are interested in quantum models for the transport of the electrons, the
typical space length L and the typical time T are deduced from the kinetic energy

(this crucial assumption says that the initial data are not oscillating): �

T = �
2

2mL2 = E;

thus (1.7) gives Lc

L = ε. Finally, we assume that the self-consistent potential is of the
same order of magnitude as the kinetic energy, which means that if N0 is the typical
density (the scale of |Ψ|2), we have

e2N0L
2

εM
= E.

With these assumptions, setting

t =
T

T , (x, z) =

(
X

L
,
Z

L

)
, ψε =

Ψ√
N0

, V ε =
V
E
,

the system (1.5)–(1.6) is written (1.1)–(1.3) in the dimensionless variables.

2. Notation and main results. Throughout this paper, for any q ∈ [1,∞], we
shall denote by q′ its conjugate, and for any q ∈ [2,∞] we denote by q∗ its 2-conjugate,
respectively, defined by

q′ =
q

q − 1
; q∗ =

2q

q − 2
.
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We define the following functional spaces.
Definition 2.1. Let 1 ≤ p, q, r ≤ +∞. The spaces Lp

xL
q
z and Lr

tL
p
xL

q
z are defined

by

Lp
xL

q
z(R

3) =

{
u ∈ L1

loc(R
3), ‖u‖Lp

xL
q
z(R3) =

(∫
R2

‖u(x, ·)‖pLq(R) dx

)1/p

< +∞
}

(with an obvious generalization of this definition for p = +∞),

Lr
tL

p
xL

q
z((0, T ) × R

3) = Lr((0, T ), Lp
xL

q
z(R

3)).

When there is no ambiguity, we shall simply denote these spaces by Lp
xL

q
z and

Lr
tL

p
xL

q
z and the corresponding norms by ‖ · ‖p,q and ‖ · ‖r,p,q (when there are two

indices, the variables are (x, z); when there are three indices, the variables are (t, x, z)).
For a function f = f(z) belonging to L1(R), we denote 〈f〉 =

∫
R
f(z)dz. In

particular, if n(t, x, z) is the particle density, the surface particle density is defined by
ns(t, x) = 〈n(t, x, ·)〉 =

∫
R
n(t, x, z) dz.

The symbol ∗ denotes a convolution with respect to all the variables (x, z) ∈ R
3;

partial convolutions are denoted by ∗x and ∗z.
2.1. Properties of the confinement operator. Let us now introduce the

basic assumptions made on the confining potential.
Assumption 2.2. (i) The rescaled confining potential Vc = Vc(z) is a nonnegative

real-valued function in L2
loc(R).

(ii) The operator A = − 1
2

d2

dz2 + Vc defined on L2(R) with the domain

D(A) =
{
u ∈ H2(R) such that Vc u ∈ L2(R)

}
admits a nondegenerate eigenvalue E associated to an eigenfunction χ(z) such that
zχ ∈ L2(R).

The first part of this assumption implies that the operator A is self-adjoint and
nonnegative (see, e.g., [18]). The partial Hamiltonian involved in (1.1) is obtained by
rescaling the operator A:

Aε = −1

2

d2

dz2
+ V ε

c = −1

2

d2

dz2
+

1

ε2
Vc

(z
ε

)
and we obtain an eigenfunction/eigenvalue pair of Aε by setting

χε(z) =
1√
ε
χ
(z
ε

)
; Eε =

E

ε2
.

Note that the assumption on the eigenfunction given in Assumption 2.2 implies that

∀β ∈ [0, 1], ‖zβ χε‖L2(R) = O(εβ).(2.1)

We shall denote by Xε = span(χε) the corresponding eigenspace and by Πε the
orthogonal projector on this eigenspace. Following the physical literature [1, 2], we
shall refer to the subband of energy level Eε as the space L2(R2, Xε). With an abuse
of notation, we shall also denote by Πε the orthogonal projector I ⊗ Πε of L2(R3) on
L2(R2, Xε).

The following technical lemma will be used several times.
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Lemma 2.3. Let V ε ∈ W 1,α(R) with α ∈ [1,+∞]. Then there exists a constant
C > 0 such that

‖[Πε, V ε]‖L(L2(R)) ≤ C ε1−1/α ‖∂zV ε‖Lα(R),

where [·, ·] denotes the commutator between the two operators.
Proof. Noting that

[Πε, V ε] = Πε V ε (I − Πε) − (I − Πε)V ε Πε

and that in this difference the second operator is the adjoint of the first one, one can
see that the lemma stems from

‖Πε V ε (I − Πε)‖L(L2(R)) ≤ C ε1−1/α ‖∂zV ε‖Lα(R).

In order to prove the above estimate, let Uε(z) = V ε(z)−V ε(0). By orthogonality of
Πε and I − Πε, we have, clearly,

Πε V ε (I − Πε) = Πε Uε (I − Πε).

Therefore

‖Πε V ε (I − Πε)‖L(L2(R)) ≤ ‖Πε Uε‖L(L2(R)) ≤ ‖χε Uε‖L2(R),

where a Cauchy–Schwarz inequality was used. Additionally, we have

|Uε(z)| =

∣∣∣∣
∫ z

0

∂zV
ε(y) dy

∣∣∣∣ ≤ |z|1−1/α ‖∂zV ε‖Lα(R).

Thus we conclude the proof, thanks to

‖χε Uε‖2
L2(R) ≤ ‖∂zV ε‖2

Lα(R)

∥∥∥z1−1/αχε
∥∥∥2

L2(R)

≤ C ε2−2/α ‖∂zV ε‖2
Lα(R) ,

where we used (2.1).

2.2. Definitions of the approximate models and main results. We shall
assume that the initial wavefunction belongs to the subband of energy level Eε.

Assumption 2.4 (well-prepared data). The initial data ψε
0 of the three-dimensional

Schrödinger–Poisson problem (1.1)–(1.3) satisfies

ψε
0 = φ0 χ

ε ∈ H1(R2, Xε).

Let us now write the two approximate models for the three-dimensional Schrödinger–
Poisson system (1.1)–(1.3).

The 2D surface density model. The 2D surface density model is obtained
by coupling a two-dimensional Schrödinger equation and the Poisson equation with a
modified Green function. It is given by

i∂tφ = −1

2
∆x φ + Wφ,(2.2)

W =
1

4π|x| ∗x
(
|φ|2
)
,(2.3)
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with the initial data φ(0, x) = φ0(x) = 〈ψε
0(x, ·)χε〉. The unknowns are φ(t, x), W (t, x)

and the surface density ns(t, x) = |φ|2(t, x), where x ∈ R
2. Note that W (t, x) =

V (t, x, 0), where V is the Coulomb potential generated by the sheet density supported
in the plane z = 0 with a surface density ns:

n(t, x, z) = ns(t, x)δ(z); V =
1

4πr
∗ n.(2.4)

The 2.5D adiabatic model. The 2.5D adiabatic model is an intermediate
model between the fully three-dimensional model and the 2D surface density model.
It takes into account the small thickness of the electron gas and consists in coupling
a two-dimensional Schrödinger equation and the three-dimensional Poisson equation.
The unknowns are φε(t, x), V ε(t, x, z) and the density nε(t, x, z), where x ∈ R

2 and
z ∈ R. This system is written

i∂tφ
ε = −1

2
∆x φ

ε +
〈
V ε|χε|2

〉
φε,(2.5)

V ε =
1

4πr
∗
(
|φε|2 |χε|2

)
,(2.6)

with the initial data φε(0, x) = φ0(x) = 〈ψε
0(x, ·)χε〉 and where the function χε(z) is

defined as in section 2.1. The population of electrons is described by a pure quantum
state which belongs at any time to the subband of energy level E. One can see
that in the 2.5D adiabatic model the dynamics on the subband is induced by the
effective potential

〈
V ε|χε|2

〉
, which is the potential “modulated” by the wavefunction

χε. Moreover, applying formally the standard perturbation theory (see [14]), the

transverse Hamiltonian − 1
2

d2

dz2 + V ε
c + V ε admits an eigenvalue ε(t, x) given by

ε =
E

ε2
+
〈
V ε|χ|2

〉
+ O(ε2).

Thus, the above 2.5D adiabatic model can be seen—at least formally—as an ε2-
perturbation of the model given by the adiabatic quantum theory [19] (the constant
E/ε2 can be forgotten in (2.5) since it only induces a phase factor).

The main results of the paper, summarized in the three following theorems, state
that the 2.5D adiabatic model is (almost) a second-order approximation of the three-
dimensional model, while the 2D surface density model is exactly a first-order approx-
imation.

Theorem 2.5. Suppose that Assumptions 2.2 and 2.4 are satisfied. Then the
three-dimensional Schrödinger–Poisson system (1.1)–(1.3) and the 2.5D adiabatic
model (2.5), (2.6) admit unique global weak solutions denoted by (ψ3D, V 3D) and
(φ2.5D, V 2.5D), respectively. Moreover, for any T we have

‖ψ3D − φ2.5Dχε e−itE/ε2‖q∗,q,2 = O(ε) ∀q ∈ [2,∞),(2.7)

‖V 3D − V 2.5D‖L1((0,T ),L∞(R3)) = O(ε2−α) ∀α > 0.(2.8)

Furthermore, the surface densities defined by n3D
s = 〈|ψ3D|2〉 and n2.5D

s = |φ2.5D|2
satisfy

‖n3D
s − n2.5D

s ‖L1((0,T ),Lq(R2)) = O(ε2−α) ∀α > 0, ∀q ∈ [1,∞).(2.9)
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Theorem 2.6. Suppose that Assumptions 2.2 and 2.4 are satisfied. Then as
ε → 0 and for any T > 0 the solution (φ2.5D, n2.5D, V 2.5D) of the 2.5D adiabatic
model converges to the unique solution (φ2D, n2D

s , V 2D) of the 2D surface density
model (2.2), (2.4) in the following sense:

‖φ2.5D − φ2D‖Lq∗ ((0,T ),W 1,q(R2)) = O(ε) ∀q ∈ [2,∞),(2.10)

‖V 2.5D − V 2D‖Lq((0,T ),L∞(R3)) = O(ε) ∀q ∈ [1,∞),(2.11)

‖n2.5D
s − n2D

s ‖Lq((0,T ),L∞(R2)) = O(ε) ∀q ∈ [1,∞).(2.12)

Theorem 2.7. Suppose that Assumptions 2.2 and 2.4 are satisfied. If, moreover,
we have

0 < ‖xφ0‖L2(R2) < +∞ and φ0 ∈ H2(R2),(2.13)

then for any T > 0 there exists a constant C > 0 such that the solutions of the 2.5D
adiabatic model and the 2D surface density model satisfy

‖(V 2.5D − V 2D)(t, ·, 0)‖L∞(R2) + ‖(n2.5D
s − n2D

s )(t, ·)‖Lq(R2) ≥ C ε(2.14)

for any t ∈ [0, T ], q ∈ [1,∞), where C depends on T and q but not on ε.
An immediate consequence of these theorems is the following.
Corollary 2.8. Under Assumptions 2.2 and 2.4, the three-dimensional

Schrödinger–Poisson system converges as ε → 0 to the 2D surface density model.
Moreover, if in addition (2.13) is satisfied, we have for any T > 0 and q ∈ [1,∞),

C1 ε ≤ ‖V 3D − V 2D‖L1((0,T ),L∞(R3)) + ‖n3D
s − n2D

s ‖L1((0,T ),Lq(R2)) ≤ C2 ε,

where the notations of Theorems 2.5 and 2.6 were used.

3. Estimates for the three-dimensional model. In this section we prove
some ε-independent estimates for the three-dimensional Schrödinger-Poisson problem
(1.1)–(1.3). We first claim that a straightforward adaptation of the proofs of [4, 13]
allows us to show that for any initial data

ψε
0 ∈ H := {φ ∈ H1(R3) :

√
V ε
c ψ ∈ L2(R3)},(3.1)

(which may depend on ε) and for an arbitrary T > 0, this system admits a unique
weak solution ψε, V ε, such that

ψε ∈ C([0, T ],H),

V ε ∈ L∞((0, T ) × R
3); ∇x,zV

ε ∈ L∞((0, T ), Lq(R3)) ∀q ∈ (3/2,∞).

Let us define the kinetic energy along the x direction and along the z direction,
respectively, by

Eε
kin,x(t) =

∫∫
R3

1

2
|∇xψ

ε(t, x, z)|2 dx dz; Eε
kin,z(t) =

∫∫
R3

1

2
|∂zψε(t, x, z)|2 dx dz.
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The self-consistent potential energy and the external potential energy are then, re-
spectively, defined by

Eε
pot(t) =

∫∫
R3

1

2
|∇x,zV

ε|2 dx dz; Eε
ext(t) =

∫∫
R3

V ε
c (z)|ψε(t, x, z)|2 dx dz

and the total energy of the system is

Eε
tot(t) = Eε

kin,x(t) + Eε
kin,z(t) + Eε

pot(t) + Eε
ext(t).

The standard energy estimate for the Schrödinger–Poisson system [4] gives the con-
servation of the total energy:

∀t ≥ 0 Eε
tot(t) = Eε

tot(0).(3.2)

Unfortunately, due to the strong confinement potential V ε
c , the external energy Eε

ext

is of order O(1/ε2). Therefore, (3.2) does not provide directly a bound for the kinetic
energy (except for the special case where the initial data is concentrated on the ground
state). Nevertheless the Strichartz estimates of Appendix A enable us to obtain some
estimates independent of ε, without using the energy conservation. The first step is
the following lemma.

Lemma 3.1. Let ψε
0 ∈ L2(R3) and let ψε, V ε be a solution of (1.1)–(1.3). If

Assumption 2.2(i) is satisfied, then for any T > 0 we have

∀q ∈ [2,∞) ‖ψε‖q∗,q,2 ≤ C(ψ0),(3.3)

∀q ∈ [1, 3) ‖V ε‖Lq((0,T ),L∞(R3)) ≤ C(ψ0),(3.4)

where C(ψ0) denotes a generic constant, which depends only on ‖ψε
0‖L2(R3) (and q),

and q∗ = 2q/(q − 2).
Proof. This proof relies on the Strichartz estimates and on the properties of the

Poisson equation studied in Appendices A and B. Let us first recall that the L2

estimate for the Schrödinger equation gives

∀t ∈ [0, T ] ‖ψ(t)‖2,2 ≤ ‖ψε
0‖L2(R3).

Additionally, from (B.3) and a Hölder inequality, we deduce that

∀q ∈ (2,∞)

∥∥∥∥1

r
∗ (fg)

∥∥∥∥
q,∞

≤ C ‖f‖q,2 ‖g‖2,2;

thus for all t ∈ (0, T ) we have

∀q ∈ (2,∞) ‖V ε(t)‖q,∞ ≤ C(ψ0) ‖ψε(t)‖q,2 .

Hence

‖V ε(t)ψε(t)‖2,2 ≤ ‖V ε(t)‖q,∞ ‖ψε(t)‖q∗,2 ≤ C(ψ0) ‖ψε(t)‖q,2 ‖ψε(t)‖q∗,2 .

Let q be fixed such that q ∈ [4,∞). It is readily seen that

‖ψε‖q∗,2 ≤ ‖ψε‖2/(q−2)
q,2 ‖ψε‖(q−4)/(q−2)

2,2 ,
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which leads to

‖V ε(t)ψε(t)‖2,2 ≤ C(ψ0) ‖ψε(t)‖q
∗/2

q,2 .(3.5)

For any t ≥ 0, let

Y (t) := ‖ψε‖Lq∗ ((0,t),Lq
xL2

z).

By using (3.5) and a Hölder inequality, we get

‖V ε ψε‖L1((0,t),L2(R3)) ≤ C(ψ0)
√
t (Y (t))q

∗/2.

Consequently the Strichartz inequality stated in Lemma A.2 gives

Y (t) ≤ C(ψ0)
(
1 +

√
t (Y (t))q

∗/2
)
.

Since Y (0) = 0, this is enough to conclude by continuity that there exists T̃ and

C0 depending only on ‖ψε
0‖L2(R3) and q such that Y (T̃ ) ≤ C0. We deduce (3.3) for

q ≥ 4 by iterating this procedure on the interval (T̃ , 2T̃ ), then on (2T̃ , 3T̃ ), etc. By
interpolation, we also deduce that (3.3) holds true for q ∈ (2, 4). To obtain (3.4), it
is enough to apply (B.5) with p close to 2 and to use (3.3) with q close to 4.

From this lemma, one can deduce the main result of this section as follows.
Proposition 3.2. Assume that the initial data ψε

0 ∈ H (defined by (3.1)) satisfies

‖ψε
0‖L2(R3) + ‖∇xψ

ε
0‖L2(R3) ≤ C(3.6)

and let ψε, V ε be the solution of (1.1)–(1.3). Then, if Assumption 2.2(i) is satisfied,
we have the following estimates:

∀q ∈ [2,∞) ‖ψε‖q∗,q,2 + ‖∇xψ
ε‖q∗,q,2 ≤ C,(3.7)

‖V ε‖L∞((0,T )×R3) ≤ C,(3.8)

∀q ∈ (2,∞) ‖∇x,zV
ε‖∞,q,∞ ≤ C.(3.9)

Here C denotes a generic constant independent of ε.
Proof. We first remark is that, thanks to (3.6), the estimates (3.3) and (3.4) given

in the previous lemma are independent of ε. Differentiating (1.1) with respect to x
leads to

i∂t∇xψ
ε = −1

2
∆x ∇xψ

ε + Aε∇xψ
ε + V ε∇xψ

ε + ∇xV
εψε.(3.10)

From (B.4), we deduce that for all t ∈ (0, T ) we have

∀q ∈ (2,∞) ‖∇xV
ε(t)‖q,∞ ≤ C ‖∇x(|ψε(t)|2)‖2q/(2+q),1

≤ C ‖∇xψ
ε(t)‖L2(R3) ‖ψε(t)‖q,2 .

Hence we get, for any q ∈ (2,∞),

‖∇xV
ε‖q′,q,∞ ≤ C ‖∇xψ

ε‖2,2,2 ‖ψε‖q∗,q,2 ,(3.11)
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since 1
q∗ + 1

2 = 1
q′ . Therefore we have

‖∇xV
εψε‖1,2,2 ≤ ‖∇xV

ε‖q′,q,∞ ‖ψε‖q,q∗,2 ≤ C ‖∇xψ
ε‖2,2,2 ‖ψε‖q∗,q,2 ‖ψε‖q,q∗,2 .

Since for any q ∈ (2,∞) we have (q∗)∗ = q, by using (3.3) we obtain

‖∇xV
εψε‖1,2,2 ≤ C‖∇xψ

ε‖2,2,2 .

This inequality, combined with the L2 estimate for (3.10), gives

‖∇xψ
ε‖∞,2,2 ≤ ‖∇xψ

ε
0‖L2(R3) + ‖∇xV

εψε‖1,2,2

≤ ‖∇xψ
ε
0‖L2(R3) + C ‖∇xψ

ε‖2,2,2 ,

which leads, thanks to a Gronwall argument, to

‖∇xψ
ε‖∞,2,2 + ‖∇xV

εψε‖1,2,2 ≤ C .(3.12)

In a second step, we apply the Strichartz estimate (A.5) to (3.10) and obtain

∀q ∈ [2,∞) ‖∇xψ
ε‖q∗,q,2 ≤ C‖∇xψ

ε
0‖L2(R3)+C‖V ε∇xψ

ε‖1,2,2+C‖∇xV
εψε‖1,2,2 .

Since (3.4) implies

‖V ε∇xψ
ε‖1,2,2 ≤ ‖V ε‖1,∞,∞ ‖∇xψ

ε‖∞,2,2 ≤ C‖∇xψ
ε‖∞,2,2 ,

we deduce the estimate (3.7) from (3.6) and (3.12).
For the last step of this proof, we apply a Sobolev estimate pointwise in time to

the function

u(t, x) = ‖ψε(t, x, ·)‖L2(R) .

To this aim, by using the Cauchy–Schwarz inequality, we first get

|∇xu(t, x)| ≤
(∫

|∇xψ
ε(t, x, z)|2 dz

)1/2

,

which yields

‖u(t, ·)‖H1(R2) ≤ C‖ψε‖∞,2,2 + C‖∇xψ
ε‖∞,2,2 ≤ C

(apply (3.7) with q = 2 for the last inequality). By Sobolev embeddings, we have

∀p ∈ [2,∞) ‖ψε‖∞,p,2 = ‖u‖L∞
t Lp

x
≤ C,(3.13)

which can be rewritten

∀q ∈ [1,∞)
∥∥|ψε|2

∥∥
∞,q,1

≤ C .

From (B.5) we deduce the L∞((0, T ) × R
3) estimate (3.8). Finally, by combining

(3.13) and (3.7), we deduce that

∀q ∈ (1, 2)
∥∥∇x

(
|ψε|2

)∥∥
∞,q,1

≤ ‖ψε‖∞,2q/(2−q),2 ‖∇xψ
ε‖∞,2,2 ≤ C,

and (3.9) is obtained by applying (B.4).
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We end this section with a useful lemma concerning the linear Schrödinger equa-
tion with a strong confining potential. It states that, up to—at least—the first order
in ε, the subspace Xε is stable under the action of the Schrödinger group.

Lemma 3.3. Let ψε
0 ∈ L2(R2, Xε). Assume that V ε ∈ L1((0, T ), L∞(R3)) and

that ∂zV
ε ∈ Lr′,r,∞((0, T )× (R3)) for some r ∈ (2,∞]. Then any solution ψε of (1.1)

satisfies, for all s ∈ [2,∞),

‖(I − Πε)ψε‖s∗,s,2 ≤ C ε ‖∂zV ε‖r′,r,∞ ‖ψε
0‖L2(R3) ,

where C depends only on ‖V ε‖1,∞,∞.

Proof. Thanks to the conservation of the L2 norm for the Schrödinger equation,
a solution ψε of (1.1) satisfies

‖ψε‖∞,2,2 ≤ ‖ψε
0‖L2(R3).

By using (A.5), we get for any q ∈ [2,∞)

‖ψε‖q∗,q,2 ≤ C‖ψε
0‖L2(R3) + C‖V ε ψε‖1,2,2 ≤ C‖ψε

0‖L2(R3)(3.14)

(in this lemma, C is a generic constant depending only on ‖V ε‖1,∞,∞).

Denote ωε = (I − Πε)ψε. The assumption on ψε
0 implies ωε(0, x, z) = 0 for

(x, z) ∈ R
3. Additionally, the operator I − Πε commutes with ∂t, with ∆x, and with

Aε (since Πε is a spectral projector of Aε). Hence (1.1) gives, after direct calculations,

⎧⎨
⎩ i∂tω

ε = −1

2
∆xω

ε + Aεωε + V εωε − [Πε, V ε]ψε,

ωε(0, x, z) = 0.
(3.15)

Because of source terms, the L2 conservation becomes

‖ωε‖∞,2,2 ≤ C ‖[Πε, V ε]ψε‖1,2,2;

thus from (A.5) with σ ∈ [2,∞) we deduce

‖ωε‖σ∗,σ,2 ≤ C ‖[Πε, V ε]ψε‖1,2,2 .(3.16)

Additionally, Lemma 2.3 yields

‖[Πε, V ε]ψε(t, x, ·)‖L2(R) ≤ C ε ‖∂zV ε(t, x, ·)‖L∞(R) ‖ψε(t, x, ·)‖L2(R).

Hence

‖[Πε, V ε]ψε‖1,2,2 ≤ C ε ‖∂zV ε‖r′,r,∞ ‖ψε‖r,r∗,2.

An application of (3.14) with q = r∗ gives

‖[Πε, V ε]ψε‖1,2,2 ≤ C ε ‖∂zV ε‖r′,r,∞ ‖ψε
0‖L2(R3) .

Therefore we deduce the result from this estimate and (3.16).
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4. Existence results for the approximate models. In this section we show
that the two approximate models (2.5), (2.6) and (2.2), (2.3) presented in section 2
are well-posed. Let us first remark that the 2.5D adiabatic model can be rewritten
as a two-dimensional Schrödinger–Poisson system with a modified Green function.
Indeed, denoting W ε(x) =

〈
V ε|χε|2

〉
, (2.5), (2.6) is equivalent to

i∂tφ
ε = −1

2
∆x φ

ε + W εφε,(4.1)

W ε(x) = G2.5D ∗x
(
|φε|2

)
,(4.2)

where

G2.5D(x) =

∫
R

∫
R

1

4π (|x|2 + (z − z′)2)
1/2

|χε(z′)|2 |χε(z)|2 dz′ dz.(4.3)

With this formulation, both approximate systems have the same structure; they
differ by the kernel of the “Poisson” equation, respectively, G2.5D(x) for (4.1), (4.2)
and G2D(x) = 1

4π|x| for (2.2), (2.3). We shall see below that these kernels share the

same properties and that their difference is small (see the proof of Theorem 2.6 in
section 4.2).

4.1. A Schrödinger–Poisson system with a general kernel. Let Gε(x) be
a general convolution kernel such that Gε ∈ L1

loc(R
2). Consider the system

i∂tφ
ε = −1

2
∆x φ

ε + W εφε,(4.4)

W ε = Gε ∗ |φε|2,(4.5)

with the initial data φε(0, ·) = φ0. In this problem, the dependency of the functions in
ε comes from the dependency of Gε in this parameter. The energy of this system has
two terms: the kinetic energy along x and the potential energy, respectively, defined
by

Eε
kin(t) =

1

2

∫
R2

|∇xφ
ε(t, x)|2 dx,

Eε
pot(t) =

1

2

∫
R2

W ε nε
s dx =

1

2

∫∫
R4

Gε(x− x′)nε
s(x)nε

s(x
′) dxdx′.

By analogy with the function 1
|x| (see Lemma B.1), we assume that the kernel Gε

satisfies the following property.
Assumption 4.1. The kernel Gε is a nonnegative, even function which belongs

to L1
loc(R

2). Moreover, we assume the following estimates:
(i) For f ∈ Lq(R2) with 1 < q < 2, we have

‖Gε ∗ f‖
Lq# (R2)

≤ C ‖f‖Lq(R2),(4.6)

where q# = 2q
2−q .

(ii) For f ∈ Lq(R2) ∩ L1(R2) with 2 < q ≤ +∞, the following estimate holds:

‖Gε ∗ f‖L∞(R2) ≤ C ‖f‖θLq(R2)‖f‖1−θ
L1(R2),(4.7)
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where θ = q
2q−2 . The constants C are assumed independent of ε and f .

Remark. Any kernel of the type Gε(x) = gε(|x|), with gε(|x|) satisfying gε(t) <
C/t, verifies Assumption 4.1.

The following proposition shows that system (4.4), (4.5) is well-posed and gives
some ε-independent estimates.

Proposition 4.2. Under Assumption 4.1 and for φ0 ∈ H1(R2), system (4.4),
(4.5) admits a unique global weak solution. Moreover, the total energy of the system
is conserved:

Eε
kin(t) + Eε

pot(t) = Eε
kin(0) + Eε

pot(0),(4.8)

and for any T > 0 the following estimates hold independently of ε:

‖φε‖Lq∗ ((0,T ),W 1,q(R2)) ≤ C ∀q ∈ [2,∞),(4.9)

‖W ε‖L∞((0,T ),W 1,q(R2)) ≤ C ∀q ∈ (2,∞).(4.10)

Proof. The local-in-time existence of a unique weak solution is obtained via a
standard fixed point procedure and is only sketched here. For more details we refer
to [4, 13]. Denoting W ε(ψ) = Gε ∗ |ψ|2, it is enough to show that the application
F : ψ �→ W ε(ψ)ψ is locally Lipschitz in H1(R2) uniformly in time. To this aim,
we shall use the following inequalities obtained by simple arguments such as Sobolev
embeddings and Cauchy–Schwarz inequalities:

(4.11)

‖fg‖H1(R2) ≤ C‖f‖W 1,4(R2)‖g‖H1(R2); ‖fg‖W 1,4/3(R2) ≤ C‖f‖H1(R2)‖g‖H1(R2).

Let Φ and Ψ be two functions in H1(R2). We have

‖F(Ψ) −F(Φ)‖H1(R2) ≤ ‖W ε(Ψ) (Ψ − Φ) ‖H1(R2) + ‖ (W ε(Ψ) −W ε(Φ)) Φ‖H1(R2).

Using the first inequality of (4.11), the right-hand side is controlled by

‖W ε(Ψ)‖W 1,4(R2)‖Ψ − Φ‖H1(R2) + ‖W ε(Ψ) −W ε(Φ)‖W 1,4(R2)‖Φ‖H1(R2).

Additionally,

‖W ε(Ψ) −W ε(Φ)‖W 1,4(R2) ≤
∥∥Gε ∗

(
Ψ|2 − |Φ|2

)∥∥
W 1,4(R2)

≤ C
∥∥|Ψ|2 − |Φ|2|

∥∥
W 1,4/3(R2)

≤ C‖Ψ − Φ‖H1(R2)‖Ψ + Φ‖H1(R2),

where (4.6) is used as well as the second inequality of (4.11). By noticing that W ε(0) =
0, we conclude that

‖F(Ψ) −F(Φ)‖H1(R2) ≤ C‖Ψ‖2
H1(R2)‖Ψ − Φ‖H1(R2)

+C‖Ψ − Φ‖H1(R2)‖Ψ + Φ‖H1(R2)‖Φ‖H1(R2),

which proves that F is locally Lipschitz on H1(R2).
The energy estimate (4.8) shows that the solution is global in time. It can be

obtained in a standard manner by multiplying (4.4) by ∂tφ
ε
, integrating on R

2, and
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taking the real part. The key point is that the nonlinear term can be written as
follows:

Re

∫
R2

W εφε ∂tφ
ε
dx =

∫
R2

Gε ∗ |φε|2(x)∂t|φε(x)|2 dx

=
1

4

d

dt

∫∫
R4

Gε(x− x′) |φε(x′)|2 |φε(x)|2 dx =
1

2

d

dt
Eε
pot(t),

where we have symmetrized the formula by using the properties of Gε. The proof of
(4.9) and (4.10) can be done without any difficulty by an adaptation of Lemma 3.1 and
Proposition 3.2. The starting point is the L∞((0, T ), H1(R2)) bound of φε given by
the energy estimate and the conservation of charge density. Then we use successively
Assumption 4.1 and standard Strichartz estimates in dimension 2 (see, for instance,
[7]).

The following proposition shows the Lipschitz dependency of the solution of (4.4),
(4.5) with respect to the kernel.

Proposition 4.3. Let Gε and G̃ε satisfy Assumption 4.1 such that Gε − G̃ε ∈
L1(R2). Let φ0 ∈ H1(R2) and denote by (φε, W ε) and (φ̃ε, W̃ ε), respectively, the
solutions of (4.4), (4.5) corresponding to these kernels. Then we have

‖φε − φ̃ε‖Lq∗ ((0,T ),W 1,q(R2)) ≤ C‖Gε − G̃ε‖L1(R2) ∀q ∈ [2,∞),(4.12)

‖W ε − W̃ ε‖Lq((0,T ),L∞(R2)) ≤ C‖Gε − G̃ε‖L1(R2) ∀q ∈ [1,∞),(4.13)

where C is independent of ε.
Proof. Let us denote η = ‖Gε − G̃ε‖L1(R2). For any function f ∈ Lp(R2), p ∈

[1,+∞], we have ∥∥∥(Gε − G̃ε) ∗ f
∥∥∥
Lp(R2)

≤ η ‖f‖Lp(R2).(4.14)

Setting

Rε(x) = (Gε − G̃ε) ∗ |φ̃ε|2,

we have

W ε − W̃ ε = Gε ∗
(
|φε|2 − |φ̃ε|2

)
+ Rε.(4.15)

By applying (4.9) and the Sobolev embeddings W 1,2(R2) ↪→ Lq(R2) for all q ∈
[2,+∞), and W 1,p(R2) ↪→ L∞(R2) for all p > 2, we have

‖φ̃ε‖L∞((0,T ),Lq(R2)) + ‖φ̃ε‖Lq((0,T ),L∞(R2)) ≤ C ∀q ∈ [2,∞).(4.16)

Therefore (4.14) yields, for any q ∈ [2,∞),

‖Rε‖L∞((0,T ),Lq(R2)) + ‖Rε‖Lq((0,T ),L∞(R2)) ≤ Cη.(4.17)

In order to estimate the difference W ε − W̃ ε, we set uε := φε − φ̃ε. This function
solves ⎧⎨

⎩ i∂tu
ε = −1

2
∆xu

ε + W εuε + (W ε − W̃ ε)φ̃ε,

uε(0, ·) ≡ 0.
(4.18)
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Thanks to (4.16) we deduce that for any p ∈ (2,∞] and any t ∈ [0, T ]

‖uε‖L∞((0,t),L2(R2)) ≤ C‖W ε − W̃ ε‖L1((0,t),Lp(R2)),(4.19)

and, by using (4.10) and Strichartz estimates in dimension 2 [7], we deduce that for
any s ∈ [2,∞) and q ∈ (2,∞] we have

‖uε‖Ls∗ ((0,t),Ls(R2)) ≤ C‖W ε − W̃ ε‖L1((0,t),Lq(R2)).(4.20)

Let q ∈ (2,+∞). By using (4.16) (and the same estimate for φε) and (4.19), we obtain∥∥∥|φε|2 − |φ̃ε|2
∥∥∥
L∞((0,t),Ls(R2))

≤ C‖W ε − W̃ ε‖L1((0,t),Lq(R2)),(4.21)

where s = 2q
2+q . By (4.6), we deduce

∥∥∥Gε ∗
(
|φε|2 − |φ̃ε|2

)∥∥∥
Lq(R2)

(t) ≤ C

∫ t

0

‖W ε − W̃ ε‖Lq(R2)(τ) dτ.

Consequently (4.15) yields

‖W ε − W̃ ε‖Lq(R2)(t) ≤ C

∫ t

0

‖W ε − W̃ ε‖Lq(R2)(τ) dτ + ‖Rε‖Lq(R2)(t).

Thanks to (4.17), we deduce from a Gronwall argument applied to the above inequality
that

‖W ε − W̃ ε‖L∞((0,T ),Lq(R2)) ≤ Cη ∀q ∈ (2,∞).(4.22)

From this estimate together with (4.20), (4.16), and (4.19), we deduce that for any
r ∈ (2,∞), s ∈ (2, r∗), we have∥∥∥|φε|2 − |φ̃ε|2

∥∥∥
Lr((0,T ),Ls(R2))

+
∥∥∥|φε|2 − |φ̃ε|2

∥∥∥
L∞((0,T ),L1(R2))

< Cη,

which leads to (4.13) in view of (4.15), (4.7), and (4.17).

Let us now improve the estimate on φε − φ̃ε and show that (4.12) holds. To this
aim, we first differentiate (4.18) with respect to x and obtain

(4.23)⎧⎨
⎩ i∂tv

ε = −1

2
∆xv

ε + W εvε + (∇xW
ε)uε,+(∇xW

ε −∇xW̃
ε)φ̃ε + (W ε − W̃ ε)∇xφ̃

ε,

vε(0, ·) ≡ 0,

where we have denoted vε = ∇xu
ε. By combining (4.9), (4.10), (4.20), and (4.22), we

get

‖(∇xW
ε)uε + (W ε − W̃ ε)∇xφ̃

ε‖L1((0,T ),L2(R2)) ≤ Cη;

thus, for any q ∈ (2,∞] and t ∈ [0, T ], we have

‖vε‖L2(R2)(t) ≤ Cη + C‖∇xW
ε −∇xW̃

ε‖L1((0,t),Lq(R2)).(4.24)
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Additionally, by (4.9) and (4.16) and Young’s inequality (4.14), we get∥∥∥(Gε − G̃ε) ∗ ∇x|φ̃ε|2
∥∥∥
Lr((0,t),Lq(R2))

≤ Cη ∀q ∈ (2,∞), ∀r ∈ [1, q∗).

Moreover, using (4.16), (4.9), and (4.20), we have for any s ∈ (1, 2)∥∥∥∇x

(
|φε|2 − |φ̃ε|2

)∥∥∥
L1((0,t),Ls(R2))

≤ Cη + C‖vε‖L1((0,T ),L2(R2)).

Thus, writing

∇xW
ε −∇xW̃

ε = Gε ∗ ∇x

(
|φε|2 − |φ̃ε|2

)
+ (Gε − G̃ε) ∗ ∇x|φ̃ε|2(4.25)

and using (4.6), we deduce that for any q ∈ (2,∞)∥∥∥∇xW
ε −∇xW̃

ε
∥∥∥
L1((0,t),Lq(R2))

≤ Cη + C‖vε‖L1((0,t),L2(R2)).

Inserting this inequality in (4.24) leads, through a Gronwall argument, to

‖vε‖L∞((0,T ),L2(R2)) ≤ Cη.

Going back to (4.23), it is readily seen from the above two estimates and from
Proposition 4.2 that ∥∥∥∥i∂tvε +

1

2
∆vε

∥∥∥∥
L1((0,T ),L2(R2))

≤ Cη,

which leads to (4.12) through a Strichartz estimate.
In section 6, in order to get estimate (2.14), we will need to deal with strong

solutions.
Lemma 4.4. Under Assumption 4.1, let φ0 ∈ H2(R2). Then for any T > 0

the solution φε of (4.4), (4.5) belongs to L∞((0, T ), H2(R2)) and its norm is bounded
independently of ε.

Proof. Denote uε = ∆xφ
ε. By differentiating twice (4.4) with respect to x, we

get

i∂tu
ε = −1

2
∆xu

ε + W εuε + 2∇xW
ε · ∇xφ

ε + ∆xW
εφε.

The source term in this Schrödinger equation on uε is written as

2∇xW
ε · ∇xφ

ε + φεGε ∗
(
2|∇xφ

ε|2
)

+ 2φε ReGε ∗
(
φεuε

)
.

The first term ∇xW
ε · ∇xφ

ε can be estimated thanks to (4.9) and (4.10):

‖∇xW
ε · ∇xφ

ε‖L1((0,t),L2(R2)) ≤ ‖∇xW
ε‖L4/3((0,t),L4(R2)) ‖∇xφ

ε‖L4((0,t),L4(R2)) ≤ C.

The second term can be estimated thanks to (4.6):∥∥φεGε ∗
(
2|∇xφ

ε|2
)∥∥

L1((0,t),L2(R2))

≤ ‖φε‖L3/2((0,t),L3(R2))

∥∥Gε ∗
(
2|∇xφ

ε|2
)∥∥

L3((0,t),L6(R2))

≤ C‖φε‖L3/2((0,t),L3(R2)) ‖∇xφ
ε‖2

L6((0,t),L3(R2)) ≤ C.
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To treat the third term, we also apply (4.6), (4.9), and (4.10):

‖φεGε ∗ (2φεuε)‖L1((0,t),L2(R2))

≤ C‖φε‖L∞((0,t),L3(R2)) ‖Gε ∗ (2φεuε)‖L1((0,t),L6(R2))

≤ C‖φε‖L∞((0,t),L3(R2)) ‖φε‖L∞((0,t),L6(R2) ‖uε‖L1((0,t),L2(R2))

≤ C ‖uε‖L1((0,t),L2(R2)) .

Hence, for any t ≤ T ,

‖uε(t)‖L2(R2) ≤ C + C

∫ t

0

‖uε(τ)‖L2(R2) dτ,

which leads to the result thanks to a Gronwall argument.

4.2. Application: Proof of Theorem 2.6. Thanks to Lemma B.1 given in
Appendix B, the kernel

G2D(x) =
1

4π|x|

of the 2D surface density model (2.2)–(2.3) clearly satisfies Assumption 4.1. Moreover,
by using Lemma B.2 and the fact that

∫
R
|χε|2dz = 1, it is readily seen that the kernel

of the 2.5D adiabatic model given by

G2.5D(x) =

∫∫
R2

1

4π (|x|2 + (z − z′)2)
1/2

|χε(z′)|2 |χε(z)|2 dz′ dz

also satisfies Assumption 4.1. Therefore an application of Proposition 4.2 gives the
existence of unique weak solutions and estimates independent of ε for the two approx-
imate models. The first parts of Theorems 2.5 and 2.6 are thus proved.

To conclude the proof of Theorem 2.6, it suffices to apply Proposition 4.3. Indeed,
setting

Hε(x) =
1

4π|x| −G2.5D(x)

=
1

4π|x| −
∫∫

R2

1

4π (|x|2 + (z − z′)2)
1/2

|χε(z′)|2 |χε(z)|2 dz dz′

=
1

4π

∫∫
R2

∫ ε|z−z′|

0

ξ

(|x|2 + ξ2)3/2
|χ(z)|2 |χ(z′)|2 dξ dz dz′,

and noticing that ∫
R2

ξ

(|x|2 + ξ2)3/2
dx = 2π for ξ > 0,

we deduce from (2.1) that

‖Hε‖L1(R2) =
ε

2

∫∫
R2

|z − z′| |χ(z)|2 |χ(z′)|2 dz dz′ = Cε.
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This leads to (2.10), from which we deduce (2.12). In order to prove (2.11), we write

V 2.5D − V 2D =
1

4πr
∗x
(
n2.5D
s − n2D

s

)
+ H̃ε ∗x n2.5D

s ,

where

H̃ε(x, z) = − 1

4πr
+

1

4πr
∗z |χε|2.(4.26)

It is then enough to remark that∥∥∥∥ 1

4πr
∗x
(
n2.5D
s − n2D

s

)∥∥∥∥
Lq((0,T ),L∞(R3))

≤
∥∥∥∥ 1

4π|x| ∗x
(
n2.5D
s − n2D

s

)∥∥∥∥
Lq((0,T ),L∞(R2))

≤ Cε

and that

H̃ε(x, z) =

∫
R

∫ z

(z−z′)

ξ

(|x|2 + ξ2)3/2
|χε(z′)|2 dξ dz′,

which implies

|H̃ε ∗x n2.5D
s |(t, x, z)

≤ ‖n2.5D
s (t, ·)‖L∞(R2)

∫
R

∫ max(z,z−z′)

min(z,z−z′)

∫
R2

|ξ|
(|x|2 + ξ2)3/2

|χε(z′)|2 dxdξdz′,

= 2π‖n2.5D
s (t, ·)‖L∞(R2)

∫
R

|z′| |χε(z′)|2 dz′ = Cε‖n2.5D
s (t, ·)‖L∞(R2),

and the right-hand side is an O(ε) is view of (2.12).

5. The 2.5D adiabatic model is a second-order approximation. In this
section we end the proof of Theorem 2.5 initiated in section 4.2. Consider the solution
ψ3D, V 3D of (1.1)–(1.3) with the initial data ψε

0 = φ0 χ
ε and the solution φ2.5D, V 2.5D

of (2.5), (2.6) corresponding to the initial data φ0. Assumption 2.4 leads in particular
to the uniform-in-ε estimate

‖ψε
0‖L2(R3) + ‖∇xψ

ε
0‖L2(R3) ≤ C.

Proposition 3.2 then implies the following uniform bounds:

‖V 3D‖L∞((0,T )×R3) + ‖∇x,zV
3D‖∞,q,∞ ≤ C, 2 < q < ∞,(5.1)

‖ψ3D‖q∗,q,2 + ‖∇xψ
3D‖q∗,q,2 ≤ C, 2 ≤ q < ∞.(5.2)

Furthermore, Lemma 3.3 implies∥∥(I − Πε)ψ3D
∥∥
q∗,q,2

= O(ε), 2 ≤ q < ∞.(5.3)

We start by proving (2.8). To this aim, we write

V 3D − V 2.5D =
1

4πr
∗
(
n3D − n2.5D

)
=

1

4πr
∗
(
|Πεψ3D|2 − |χεφ2.5D|2

)
+ Rε

a + Rε
b ,

(5.4)
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where the remainder terms are

Rε
a =

1

4πr
∗ | (I − Πε)ψ3D|2; Rε

b =
2

4πr
∗ Re

(
Πεψ3D (I − Πε)ψ3D

)
.

Estimating the remainders Rε
a and Rε

b. On the one hand, estimates (5.3),
(B.3), and (B.5) lead to

‖Rε
a‖1,q,∞ ≤ Cε2 ∀q ∈ (2,∞].(5.5)

On the other hand, by orthogonality we have 〈Πεψ3D (I − Πε)ψ3D〉 = 0. Conse-
quently, (B.9) implies for any q ∈ (2,∞) and pointwise in time

‖Rε
b‖L∞(R3) ≤ C ‖zχε‖1−2/q

L2(R)

∥∥ψ3D
∥∥

2q,2

∥∥(I − Πε)ψ3D
∥∥

2q,2
.

Additionally, we deduce from (5.2) and the Sobolev embedding H1(R2) ↪→ Lq(R2)
that ∥∥ψ3D

∥∥
∞,q,2

≤
∥∥ψ3D

∥∥
L∞((0,T ),H1(R2,L2(R)))

≤ C.(5.6)

Moreover, by (2.1) we have ‖zχε‖1−2/q
L2(R) = O(ε1−2/q); therefore

‖Rε
b‖L∞(R3) (t) ≤ Cε1−2/q

∥∥(I − Πε)ψ3D
∥∥

2q,2
(t).

Similarly, by (B.8), we have for any α ∈ (0, 1) and q ∈ [2,∞)

‖Rε
b‖q,∞ (t) ≤ C ‖zχε‖1−α

L2(R)

∥∥ψ3D
∥∥

4q
2+αq ,2

(t)
∥∥(I − Πε)ψ3D

∥∥
4q

2+αq ,2
(t)

≤ Cε1−α
∥∥(I − Πε)ψ3D

∥∥
4q

2+αq ,2
(t).

By (5.3), we finally get

∀α ∈ (0, 1), ∀q ∈ [2,∞], ‖Rε
b‖1,q,∞ ≤ Cε2−α,(5.7)

where the constant C depends only on α.
Estimating the first term in the right-hand side of (5.4). We shall estimate

the difference

wε := Πεψ3D − χεφ2.5De−iEεt.

To this aim, we notice that⎧⎨
⎩ i∂tw

ε = −1

2
∆xw

ε + Aεwε + 〈V 3D|χε|2〉wε + fε + gε,

ωε(0, x, z) = 0,
(5.8)

where

fε = 〈
(
V 3D − V 2.5D

)
|χε|2〉χεφ2.5De−iEεt; gε = ΠεV 3D(I − Πε)ψ3D.

Standard L2 estimates for a Schrödinger equation with a source term then imply

‖wε‖∞,2,2 ≤ ‖fε‖1,2,2 + ‖gε‖1,2,2.
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Remarking that

ΠεV 3D(I − Πε) = Πε[Πε, V 3D](I − Πε),

we deduce from Lemma 2.3, (5.1), and (5.3) that

‖gε‖1,2,2 ≤ Cε‖∂zV 3D‖4/3,4,∞‖(I − Πε)ψ3D‖4,4,2 = O(ε2).

Additionally, in the same spirit as the proof of (5.6), by applying (4.9) and standard
Sobolev embeddings, we get∥∥φ2.5D

∥∥
L∞((0,T ),Lq(R2))

≤ C ∀q ∈ [2,∞).(5.9)

Therefore, it can be easily seen that for any q ∈ (2,∞] we have

‖fε‖1,2,2 ≤ C‖V 3D − V 2.5D‖1,q,∞,

and we finally obtain

‖wε‖∞,2,2 ≤ C‖V 3D − V 2.5D‖1,q,∞ + O(ε2).(5.10)

Applying the Strichartz inequality (A.5) to (5.8) after having noticed estimate (5.1),
we obtain for any q ∈ (2,∞], s ∈ [2,∞),

‖wε‖s∗,s,2 ≤ C‖V 3D − V 2.5D‖1,q,∞ + O(ε2).(5.11)

This gives the following estimate for the first term of the right-hand side of (5.4), for
any q ∈ (2,∞):∥∥|Πεψ3D|2 − |χεφ2.5D|2

∥∥
2q

2+q ,1
(t) ≤

(
‖ψ3D‖∞,q,2 + ‖φ2.5D‖L∞((0,t),Lq(R2))

)
‖wε‖∞,2,2

≤ C

∫ t

0

‖V 3D − V 2.5D‖q,∞(τ) dτ + O(ε2),

where we used (5.6), (5.9), and (5.10).
End of the proof. By applying (B.3), we deduce∥∥∥∥1

r
∗
(
|Πεψ3D|2 − |χεφ2.5D|2

)∥∥∥∥
q,∞

(t) ≤ C

∫ t

0

‖V 3D − V 2.5D‖q,∞(τ) dτ + O(ε2),

where q ∈ (2,∞). Consequently, (5.4) yields

‖(V 3D − V 2.5D)‖q,∞(t) ≤ C

∫ t

0

‖(V 3D − V 2.5D)‖q,∞(τ) dτ

+ ‖Rε
a‖q,∞(t) + ‖Rε

b‖q,∞(t) + O(ε2).

Recalling estimates (5.5) and (5.7) for the remainders, a Gronwall argument leads to
the bound

‖(V 3D − V 2.5D)‖∞,q,∞ ≤ Cε2−α ∀q ∈ (2,∞), ∀α ∈ (0, 1).

To conclude the proof, we insert this estimate into (5.11) and obtain

‖wε‖s∗,s,2 ≤ Cε2−α ∀s ∈ [2,∞), ∀α ∈ (0, 1).
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Then we now have, for any q ∈ [2,∞) and s < q∗,∥∥|Πεψ3D|2 − |χεφ2.5D|2
∥∥
s,q,1

≤ Cε2−α ∀α ∈ (0, 1)

and we apply (B.5). By using again (5.4), (5.5), and (5.7), we find (2.8).
In order to prove (2.7), we simply remark that

‖ψ3D − φ2.5Dχε e−itE/ε2‖q∗,q,2 ≤ ‖wε‖q∗,q,2 + ‖(I − Πε)ψ3D‖q∗,q,2,

then use (5.3) and (5.11). To prove (2.9), we remark that

n3D
s − n2.5D

s = |Πεψ3D|2 − |χεφ2.5D|2 + | (I − Πε)ψ3D|2.

6. The 2D surface density model is a first-order approximation. In this
section we prove Theorem 2.7, which gives estimates from below, showing that the
accuracy of the limit model is exactly O(ε). We denote by φ2.5D, V 2.5D and by
φ2D, V 2D, respectively, the solutions of (2.5), (2.6) and (2.2), (2.4). For notational
simplicity, we denote

V 2.5D
0 (t, x) = V 2.5D(t, x, 0); V 2D

0 = V 2D(t, x, 0).

Since we assume that the initial data φ0 belongs to H2(R2), an application of Lemma 4.4
gives

‖φ2.5D‖L∞((0,T ),H2(R2)) + ‖φ2D‖L∞((0,T ),H2(R2)) ≤ C.(6.1)

Moreover, with (2.10) and the Sobolev embedding H1(R2) ↪→ L2q(R2), we obtain

‖n2.5D
s − n2D

s ‖L∞((0,T ),Lq(R2)) ≤ Cε ∀q ∈ [1,∞).(6.2)

Now we recall that

V 2.5D
0 − V 2D

0 =
1

4π|x| ∗x
(
n2.5D
s − n2D

s

)
+ H̃ε(·, 0) ∗x |φ2.5D|2,

where H̃ε is defined in (4.26). Hence, pointwise in time we get

‖V 2.5D
0 − V 2D

0 ‖L∞(R2) +

∥∥∥∥ 1

4π|x| ∗x
(
n2.5D
s − n2D

s

)∥∥∥∥
L∞(R2)

≥
∥∥∥H̃ε(·, 0) ∗x |φ2.5D|2

∥∥∥
L∞(R2)

.
(6.3)

Additionally, a straightforward calculation leads to

i∂t(xφ
2.5D) = −1

2
∆x(xφ2.5D) + V 2.5D(xφ2.5D) + ∇xφ

2.5D;

thus

‖xφ2.5D‖L∞((0,T ),L2(R2)) ≤ ‖xφ0‖L2(R2) + ‖∇xφ
2.5D‖L1((0,T ),L2(R2)) ≤ C,

where we used (4.9). For any R > 0, let us denote BR = {x ∈ R
2, |x| < R}. We have

‖φ2.5D‖2
L∞((0,T ),L2(BR)) ≥ ‖φ0‖2

L2(R2) −
1

R2
‖xφ2.5D‖2

L∞((0,T ),L2(R2)

≥ ‖φ0‖2
L2(R2) −

C

R2
.
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Since by assumption we have ‖φ0‖L2(R2)) = 2η > 0, by choosing R large enough we
have

‖φ2.5D‖L∞((0,T ),L2(BR)) > η;

then

∀t ∈ [0, T ], max
BR

|φ2.5D(t, ·)|2 >
η2

πR2
.

By using (6.1) and the Sobolev embedding H2(R2) ↪→ C0,1/2(R2), we deduce finally
that there exists r0 > 0, α > 0 and x0(t) ∈ R

2 defined almost everywhere such that,
for a.e. t ∈ [0, T ], we have

|φ2.5D|2(t, x) > α ∀x ∈ R
2 such that |x− x0(t)| < r0.(6.4)

For t ∈ [0, T ], we have∣∣∣H̃ε(·, 0) ∗x |φ2.5D|2
∣∣∣ (x0(t))

=

∫
R2

∫
R

∫ ε|z′|

0

ξ

(|x′|2 + ξ2)3/2
|χ(z′)|2 |φ2.5D(x0(t) − x′)|2 dξdz′dx′

≥ 2πα

∫
R

∫ ε|z′|

0

∫ r0

r=0

rξ

(r2 + ξ2)3/2
|χ(z′)|2 drdξdz′

= 2πα

∫
R

ε|z′|
(

1 − ε|z′|
r2
0 + (r2

0 + ε2|z′|2)1/2

)
|χ(z′)|2 dz′

≥ C1ε− C2ε
2 ≥ C0ε,

where C0 > 0 and ε is small enough. Therefore, by applying (6.3) and using (B.2),
we have for t ∈ [0, T ],

‖V 2.5D
0 − V 2D

0 ‖L∞(R2) +
∥∥n2.5D

s − n2D
s

∥∥θ
Lq(R2)

∥∥n2.5D
s − n2D

s

∥∥1−θ

L1(R2)
≥ Cε,

with any 2 < q < ∞ and θ = q
2q−2 . Bounding

∥∥n2.5D
s − n2D

s

∥∥
L1(R2)

by Cε in view of

(6.2), one deduces for any q ∈ (2,∞)

‖V 2.5D
0 − V 2D

0 ‖L∞(R2)

ε
+

(∥∥n2.5D
s − n2D

s

∥∥
Lq(R2)

ε

)θ

≥ C ′
0.

Proceeding analogously, we obtain

‖V 2.5D
0 − V 2D

0 ‖L∞(R2)

ε
+

(∥∥n2.5D
s − n2D

s

∥∥
L1(R2)

ε

)1−θ

≥ C ′
0.

Consequently, we deduce that

‖V 2.5D
0 − V 2D

0 ‖L∞(R2) +
∥∥n2.5D

s − n2D
s

∥∥
Lq(R2)

≥ Cε ∀q ∈ (2,+∞)(6.5)
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and

‖V 2.5D
0 − V 2D

0 ‖L∞(R2) +
∥∥n2.5D

s − n2D
s

∥∥
L1(R2)

≥ Cε.

The last inequality implies, by a simple interpolation argument, that (6.5) actually
holds for q ∈ [1,+∞), which finishes the proof.

Appendix A. Strichartz estimates in Lq∗

t Lq
xL2

z. For any q ∈ [2,∞) we recall
the notation q∗ = 2q/(q − 2): in the usual terminology for the Strichartz estimates,

the pair (q∗, q) is said to be admissible. The space Lq∗

t Lq
xL

2
z was defined in section 2.

Let us first state an extension of the standard Strichartz estimate for Schrödinger
equations on R

2 with values in a Hilbert space [6, 7, 11, 20, 22].
Lemma A.1. Let T > 0 and let H be a separable Hilbert space. For ψ0 ∈

L2(R2,H) and g ∈ L1((0, T ), L2(R2,H)), we consider the solution ψ(t, x) ∈ L∞((0, T ),
L2(R2,H)) of ⎧⎨

⎩ i∂tψ = −1

2
∆xψ + g,

ψ(0, ·) = ψ0 .
(A.1)

Then for any q ∈ [2,∞), the function ψ belongs to Lq∗((0, T ), Lq(R2,H)) and satisfies

‖ψ‖Lq∗ ((0,T ),Lq(R2,H)) ≤ C‖ψ0‖L2(R2,H) + C‖g‖L1((0,T ),L2(R2,H)),(A.2)

where C > 0 denotes a constant.
Proof. Let (·, ·)H denote the scalar product on H and let (χp)p∈N∗ be a Hilbertian

basis of H. We shall use the Strichartz estimate for mixed quantum states proved in
[5]. For this, let us introduce the following functional space:

L̃q(R2,H) =

⎧⎨
⎩ψ ∈ Lq(R2,H) : ‖ψ‖2

L̃q(R2,H)
=
∑
p≥1

‖ψp‖2
Lq(R2) < +∞

⎫⎬
⎭ ,

where we have denoted ψp = (ψ, χp)H (note that this functional space a priori depends
on the choice of the Hilbertian basis χp). This space is continuously embedded in
Lq(R2,H); indeed we have

(A.3)

‖ψ‖Lq(R2,H) =

∥∥∥∥∥∥
∑
p≥1

|ψp|2
∥∥∥∥∥∥

1/2

Lq/2(R2)

≤

⎛
⎝∑

p≥1

∥∥|ψp|2
∥∥
Lq/2(R2)

⎞
⎠

1/2

= ‖ψ‖
L̃q(R2,H)

.

This inequality becomes an equality in the special case q = 2 and we have the identi-

fication L̃2(R2,H) = L2(R2,H).

This functional space L̃q(R2,H) can be identified with the space Lq(λ) introduced
in [5, Definition 2.1] (in dimension 2 instead of dimension 3), with the choice λ =
(1, 1, 1, . . .) and if ψ is identified with the sequence of its components (ψp)p∈N∗ .

Each component ψp satisfies the equation⎧⎨
⎩ i∂tψp = −1

2
∆xψp + gp,

ψp(0, ·) = ψ0,p,
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where gp = (g, χp)H and ψ0,p = (ψ0, χp)H. Therefore, an application of [5, Theo-
rem 2.1] (adapted to dimension 2) gives

‖ψ‖
Lq∗ ((0,T ),L̃q(R2,H))

≤ C‖ψ0‖L̃2(R2,H)
+ C‖g‖

L1((0,T ),L̃2(R2,H))

= C‖ψ0‖L2(R2,H) + C‖g‖L1((0,T ),L2(R2,H)).

We conclude the proof by using (A.3).
Now let A be an unbounded operator on H = L2(R) with the domain D(A).

We assume that the operator A is self-adjoint and denote by eitA the unitary group
generated by iA on H. Throughout this paper, the results of the appendix are applied

to the operator A = − 1
2

d2

dz2 + V ε
c . The operator i( 1

2∆x − A), defined with an abuse
of notation as i( 1

2∆x ⊗ IH − IL2(R2) ⊗ A) on H2(R2,H) ∩ L2(R2,D(A)), generates
a group of isometries on L2(R2,H) = L2(R3). Let us now consider the problem{

i∂tψ = −1

2
∆xψ + Aψ + f,

ψ(0, x, z) = ψ0,
(A.4)

where the source term f(t, x, z) is given. The following result holds.
Lemma A.2. Let ψ0 ∈ L2(R3) and f ∈ L1((0, T ), L2(R3)). Then for any q ∈

[2,∞), the solution ψ of the Schrödinger equation (A.4) belongs to Lq∗

t Lq
xL

2
z((0, T ) ×

R
3) and satisfies

‖ψ‖q∗,q,2 ≤ C‖ψ0‖L2(R3) + C‖f‖L1((0,T ),L2(R3)),(A.5)

where C denotes a constant independent of the operator A.
Proof. This lemma is a consequence of Lemma A.1 above. Let us denote φ(t, x, z) =

eiAt ψ(t, x; z). Since A commutes with ∂t and ∆x, we clearly have{
i∂tφ = −∆xφ + eiAt f,
φ(0, x, z) = ψ0.

Therefore φ satisfies (A.1) with g = eiAt f . We conclude the proof by using (A.2)
since eiAt is an isometry on L2(R).

Appendix B. The Poisson equation with Lp
xL1

z densities. This section
deals with the convolution product

u =
1

r
∗ f,

where, r =
√
|x|2 + z2 and f ∈ Lp

xL
1
z. We recall that throughout this paper x ∈ R

2,
z ∈ R, and Lp

xL
q
z = Lp(R2, Lq(R)). We first prove the following result in R

2 with a
convolution kernel more singular than the kernel of the Poisson equation.

Lemma B.1. (i) Let f ∈ Lp(R2) with 1 < p < 2. Then∥∥∥∥ 1

|x| ∗x f

∥∥∥∥
Lp#

(R2)

≤ Cp ‖f‖Lp(R2),(B.1)

where p# = 2p
2−p .

(ii) Let f ∈ Lp(R2) ∩ L1(R2) with 2 < p ≤ +∞. Then∥∥∥∥ 1

|x| ∗x f

∥∥∥∥
L∞(R2)

≤ Cp ‖f‖θLp(R2)‖f‖1−θ
L1(R2),(B.2)
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where θ = p
2p−2 .

Proof. The first part of the lemma is a straightforward consequence of the gen-
eralized Young’s formula [18]. Indeed, the function x �→ 1

|x| belongs to L2
w(R2), and

the function f is in Lp(R2); thus 1
|x| ∗x f belongs to Lp#

(R2), with 1
p + 1

2 = 1 + 1
p# .

In order to prove item (ii), for any R > 0 we separate the integral into two parts:∣∣∣∣ 1

|x| ∗x f

∣∣∣∣ ≤
∫
|x−x′|<R

|f(x′)|
|x− x′|dx

′ +
1

R
‖f‖L1(R2)

≤ CR
p−2
p ‖f‖Lp(R2) +

1

R
‖f‖L1(R2),

where we used the Hölder’s inequality to estimate the first integral. The value of θ is
obtained after optimization of R.

Lemma B.2. (i) Let f ∈ Lp
xL

1
z with 1 < p < 2. Then we have∥∥∥∥1

r
∗ f
∥∥∥∥
p#,∞

+

∥∥∥∥∇x,z

(
1

r
∗ f
)∥∥∥∥

p#,1

≤ Cp ‖f‖p,1,(B.3)

where p# = 2p
2−p . If in addition ∇xf ∈ Lp

xL
1
z, then

∥∥∥∥∇x,z

(
1

r
∗ f
)∥∥∥∥

p#,∞
≤ Cp ‖∇xf‖p,1.(B.4)

(ii) Let f ∈ Lp
xL

1
z ∩ L1(R3) with 2 < p ≤ +∞. Then we have∥∥∥∥1

r
∗ f
∥∥∥∥
L∞(R3)

+

∥∥∥∥∇x,z

(
1

r
∗ f
)∥∥∥∥

∞,1

≤ Cp ‖f‖θp,1 ‖f‖1−θ
L1(R3),(B.5)

where θ = p
2p−2 . If in addition ∇xf ∈ Lp

xL
1
z ∩ L1(R3), then

∥∥∥∥∇x,z

(
1

r
∗ f
)∥∥∥∥

L∞(R3)

≤ Cp ‖∇xf‖θp,1 ‖∇xf‖1−θ
L1(R3).(B.6)

Proof. Items (i) and (ii) can be proved similarly by using, respectively, items (i)
and (ii) of Lemma B.1. We shall only prove here item (i). Denoting u = 1

r ∗ f , we
have

‖u(x, ·)‖L∞(R) ≤
1

|x| ∗x ‖f(x, ·)‖L1(R),

and the first part of (B.3) is a consequence of (B.1) since x �→ ‖f(x, ·)‖L1(R) belongs
to Lp(R2). Now we have∫

R

|∇xu(x, z)| dz ≤
∫∫∫

R4

|x− x′|
(|x− x′|2 + (z − z′)2)3/2

|f(x′, z′)| dx′ dz′ dz.

= 2

∫
R2

1

|x− x′| ‖f(x′, ·)‖L1(R) dx
′

=
2

|x| ∗x ‖f(x, ·)‖L1(R),
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where we have just evaluated the integral∫
R

|x− x′|
(|x− x′|2 + (z − z′)2)

3/2
dz =

2

|x− x′| .

Then by again using (B.1) we conclude with the estimate of ‖∇xu‖p#,1. We estimate
‖∂zu‖p#,1 similarly:

∫
R

|∂zu(x, z)| dz ≤
∫∫∫

R4

|z − z′|
(|x− x′|2 + (z − z′)2)3/2

|f(x′, z′)| dx′ dz′ dz.

= 2

∫
R2

1

|x− x′| ‖f(x′, ·)‖L1(R) dx
′.

This proves (B.3). Next, for i = 1, 2 and to prove (B.4) we write

‖∇x,z ∂xi
u‖p#,1 ≤

∥∥∥∥∇x,z

(
1

r
∗ (∂xi

f)

)∥∥∥∥
p#,1

≤ Cp ‖∂xif‖p,1.(B.7)

Together with (B.3) this implies that ∂xiu belongs to Lp#

(R2,W 1,1(R)). Note that

W 1,1(R) ↪→ L∞(R). Therefore, ∂xi
u is in Lp#

x L∞
z and satisfies

‖∂xiu‖p#,∞ ≤ C‖∂z∂xi
u‖p#,1 ≤ Cp ‖∂xi

f‖p,1.

To prove (B.4), it remains to estimate ∂zu. We recall that −∆x,zu = f . Additionally,
we remark that

x �→ ‖f(x, ·)‖L1(R)

belongs to W 1,p(R2) ↪→ Lp#

(R2). Consequently,

‖f‖p#,1 ≤ Cp‖∇xf‖p,1,

and applying (B.7) we get

‖∂zzu‖p#,1 ≤ ‖f‖p#,1 + ‖∆xu‖p#,1 ≤ Cp ‖∇xf‖p,1.

Therefore, as above, ∂zu is bounded in Lp#

(R2,W 1,1(R)), and thus in Lp#

x L∞
z .

Lemma B.3. (i) Let f ∈ Lp
xL

1
z, with 1 < p < ∞ be such that

∫
R
f(x, z)dz = 0, x

a.e., and z f ∈ Lp
xL

1
z. Then for any α ∈ (0,min(1, 2/p)) we have∥∥∥∥1

r
∗ f
∥∥∥∥
q,∞

≤ C ‖zf‖1−α
p,1 ‖f‖αp,1,(B.8)

where q = 2p
2−αp .

(ii) Let f ∈ Lp
xL

1
z, with 2 < p < ∞ be such that

∫
R
f(x, z)dz = 0, x a.e. and

z f ∈ Lp
xL

1
z. Then ∥∥∥∥1

r
∗ f
∥∥∥∥
L∞(R3)

≤ C ‖zf‖1−2/p
p,1 ‖f‖2/p

p,1 .(B.9)
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Proof. Denote u = 1
r ∗ f . Since

∫
R
f(x, z)dz = 0, we have

u(x, z) =

∫∫
R3

(
1

(|x− x′|2 + (z − z′)2)
1/2

− 1

(|x− x′|2 + z2)
1/2

)
f(x′, z′) dx′dz′

=

∫∫
R3

∫ z′

0

(
z − ξ

(|x− x′|2 + (z − ξ)2)
3/2

)
f(x′, z′) dξdx′dz′.(B.10)

Then we remark that for any z, ξ, and x �= x′, we have

|z − ξ|
(|x− x′|2 + (z − ξ)2)

3/2
≤ 2

3
√

3

1

|x− x′|2(B.11)

and that∫ z′

0

|z − ξ|
(|x− x′|2 + (z − ξ)2)

3/2
dξ ≤

∫
R

|z − ξ|
(|x− x′|2 + (z − ξ)2)

3/2
dξ =

2

|x− x′| .(B.12)

Let us first prove (B.8). By (B.11) and (B.12) we have for any 0 ≤ α ≤ 1∫
R

∫ z′

0

|z − ξ|
(|x− x′|2 + (z − ξ)2)

3/2
|f(x′, z′)|dξdz′ ≤ C

∫
R

|z′f(x′, z′)|1−α

|x− x′|2(1−α)

|f(x′, z′)|α
|x− x′|α dz′

≤ C

|x− x′|2−α
g(x),

where

g(x) =

(∫
|zf(x, z)|dz

)1−α(∫
|f(x, z)|dz

)α

.

Hence from (B.10) we deduce that

‖u(x, ·)‖L∞(R) ≤ C

(
1

|x|2−α
∗ g
)

(x).

From the assumptions on f , we deduce that g belongs to Lp(R2). Since the function

x �→ 1
|x|2−α belongs to L

2/(2−α)
w (R2), the generalized Young’s inequality gives (B.8).

In order to prove (B.9), the right-hand side of (B.10) is separated into two parts:∫
R3

=

∫
|x−x′|>R

+

∫
|x−x′|<R

.

By (B.11), the first part is controlled by

C

∫
|x−x′|>R

‖z′f(x′, ·)‖L1(R)

|x− x′|2 dx′ ≤ C

R2/p
‖z′f‖p,1,

while the second integral is estimated, through (B.12), by

C

∫
|x−x′|<R

‖f(x′, ·)‖L1(R)

|x− x′| dx′ ≤ R1−2/p‖f‖p,1.

Optimization of R leads to (B.9).
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Abstract. The two-dimensional (2D) quasi-geostrophic (QG) equation is a 2D model of the
3D incompressible Euler equations, and its dissipative version includes an extra term bearing the
operator (−∆)α with α ∈ [0, 1]. Existing research appears to indicate the criticality of α = 1

2
in

the sense that the issue of global existence for the 2D dissipative QG equation becomes extremely
difficult when α ≤ 1

2
. It is shown here that for any α ≤ 1

2
the 2D dissipative QG equation with

an initial datum in the Besov space Br
2,∞ or Br

p,∞ (p > 2) possesses a unique global solution if the
norm of the datum in these spaces is comparable to κ, the diffusion coefficient. Since the Sobolev
space Hr is embedded in Br

2,∞, a special consequence is the global existence of small data solutions
in Hr for any r > 2 − 2α.

Key words. 2D quasi-geostrophic equation, Besov spaces, global existence
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1. Introduction. This paper is concerned with global existence results for the
two-dimensional (2D) dissipative quasi-geostrophic (QG) equation{

∂tθ + u · ∇θ + κ(−∆)αθ = 0,

u = (u1, u2) = ∇⊥ψ, (−∆)
1
2ψ = θ

(1.1)

supplemented with the initial condition

θ(x, 0) = θ0(x).(1.2)

In (1.1), x ∈ R
2, t ≥ 0, κ > 0 is the diffusion coefficient and α ∈ [0, 1] is a parameter,

θ = θ(x, t) is a scalar representing the temperature, u is the velocity field, and ψ
is the usual stream function. Besides its geophysical applications [11], [12], the 2D
dissipative QG equation serves as a 2D model of the 3D Navier–Stokes equations and
has recently been extensively investigated (see [1], [2], [3], [5], [6], [7], [8], [9], [10],
[13], [14], [15], [16]).

Prior work on the issue of global existence concerning the 2D dissipative QG
equation (1.1) appears to indicate that α = 1

2 is a critical index. In the subcritical
case, namely, α > 1

2 , solutions at several regularity levels, including solutions in the
classical sense, have been shown to be global in time [7], [13], [16]. The theory of global
existence and regularity for this case is thus in a satisfactory state. In the critical
case α = 1

2 , classical solutions are known to be global if their initial L∞-norms are
comparable to κ [6]. For initial data of arbitrary size, the global existence of classical
solutions has not been established. It is hoped that the resolution of this problem will
shed light on the millennium prize problem on the 3D Navier–Stokes equations. The
supercritical case α < 1

2 seems even harder to deal with, and work on this case has
just started to appear. For α ≤ 1

2 , Chae and Lee [3] established a global existence

∗Received by the editors September 29, 2003; accepted for publication (in revised form) May 28,
2004; published electronically January 5, 2005.
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†Department of Mathematics, Oklahoma State University, Stillwater, OK 74078 (jiahong
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result under the assumption that θ0 is small in the Besov space B2−2α
2,1 . In a recent

work [9], A Córdoba and D. Córdoba obtained for any α ∈ [0, 1] a local existence
result for θ0 ∈ Hs with s+α > 2 and a global result for small θ0 in Hs with s > 2 or
in H3/2 in the case of α = 1

2 .
This paper is devoted to establishing global existence results for (1.1) with θ0 in

the Besov space Br
2,∞ or in Br

p,∞ with p > 2. For any α ≤ 1
2 and θ0 ∈ Br

2,∞ with
r > 2 − 2α, we prove that the 2D QG equation (1.1) has a unique global solution
provided that the norm of θ0 in Br

2,∞ is comparable to κ. Because of the embeddings
Br

2,1 ↪→ Hr ↪→ Br
2,∞, a special consequence is the global existence result for small

data in Br
2,1 or Hr with r > 2 − 2α. We defer the precise statement and many more

details to section 3.
The situation for θ0 ∈ Br

p,∞ with p > 2 is more sophisticated and the major
difficulty lies in how to obtain suitable lower bounds for terms generated from the
dissipative part. Thanks to the Lp-decay estimate of A. Córdoba and D. Córdoba [9],
we are able to establish a global existence result for solutions in the Besov space Br

p,∞
with r > 1 + 2

p . Appropriate smallness conditions are imposed on the initial datum
θ0 here. This is accomplished in section 4, which consists of two subsections. The
first subsection provides an a priori bound and the second proves the global existence
result.

2. Preliminaries. This section provides a precise characterization of the Besov
space Br

p,q through the Littlewood–Paley decomposition and gathers several important
estimates involving Br

p,∞. First, we recall two commutator estimates established in
a previous work [17]. Then follows the tame estimate for the usual product of two
functions. Finally, a logarithmic bound for the L∞-norm of a function in terms of
its norms in Besov spaces is stated and proven. We shall also reproduce here the
Lp-decay estimate of A. Córdoba and D. Córdoba for the dissipative QG equation [9].

We start with a dyadic decomposition of R
d, where d > 0 is an integer. It is a

classical result that there exist two radial functions χ ∈ C∞
0 (Rd) and φ ∈ C∞

0 (Rd\{0})
satisfying

suppχ ⊂ {ξ : |ξ| ≤ 4/3}, suppφ ⊂ {ξ : 3/4 < |ξ| < 8/3},

χ(ξ) +
∑
j≥0

φ(2−jξ) = 1 for all ξ ∈ R
d.

For the purpose of isolating different Fourier frequencies, define the operators ∆i for
i ∈ Z as follows:

∆iu =

⎧⎪⎨
⎪⎩

0 if i ≤ −2,

χ(D)u =
∫
h(y)u(x− y)dy if i = −1,

φ(2−iD)u = 2id
∫
g(2iy)u(x− y)dy if i ≥ 0,

(2.1)

where h = χ∨ and g = φ∨ are the inverse Fourier transforms of χ and φ, respectively.
We note that ∆i in (2.1) can be defined in other ways. For example, by further
requiring χ(ξ) = 1 for |ξ| ≤ 3

8 and writing

g(x) = 2dh(2x) − h(x), gj(x) = 2djg(2jx),

one can define ∆−1 = h∗ and ∆j = gj∗ for j ≥ 0.
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For i ∈ Z, Si is the sum of ∆j with j ≤ i− 1, i.e.,

Siu = ∆−1u + ∆0u + ∆1u + · · · + ∆i−1u =

∫
Rd

h(2iy)u(x− y)dy.

It can be shown for any tempered distribution f that Sif → f in the distributional
sense, as i → ∞.

For any r ∈ R and p, q ∈ [1,∞], the Besov space Br
p,q consists of all tempered dis-

tributions f such that the sequence {2jr‖∆jf‖Lp}j∈Z belongs to Lq(Z). In particular,
Br

p,∞ contains any function f satisfying

‖f‖Br
p,∞ ≡ sup

j∈Z

2jr‖∆jf‖Lp < ∞.(2.2)

It is easy to check that Br
p,∞ endowed with the norm (2.2) is a Banach space.

The following version of Bernstein’s lemma can be found in [4].
Lemma 2.1 (Bernstein’s lemma). Let d > 0 be an integer and R2 > R1 > 0 be

two real numbers. If p ∈ [1,∞] and suppf̂ ⊂ {ξ ∈ R
d : R12

j ≤ |ξ| ≤ R22
j}, then

C−12jk‖f‖Lp(Rd) ≤ max
|α|=k

‖∂αf‖Lp(Rd) ≤ C2jk‖f‖Lp(Rd),

where C > 0 is a constant depending on k, R1, and R2 only.
We now recall two commutator estimates previously established in [17].
Proposition 2.2. Let j ≥ −1 be an integer, let r ∈ R, and let p ∈ [1,∞]. Then,

‖[u · ∇,∆j ]θ‖Lp ≤ C2−jr
(
‖∇θ‖L∞‖u‖Br

p,∞ + ‖∇u‖L∞‖θ‖Br
p,∞

)
,(2.3)

where C is a pure constant and the brackets [ , ] represent the commutator, namely,

[u · ∇,∆j ]θ = u · ∇(∆jθ) − ∆j(u · ∇θ).

Inequality (2.3) is suitable for situations when u and θ are equally regular. If
∇θ is not known to be bounded in L∞, then (2.3) fails. The following proposition
provides a new estimate which needs no information about ∇θ. As a trade-off, u is
required to be in Br+1

p,∞. The importance of this estimate will be seen in the proofs of
Theorems 3.1 and 4.1.

Proposition 2.3. Let j ≥ −1, let r ∈ R, and let p ∈ [1,∞]. Then, for some
pure constant C,

‖[u · ∇,∆j ]θ‖Lp ≤ C2−jr
(
‖∇u‖L∞‖θ‖Br

p,∞ + ‖θ‖L∞‖u‖Br+1
p,∞

)
.(2.4)

Estimates for the product uv of two functions u and v are handy in dealing with
the quadratic nonlinear term in many partial differential equations. In the context of
Besov spaces, we have the following estimate.

Proposition 2.4. Let r > 0 be a real number and let p ∈ [1,∞]. Then

‖u v‖Br
p,∞ ≤ C

(
‖u‖L∞ ‖v‖Br

p,∞ + ‖u‖Br
p,∞ ‖v‖L∞

)
,

where C is constant depending on r and p only.
In the course of establishing existence results for the QG equation, very often we

need to bound the L∞-norm of a function in terms of its norm in Br
p,∞. The following

logarithmic estimate is very helpful.
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Proposition 2.5. Let p ∈ [1,∞], let rc = d
p , and let r > d

p . Then there exists a
constant C depending on p and r only such that

‖f‖L∞(Rd) ≤ C‖f‖Brc
p,∞(Rd) log2

(
e +

‖f‖Br
p,∞(Rd)

‖f‖Brc
p,∞(Rd)

)
,(2.5)

which, in particular, implies

‖f‖L∞(Rd) ≤ C‖f‖Br
p,∞(Rd).(2.6)

Proof. According to the definition of ∆i’s in (2.1), ∆k∆j = 0 if |k − j| ≥ 2. For
j ≥ 0,

‖∆jf‖L∞ ≤
∑

|k−j|≤1

‖∆k∆jf‖L∞ =
∑

|k−j|≤1

‖2kdg(2k·) ∗ (∆jf)‖L∞

≤
∑

|k−j|≤1

‖2kdg(2k·)‖Lq‖∆jf‖Lp =
∑

|k−j|≤1

2kd
1
p ‖g‖Lq ‖∆jf‖Lp ,

where q is the conjugate of p, or 1/p + 1/q = 1. Thus,

‖∆jf‖L∞ ≤ C 2jrc ‖∆jf‖Lp

for a pure constant C. A similar estimate for the case j = −1 leads to the same
bound. Using this bound, we have

‖f‖L∞ ≤
∑
j≥−1

‖∆jf‖L∞ =

N−1∑
j=−1

‖∆jf‖L∞ +
∑
j≥N

‖∆jf‖L∞

≤ C (N + 1)‖f‖Brc
p,∞ + C ‖f‖Br

p,∞

∑
j≥N

2−j(r−rc)

= C(N + 1)‖f‖Brc
p,∞ + C

2−N(r−rc)

1 − 2−(r−rc)
‖f‖Br

p,∞ .

The desired inequality (2.5) is then obtained by letting

N = 1 +

[
1

r − rc
log2

‖f‖Br
p,∞

‖f‖Brc
p,∞

]
.

Inequality (2.6) is true because of (2.5) and the fact that x → x log2(e+M/x) with a
fixed constant M is an increasing function for x > 0. This completes the proof.

As seen in (1.1) of the introduction, the components of the velocity field u are
Riesz transforms of θ, namely,

u = R⊥(θ) ≡ (−R2(θ),R1(θ)),

where Rk = ∂xk
Λ−1 for k = 1, 2 and Λ ≡ (−∆)1/2. It is a classical result in the

Calderon–Zygmund theory that for any p ∈ (1,∞) and r ∈ R

‖u‖Br
p,∞ ≤ C‖θ‖Br

p,∞ ,(2.7)

where C is a constant depending only on p and r.
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Finally, we recall the Lp-decay result of A. Córdoba and D. Córdoba. In a recent
work [9], A. Córdoba and D. Córdoba skillfully proved a pointwise inequality involving
the operator Λ2α with α ∈ [0, 1] and then derived the Lp-decay result as a special
consequence.

Proposition 2.6. Let α ∈ [0, 1] and let θ ∈ S, the Schwartz class. Then,

2θΛ2αθ(x) ≥ Λ2α θ2(x)

for any x ∈ R
2.

The estimate in the following proposition is slightly different from the correspond-
ing Lp-decay result derived in [9].

Proposition 2.7. Let p = 2k for an integer k ≥ 1. If θ solves (1.1) with
an initial data θ0 ∈ Lp, then the Lp-norm of θ decays algebraically in time. More
precisely,

‖θ(·, t)‖Lp ≤ ‖θ0‖Lp(
1 + κCpγt‖θ0‖−γp

L2 ‖θ0‖γpLp

) 1
γp

,

where γ = α
p−2 and Cp is a constant depending on p and α only.

3. Global existence in Br
2,∞. We shall assume in this section that θ0 is in the

Besov space Br
2,∞. Consider the solution of the 2D dissipative QG equation

∂tθ + u · ∇θ + κΛ2αθ = 0, u = R⊥(θ)(3.1)

with θ(x, 0) = θ0(x). Assuming r > 2 − 2α, our major result states that (3.1) has a
unique global solution if the norm of θ0 in Br

2,∞ is comparable to κ.

Theorem 3.1. Let κ > 0 and let 0 ≤ α ≤ 1
2 . Assume the initial datum θ0 is in

the Besov space Br
2,∞ with r > 2 − 2α. There exists a constant C0 depending on α

and r only such that if

‖θ0‖Br
2,∞

≤ C0κ,(3.2)

then the 2D dissipative QG equation (3.1) with θ(x, 0) = θ0(x) has a unique global
solution θ satisfying

θ ∈ L∞([0,∞);Br
2,∞) ∩ L1([0,∞);Br+2α

2,∞ ) ∩ Lip([0,∞);Br−1
2,∞) ∩ C([0,∞);Bδ

2,∞)

for any δ ∈ [r − 1, r), and

‖θ(·, t)‖Br
2,∞

≤ C0κ for any t ≥ 0.

Remark. Because of the embeddings

Bs
2,1 ↪→ Hs

2 ↪→ Bs
2,∞,

this theorem also implies that (3.1) has global solutions for small data in Bs
2,1 or Hs

with any s > 2 − 2α.
Before proving Theorem 3.1, we first establish an a priori estimate.
Proposition 3.2. Assume that θ solves the 2D dissipative QG equation (3.1)

with κ > 0 and 0 ≤ α ≤ 1. Let r ∈ R and let s > 2. Then

d

dt
‖θ‖Br

2,∞
+ C1 κ‖θ‖Br+2α

2,∞
≤ C2 ‖θ‖Bs

2,∞
‖θ‖Br

2,∞
,(3.3)

where C1 and C2 are constants depending on r only.
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If r > 2 − 2α, we can choose s = r + 2α. Then, (3.3) reduces to

d

dt
‖θ‖Br

2,∞
+ C1 κ‖θ‖Br+2α

2,∞
≤ C2 ‖θ‖Br+2α

2,∞
‖θ‖Br

2,∞
.

This inequality bears two consequences, which we state as a corollary.

Corollary 3.3. Assume that θ solves the 2D dissipative QG equation (3.1) with
κ > 0 and 0 ≤ α ≤ 1. Let r > 2 − 2α be a real number. There exists a constant C0

depending on α and r only such that if

‖θ0‖Br
2,∞

≤ C0κ,

then, for any t ≥ 0,

‖θ(·, t)‖Br
2,∞

≤ ‖θ0‖Br
2,∞

≤ C0κ.

In addition, θ also satisfies the inequality

‖θ(·, t)‖Br
2,∞

+ C1 κ

∫ t

0

‖θ(·, τ)‖Br+2α
2,∞

dτ ≤ ‖θ0‖Br
2,∞

exp

(
C2

∫ t

0

‖θ(·, τ)‖Br+2α
2,∞

dτ

)
.

Proof of Proposition 3.2. Let j ≥ −1. Applying ∆j to (3.1), we obtain

∂t∆jθ + u · ∇∆jθ + κΛ2α∆jθ = [u · ∇,∆j ]θ.

Multiplying both sides by 2∆jθ and integrating over R
2 yields

d

dt

∫
|∆jθ|2dx + 2κ

∫
|Λα∆jθ|2dx = 2

∫
∆jθ [u · ∇,∆j ]θ dx.

Applying Lemma 2.1 to the dissipative term and Hölder’s inequality to the right-hand
side, we find that

d

dt
‖∆jθ‖L2 + Cκ22αj‖∆jθ‖L2 ≤ ‖[u · ∇,∆j ]θ‖L2 .

In the above inequality, we have used the fact that Lemma 2.1 is valid for fractional
derivatives when p = 2. For any r ∈ R, Proposition 2.2 applied to the term on the
right-hand side yields

d

dt
‖θ‖Br

2,∞
+ Cκ‖θ‖Br+2α

2,∞
≤ C

(
‖∇u‖L∞ ‖θ‖Br

2,∞
+ ‖∇θ‖L∞ ‖u‖Br

2,∞

)
.(3.4)

Furthermore, Proposition 2.5 applied to ∇u and ∇θ asserts that for any s > 2,

‖∇u‖L∞ ≤ C‖u‖Bs
2,∞

, ‖∇θ‖L∞ ≤ C‖θ‖Bs
2,∞

.

Inserting these estimates in (3.4) and noticing (2.7), we obtain

d

dt
‖θ‖Br

2,∞
+ C1 κ‖θ‖Br+2α

2,∞
≤ C2 ‖θ‖Bs

2,∞
‖θ‖Br

2,∞
.
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Proof of Theorem 3.1. We start with a successive approximation sequence {θ(n)}
satisfying ⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

θ(1) = S2θ0,

∂tθ
(n+1) + u(n) · ∇θ(n+1) + κΛ2αθ(n+1) = 0,

u(n) = R⊥(θ(n)),

θ(n+1)(x, 0) = θ
(n+1)
0 (x) = Sn+2θ0.

The rest of the proof is divided into two major parts. The first part establishes that
{θ(n)} is bounded uniformly in L∞([0,∞);Br

2,∞). The second part verifies that {θ(n)}
is a Cauchy sequence in L∞([0,∞);Br−1

2,∞).
Noticing that r > 2− 2α, we proceed as in the proof of Proposition 3.2 to obtain

d

dt
‖θ(n+1)‖Br

2,∞
+ C1κ‖θ(n+1)‖Br+2α

2,∞

≤ C
(
‖∇u(n)‖L∞ ‖θ(n+1)‖Br

2,∞
+ ‖∇θ(n+1)‖L∞ ‖u(n)‖Br

2,∞

)
≤ C

(
‖u(n)‖Br+2α

2,∞
‖θ(n+1)‖Br

2,∞
+ ‖θ(n+1)‖Br+2α

2,∞
‖u(n)‖Br

2,∞

)
≤ C2

(
‖θ(n)‖Br+2α

2,∞
‖θ(n+1)‖Br

2,∞
+ ‖θ(n+1)‖Br+2α

2,∞
‖θ(n)‖Br

2,∞

)
,(3.5)

where C1 and C2 are constants with dependence on α and r only. Now, we choose
C0 < C1/(4C2). Further restrictions will be imposed on C0 in the second part. We
show that if

‖θ0‖Br
2,∞

≤ C0 κ,

then for any integer n and any t ≥ 0,

sup
τ∈[0,t]

‖θ(n)(·, τ)‖Br
2,∞

+ C1 κ

∫ t

0

‖θ(n)(·, τ)‖Br+2α
2,∞

dτ ≤ 2C0 κ.(3.6)

We proceed by induction. If (3.6) holds for n = k, namely,

‖θ(k)(·, t)‖Br
2,∞

+ C1 κ

∫ t

0

‖θ(k)(·, τ)‖Br+2α
2,∞

dτ ≤ 2C0 κ,

then, according to (3.5),

sup
τ∈[0,t]

‖θ(k+1)(·, τ)‖Br
2,∞

+ C1 κ

∫ t

0

‖θ(k+1)(·, τ)‖Br+2α
2,∞

dτ

≤ ‖θ(k+1)
0 ‖Br

2,∞
+ C2 sup

τ∈[0,t]

‖θ(k+1)(·, τ)‖Br
2,∞

∫ t

0

‖θ(k)(·, τ)‖Br+2α
2,∞

dτ

+ C2 sup
τ∈[0,t]

‖θ(k)(·, τ)‖Br
2,∞

∫ t

0

‖θ(k+1)(·, τ)‖Br+2α
2,∞

dτ

≤ ‖θ0‖Br
2,∞

+
2C0C2

C1
sup

τ∈[0,t]

‖θ(k+1)(·, τ)‖Br
2,∞

+ 2C0C2κ

∫ t

0

‖θ(k+1)(·, τ)‖Br+2α
2,∞

dτ.
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Since 2C0C2 ≤ 1
2C1, the inequality above becomes

sup
τ∈[0,t]

‖θ(k+1)(·, τ)‖Br
2,∞

+ C1 κ

∫ t

0

‖θ(k+1)(·, τ)‖Br+2α
2,∞

dτ ≤ 2‖θ0‖Br
2,∞

≤ 2C0κ.

Thus, (3.6) is verified. This completes the first part of the proof.
Next, we consider the difference

η(n+1) = θ(n+1) − θ(n).

The sequence {η(n)} satisfies⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

η(1) = S2θ0 − θ0,

∂tη
(n+1) + u(n) · ∇η(n+1) + κΛ2αη(n+1) = w(n) · ∇θ(n),

w(n) = R⊥(η(n)),

η(n+1)(x, 0) = η
(n+1)
0 (x) = ∆n+1θ0.

Starting with the equation for η(n+1) and proceeding as above, we are led to the
following inequality:

d

dt
‖η(n+1)‖Br−1

2,∞
+ C1κ‖η(n+1)‖Br−1+2α

2,∞

≤ 2(r−1)j‖[u(n) · ∇,∆j ]η
(n+1)‖L2 + ‖w(n) · ∇θ(n)‖Br−1

2,∞
.(3.7)

Applying Propositions 2.3 and 2.5 to the first term on the right leads to

2(r−1)j‖[u(n) · ∇,∆j ]η
(n+1)‖L2

≤ C
(
‖∇u(n)‖L∞‖η(n+1)‖Br−1

2,∞
+ ‖η(n+1)‖L∞‖u(n)‖Br

2,∞

)
≤ C

(
‖u(n)‖Br+2α

2,∞
‖η(n+1)‖Br−1

2,∞
+ ‖η(n+1)‖Br−1+2α

2,∞
‖u(n)‖Br

2,∞

)
≤ C

(
‖θ(n)‖Br+2α

2,∞
‖η(n+1)‖Br−1

2,∞
+ ‖η(n+1)‖Br−1+2α

2,∞
‖θ(n)‖Br

2,∞

)
.

Since α ≤ 1
2 , r − 1 > 1 − 2α > 0 and the same estimate in Proposition 2.4 applies.

Consequently,

‖w(n) · ∇θ(n)‖Br−1
2,∞

≤ C
(
‖w(n)‖L∞‖∇θ(n)‖Br−1

2,∞
+ ‖w(n)‖Br−1

2,∞
‖∇θ(n)‖L∞

)
≤ C

(
‖w(n)‖Br−1+2α

2,∞
‖θ(n)‖Br

2,∞
+ ‖w(n)‖Br−1

2,∞
‖θ(n)‖Br+2α

2,∞

)
≤ C

(
‖η(n)‖Br−1+2α

2,∞
‖θ(n)‖Br

2,∞
+ ‖η(n)‖Br−1

2,∞
‖θ(n)‖Br+2α

2,∞

)
.

Inserting these estimates in (3.7) yields

d

dt
‖η(n+1)‖Br−1

2,∞
+ C1κ‖η(n+1)‖Br−1+2α

2,∞

≤ C3

(
‖θ(n)‖Br+2α

2,∞
‖η(n+1)‖Br−1

2,∞
+ ‖η(n+1)‖Br−1+2α

2,∞
‖θ(n)‖Br

2,∞

)
+ C3

(
‖η(n)‖Br−1+2α

2,∞
‖θ(n)‖Br

2,∞
+ ‖η(n)‖Br−1

2,∞
‖θ(n)‖Br+2α

2,∞

)
.
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Integrating over [0, t], we obtain

sup
τ∈[0,t]

‖η(n+1)(·, τ)‖Br−1
2,∞

+C1κ

∫ t

0

‖η(n+1)(·, τ)‖Br−1+2α
2,∞

dτ

≤ ‖θ(n+1)
0 ‖Br−1

2,∞
+ C3

(
sup

τ∈[0,t]

‖η(n+1)‖Br−1
2,∞

+ sup
τ∈[0,t]

‖η(n)‖Br−1
2,∞

)∫ t

0

‖θ(n)‖Br+2α
2,∞

dτ

+ C3 sup
τ∈[0,t]

‖θ(n)‖Br
2,∞

∫ t

0

(
‖η(n)‖Br−1+2α

2,∞
+ ‖η(n+1)‖Br−1+2α

2,∞

)
dτ.(3.8)

We now show by induction that for any t ≥ 0,

sup
τ∈[0,t]

‖η(n)(·, τ)‖Br−1
2,∞

+ C1κ

∫ t

0

‖η(n)(·, τ)‖Br−1+2α
2,∞

dτ ≤ ‖θ0‖Br
2,∞

2−(n−3).(3.9)

First, we notice that

‖θ(n+1)
0 ‖Br−1

2,∞
= ‖∆n+1θ0‖Br−1

2,∞
≤ ‖θ0‖Br

2,∞
2−n.

Now, we require that C0 further satisfy

2C0C3/C1 ≤ 1/4.

According to (3.6), we have the uniform bounds

C3 sup
τ∈[0,t]

‖θ(n)(·, τ)‖Br
2,∞

≤ 2C0C3κ, C3

∫ t

0

‖θ(n)(·, τ)‖Br+2α
2,∞

dτ ≤ 2C0C3/C1.

If (3.9) is satisfied by n = k, then it follows from (3.8) that

3

4

(
max
τ∈[0,t]

‖η(k+1)(·, τ)‖Br−1
2,∞

+ C1κ

∫ t

0

‖η(k+1)(·, τ)‖Br−1+2α
2,∞

dτ

)

≤ ‖θ0‖Br
2,∞

2−k +
1

4

(
max
τ∈[0,t]

‖η(k)(·, τ)‖Br−1
2,∞

+ C1κ

∫ t

0

‖η(k)(·, τ)‖Br−1+2α
2,∞

dτ

)
≤ 3‖θ0‖Br

2,∞
2−k.

Thus, (3.9) is true for n = k+1. In other words, {η(n)} = {θ(n)−θ(n−1)} is a Cauchy
sequence in L∞([0,∞);Br−1

2,∞).

Therefore, there exists a θ ∈ L∞([0,∞);Br
2,∞) ∩ L1([0,∞);Br+2α

2,∞ ) such that

θ(n) → θ in L∞([0,∞);Br−1
2,∞) ∩ L1([0,∞);Br−1+2α

2,∞ ).

Furthermore, for 0 ≤ α ≤ 1
2 ,

‖∂tθ(n)(·, t)‖Br−1
2,∞

≤ ‖u(n−1) · ∇θ(n)(·, t)‖Br−1
2,∞

+ κ‖Λ2αθ(n)(·, t)‖Br−1
2,∞

≤ C3‖θ(n)(·, t)‖Br
2,∞

‖θ(n−1)(·, t)‖Br−1
2,∞

+ κ‖θ(n)(·, t)‖Br
2,∞

≤ C3(C0κ)2 + C0κ
2 = (C3C0 + 1)C0κ

2.
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Therefore, θ ∈ Lip([0,∞);Br−1
2,∞). Another consequence is θ ∈ C([0,∞);Bδ

2,∞) for any
δ ∈ [r−1, r). Finally, the a priori estimates in Proposition 3.2 and Corollary 3.3 allow
us to conclude that

‖θ(·, t)‖Br
2,∞

≤ C0κ.

This completes the proof.

4. Global existence in Br
p,∞ with p > 2. Attention is now turned to the 2D

dissipative QG equation

∂tθ + u · ∇θ + κΛ2αθ = 0(4.1)

with θ(x, 0) = θ0(x) in the Besov space Br
p,∞. We have the following theorem.

Theorem 4.1. Let κ > 0 and let 0 ≤ α ≤ 1
2 . Consider the solution of the

dissipative QG equation (4.1) corresponding to θ0 ∈ Br
2,∞∩Br

p,∞ with p = 2N (N > 1).
Assume that{

r > 1 + 2
p and ‖θ0‖Br

2,∞
≤ C0κ if (1 − 2α)p ≤ 2,

r > 2 − 2α, ‖θ0‖Br
2,∞

≤ C0κ, and ‖θ0‖Br
p,∞ ≤ C0κ if (1 − 2α)p > 2,

(4.2)

where C0 is a suitably chosen constant with dependence on α, r, and p only. Then the
2D QG equation (4.1) has a unique global solution θ satisfying

θ ∈ L∞([0,∞);Br
p,∞) ∩ L1([0,∞);Br+2α

p,∞ ) ∩ Lip([0,∞);Br−1
p,∞) ∩ C([0,∞);Bδ

p,∞)

for any δ ∈ [r − 1, r), and

‖θ(·, t)‖Br
p,∞ ≤ max{‖θ0‖Br

p,∞ , C̃0κ}

for any t ≥ 0 and some constant C̃0 depending on α, r, and p only.
The rest of this section revolves around the proof of Theorem 4.1 and is divided

into two subsections. The first subsection presents an a priori estimate and the second
subsection proves Theorem 4.1.

4.1. An a priori bound. We state and prove a global a priori bound.
Proposition 4.2. Assume that θ solves the 2D dissipative QG equation (4.1)

with κ > 0 and 0 ≤ α ≤ 1. Let r ∈ R, let p = 2N for an integer N > 1, and let
s > 1 + 2

p . Then

d

dt
‖θ‖Br

p,∞ + C4 p
−1 κ ‖θ‖1+β p

Br
p,∞

‖θ‖−β p
Br

2,∞
≤ C5 ‖θ‖Br

p,∞ ‖θ‖Bs
p,∞ ,(4.3)

where β = 2α
p−2 , and C4 and C5 are constants with possible dependence on α and p

only.
Remark. The case p = 2 is excluded here since this case has been dealt with in

the previous section. The assumption p = 2N is made in order to use Proposition 2.7.
Proof of Proposition 4.2. Applying ∆j to (4.1), multiplying by p|∆jθ|p−2∆jθ,

and integrating over R
2, we obtain

d

dt
‖∆jθ‖pLp + I = II,(4.4)



1024 JIAHONG WU

where I and II represent the terms

I = κp

∫
|∆jθ|p−2(∆jθ)Λ

2α∆jθ dx,

II = p

∫
|∆jθ|p−2(∆jθ) [u · ∇,∆j ]θdx.

To estimate II, we first apply Hölder’s inequality and then Proposition 2.2 to obtain

|II| ≤ p ‖∆jθ‖p−1
Lp ‖[u · ∇,∆j ]θ‖Lp

≤ p ‖∆jθ‖p−1
Lp

[
2−jr

(
‖∇u‖L∞‖θ‖Br

p,∞ + ‖∇θ‖L∞ ‖u‖Br
p,∞

)]
.

For s > 1 + 2
p , Proposition 2.5 asserts that

‖∇θ‖L∞ ≤ C ‖θ‖Bs
p,∞ , ‖∇u‖L∞ ≤ C ‖u‖Bs

p,∞ ≤ C ‖θ‖Bs
p,∞ .

Therefore, for some constant C,

|II| ≤ C p 2−jr ‖∆jθ‖p−1
Lp ‖θ‖Br

p,∞ ‖θ‖Bs
p,∞ .(4.5)

To obtain a lower bound for I, we use Proposition 2.6 and a basic embedding inequal-
ity,

I ≥ C κ

∫ ∣∣∣Λα
(
|∆jθ|

p
2

)∣∣∣2 dx ≥ C κ

(∫
|∆jθ|

p
1−α dx

)1−α

= C κ‖∆jθ‖p
L

p
1−α

,

where the assumption p = 2N is used in the first inequality. Applying the interpolation
inequality

‖f‖Lp ≤ C ‖f‖
2α

p+2α−2

L2 ‖f‖
p−2

p+2α−2

L
p

1−α

with f = ∆jθ, we finally obtain the lower bound

I ≥ C κ‖∆jθ‖(1+β)p
Lp ‖∆jθ‖−βp

L2 ,(4.6)

where we have set β = 2α
p−2 . Combining (4.4), (4.5), and (4.6) yields

d

dt
‖θ‖Br

p,∞ + C p−1 κ 2jr ‖∆jθ‖1+β p
Lp ‖∆jθ‖−βp

L2 ≤ C ‖θ‖Br
p,∞ ‖θ‖Bs

p,∞

or, equivalently,

d

dt
‖θ‖Br

p,∞ + C p−1 κ ‖θ‖1+β p
Br

p,∞
‖θ‖−β p

Br
2,∞

≤ C ‖θ‖Br
p,∞ ‖θ‖Bs

p,∞ .

We now explore several consequences of Proposition 4.2. If (1 − 2α)p ≤ 2, then
2α + 2/p ≥ 1 or βp ≥ 1. In addition, r > 1 + 2/p implies r > 2 − 2α. It thus follows
from Corollary 3.3 that ‖θ0‖Br

2,∞
≤ C0κ implies

‖θ(·, t)‖Br
2,∞

≤ C0κ
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for all t > 0. Consequently, (4.3) can be reduced to

d

dt
‖θ‖Br

p,∞ ≤ C5 ‖θ‖2
Br

p,∞

(
1 − C−1

5 C4 (pCβp
0 )−1 κ1−βp ‖θ‖β p−1

Br
p,∞

)
.(4.7)

For βp > 1, (4.7) indicates that⎧⎨
⎩

‖θ(·, t)‖Br
p,∞ decreases as a function of t for a big initial norm ‖θ0‖Br

p,∞ ,

‖θ(·, t)‖Br
p,∞ increases up to

(
C4/(pC5 C

β p
0 )

) 1
βp−1 κ for small ‖θ0‖Br

p,∞ .

In other words,

‖θ(·, t)‖Br
p,∞ ≤ max

{
‖θ0‖Br

p,∞ ,
(
C4/(pC5 C

β p
0 )

) 1
βp−1 κ

}
.

For βp = 1 and C0 ≤ C4/(pC5), (4.7) indicates that ‖θ(·, t)‖Br
p,∞ is a decreasing

function of t and thus

‖θ(·, t)‖Br
p,∞ ≤ ‖θ0‖Br

p,∞

for any t ≥ 0.

If (1 − 2α)p > 2, then 1 + βp < 2 and r > 2 − 2α implies that r > 1 + 2
p . In this

case, (4.3) becomes

d

dt
‖θ‖Br

p,∞ ≤ ‖θ‖1+β p
Br

p,∞

(
C5‖θ‖1−β p

Br
p,∞

− C4 (pCβp
0 )−1 κ1−βp

)
.

If θ0 satisfies

‖θ0‖Br
p,∞ ≤

(
C4/(pC5 C

β p
0 )

) 1
1−βp κ,(4.8)

then ‖θ(·, t)‖Br
p,∞ decreases as a function of t and thus

‖θ(·, t)‖Br
p,∞ ≤ ‖θ0‖Br

p,∞

for any t ≥ 0.

In summary, we have established the following corollary.

Corollary 4.3. Let κ > 0 and let 0 ≤ α ≤ 1. Assume that θ solves the 2D
dissipative QG equation (4.1) corresponding to θ0 in Br

2,∞∩Br
p,∞ with p = 2N (N > 1).

If r and θ0 satisfy (4.2), then we have the global bounds

‖θ(·, t)‖Br
2,∞

≤ C̃0κ and ‖θ(·, t)‖Br
p,∞ ≤ max{‖θ0‖Br

p,∞ , C̃0κ}

for some constant C̃0 depending on α, r, and p only.

It is worth mentioning that the argument leading to the above corollary can be
replaced by utilizing explicit formulas given in the following lemma.

Lemma 4.4. Let σ > 0. Assume that y = y(t) satisfies

d

dt
y + g(t)y1+σ ≤ h(t)y(4.9)
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for real-valued functions g and h. Then y = y(t) is bounded pointwise according to

y(t) ≤
y(0) exp

(∫ t

0
h(τ)dτ

)
(
1 + σ yσ(0)

∫ t

0
g(τ) exp

(
σ
∫ τ

0
h(s)ds

)
dτ

) 1
σ

.(4.10)

Proof. It follows easily from (4.9) that z = y exp
(
−
∫ t

0
h(τ)dτ

)
satisfies

d

dt
z ≤ −g(t) exp

(
σ

∫ t

0

h(τ)dτ

)
z1+σ.

Dividing both sides by z1+σ and integrating over [0, t], we obtain

z−σ(t) ≥ z−σ(0) + σ

∫ t

0

g(τ) exp

(
σ

∫ τ

0

h(s)ds

)
dτ,

which can be converted into the following inequality for y:

yσ ≤
yσ(0) exp

(
σ
∫ t

0
h(τ)dτ

)
1 + σyσ(0)

∫ t

0
g(τ) exp

(
σ
∫ τ

0
h(s)ds

)
dτ

.

Raising both sides to 1
σ yields (4.10).

When an extra term f(t) is added to (4.9), the method of variation of constants
still allows us to obtain a formal bound involving a function C(t), which satisfies an
additional ordinary differential equation.

Lemma 4.5. Let σ > 0. Assume that y = y(t) satisfies

d

dt
y + g(t)y1+σ ≤ h(t)y + f(t)(4.11)

for real-valued functions g, h, and f . Then y obeys the bound

y(t) ≤
exp

(∫ t

0
h(τ)dτ

)
(
−σC(t) + σ

∫ t

0
g(τ) exp

(
σ
∫ τ

0
h(s)ds

)
dτ

) 1
σ

,(4.12)

where C(t) satisfies the following ordinary differential equation:

d

dt
C(t) = f(t) exp

(
−
∫ t

0

h(τ)dτ

)

×
(
−σC(t) + σ

∫ t

0

g(τ) exp

(
σ

∫ τ

0

h(s)ds

)
dτ

)1+ 1
σ

(4.13)

with the initial datum C(0) = −1/(σyσ(0)).

Remark. When f = 0, C(t) = C(0) = −1/(σyσ(0)) and (4.12) becomes (4.10).
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4.2. Proof of Theorem 4.1. Assume that {θ(n)} is a successive approximation
sequence satisfying the equations⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

θ(1) = S2θ0,

∂tθ
(n+1) + u(n) · ∇θ(n+1) + κΛ2αθ(n+1) = 0,

u(n) = R⊥(θ(n)),

θ(n+1)(x, 0) = θ
(n+1)
0 (x) = Sn+2θ0.

Following the same procedure as in the proof of Proposition 4.2 leads to

d

dt
‖θ(n+1)‖Br

p,∞ + C4 p
−1 κ ‖θ(n+1)‖1+β p

Br
p,∞

‖θ(n+1)‖−β p
Br

2,∞
≤ C5 ‖θ(n)‖Br

p,∞ ‖θ(n+1)‖Br
p,∞ .

(4.14)

If the conditions in (4.2) are met, we know from the proof of Theorem 3.1 that

‖θ(n)(·, t)‖Br
2,∞

≤ C0κ

for any integer n and any t ≥ 0. Inequality (4.14) can then be rewritten as

d

dt
‖θ(n+1)‖Br

p,∞ ≤ ‖θ(n+1)‖Br
p,∞

(
C5 ‖θ(n)‖Br

p,∞ − C4(pC
βp
0 )−1κ1−βp ‖θ(n+1)‖β p

Br
p,∞

)
.

When (4.2) is satisfied, we can argue similarly as in the previous subsection and
conclude that

‖θ(n)(·, t)‖Br
p,∞ ≤

⎧⎪⎨
⎪⎩

‖θ0‖Br
p,∞ if βp ≤ 1,

max

{
‖θ0‖Br

p,∞ ,
(
C4/(pC5 C

β p
0 )

) 1
βp−1

κ

}
if βp > 1.

(4.15)

An alternative argument using the explicit formula in Lemma 4.9 also leads to the
same bound.

We now show that {η(n)} = {θ(n)−θ(n−1)} is a Cauchy sequence in C([0,∞);Br−1
p,∞).

The sequence {η(n)} satisfies⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

η(1) = S2θ0 − θ0,

∂tη
(n+1) + u(n) · ∇η(n+1) + κΛ2αη(n+1) = w(n) · ∇θ(n),

w(n) = R⊥(η(n)),

η(n+1)(x, 0) = η
(n+1)
0 (x) = ∆n+1θ0.

Following the procedures as in the proof of Theorem 3.1 as well as in the first part of
this proof, we obtain

d

dt
‖η(n+1)‖Br−1

p,∞
+ C4 p

−1 κ ‖η(n+1)‖1+β p

Br−1
p,∞

‖η(n+1)‖−β p

Br−1
2,∞

≤ K1 + K2,(4.16)

where K1 and K2 represent

K1 = 2(r−1)j‖[u(n) · ∇,∆j ]η
(n+1)‖Lp , K2 = ‖w(n) · ∇θ(n)‖Br−1

p,∞
.
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To estimate K1 and K2, we assume that (4.2) is satisfied. By Proposition 2.3,

K1 ≤ C
(
‖∇u(n)‖L∞‖η(n+1)‖Br−1

p,∞
+ ‖η(n+1)‖L∞‖u(n)‖Br

p,∞

)
≤ 2C ‖u(n)‖Br

p,∞ ‖η(n+1)‖Br−1
2,∞

≤ 2C ‖θ(n)‖Br
p,∞ ‖η(n+1)‖Br−1

p,∞
.(4.17)

By Proposition 2.4,

K2 ≤ C
(
‖w(n)‖L∞‖∇θ(n)‖Br−1

p,∞
+ ‖w(n)‖Br−1

p,∞
‖∇θ(n)‖L∞

)
≤ 2C‖θ(n)‖Br

p,∞‖w(n)‖Br−1
p,∞

≤ 2C‖θ(n)‖Br
p,∞‖η(n)‖Br−1

p,∞
.(4.18)

Inserting (4.17) and (4.18) in (4.16), we obtain

d

dt
‖η(n+1)‖Br−1

p,∞
+ C4 p

−1 κ ‖η(n+1)‖1+β p

Br−1
p,∞

‖η(n+1)‖−β p

Br−1
2,∞

≤ C7 ‖θ(n)‖Br
p,∞

(
‖η(n+1)‖Br−1

p,∞
+ ‖η(n)‖Br−1

p,∞

)
.(4.19)

According to the proof of Theorem 3.1 and the first part of this proof,

‖η(n+1)‖Br−1
2,∞

≤ ‖θ0‖Br−1
2,∞

2−(n−2), ‖θ(n)‖Br
p,∞ ≤ max{‖θ0‖Br

p,∞ , C̃κ},

where C̃ is a constant. We are now ready to show that

‖η(n+1)(·, t)‖Br−1
p,∞

≤ C̄ 2−(n−2−1/(βp)),

where C̄ is given explicitly by

C̄ = max

{
1

2
,
(
2C7 max{‖θ0‖Br

p,∞ , C̃κ}/(C4p
−1κ)

)1/σ
}

‖θ0‖Br
p,∞ .

To simplify the notation, we set

σ = βp, y(t) = ‖η(n+1)(·, t)‖Br−1
p,∞

, g = C4p
−1 κ 2(n−1) ‖θ0‖−σ

Br−1
2,∞

,

h = C7 max{‖θ0‖Br
p,∞ , C̃κ}, f = C7 max{‖θ0‖Br

p,∞ , C̃κ} C̄ 2−(n−3−1/(βp)).

Inequality (4.19) then becomes

d

dt
y ≤ −g yσ+1 + h y + f.

We further write z(t) for the right-hand side of the inequality above. If y(0) is suffi-
ciently large such that z(0) ≤ 0, then

N ≡ sup
t≥0

y(t) ≤ y(0).
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If, on the other hand, y(0) is small and z(0) ≥ 0, then y(t) initially grows as t increases.
But its growth stops as soon as z(t) becomes zero. Therefore, N obeys

−g N1+σ + hN + f = 0 or N1+σ − h

g
N =

f

g
.(4.20)

The discussion is then divided into two cases: i) Nσ ≤ 2h/g and ii) Nσ > 2h/g. In
the first case,

N ≤
(

2h

g

) 1
σ

.

In the second case, (4.20) implies that

N1+σ <
2f

g
or N ≤

(
2f

g

) 1
1+σ

.

In summary, we have obtained

sup
t≥0

y(t) ≤ max

{
y(0),

(
2h

g

) 1
σ

,

(
2f

g

) 1
1+σ

}
.(4.21)

Returning to the original variable, we find

y(0) = ‖∆n+1θ0‖Br−1
p,∞

≤ ‖θ0‖Br
p,∞ 2−n,

(
2h

g

) 1
σ

≤ C̄ 2−n+2,

(
2f

g

) 1
1+σ

≤ C̄
(
2−n+3+1/σ 2−σ(n−2)

) 1
1+σ ≤ C̄ 2−(n−2−1/σ).

As a consequence, (4.21) yields the desired bound

sup
t≥0

‖η(n+1)(·, t)‖Br−1
p,∞

≤ C̄ 2−(n−2−1/(βp)).

After a similar argument as in the proof of Theorem 3.1, the proof of Theorem 4.1 is
then completed.
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[10] D. Córdoba and C. Fefferman, Growth of solutions for QG and 2D Euler equations, J.
Amer. Math. Soc., 15 (2002), pp. 665–670.

[11] I. Held, R. Pierrehumbert, S. Garner, and K. Swanson, Surface quasi-geostrophic dynam-
ics, J. Fluid Mech., 282 (1995), pp. 1–20.

[12] J. Pedlosky, Geophysical Fluid Dynamics, Springer-Verlag, New York, 1987.
[13] S. Resnick, Dynamical Problem in Nonlinear Advective Partial Differential Equations, Ph.D.

thesis, University of Chicago, Chicago, 1995.
[14] M. E. Schonbek and T. P. Schonbek, Asymptotic behavior to dissipative quasi-geostrophic

flows, SIAM J. Math. Anal., 35 (2003), pp. 357–375.
[15] J. Wu, Inviscid limits and regularity estimates for the solutions of the 2D dissipative quasi-

geostrophic equations, Indiana Univ. Math. J., 46 (1997), pp. 1113–1124.
[16] J. Wu, Dissipative quasi-geostrophic equations with Lp data, Electron. J. Differential Equa-

tions, 2001 (2001), pp. 1–13.
[17] J. Wu, Solutions of the 2D Quasi-geostrophic Equation in Hölder Spaces, preprint, Oklahoma
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Abstract. The linearized stability of stationary solutions to the surface diffusion flow with angle
conditions and no-flux conditions as boundary conditions is studied. We perform a linearized stability
analysis in which the H−1-gradient flow structure plays a key role. As a byproduct our analysis also
gives a criterion for the stability of critical points of the length functional of curves which come into
contact with the outer boundary. Finally, we study the linearized stability of several examples.

Key words. surface diffusion, gradient flow, stability of stationary solutions, eigenvalues,
isoperimetric problems
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1. Introduction. The geometrical evolution law

V = −∆κ

was derived by Mullins [20] to model the motion of interfaces in the case that the
motion of interfaces is governed purely by mass diffusion within the interfaces (for
simplicity we set the diffusion constant to 1). Here V is the normal velocity of the
evolving interface, ∆ is the Laplace–Beltrami operator, and κ is the mean curvature of
the interface where we use the sign convention that a sphere with the normal pointing
to the inside has positive curvature. We also refer to work by Davi and Gurtin [7], who
derived the above law from balance laws in conjunction with an appropriate version of
the second law of thermodynamics, and to work by Cahn, Elliott, and Novick-Cohen
[4], who derived this evolution law as the sharp interface limit of a Cahn–Hilliard
equation with degenerate mobility. This evolution law has the property that for
closed embedded hypersurfaces the enclosed volume is preserved and the surface area
decreases in time (see, e.g., [10], [11]). An existence result for curves in the plane
and stability of spheres—which are stationary under the flow—has been shown by
Elliott and Garcke [10]. This result was generalized to the higher-dimensional case
by Escher, Mayer, and Simonett [11].

In general, interfaces will meet an outer boundary or they might intersect at
triple or multiple junctions. In this case boundary conditions have to hold, and they
were derived by Garcke and Novick-Cohen [14] as the asymptotic limit of a Cahn–
Hilliard system with a degenerate mobility matrix. At the outer boundary and at
triple junctions, angle conditions and a balance condition for the mass fluxes have to
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hold. In addition, at triple junctions a continuity condition for chemical potentials
has to hold. Numerical simulations for the degenerate Cahn–Hilliard systems have
been performed by Barrett, Blowey, and Garcke [2]. An existence result for surface
diffusion of curves that intersect the outer boundary and meet at triple junctions has
been given by Garcke and Novick-Cohen [14]. The stability problem for stationary
solutions for the surface diffusion flow with triple junctions was addressed by Ito and
Kohsaka [18], by Escher, Garcke, and Ito [12] in the case of a geometry with a mirror
symmetry, and by Ito and Kohsaka [19] in a triangular domain. The general case is
still open. This is partly due to the fact that the stability depends in a nontrivial way
on the geometry of the boundary.

For motion by mean curvature, which is given by the law

V = κ,(1.1)

the stability of stationary interfaces with boundaries was studied by Rubinstein, Stern-
berg, and Keller [21] in the case where the evolving curves intersect an outer boundary
with a 90◦ angle. For stability results for the stationary solutions of (1.1) in the pres-
ence of triple junctions, we refer to Sternberg and Ziemer [22] and Ikota and Yanagida
[16]. The last authors developed a linear stability criterion that is based on ideas of
Ei and Yanagida [9] and Ei, Sato, and Yanagida [8].

One main difference between motion by mean curvature and motion by surface
diffusion is that the former does not preserve volume, whereas the latter does. This
implies that the stationary solutions are different. For motion by surface diffusion,
spherical arcs that intersect the outer boundary perpendicular are stationary. It
is the goal of this paper to study the stability of such stationary solutions under
surface diffusion. More precisely we study the following problem. Given an open
bounded domain Ω, we look for evolving curves Γ = (Γt)t>0 (for a definition see
Gurtin [15]) lying in Ω with the following properties (for a precise definition of the
flow see section 2):⎧⎪⎪⎪⎨

⎪⎪⎪⎩
V = −κss for all points on the curve,

∂Γt ⊂ ∂Ω at all times,

�(∂Ω,Γ) = π/2 at the boundary,

κs = 0 at the boundary.

(1.2)

Here a subscript s denotes differentiation with respect to arc-length. The second and
third conditions imply that the boundary of the curves at all times intersects the outer
boundary perpendicularly. The last condition says that there is no mass flux at the
outer boundary (see [14]). It is not difficult to show that (see [14])

d

dt
AreaΓ(t) = 0,

d

dt
LengthΓ(t) ≤ 0

under surface diffusion with the above boundary conditions. Here we denote by
AreaΓ(t) the area enclosed by the curve and ∂Ω at time t (for definiteness we take the
side of Γ toward which the normal points) and by LengthΓ(t) the length of Γ at time t.

We will introduce a linear stability criterion based on the work of [9], [8], [16],
which studied the mean curvature flow. The analysis in the case of surface diffusion
is more difficult because the surface diffusion flow is the gradient flow with respect
to the H−1 inner product (see [5], [13], [23]) in contrast to the case of motion by
mean curvature, which is a gradient flow with respect to the L2 inner product. We
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want to emphasize that the observation that also the linearized problem is an H−1-
gradient flow of the bilinearized area functional is an important ingredient of our
analysis (see section 4). Indeed, the zero solution is an asymptotically stable solution
of the linearized equation ρt = Aρ (A being the linearized operator) if and only if
all eigenvalues of A are negative, and it will turn out that this is equivalent to the
fact that the bilinearized area functional is positive definite. We refer to Bates and
Fife [3], who studied a linearized stability analysis for the Cahn–Hilliard equation,
and also to Alikakos et al. [1], who considered the Mullins–Sekerka motion—which is
also volume conserving—of small droplets on a fixed boundary.

The stability of stationary arcs that are attached perpendicular to the outer
boundary depends on their curvature, their length, and the curvature of the outer
boundary in a nontrivial way. The reader is advised to have a look at section 7,
where we illustrate the stability behavior with the help of several examples. Taking
advantage of the gradient flow property of the evolution and using variational argu-
ments, we are able to analyze the linear stability behavior, i.e., the stability of the
zero solution of the linearized operator (see section 6).

It would remain to show that the principle of linearized stability holds, which
means, except for the critical (or neutral) case of stability, the zero solution of the
linearized problem has the same stability as the stationary solution of the nonlin-
ear problem around which we linearized the equation. For the nonlinear boundary
conditions appearing in our problem, abstract semigroup theory cannot be applied
directly. However, we refer to [12] for a result in this direction. Note that the princi-
ple of linearized stability in [12] is shown in spaces consisting of functions which are
(4+γ)-Hölder continuous with respect to the space variable for γ ∈ (0, 1). We remark
that it is a nontrivial task to apply the method of [12] to our problem. Indeed, in the
setting in [12] the boundary conditions are simpler and the difficulties arising from
the nonlinear boundary conditions could be resolved. But in our case the boundary
conditions keep a highly nonlinear form, which makes the analysis of the principle
of linearized stability more difficult. Furthermore, the area-preserving property leads
to additional difficulties. In the linearization, a zero eigenvalue appears if we do not
take the area-preserving property into account. The zero eigenvalue corresponds to
equilibria of (1.2), which in general enclose a different area. In conclusion, if we do
not take the mass conservation into account, none of the equilibria is isolated, which
further complicates the nonlinear stability analysis (see [11], [12] for similar difficulties
arising from an area-preserving property). Nonlinear stability analysis is the topic of
ongoing research.

Finally, we remark that our results also have some relevance for isoperimetric
problems, as they give stability results for critical points of the length functional,
which is restricted to curves that enclose a fixed area. Since the surface diffusion
flow reduces length conserving area at the same time, the study of critical points of
the length functional (given an area constraint) is what the stability analysis for the
evolution problem can be reduced to.

2. Parameterization. In this section we give a precise definition of the flow
(1.2), and in particular we introduce a parameterization of an evolving curve that will
be convenient for our analysis. For a smooth function ψ : R

2 → R with ∇ψ(x) �= 0,
if ψ(x) = 0, set

Ω = {x ∈ R
2 | ψ(x) < 0}, ∂Ω = {x ∈ R

2 | ψ(x) = 0}.
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Let Γ∗ be a stationary solution and let σ be the arc-length parameter of Γ∗. Then we
denote an arc-length parameterization of Γ∗ as

Γ∗ = {Φ∗(σ) | σ ∈ [−l, l]}.

Note that we can extend Γ∗ naturally either to the full circle when Γ∗ is a part of the
circle or to the straight line when Γ∗ is a line segment. Also note that the curvature
κ∗ of Γ∗ is a constant. We denote

l̄ :=

{
π/|κ∗|, κ∗ �= 0,
+∞, κ∗ = 0;

i.e., l̄ is the length of the extension of Γ∗ to a full circle (if κ∗ �= 0). Define{
ξ+(q) = max{σ ∈ (−l̄, l̄) | Φ∗(σ) + qN∗(σ) ∈ Ω},
ξ−(q) = min{σ ∈ (−l̄, l̄) | Φ∗(σ) + qN∗(σ) ∈ Ω},

where q ∈ [−d, d] for a small d > 0, and N∗(σ) is a unit normal vector of Γ∗ at σ and
is obtained by rotating the unit tangent vector T∗(σ) of Γ∗ with π/2. Then it holds
that ψ(Φ∗(ξ±(q)) + qN∗(ξ±(q))) = 0. In addition, we have ξ±(0) = ±l. Using the
implicit function theorem, we see that ξ+(q) and ξ−(q) are smooth. Let

Ψ(σ, q) := Φ∗(ξ(σ, q)) + qN∗(ξ(σ, q))

with

ξ(σ, q) := ξ−(q) +
σ + l

2l
(ξ+(q) − ξ−(q)).

Note that ξ(±l, q) = ξ±(q) and ξ(σ, 0) = σ.
Let Γ be curves in the neighborhood of Γ∗, which touch the boundary ∂Ω and are

contained in Ω. For some functions ρ : [−l, l] → [−d, d], we define Φ(σ) := Ψ(σ, ρ(σ))
for σ ∈ [−l, l], which denotes a parameterization of such curves Γ. Thus we set

Γ(t) := {Φ(σ, t) | σ ∈ [−l, l]}(2.1)

with Φ(σ, t) := Ψ(σ, ρ(σ, t)) for a function ρ depending on σ and t. We remark that
ρ ≡ 0 means that curves Γ coincide with a stationary curve Γ∗.

Let us derive the representation of (1.2) to the parameterization (2.1). For the
arc-length parameter s of Γ, we have

ds

dσ
= |Φσ| =

√
|Ψσ|2 + 2(Ψσ,Ψq)R2ρσ + |Ψq|2ρ2

σ (=: J(ρ)).(2.2)

Here and hereafter (·, ·)R2 denotes the inner product in R
2. Then we find

T =
1

J(ρ)
Φσ, N =

1

J(ρ)
RΦσ,

where T and N are the unit tangent and normal vector of Γ, respectively, and R is
the rotation matrix with π/2. The normal velocity V of Γ(t) is denoted by

V = (Φt, N)R2 =
1

J(ρ)
(Φt, RΦσ)R2 =

1

J(ρ)
(Ψq, RΨσ)R2ρt.
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Moreover, since (2.2) gives

∂2
s =

1

J(ρ)
∂σ

(
1

J(ρ)
∂σ

)
=

1

(J(ρ))2
∂2
σ +

1

J(ρ)

(
∂σ

1

J(ρ)

)
∂σ (=: ∆(ρ)),(2.3)

the curvature κ of Γ(t) is written by

κ(ρ) = (∆(ρ)Φ, N)R2

=
1

(J(ρ))3
(Φσσ, RΦσ)R2

=
1

(J(ρ))3

[
(Ψq, RΨσ)R2ρσσ +

{
2(Ψσq, RΨσ)R2 + (Ψσσ, RΨq)R2

}
ρσ

+
{
(Ψqq, RΨσ)R2 + 2(Ψσq, RΨq)R2 + (Ψqq, RΨq)R2ρσ

}
ρ2
σ

+(Ψσσ, RΨσ)R2

]
.(2.4)

Thus the surface diffusion flow equation is described by

ρt = −L(ρ)∆(ρ)κ(ρ),(2.5)

where

L(ρ) :=
1

(Ψq, RΨσ)R2

J(ρ).(2.6)

Let us derive the representation of the boundary conditions, which are the Neu-
mann boundary condition and the no-flux condition κs = 0 on ∂Ω (the second con-
dition in (1.2) is automatically fulfilled). Since the Neumann boundary condition
(Φσ, T∂Ω)R2 = 0 on ∂Ω is equivalent to (RΦσ,∇ψ(Φ))R2 = 0 on ∂Ω, we have

(RΨσ + RΨqρσ,∇ψ(Ψ))R2 = 0 at σ = ±l.

By (2.2) and (2.4) the no-flux condition κs = 0 on ∂Ω is denoted by

∂σκ(ρ) = 0 at σ = ±l.

Consequently we have the following proposition.
Proposition 2.1. For a parameterization (2.1), problem (1.2) is represented by⎧⎨

⎩
ρt = −L(ρ)∆(ρ)κ(ρ) for σ ∈ (−l, l), t > 0,
(RΨσ + RΨqρσ,∇ψ(Ψ))R2 = 0 at σ = ±l,
∂σκ(ρ) = 0 at σ = ±l,

(2.7)

where L(ρ), ∆(ρ), and κ(ρ) are defined by (2.6), (2.3), and (2.4), respectively.

3. Linearization. To study the linearized stability of a stationary solution Γ∗,
the curvature κ∗ of which is a constant, we linearize (2.7) around ρ ≡ 0. For this
purpose we need the following properties of Ψ at q = 0.

Lemma 3.1. For the parameterization of section 2, the following hold:
(i) Ψ(σ, 0) = Φ∗(σ).
(ii) Ψσ(σ, 0) = T∗(σ) and Ψq(σ, 0) = N∗(σ).
(iii) Ψσσ(σ, 0) = κ∗N∗(σ) and Ψσq(σ, 0) = −κ∗T∗(σ).
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(iv) Ψσσq(σ, 0) = −κ2
∗N∗(σ).

Proof. By the definition of Ψ, (i) is obvious. Using (i), we readily derive Ψσ(σ, 0) =
T∗(σ). To derive Ψq(σ, 0) = N∗(σ), we first prove ξ′+(0) = ξ′−(0) = 0. Note that
ξ(±l, q) = ξ±(q) and ξq(±l, q) = ξ′±(q). Since it follows from the Frenet–Serret
formula that

Ψq(σ, q) = ξq(σ, q)(1 − qκ∗)T∗(ξ(σ, q)) + N∗(ξ(σ, q)),(3.1)

we are led to

0 =
d

dq
ψ(Ψ(±l, q))

= (1 − qκ∗)(∇ψ(Ψ(±l, q)), T∗(ξ±(q)))R2ξ′±(q) + (∇ψ(Ψ(±l, q)), N∗(ξ±(q)))R2 .

Putting q = 0, we have (∇ψ(Φ∗(±l)), T∗(±l))R2ξ′±(0) = 0, so that ξ′+(0) = ξ′−(0) = 0.
Then this implies

ξq(σ, 0) = ξ′−(0) +
σ + l

2l
(ξ′+(0) − ξ′−(0)) = 0.

Putting q = 0 in (3.1), we derive Ψq(σ, 0) = N∗(σ). By virtue of (ii) and the
Frenet–Serret formula, we readily derive (iii). Finally, by differentiating Ψσq(σ, 0) =
−κ∗T∗(σ) with respect to σ and applying the Frenet–Serret formula, we are led to
(iv).

We define the operator G(ρ) := −L(ρ)∆(ρ)κ(ρ), which maps a function ρ ∈
C4[−l, l] to a function in C0[−l, l]. Then we can compute this Fréchet derivative as
follows.

Lemma 3.2. The operator G : C4[−l, l] → C0[−l, l] is Fréchet differentiable with
derivative A0 := ∂G(0), where

A0ρ = −∂2
σ(∂2

σ + κ2
∗)ρ.

Proof. Since G(ρ) = −L(ρ)∆(ρ)κ(ρ), we have

A0ρ = ∂G(0)ρ = −(∂L(0)ρ)∆(0)κ(0) − L(0)(∂∆(0)ρ)κ(0) − L(0)∆(0)∂κ(0)ρ.(3.2)

By virtue of Lemma 3.1 and the definition of L(ρ), ∆(ρ), and κ(ρ), we observe

L(0) ≡ 1, ∆(0) = ∂2
σ, κ(0) ≡ κ∗.(3.3)

Then, since κ∗ is a constant, we have ∆(0)κ(0) = 0 and

(∂∆(0)ρ)κ(0)

=

(
d

dε
(J(ερ))−2

∣∣∣∣
ε=0

)
∂2
σκ(0) +

(
d

dε
(J(ερ))−1∂σ(J(ερ))−1

∣∣∣∣
ε=0

)
∂σκ(0) = 0.

Let us derive ∂κ(0)ρ. Set⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

a1(ρ) = (Ψq, RΨσ)R2 ,

a2(ρ) = 2(Ψσq, RΨσ)R2 + (Ψσσ, RΨq)R2 ,

a3(ρ) = (Ψqq, RΨσ)R2 + 2(Ψσq, RΨq)R2 + (Ψqq, RΨq)R2ρσ,

a4(ρ) = (Ψσσ, RΨσ)R2 .
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Then κ(ρ) is written by

κ(ρ) = (J(ρ))−3a(ρ),

where

a(ρ) := a1(ρ)ρσσ + a2(ρ)ρσ + a3(ρ)ρ
2
σ + a4(ρ).

Thus we have

∂κ(0)ρ =
d

dε
κ(ερ)

∣∣∣∣
ε=0

= (J(0))−3 d

dε
a(ερ)

∣∣∣∣
ε=0

+

(
d

dε
(J(ερ))−3

∣∣∣∣
ε=0

)
a(0).

By virtue of Lemma 3.1, we observe J(0) = 1 and a(0) = a4(0) = κ∗. In addition, it
holds that

d

dε
a(ερ)

∣∣∣∣
ε=0

= a1(0)ρσσ + a2(0)ρσ + ∂a4(0)ρ = ∂2
σρ− 2κ2

∗ρ,

d

dε
(J(ερ))−3

∣∣∣∣
ε=0

= −3(J(0))−4 d

dε
J(ερ)

∣∣∣∣
ε=0

= 3κ∗ρ.

Consequently, we are led to

∂κ(0)ρ = (∂2
σ + κ2

∗)ρ.(3.4)

The assertion follows from (3.2)–(3.4).
Let us consider the boundary condition. Set{

B1(ρ) := (RΨσ,∇ψ(Ψ))R2 + (RΨq,∇ψ(Ψ))R2ρσ,
B2(ρ) := ∂σκ(ρ)

for ρ ∈ C3[−l, l], i.e., the operator Bi (i = 1, 2) maps C3[−l, l] to C0[−l, l]. Define

B0 :=

(
∂B1(0)/(∓|∇ψ(x±

∗ )|)
∂B2(0)

)
at σ = ±l,

where x±
∗ := Φ∗(±l) ∈ ∂Ω and ∂Bi(0) (i = 1, 2) is the Fréchet derivatives of Bi at 0.

Then we have the following representation of B0.
Lemma 3.3. Let ρ belong to C3[−l, l] and let h± be the curvatures of ∂Ω at

x±
∗ ∈ Γ∗ ∩ ∂Ω, respectively (where we use the sign convention that h± < 0 if Ω is

convex). Then

B0ρ =

(
∂σ ± h±

∂σ(∂2
σ + κ2

∗)

)
ρ at σ = ±l.

Proof. First we derive ∂B1(0). Set

b1(ρ) = (RΨσ,∇ψ(Ψ))R2 , b2(ρ) = (RΨq,∇ψ(Ψ))R2 .

Then we have B1(ρ) = b1(ρ) + b2(ρ)ρσ, so that

∂B1(0)ρ =
d

dε
B1(ερ)

∣∣∣∣
ε=0

=
d

dε
b1(ερ)

∣∣∣∣
ε=0

+ b2(0)ρσ.
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It follows from Lemma 3.1 that

d

dε
RΨσ(σ, ερ)

∣∣∣∣
ε=0

= −κ∗N∗(σ)ρ,

d

dε
∇ψ(Ψ(σ, ερ))

∣∣∣∣
ε=0

= [D2ψ(Φ∗(σ))]N∗(σ)ρ,

where D2ψ is the Hessian matrix of ψ. Since (N∗(σ),∇ψ(Φ∗(σ)))R2 = 0 at σ = ±l,
we are led to

d

dε
b1(ερ)

∣∣∣∣
ε=0

= (N∗(σ), [D2ψ(Φ∗(σ))]N∗(σ))R2ρ at σ = ±l.

This implies that for σ = ±l

∂B1(0)ρ = −(T∗(σ),∇ψ(Φ∗(σ)))R2ρσ + (N∗(σ), [D2ψ(Φ∗(σ))]N∗(σ))R2ρ.

Let the arc-length parameter of ∂Ω run clockwise. Here we have

κ∂Ω = − 1

|∇ψ| ([D
2ψ]T∂Ω, T∂Ω)R2 ,

where T∂Ω is the unit tangent vector of ∂Ω and κ∂Ω is computed in the direction of
the unit normal vector N∂Ω of ∂Ω, which is obtained by rotating T∂Ω with π/2. Note
that h± = κ∂Ω(x±

∗ ), and denote T±
∂Ω := T∂Ω(x±

∗ ) and N±
∂Ω := N∂Ω(x±

∗ ). At σ = ±l,
we observe T∗(±l) = ±N±

∂Ω and N∗(±l) = ∓T±
∂Ω. This implies that for σ = l

∂B1(0)ρ = −(N+
∂Ω,∇ψ(x+

∗ ))R2ρσ + (−T+
∂Ω, [D

2ψ(x+
∗ )](−T+

∂Ω))R2ρ

= −|∇ψ(x+
∗ )|

{
ρσ +

(
− 1

|∇ψ(x+
∗ )|

(T+
∂Ω, [D

2ψ(x+
∗ )]T+

∂Ω)R2

)
ρ

}
= −|∇ψ(x+

∗ )|(ρσ + h+ρ),

and that for σ = −l

∂B1(0)ρ = −(−N−
∂Ω,∇ψ(x−

∗ ))R2ρσ + (T−
∂Ω, [D

2ψ(x−
∗ )]T−

∂Ω)R2ρ

= |∇ψ(x−
∗ )|

{
ρσ −

(
− 1

|∇ψ(x−
∗ )|

(T−
∂Ω, [D

2ψ(x−
∗ )]T−

∂Ω)R2

)
ρ

}
= |∇ψ(x−

∗ )|(ρσ − h−ρ).

Consequently, we have

∓ 1

|∇ψ(x±
∗ )|

∂B1(0)ρ = (∂σ ± h±)ρ at σ = ±l.

Let us also derive ∂B2(0). From (3.4) we have

∂B2(0)ρ = ∂σ[∂κ(0)ρ] = ∂σ(∂2
σ + κ2

∗)ρ at σ = ±l.

This completes the proof.

By Lemmas 3.2 and 3.3 we have derived the linearization of (2.7) around ρ ≡ 0.
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Theorem 3.4. The linearization of (2.7) around ρ ≡ 0 is as follows:⎧⎪⎨
⎪⎩

ρt = −∂2
σ(∂2

σ + κ2
∗)ρ for σ ∈ (−l, l), t > 0 ,

(∂σ ± h±)ρ = 0 at σ = ±l,

∂σ(∂2
σ + κ2

∗)ρ = 0 at σ = ±l.

(3.5)

Remark 3.5. The flow (1.2) has the property that the area enclosed by the curve
Γ and ∂Ω is preserved. A constraint of fixed area leads to a nonlinear constraint for
ρ. If we linearize this constraint, we obtain

∫ l

−l

ρ dσ = 0.(3.6)

Since the original problem (1.2) has the area-preserving property, we will analyze
the linearized problem (3.5) for functions ρ satisfying (3.6). In fact, the linearized
operator will have one eigenvalue zero if we do not take the constraint (3.6) into
account. But the eigenfunction related to the eigenvalue zero corresponds to solutions
with a different mean value and is therefore not relevant for the stability (see [11],
[12] for similar difficulties arising from an area constraint).

4. Gradient flow structure. The surface diffusion flow can be interpreted as
the H−1-gradient flow of the area functional (see [5], [13], [23]). In this section we
demonstrate that the linearization (3.5) derived in section 3 can also be interpreted
as a gradient flow. This observation will be important for our stability analysis.

In what follows we will need the duality pairing 〈·, ·〉 between (H1(−l, l))′ and
(H1(−l, l)), and we will need the following weak formulation. We denote by ‖ · ‖s the
norm on Hs(−l, l) where H0(−l, l) = L2(−l, l).

Definition 4.1. We say that uv ∈ H1(−l, l) for a given v ∈ (H1(−l, l))′ with
〈v, 1〉 = 0 is a weak solution of{

−∂2
σuv = v for σ ∈ (−l, l) ,

∂σuv = 0 at σ = ±l
(4.1)

if uv satisfies

〈v, ξ〉 =

∫ l

−l

∂σuv∂σξ

for all ξ ∈ H1(−l, l).
Definition 4.2. For a given v ∈ (H1(−l, l))′ with 〈v, 1〉 = 0, we say that

ρ ∈ H3(−l, l) with
∫ l

−l
ρ = 0 is a weak solution of the boundary value problem

⎧⎪⎨
⎪⎩

v = −∂2
σ(∂2

σ + κ2
∗)ρ for σ ∈ (−l, l) ,

(∂σ ± h±)ρ = 0 at σ = ±l ,

∂σ(∂2
σ + κ2

∗)ρ = 0 at σ = ±l

(4.2)

if ρ satisfies

〈v, ξ〉 =

∫ l

−l

∂σ(∂2
σ + κ2

∗)ρ ∂σξ and (∂σ ± h±)ρ = 0 at σ = ±l
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for all ξ ∈ H1(−l, l).
In the case that v ∈ L2(−l, l) we obtain that v = −∂2

σ(∂2
σ +κ2

∗)ρ is fulfilled almost
everywhere in (−l, l) and ∂σ(∂2

σ + κ2
∗)ρ = 0 is fulfilled for σ = ±l.

In addition we also need the symmetric bilinear form on H1(−l, l),

I(ρ1, ρ2) :=

∫ l

−l

{∂σρ1∂σρ2 − κ2
∗ρ1ρ2}dσ + h+ρ1(l)ρ2(l) + h−ρ1(−l)ρ2(−l),

and the inner product

(ρ1, ρ2)−1 :=

∫ l

−l

∂σuρ1∂σuρ2 ,

where uρi ∈ H1(−l, l) for a given ρi ∈ (H1(−l, l))′ with 〈ρi, 1〉 = 0 is defined as the
weak solution of (4.1). The bilinear form I is defined on H1(−l, l) and the inner
product (· , ·)−1 is defined for all pairs of elements in (H1(−l, l))′ with 〈ρi, 1〉 = 0. We
remark that by Definition 4.1

(ρ1, ρ2)−1 = 〈ρ1, uρ2
〉(4.3)

holds for ρi ∈ (H1(−l, l))′ with 〈ρi, 1〉 = 0.
Now we are going to show that the linearized problem (3.5) is the gradient flow

of E(ρ) := I(ρ, ρ)/2 with respect to the H−1 inner product (·, ·)−1. Let us review the
concept of gradient flows. For a given functional E on a linear space X and an inner
product (·, ·)X on X, we say that a time-dependent function ρ with values in X is a
solution of the gradient flow equation to E and (·, ·)X if and only if

(ρt(t), ξ)X = −∂E(ρ(t))(ξ)

holds for all ξ ∈ X and all t. Here ∂E(ρ(t))(ξ) denotes the derivative of E at the
point ρ(t) in the direction ξ. The fact that the linearized problem (3.5) is the gradient
flow of I(ρ, ρ)/2 with respect to the (·, ·)−1 inner product follows from the following
lemma. This is true since the derivative of E(ρ) = I(ρ, ρ)/2 in a direction ξ is given
by I(ρ, ξ).

Lemma 4.3. Let v ∈ (H1(−l, l))′ with 〈v, 1〉 = 0 be given. Then a function

ρ ∈ H3(−l, l) with
∫ l

−l
ρ = 0 is a weak solution of (4.2) if and only if

(v, ξ)−1 = −I(ρ, ξ)

holds for all ξ ∈ H1(−l, l) with
∫ l

−l
ξ = 0.

Proof. Let ρ ∈ H3(−l, l) be a weak solution of (4.2). By (4.3) and Definition 4.2,
we have

(v, ξ)−1 = 〈v, uξ〉 =

∫ l

−l

∂σ(∂2
σ + κ2

∗)ρ ∂σuξ

for all ξ ∈ H1(−l, l) with
∫ l

−l
ξ = 0. Note that uξ ∈ H1(−l, l) is a weak solution of

(4.1) with ξ ∈ H1(−l, l). Then, by virtue of (∂2
σ + κ2

∗)ρ ∈ H1(−l, l), we see

∫ l

−l

∂σ(∂2
σ + κ2

∗)ρ ∂σuξ =

∫ l

−l

(∂2
σ + κ2

∗)ρ ξ.
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This implies that

(v, ξ)−1 =

∫ l

−l

(∂2
σ + κ2

∗)ρ ξ

= −
∫ l

−l

(∂σρ ∂σξ − κ2
∗ρ ξ) + [∂σρ ξ]

σ=l
σ=−l

= −I(ρ, ξ) .

The last equality is shown by using (∂σ ± h±)ρ = 0 at σ = ±l.

Conversely, assume that ρ ∈ H1(−l, l) with
∫ l

−l
ρ = 0 satisfies

(v, ξ)−1 = −I(ρ, ξ)(4.4)

for all ξ ∈ H1(−l, l) with
∫ l

−l
ξ = 0. Choose ξ = −∂2

ση in (4.4) for a given function

η ∈ H3(−l, l) with ∂ση = 0 at σ = ±l. Then it holds that

〈v, η〉 = (v, ξ)−1

= −I(ρ, ξ)

= −
∫ l

−l

(∂σρ ∂σξ − κ2
∗ρ ξ) − {h+ρ(l)ξ(l) + h−ρ(−l)ξ(−l)}

= −
∫ l

−l

(−∂σρ ∂
3
ση + κ2

∗ρ ∂
2
ση) + {h+ρ(l)∂

2
ση(l) + h−ρ(−l)∂2

ση(−l)} .

Since v ∈ (H1(−l, l))′, we deduce from the above identity that ρ ∈ H3(−l, l). Inte-
gration by parts gives

〈v, η〉 =

∫ l

−l

(−∂2
σρ ∂

2
ση + κ2

∗∂σρ ∂ση) + [(∂σρ± h±ρ)∂
2
ση]

σ=l
σ=−l(4.5)

=

∫ l

−l

∂σ(∂2
σ + κ2

∗)ρ ∂ση + [(∂σρ± h±ρ)∂
2
ση]

σ=l
σ=−l ,

where [(∂σρ±h±ρ)∂
2
ση]

σ=l
σ=−l = (∂σρ+h+ρ)∂

2
ση|σ=l− (∂σρ−h−ρ)∂

2
ση|σ=−l. Since ∂2

ση
can be chosen arbitrarily at σ = ±l and v is a bounded linear functional on H1(−l, l),
we can deduce that the first boundary condition (∂σ ± h±)ρ = 0 at σ = ±l holds.
The remaining identity in (4.5) then is a weak formulation of v = −∂2

σ(∂2
σ + κ2

∗)ρ for
σ ∈ (−l, l) together with ∂σ(∂2

σ + κ2
∗)ρ = 0 at σ = ±l (see Definition 4.2).

5. Self-adjointness of the linearized operator. It is the aim of this section to
show that the linearized operator is self-adjoint and to study its spectrum. A nonlinear
stability analysis will most likely involve spaces of functions that are differentiable in
a classical sense. For analyzing the spectrum it will be more appropriate to use spaces
involving functions that are differentiable in a weak sense. Since eigenfunctions will
be smooth, the spectrum will not depend on the domain of definition as long as the
boundary conditions are incorporated correctly. Therefore, choosing an appropriate
domain of definition, the linearized operator of (3.5) is given by

A : D(A) → H
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with⎧⎪⎨
⎪⎩

D(A) =

{
ρ ∈ H3(−l, l) | (∂σ ± h±)ρ = 0 at σ = ±l and

∫ l

−l

ρ = 0

}
,

H = {ρ ∈ (H1(−l, l))′ | 〈ρ, 1〉 = 0}

and

〈Aρ, ξ〉 :=

∫ l

−l

∂σ(∂2
σ + κ2

∗)ρ ∂σξ .(5.1)

Then the boundary value problem (4.2) corresponds to the problem of finding a ρ ∈
D(A) with

Aρ = v .

We also remark that this definition gives, for all ξ ∈ H1(−l, l) with
∫ l

−l
ξ = 0,

(Aρ, ξ)−1 = −I(ρ, ξ).

For this operator A, we have the following lemma.
Lemma 5.1. The operator A is symmetric with respect to the inner product

(·, ·)−1.
Proof. For all ρ, ξ ∈ D(A) we have

(Aρ, ξ)−1 = −I(ρ, ξ) = −I(ξ, ρ) = (Aξ, ρ)−1 = (ρ,Aξ)−1,

so that A is symmetric.
We need to analyze the spectrum of A in order to decide on the stability behavior

of the linearized problem (3.5). Using classical principles of the variational calculus,
we can describe the spectrum of A with the help of the inner product (· , ·)−1 and I.
In fact, if ρ is an eigenfunction to the eigenvalue λ, it holds that

λ(ρ, ξ)−1 = (Aρ, ξ)−1 = −I(ρ, ξ) .

We remark that eigenvalues λ �= 0 always correspond to eigenfunctions that have the
mean value zero. This follows by integrating the identity

−∂2
σ(∂2

σ + κ2
∗)ρ = λρ

and using the boundary conditions. In what follows we will study only eigenvalues
which have eigenfunctions with mean value zero. This is a natural request for the
linearized problem. It follows when we take the mass constraint in the nonlinear
problem into account. This makes sense because the surface diffusion flow is mass
preserving (cf. [14]).

Therefore we define V = {ρ ∈ H1(−l, l) |
∫ l

−l
ρ = 0}. The following two lemmas

will be needed to show the boundness of the eigenvalue from above.
Lemma 5.2. For all δ > 0 there exists a Cδ such that for all functions ρ ∈ V the

inequality

ρ(l)2 ≤ δ‖∂σρ‖2
0 + Cδ‖ρ‖2

−1

holds. The same inequality holds for ρ(−l)2 instead of ρ(l)2.
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Proof. We prove the assertion by contradiction. Assume that there exists a δ > 0
such that for all n ∈ N, ρn ∈ V with ρn(l)2 = 1 satisfy

1 = ρn(l)2 > δ‖∂σρn‖2
0 + n‖ρn‖2

−1 .

This implies

‖ρn‖2
−1 <

1

n
→ 0 as n → ∞

and

‖∂σρn‖2
0 <

1

δ
.

Since
∫ l

−l
ρn = 0, we conclude from Poincaré’s inequality that ρn is bounded uniformly

in H1(−l, l). This gives

ρn → 0 weakly in H1(−l, l)

and therefore (since the embedding H1(−l, l) into C0([−l, l]) is compact)

ρn(l) → 0 .

This is a contradiction, and therefore the lemma is shown.
Lemma 5.3. There exist positive constants c1 and c2 such that

‖ρ‖2
1 ≤ c1‖ρ‖2

−1 + c2I(ρ, ρ) for all ρ ∈ V .

Proof. Since the embedding H1(−l, l) ↪→ L2(−l, l) is compact, we obtain that for
all δ > 0 there exists a Ĉδ > 0 such that

‖ρ‖2
0 ≤ δ‖∂σρ‖2

0 + Ĉδ‖ρ‖2
−1 .

This can, for example, be shown in exactly the same manner as in the proof of the
preceding lemma. Therefore we obtain, with the help of Lemma 5.2 and the above
inequality,

I(ρ, ρ) =

∫ l

−l

|∂σρ|2 − κ2
∗

∫ l

−l

ρ2 + h+ρ(l)
2 + h−ρ(−l)2

≥
∫ l

−l

|∂σρ|2 − κ2
∗

∫ l

−l

ρ2 − |h+|ρ(l)2 − |h−|ρ(−l)2

≥ (1 − ε)

∫ l

−l

|∂σρ|2 − Cε‖ρ‖−1,

which holds for suitable ε and Cε. The above inequality proves the lemma.
Corollary 5.4. The largest eigenvalue of A is bounded from above by c1/c2.
Proof. Let λ be an eigenvalue of A. Then there exists a ρ �= 0 such that

λ(ρ, ρ)−1 = −I(ρ, ρ) .

Assume λ > c1/c2. This implies

0 = I(ρ, ρ) + λ(ρ, ρ)−1 > I(ρ, ρ) + c1/c2(ρ, ρ)−1 ≥ 1/c2‖ρ‖2
1 > 0,
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which is a contradiction.
By virtue of Lemma 5.1 and Corollary 5.4, we have following theorem.
Theorem 5.5. (i) The operator A is self-adjoint with respect to the inner product

(·, ·)−1.
(ii) The spectrum of A contains a countable system of real eigenvalues.
(iii) The initial value problem (3.5) is solvable for initial data in H.
(iv) The zero solution is an asymptotically stable solution of (3.5) if and only if

the largest eigenvalue of A is negative.
Proof. First we show that the resolvent (A−ω)−1 exists for some ω ∈ R. Choosing

ω > c1/c2 and using Corollary 5.4, we know that A − ω is injective. It remains to
show that A− ω is surjective. For a given f ∈ H we need to prove that there exists
a weak solution ρ of the boundary value problem⎧⎨

⎩
−∂2

σ{−(∂2
σ + κ2

∗)}ρ + ωρ = f for σ ∈ (−l, l),
(∂σ ± h±)ρ = 0 at σ = ±l,
∂σ(∂2

σ + κ2
∗)ρ = 0 at σ = ±l.

(5.2)

To obtain a solution to (5.2) we use the fact that the minimizing problem

F (ρ) :=

∫ l

−l

(1

2
|∂σρ|2 −

1

2
κ2
∗ρ

2
)

+
1

2
h+ρ

2(l) +
1

2
h−ρ

2(−l) +
ω

2
‖ρ‖2

−1 −
∫ l

−l

ufρ → min

under all ρ ∈ H1(−l, l) with
∫ l

−l
ρ = 0 admits as solutions ρ̃. This holds since F is

coercive, which follows from Lemmas 5.2 and 5.3. Taking the first variation of F , we
observe that {

−(∂2
σ + κ2

∗)ρ̃ + ωuρ̃ = uf for σ ∈ (−l, l),
(∂σ ± h±)ρ̃ = 0 at σ = ±l

(5.3)

holds in a weak sense. Since uρ̃, uf ∈ H1(−l, l), we have ρ̃ ∈ H3(−l, l). Furthermore,
it follows from ∂σuρ̃ = ∂σuf = 0 at σ = ±l that ∂σ(∂2

σ + κ2
∗)ρ̄ = 0 at σ = ±l. Taking

second derivatives of (5.3) in a weak sense, we derive that ρ̃ solves (5.2). This shows
that A− ω is surjective and hence (A− ω)−1 exists.

Let us prove (i). We already know from Lemma 5.1 that A is symmetric. Since
the self-adjointness of A follows from the self-adjointness of A − ω for some ω ∈ R,
we show the self-adjointness of A− ω. Suppose that there are v, w ∈ H such that

((A− ω)ρ, v)−1 = (ρ,w)−1(5.4)

for all ρ ∈ D(A−ω). By the above argument A−ω is invertible if ω is large enough.
Then there exists a z ∈ D(A− ω) such that

(A− ω)z = w(5.5)

for sufficiently large ω. By (5.4), (5.5), and Lemma 5.1, we have

((A− ω)ρ, v)−1 = (ρ, (A− ω)z)−1 = ((A− ω)ρ, z)−1.

Since A− ω is surjective, we obtain v = z. This implies that v ∈ D(A− ω) and

(A− ω)v = w,

so that A− ω is self-adjoint.
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Since (A−ω)−1 exists and is compact, (ii) follows from [14, Theorem 6.29, Chap-
ter 3] and the fact that A is self-adjoint.

Using the fact that A is a self-adjoint operator on H, the theory of semigroups is
applicable to show (iii) (see, e.g., the functional calculus in sections 5.8–5.10 of [24]).
Semigroup theory also gives (iv).

To decide on the linearized stability, it will be important to know that the eigen-
values of A depend continuously on h+, h−, and κ2

∗ and are also monotone in each of
these parameters. The following lemma ensures these properties.

Lemma 5.6. Let

λ1 ≥ λ2 ≥ λ3 ≥ · · ·

be the eigenvalues of A (taking the multiplicity into account).
(i) Then it holds for all n ∈ N that

−λn = inf
W∈Σn

sup
u∈W\{0}

I(u, u)

(u, u)−1
,

−λn = sup
W∈Σn−1

inf
u∈W⊥\{0}

I(u, u)

(u, u)−1
.

Here Σn is the collection of n-dimensional subspaces of V and W⊥ is the orthogonal
complement with respect to the (· , ·)−1-scalar product.

(ii) The eigenvalues λn depend continuously on h+, h−, and κ2
∗ and are monotone

decreasing in each of the parameters h+, h−, and (−κ2
∗).

Proof. The lemma follows with the help of Courant’s maximum-minimum prin-
ciple, together with the fact that I depends in a monotone and continuous way on
h+, h−, and (−κ2

∗). The proof follows the lines of Courant and Hilbert [4, section
VI.2].

6. Stability analysis. To obtain a linearized stability result for stationary so-
lutions of (2.7), it is enough to show that I(ρ, ρ) is positive for all ρ ∈ V \ {0}. Then
λ1 < 0, which implies stability. This is true since λ1 allows the characterization

−λ1 = inf
ρ∈V \{0}

I(ρ, ρ)

(ρ, ρ)−1
,

and the infimum is in fact a minimum; therefore it is enough to show the positivity
of I pointwise.

In the following arguments we consider only the case κ∗ > 0 (or κ∗ = 0). We
remark that the same result is derived for κ∗ < 0. Also note that the stationary
solution is a part of a circle with radius κ∗. The length of the stationary solution is
2l, and therefore the restriction

2l <
2π

κ∗
,

which gives κ∗l < π, has to hold.
Now the following lemma shows that for given κ∗ the stationary solution is always

stable, provided h+, h− are large enough.
Lemma 6.1. Let κ∗l < π. Then there exists a constant K > 0, such that

I(ρ, ρ) > 0 for all ρ ∈ V \ {0},
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provided that h+, h− > K.
Proof. Using the transformation

u(s) = ρ
(2l

π
s− l

)
and the fact that κ∗l < π, it is enough to show that there exists a constant c > 0 such
that

‖u′‖2
0 − 4‖u‖2

0 + c(u(0)2 + u(π)2) ≥ 0

for all u ∈ H1(0, π) with
∫ π

0
u = 0. Assume that such a constant c does not exist.

Then there exists a sequence un (without loss of generality we assume ‖un‖2
0 = 1)

such that

‖u′
n‖2

0 − 4‖un‖2
0 + n(u2

n(0) + u2
n(π)) < 0 .

This implies

‖u′
n‖2

0 ≤ 4,

and we deduce the existence of a subsequence (which we also label by {un}n∈N) such
that

u′
n → u′ weakly in L2(0, π) ,

un → u strongly in L2(0, π) ,

un → u strongly in C0([0, π]) .

Then

u2
n(0) + u2

n(π) ≤ 4

n

implies

u(0) = u(π) = 0 .

The lower semicontinuity of the L2-norm under weak convergence implies

‖u′‖2
0 < 4‖u‖2

0 ,

which contradicts the facts that u ∈
◦
H1(0, π) and

∫ π

0
u = 0 (see the following lemma).

This proves the lemma.

Lemma 6.2. For all u ∈
◦
H1(0, π) with

∫ π

0
u(s)ds = 0, it holds that

‖u‖2
0 ≤ 1

4
‖u′‖2

2 .

Proof. Each u ∈
◦
H1(0, π) has a representation

u(s) =

∞∑
k=1

ak sin ks .
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Then we have

‖u‖2
0 =

π

2

∞∑
k=1

a2
k , ‖u′‖2

0 =
π

2

∞∑
k=1

k2a2
k.

In addition, the assumption
∫ π

0
u(s)ds = 0 implies

∞∑
k=1
k odd

2

k
ak = 0 .(6.1)

Now we readily see

∞∑
k=1

k even

a2
k ≤ 1

4

∞∑
k=1

k even

k2a2
k .

It remains to estimate the sum over all odd k, which would follow from

3a2
1 ≤

∞∑
k=3
k odd

(k2 − 4)a2
k .(6.2)

The mean value constraint (6.1) implies

a1 = −
∞∑
k=3
k odd

1

k
ak,

which gives

3a2
1 ≤ 3

( ∞∑
k=3
k odd

1

k
ak

)2

≤ 3

( ∞∑
k=3
k odd

a2
k

)( ∞∑
k=3
k odd

1

k2

)
= 3

∞∑
k=3
k odd

a2
k ·

(π2

8
− 1

)
.

Since 3(π2/8 − 1) < k2 − 4 (k = 3, 5, . . . ), the inequality (6.2) is derived. Thus the
lemma follows.

The strategy now is as follows. We know that for large h+ and h− we have stabil-
ity. In addition we know that the eigenvalues depend in a monotone and continuous
way on h+ and h−. If we start with a stable situation (h+, h− � 1) and decrease
h+ and, respectively, h−, a loss of stability can therefore occur only in the case that
the largest eigenvalue λ1 passes through zero. For that reason we analyze for which
values of h+, h−, and κ∗ a zero eigenvalue is possible. To obtain a complete picture
about the dimension of the unstable manifold, we also determine the multiplicity of
a possible zero eigenvalue.

Lemma 6.3. (i) Assume that κ∗ �= 0 and κ∗l < π. Then the operator A has a
zero eigenvalue if and only if

a

c
+

b

c
(h+ + h−) + h+h− = 0,(6.3)

where

a = −2κ2
∗l sin(κ∗l) cos(κ∗l) ,

b = κ∗l(cos2(κ∗l) − sin2(κ∗l)) − sin(κ∗l) cos(k∗l) ,

c = 2
{
− 1

κ∗
sin2(κ∗l) + l sin(κ∗l) cos(κ∗l)

}
.
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Furthermore, the following inequality holds:

b2

c2
− a

c
> 0 .(6.4)

(ii) If κ∗ = 0, then the operator A has a zero eigenvalue if and only if

3

l2
+

2

l
(h+ + h−) + h+h− = 0 .(6.5)

(iii) If we interpret a, b, and c as functions of κ∗, we obtain

a

c
→ 3

l2
and

b

c
→ 2

l
as κ∗ → 0 .

(iv) The multiplicity of a possible zero eigenvalue is equal to one for all h+, h−,
and κ∗.

In what follows we set

D(h+, h−, κ∗) =
a

c
+

b

c
(h+ + h−) + h+h−

for all h+, h−, and κ∗. The extension to κ∗ = 0 is well defined by the preceding
lemma.

Remark 6.4. (a) The equations (6.3) and (6.5) define hyperbolas in the (h−, h+)-
plane (see Figures 1–5). The hyperbolas are symmetric with respect to the h− = h+

line, and the inequality (6.4) implies that the line defined by h+ = h− always has two
intersection points with the hyperbolas.

(b) From (iii) in the preceding lemma we can conclude that the hyperbolas ob-
tained for the case κ∗ > 0 tend to the one for κ∗ = 0.

Proof of Lemma 6.3. (i) Assume that −∂2
σ(∂2

σ + κ2
∗)ρ = 0. Then the function ρ

can be denoted by

ρ(σ) = α1σ + α0 + αc cos(κ∗σ) + αs sin(κ∗σ)

for constants (α1, α0, αc, αs). By the boundary conditions ∂σ(∂2
σ+κ2

∗)ρ = 0 at σ = ±l,
we have

±αcκ
3
∗ sin(κ∗l) − αsκ

3
∗ cos(κ∗l) + κ2

∗{α1 ∓ αcκ∗ sin(κ∗l) + αsκ∗ cos(κ∗l)} = 0.

This implies that κ2
∗α1 = 0, so that α1 = 0. Using the boundary conditions (∂σ ±

h±)ρ = 0 at σ = ±l, we derive{
h+α0 + (−κ∗ sin(κ∗l) + h+ cos(κ∗l))αc + (κ∗ cos(κ∗l) + h+ sin(κ∗l))αs = 0,
−h−α0 + (κ∗ sin(κ∗l) − h− cos(κ∗l))αc + (κ∗ cos(κ∗l) + h− sin(κ∗l))αs = 0.

Moreover, it follows from
∫ l

−l
ρ = 0 that

2lα0 +
{ 2

κ∗
sin(κ∗l)

}
αc = 0.

Let us define the 3 × 3-matrix M(h+, h−, κ∗) as

M(h+, h−, κ∗) :=

⎛
⎝ h+ −κ∗ sin(κ∗l) + h+ cos(κ∗l) κ∗ cos(κ∗l) + h+ sin(κ∗l)

−h− κ∗ sin(κ∗l) − h− cos(κ∗l) κ∗ cos(κ∗l) + h− sin(κ∗l)
l {sin(κ∗l)}/κ∗ 0

⎞
⎠ .
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0

D=0

D<0

h–

D>0

D>0

D=0

– b/c

– a/b

– b/c – a/b

h+

Fig. 1. κ∗l < π/2, a < 0, b < 0, c < 0.

0 D=0

D=0

D>0

D<0 D>0

–

h+

– π
2

8l

h

Fig. 2. κ∗l = π/2, a = 0, b = −κ∗l, c = −2/κ∗.
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0

– b/c

h

h+

– 
D=0

D=0

– a/b– b/c

D>0

D>0

D<0

Fig. 3. κ∗l > π/2, a > 0, b < 0, c < 0.

0

D=0

D=0

h–

h+

D<0

D>0

D>0

Fig. 4. κ∗l > π/2, a > 0, b = 0, c < 0.
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0

D=0

D=0

– a/b –b/c

– b/c

h

+h

–

D>0

D>0

D<0

Fig. 5. κ∗l > π/2, a > 0, b > 0, c < 0.

Then the operator A has a zero eigenvalue if and only if the equation

M(h+, h−, κ∗)
t(α0, αc, αs) = t(0, 0, 0)(6.6)

has nonzero solutions t(α0, αc, αs). Nonzero solutions of (6.6) are derived when

detM(h+, h−, κ∗) = 0,

which implies (6.3). Furthermore, by the definition of a, b, c, we have

b2 − ac = {κ∗l − sin(κ∗l) cos(κ∗l)}2 =
1

4
{2κ∗l − sin(2κ∗l)}2 ≥ 0.

It follows from κ∗l �= 0 that 2κ∗l − sin(2κ∗l) �= 0. This implies (6.4).
(ii) Assume that −∂4

σρ = 0. Then the function ρ can be denoted by

ρ(σ) = α3σ
3 + α2σ

2 + α1σ + α0

for constants (α3, α2, α1, α0). By the boundary conditions ∂3
σρ = 0 at σ = ±l, we

have α3 = 0. In addition, the conditions (∂σ ±h±)ρ = 0 at σ = ±l and
∫ l

−l
ρ = 0 give

the equation

M0(h+, h−) t(α2, α1, α0) = t(0, 0, 0),(6.7)

where the 3 × 3-matrix M0(h+, h−) is defined as

M0(h+, h−) :=

⎛
⎝ 2l + h+l

2 1 + h+l h+

−2l − h−l
2 1 + h−l −h−

l2/3 0 1

⎞
⎠ .

Applying an argument similar to that of the proof of (i), we find that the operator
A with κ∗ = 0 has a zero eigenvalue if and only if detM0(h+, h−) = 0, which implies
(6.5).
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(iii) This follows readily from the expressions for a/c and b/c with the help of
L’Hospital’s rule.

(iv) In the case κ∗ = 0, we needed to find nonzero solutions of (6.7) in order
to derive a zero eigenvalue of A. Each of the solutions to the linear systems (6.7)
corresponds one eigenfunction to the eigenvalue zero. Assume that the multiplicity of
an eigenvalue zero is larger than one. This implies that the matrix M0(h+, h−) has
rank 1 (less is not possible). This implies

1 + h+l = 1 + h−l = 0 .

Hence

h+ = h− = −1

l
.

But then the first and third columns are not linear dependent. This is a contradiction
and shows the assertion for κ∗ = 0. A similar argument works in the case κ∗ �= 0.

We denote by NU and NN the number of unstable and zero eigenvalues of A
(counting the multiplicity). Then we obtain the following theorem.

Theorem 6.5. Case A: If D(h−, h+, κ∗) > 0 and if h− > −b/c, then

NU = NN = 0 .

Case B: If D(h−, h+, κ∗) = 0 and if h− > −b/c, then

NU = 0 , NN = 1 .

Case C: If D(h−, h+, κ∗) < 0, then

NU = 1 , NN = 0 .

Case D: If D(h−, h+, κ∗) = 0 and if h− < −b/c, then

NU = 1 , NN = 1 .

Case E: If D(h−, h+, κ∗) > 0 and if h− < −b/c, then

NU = 2 , NN = 0 .

Remark 6.6. (a) In Cases A, B, D, and E the condition h− > −b/c (h− < −b/c,
respectively) can be replaced by h+ > −b/c (h+ < −b/c, respectively).

(b) Theorem 6.5 says that we have stability above the upper arc of the hyperbola
(see Figures 1–5). Underneath it we have instability where the number of instable
modes is one when we are above the lower arc of the hyperbola and two when we are
underneath of it.

Proof of Theorem 6.5. The proof is a simple consequence of Lemmas 5.6, 6.1, and
6.3. For large h+ and h− we have stability. If we decrease h+ or h−, the stability
behavior changes only on the curves defined by D(h−, h+, κ∗) = 0. By virtue of (iv)
in Lemma 6.3, only one eigenvalue can pass through zero when crossing the curves
D(h−, h+, κ∗) = 0. The monotonicity of the eigenvalues with respect to h+ and h−
implies that the number of unstable modes can increase only if we further decrease
h+ or h−. This proves the theorem.
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Let us discuss the signs of a, b, and c, which depend on κ∗l. It is easy to see⎧⎨
⎩

a < 0 for κ∗l < π/2,
a = 0 for κ∗l = π/2,
a > 0 for κ∗l > π/2.

To derive the signs of b, we rewrite b as

b =
1

2
{2κ∗l cos(2κ∗l) − sin(2κ∗l)}

=
1

2
cos(2κ∗l){2κ∗l − tan(2κ∗l)} if 2κ∗l �= π/2, 3π/2.

It follows from the relations between 2κ∗l and tan(2κ∗l) in 0 < 2κ∗l < 2π that⎧⎨
⎩

b < 0 for κ∗l < θ0,
b = 0 for κ∗l = θ0,
b > 0 for κ∗l > θ0

for some θ0 ∈ (π/2, π). Finally, we investigate the sign of c. If κ∗l ≥ π/2, we can
easily derive c < 0. If κ∗l < π/2, we rewrite c as

c =
2

κ∗
sin(κ∗l) cos(κ∗l){κ∗l − tan(κ∗l)}.

Then κ∗l < π/2 implies that sin(κ∗l) > 0, cos(κ∗l) > 0, and κ∗l − tan(κ∗l) < 0, so
that c < 0. Thus we see c < 0 in all cases. Consequently the behavior illustrated in
Figures 1–5 follows.

7. Examples. Finally we want to discuss how the linearized stability of equi-
libria depends on the parameters l, κ∗, h+, and h−. In the following the expressions
“stable” and “unstable” are to be understood in the linearized sense.

If κ∗ is zero and h+ and h− are negative, then the stability depends crucially
on the length of Γ∗. For fixed h+ and h− equilibria with a small length are stable
and equilibria with a large length are unstable. They are separated by a case which
is neutral in the sense that the linearized evolution operator has, besides negative
eigenvalues, one zero eigenvalue. This is, for example, the case when Ω is a ball and
Γ∗ is a segment intersection ∂Ω perpendicular (see Figure 6). In this case a nonlinear
analysis has to decide on the stability.

If κ∗ is nonzero, then the linearized stability behavior depends on the curvature
of the outer boundary, roughly speaking, in the following sense. Cases with large
positive outer curvatures h+ and h− are stable, and cases with large negative outer
curvatures are unstable. In Figure 7 we demonstrate this stability behavior for a case
where we fix κ∗ and l. An equilibrium Γ∗ is stable for h > 0 and unstable for h < 0.
The case h = 0 is neutral and again a nonlinear analysis has to decide on stability. An
interesting special case is when the outer boundary has constant curvature. This case
is illustrated in Figure 8 and is always neutral. Indeed, let h be a constant curvature
of the outer boundary, which implies h+ = h− = h. For the case h = 0, see the above
explanation. If h �= 0, then h is represented as

h = − κ∗
tan(κ∗l)

.
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Γ Γ**

neutral unstablestable

*Γ

Fig. 6. Three equilibria with h+ = h− and κ∗ = 0. (The stability depends on the length of Γ∗.)

Γ

stable neutral unstable

Γ* *
Γ*

Fig. 7. Three cases with κ∗ and l fixed.

Γ*

neutral

Γ*
Γ*

neutralneutral

Fig. 8. Three cases with the same κ∗ and with constant curvature of ∂Ω.

By the definition of a, b, c, we derive

a

c
= − κ3

∗l

κ∗l − tan(κ∗l)
,

b

c
= −h

2

{
1 − κ∗l tan2(κ∗l)

κ∗l − tan(κ∗l)

}
.

This implies that

D(h, h, κ∗) =
a

c
+

b

c
· 2h + h2 = 0.

In addition, h > −b/c for 0 < κ∗l < π/2 follows from

1 − κ∗l tan2(κ∗l)

κ∗l − tan(κ∗l)
> 2 for 0 < κ∗l < π/2,

and we also find h > 0 for π/2 < κ∗l < π. This means that this case is included in
the line D = 0 on the right-hand side of Figure 1 and Figures 3–5, so that this case
is neutral.

Choosing, for example, h+ = h− = 0, we observe that κ∗l, is an important
quantity (see Figure 9). As long as κ∗l < π/2 (i.e., Γ∗ is less than a half circle) we
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Γ*
Γ*

stable neutral unstable

Γ*

κ∗l <
π

2
κ∗l =

π

2
κ∗l >

π

2

Fig. 9. Three cases with h+ = h− = 0.

Γ*

Fig. 10. Instability for the case h+, h− > 0.

have stability, the case κ∗l = π/2 is neutral (i.e., Γ∗ is a half circle), and the case
κ∗l > π/2 is unstable (i.e., Γ∗ is more than a half circle).

Finally, we remark that instability for h+, h− positive and large is also possible.
In this case κ∗l has to be close to π, i.e., Γ∗ has to be close to a full circle (see
Figure 10).
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1. Introduction. For a bounded domain Ω in R
n and ε > 0 consider an energy

functional

Jε(u; Ω) =

∫
Ω

[A(x, ε∇u) + F (x, u)] dx,(1.1)

where A(x, η) � |η|p, 1 < p < ∞, and F (x, u) � |1 − u2|α, 0 < α ≤ p (see below for
precise assumptions). Functionals of this type appear in the context of minimal sur-
faces, and it has been shown by Γ-convergence methods that sequences of minimizers
converge in L1

loc to suitable step functions satisfying a minimal interface property, as
ε → 0+ (see [MM77] for p = 2 and [Bou90] for the general case). Functionals of type
(1.1) also have a physical relevance, since they appear in the study of the equilibrium
of elastic rods under tension (see [Ant73]), in the context of fluid jets (see [AC81] and
[ACF84]), and in the van der Waals–Cahn–Hilliard and Ginzburg–Landau theories of
phase transition (see, for instance, [Row79]). In the phase-transition setting, the term
A(x, ε∇u) in the energy functional (1.1) can be seen as an interfacial energy contri-
bution to the total energy, which penalizes the formation of interfaces (see [Gur85]
for details).

The main purpose of this paper is to obtain Caffarelli–Córdoba [CC95] type den-
sity estimates for the absolute minimizers of the normalized functional

J (u; Ω) =

∫
Ω

[A(x,∇u) + F (x, u)] dx.(1.2)

Roughly speaking, such density estimates state that, if u is an absolute minimizer
of J , then the set {|u| < 1/2} behaves in measure as an (n − 1)-dimensional set,
while {u > 1/2} and {u < −1/2} behave in measure as n-dimensional sets (a precise
statement will be given in Theorem 1.1 below). As a consequence, we obtain the
uniform convergence of the level sets of minimizers of Jε to a surface of minimal
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“area” as ε → 0+; see Theorem 7.1. Another application of the density estimates is
the existence of plane-like minimizers of J in periodic media; see Theorem 7.3.

We now state in detail the assumptions required in this paper. We assume that
A : Ω × R

n � (x, η) −→ R is in C1(Ω × R
n) and that

a(x, η) := DηA(x, η)

is in C(Ω × R
n) ∩ C1(Ω × R

n − {0}). We require that

A(x, 0) = 0, a(x, 0) = 0,(1.3)

for every x ∈ Ω and that there exists Λ > 0 such that

ζ ·Dηa(x, η) ζ ≥ Λ−1|ζ|2 |η|p−2 for any ζ ∈ R
n,(1.4)

|Dηa(x, η)| ≤ Λ |η|p−2 and(1.5)

|Dxa(x, η)| ≤ Λ |η|p−1 ,(1.6)

η · a(x, η) ≥ Λ−1 |η|p(1.7)

for every x ∈ Ω and η ∈ R
n.

Next, we assume that F : Ω × R � (x, u) −→ R is a Carathéodory function, i.e.,
continuous in u for a.e. x ∈ Ω and measurable in x for every u ∈ R, and satisfies

0 ≤ F ≤ M, F (x,±1) = 0, inf
|u|≤θ

F (x, u) ≥ γ(θ)(1.8)

for every 0 ≤ θ < 1, where γ(θ) and M are positive constants. Here and below all
structural inequalities on F are assumed to be uniform for a.e. x ∈ Ω. Further, we
assume that the partial derivative Fu(x, u) exists for every u ∈ (−1, 1) for a.e. x ∈ Ω
and that

sup
|u|≤θ

|Fu(x, u)| ≤ M(θ)(1.9)

for every 0 ≤ θ < 1. We also assume the following growth condition near u = ±1:
there exists s0 > 0 and d ≤ p such that

Fu(x,−1 + s) ≥ Csd−1, Fu(x, 1 − s) ≤ −Csd−1(1.10)

for every s ∈ (0, s0). Without loss of generality, we may and do assume 1 ≤ d ≤ p. In
the case d = p we additionally require that

Fu is monotone increasing in u for u ∈ (−1,−1 + s0) and u ∈ (1 − s0, 1).(1.11)

Finally, if 1 < p ≤ 2n/(n + 2), we require F to be uniformly Lipschitz in u ∈ (−1, 1).
More precisely, we assume that

sup
|u|<1

|Fu(x, u)| ≤ M(1.12)

for a certain constant M .
We will refer to the constants that appear in (1.3)–(1.12), including n and p, as

the structural constants. Quantities depending only on structural constants will be
called universal constants.



DENSITY ESTIMATES 1059

A “typical” example of the functional J , which satisfies the assumptions above,
is given by ∫ (

ai,j(x) ∂iu ∂ju
)p/2

+ Q(x) |1 − u2|α,

where ai,j is a C1 symmetric positive definite matrix, 0 < Qmin ≤ Q(x) ≤ Qmax and
0 < α ≤ p. (The case α = 0, which corresponds to F (x, u) = Q(x)χ(−1,1)(u), has
been treated recently in [PV03].)

We say that u ∈ W 1,p(Ω) is an absolute minimizer for J in Ω if J (u; Ω) ≤ J (u+
φ; Ω) for any φ ∈ W 1,p

0 (Ω). In this paper, we will be concerned only with absolute
minimizers u that satisfy |u| ≤ 1. Conditions (1.3)–(1.12) that we impose on J make it
possible to apply the regularity results of Giaquinta and Giusti [GG82]. In particular,
by Theorem 3.1 there, we will have that u is locally uniformly Hölder continuous in
Ω. Moreover, in the region {|u| < 1}, the standard variational arguments show that
u satisfies the Euler–Lagrange equation

div a(x,∇u) = Fu(x, u)

in the weak sense. Then u is also C1,α regular in {|u| < 1} for some 0 < α < 1; see,
e.g., [Tol84].

We will also denote by Ln the standard Lebesgue measure on R
n.

The main result of this paper is as follows.
Theorem 1.1. For 1 < p < ∞ assume that the hypotheses (1.3)–(1.12) hold. Fix

θ ∈ (0, 1) and let |u| ≤ 1 be an absolute minimizer for J in a bounded domain Ω,
x ∈ {−θ < u < θ} and y ∈ Ω. Then, for every δ > 0, there exist positive r0, c, and C
depending only on θ, on the structural constants, and on δ such that

Ln
(
Br(x) ∩ {u > θ}

)
≥ c rn and Ln

(
Br(x) ∩ {u < −θ}

)
≥ c rn,(1.13)

Ln
(
Br(x) ∩ {|u| < θ}

)
≥ c rn−1 and(1.14)

Ln
(
Br(y) ∩ {|u| < θ}

)
≤ C rn−1

for any r ≥ r0, provided Br+δ(x), Br+δ(y) ⊂⊂ Ω.
The density estimates of this type have been obtained originally in [CC95] for

p = 2 and A(x,∇u) = |∇u|2 and generalized in [Val04] to A(x,∇u) = ai,j∂iu ∂ju.
The case of a general p ∈ (1,∞) with A(x,∇u) satisfying the hypotheses above
and F (x, u) = Q(x)χ(−1,1)(u) has been considered in [PV03] as a model for non-
Newtonian power-law fluid jets. The case treated here can be seen as a degener-
ate/singular phase-transition model driven by a p-Laplacian type equation.

We explicitly point out here that there is a restriction in Theorem 1.1 on the
decay rate of the “double-well” potential F (x, u) near u = ±1. In particular, for
F (x, u) = |1 − u2|α for some α > 0, we must have α ≤ p by (1.10). The density
estimates as in Theorem 1.1 are not known for α > p. Thus, the larger we take p, the
wider is the class of admissible potentials F (x, u) for which the density estimates are
known. In that sense, the perturbations with A(x, η) � |η|p behave better for larger
values of p.

We also note that additional difficulties appear in the case 1 < p < 2. We need
to require uniform Lipschitz continuity of the double-well potential F (x, u) in u ∈
(−1, 1) in order to obtain the desired density estimates. This excludes the potentials
F (x, u) = |1 − u2|α with 0 < α < 1. However, we show that at least for the range
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of the exponents 2n/(n + 2) < p < 2, one can drop this uniform Lipschitz continuity
assumption; see section 6.2.

The paper is organized as follows. In section 2 we collect some short-proof lemmas
that will be of use in what follows. A Caccioppoli-type inequality is stated and proved
in section 3. The proof of Theorem 1.1 is dealt with in section 4, and it makes use of
an auxiliary result, namely, Lemma 4.1 below, which is interesting in itself and which
roughly says that as soon as the density of sublevels of minimizers is positive in some
ball, it must grow as rn in balls of bigger radius r. We devote sections 5 and 6 to the
proof of such an auxiliary result, considering the cases p ≥ 2 and 1 < p ≤ 2 separately.
In section 7 we point out some consequences that can be derived from Theorem 1.1,
such as the uniform convergence of level sets of absolute minima to minimal interfaces
and the existence of plane-like minimizers in periodic media.

2. Technical and elementary lemmas. We start this section with a recursive
lemma.

Lemma 2.1. Let vk ≥ 0 and ak ≥ 0 be two nondecreasing sequences such that
v1 + a1 ≥ c0,

v
(n−1)/n
k ≤ C0 (vk+1 + ak+1 − vk − ak − c1ak)

1−α
kα(n−1)

for any k ∈ N and some positive constants c0, c1, C0, and 0 ≤ α < 1/n. Then there
exists γ = γ(c0, c1, C0, α) > 0 such that

vk + ak ≥ γ kn

for any k ∈ N.

Proof. We start with an observation that it is enough to prove the estimate for
k ≥ k0, since

vk + ak ≥ v1 + a1 ≥ c0 ≥ (c0/k
n
0 )kn for k ≤ k0.

The proof is by induction. Assume that vk + ak ≥ γ kn. Then either vk ≥ (γ/2)kn or
ak ≥ (γ/2)kn.

1. Assume first vk ≥ (γ/2)kn. Then, using the recurrence relationship, we have

C0 (vk+1 + ak+1 − vk − ak − c1ak)
1−α ≥ (γ/2)(n−1)/n k(1−α)(n−1)

and consequently

vk+1 + ak+1 ≥ γ kn + Cγ
1

1−α ·n−1
n kn−1.

By our assumption, α < 1/n, which implies that 1
1−α · n−1

n < 1. Hence, if γ is
sufficiently small,

vk+1 + ak+1 ≥ γ(kn + C∗k
n−1)

for C∗ as large as we wish. On the other hand, if we choose C∗ ≥ 2n,

kn + C∗k
n−1 ≥ (k + 1)n
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and we obtain

vk+1 + ak+1 ≥ γ(k + 1)n.

2. Assume now that ak ≥ (γ/2)kn. Then

vk+1 + ak+1 ≥ vk + ak + c1ak ≥ γ(kn + (ck)kn−1) ≥ γ(k + 1)n

for sufficiently large k.
The proof is complete.
The next lemma is similar in spirit. Its proof can be found on page 10 in [CC95]

and is omitted here.
Lemma 2.2. Let ak ≥ 0 be a sequence such that a1 ≥ c0, ak ≤ C0L

nkn−1,

⎛
⎝ ∑

1≤j≤k

aj

⎞
⎠

(n−1)/n

≤ C0

⎛
⎝ak+1 +

∑
1≤j≤k

e−L(k+1−j)aj

⎞
⎠

for any k ∈ N and some positive constants L, c0, and C0. Then, if L = L(c0, C0) is
suitably large, there exists γ = γ(c0, C0) > 0 such that

ak ≥ γ kn−1

for any k ∈ N.
The next several lemmas are direct consequences of the structural hypotheses on

A(x, η) and F (x, u).
Lemma 2.3. There exists a universal constant γ > 0 such that

(a(x, ξ′) − a(x, ξ)) · (ξ′ − ξ) ≥ γ ·
{

(|ξ′| + |ξ|)p−2|ξ′ − ξ|2 if 1 < p ≤ 2,
|ξ′ − ξ|p if p ≥ 2

for every ξ, ξ′ ∈ R
n and x ∈ Ω.

Proof. For the reader’s convenience we include a standard proof of this lemma.
Set

ξs = s ξ′ + (1 − s) ξ, 0 ≤ s ≤ 1.(2.1)

Then ξ0 = ξ and ξ1 = ξ′ and we have

a(x, ξ′) − a(x, ξ) =

∫ 1

0

Dηa(x, ξ
s)(ξ′ − ξ)ds.

By the hypothesis (1.4) we obtain

(a(x, ξ′) − a(x, ξ)) · (ξ′ − ξ) ≥ Λ−1|ξ′ − ξ|2
∫ 1

0

|ξs|p−2ds.

Without loss of generality we may assume that |ξ′| ≤ |ξ|. Then

(1/4)|ξ′ − ξ| ≤ |ξs| ≤ |ξ′| + |ξ| for 0 ≤ s ≤ 1/4.

Using the left-hand inequality for p ≥ 2 and the right-hand inequality for 1 < p ≤ 2,
we conclude the proof of the lemma.
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Lemma 2.4. For any p ≥ 2 there exists a universal constant c > 0 such that

c |ξ′ − ξ|p ≤ A(x, ξ′) −A(x, ξ) − a(x, ξ) · (ξ′ − ξ)(2.2)

for every ξ, ξ′ ∈ R
n and x ∈ Ω.

Proof. Let ξs be as in (2.1). Then

A(x, ξ′) −A(x, ξ) =

∫ 1

0

a(x, ξs) · (ξ′ − ξ)ds

=

∫ 1

0

(a(x, ξs) − a(x, ξ)) · (ξ′ − ξ)ds + a(x, ξ) · (ξ′ − ξ)

=

∫ 1

0

(a(x, ξs) − a(x, ξ)) · (ξs − ξ)
ds

s
+ a(x, ξ) · (ξ′ − ξ).

From Lemma 2.3 for p ≥ 2 we have that

(a(x, ξs) − a(x, ξ)) · (ξs − ξ) ≥ γ |ξs − ξ|p.

Hence

A(x, ξ′) −A(x, ξ) ≥ γ

∫ 1

0

|ξs − ξ|p ds
s

+ a(x, ξ) · (ξ′ − ξ)

= γ |ξ′ − ξ|p
∫ 1

0

sp−1ds + a(x, ξ) · (ξ′ − ξ)

= c |ξ′ − ξ|p + a(x, ξ) · (ξ′ − ξ).

The analogue of the preceding Lemma 2.4 for 1 < p ≤ 2 is as follows.

Lemma 2.5. For any 1 < p ≤ 2 and M ≥ 0 there exists a universal constant
c > 0 such that

cMp−2 |ξ′ − ξ|2 ≤ A(x, ξ′) −A(x, ξ) − a(x, ξ) · (ξ′ − ξ)(2.3)

for every ξ, ξ′ ∈ R
n with |ξ| + |ξ′| ≤ M and x ∈ Ω.

Proof. The proof repeats the one for Lemma 2.4, except that we have to use the
counterpart of Lemma 2.3 for 1 ≤ p ≤ 2:

(a(x, ξs) − a(x, ξ)) · (ξs − ξ) ≥ γ (|ξs| + |ξ|)p−2|ξs − ξ|2.

Then, also using |ξs| + |ξ| ≤ 2(|ξ′| + |ξ|), we will obtain

c (|ξ| + |ξ′|)p−2|ξ′ − ξ|2 ≤ A(x, ξ′) −A(x, ξ) − a(x, ξ) · (ξ′ − ξ),

which implies (2.3) if |ξ| + |ξ′| ≤ M .

The following result is elementary, and we omit the proof.

Lemma 2.6. Let d ≥ 1. There exists cd > 0 such that

(u + 1)d − (u′ + 1)d ≥ cd (u− u′)d

for any u ≥ u′ ≥ −1.
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Next, we deduce an estimate on the double-well potential.
Lemma 2.7. There exists c > 0 such that, for any −1 ≤ u′ ≤ u ≤ θ,

F (x, u) − F (x, u′) ≥ c (u− u′)d ,

provided 1 + θ > 0 is small enough.
We omit the proof of Lemma 2.7, which easily follows from (1.10) and Lemma 2.6.

The proof of the next two lemmas is also elementary.
Lemma 2.8. Let us assume (1.11). Then, there exists c > 0 so that, for any

−1 ≤ u′ ≤ u ≤ θ, F (x, u) − F (x, u′) ≥ c (u′ + 1)d−1 (u − u′), provided 1 + θ > 0 is
small enough.

Lemma 2.9. Let us assume that F is uniformly Lipschitz continuous in u. Then,
there exists c > 0 so that, for any u ∈ [−1, 1], F (x, u) ≤ c(1 + u).

We now construct a barrier that will be of use during the proof of the main result.
Lemma 2.10. Fix T ≥ 1, Θ ∈ (0, 1], and k ∈ N. Then, there exists a function

h ∈ C2(B(k+1)T ) so that −1 ≤ h ≤ 1, h = 1 on ∂B(k+1)T ,

(h + 1) + |∇h| + |D2h| ≤ C(h + 1) ≤ Ce−ΘT (k+1−j)(2.4)

in BjT −B(j−1)T for j = 1, . . . , k, and

|∇h| + |D2h| ≤ CΘ(h + 1)(2.5)

in B(k+1)T .
Proof. Define the following functions Φ : [0, 1] −→ R, Ψ : [1, (k + 1)T ] −→ R:

Φ(t) = 2eΘ[ 38 t
6− 10

8 t4+ 15
8 t2−(k+1)T ] − 1 and

Ψ(t) = 2eΘ[t−(k+1)T ] − 1 .

By explicit computations,

Φ(1) = Ψ(1) , Φ′(1) = Ψ′(1), and Φ′′(1) = Ψ′′(1) .

Thus, the function h̄ agreeing with Φ in [0, 1] and with Ψ in [1, (k + 1)T ] belongs
to C2([0, (k + 1)T ]). Define h(x) = h̄(|x|). Notice that h ∈ C2(B(k+1)T ), since
h̄′(0) = Φ′(0) = 0. Furthermore,

|Φ′(t)| ≤ CΘt(Φ + 1) , |Φ′′(t)| ≤ CΘ(Φ + 1)(2.6)

in [0, 1] and

|Ψ′(t)| + |Ψ′′(t)| ≤ CΘ(Ψ + 1)(2.7)

in [1, (k + 1)T ]. Moreover,

(h + 1) + |∇h| + |D2h| ≤ (h̄ + 1) +

(
1 +

2

|x|

)
|h̄′| + |h̄′′| .(2.8)

By means of (2.6), we bound the right-hand side of (2.8) in B1 by

C(Φ + 1) ≤ CeΘ(C−(k+1)T ) ≤ Ce−ΘTk .

Similarly, using (2.7), we bound (2.8) by

C(Ψ + 1) ≤ Ce−Θ[(k+1)T−j] ≤ Ce−ΘT (k+1−j)

in BjT −B(j−1)T for j = 2, . . . , k. This proves (2.4). In a similar way, one can prove
(2.5).
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3. A Caccioppoli-type inequality. We now state and prove a weaker version
of the Caccioppoli inequality.

Lemma 3.1. Fix δ > 0. Let |u| ≤ 1 be an absolute minimizer for J in a domain
Ω. Then, there exists C > 0, depending only on δ and on the structural constants,
such that ∫

Br(x0)

|∇u|p ≤ C (r + δ)n

for any r > 0 and any x0 ∈ Ω, provided Br+δ(x0) ⊂ Ω.
Proof. We start with a claim that∫

Ω

a(x,∇u) · ∇φ +

∫
Ω∩{|u|�=1}

Fu(x, u)φdx ≥ 0(3.1)

for any nonnegative φ ∈ C∞
0 (Ω ∩ {u > −1}) and∫

Ω

a(x,∇u) · ∇ψ +

∫
Ω∩{|u|�=1}

Fu(x, u)ψ dx ≤ 0(3.2)

for any nonnegative ψ ∈ C∞
0 (Ω∩{u < 1}). Let us show (3.2), the proof of (3.1) being

analogous. For ψ as above and a small ε > 0, let

ψε(x) = ψ(x)χε(u(x)),

where

χε(u) =

⎧⎨
⎩

0 if u ≤ −1 + ε,
(u + 1)/ε− 1 if − 1 + ε < u < −1 + 2ε,
1 if 1 + u ≥ 2ε.

Then ψε ∈ W 1,p(Ω), suppψε ⊂ Ω ∩ {|u| < 1}, and therefore∫
Ω

a(x,∇u) · ∇ψε + Fu(x, u)ψε = 0.

On the other hand,∫
Ω

a(x,∇u) · ∇ψε

=

∫
Ω

[a(x,∇u) · ∇ψ]χε(u) +
1

ε

∫
Ω∩{ε<u+1<2ε}

[a(x,∇u) · ∇u]ψ

≥
∫

Ω

[a(x,∇u) · ∇ψ]χε(u) →
∫

Ω

a(x,∇u) · ∇ψ

as ε → 0+ and ∫
Ω

Fu(x, u)ψε →
∫

Ω∩{u>−1}
Fu(x, u)ψ.

The passage to the limit is legitimate, since∫
Ω

|a(x,∇u) · ∇ψ| < ∞,
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ψε ↗ ψχ{u>−1}, and Fu(x, u) ≥ 0 by (1.10) for u close to −1. Collecting the estimates
above, we obtain (3.2).

Now fix 0 < θ < 1. If θ is sufficiently close to 1, the assumptions (1.9)–(1.10) and
(3.1)–(3.2) above imply that∫

Ω

a(x,∇u) · ∇φ + K φ ≥ 0 and

∫
Ω

a(x,∇u) · ∇ψ −K ψ ≤ 0(3.3)

for any nonnegative φ ∈ C∞
0 (Ω ∩ {u > −θ}) and ψ ∈ C∞

0 (Ω ∩ {u < θ}) with K =
M(θ) as in (1.9). By standard density arguments, (3.3) also holds for nonnegative
φ ∈ W 1,p

0 (Ω ∩ {u > −θ}) and ψ ∈ W 1,p
0 (Ω ∩ {u < θ}).

Next, we observe that in light of Theorem 3.1 in [GG82], the distance between
the level sets {u = −θ} and {u = θ} in Br+δ/2(x0) is bounded from below by some
universal constant (depending only on θ, δ, and the structural constants). Therefore,
by partition of unity, there exist two smooth functions η− and η+, supported in
Br+δ/2(x0), so that 0 ≤ η−(x), η+(x) ≤ 1 for any x ∈ Ω, whose gradients are
uniformly bounded by a universal constant and which satisfy

η−(x) + η+(x) = 1 ∀x ∈ Br(x0) ,

supp η− ⊆ {−1 ≤ u < θ} ,
supp η+ ⊆ {−θ < u ≤ 1} ,

η−(x) + η+(x) ≤ 1 ∀x ∈ Ω .

We set φ := (1− u) ηp+ and ψ := (1 + u) ηp−. By repeating the standard arguments in
the proof of the Caccioppoli inequality (e.g., see Lemma 3.27 in [HKM93]), one infers
that ∫

Ω

|∇u|pηp− ≤ C (r + δ)n and

∫
Ω

|∇u|pηp+ ≤ C (r + δ)n.(3.4)

For the reader’s convenience, we sketch the details of the proof of the second inequality
in (3.4), the first being analogous. From (3.3),

0 ≤
∫

Ω

−a(x,∇u) · ∇uηp+ + p a(x,∇u) (1 − u) ηp−1
+ ∇η+ + K(1 − u)ηp+ .

Therefore, introducing a parameter ε ∈ (0, 1), to be chosen suitably small in what
follows, and using Young’s inequality, we have∫

Ω

|∇u|pηp+ ≤ C

(∫
Ω

(|∇u|η+)p−1|∇η+| + ηp+

)

= C

(∫
Ω

(ε|∇u|η+)p−1 |∇η+|
εp−1

+ ηp+

)

≤ C

(∫
Ω

(ε|∇u|η+)p +
|∇η+|p
εp(p−1)

+ ηp+

)

≤ Cεp
∫

Ω

(|∇u|η+)p +
C

εp(p−1)

∫
Br+δ

(|∇η+|p + ηp+)

≤ Cεp
∫

Ω

|∇u|pηp+ +
C

εp(p−1)
(r + δ)n .

Thus, the second inequality in (3.4) follows by choosing ε suitably small.
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Using (3.4), we easily conclude the proof of the lemma:∫
Br(x0)

|∇u|p =

∫
Br(x0)

|∇u|p(η− + η+)p

≤ C

∫
Br(x0)

|∇u|pηp− + C

∫
Br(x0)

|∇u|pηp+ ≤ C (r + δ)n .

4. Proof of Theorem 1.1. First, we point out that, since u is an absolute
minimizer,

J (u;Br(y)) ≤ C rn−1(4.1)

for any r ≥ r0, for a suitable universal r0, provided Br+δ(y) ⊂ Ω. To prove (4.1),
with no loss of generality assume y = 0 and proceed as follows. Let h be a smooth
function such that h

∣∣
Br−1

= −1 and h
∣∣
∂Br

= 1. Let u∗ = min{u, h}. Then,

J (u;Br) ≤ J (u∗;Br)

≤ C

∫
Br−Br−1

(|∇u|p + |∇h|p) + rn−1

≤ C

∫
Br−Br−1

|∇u|p + rn−1.

Covering Br − Br−1 with balls of radius δ/2, B1, . . . ,BN , with N ≤ C rn−1 and
applying Lemma 3.1, we obtain∫

Br−Br−1

|∇u|p ≤
N∑
i=1

∫
Bi

|∇u|p ≤ C rn−1 .

This completes the proof of (4.1).
We now focus our attention on the proof of (1.13). We will deal only with the

first inequality in (1.13), the proof of the second one being analogous. To this end,
we state the following result, the proof of which is deferred to sections 5 and 6.

Lemma 4.1. Let us assume the same hypotheses on A and F as in Theorem 1.1. Fix
θ ∈ (−1, 1) and let u be an absolute minimizer for J in a domain Ω. Assume that there
exist µ1, µ2 > 0 so that Bµ1

(x) ⊂ Ω and Ln
(
Bµ1(x) ∩ {u > θ}

)
≥ µ2. Then, for fixed

δ > 0, there exist positive r0 and cdependingonly on θ, µ1, µ2, δ,andon the structural con-
stants, such that Ln

(
Br(x)∩{u > θ}

)
≥ c rn, for any r ≥ r0, provided Br+δ(x) ⊂⊂ Ω.

Analogously, if Ln
(
Bµ1(x)∩{u < θ}

)
≥ µ2, then Ln

(
Br(x)∩{u < θ}

)
≥ c rn for

any r ≥ r0, provided Br+δ(x) ⊂⊂ Ω.
We now use the above result to prove (1.13). Let θ� = (1+θ)/2 ∈ (θ, 1). Since u is

uniformly continuous (with a modulus of continuity depending only on the structural
constants; see Theorem 3.1 in [GG82]) and |u(x)| < θ, we have that |u(x′)| < θ�

for any x′ ∈ Bµ�(x), for a suitable universal µ� > 0. Hence, in view of Lemma 4.1,
Ln

(
Br(x)∩ {u > −θ�}

)
≥ c rn and Ln

(
Br(x)∩ {u < θ�}

)
≥ c rn. Therefore, by (1.8)

and (4.1),

c rn − Ln
(
Br(x) ∩ {u > θ}

)
≤ Ln

(
Br(x) ∩ {u > −θ�}

)
− Ln

(
Br(x) ∩ {u > θ}

)
≤ Ln

(
Br(x) ∩ {−θ� < u ≤ θ}

)
≤ C

∫
{−θ�<u≤θ}∩Br(x)

F

≤ C J (u;Br(x)) ≤ C rn−1 .
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Hence, if r is suitably large, Ln
(
Br(x) ∩ {u > θ}

)
≥ c rn, thus proving (1.13).

We now deal with the proof of (1.14). The second inequality follows from (4.1);
hence we focus on the proof of the first one. Let

u�(x) =

⎧⎨
⎩
u(x) if |u(x)| < θ ,
θ if u(x) ≥ θ ,
−θ if u(x) ≤ −θ.

Using a standard notation in geometric measure theory, we denote by P(E;U) the
perimeter of the Borel set E in an open set U . Then, using the coarea formula, the
isoperimetric inequality, and (1.13), we have∫

Br(x)

|∇u�|

≥
∫ θ

−θ

P
(
{u� < s}; Br(x)

)
ds

≥ c

∫ θ

−θ

min
{
Ln (Br(x) ∩ {u� < s}) , Ln (Br(x) ∩ {u� ≥ s})

}n−1
n

ds

= c

∫ θ

−θ

min
{
Ln (Br(x) ∩ {u < s}) , Ln (Br(x) ∩ {u ≥ s})

}n−1
n

ds

≥ c

∫ θ

−θ

min
{
Ln (Br(x) ∩ {u < −θ}) , Ln (Br(x) ∩ {u ≥ θ})

}n−1
n

ds

≥ c rn−1 .

Let us now fix a suitably large parameter K > 0. In view of the above estimate,
denoting by p′ the conjugated exponent of p, using Young’s inequality and (4.1), we
deduce that

c rn−1 ≤ 1

Kp

∫
Br(x)

|∇u|p + Kp′ Ln (Br(x) ∩ {|u| < θ})

≤ C

Kp
J (u;Br(x)) + Kp′ Ln (Br(x) ∩ {|u| < θ})

≤ C

Kp
rn−1 + Kp′ Ln (Br(x) ∩ {|u| < θ}) .

Then, (1.14) follows by choosing K large enough here above.

5. Proof of Lemma 4.1. The case p ≥ 2. We will prove the first claim in
Lemma 4.1, the second claim being analogous. We point out that it is enough to
show the validity of the first claim of Lemma 4.1 for θ as close to −1 as we wish.
Indeed, let us assume that the claim holds true for θ� and −1 < θ� < θ < 1. Then,
if Ln (Bµ1(x) ∩ {u > θ}) ≥ µ2, then of course Ln (Bµ1(x) ∩ {u > θ�}) ≥ µ2, and so,
since the claim holds for θ�, Ln (Br(x) ∩ {u > θ�}) ≥ c rn. Thus, using the second
part of (1.14) (which has already been proved via (4.1)),

Ln (Br(x) ∩ {u > θ})
≥ Ln (Br(x) ∩ {u > θ�}) − Ln (Br(x) ∩ {θ� < u ≤ θ})
≥ c rn − C rn−1 ≥ c̃ rn

if r is sufficiently big. This shows that we need only to prove the first claim of
Lemma 4.1 for θ close to −1. Thus, we may assume that (1.10) is satisfied for
0 < s ≤ θ + 1.
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In this section we will assume p ≥ 2. We will distinguish the cases d < p and
d = p, where d is the exponent that appears in (1.10).

5.1. The case d < p. For θ close to −1 let

Vr = Ln({u ≥ θ} ∩Br), Ar =

∫
Br

F (x, u)dx ,(5.1)

where Br is short for Br(x). Then, we claim that

V(n−1)/n
r + Ar ≤ C0 (Vr+1 + Ar+1 − Vr −Ar) .(5.2)

With no loss of generality, we can take r0 ≥ µ1 and δ ≥ 2. Thus, by assumption,
Vr0 ≥ µ2 > 0. Therefore, by means of Lemma 2.1, the above inequality implies that

Vr ≥ c rn

for r ≥ 1.
We now prove (5.2). We use a barrier function h ∈ C2(Br+1) such that

h
∣∣
∂Br+1

= 1, h
∣∣
Br

= −1.

Let ε = 1 + θ and define u∗ = min(u, h) and β = min(u − u∗, ε). Using the Sobolev
inequality applied to βp and then Young’s inequality, we have

(∫
Br+1

|β|pn/(n−1)

)(n−1)/n

(5.3)

≤ C

∫
Br+1∩{u−u∗<ε}

|β|p−1|∇β|

≤ C Kp

∫
Br+1∩{u−u∗<ε}

|∇(u− u∗)|p

+
C

Kp′

∫
Br+1∩{u−u∗<ε}

(u− u∗)p .

Here, K > 0 is a free parameter that will be conveniently chosen in what follows. As
customary, we also denoted the conjugated exponent of p by p′. Since u∗ = −1 in
Br, u− u∗ ≥ ε in Br ∩ {u ≥ θ}, the left-hand side of the inequality above is bounded
from below by

cLn({u ≥ θ} ∩Br)
(n−1)/n = cV(n−1)/n

r .

Next, we apply (2.2) with ξ = ∇u∗ and ξ′ = ∇u to estimate |∇(u − u∗)|p in the
right-hand side of (5.3). Thus, we obtain

V(n−1)/n
r ≤ C Kp

∫
Br+1

A(x,∇u) −A(x,∇u∗)

− C Kp

∫
Br+1

a(x,∇u∗) · ∇(u− u∗)(5.4)

+
C

Kp′

∫
Br+1∩{u−u∗<ε}

(u− u∗)p.
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Since supp (u − u∗) ⊂ Br+1 ⊂⊂ Ω, the minimality of u implies that J (u; Ω) ≤
J (u∗; Ω) or, equivalently,∫

Br+1

A(x,∇u) −A(x,∇u∗) ≤
∫
Br+1

F (x, u∗) − F (x, u).

Using this, and integrating by parts the term a(x,∇u∗) · ∇(u− u∗) in the right-hand
side of (5.4), we obtain

V(n−1)/n
r ≤ C Kp

∫
Br+1

F (x, u∗) − F (x, u)

+ C Kp

∫
Br+1

div a(x,∇u∗)(u− u∗)(5.5)

+
C

Kp′

∫
Br+1∩{u−u∗<ε}

(u− u∗)p.

Notice also that, by definition of u∗,∫
Br+1

div a(x,∇u∗)(u− u∗) =

∫
Br+1

div a(x,∇h)(u− u∗).

Thus, to proceed, we recall that by (1.5) and (1.6) we have

div a(x,∇h) ≤ C|∇h|p−2(|∇h| + |D2h|).(5.6)

Now let h be a C2 radial function, defined by

h(x) = −1 + 2(|x| − r)α+,

with some fixed

α > max

{
p

p− d
, 2

}
.

Then

|∇h| ≤ C(h + 1)(α−1)/α, |D2h| ≤ C(h + 1)(α−2)/α.

Hence,

div a(x,∇h) ≤ C(h + 1)(p−2)(α−1)/α+(α−2)/α ≤ C(h + 1)d−1(5.7)

and consequently

V(n−1)/n
r ≤ C Kp

∫
Br+1

[F (x, u∗) − F (x, u)]

+ C Kp

∫
Br+1

(u∗ + 1)d−1 (u− u∗)(5.8)

+
C

Kp′

∫
Br+1∩{u−u∗<ε}

(u− u∗)p.

We now split the right-hand side of the above inequality into three parts, namely,
the contribution in Br, the one in {u < θ} ∩ (Br+1 − Br), and the one in {u ≥
θ} ∩ (Br+1 −Br).
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1. The contribution in Br. Here the second integrand in the right-hand side of
(5.8) vanishes, as well as the term F (x, u∗) of the first integrand. Besides, the third
integral is taken over the region, where u − u∗ < ε. In Br, the latter condition is
equivalent to u < θ, since u∗ = −1. Furthermore, if K is sufficiently large, for u < θ
we have

−C KpF (x, u) + C K−p′
(u + 1)p ≤ −c F (x, u),

since by our assumption F (x, u) ≥ c(u + 1)d ≥ c(u + 1)p for −1 ≤ u < θ. Hence, the
contribution of the right-hand side of (5.8) in Br is bounded from above by −cAr.

2. The contribution in {u < θ} ∩ (Br+1 − Br). Since −1 ≤ u∗ ≤ u < θ, from
Lemma 2.7 we have that

F (x, u∗) − F (x, u) ≤ −c (u− u∗)d.

Since both u∗ + 1 ≤ u + 1 and u− u∗ ≤ u + 1, we also have

(u∗ + 1)d−1(u− u∗) ≤ (u + 1)d ≤ C F (x, u).

Thus,

Kp[F (x, u∗) − F (x, u) + (u∗ + 1)d−1(u− u∗)] + K−p′
(u− u∗)p ≤ C F (x, u),

and the total contribution of the right-hand side of (5.8) in {u < θ} ∩ (Br+1 −Br) is
bounded from above by C(Ar+1 −Ar).

3. Finally, the contribution in {u ≥ θ} ∩ (Br+1 −Br) is easily estimated by

C Ln({u ≥ θ} ∩ (Br+1 −Br)) = C(Vr+1 − Vr),

since the terms inside the integrals are bounded.
Collecting the estimates from 1–3, we obtain (5.2), which completes the proof of

Lemma 4.1 in the case p ≥ 2, d < p.

5.2. The case d = p. The proof is a refinement of the one in the case d < p.
Here we use suitable positive parameters Θ and T : we will fix Θ small enough and
then choose T suitably large (and in fact ΘT suitably large).

We define Vr as in (5.1) and set ak = VkT − V(k−1)T . Then, we claim that

⎛
⎝ ∑

1≤j≤k

aj

⎞
⎠

(n−1)/n

≤ C

⎛
⎝ak+1 +

∑
1≤j≤k

e−L(k+1−j)aj

⎞
⎠ ,(5.9)

with L = ΘT as large as we wish. With no loss of generality, we can take r0 ≥ µ1.
Thus, by assumption, Vr0 ≥ µ2 > 0. Therefore, by means of Lemma 2.2, the above
inequality implies that

Vr ≥ c rn

for r ≥ 1.
We now prove (5.9). We use the barrier function h = hk ∈ C2(B(k+1)T ) intro-

duced in Lemma 2.10. Then, −1 ≤ h ≤ 1, h = 1, on ∂B(k+1)T ,

(h + 1) + |∇h| + |D2h| ≤ C(h + 1) ≤ Ce−ΘT (k+1−j)(5.10)
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in BjT −B(j−1)T , and

|∇h| + |D2h| ≤ CΘ(h + 1)(5.11)

in B(k+1)T .

Fix ε ∈ (0, 1 + θ). Define u∗ = min(u, h) and β = min(u − u∗, ε). Using the
Sobolev inequality applied to βp and then Young’s inequality, we have

(∫
B(k+1)T

|β|pn/(n−1)

)(n−1)/n

(5.12)

≤ C Kp

∫
B(k+1)T∩{u−u∗<ε}

|∇(u− u∗)|p

+
C

Kp′

∫
B(k+1)T∩{u−u∗<ε}

(u− u∗)p

with the parameter K > 0 to be chosen later. From (5.10),

u− u∗ ≥ θ + 1 − Ce−ΘT > ε(5.13)

in BkT ∩ {u ≥ θ}, provided ΘT is conveniently large; hence the left-hand side of the
inequality above is bounded from below by

cLn({u ≥ θ} ∩BkT )(n−1)/n = cV(n−1)/n
kT .

Now, combining (5.12) and (2.2), using the minimality of u, and integrating by parts
the term a(x,∇u∗) ·∇(u−u∗) (for more details, see the respective part in section 5.1),
we obtain

V(n−1)/n
kT ≤ C Kp

∫
B(k+1)T

F (x, u∗) − F (x, u)

+ C Kp

∫
B(k+1)T

div a(x,∇u∗)(u− u∗)

+
C

Kp′

∫
B(k+1)T∩{u−u∗<ε}

(u− u∗)p.

Recalling (1.5) and (1.6), we have that

div a(x,∇h) ≤ C|∇h|p−2(|∇h| + |D2h|).(5.14)

Hence,

V(n−1)/n
kT ≤ C Kp

∫
B(k+1)T

F (x, u∗) − F (x, u)

+ C Kp

∫
B(k+1)T

|∇u∗|p−2 (|∇u∗| + |D2u∗|) (u− u∗)

+
C

Kp′

∫
B(k+1)T∩{u−u∗<ε}

(u− u∗)p .
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Thanks to the definition of u∗, we may replace u∗ with h in the second integral in the
previous inequality in order to gather

V(n−1)/n
kT ≤ C Kp

∫
B(k+1)T

F (x, u∗) − F (x, u)

+ C Kp

∫
B(k+1)T

|∇h|p−2 (|∇h| + |D2h|) (u− u∗)(5.15)

+
C

Kp′

∫
B(k+1)T∩{u−u∗<ε}

(u− u∗)p.

We now split the right-hand side of the above inequality into three parts, namely,
the contribution in {u < θ}, the one in {u ≥ θ} ∩ (B(k+1)T − BkT ), and the one in
{u ≥ θ} ∩BkT .

1. The contribution in {u < θ} is estimated using (5.11) and Lemmas 2.7 and 2.8.
We actually show that such contribution is negative. Indeed, using the above men-
tioned results and taking K suitably big (so as to kill the last term with the first one)
and Θ suitably small (so as to kill the constant c in Lemma 2.8), the contribution in
{u < θ} is bounded by

C

∫
B(k+1)T∩{u<θ}

F (x, u∗) − F (x, u) + CΘ(u∗ + 1)d−1(u− u∗) ≤ 0 .

2. The contribution in {u ≥ θ}∩ (B(k+1)T −BkT ) of the right-hand side of (5.15)
can be easily bounded by C ak+1, since the terms inside the integrals are bounded.

3. We now estimate the contribution of the right-hand side of (5.15) in {u ≥
θ} ∩BkT . First, notice that, by (5.13),∫

BkT∩{u−u∗<ε}∩{u≥θ}
(u− u∗)p =

∫
∅
(u− u∗)p = 0 .

Also, from (1.9) and (1.11), it follows that F is uniformly Lipschitz continuous in
u; thus, from Lemma 2.9, F (x, h) ≤ c (1 + h). Therefore, by (5.10), we bound the
contribution in {u ≥ θ} ∩BkT by

C

⎛
⎝ k∑

j=1

∫
(BjT−B(j−1)T )∩{u≥θ}

F (x, h) + |∇h| + |D2h|

⎞
⎠

≤ C

⎛
⎝ k∑

j=1

e−ΘT (k+1−j) Ln((BjT −B(j−1)T ) ∩ {u ≥ θ})

⎞
⎠ .

In light of 1–3, we bound the right-hand side of (5.15) by

C

⎛
⎝ak+1 +

∑
1≤j≤k

e−L(k+1−j)aj

⎞
⎠ .

This proves (5.9) and completes the proof of Theorem 1.1 in the case p ≥ 2.
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6. Proof of Lemma 4.1. The case 1 < p < 2.

6.1. The case of uniformly Lipschitz F . Under the assumption (1.12) of the
uniform Lipschitz continuity of the double-well potential F , every absolute minimizer
u of J with |u| ≤ 1 will satisfy an equation

div a(x,∇u) = g(x),(6.1)

weakly in Ω for some g ∈ L∞(Ω). Indeed, if M is as in (1.12) and ψ ∈ C∞
0 ({u < 1})

is nonnegative, using that J (u + εψ; Ω) ≥ J (u; Ω), we will easily obtain

∫
Ω

a(x,∇u) · ∇ψ + M ψ ≥ 0.

On the other hand, by (3.2), we also have

∫
Ω

a(x,∇u) · ∇ψ −M ψ ≤ 0.

Hence (6.1) is satisfied with |g| ≤ M in {u < 1}. Similarly, we prove (6.1) in {u > −1}
and consequently in Ω.

Note that g(x) = Fu(x, u) a.e. in {|u| < 1} and g(x) = 0 in Ω \ {|u| < 1}, but we
have no information on g(x) on the “free boundary” ∂{|u| < 1} ∩Ω, except that it is
bounded. However, that is sufficient for our purposes.

The equation (6.1) implies that u is locally uniformly C1,α regular in Ω; see
[Tol84]. Then the proof of Lemma 4.1 in the case 1 < p ≤ 2 is a slight variation of the
one for p ≥ 2. The main difference is that we use Lemma 2.5 instead of Lemma 2.4.
Technically, we should separately consider the cases d < p and d = p. However, since
the changes from the case p ≥ 2 are similar in both cases, we sketch only the proof
for the more subtle case d = p.

We consider suitable positive parameters Θ, T , and K (playing the same role as
in section 5.2) and we define h, u∗, and β as we did in section 5.2 above. In analogy
with (5.12), using the Sobolev inequality applied to β2 and then Young’s inequality,
we have

(∫
B(k+1)T

|β|2n/(n−1)

)(n−1)/n

(6.2)

≤ C K2

∫
B(k+1)T∩{u−u∗<ε}

|∇(u− u∗)|2

+
C

K2

∫
B(k+1)T∩{u−u∗<ε}

(u− u∗)2 .

Arguing as in (5.13), we get that the left-hand side of the inequality above is estimated
from below by

cLn({u ≥ θ} ∩BkT )(n−1)/n = cV(n−1)/n
kT .

Notice that |∇u| is uniformly bounded by means of Theorem 1 in [Tol84] (and, in-
deed, u is C1,α with uniform estimates in the interior of Ω). Thus, using (2.3), the
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minimality of u, and an integration by parts, we infer from (6.2) the following in-
equality:

V(n−1)/n
kT ≤ C K2

∫
B(k+1)T

F (x, u∗) − F (x, u)

+ C K2

∫
B(k+1)T

div a(x,∇u∗)(u− u∗)

+
C

K2

∫
B(k+1)T∩{u−u∗<ε}

(u− u∗)2.

In light of (5.14), we deduce that

V(n−1)/n
kT ≤ C K2

∫
B(k+1)T

F (x, u∗) − F (x, u)

+ C K2

∫
B(k+1)T

|∇u∗|p−2 (|∇u∗| + |D2u∗|) (u− u∗)

+
C

K2

∫
B(k+1)T∩{u−u∗<ε}

(u− u∗)2.

By the definition of u∗, we may replace u∗ with h in the second integral in the previous
inequality, obtaining

V(n−1)/n
kT ≤ C K2

∫
B(k+1)T

F (x, u∗) − F (x, u)

+ C K2

∫
B(k+1)T

|∇h|p−2 (|∇h| + |D2h|) (u− u∗)(6.3)

+
C

K2

∫
B(k+1)T∩{u−u∗<ε}

(u− u∗)2.

As done in section 5.2, one splits the right-hand side of the above inequality into three
parts, namely, the contribution in {u < θ}, the one in {u ≥ θ} ∩ (B(k+1)T − BkT ),
and the one in {u ≥ θ}∩BkT . Such estimates follow the lines of section 5.2. Namely,
the contribution in {u ≤ θ} is estimated by using (5.11) and Lemmas 2.7 and 2.8,
obtaining, for big K and small Θ > 0, the bound

C

∫
B(k+1)T∩{u<θ}

F (x, u∗) − F (x, u) + CΘp−1(u∗ + 1)d−1(u− u∗) ≤ 0 ,

which is negative. The contribution in {u ≥ θ} ∩ (B(k+1)T − BkT ) of the right-
hand side of (5.15) can be easily bounded by C ak+1. As above, the contribution in
{u ≥ θ} ∩BkT is bounded by using Lemma 2.9 and (5.10), obtaining

C

⎛
⎝ k∑

j=1

e−(p−1)ΘT (k+1−j) Ln((BjT −B(j−1)T ) ∩ {u ≥ θ})

⎞
⎠ .

This proves (5.9) and hence completes the proof of Theorem 1.1 in the case 1 < p ≤ 2
for potentials F satisfying (1.12).
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6.2. The case 2n/(n + 2) < p < 2. We now show that the density estimate
in Lemma 4.1 can be obtained at least for 2n/(n + 2) < p < 2 without the technical
assumption (1.12) of uniform Lipschitz continuity of the double-well potential F in
u ∈ (−1, 1). This will be achieved with a more effective use of the inequality

c(|ξ′| + |ξ|)p−2|ξ′ − ξ|2 ≤ A(x, ξ′) −A(x, ξ) − a(x, ξ) · (ξ′ − ξ)(6.4)

for 1 < p < 2; see the proof of Lemma 2.5.
Without loss of generality we may assume that d < p. Indeed, the additional

hypothesis (1.11) in the case d = p implies (1.12), contrary to our assumption.
We revisit the proof of Lemma 4.1 in section 5.1, now with 1 < p < 2, and let h,

u∗, and β be the same as there. We also introduce the weight

ω = (|∇u| + |∇u∗|)1−p/2.

Integrating (6.4) over Br with ξ′ = ∇u and ξ = ∇u∗, we obtain that

c

∫
Br

|∇β|2
ω2

≤
∫
Br

A(x,∇u) −A(x,∇u∗) − a(x,∇u∗) · ∇(u− u∗).(6.5)

To avoid complications, related to the vanishing of ω, we also introduce its “regular-
ization”

ωε = (|∇u| + |∇u∗| + ε)1−p/2, ε > 0.

Observe that we always have ωε > ω and ωε ↘ ω as ε ↘ 0.
Analyzing the proof in section 5.1, we realize that one can improve the step when

the Sobolev and Young inequalities are applied to the function βp; see (5.3). Indeed,
let κ and λ(x) be a certain positive number and a function, to be chosen later. Then

c

(∫
Br

βκ n
n−1

)n−1
n

≤
∫
Br

βκ−1|∇β| =

∫
Br

(
|∇β|
ωε

λ

)(
βκ−1ωε

λ

)
,

where in the first step we have applied the Sobolev inequality to the function βκ. Now
we use Young’s inequality, with a certain parameter q, 1 < q < 2, and its conjugate
q′ = q/(q − 1). We obtain

c

∫
Br

(
|∇β|
ωε

λ

)(
βκ−1ωε

λ

)
≤ Kq

∫
Br

|∇β|q
ωq
ε

λq + K−q′
∫
Br

β(κ−1)q′ ω
q′

ε

λq′
.

Applying the Hölder inequality with exponents 2/q and 2/(2− q) in both integrals on
the right-hand side of the inequality above, we estimate it by

Kq

(∫
Br

|∇β|2
ω2
ε

)q/2 (∫
Br

λ2q/(2−q)

)1−q/2

+ K−q′
(∫

Br

β(κ−1)q′(2/q)

)q/2 (∫
Br

(ωε

λ

)2q′/(2−q)
)1−q/2

.

Let us now choose λ so that

λ2q/(2−q) =
(ωε

λ

)2q′/(2−q)

.
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A simple computation shows that

λ = ωq′/(q+q′)
ε = ω1/q

ε .

Then the expression above transforms to[
Kq

(∫
Br

|∇β|2
ω2
ε

)q/2

+ K−q′
(∫

Br

β(κ−1)q′(2/q)

)q/2
](∫

Br

ω1/(1−q/2)
ε

)1−q/2

,

which is bounded from above by

C

[
K2

∫
Br

|∇β|2
ω2
ε

+ K−2q′/q

∫
Br

β(κ−1)q′(2/q)

]q/2 (∫
Br

ω1/(1−q/2)
ε

)1−q/2

.

Collecting the estimates above and then letting ε → 0, we will arrive at the inequality

(∫
Br

βκ n
n−1

)n−1
n

≤

C

[
K2

∫
Br

|∇β|2
ω2

+ K−2q′/q

∫
Br

β(κ−1)q′(2/q)

]q/2 (∫
Br

ω1/(1−q/2)

)1−q/2

.

Now observe that the term inside square brackets can be estimated similarly as in
section 5.1, recalling also (6.5). We now have arrived at a point when we have to
choose q. For that purpose we turn our attention to the term ω1/(1−q/2). If we knew
that ω is bounded, we could let q ↗ 2. This is so, for instance, when F is uniformly
Lipschitz in u, and we recover the proof in section 6.1 above. However, for non-
Lipschitz F , we a priori know only the Lp integrability of |∇u| and |∇u∗|. Moreover,
we have ∫

Br

|∇u|p + |∇u∗|p ≤
∫
Br

2|∇u|p + |∇h|p ≤ C rn−1,

by (4.1), for sufficiently large r. Thus, in order to obtain the desired density estimate,
we choose q so that ω1/(1−q/2) � (|∇u|p + |∇u∗|p). Since ω = (|∇u| + |∇u∗|)1−p/2,
we require

(1 − p/2)/(1 − q/2) = p ⇐⇒ q = 3 − 2

p
.

Observe that the condition 1 < q < 2 is satisfied for 1 < p < 2. As for the value of κ,
we choose it to have

(κ− 1)q′(2/q) = p ⇐⇒ κ = p.

Thus, with this choice of constants we obtain

(∫
Br

βp n
n−1

)n−1
n

≤ C

[
K2

∫
Br

|∇β|2
ω2

+ K−p′
∫
Br

βp

]q/2 (
rn−1

)1−q/2
.

Now, using (6.5) and repeating the arguments as in section 5.1, we can deduce the
following recursive inequality:

cV
n−1
n

r ≤ [Vr+1 − Vr + Ar+1 −Ar − cAr]
q/2

(rn−1)1−q/2.(6.6)
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Now the question is whether we can infer from (6.6) that

Vr ≥ c rn

for r ≥ 1 if V1 ≥ µ > 0. The answer is affirmative when

n− 1

n
· 2

q
< 1 ⇐⇒ p >

2n

n + 2
.

This follows from Lemma 2.1 with α = 1 − q/2. (Unfortunately, (6.6) alone does
not imply the density estimate for p ≤ 2n/(n + 2), since we do need α < 1/n in
Lemma 2.1.)

Summarizing, we obtain that for the range of the exponents 2n/(n + 2) < p < 2,
one can drop the assumption (1.12) to prove Lemma 4.1. This completes the proof of
Theorem 1.1.

7. Consequences of the density estimates. We briefly show in this section
two consequences that can be easily derived from Theorem 1.1, thanks to the tech-
niques developed in the last years.

The first consequence is that level sets of absolute minimizers converge, up to
subsequence, to minimal interfaces in L∞

loc. More precisely, it has been proved in
[Bou90] that minimizers uε of

Jε(u; Ω) =

∫
Ω

A(x, ε∇u) + F (x, u)(7.1)

converge, up to subsequence, in L1
loc to a step function u0 which has a minimal

interface with respect to a suitably weighted area. Indeed, from the above density
estimates we have that level sets converge in L∞

loc.
Theorem 7.1. Fix θ ∈ (0, 1). Let |uε| ≤ 1 be an absolute minimizer of (7.1) in

a bounded domain Ω. Assume that, as ε tends to zero, uε converges in L1
loc to

u0 := χE − χΩ−E

for a suitable E ⊂ Ω. Then, {|uε| ≤ θ} converges locally uniformly to ∂E.
The latter convergence is understood in the sense that dist (x, ∂E) → 0 uniformly

for x ∈ {|uε| ≤ θ} ∩K for any K ⊂⊂ Ω.
Proof. The proof repeats the one of Theorem 2 in [CC95]. Assume that the claim

of the theorem is not correct. Then there is δ > 0, K ⊂⊂ Ω, and εn → 0, such
that there exist xn ∈ {|uεn | < θ} with, say, Bδ(xn) ⊂ E ∩ K. Since the rescalings
ũε(x) := uε(εx) are absolute minimizers of the normalized functional J , applying the
density estimates in Theorem 1.1 to ũε and then scaling back to uε, we will obtain
that

Ln(Bδ/2(xn) ∩ {uεn < θ}) ≥ c δn

for some c > 0. But then,∫
Bδ/2(xn)

|uεn − u0| ≥ c(1 − θ) δn,

in contradiction with the hypothesis. This proves Theorem 7.1.
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Remark 7.2. We point out the following particular case of the above theorem.
Let F (x, u) = |1 − u2|α with α > 2. Then it is unknown whether there is a uniform
convergence of the level sets of minimizers in the singular perturbation problem

∫
ε2|∇u|2 + |1 − u2|α, ε → 0 + .

However, if one perturbs with εp|∇u|p with p ≥ α, the uniform convergence follows
from Theorem 7.1.

The second consequence of the density estimates is the existence of plane-like
minimizers in the periodic setting. We say that u is a class A minimizer for J if it
is an absolute minimizer for J in any ball B. With this setting, we can prove the
following theorem.

Theorem 7.3. Assume that A(x + e, η) = A(x, η) and F (x + e, η) = F (x, η)
for any e ∈ Z

n. Fix θ ∈ (0, 1). Then, there exists a positive constant M0, depending
only on θ and on the structural constants, such that, given any ω ∈ R

n − {0}, there
exists a class A minimizer u = uω for the functional J for which the set {|u| ≤ θ} is
constrained in the strip {x · ω ∈ [0,M0|ω|]}.

Furthermore, such u enjoys the following property of “quasi periodicity”: if ω ∈
Q

n − {0}, then u is periodic (with respect to the identification induced by ω, i.e.,
u(x + k) = u(x) for any k ∈ Z

n ∩ ω⊥); if ω ∈ R
n − Q

n, then u can be approximated
uniformly on compact sets by periodic class A minimizers.

Notice that M0 above is independent of the frequency ω. These kinds of plane-
like structures have been considered in [CdlL01] in the minimal surfaces case, and
generalized to fluid jets and Ginzburg–Landau models in [Val04] and [PV03]. See also
[Tor04] for a case with a degenerate metric. The proof of Theorem 7.3 is analogous to
the one presented in section 8 of [PV03], with minor obvious changes, and we therefore
omit the details.
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Abstract. Penalization and minimization methods are used to give an abstract “semiglobal”
result on the existence of nontrivial solutions of parameter-dependent quasi-linear differential equa-
tions in variational form. A consequence is a proof of existence, by infinite-dimensional variational
means, of bifurcation points for quasi-linear equations which have a line of trivial solutions.

The approach is to penalize the functional twice. Minimization gives the existence of critical
points of the resulting problem, and a priori estimates show that the critical points lie in a re-
gion unaffected by the leading penalization. The other penalization contributes to the value of the
parameter.

As applications we prove the existence of periodic water waves, with and without surface tension.

Key words. variational method, critical-point theory, minimization, quasi-linear elliptic prob-
lems, periodic water waves, free boundaries
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1. Introduction. Using local finite-dimensional reduction followed by a con-
strained minimization argument, Stuart [20], following Krasnosel’skii [15], gave a bi-
furcation theory for variational problems which was applied in [6] to Babenko’s [2]
quasi-linear equation for Stokes waves. But how to deal with such problems directly,
using variational methods in infinite dimensions, remained unclear. In [8] we took a
step in this direction by adapting some ideas of Turner [22] and the mountain-pass
lemma in infinite dimensions to obtain an existence theory which was “semiglobal,”
in the sense that parameter values were quantifiably not infinitesimally small, and
finite-dimensional reduction was not involved.

Now, in section 2, we present an abstract result that covers a general class of quasi-
linear problems. In section 3 we show that the existence problem for two-dimensional
capillary-gravity waves on a flow of infinite depth, with its curvature term that repre-
sents surface tension effects, is a special case. Our method should give explicit (and
hopefully good) lower bounds on the size of the periodic capillary-gravity waves so
obtained, but here the aim is merely to illustrate the generality of the abstract result.
Moreover, our abstract method, based on a direct minimization, could probably be
enriched to encompass the various kinds of two-dimensional periodic capillary-gravity
waves found in [10, 14, 17] by extending it to more involved minimax principles. In
section 4, we apply the present method to the Stokes-wave problem (steady periodic
water waves without surface tension). As in [8], we obtain the existence of a nonzero
symmetric Stokes wave which is not a consequence of local existence theories [1, 6, 20].
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In contrast to [8], we no longer appeal to the mountain-pass principle or to Morse
theory, and therefore the present proof is simpler.

The vast literature on steady two-dimensional water waves, with or without sur-
face tension, which has been developed since the work of Stokes [19] in the middle
of the nineteenth century, is surveyed from various viewpoints in [12, 13, 18, 23]. A
great deal is now known about existence theory using global continuation methods
[5, 6, 7], numerical investigations [9, 16], and computer assisted proofs [3, 4]. But the
need for a global or “semiglobal” variational theory of these and similarly degenerate
variational problems, including Morse indices of solutions, remains our focus. An ex-
tension of such “semiglobal” methods to cover the three-dimensional waves considered
in [10] would be most interesting but is beyond the scope of the present work.

2. Abstract setting. Consider a real Hilbert space X0 with inner-product 〈·, ·〉0
and norm ‖ · ‖0, and suppose that A is a (possibly unbounded) positive-definite self-
adjoint operator on X0 such that A−1 : X0 → X0 exists and is continuous. For
k ≥ 1 let Xk denote the domain of Ak/2, which is dense in X0. Then Xk is a
Hilbert space with inner-product and norm defined by 〈u, v〉k = 〈Ak/2u,Ak/2v〉0 and
‖u‖k = ‖Ak/2u‖0 for u, v ∈ Xk, and

‖u‖k ≤ ‖A−1/2‖ ‖u‖k+1 for all u ∈ Xk+1.

For R2 > 0, let U ⊂ X2 be the open ball {u ∈ X2 : ‖u‖2 < R2}, and suppose
that K, L ∈ C1(U ; R) are functionals with Fréchet derivatives at u denoted by ∂K(u)
and ∂L(u). We are interested in the equation

γ∂K(w) + ∂L(w) = 0, w ∈ U \ {0}, γ ≥ γ0 ≥ 0,(�)

when the following inequalities hold for constants C1 ,C2 > 0 and for a continuous
function ψ : [0,∞)2 → R, the precise form of which depends on the problem:

for u ∈ U : K(u) ≥ C1‖u‖2
1 and K(0) = 0,(2.1a)

for u ∈ U : L(u) ≥ −C2‖u‖2
1 and L(0) = 0,(2.1b)

for u ∈ U ∩X4 : ∂K(u)Au ≥ 0 and(2.1c)

γ0∂K(u)Au + ∂L(u)Au ≥ ψ(‖u‖1 , ‖u‖2).(2.1d)

Observe that ∂K(0) = ∂L(0) = 0 so that w = 0 is a trivial solution of (�).
Roughly speaking, the function ψ takes positive and negative values and will be

such that ψ(s, t) > 0 when s is “not too large” and t is “not small” (see assumption
(2.2) below). In the existence proof, we construct a functional J on U , whose min-
imizer w satisfies γ0∂K(w)Aw + ∂L(w)Aw ≤ 0 with s = ‖w‖1 “not too large.” This
yields an upper bound, better than R2, on t = ‖w‖2 which ensures that w is solution
of our problem. To verify the assumptions in practice, it will often be necessary to
choose U small enough, whence the term “semiglobal” in the abstract.

The next hypothesis is about weak solutions of a regularized problem: for all
γ ≥ γ0, ε > 0, and w ∈ U ,

if γ∂K(w) + ∂L(w) + εA2w = 0 in X∗
2 , then w ∈ X4.(2.1e)

Finally, we make the following assumptions:

K and L are weakly lower semicontinuous on U ⊂ X2.(2.1f)

There exists u∗ ∈ U with γ0K(u∗) + L(u∗) < 0 = γ0K(0) + L(0).(2.1g)
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Theorem 1. Suppose that hypotheses (2.1) hold and that

ψ(s,R2) > 0 for all s ∈
[
0,

√
K(u∗)/C1

]
.(2.2)

Then there exist w ∈ U\{0} and γ ≥ γ0 such that

γ∂K(w) + ∂L(w) = 0,(�)

γ0K(w) + L(w) ≤ γ0K(u∗) + L(u∗) < 0,

and, as a consequence of (2.1a) and (2.1b),

‖w‖2
1 ≥ γ0K(u∗) + L(u∗)

γ0C1 − C2
> 0.

Remarks.
1. Note that in (2.1a) and (2.1b), γ0C1 −C2 < 0; otherwise u∗ would not exist.
2. A typical form of the function ψ is αt2−ϕ(s, t), where α > 0, ϕ is continuous

from [0,∞)2 to R, and ϕ(0, R2) = 0. Then condition (2.2) becomes

ϕ(s,R2) < αR2
2 for all s ∈

[
0,

√
K(u∗)/C1

]
.(2.3a)

This condition is satisfied for K(u∗) small enough, by continuity of ϕ at (0, R2). Note
that α may depend on R2.

3. In the examples of sections 3 and 4 the function ψ is constructed in two steps.
First we establish an inequality

∂K(u)Au ≥ C3‖u‖2
2 for all u ∈ U ∩X4,(2.3b)

for some constant C3(R2) > 0. Then we find a function ϕ(s, t) and a constant C4 ∈ R

such that

∂L(u)Au ≥ −ϕ(‖u‖1, ‖u‖2) − C4‖u‖2
2 for all u ∈ U ∩X4.(2.3c)

If γ0 > C4/C3, the estimate (2.1d) will follow for ψ(s, t) := αt2 − ϕ(s, t), with α :=
γ0C3 − C4 > 0.

Proof of Theorem 1. Let R1, Rmin > 0 be finite numbers such that

K(u∗) < R2
1, ‖u∗‖2 ≤ Rmin < R2

and

ψ(s, t) > 0 for all s ∈
[
0, R1/

√
C1

]
and t ∈

[
Rmin, R2

]
.(2.4)

These numbers exist because of assumption (2.2) and the uniform continuity of ψ
on

[
0 , 2

√
K(u∗)/C1

]
×

[
0 , R2

]
. We define two smooth, nondecreasing penalization

functions ρi : [0, R2
i ) → R such that

ρi(s) → ∞ as s ↗ R2
i , i = 1, 2,

0 ≤ s ≤ K(u∗) ⇒ ρ1(s) = 0, 0 ≤ s ≤ R2
min ⇒ ρ2(s) = 0,

and consider the real-valued functional defined for u ∈ U with K(u) < R2
1 by

J (u) = γ0K(u) + L(u) + ρ2(‖u‖2
2) + ρ1(K(u)).
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The indices denote the facts that ρ2 and ρ1 control, respectively, the norms in
X2 and X1 (through the constant C1). We refer to ρ2 as the leading penalization.
Together they allow us to work in the domain V := {u ∈ U : K(u) < R2

1}. The
inequalities (2.1a), (2.1d), (2.2) will ensure that critical points w of J in this domain
satisfy ‖w‖2 ≤ Rmin and are thus unaffected by the leading penalization. At critical
points the other penalization may be nonzero, which leads to the loss of control of the
value of the parameter γ in the statement of the theorem.

We must now find a critical point of J , and a natural idea is to look for a
minimizer. Note that J is bounded from below on V , with J (u) → ∞ as ‖u‖2 ↗ R2

and J (u) → ∞ as K(u) ↗ R2
1, by the existence of the constants C1 and C2. From

(2.1f) it follows that J has a minimizer w ∈ V . We have K(w) < R2
1, ‖w‖2 < R2,

and w is a weak solution of the Euler equation

{γ0 + ρ′1(K(w))}∂K(w) + ∂L(w) + 2ρ′2(‖w‖2
2)A

2w = 0.(2.5)

Seeking a contradiction, assume that ε := 2ρ′2(‖w‖2
2) > 0 . Then, by (2.1e), w ∈ X4.

Hence Aw ∈ X2, and we have ∂J (w)Aw = 0. From (2.1c) and (2.1d) it follows that

ψ(‖w‖1, ‖w‖2) ≤ −ρ′1(K(w))∂K(w)Aw − 2ρ′2(‖w‖2
2)‖w‖2

3 < 0.

Since K(w) < R2
1, (2.1a) gives the estimate ‖w‖1 ≤ R1/

√
C1. Therefore, by (2.4),

‖w‖2 < Rmin . This shows that ρ′2(‖w‖2
2) = 0, which is the required contradiction.

Hence, we have proved that w ∈ U satisfies (2.5), with ρ′2(‖w‖2
2) = 0. Therefore

γ∂K(w) + ∂L(w) = 0 with γ := γ0 + ρ′1(K(w)).

Since w is a minimizer of J and ρ1(K(u∗)) = ρ2(‖u∗‖2
2) = 0 , we have

γ0K(w) + L(w) ≤ J (w) ≤ J (u∗) = γ0K(u∗) + L(u∗) < 0.

The critical point w is thus nonzero, and we have the estimate

(γ0C1 − C2)‖w‖2
1 ≤ γ0K(u∗) + L(u∗) < 0.

Additional hypotheses yield more information on the critical point w.
Theorem 2. Suppose that (2.1) holds and

∂K(u) + µA2u �= 0 for all u ∈ U \ {0} and µ ≥ 0.(2.6)

Let the two constants R , R satisfy ‖u∗‖2 ≤ R < R2 , R ≥
√
K(u∗) , and (instead of

(2.2)) suppose that

ψ(s,R) ≥ 0 for all s ∈
[
0, R/

√
C1

]
.(2.7)

Then there exists w ∈ U\{0} such that ‖w‖2 ≤ R, K(w) ≤ R2,

γ0K(w) + L(w) = min{γ0K(u) + L(u) : u ∈ U, ‖u‖2 ≤ R, K(u) ≤ R2},

and the following hold:
(i) if K(w) < R2, then γ0∂K(w) + ∂L(w) = 0;
(ii) if K(w) = R2, then γ∂K(w) + ∂L(w) = 0 for some γ ≥ γ0.
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Moreover, as a consequence of properties (2.1a), (2.1b),

‖w‖2
1 ≥ γ0K(u∗) + L(u∗)

γ0C1 − C2
> 0.

Proof. By assumptions (2.1a) and (2.1b), the functional I(u) := γ0K(u)+L(u) is
bounded from below on the set C := {u ∈ X2 : K(u) ≤ R2 , ‖u‖2 ≤ R}. By assump-
tion (2.1f), the set C is weakly closed in X2, and I is weakly lower semicontinuous.
So there exists a minimizer w of I on C. Since u∗ ∈ C,

I(w) ≤ I(u∗) < 0.

Hence (γ0C1 − C2)‖w‖2
1 ≤ I(u∗) < 0 . By assumption (2.6) and the general theorem

on Lagrange multipliers, w is a weak solution of

εA2w + γ∂K(w) + ∂L(w) = 0

for some γ ≥ γ0 and ε ≥ 0 and

(γ − γ0)(R
2 −K(w)) = 0 = ε (R− ‖w‖2).

It follows by contradiction, as in the proof of Theorem 1, that ε = 0 (this follows from
(2.1a), (2.1d), (2.7)). The alternative (i)–(ii) is thus satisfied.

3. Gravity-capillary water waves. Let L2
2π denote the usual real Banach

space of 2π-periodic, real-valued, square-integrable measurable “functions” on R, and
let L∞

2π denote the analogous space of essentially bounded functions. We denote by
Cn

2π (resp., C∞
2π) the space of 2π-periodic functions u which are n times continuously

differentiable (resp., infinitely differentiable).

With respect to the orthonormal basis {(2π)−
1
2 eikt : k ∈ Z}, let the Fourier

coefficients of u ∈ L2
2π be denoted by ûk, k ∈ Z. Then û−k = ûk, since u is real, and

L2
2π is a real Hilbert space with inner-product

〈u, v〉 =
∑
k∈Z

ûkv̂k.

For u ∈ L2
2π let

[u] =
1

2π

∫ π

−π

u(t) dt =
û0√
2π

.

The fractional order Sobolev space Hs
2π, s ≥ 0, is the Hilbert space of functions

u ∈ L2
2π with norm given by

‖u‖2
s = û2

0 +
∑
k∈Z

|k|2s|ûk|2 < ∞.

Note that if u ∈ Cn
2π, k ∈ N ∪ 0, then

‖u‖2
n = 2π[u]2 + ‖u(n)‖2

L2
2π
,

where u(n) denotes the nth derivative of u. The conjugation operation [24] on L2
2π is

defined by

(Ĉu)0 = 0 and (Ĉu)k = −i sgn(k)ûk for k ∈ Z \ {0}, when u ∈ L2
2π;
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equivalently, C(cos kt) = sin kt, k ≥ 0, and C(sin kt) = − cos kt, k ≥ 1. Clearly C :
L2

2π → L2
2π is a bounded linear operator and u �→ Cu′ is nonnegative and symmetric

in the sense that

0 ≤ 〈u, Cu′〉 and 〈u, Cv′〉 = 〈Cu′, v〉 for all u, v ∈ C∞
2π.

For any function w ∈ H1
2π with [w] = 0, writing w+ iCw =

√
2
π

∑
k>0 ŵke

ikt, one gets

‖w + iCw‖∞ ≤ 1√
2π

∑
k �=0

|ŵk| ≤
1√
2π

(∑
k �=0

k2|ŵk|2
)1/2(∑

k �=0

1

k2

)1/2

=

√
π

6

(∑
k �=0

k2|ŵk|2
)1/2

=

√
π

6
‖w‖1 =

√
π

6
‖w′‖L2

2π
.(3.1)

When surface-tension effects are included, the steady water-wave problem can be
formulated as follows [6]: find w such that

ν2

2
{w′2 + (1 + Cw′)2}−1 + λw − β

(1 + Cw′)w′′ − w′(1 + Cw′)′

{w′2 + (1 + Cw′)2}3/2
=

1

2
ν2,(3.2a)

w′2 + (1 + Cw′)2 > 0, w ∈ H2
2π \ {0}, λ ≥ 0, β, ν > 0.(3.2b)

Here β is the coefficient of surface tension and the parameters λ and ν2 are defined in
terms of the wavelength 2Λ, the wave speed c, the gravitational acceleration g, and
the density d by

λ =
gΛ2d

π2
, ν2 =

Λc2d

π
.

Note that (3.2) is not a variational problem as it stands. However, it is known [6]

that (3.2) is satisfied by any w ∈ H2
2π such that w′2 + (1 + Cw′)2 > 0 and such that,

almost everywhere,

(3.3) 0 = −ν2Cw′ + λ{w + wCw′ + C(ww′)}

− β

⎧⎨
⎩ w′√

w′2 + (1 + Cw′)2

⎫⎬
⎭

′

+ βC

⎧⎨
⎩ 1 + Cw′√

w′2 + (1 + Cw′)2

⎫⎬
⎭

′

.

Equation (3.3) is the Euler equation of the functional

J(w) =

∫ π

−π

{
− 1

2
ν2wCw′ +

1

2
λw2(1 + Cw′)

+ β

√
w′2 + (1 + Cw′)2 − β(1 + Cw′)

}
dt.

For all w, the integral of the last term is −2βπ, and it does not contribute to the
variational principle (it is a null Lagrangian). It is included here only to ensure that
the constant and linear parts of the integrand vanish when w = 0.

Observe that, when λ = 0, every constant function w is a solution of (3.3) and
any translate of a solution is also a solution. These superfluous solutions complicate
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the problem unnecessarily, and, to eliminate them, we work in the subspace X2 of
H2

2π consisting of even functions of zero mean with norm given by

‖w‖2
X2

=

∫ π

−π

|w′′(t)|2 dt = ‖w‖2
2.

The critical points of J under the constraint [w] = 0 satisfy (3.3) almost everywhere,
but with 0 on the left-hand side replaced by the constant λ[wCw′]. So instead we

consider the functional J̃ defined on X2 by

J̃(w) := J(w) − λ

4π

{∫ π

−π

wCw′dt

}2

.

Critical points w ∈ X2 of J̃ satisfy

(3.4)
λ

2π

∫ π

−π

wCw′dt = −
(
ν2 +

λ

π

∫ π

−π

wCw′dt

)
Cw′ + λ(w + wCw′ + C(ww′))

+ β

⎧⎨
⎩ −w′√

w′2 + (1 + Cw′)2
+ C 1 + Cw′√

w′2 + (1 + Cw′)2

⎫⎬
⎭

′

,

and w̃ := w − [wCw′] satisfies (3.3), from which (3.2a) follows.
Since we can divide (3.2) by any one of the parameters ν2, λ, and β, there are

effectively only two dimensionless parameters in the problem. Now divide J, J̃ , and
(3.3) by ν2 so that, in the remainder of section 3,

λ =
gΛ

πc2
, ν2 = 1,(3.5a)

and β has been replaced by the dimensionless parameter

γ =
βπ

Λc2d
.(3.5b)

We now apply the abstract result of section 1 to J̃ . To put the functional J̃ in the
context of section 2, let

X0 = {w ∈ L2
2π : [w] = 0, w is even},

Aw = −w′′,

Xk = {w ∈ Hk
2π : [w] = 0, w is even} (k ≥ 1).

If R2 <
√

6/π, then (3.1) implies that

‖w′ + iCw′‖∞ ≤
√
π/6R2 < 1 when ‖w‖X2

< R2 .(3.6)

For w ∈ U , the ball of radius R2 centered at the origin in X2, let

K(w) =

∫ π

−π

√
w′2 + (1 + Cw′)2 − (1 + Cw′) dt

=

∫ π

−π

w′2dt

|1 + Cw′ − iw′| + (1 + Cw′)
,

L(w) = −1

2

∫ π

−π

wCw′dt− λ

4π

{∫ π

−π

wCw′dt

}2

+
λ

2

∫ π

−π

w2(1 + Cw′)dt.
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With β in (3.4) replaced by γ and ν2 by 1, we check the hypotheses of Theorem 1 for
0 < R2 <

√
6/π small enough. Obviously, L is of class C1 on X2. Since (3.6) holds,

we have

0 < 2(1 −
√
π/6R2) ≤ |1 + Cw′ − iw′| + (1 + Cw′) ≤ 2(1 +

√
π/6R2).(3.7)

So K is of class C1 on U . Moreover, if we define

C1(R2) :=
1

2(1 +
√

π/6R2)
,(3.8)

then

C1‖w′‖2
L2

2π
≤

∫ π

−π

w′2dt

|1 + Cw′ − iw′| + (1 + Cw′)
= K(w).

So (2.1a) is satisfied.

Now to check (2.1b) for all w ∈ U and λ > 0, note that

L(w) =

∫ π

−π

{
− 1

2
wCw′ +

λ

2
w2(1 + Cw′)

}
dt− λ

4π

{∫ π

−π

wCw′dt

}2

≥ −1

2
‖w‖2

1 +
λ

2
(1 −

√
π/6‖w‖2)‖w‖2

0 −
λ

4π
‖w‖2

2‖w‖2
0

≥ λ

2

(
1 −

√
π/6R2 −

1

2π
R2

2

)
‖w‖2

0 −
1

2
‖w‖2

1

≥ −1

2
‖w‖2

1

under the condition
√
π/6R2+

1
2πR

2
2 ≤ 1, which is satisfied, for instance, when R2 < 1.

So, under this restriction on R2, (2.1b) holds for C2 := 1/2.

Next we show the existence of C3(R2) > 0 satisfying (2.3b) for R2 small enough.

Lemma 3. If w ∈ X4 is such that ‖w‖X2
< R2 with 0 < R2 <

√
3/4π, then

∂K(w)Aw ≥ C3(R2)‖w‖2
X2

,

where

C3(R2) :=
1 − 2

√
π/3R2

(1 +
√
π/6R2)3

.(3.9)

Proof. The product ∂K(w)Aw is the directional derivative of the functional K at w
in the direction −w′′. It is also the derivative of the length of the parametrized curve
{c(t) = (t + Cw(t), w(t)), 0 ≤ t ≤ 2π} in the direction {δ(t) = (−Cw′′(t),−w′′(t)),
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0 ≤ t ≤ 2π}. Using this interpretation, one easily gets the formula

∂K(w)Aw =

∫ π

−π

{(1 + Cw′)w′′ − w′Cw′′}2

{(1 + Cw′)2 + w′2}3/2
dt

=

∫ π

−π

|w′′ + Re{(Cw′ + iw′)(w′′ + iCw′′)}|2
|1 + Cw′ + iw′|3 dt

≥
∫ π

−π

|w′′|2 − 2|Cw′ + iw′| |w′′ + iCw′′| |w′′|
(1 +

√
π/6R2)3

dt

≥
∫ π

−π

|w′′|2 − 2
√
π/6R2 |w′′ + iCw′′| |w′′|

(1 +
√
π/6R2)3

dt

≥ 1 − 2
√
π/3R2

(1 +
√
π/6R2)3

∫ π

−π

|w′′|2 dt

since (3.6) holds.

We now construct a function ϕ such that (2.3c) is true when C4 = 0. For λ ≥ 0
and w ∈ U ∩X4, we have

∂L(w)(−w′′) = −
∫ π

−π

w′Cw′′dt− λ

π

(∫ π

−π

wCw′dt

)(∫ π

−π

w′Cw′′dt

)

− λ

∫ π

−π

(
w + wCw′ + C(ww′)

)
w′′dt

= −
∫ π

−π

w′Cw′′dt + λ

∫ π

−π

w′2dt− λ

∫ π

−π

w
(
w′′Cw′ − w′Cw′′)dt

− λ

π

(∫ π

−π

wCw′dt

)(∫ π

−π

w′Cw′′dt

)

≥ −‖w‖2‖w‖1 + λ‖w‖2
1 − 2λ‖w‖∞‖w‖2‖w‖1 −

λ

π
‖w‖2

1‖w‖2
2

≥ −ϕ(‖w‖1, ‖w‖2),

where

ϕ(s, t) := ts− λ
(
1 −

√
2π/3 t− t2/π

)
s2.

Let γ0 > 0 be given. Then, in (2.1d), we can choose

ψ(s, t) := γ0C3(R2)t
2 − ϕ(s, t).

If w ∈ U is a weak solution of ∂J̃(w)+εA2w = 0, with ν2 = 1 and β = γ,

λ

2π

∫ π

−π

wCw′dt = −
(

1 +
λ

π

∫ π

−π

wCw′dt

)
Cw′ + λ(w + wCw′ + C(ww′))

+ γ

⎧⎨
⎩ −w′√

w′2 + (1 + Cw′)2
+ C 1 + Cw′√

w′2 + (1 + Cw′)2

⎫⎬
⎭

′

+ εwiv
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with ε > 0, a standard regularity argument shows that w ∈ H4
2π and thus hypoth-

esis (2.1e) is verified. Hypothesis (2.1f) is a consequence of the compact Sobolev
embedding X2 ⊂ C1

2π.

Theorem 4. Let λ ≥ 0, γ0 > 0, 0 < R2 <
√

3/4π, and suppose that there exists
u∗ ∈ U such that

J̃(u∗) < 0,(3.10)

ϕ(s,R2) < γ0C3R
2
2 for all s ∈

[
0 ,

√
K(u∗)/C1

]
.(3.11)

Then there exists w ∈ U\{0} such that J̃(w) ≤ J̃(u∗) and (3.4) holds with ν2 = 1
and β = γ ≥ γ0. Hence (3.2) and (3.3) are satisfied for the same parameters if w is
replaced by w̃ := w − [wCw′].

Proof. This is a consequence of Theorem 1, since its hypotheses have been verified
for this example.

Now we must confirm the existence of u∗ satisfying (3.10) and (3.11). The choice
of u∗ is motivated by a power-series expansion of solutions of the nonlinear problem
which bifurcate from the trivial solution. From now on, λ ∈ (0, 1) is fixed, and we
impose γ0 > 1 − λ. For u∗, we try u∗(t) = a

(
cos t + k cos 2t

)
, where a > 0 and k ∈ R

are small. Then ‖u∗‖2
L2

2π
= πa2(1 + 4k2), ‖u′′

∗‖2
L2

2π
= πa2(1 + 16k2), and

∫ π

−π

u∗Cu′
∗dt = πa2(1 + 2k2),

which yields

J̃(u∗) = −π

2
a2
{
1 + 2k2 − λ(1 + k2 + 2ak)

}
− λ

4π
{πa2(1 + 2k2)}2 + γ0K(u∗).

To evaluate J̃(u∗), we choose k = pa, γ0 − 1 + λ = Ba2, where p, B ∈ R are yet to
be determined, and consider only the terms of order at most 4 in a. Recall that, for
|s| < 1,

√
1 + s = 1 +

1

2
s− 1

8
s2 +

1

16
s3 − 5

128
s4 + · · · .

Hence √
u′
∗
2 + (1 + Cu′

∗)
2 − (1 + Cu′

∗)

=
√

1 + 2Cu′
∗ + (Cu′

∗)
2 + (u′

∗)
2 − (1 + Cu′

∗)

=
1

2
(u′

∗)
2 − 1

2
(u′

∗)
2Cu′

∗ −
1

8
(u′

∗)
4 +

1

2
(u′

∗)
2(Cu′

∗)
2 + · · ·

=
1

2
a2

(
1 − cos 2t

2
+ 2k2(1 − cos 4t) + 2k(cos t− cos 3t)

)

−1

2
a3

(
cos t

2
− cos t + cos 3t

4
+ 2k sin2 2t + k sin 4t

)

−1

8
a4 sin2 t +

5

32
a4 sin2 2t + · · ·
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and

J̃(u∗) = −π

2
a2
{
1 + 2k2 − λ(1 + k2 + 2ak)

}
− λ

4π
{πa2(1 + 2k2)}2

+πγ0

{
a2

2
+ 2a2k2 − a3k +

a4

32

}
+ · · ·

= πa4

{
B

2
+
(
1 − (3/2)λ

)
p2 +

(
2λ− 1

)
p + (1 − 9λ)/32

)}
+ · · · .

Our aim is to get J̃ (u∗) < 0 for small enough a > 0. If λ ∈ [2/3, 1), we can choose

p = − 1 − 9λ

32(2λ− 1)
− 1 and B = 2λ− 1 > 0.

On the other hand, if λ ∈ (0, 2/3), then we can choose for p the value at which the
following minimum is attained:

min
p∈R

{(
1 − (3/2)λ

)
p2 +

(
2λ− 1

)
p + (1 − 9λ)/32

}
=

−74λ2 + 86λ− 28

64(2 − 3λ)
< 0.

Hence we can choose in this case

p = −2λ− 1

2 − 3λ
and B = −−74λ2 + 86λ− 28

64(2 − 3λ)
> 0.

We can now check the other hypotheses of Theorem 4 for λ > 0 fixed. If R2 is fixed
small enough, then ϕ(s,R2) ≤ R2 s and C1 ≥ 1/4, C2 = 1/2, C3 ≥ 1/2. If a > 0 is

small, then ‖u∗‖2
2 = πa2(1 + 16k2) < R2

2 . Since K(u∗) = πa2

2 +O(a4) and γ0 > 1− λ,

it is clear that R2

√
K(u∗)/C1 < γ0C3R

2
2 for a small, and (3.11) is satisfied.

To sum up, we have proved the following result that is a particular case of those
in [10, 14, 17].

Theorem 5. Let λ and γ be given by (3.5). Then for all λ ∈ (0, 1) and all
δ > 0, there exist γ > 1 − λ and w ∈ U\{0} such that 0 < ‖w′′‖L2

2π
< δ and (3.4)

holds. Hence (3.3) and (3.2) with ν = 1 and β = γ are satisfied if w is replaced by
w̃ := w − [wCw′].

By refining the method, it should be possible to obtain explicit lower bounds on
the size of w for not too small δ. But the choice of our test function u∗, based on
local arguments, is probably not optimal for this purpose. Note that in the case of
pure capillary waves (λ = 0), explicit large amplitude solutions have been obtained
by Crapper [11]. In the general capillary-gravity case, this could help in the search
for better test functions u∗ more adapted to the global nature of the problem.

4. Stokes waves. We turn to the case of pure gravity waves. Divide by λ so
that, in the abstract theory,

γ =
ν2

λ
=

πc2

gΛ
.(4.1)

In (3.2), (3.3), (3.4), J , and J̃ , let β = 0 and λ = 1. Having done so, w ∈ H1
2π in

(3.2), (3.3) and we apply the abstract result of section 1 with γ := ν2,

X0 = {w ∈ L2
2π : [w] = 0, w is even},

Aw = Cw′,

Xk = {w ∈ H
k/2
2π : [w] = 0, w is even} for k ∈ {1, 2, 4}.
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The radius R2 > 0 will be specified later. For w ∈ U (the ball in X2 of radius R2

centered at the origin) let

K(w) =

∫ π

−π

wCw′dt,

L(w) =
1

2π

{∫ π

−π

wCw′dt

}2

−
∫ π

−π

w2(1 + Cw′)dt.

Assumption (2.1a) is satisfied for C1 := 1, and in (2.3b) we can take C3 := 2, since

∂K(w)Cw′ = 2

∫ π

−π

Cw′Cw′dt = 2‖w‖2
2.

The following lemma from [21] is useful for finding the constant C2 of (2.1b) and the
function ϕ of (2.3c).

Lemma 6. If w ∈ H1
2π and if h ∈ C∞(R) is convex on the range of w, then

h′(w(t)
)
Cw′(t) − C

(
h′(w)w′)(t) ≥ 0

almost everywhere, and therefore∫ π

−π

h′(w(t)
)
Cw′(t)dt ≥ 0.

Now ∫ π

−π

w2Cw′dt =

∫ π

−π

w
(
wCw′ − C(ww′)

)
dt +

1

2

∫ π

−π

w2Cw′dt,

which, with Lemma 6, gives∣∣∣∣∣
∫ π

−π

w2Cw′dt

∣∣∣∣∣ ≤ 2{sup |w|}
∫ π

−π

{wCw′ − C(ww′)}dt

= 2{sup |w|}
∫ π

−π

wCw′dt.

Thus

L(w) ≥ −(1 + 2{sup |w|})‖w‖2
1

and we can choose C2 := 1 +
√

2π/3R2 in (2.1b). We also have

∂L(w)Cw′ =
2

π
K(w)

∫ π

−π

Cw′Cw′dt− 2

∫ π

−π

wCw′dt

− 2

∫ π

−π

wCw′Cw′dt−
∫ π

−π

C(w2)′Cw′dt

≥ 2

π
K(w)

∫ π

−π

Cw′Cw′dt− 2K(w)

− 2{sup |w|}
∫ π

−π

(Cw′)2 + (w′)2dt

≥ −ϕ(‖w‖1, ‖w‖2) − C4‖w‖2
2
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with ϕ(s, t) := 2
π s

2t2 − 2s and C4 := 4
√

π/6R2. This gives (2.3c).
Now A2w = −w′′ and so, if w ∈ H1

2π is a weak solution of

− 1

2π

∫ π

−π

wCw′dt =

(
ν2 +

∫ π

−π

wCw′dt/π

)
Cw′ − w − wCw′ − C(ww′) + εA2w

with ε > 0, a standard regularity argument shows that w ∈ W 2,2
2π , and thus hypothesis

(2.1e) is verified.
To check assumption (2.1f), note that if wn ⇀ w weakly in L2

2π, then Cw′
n ⇀ Cw′

weakly in H1
2π and wn → w uniformly on [−π, π]. It follows that K(wn) → K(w),

L(wn) → L(w).
Theorem 7. Let γ > 0 and R2 < γ

√
3/(2π). Assume that there exists u∗ ∈ U

such that

γK(u∗) + L(u∗) < 0

and

K(u∗)

γ −
√

2π/3R2 + π−1K(u∗)
< R2

2.(4.2)

Then there exist w ∈ U\{0} and γ̃ ≥ γ such that

γ̃∂K(w) + ∂L(w) = 0 and γK(w) + L(w) ≤ γK(u∗) + L(u∗).

Proof. This theorem follows from Theorem 1 and the particular form of ψ. Indeed,
the inequality (4.2) is equivalent to (2.3a).

Let u∗(t) = a
(
cos t + k cos 2t

)
, where a, k > 0. Then ‖u‖2

L2
2π

= πa2(1 + 4k2),

∫ π

−π

u∗Cu′
∗dt = πa2(1 + 2k2), and

∫ π

−π

u2
∗Cu′

∗dt = 2πa3k.

Moreover, setting r =
√
πa2(1 + 2k2), we get

ν2K(u∗) + L(u∗)

= πa2

{
ν2 − 1 + (2ν2 − 1)k2 − 2rk√

π(1 + 2k2)
+

r2(1 + 2k2)

2π

}
.

All hypotheses of Theorem 7 are verified if

r

√
1 + 4k2

√
1 + 2k2

< R2 <

√
3 γ√
2π

,(4.3)

R2
2 >

r2

γ −
√

2π/3R2 + r2/π
,

γ − 1 + (2γ − 1)k2 − 2rk√
π(1 + 2k2)

+
r2(1 + 2k2)

2π
< 0.(4.4)
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Then Theorem 4 provides us with a nontrivial solution w. Take R2 = 0.477, r = 0.28,
k = 0.142, γ = 1/0.99. Conditions (4.3) to (4.4) above are fulfilled, and we get a
solution of (3.2) with β = 0 and λ = 1 in which w and ν are replaced by

w∗ = w − 1

2π

∫ π

−π

wCw′dt

and ν∗ ≥ 0.99−1/2. Alternatively, we can fix ν = 1 and let λ be the parameter, in
which case the corresponding λ∗ is in (0, 0.99]. The same result has been obtained in
[8] via the mountain-pass theorem, but the present proof is simpler.

Acknowledgment. The authors wish to thank the referees for valuable com-
ments and suggestions.
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EXPLICIT SOLUTIONS OF THE EIGENVALUE PROBLEM
−div

(
Du

|Du|

)
= u IN R2 ∗
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Abstract. In this paper we compute explicit solutions of the eigenvalue problem −div(Du/|Du|)
= u in R2, in particular explicit solutions whose truncatures are in W 1,1

loc
(R2), and piecewise constant

ones which are sums of characteristic functions of convex sets. The solutions of the above eigenvalue
problem describe the asymptotic behavior of solutions of the minimizing total variation flow. As an
application, we also construct explicit solutions of the denoising problem in image processing.

Key words. eigenvalue problem, total variation flow, finite perimeter sets, denoising problem

AMS subject classifications. 35J70, 35P30, 35K65
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1. Introduction. The main aim of this paper is to compute explicit solutions
of the following eigenvalue problem:

−div

(
Du

|Du|

)
= u, u ∈ L1

loc(R
2).(1.1)

Solutions to (1.1) describe the asymptotic behavior, as t → +∞, of solutions of the
minimizing total variation flow in R2 given by the equation

∂u

∂t
= div

(
Du

|Du|

)
in QT := ]0, T [ × R2,(1.2)

coupled with the initial condition

u(0) = u0 ∈ L2(R2).(1.3)

Indeed, as was proved in [9], if u0 ∈ L2(R2), then the solution u(t) vanishes in

finite time T (u0) and the rescaled function u(t)
T (u0)−t converges along subsequences to

a solution of (1.1) as t → T (u0); see Theorem 2.8 below. Thus, solutions of (1.1)
describe the profiles of extinction of solutions of (1.2). We also notice that a solution
u of (1.1) allows us to construct a solution of (1.2) of the form v(t, x) = (1− t)+u(x).

One of the main motivations of our study comes from the total variation approach
to the problems of image denoising and restoration. Indeed, as was shown in [12],
solutions of (1.1) allow us to construct explicit solutions of the total variation formu-
lation of the denoising problem [33]. Assuming that our observed image (or data) f
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comes from noisy observations of an ideal undistorted image u, the image model can
be written as

f = u + n,(1.4)

where n represents the noise, typically assumed to be Gaussian. In [33], Rudin,
Osher, and Fatemi proposed obtaining the denoised image u by solving the constrained
minimization problem

Minimize

∫
D

|Du| with

∫
D

(u− f)2 dx = σ2|D|,(1.5)

where D is the image domain, typically a rectangle in R2, and the constraint incor-
porates the image acquisition model given by (1.4) in terms of the variance of the
noise σ2. Let us stress here that even if three-dimensional images occur, for instance,
a medical image (or video data), the case of R2, being the case of photographs and
satellite or medical images, plays an important role in image processing. In practice,
problem (1.5) is solved via the unconstrained minimization problem

min

{∫
D

|Du| + 1

2λ

∫
D

(u− f)2 dx : u ∈ BV (D)

}
(1.6)

for some Lagrange multiplier λ > 0 [17]. The constraint has been introduced as a
penalization term. The regularization parameter λ controls the trade-off between the
goodness of fit of the constraint and the smoothness term given by the total variation.
This formulation of the denoising problem pioneered the use of total variation as a
regularization term and the use of bounded variation functions in image processing.
The first regularization methods used the Sobolev (semi)norm

∫
D
|Du|2 and proposed

denoising the data f by solving

min

{∫
D

|Du|2 +
1

2λ

∫
D

(u− f)2 dx : u ∈ W 1,2(D)

}
.(1.7)

In case D = R2, the solution of (1.7) in the Fourier domain is given by

û(ξ) =
f̂(ξ)

1 + 4γπ2|ξ|2 , ξ ∈ R2

(the constants appearing in the denominator being dependent on the form of the
Fourier transform). From the above formula we see that high frequencies of f (hence,
the noise) are attenuated by the smoothness constraint. This was an important step,
but the results were not satisfactory, mainly due to the inability of the previous
functional to resolve discontinuities (edges) and oscillatory textured patterns. The
smoothness constraint is too restrictive. Indeed, functions in W 1,2(D) cannot have
discontinuities along rectifiable curves. These observations motivated the introduction
of total variation in image restoration models by Rudin, Osher, and Fatemi in their
seminal work [33]. The a priori hypothesis is that functions of bounded variation
(the BV model) [6, 24, 36] are a reasonable functional model for many problems in
image processing, in particular, for restoration problems [33]. Typically, functions of
bounded variation have discontinuities along rectifiable curves, being continuous in
the measure theoretic sense away from discontinuities. The discontinuities could be
identified with edges. The ability of this functional to describe textures is less clear;



EXPLICIT SOLUTIONS OF AN EIGENVALUE PROBLEM 1097

some textures can be recovered, but up to a certain scale of oscillation. An interesting
experimental discussion of the adequacy of the BV model to describe real images can
be seen in [3, 29].

The analysis of problem (1.5) has been the subject of much work in the last ten
years, both numerical and theoretical. It will not be our purpose to review it here,
and we refer the interested reader to [10] for an account of it. Let us mention only
that the existence of solutions of (1.5) for any f ∈ L2(RN ) follows easily from the
convexity of the functional and the properties of bounded variation functions; that the
equivalence between (1.5) and (1.6) was proved in [17]; and that the characterization
of the Euler–Lagrange equation in distributional terms was done in [8, 12] (see [10]).
To describe the behavior of solutions of (1.6), the authors started in [12] the search
for explicit solutions for some particular kind of functions f ∈ L2(R2). Since, when
λ = ∆t, (1.6) corresponds to the implicit in time discretization of (1.2) (also called
the Crandall–Liggett scheme in semigroup theory [19]), the behavior of solutions of
one of them is analogous to those of the other. This has been exploited in the papers
[8, 12] (see also [10] for a full account).

In particular, in [12] we showed how the explicit solutions of (1.1) could be used
to construct data f ∈ L2(R2) for which we could compute the explicit solution of
(1.6) in R2. In the most simple case, if u ∈ BV (R2) is a solution of (1.1) and b ∈ R,
then the function au with a = sign(b)(|b| − λ)+ is the solution of the variational
problem (1.6) when f = bu. In other words, the solution of (1.6) is given by the
soft-thresholding rule applied to b. Other more general results were also exhibited. In
particular, this established a connection with the wavelet approach to denoising given
by the soft-thresholding rule applied to the wavelet coefficients of a noisy function (the
uncorrupted function being in some Besov space) [20, 21, 22, 23]. In this direction, let
us recall the result of Meyer [31], which proves that by applying a soft-thresholding
to the coefficients of the wavelet expansion of f with respect to some orthonormal
wavelet basis, one obtains a quasi-optimal solution of (1.6) in the sense that its energy
is bounded by a universal constant times the actual minimum energy. Further work
exploring the connection between both approaches, variational and wavelet-based, to
the denoising problem can be found in [35].

Our purpose in this paper will be to make progress in the study of the solutions of
the eigenvalue problem (1.1) and to derive, as a consequence, other explicit solutions
of the denoising problem

min

{∫
R2

|Du| + 1

2λ

∫
R2

(u− f)2 dx : u ∈ BV (R2)

}
(1.8)

for some data f ∈ L2(R2), λ > 0. For that, in section 2 we shall begin by recalling
some preliminary facts about functions of bounded variation, a generalized Green’s
formula [11], and the notion of solution for the evolution equation (1.2) and for the
eigenvalue problem (1.1).

In section 3 we describe the regularity properties of the level lines of the solutions
of (1.1). In section 4 we study the solutions of (1.1) which are in W 1,1(R2), and
hence do not possess discontinuities along rectifiable curves. Indeed, we compute the
explicit solutions u of (1.1) whose truncatures Tk(u) := (−k)∨ u∧ k are in W 1,1

loc (R2)
for any k > 0, and we prove that the level sets {u > t}, t > 0 (resp., {u < t}, t < 0),
of the nonzero solutions are balls of radius 1

t (resp., − 1
t ).

Then we turn our attention to the consideration of piecewise constant solutions of
(1.1) which can be described as sums of characteristic functions of convex sets forming
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towers (or oscillating towers). As we shall prove, there are geometric restrictions on
the curvature of the convex sets, as well as restrictions on their relative position to be
able to combine them in towers which are solutions of (1.1). In some particular cases,
this kind of geometric condition already appeared in the study of capillarity problems
in domains of R2 [18, 25, 26, 27, 28], and its analogues have also appeared in the case
of crystalline variational problems [13, 14, 15]. Let us mention that consideration
of convex sets is justified by the results in [12]. The analysis of piecewise constant
solutions of (1.1) leads to the study of solutions of div z = constant in bounded and
unbounded domains delimited by convex sets. Section 5 is devoted to solving the
equation div z = constant in a bounded domain F of R2 determined by an exterior
Jordan curve ∂C0 of class C1,1 and a finite number m of interior Jordan curves, also
of class C1,1, where the unknown is a vector field z ∈ L∞(F ;R2), ‖z‖∞ ≤ 1, whose
trace at the boundary is the inner or outer unit normal, depending on the Jordan
curve. This is one of the basic building blocks in constructing piecewise constant
explicit solutions of (1.1), the other being the solution of the equation div z = 0 in the
complement of a bounded domain made by a finite number of connected components
whose boundary is a convex curve of class C1,1. This will be the purpose of section
6. By pasting together these solutions one can construct explicit piecewise constant
solutions of (1.1). We shall call these solutions oscillating tower solutions of (1.1).
We shall use them to construct some data f ∈ L2(R2) for which the explicit solutions
of (1.8) can be computed (with a soft-thresholding rule). This will be the purpose of
section 8.

The solutions constructed here illustrate the behavior of solutions of (1.8), but
do not exhibit all its features. The behavior of (1.8) for characteristic functions of
general convex sets in R2 (together with explicit solutions of (1.2)) was described
in [1], where it was shown that the sets are eroded at high curvature points of its
boundary. By the way, the extension of the above results to characteristic functions
of convex sets in RN has been started in [2]. The explicit behavior of (1.8) and (1.2)
when the initial condition is the characteristic function of a general set in R2 with
smooth or piecewise smooth boundary is still to be described. We believe that with
these elements on hand, one would be able to add them and produce a description
of a more general class of piecewise constant solutions of (1.2). There is still a long
way to go, but our explicit solutions are a first step in this direction and illustrate the
behavior of soft-thresholding in some geometrically simple cases, exhibiting the role
of the parameter λ in the elimination of small localized perturbations of the image
(which could be assimilated to a multiple of a characteristic function of some small
ball).

2. Some notation.

2.1. Functions of bounded variation and sets of finite perimeter. Let
Q be an open subset of RN . By C∞

0 (Q) (resp., C∞
0 (Q;RN )) we denote the space of

functions (resp., vector fields with values in RN ) which are C∞ and have compact
support in Q.

A function u ∈ L1(Q) whose gradient Du in the sense of distributions is a (vector-
valued) Radon measure with finite total variation in Q is called a function of bounded
variation. The class of such functions will be denoted by BV (Q). The total variation
of Du on Q turns out to be

sup

{∫
Q

u divz dx : z ∈ C∞
0 (Q;RN ), ‖z‖L∞(Q) := ess sup

x∈Q
|z(x)| ≤ 1

}
(2.1)
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(where for a vector v = (v1, . . . , vN ) ∈ RN we set |v|2 :=
∑N

i=1 v
2
i ) and will be denoted

by |Du|(Q) or by
∫
Q
|Du|. It turns out that the map u → |Du|(Q) is L1

loc(Q)-lower

semicontinuous. BV (Q) is a Banach space when endowed with the norm
∫
Q
|u| dx +

|Du|(Q). We recall that BV (RN ) ⊆ LN/(N−1)(RN ). The total variation of u on
a Borel set B ⊆ Q is defined as inf{|Du|(A) : A open, B ⊆ A ⊆ Q}. We denote
by BVloc(Q) the space of functions w ∈ L1

loc(Q) such that wϕ ∈ BV (Q) for all
ϕ ∈ C∞

0 (Q). For results and information on functions of bounded variation, we refer
to [6, 24].

A measurable set E ⊆ RN is said to be of finite perimeter in Q if (2.1) is finite
when u is substituted with the characteristic function χE of E. The perimeter of E
in Q is defined as P (E,Q) := |DχE |(Q), and P (E,Q) = P (RN \ E,Q). We shall
use the notation P (E) := P (E,RN ). For sets of finite perimeter E one can define
the essential boundary ∂∗E, which is countably (N − 1) rectifiable with finite HN−1

measure, and compute the outer unit normal νE(x) at HN−1 almost all points x of
∂∗E, where HN−1 is the (N − 1)-dimensional Hausdorff measure. Moreover, |DχE |
coincides with the restriction of HN−1 to ∂∗E.

For a Lebesgue measurable subset E ⊆ RN and a point x ∈ RN , the upper and
lower densities of E at x are, respectively, defined by

D(x,E) := lim sup
r→0+

|E ∩Br(x)|
|Br(x)| , D(x,E) := lim inf

r→0+

|E ∩Br(x)|
|Br(x)| .

Here Br(x) denotes the open ball of radius r centered at x and | · | stands for the
Lebesgue measure. If the upper and lower densities are equal, their common value
will be called the density of E at x, and it will be denoted by D(x,E). Each set E
of finite perimeter will be identified with the representative (in its Lebesgue class)
given by the set of all points x ∈ RN such that D(x,E) = 1. It is clear that if ∂E is
Lipschitz continuous, then the precise representative we are choosing is an open set.

If µ is a (possibly vector-valued) Radon measure and f is a Borel function, the
integration of f with respect to µ will be denoted by

∫
fdµ. When µ is the Lebesgue

measure, the symbol dx will be often omitted.
By L1

w(]0, T [;BV (RN )) we denote the space of functions v : ]0, T [ → BV (RN )
such that v ∈ L1

(
]0, T [×RN

)
, the maps t ∈ ]0, T [→

∫
RN φ dDv(t) are measurable

for every φ ∈ C1
0 (RN ;RN ), and

∫ T

0
|Dv(t)|(RN ) dt < ∞. By L1

w(]0, T [;BVloc(R
N ))

we denote the space of functions v : ]0, T [ → BVloc(R
N ) such that vϕ ∈ L1

w(]0, T [;
BV (RN )) for all ϕ ∈ C∞

0 (RN ).
If E is a subset of RN of class C1,1, we denote by κ∂E the (HN−1-almost every-

where defined) curvature of ∂E, nonnegative for convex sets. The following result can
be proved as in [32].

Proposition 2.1. Let µ ∈ R and E be a set of class C1,1. Assume that there
exists an open set A such that A ∩ ∂E is the graph of a C1,1 function, and

P (E,A) − µ|E ∩A| ≤ P (E ∪B,A) − µ|(E ∪B) ∩A|(2.2)

for any bounded measurable set B with B ⊂ A. Then κ∂E(x) ≥ µ for HN−1-almost
every x ∈ A ∩ ∂E. Similarly, if in place of (2.2) there holds the inequality

P (E,A) − µ|E ∩A| ≤ P (E \B,A) − µ|(E \B) ∩A|,

then κ∂E(x) ≤ µ for HN−1-almost every x ∈ A ∩ ∂E.
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The following lemma will be used in several places. Let us include its proof for
the sake of completeness.

Lemma 2.2. Let A,B ⊆ RN be two sets of finite perimeter such that |A∩B| = 0.
Then, up to a set of HN−1-measure zero, we have

∂∗(A ∪B) = (∂∗A \ ∂∗B) ∪ (∂∗B \ ∂∗A).

In particular, we have

P (A ∪B) = P (A) + P (B) − 2HN−1(∂∗A ∩ ∂∗B).

Proof. Recall that if E ⊆ RN has finite perimeter, the essential boundary ∂∗E is
contained in the measure theoretic boundary ∂ME (i.e., the set of points x ∈ RN such
that D(x,E) > 0 and D(x,RN \E) > 0) of E, and HN−1(∂ME \∂∗E) = 0 [6, 24, 36].
Let p ∈ ∂∗(A ∪ B). Then D(p,A ∪ B) > 0 and D(p,RN \ (A ∪ B)) > 0. Since
RN \ (A∪B) ⊆ RN \A we have D(p,RN \A) > 0. Similarly D(p,RN \B) > 0. From
D(p,A ∪ B) > 0, we have either D(p,A) > 0 or D(p,B) > 0. If D(p,A) > 0 (resp.,
D(p,B) > 0), we have p ∈ ∂∗A (resp., p ∈ ∂∗B). Now, if p ∈ ∂∗A ∩ ∂∗B, HN−1-
almost everywhere, we have D(p,A) = D(p,RN \A) = D(p,B) = D(p,RN \B) = 1

2 .
Since |A ∩B| = 0, we conclude

D(p,A ∪B) = D(p,A) + D(p,B) =
1

2
+

1

2
= 1.

This implies that p ∈ ∂∗(A ∪ B), a contradiction. We conclude that p ∈ ∂∗A ∩ ∂∗B.
We have proved that

∂∗(A ∪B) ⊆ (∂∗A \ ∂∗B) ∪ (∂∗B \ ∂∗A) (mod HN−1).

To prove the opposite inclusion, assume that p ∈ ∂∗A \ ∂∗B. Then for HN−1-almost
every p we may assume that

D(p,A) = D(p,RN \A) =
1

2
.(2.3)

In particular, we have that D(p,A∪B) > 0. Assume that D(p,RN \ (A∪B)) = 0. In
this case, D(p,A ∪ B) = 1. Using (2.3), we obtain D(p,B) = 1

2 . Hence, p ∈ ∂∗B, a

contradiction. Thus, we also have D(p,RN \(A∪B)) > 0, and therefore p ∈ ∂∗(A∪B)
for HN−1-almost every p ∈ ∂∗A \ ∂∗B. We conclude that ∂∗A \ ∂∗B ⊆ ∂∗(A ∪ B).
Similarly we have that ∂∗B \ ∂∗A ⊆ ∂∗(A ∪B).

2.2. A generalized Green’s formula. Let Ω be an open set in RN . Following
[11], let

X2(Ω) := {z ∈ L∞(Ω;RN ) : div z ∈ L2(Ω)},
X2,loc(Ω) := {z ∈ L∞(Ω;RN ) : div z ∈ L2

loc(Ω)}.

If z ∈ X2,loc(Ω) and w ∈ L2
loc(Ω) ∩ BVloc(Ω), we define the functional (z,Dw):

C∞
0 (Ω) → R by the formula

〈(z,Dw), ϕ〉 := −
∫

Ω

wϕdiv z dx−
∫

Ω

w z · ∇ϕdx ∀ϕ ∈ C∞
0 (Ω).(2.4)



EXPLICIT SOLUTIONS OF AN EIGENVALUE PROBLEM 1101

Notice that

〈(z,Dw), ϕ〉 =

∫
Ω

z · ∇wϕdx ∀w ∈ L2
loc(Ω) ∩W 1,1

loc (Ω).

If z ∈ X2(Ω) and w ∈ L2(Ω) ∩BV (Ω), then (z,Dw) is a Radon measure in Ω, and∣∣∣∣
∫
B

(z,Dw)

∣∣∣∣ ≤
∫
B

|(z,Dw)| ≤ ‖z‖∞
∫
B

|Dw| ∀ Borel set B ⊆ Ω.

We denote by θ(z,Dw) ∈ L∞
|Dw|(Ω) the density of (z,Dw) with respect to |Dw|, that

is,

(z,Dw)(B) =

∫
B

θ(z,Dw) d|Dw| ∀ Borel set B ⊆ Ω.(2.5)

If Ω = RN , we have the following integration-by-parts formula [11] for z ∈ X2(R
N )

and w ∈ L2(RN ) ∩BV (RN ):∫
RN

w div z dx +

∫
RN

(z,Dw) = 0.(2.6)

In particular, if B is bounded and has finite perimeter in RN , from (2.6) and (2.5) it
follows that ∫

B

div z dx =

∫
RN

(z,−DχB) =

∫
∂∗B

θ(z,−DχB) dHN−1.(2.7)

Notice also that if z1, z2 ∈ X2(R
N ) and z1 = z2 almost everywhere on B, then

θ(z1,−DχB)(x) = θ(z2,−DχB)(x) for HN−1-almost every x ∈ ∂∗B.
We recall the following result proved in [11].
Theorem 2.3. Let Ω ⊂ RN be a open set with Lipschitz boundary, 1 ≤ p ≤ N ,

p′ = p
p−1 . Assume that either Ω or RN \ Ω is bounded. Let u ∈ BV (Ω) ∩ Lp′

(Ω) and

z ∈ L∞(Ω;RN ) with div z ∈ Lp(Ω). Then, using test functions ϕ ∈ C∞
0 (Ω), (2.4)

defines a Radon measure (z,Du) in Ω, there exists a function [z · νΩ] ∈ L∞(∂Ω) such
that ‖[z · νΩ]‖L∞(∂Ω) ≤ ‖z‖L∞(Ω;RN ), and∫

Ω

u divz dx +

∫
Ω

(z,Du) =

∫
∂Ω

[z · νΩ]u dHN−1.

In particular, if Ω or RN \Ω is a bounded open set with Lipschitz boundary, then
(2.7) has a meaning also if z is defined only on Ω and not on the whole of RN , precisely
when z ∈ L∞(Ω;RN ) with div z ∈ L1(Ω). In this case we mean that θ(z,−DχΩ)
coincides with [z · νΩ].

Remark 1. Let Ω ⊂ R2 be a bounded Lipschitz open set, and let zinn ∈ L∞(Ω;R2)
with divzinn ∈ L2(Ω), and zout ∈ L∞(R2 \Ω;R2) with divzout ∈ L2(R2 \Ω). Assume
that

[zinn · νΩ](x) = −[zout · νR
2\Ω](x) for H1-a.e. x ∈ ∂Ω.

Then if we define z := zinn on Ω and z := zout on R2 \ Ω, we have z ∈ L∞(R2;R2)
and divz ∈ L2(R2).
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2.3. The notion of solution, and existence and uniqueness results. Con-
sider the energy functional Ψ : L2(RN ) → (−∞,+∞] defined by

Ψ(u) :=

⎧⎨
⎩

∫
RN

|Du| if u ∈ L2(RN ) ∩BV (RN ),

+∞ if u ∈ L2(RN ) \BV (RN ).

(2.8)

Since the functional Ψ is convex, lower semicontinuous, and proper, then ∂Ψ is a
maximal monotone operator with dense domain, generating a contraction semigroup
in L2(RN ) (see [16]). Therefore, we have the following result.

Theorem 2.4. Let u0 ∈ L2(RN ). Then there exists a unique strong solu-
tion in the semigroup sense u of (1.2), (1.3) in [0, T ] for every T > 0, i.e., u ∈
C([0, T ];L2(RN )) ∩ W 1,2

loc (0, T ;L2(RN )), u(0) = u0, u(t) ∈ D(∂Ψ) for almost every
t ∈ [0, T ], and

−u′(t) ∈ ∂Ψ(u(t)) for a.e. t ∈ [0, T ].(2.9)

Moreover, if u and v are the strong solutions of (1.2) corresponding to the initial
conditions u0, v0 ∈ L2(Ω), respectively, then

‖u(t) − v(t)‖2 ≤ ‖u0 − v0‖2 for any t > 0.

The semigroup theory immediately provides us with existence and uniqueness
results for (1.2). The characterization of ∂Ψ given in Lemma 2.5 below (see [8, 9, 12]
for a proof) allows us to write Theorem 2.4 in more classical terms.

Lemma 2.5. The following assertions are equivalent:
(a) (u, v) ∈ ∂Ψ;
(b)

u ∈ L2(RN ) ∩BV (RN ), v ∈ L2(RN ),(2.10)

∃z ∈ X2(R
N ) with ‖z‖∞ ≤ 1, such that v = −divz in D′(RN ),

and ∫
RN

(z,Du) =

∫
RN

|Du|.(2.11)

Let us now give a more classical definition of solution for problem (1.2). As we
shall notice below, this notion coincides with the notion of a strong solution in the
sense of semigroups defined above.

Definition 2.6. A function u ∈ C([0, T ];L2(RN )) is called a strong solution of
(1.2) if

u ∈ W 1,2
loc (0, T ;L2(RN )) ∩ L1

w(]0, T [;BV (RN )),

and there exists z ∈ L∞ (
]0, T [×RN ;RN

)
with ‖z‖∞ ≤ 1 such that

ut = div z in D′(]0, T [×RN )

and ∫
RN

(z(t), Du(t)) =

∫
RN

|Du(t)| for a.e. t > 0.(2.12)
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We have the following result [8, 9, 12].
Theorem 2.7. Let u0 ∈ L2(RN ). A function u ∈ C([0, T ];L2(RN )) is a strong

solution of (1.2) with u(0) = u0 if and only if it is a strong solution of it in the
semigroup sense. Hence there exists a unique strong solution u of (1.2), (1.3) in
[0, T ] × RN for every T > 0. Moreover, if u and v are the strong solutions of (1.2)
corresponding to the initial conditions u0, v0 ∈ L2(RN ), respectively, then

‖(u(t) − v(t))+‖2 ≤ ‖(u0 − v0)
+‖2 for any t > 0.(2.13)

Obviously, using Lemma 2.5, a strong solution of (1.2) is a strong solution in
the sense of semigroups. The converse implication would follow along the same lines,
except for the measurability of z(t, x). To ensure the joint measurability of z, one
takes into account that, by the Crandall–Liggett theorem [19], semigroup solutions
can be approximated by implicit-in-time discretizations of (2.9), and one constructs a
function z(t, x) ∈ L∞(]0, T [×RN ) satisfying the requirements contained in Definition
2.6. For details we refer to [8, 10]. Let us finally recall that, by a suitable extension
of the notion of solution, we have existence, uniqueness, and stability results with
respect to convergence in L1

loc(R
N ) for initial conditions in L1

loc(R
N ) [12].

Theorem 2.7 can be complemented with the following result.
Theorem 2.8. Let u0 ∈ L2(RN ) ∩ LN (RN ) with support contained in a ball

B of radius R > 0, and let u(t, x) be the unique solution of problem (1.2). Then
supp(u) ⊆ B. If T ∗(u0) = inf{t > 0: u(t) = 0}, then

T ∗(u0) ≤
R‖u0‖∞

N
.(2.14)

Let

w(t, x) :=

⎧⎨
⎩

u(t, x)

T ∗(u0) − t
if 0 ≤ t < T ∗(u0),

0 if t ≥ T ∗(u0).

Then there exists an increasing sequence tn → T ∗(u0) and a solution v∗ = 0 of the
eigenvalue problem

v ∈ ∂Ψ(v)(2.15)

such that

lim
n→∞

w(tn) = v∗ in Lp(RN )

for all 1 ≤ p < ∞.
By Lemma 2.5, equation (1.1) can be understood in more classical terms. Let

us write this definition in a more general context. We shall use the truncatures
Tk(r) := (−k) ∧ r ∨ k, r ∈ R, k > 0.

Definition 2.9. Let Ω be an open set in RN and let f ∈ L2
loc(Ω). We say that

a function u ∈ L1
loc(Ω) is a solution of

−div

(
Du

|Du|

)
= f in Ω(2.16)

if

Tk(u) ∈ BVloc(Ω) ∀k > 0,(2.17)

∃z ∈ L∞(Ω;RN ) with ‖z‖∞ ≤ 1, such that − divz = f in D′(Ω),
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and

〈(z,DTk(u)), ϕ〉 =

∫
Ω

|DTk(u)|ϕ for any ϕ ∈ C∞
0 (Ω),(2.18)

where the left-hand side is defined as in (2.4).
The above definition also makes sense if we assume that f ∈ L1

loc(R
N ). Since this

will not be needed in what follows, and to avoid cumbersome statements in subsection
2.2, we have assumed that L1

loc(R
N ).

Remark 2. If u is a solution of (2.16) and f ∈ Lp
loc(Ω) with p ≥ 2, then

(z,Dχ{u>t}) = |Dχ{u>t}| (in the sense that 〈(z,Dχ{u>t}), ϕ〉 = 〈|Dχ{u>t}|, ϕ〉 for
any ϕ ∈ C∞

0 (Ω)) for almost any t ∈ R. Indeed, by [11, Proposition 2.7], we have

〈(z,DTk(u)), ϕ〉 =

∫ k

−k

〈(z,Dχ{u>t}), ϕ〉 dt, ϕ ∈ C∞
0 (Ω), k > 0.

Since |DTk(u)|(ϕ) =
∫ k

−k
|Dχ{u>t}|(ϕ), we may write (2.18) as

∫ k

−k

〈(z,Dχ{u>t}), ϕ〉 dt =

∫ k

−k

|Dχ{u>t}|(ϕ) dt, ϕ ∈ C∞
0 (Ω), k > 0,

and this implies our claim.
Remark 3. If u ∈ L∞(Ω), condition (2.18) can be replaced by (z,Du) = |Du|.
3. Properties of Lp

loc-solutions. Throughout the paper, from now on we shall
assume that N = 2.

Proposition 3.1. Let Ω be an open set in R2, and let u ∈ Lp
loc(Ω) for some

p ∈ ]2,+∞]. Let u be a solution of (1.1) in Ω. The following assertions hold.
(a) If p < +∞ (resp., p = +∞), then for any t ∈ R the sets {u > t} and {u ≥ t}

have boundary of class C1,α in Ω for some α ∈ ]0, 1[ (resp., C1,1). Similar
assertions hold for {u < t} and {u ≤ t}.

(b) If u ≥ a in Ω (resp., u ≤ a in Ω) for some a ∈ R, then κΩ∩∂{u>t} ≥ a and
κΩ∩∂{u≥t} ≥ a in the sense of distributions.

Proof. Let us prove (a). Let t be such that {u > t} is nonempty and has locally
finite perimeter in Ω and (z,Dχ{u>t}) = |Dχ{u>t}| (in particular, by Remark 2, for
almost every t). Let E be a set of finite perimeter in R2 such that E�{u > t} ⊂⊂ Ω.
Take a bounded Lipschitz set Ω′ with E�{u > t} ⊂⊂ Ω′ ⊂ Ω. Then, using (1.1), we
have ∫

{u>t}∩Ω′
divz dx−

∫
E∩Ω′

divz dx ≤ P (E,Ω′) − P ({u > t},Ω′).(3.1)

It follows that {u > t} is a minimizer of the functional

P (E,Ω) +

∫
E∩Ω

div z dx, E ⊆ R2,(3.2)

with respect to perturbations with compact support in Ω. Since by assumption
−divz = u ∈ Lp

loc(Ω) for some p ∈ ]2,+∞], using the regularity results for pre-
scribed curvature problems (see [7, 30]), it follows that Ω ∩ ∂{u > t} is of class C1,α

for some α ∈ ]0, 1[ if p < +∞, and of class C1,1 if p = +∞. By the compactness
property of minimizers for problem (3.2) (see, for instance, [4]) the above assertion
holds for any t, and (a) follows for {u > t}.
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Let us prove (b). Assume that u ≥ a in Ω (the case u ≤ a is analogous). Let
t ∈ R be such that {u > t} is nonempty and has locally finite perimeter in Ω and
(z,Dχ{u>t}) = |Dχ{u>t}| as in Remark 2 (hence, for almost every t). Let E be a set
of finite perimeter in R2 such that E ⊇ {u > t} and E \ {u > t} ⊂⊂ Ω′ ⊂ Ω, Ω′ being
a bounded set with Lipschitz boundary. Then from (3.1) it follows that

P ({u > t},Ω′) ≤ P (E,Ω′) +

∫
(E\{u>t})∩Ω′

divz dx

≤ P (E,Ω′) − a(|E ∩ Ω′| − |{u > t} ∩ Ω′|).

It follows that {u > t} is a minimizer of the functional

P (E,Ω) − a|E ∩ Ω|, {u > t} ⊆ E ⊆ R2,

with respect to perturbations with compact support in Ω. This concludes the proof
of (b) [7, 30].

The corresponding assertions for the sets {u ≥ t} can be proved in a similar
way.

In what follows, given a function u as in Proposition 3.1 and t ∈ R, we always
identify the set {u > t} (resp., {u < t}) with its points of density one, which is an
open set. We accordingly define {u ≥ t} as the complement of {u < t}.

4. Properties of W 1,1
loc -solutions.

Proposition 4.1. Let u be a solution of (1.1). Assume that u ∈ W 1,1
loc (Ω) ∩

L∞
loc(Ω) for some open set Ω ⊆ R2. Then for any t ∈ R every connected component

of Ω ∩ ∂{u > t} is contained in the boundary of a ball of radius 1/t.
Proof. Let t ∈ R, γ := Ω ∩ ∂{u > t}, and ε > 0. By Proposition 3.1 the curve γ

and the two curves γ−
ε := Ω ∩ ∂{u > t− ε}, γ+

ε := Ω ∩ ∂{u < t + ε} are of class C1,1.
Moreover, since u ∈ W 1,1

loc (Ω), the two sets γ−
ε ∩ γ and γ+

ε ∩ γ are closed sets of zero
H1-measure. Then the curve γ \ (γ−

ε ∪ γ−
ε ) is contained in Ω ∩ {|u− t| < ε}. Since γ

is of class C1,1, by (b) of Proposition 3.1 it follows that γ has curvature belonging to
(t− ε, t + ε). The thesis follows by letting ε → 0+.

Note that if u is as in Proposition 4.1, then the set {u > t} is a disjoint union of
balls of radius 1

t for any t ∈ R such that the boundary of {u > t} is contained in Ω.

Lemma 4.2. Let u ∈ W 1,1
loc (R2) ∩ L∞

loc(R
2) be a solution of (1.1). Then u ≡ 0.

Proof. Assume by contradiction that λ := ess supR2 u > 0 (the case ess inf uR2 <
0 can be treated in a similar way). Using Proposition 4.1 it follows that the set
{u > t} contains an open ball Bt of radius 1

t for any t ∈ (0, λ). Fix t ∈ (0, λ) and
let t∗ := ess supBt

u > t. Then the closure of a connected component of the set
Bt ∩ {u = t∗} = Bt ∩ {u ≥ t∗} is a closed ball Dt∗ ⊂ Bt of radius 1

t∗ . Using (1.1) we
get

t∗ =
(t∗)2

π

∫
Dt∗

u dx = − (t∗)2

π

∫
Dt∗

divz dx = 2t∗,

which is a contradiction.
Loosely speaking, the following proposition classifies solutions with no jumps.
Proposition 4.3. Assume that u is a solution of (1.1) satisfying the following

assumption:

∀t ∈ R ∃ an open set Ut ⊃ ∂{u > t} such that u ∈ L∞
loc(Ut).
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Assume also that Tk(u) ∈ W 1,1
loc (R2) for any k > 0. Then one of the following possi-

bilities holds:
• u ≡ 0;
• u is positive and the set {u > t} is a ball of radius 1

t for any t > 0;
• u is negative and the set {u < t} is a ball of radius − 1

t for any t < 0;
• u is nonnegative, {u > 0} is a halfspace, and the set {u > t} is a ball of

radius 1
t for any t > 0;

• u is nonpositive, {u < 0} is a halfspace, and the set {u < t} is a ball of radius
− 1

t for any t < 0;
• both {u > 0} and {u < 0} are halfspaces, the set {u > t} is a ball of radius 1

t
for any t > 0, and the set {u < τ} is a ball of radius − 1

τ for any τ < 0.
Proof. Assume that λ := ess supu > 0 (the case ess inf u < 0 being similar). From

Proposition 4.1 we get that {u > t} is the disjoint union of balls of radius 1
t for any

t ∈ (0, λ). Reasoning as in the proof of Lemma 4.2 we deduce that λ = +∞. Observe
that, given 0 < t1 < t2, to each ball B1 ⊆ {u > t1} (of radius 1/t1) there corresponds
one and only one ball B2 ⊆ {u > t2} (of radius 1/t2) such that B2 ⊂ B1, and vice
versa. Hence there is a pairwise correspondence between the balls of {u > t1} and
those of {u > t2}. Letting t → 0+, {u > t} consists of at most two balls, since
given any three disjoint balls whose radius goes to infinity, at least one of them has a
distance from a fixed point which goes to infinity. Hence u > 0 may consist of either
one halfspace, two halfspaces, or the whole of R2.

Claim. The set {u > t} consists of exactly one ball of radius 1
t for any t > 0.

Observe that, once the claim is proved, all assertions of the proposition follow,
since {u > 0} =

⋃
t>0{u > t} can only be a halfspace or the whole of R2. Assume by

contradiction that {u > t} is the union of two balls (of radius 1
t ); hence u ≥ 0 is the

union of two halfspaces of R2. Given τ < 0, the set {u < τ} is either empty or contains
a ball of radius − 1

τ ; however, by the above argument there is no place for such a ball.
Hence u ≥ 0. Then {u = 0} is either a line or a stripe. Without loss of generality,
we may assume that {u = 0} = [−l, l] × R for some l ≥ 0. Let L > l and, for t > 0
small enough and such that (z,Dχ{u>t}) = |Dχ{u>t}|, set St,L := {u < t}∩ ]−L,L[2.
Since −divz = u is bounded in St,L, we have

0 ≥ −
∫
St,L

u dx =

∫
St,L

div z dx =

∫
∂St,L

[z, νSt,L ] dH1

≥ H1(∂St,L ∩ ∂{u < t}) −H1(∂St,L ∩ {u < t}) ≥ 4L−H1(∂St,L ∩ {u < t}).

Letting t → 0+ and using the fact that {u > t} is the union of two balls of radius
1/t, we obtain 4L− 4l ≤ 0, a contradiction. Our claim is proved and the proposition
follows.

5. Solutions of div z = constant in bounded domains. In the following,
m ≥ 1 is an integer, and we denote by C0, C1, . . . , Cm bounded open sets of R2 with
boundary of class C1,1 having the following properties:

• Cl ⊂ C0 for any l ∈ {1, . . . ,m};
• Cl ∩ Ch = ∅ for any l, h ∈ {1, . . . ,m}, l = h.

We define

F := C0 \
m⋃
l=1

Cl,
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J0 :=
1

|F |

(
k∑

i=0

P (Ci) −
m∑

j=k+1

P (Cj)

)
,(5.1)

where 0 ≤ k < m is a fixed integer.
Given a set E ⊆ F of finite perimeter in F , we also let

FF (E) := P (E,F ) +

k∑
i=0

H1(∂∗E ∩ ∂Ci) −
m∑

j=k+1

H1(∂∗E ∩ ∂Cj) − J0|E|.

Remark 4. It is clear that FF (∅) = 0. Observe also that, thanks to the definition
of J0, FF (F ) = 0.

We now define a class A of subsets of F .
Definition 5.1. Let E ⊆ F be a finite perimeter set and let J0 > 0. We say

that E ∈ A if either E ∈ {∅, F} or the following conditions hold: F ∩ ∂∗E consists of
disjoint arcs Γ of circles of radius 1/J0, with ∂F ∩ Γ = ∅, and

νE= νC0 on Γ ∩ ∂C0,(5.2)

νE= −νCi on Γ ∩ ∂Ci, i ∈ {1, . . . , k},(5.3)

νE= νCj on Γ ∩ ∂Cj , j ∈ {k + 1, . . . ,m}.(5.4)

In (5.2), (5.3), and (5.4) we keep the notation νE to indicate the extension of the
outer unit normal vector to ∂E at the points of Γ.

The following result can be essentially found in [25, Theorem 1] and [26, Theorem
6.10]. Indeed, the results in [25, 26] cover the case of equalities (5.2) and (5.3), but
they can be adapted to prove (5.4).

Theorem 5.2. Let E ⊆ F be a finite perimeter set and assume that FF (E) =
min{FF (B) : B ⊆ F}. Then E ∈ A.

The equivalence (a) ⇐⇒ (c) of the next theorem in the crystalline case has been
investigated in [13].

Theorem 5.3. The following conditions are equivalent:
(a) There exists a vector field z : F → R2 satisfying

z ∈ L∞(F ;R2),

⎧⎪⎪⎨
⎪⎪⎩

−div z = J0 in D′(F ),
‖z‖∞ ≤ 1,

[z, νF ] = −1 H1-a.e. on ∂Ci, i ∈ {0, . . . , k},
[z, νF ] = 1 H1-a.e. on ∂Cj , j ∈ {k + 1, . . . ,m}.

(5.5)

(b) We have

J0

∫
F

w ≤
∫
F

|Dw| +
k∑

i=0

∫
∂Ci

w −
m∑

j=k+1

∫
∂Cj

w ∀w ∈ BV (F ).(5.6)

(c) For any set E ⊆ F of finite perimeter in F we have FF (E) ≥ 0.
(d) We have

min
E∈A

FF (E) = 0.(5.7)

Proof. We divide the proof into several steps.
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Step 1. Let Ω be an open bounded connected subset of R2 with C1,1 boundary,
f ∈ L2(Ω), g ∈ L∞(∂Ω), and λ > 0. Assume that ‖g‖∞ < 1. A function u ∈
BV (Ω) ⊂ L2(Ω) is a solution of

min
w∈BV (Ω)

E(w), E(w) :=

∫
Ω

|Dw| + 1

2λ

∫
Ω

(w − f)2 dx−
∫
∂Ω

gw(5.8)

if and only if there exists z ∈ X2(Ω), with ‖z‖∞ ≤ 1, satisfying (z,Du) = |Du| as
measures in Ω, [z, νΩ] = g H1-almost everywhere on ∂Ω and −λdivz = f−u in D′(Ω).

We observe that the functional E is convex and L1-lower semicontinuous. More-
over, since ‖g‖∞ < 1 and ∂Ω is of class C1,1, using the results of Giusti [28] we get
that E is coercive. Therefore it attains its minimum, which is also unique. Hence
u = argmin E if and only if 0 ∈ ∂E(u), where ∂ denotes the subdifferential in L2.

We now define the operator Ag in L2(Ω) × L2(Ω) as follows: (w, v) ∈ Ag if and
only if w ∈ BV (Ω), v ∈ L2(Ω), and there is a vector field z ∈ L∞(Ω, R2) with
‖z‖∞ ≤ 1 such that (z,Dw) = |Dw|, −div z = v in D′(Ω), and [z, νΩ] = g H1-almost
everywhere on ∂Ω. Let us prove that the operator Ag is maximal monotone. As
a consequence, since Ag ⊆ ∂E and both are maximal monotone, we conclude that
Ag = ∂E . This will prove Step 1.

The monotonicity of Ag follows by an integration by parts. To prove the maximal
monotonicity, we have to solve

f ∈ u + Agu ∀f ∈ L2(Ω).(5.9)

First, we assume that f ∈ L∞(Ω). Let us approximate (5.9) by⎧⎨
⎩

u− div(Tεu) = f in Ω,

[Tεu, νΩ] = g in ∂Ω,
Tεu :=

Du√
ε2 + |Du|2

.(5.10)

Following [28], we have that (5.10) has a unique solution uε ∈ BV (Ω). If we further
assume that f ∈ W 1,∞(Ω), we have uε ∈ W 1,1(Ω) (actually uε ∈ C2,α(Ω); see [28]).

Let us prove the basic estimates required to pass to the limit as ε → 0.
(i) L2 and bounded variation estimates on uε when f ∈ L∞(Ω): multiplying

(5.10) by uε, after integration by parts, we get∫
Ω

u2
ε +

∫
Ω

Tεuε ·Duε =

∫
Ω

fuε +

∫
∂Ω

guε.

Since x2
√
ε2+x2

≥ |x| − ε for all x ∈ R, from the above estimate we have∫
Ω

u2
ε +

∫
Ω

|Duε| ≤ ε|Ω| +
∫

Ω

fuε +

∫
∂Ω

guε.(5.11)

Now, using [28, Lemma 1.2] and ‖g‖∞ =: 1− 2σ < 1, there is a constant c depending
on σ, g, Ω, such that∣∣∣∣

∫
∂Ω

gw

∣∣∣∣ ≤ (1 − σ)

∫
Ω

|Dw| + c

∫
Ω

|w| ∀w ∈ BV (Ω).(5.12)

Inserting (5.12) in (5.11) we obtain the estimate

1

2

∫
Ω

u2
ε + σ

∫
Ω

|Duε| ≤ (ε + c2)|Ω| + ‖f‖2
2.

Thus, by extracting a subsequence, if necessary, we may assume that uε → u in Lp(Ω)
for any 1 ≤ p < 2 and weakly in L2(Ω), where u ∈ BV (Ω).
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(ii) L3 estimate on uε when f ∈ W 1,∞(Ω). We multiply (5.10) by |Tk(uε)|uε.
After integrating by parts we obtain∫

Ω

u2
ε |Tk(uε)| +

∫
Ω

Tεuε ·D(|Tk(uε)|uε) =

∫
Ω

f |Tk(uε)|uε +

∫
∂Ω

g|Tk(uε)|uε.

Using (5.12) and∫
Ω

Tεuε ·D(|Tk(uε)|uε) ≥
∫

Ω

|D(|Tk(uε)|uε)| − ε

∫
Ω

[|uε| + |Tk(uε)|]

we obtain ∫
Ω

u2
ε |Tk(uε)| + σ

∫
Ω

|D(|Tk(uε)|uε| ≤ (‖f‖∞ + c)

∫
Ω

|Tk(uε)||uε|

+ ε

∫
Ω

|uε| + ε

∫
Ω

|Tk(uε)|.

Since uε is bounded in L2(Ω), letting k → ∞, we deduce that uε is bounded in L3(Ω).
Thus also u ∈ L3(Ω).

Now,∫
Ω

(uε − u)2 dx ≤
(∫

Ω

|uε − u|3 dx
)1/2 (∫

Ω

|uε − u| dx
)1/2

→ 0 as ε → 0.

Thus we may extract a sequence uε converging in L2(Ω) to some function u ∈
BV (Ω). Moreover, we may assume that Tεuε → z weakly∗ in L∞(Ω, R2). Letting
ε → 0 in (5.10) we have

u− div z = f in D′(Ω).(5.13)

Still we have to prove that (z,Du) = |Du| and [z, νΩ] = g.
Let ϕ be a smooth function in Ω, continuous up to ∂Ω. We multiply (5.10) by ϕ

and integrate by parts to obtain∫
Ω

uεϕ +

∫
Ω

Tεuε · ∇ϕ−
∫
∂Ω

[Tεuε, ν
Ω]ϕ =

∫
Ω

fϕ.(5.14)

Letting ε → 0 and using that [Tεuε, ν
Ω] = g, we obtain∫

Ω

uϕ +

∫
Ω

z · ∇ϕ−
∫
∂Ω

gϕ =

∫
Ω

fϕ.(5.15)

Integrating by parts the second term of the above equality, we get∫
Ω

uϕ−
∫

Ω

div z ϕ +

∫
∂Ω

([z, νΩ] − g)ϕ =

∫
Ω

fϕ.(5.16)

Now, using (5.13) it follows that
∫
∂Ω

([z, νΩ] − g)ϕ = 0 for all test functions ϕ. This
implies that [z, νΩ] = g on ∂Ω.

To prove that (z,Du) = |Du|, we observe that from the lower semicontinuity of
E and the convergence

∫
Ω
(uε − f)2 dx →

∫
Ω
(u− f)2 dx as ε → 0, we have∫

Ω

|Du| −
∫
∂Ω

gu ≤ lim inf
ε

(∫
Ω

|Duε| −
∫
∂Ω

guε

)
= lim inf

ε

(∫
Ω

(Tεuε, Duε) −
∫
∂Ω

guε

)

= lim inf
ε

−
∫

Ω

div Tεuε uε = −
∫

Ω

div z u

=

∫
Ω

(z,Du) −
∫
∂Ω

gu ≤
∫

Ω

|Du| −
∫
∂Ω

gu.

We conclude that
∫
Ω
(z,Du) =

∫
Ω
|Du|.
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We have proved that there is a solution of (5.9) for each f ∈ W 1,∞(Ω). Our
next goal is to prove that the operator Ag is closed. As a consequence we obtain
that (5.9) has a solution for each f ∈ L2(Ω). To prove the closedness of Ag, let
(un, vn) ∈ Ag be such that (un, vn) → (u, v) in L2(Ω)×L2(Ω). Then there is a vector
field zn ∈ L∞(Ω, R2) with ‖zn‖∞ ≤ 1 such that vn = −div zn, (zn, Dun) = |Dun|
and [zn, ν

Ω] = g. Modulo a subsequence, we may assume that zn → z weakly∗

in L∞(Ω, R2) with ‖z‖∞ ≤ 1. Since vn = −div zn → −div z in D′(Ω), we have
v = −div z. The proofs of the facts [z, νΩ] = g and (z,Du) = |Du| follow the same
arguments as those in the corresponding proofs above, and we shall omit the details.
We conclude that Ag is closed in L2(Ω). This ends the proof that Ag is maximal
monotone and ∂E = Ag.

Step 2. The function u ≡ 0 is the solution of (5.8) if and only if f and g satisfy

∫
Ω

|Dw| ≥ 1

λ

∫
Ω

wf dx +

∫
∂Ω

gw ∀w ∈ BV (Ω).(5.17)

The proof follows along the same lines as the proof of [12, Lemma 1]. Clearly u ≡ 0
is the solution of (5.8) if and only if

∫
Ω

|Dw| + 1

2λ

∫
Ω

(w − f)2 dx−
∫
∂Ω

gw ≥ 1

2λ

∫
Ω

f2 dx ∀w ∈ BV (Ω).(5.18)

Replacing w by εw (where ε > 0), expanding the L2-norm, dividing by ε > 0, and
letting ε → 0+, we have (5.17).

On the other hand, if (5.17) holds, (5.18) also holds. Finally note that, replacing
w by −w, we see that we may replace the right-hand side of (5.17) by its absolute
value.

Step 3. Problem (5.5) has a solution if and only if (5.6) holds.
Note that it is enough to prove inequality (5.6) only for functions w ∈ BV (F ),

which do not change sign, i.e., w ≥ 0 or w ≤ 0.
Suppose that (5.5) has a solution z. Let w ∈ BV (F ). Multiplying −divz = J0

on F by w and integrating by parts, we obtain that (5.6) holds.
Assume now that (5.6) holds. Multiplying (5.6) by 1 − ε > 0 we deduce that

(1 − ε)J0

∫
F

w ≤
∫
F

|Dw| + (1 − ε)

k∑
i=0

∫
∂Ci

w − (1 − ε)

m∑
j=k+1

∫
∂Cj

w

∀w ∈ BV (F ).

Thus, by Step 2 with λ = 1 we deduce that u = 0 is a solution of (5.8) with f =
(1 − ε)J0χF , and g ≡ −(1 − ε) in ∂Ci, i ∈ {0, . . . , k}, and g ≡ 1 − ε in ∂Cj , j ∈
{k+ 1, . . . ,m}, for all ε ∈ ]0, 1[. Then by Step 1, we know that there exists a solution
ξε ∈ L∞(F,R2) such that ‖ξε‖∞ ≤ 1, −divξε = (1 − ε)J0χF , [ξε, ν

F ] = g. Letting
ε → 0, we find a vector field z satisfying (5.5).

Step 4. Conditions (b) and (c) are equivalent.
(c) follows from (b) by taking w = χE in (5.6) for any set of finite perimeter

E ⊆ F . (b) follows from (c) by means of the coarea formula. Indeed, let w ∈ BV (F ),
w ≥ 0. We have
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J0

∫
F

w dx = J0

∫ ∞

0

∫
F

χ{w≥t}χF dx dt = J0

∫ ∞

0

|{w ≥ t} ∩ F | dt

≤
∫ ∞

0

P ({w ≥ t}, F ) dt +

k∑
i=0

∫ ∞

0

H1(∂∗{w ≥ t} ∩ ∂Ci) dt

−
m∑

j=k+1

∫ ∞

0

H1(∂∗{w ≥ t} ∩ ∂Cj) dt

=

∫
F

|Dw| +
k∑

i=0

∫
∂Ci

w −
m∑

j=k+1

∫
∂Cj

w.

Let us prove the corresponding inequality for w ∈ BV (F ), w ≤ 0. First, we observe
that, writing F \ E instead of E in (c), we obtain

P (F \E,F ) +
k∑

i=0

H1(∂∗(F \E) ∩ ∂Ci)−
m∑

j=k+1

H1(∂∗(F \E) ∩ ∂Cj)− J0|F \E| ≥ 0.

Since P (F \ E,F ) = P (E,F ) and H1(∂∗(F \ E) ∩ ∂Cl) = P (Cl) − H1(∂∗E ∩ ∂Cl),
using (5.1), we may write the last equation as

P (E,F ) +
m∑

j=k+1

H1(∂∗E ∩ ∂Cj) −
k∑

i=0

H1(∂∗E ∩ ∂Ci) + J0|E| ≥ 0.(5.19)

Now, we may proceed as in the case where w ≥ 0 but using (5.19) instead of (c).
Indeed,

J0

∫
F

w dx = −J0

∫ 0

−∞

∫
F

χ{w≤t}χF dx dt = −J0

∫ 0

−∞
|{w ≤ t} ∩ F | dt

≤
∫ 0

−∞
P ({w ≤ t}, F ) dt−

k∑
i=0

∫ 0

−∞
H1(∂∗{w ≤ t} ∩ ∂Ci) dt

+

m∑
j=k+1

∫ 0

−∞
H1(∂∗{w ≤ t} ∩ ∂Cj) dt

=

∫
F

|Dw| +
k∑

i=0

∫
∂Ci

w −
m∑

j=k+1

∫
∂Cj

w.

Finally, if w ∈ BV (F ), we decompose w = w+ +w−, write the corresponding inequal-
ities (5.6) for w+ and w−, and add them to obtain that (5.6) holds for w.

Step 5. Condition (c) is equivalent to

min
E⊆F

FF (E) = FF (∅) = FF (F ) = 0,(5.20)

where the minimum is taken on the sets E ⊆ F of finite perimeter. Moreover, any
set E ⊆ F of finite perimeter minimizing the left-hand side of (5.20) belongs to A by
Theorem 5.2; therefore condition (c) is equivalent to condition (d).

Given a set E ⊆ R2, of finite perimeter in R2, we define the functional G as

G(E) := P (E) −
m∑

j=k+1

P (Cj) − J0|E ∩ F |.
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Remark 5. Recalling the definition of J0, we have G(F ∪ (
⋃m

j=k+1 Cj)) = 0.
Proposition 5.4. The following conditions are equivalent:
(a) The set F ∪ (

⋃m
j=k+1 Cj) is a solution of the variational problem

min

{
G(E) :

m⋃
j=k+1

Cj ⊆ E ⊆ C0 \
k⋃

i=1

Ci

}
.(5.21)

(b) There exists a vector field z satisfying (5.5).
Remark 6. If k = 0 in Proposition 5.4, the last inclusion in (5.21) must be

understood as E ⊆ C0.
Proof of Proposition 5.4. Assume that there exists a vector field z satisfying (5.5).

Given a finite perimeter set E ⊂ R2 such that
⋃m

j=k+1 Cj ⊆ E ⊆ C0 \
⋃k

i=1 Ci, we
integrate the divergence of z on E ∩ F and obtain

J0|E ∩ F | = −
∫
E∩F

div z dx

≤ P (E ∩ F, F ) +
k∑

i=0

H1(∂∗(E ∩ F ) ∩ ∂Ci)−H1

(
∂∗(E ∩ F ) ∩

(
m⋃

j=k+1

Cj

))

= P (E) −
m∑

j=k+1

P (Cj).

It follows that G(E) ≥ 0, and (a) follows.
Let us now assume that (a) holds. Let D ⊂ F be a set of finite perimeter. By

Theorem 5.3 (see condition (c)), to obtain a vector field satisfying (5.5) it is enough
to prove that

P (D) − 2
m∑

j=k+1

H1(∂∗D ∩ ∂Cj) ≥ J0|D|.(5.22)

Set A := D ∪
⋃m

j=k+1 Cj . By assumption we have

0 ≤ G(A) = P (A) −
m∑

j=k+1

P (Cj) − J0|D|

= P (D) − 2

m∑
j=k+1

H1(∂∗D ∩ ∂Cj) +

m∑
j=k+1

P (Cj) −
m∑

j=k+1

P (Cj) − J0|D|,

which is (5.22).
Remark 7. If we consider the case in which k = 0, then J0 tends to zero as

C0 tends to R2; in this case, the minimum problem (5.21) reduces to the problem
considered in [12, Theorem 6].

5.1. Characterization through the curvature of the boundaries. The
aim of this subsection is to prove Theorem 5.10, which is a characterization of the
solvability of problem (5.5) through pointwise curvature conditions on the boundaries
of the sets Ci. We begin with some preliminaries. The next definition is taken from
[18, Theorem 4.1].
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Definition 5.5. Let Ω ⊆ R2 be an open set with boundary of class C1,1 and
ρ > 0. We say that Ω satisfies the ρ-ball condition if an open ball of radius ρ can be
rotated along ∂Ω in Ω in such a way that no antipods of the ball lie on ∂Ω.

It is clear that if Ω satisfies the ρ-ball condition, then it satisfies the σ-ball con-
dition for any σ ∈ ]0, ρ].

Lemma 5.6. Let Ω ⊆ R2 be an open set satisfying the ρ-ball condition for some
ρ > 0. Then ess sup∂Ω κ∂Ω ≤ 1

ρ . Moreover, given an open ball Bρ ⊂ Ω of radius ρ
and tangent to ∂Ω, the set γ ∩ ∂Bρ is connected for any connected component γ of
∂Ω and spans an angle strictly less than π.

Proof. The inequality ess sup∂Ω κ∂Ω ≤ 1
ρ is immediate. Now let p, q ∈ ∂Bρ ∩ ∂Ω,

and denote by γ ⊂ ∂Bρ the shortest of the two circular arcs in ∂Bρ having p and q as
boundary points (such a γ is uniquely determined since p and q cannot be antipodal
by the ρ-ball condition). If γ ⊂ ∂Ω, we slightly rotate Bρ along ∂Ω around p towards
q, and denoting by B′ such a rotated ball, one verifies that q belongs to the interior
of B′, thus violating the ρ-ball condition. Hence γ ⊆ ∂Bρ ∩ ∂Ω, and γ spans an angle
strictly less than π.

Remark 8. In general, the inequality ess sup∂Ω κ∂Ω ≤ 1
ρ does not imply the ρ-ball

condition for the set Ω. However, if Ω is a convex set with boundary of class C1,1 such
that ess sup∂Ω κ∂Ω < 1

ρ , then Ω satisfies the ρ-ball condition.

Remark 9. If Cl is convex for any l ∈ {0, . . . ,m}, ess sup∂C0
κ∂C0

< J0 (in
particular J0 > 0), and

dist(∂Cl, ∂Ch) >
2

J0
∀(l, h) ∈ {0, . . . ,m}, l = h,

then F satisfies the 1
J0

-ball condition.

Given a function f ∈ W 1,1(]a, b[) ∩ C1,1 (]a, b[), we denote by κ(x, f(x)) the cur-
vature of the graph of f at the point (x, f(x)), i.e.,

κ(x, f(x)) := − f ′′(x)

(1 + f ′2(x))3/2
for a.e. x ∈ ]a, b[.

Lemma 5.7. Let f, g ∈ W 1,1(]a, b[)∩C1,1 (]a, b[) be such that f ≤ g on [a, b], and
f(a) = g(a), f(b) = g(b). Assume that ess inf ]a,b[ κ(x, f(x)) ≥ ess sup]a,b[ κ(x, g(x)) ≥
0. Then f = g.

Proof. By a smoothing argument we can assume that f, g ∈ C2 (]a, b[). Suppose
by contradiction that f = g, and let c := max[a,b](g − f) > 0. Let us fix ε >
0 and consider the function fε(x) := (1 − ε)f (x/(1 − ε)), x ∈ [(1 − ε)a, (1 − ε)b].
Then, for ε small enough, the function g − fε attains its maximum at a point x ∈
]a, b[ ∩ ](1 − ε)a, (1 − ε)b[. Hence g′(x) = f ′

ε(x), g′′(x) ≤ f ′′
ε (x). It follows that

κ(x, g(x)) ≥ κ(x, fε(x)) =
1

1 − ε
κ

(
x

1 − ε
, f

(
x

1 − ε

))
> κ

(
x

1 − ε
, f

(
x

1 − ε

))
,

which gives a contradiction.
Lemma 5.8. Let K0 and K1 be two bounded strictly convex sets of class C1,1 in the

plane, with K1 ⊆ K0 and K1 = K0. Assume that ess sup∂K0
κ∂K0 ≤ ess inf∂K1 κ∂K1 .

Then either ∂K0 ∩ ∂K1 = ∅ or ∂K0 ∩ ∂K1 is a connected arc which spans an angle
strictly less than π.

Proof. Let Γ be a connected component of ∂K0 \∂K1, and assume that Γ = ∂K0.
It is enough to prove that Γ spans an angle strictly greater than π. Assume by
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contradiction that Γ spans an angle less than or equal to π. Then there exists an
arc Γ′ ⊂ ∂K1 \ ∂K0 which also spans an angle less than or equal to π and has the
same endpoints as Γ. By the strict convexity of K0 and K1, and with a proper choice
of a coordinate system, we may assume that Γ′ and Γ are, respectively, the graphs
of two functions f and g, which satisfy the assumptions of Lemma 5.7. We get a
contradiction from that lemma.

We recall the following result, which follows from [34, (6.52)].
Proposition 5.9. Let K0 and K1 be two bounded convex sets of class C1,1 in

the plane, with K1 ⊆ K0. Assume that ess sup∂K0
κ∂K0

≤ ess inf∂K1 κ∂K1 . Then

2π(|K0| + |K1|) − P (K0)P (K1) ≥ 0.

Moreover the inequality is strict if K1 ⊂⊂ K0.
Remark 10. Let λ > 0. Then the function

ρ → P (Bρ) − λ|Bρ| = π(2ρ− λρ2)

attains its maximum at ρ = 1/λ.
We are now in a position to prove the main result of this section.
Theorem 5.10. Assume that there exists a vector field z : F → R2 satisfying

(5.5). Then

ess sup
∂C0

κ∂C0
≤ J0,(5.23)

ess inf
∂Ci

κ∂Ci
≥ −J0, i ∈ {1, . . . , k},(5.24)

ess inf
∂Cj

κ∂Cj ≥ J0, j ∈ {k + 1, . . . ,m}.(5.25)

Conversely, assume that
(a) the inequality (5.25) holds;
(b) F ∪ (

⋃m
j=k+1 Cj) satisfies the 1

J0
-ball condition;

(c) dist(∂Cl, ∂Ch) > 2
J0

for all (l, h) ∈ {0, . . . , k}2 ∪ {k + 1, . . . ,m}2, l = h.

Then there exists a vector field z : F → R2 satisfying (5.5).
Remark 11. If k = 0 in Theorem 5.10, then condition (5.24) does not appear.
Proof of Theorem 5.10. Assume that problem (5.5) has a solution. Fix j ∈

{k + 1, . . . ,m} and x ∈ ∂Cj . Let A be an open neighborhood of x where ∂Cj can be
written as a graph; we can assume that A ⊂ C0 and A ∩ (∪l∈{1,...,m,},l �=jCl) = ∅. We
claim that

P (Cj) − J0|Cj | ≤ P (Cj ∪B) − J0|Cj ∪B| ∀B Borel, B ⊂ A.(5.26)

Let B be a Borel set with B ⊆ A. We can assume that P (B) < +∞. Define
E := B ∪

⋃m
l=k+1 Cl. Using Proposition 5.4 we have

0 ≤ G(E) = P (E) −
m∑

l=k+1

P (Cl) − J0|E ∩ F |.

Since E ∩ F = B \ Cj and P (E) = P (Cj ∪B) +
∑m

l=k+1,l �=j P (Cl), we have

P (Cj ∪B) − J0|B \ Cj | ≥ P (Cj).(5.27)

By substracting J0|Cj | to (5.27) we obtain (5.26). Then (5.25) is a consequence of
Proposition 2.1.
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Similarly, fix x ∈ ∂C0 (resp., x ∈ ∂Ci for some i ∈ {1, . . . , k}), and let A be an
open neighborhood of x where ∂C0 (resp., ∂Ci) can be written as a graph; we can
assume that A∩(∪l∈{1,...,m}Cl) = ∅ (resp., A ⊂ C0, A∩(∪l∈{1,...,m},l �=iCi) = ∅). Then

P (C0) − J0|C0| ≤ P (C0 \B) − J0|C0 \B|(5.28)

(resp., P (Ci) + J0|Ci| ≤ P (Ci ∪B) + J0|Ci ∪B|)(5.29)

for any Borel set B with B ⊂ A. Indeed, define E := (F \ B) ∪
⋃m

j=k+1 Cj . Using

Proposition 5.4 and the equality P (E) = P (C0 \B) +
∑k

i=1 P (Ci), we have

0 ≤ G(E) = P (E) −
m∑

j=k+1

P (Cj) − J0|E ∩ F |

= P (C0 \B) − P (C0) +

k∑
i=0

P (Ci) −
m∑

j=k+1

P (Cj) − J0|E ∩ F |

= P (C0 \B) − P (C0) + J0|F | − J0|E ∩ F |,

where in the last equality we have used the definition of J0. We then get

P (C0) − J0|C0| ≤ P (C0 \B) − J0(|E ∩ F | + |C0| − |F |) = P (C0 \B) − J0|C0 \B|,

which is (5.28). Then (5.23) is a consequence of Proposition 2.1.
Eventually, in the case where x ∈ ∂Ci for some i ∈ {1, . . . , k}, and A has been

chosen as described above, we define again E := (F \B) ∪
(⋃m

l=k+1 Cl

)
. Then

0 ≤ G(E) = P (E) −
m∑

l=k+1

P (Cl) − J0|E ∩ F |

= P (Ci ∪B) − P (Ci) +

k∑
l=0

P (Cl) −
m∑

l=k+1

P (Cl) − J0|E ∩ F |

= P (Ci ∪B) − P (Ci) + J0|F | − J0|E ∩ F |,

which implies

P (Ci) + J0|Ci| ≤ P (Ci ∪B) + J0(|F | − |E ∩ F | + |Ci|)

= P (Ci ∪B) + J0|Ci ∪B|,
(5.30)

and, by Proposition 2.1, (5.24) follows.
Assume now that (a)–(c) hold. Notice that condition (b) implies (5.23), which, in

turn, implies J0 > 0. Observe also that, by (5.25), the sets Ck+1, . . . , Cm are strictly
convex.

Denote by Emin ∈ A a solution of the minimum problem (5.7), with Emin /∈ {∅, F}.
By Theorem 5.3 and Remark 4, it is enough to prove that

FF (Emin) ≥ 0.(5.31)

We can assume that Emin is connected, since the functional FF is additive on con-
nected components [5]. Recall that, by the definition of A, the closure of (any con-
nected component of) Emin must intersect ∂F .
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Let Γ be a connected component of F ∩ ∂Emin, and let p, q be the endpoints of
Γ, with p ∈ ∂Cj and q ∈ ∂Ci, for some i, j ∈ {0, . . . ,m} (p not necessarily different
from q). We recall that Γ meets tangentially ∂F (see conditions (5.2)–(5.4)) and, by
assumption (b), Γ is contained in the boundary of an open ball B ⊆ F ∪ (

⋃m
n=k+1 Cn)

of radius 1
J0

. We now divide the proof into three steps. We first show that p and q
cannot belong both to the same ∂Ci when i ≤ k.

Step 1. If i ≤ k, then i = j.
Assume by contradiction that i = j ≤ k. Using assumption (b), by Lemma 5.6

(applied with Ω := F ∪ (
⋃m

l=k+1 Cl)) it follows that p and q are the extrema of an arc
γ ⊆ ∂B ∩ ∂Ci which spans an angle strictly less than π. Notice that ∂B = γ ∪ Γ;
moreover, recalling that the curvature (which is equal to 1/J0) of Emin inside F is
positive, either Emin = B or Emin = B \ Cj for some index j ≥ k + 1. Observe that,

in the latter case, Cj ⊂⊂ B and, by condition (c), there cannot be any other Cl,

with l ≥ k + 1 and l = j, with Cl ⊆ B. Let us consider a new set E′ := B′ \ B if
Emin = B (resp., E′ := B′ \ Cj if Emin = B \ Cj), where B′ is a ball obtained by
slightly translating B towards the interior of F , and slightly modifying its radius. By
Remark 10 we have FF (E′) < FF (Emin), which contradicts the minimality of Emin.
We now show that either i ≤ k and j ≥ k + 1 or vice versa.

Step 2. The cases i, j ≤ k and i, j ≥ k + 1 cannot happen.
By assumption (c) and Step 1 it is clear that the case i, j ≤ k cannot happen, nor

can the case i, j ≥ k+1 with i = j. We have to exclude the case i = j ≥ k+1. Recalling
that (5.25) implies the strict convexity of Cj , using (a) and (5.4), we have that Cj ⊆ B.
Using again the strict convexity of Cj , Lemma 5.8 implies that ∂Cj∩∂B is a connected
arc which spans an angle strictly less than π. Hence we get a contradiction by slightly
modifying Emin as in Step 1.

By Steps 1 and 2 we conclude that there exists an arc Γ of F ∩ ∂Emin whose
endpoints p, q satisfy p ∈ ∂Cj , q ∈ ∂Ci, and i ∈ {0, . . . , k}, j ∈ {k + 1, . . . ,m}.

In the following, we write Ci for i ≤ k, but we mean R2 \ C0 when i = 0.
Let us call the inner (resp., outer) side of Γ the side of Γ inside (resp., outside)

Emin. Notice that from conditions (5.2)–(5.4) Ci cannot lie in the inner side of Γ and
Cj cannot lie in the outer side of Γ. Moreover, since J0 > 0 the inner (resp., outer)
side of Γ is also the side of Γ inside (resp., outside) B.

Step 3. We have B = Emin ∪ Cj .
Let p′ ∈ ∂Cj be the endpoint of an arc Γ′ ⊆ F ∩ ∂Emin. Then Γ′ is contained

in the boundary of an open ball B′ ⊆ F ∪
(⋃m

l=k+1 Cl

)
of radius 1

J0
. By assumption

(c) Γ′ cannot meet another set Cj′ with j′ ≥ k + 1, j′ = j. On the other hand, the
above discussion implies Cj ⊆ B′. Let us suppose that the other endpoint q′ of Γ′

(different from p′) belongs to ∂Ci′ for some i′ ≤ k. Observe that B′ ∩ Ci′ = ∅. If
i = i′, then B = B′ (if B = B′ � {q, q′}, then dist(Ci, Ci′) ≤ 2

J0
, a contradiction with

assumption (c)). Since B and B′ contain Cj , we have B ∩ B′ = ∅. Now, Γ is an arc
of ∂B joining p ∈ B ∩ B′ to q ∈ ∂Ci ∩ B, q ∈ B′, whereas Γ′ is joining p′ ∈ B ∩ B′

to q′ ∈ ∂Ci′ ∩ B′, q ∈ B. It follows that either Γ ∩ Γ′ = ∅ or there exists another
arc of ∂B ∩ ∂Emin ∩ F different from Γ intersecting Γ′; see Figure 5.1. Since these
arcs intersect transversally, this contradicts the fact that ∂Emin is smooth. It follows
that i = i′. Moreover, since (B ∪B′)∩Ci = ∅, for the same reason (i.e., the fact that
∂Emin is smooth) we also get B = B′.

The ball B cannot meet, nor contain, any other set Ci′ with i′ ≤ k, i = i′, nor
any other set Cj′ with j′ ≥ k + 1, j′ = j. Thus B = Emin ∪ Cj (see Figure 5.2) and
Step 3 is proved.
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q

B’

q’

p p’

Γ

B

’Γ

Fig. 5.1. The two intersecting balls B and B′.

C j

γ ’

C jU

q q’

Γ

C i

p’p

B = B’ = E  min

Fig. 5.2. The minimizing set Emin (i ≥ 1).

We now conclude the proof. Applying Proposition 5.9 with K1 = Cj and K0 = B,
we compute (see Figure 5.2)

FF (Emin) = P (Emin, F ) + H1(∂Ci ∩ ∂Emin) −H1(∂Cj ∩ ∂Emin) − J0|Emin|

=
2π

J0
− P (Cj) − J0

(
π

J2
0

− |Cj |
)

=
π

J0
− P (Cj) + J0|Cj | ≥ 0,

which gives (5.31) and hence the thesis.
Proposition 5.11. Let K0,K1 be two bounded open convex sets of R2 with

boundary of class C1,1 such that K1 ⊆ K0. Let F := K0 \K1. Let

J :=
P (K0) − P (K1)

|F | > 0.

If

ess sup
∂K0

κ∂K0 ≤ J,(5.32)

ess inf
∂K1

κ∂K1 ≥ J,(5.33)
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then there exists a vector field z ∈ L∞(F,R2) with ‖z‖∞ ≤ 1 such that⎧⎨
⎩

−div z = J in D′(F ),

[z, νF ] = −1 H1-a.e. on ∂K0,

[z, νF ] = 1 H1-a.e. on ∂K1.
(5.34)

Remark 12. Proposition 5.11 admits a direct proof along the lines of [27]. Notice
also that, thanks to Remark 9, Proposition 5.11 would be a consequence of Theorem
5.10 (in the case k = 0 and m = 1) if the strict inequality in (5.32) were valid.

Proof of Proposition 5.11. Let us prove that assumptions (a) and (b) of Theorem
5.10 hold for Fλ := K0λ\K1λ, where K0λ := (1+λ)K0, K1λ := (1−λ)K1, λ > 0 being
small enough. We observe that P (K0λ) = (1 + λ)P (K0), P (K1λ) = (1 − λ)P (K1),
|K0λ| = (1 + λ)2|K0|, and |K1λ| = (1 − λ)2|K1|; hence

Jλ :=
P (K0λ) − P (K1λ)

|Fλ|
= J +

λ

|F | (P (K0) + P (K1) − 2J(|K0| + |K1|)) + o(λ).

Since

ess sup
∂K0λ

κ∂K0λ
=

1

1 + λ
ess sup

∂K0

κ∂K0 ≤ 1

1 + λ
J,

it suffices to prove that 1
1+λJ < Jλ to conclude that

ess sup
∂K0λ

κ∂K0λ
< Jλ.(5.35)

By Remark 8, this implies that K0λ satisfies the 1
Jλ

-ball condition. Now, 1
1+λJ < Jλ

for λ small enough if and only if

2P (K0)|K1| < P (K1)(|K0| + |K1|).(5.36)

Since K1 ⊂ K0, using Proposition 5.9 and the isoperimetric inequality, we deduce

|K0| + |K1| >
1

2π
P (K0)P (K1) ≥ 2

P (K0)|K1|
P (K1)

,

and we obtain (5.36), and therefore also (5.35).
Let us prove that condition (b) of Theorem 5.10 holds. Since

ess inf
∂K1λ

κ∂K1λ
=

1

1 − λ
ess inf

∂K1

κ∂K1 ≤ 1

1 − λ
J,

to conclude that

ess sup
∂K1λ

κ∂K1λ
≥ Jλ,(5.37)

it suffices to prove that 1
1−λJ ≥ Jλ. Now, 1

1−λJ > Jλ for λ small enough if and only if

2P (K1)|K0| < P (K0)(|K0| + |K1|).(5.38)

Again, since K1 ⊆ K0, using Proposition 5.9 and the isoperimetric inequality, we
deduce

|K0| + |K1| >
1

2π
P (K0)P (K1) ≥ 2

P (K1)|K0|
P (K0)

,

and we conclude that (5.38), and therefore also (5.37), holds.



EXPLICIT SOLUTIONS OF AN EIGENVALUE PROBLEM 1119

By Theorem 5.10, there exists a vector field zλ ∈ L∞(Fλ, R
2) such that ‖zλ‖∞ ≤

1, satisfying ⎧⎨
⎩

−div zλ = Jλ in D′(Fλ),

[zλ, ν
Fλ ] = −1 H1-a.e. on ∂K0λ,

[zλ, ν
Fλ ] = 1 H1-a.e. on ∂K1λ.

Letting λ → 0+ we obtain a solution of (5.34).

6. Solutions of div z = 0 in an unbounded domain. In this section we
assume that C0 = R2, k ≥ 1, we let C1, . . . , Cm be as in section 5, and we let
F := R2 \

⋃m
i=1 Ci. We are concerned with the existence of a vector field z : F → R2

such that

z ∈ L∞(F,R2),

⎧⎪⎪⎨
⎪⎪⎩

−div z = 0 in D′(F ),
‖z‖∞ ≤ 1,

[z, νF ] = −1 H1-a.e. on ∂Ci, i ∈ {1, . . . , k},
[z, νF ] = 1 H1-a.e. on ∂Cj , j ∈ {k + 1, . . . ,m}.

(6.1)

Theorem 6.1. The following conditions are equivalent:
(i) Problem (6.1) has a solution.
(ii) We have

0 ≤
∫
F

|Dw| +
k∑

i=1

∫
∂Ci

w −
m∑

j=k+1

∫
∂Cj

w ∀w ∈ BV (F ).(6.2)

(iii) For any E ⊆ F of finite perimeter, we have

P (E,F ) ≥
∣∣∣∣∣

m∑
j=k+1

H1(∂∗E ∩ ∂Cj) −
k∑

i=1

H1(∂∗E ∩ ∂Ci)

∣∣∣∣∣.(6.3)

(iv) Let E1 be a solution of the variational problem

min

{
P (E) :

m⋃
j=k+1

Cj ⊆ E ⊆ R2 \
k⋃

i=1

Ci

}
.(6.4)

Then we have

P (E1) =

m∑
j=k+1

P (Cj).(6.5)

Let E2 be a solution of the variational problem

min

{
P (E) :

k⋃
i=1

Ci ⊆ E ⊆ R2 \
m⋃

j=k+1

Cj

}
.(6.6)

Then we have

P (E2) =

k∑
i=1

P (Ci).(6.7)
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Remark 13. Notice that (iv) implies that each Cl is a convex set. Moreover,
since any minimizer of problems (6.4) and (6.6) has boundary (lying inside F ) made
of a finite number of segments which intersect tangentially ∂F (and there are only
a finite number of such segments), the number of such minimizers is finite. Finally,
conditions (6.5) and (6.7) are essentially distance conditions between sets Ci of the
same type; for example, they are satisfied if dist(∂Ci, ∂Cj) > P (Cl) for any (i, j, l) ∈
{1, . . . , k}3 ∪ {k + 1, . . . ,m}3, i = j.

Proof. We divide the proof into four steps.
Step 1. Let f ∈ L2(F ), g ∈ L∞(∂F ), λ > 0. The following hold:
(a) Assume that ‖g‖∞ < 1. The function u is the solution of

min
w∈BV (F )

Q(w), Q(w) :=

∫
F

|Dw| + 1

2λ

∫
F

(w − f)2 dx−
∫
∂F

gw dH1(6.8)

if and only if there exists z ∈ X2(F ) with ‖z‖∞ ≤ 1 satisfying (z,Du) = |Du| as
measures in F , [z, νF ] = g H1-almost everywhere on ∂F and −λdivz = f − u in
D′(F ).

(b) The function u ≡ 0 is the solution of (6.8) if and only if∫
F

|Dw| ≥ 1

λ

∫
F

wf dx−
∫
∂F

gw ∀w ∈ BV (F ).

Let us prove both assertions. Let R > 0 be such that R2 \ F ⊂⊂ BR = BR(0).
We consider the functional

QR(w) :=

∫
BR∩F

|Dw| + 1

2λ

∫
BR∩F

(w − f)2 dx−
∫
∂F

gw dH1(6.9)

defined for w ∈ BV (BR ∩F ). Now, since ‖g‖∞ < 1 and ∂F is of class C1,1, using the
results of Giusti [28], we know that the convex functional QR is lower semicontinuous
and proper, and it attains its infimum in BV (BR ∩ F ). Let wn → w in L2(BR ∩ F ).
Then QR(w) ≤ lim infn QR(wn) ≤ lim infn Q(wn). Since this is true for all R > 0, we
deduce that Q(w) ≤ lim infn Q(wn). Thus, Q is convex, lower semicontinuous, and
proper. As we shall note below, Q attains its infimum in BV (F ). Hence u = argminQ
if and only if 0 ∈ ∂Q(u).

Now, we define the operator A′
g in L2(F ) × L2(F ) as follows: (w, v) ∈ A′

g if
and only if w ∈ BV (F ), v ∈ L2(F ), and there is a vector field z ∈ L∞(F,R2) with
‖z‖∞ ≤ 1 such that (z,Dw) = |Dw| and −div z = v in D′(F ), [z, νF ] = g H1-
almost everywhere on ∂F . We claim that the operator A′

g is maximal monotone.
The monotonicity of A′

g follows by an integration by parts. To prove the maximal
monotonicity we have to solve the equation

f ∈ u + A′
gu ∀f ∈ L2(F ).(6.10)

First, we assume that f ∈ Lp(F ) for any p ∈ [1,∞]. Let us approximate (6.10) by⎧⎨
⎩

u− div z = f in D′(BR ∩ F ),

[z, νBR∩F ] = g H1-a.e. in ∂F ,

[z, νBR∩F ] = 0 H1-a.e. in ∂BR,
(6.11)

where z ∈ L∞(BR ∩ F,R2) is such that ‖z‖∞ ≤ 1 and (z,Du) = |Du|. Then, by
Step 1 of the proof of Theorem 5.3, equation (6.11) has a unique solution uR. Let zR
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denote the associated vector field. Let us comment on the basic estimates required to
pass to the limit as R → ∞.

(i) L2 and bounded variation estimates on uR: multiplying (6.11) by uR, after
integration by parts, we get∫

BR∩F

u2
R +

∫
BR∩F

|DuR| =

∫
BR∩F

fuR +

∫
∂F

guR.(6.12)

Now, using [28, Lemma 2.2], there exists ε0 > 0 such that, for each δ > 0, there is
c(δ) > 0 such that∣∣∣∣

∫
∂F

gw

∣∣∣∣ ≤ (
1 − ε0

2

)∫
Sδ

|Dw| + c(δ)

∫
Sδ

|w| ∀w ∈ BV (BR ∩ F ),(6.13)

where Sδ := {x ∈ BR∩F : dist(x, ∂F ) < δ}, where the constant c(δ) does not depend
on R > 0. Using (6.13) in (6.12) we obtain the estimate

1

4

∫
BR∩F

u2
R + ε0

∫
BR∩F

|DuR| ≤
1

2
‖f‖2

2 + C|Sδ|.

Thus, by extracting a subsequence, if necessary, we may assume that uR → u in Lp
loc

for any 1 ≤ p < 2 and weakly in L2(F ) where u ∈ L2(F ) and
∫
F
|Du| < ∞.

Let us mention that, as a consequence of (6.13), if Q(un) is bounded, we obtain
that

∫
F
|un|2 and

∫
F
|Dun| are bounded and, therefore, Q attains its infimum.

(ii) Lp estimate on uR: let ηp : R → R be a smooth function such that η′p(r) > 0
for all r ∈ R, ηp(0) = 0, and sign(r)ηp(r) behaves as |r|p−1 as r → ∞. We multiply
(6.11) by ηp(uR). Integrating by parts and using (6.13), we obtain∫

BR∩F

uRηp(uR) ≤
∫
BR∩F

|f ||ηp(uR)| + c(δ)

∫
Sδ

|ηp(uR)|.(6.14)

Let p = 1, and assume that |η1(r)| ≤ 1 for any r ∈ R. We obtain∫
BR∩F

uRη1(uR) ≤
∫
BR∩F

|f | + c(δ)|Sδ|.(6.15)

Take a sequence η1,n(r) such that η1,n(r) → sign(r) for any r = 0. Using Fatou’s
theorem we deduce that ∫

BR∩F

|uR| ≤
∫
BR∩F

|f | + c(δ)|Sδ|.

Assume that uR is bounded in Lq. Using p = q in (6.14) and proceeding in the same
way, we deduce that uR is bounded in Lq+1. This implies that uR is bounded in Lp

for all p < ∞. Thus u ∈ Lp(F ) for any 1 ≤ p < ∞.
Now, let R > M > 0, where M is such that all sets Ci are contained in BM/4(0).

Let ϕ ∈ W 1,∞(R2) be such that ϕ = 0 on BM/2(0), ϕ = 1 outside BM (0), and it
increases linearly along the rays from 0 to 1 in BM (0) \BM/2(0). We multiply (6.11)
by uRϕ

2 and integrate by parts to obtain∫
BR∩F

u2
Rϕ

2 +

∫
BR∩F

|DuR|ϕ2 =

∫
BR∩F

fuRϕ
2 −

∫
BR∩F

uRzR · ∇(ϕ2).
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Hence ∫
BR∩F

u2
Rϕ

2 ≤
∫
BR∩F

|f ||uR|ϕ2 +

∫
BR∩F

|uR|ϕ|∇ϕ|

≤ 1

2

∫
BR∩F

|f |2ϕ2 +
1

2

∫
BR∩F

|uR|2ϕ2 + ‖uRϕ‖3/2‖∇ϕ‖3.

As |∇ϕ| ≤ 2
M we have

‖∇ϕ‖3 ≤ 2

M

(
3

4
πM2

)1/3

≤ C

M1/3
.

Since ‖uRϕ‖3/2 is bounded independently of R and M , we have∫
BR∩F

u2
Rϕ

2 ≤ C

∫
BR∩F

|f |2ϕ2 +
C

M1/3
.

Thus, given ε > 0 we find M large enough so that∫
BR∩F

u2
Rϕ

2 ≤ ε

for any R > M . Assume that uR is extended by 0 outside BR. Thus uR is equi-
integrable near infinity. Thus, to prove that uR → u in L2(F ) it is sufficient to prove
that uR → u in L2

loc(F ). For that, let ϕ ∈ C∞
0 (R2). Then

∫
F

|uR − u|2ϕ2 ≤
(∫

F

|uR − u|3ϕ2

)1/2 (∫
F

|uR − u|ϕ2

)1/2

→ 0 as R → ∞,

since the first integral is bounded independently of R and the second tends to 0 as
R → ∞.

The two previous estimates imply that we may extract a subsequence uR converg-
ing in L2(F ) to some function u ∈ BV (F ). Moreover, we may assume that zR → z
weakly∗ in L∞(F,R2). Letting R → ∞ in (6.11) we have

u− div z = f in D′(F ).(6.16)

We still have to prove that (z,Du) = |Du| and [z, νF ] = g.
Let ϕ be a smooth function in F , continuous up to ∂F and vanishing for large

values of |x|. We multiply (6.11) by ϕ and integrate by parts to obtain∫
BR∩F

uRϕ +

∫
BR∩F

zR · ∇ϕ−
∫
∂F

[zR, ν
BR∩F ]ϕ =

∫
BR∩F

fϕ.(6.17)

Letting R → ∞ and using that [zR, ν
BR∩F ] = g, we obtain∫

F

uϕ +

∫
F

z · ∇ϕ−
∫
F

gϕ =

∫
F

fϕ.(6.18)

Integrating by parts the second term of the above equality, we get∫
F

uϕ−
∫
F

div z ϕ +

∫
∂F

([z, νF ] − g)ϕ =

∫
F

fϕ.(6.19)
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Using (6.16) it follows that
∫
∂F

([z, νF ] − g)ϕ = 0 for any ϕ. This implies that
[z, νF ] = g on ∂F . To prove that (z,Du) = |Du|, we observe that from the lower
semicontinuity of Q and the convergence

∫
BR∩F

(uR − f)2 dx →
∫
F

(u − f)2 dx as
R → ∞, we have∫
F

|Du| −
∫
∂F

gu ≤ lim inf
R

(∫
BR∩F

|DuR| −
∫
∂F

guR

)

= lim inf
R

(∫
BR∩F

(zR, DuR) −
∫
∂F

guR

)
= lim inf

R
−
∫
BR∩F

div zR uR = −
∫
F

div z u

=

∫
F

(z,Du) −
∫
∂F

gu ≤
∫
F

|Du| −
∫
∂F

gu.

We conclude that
∫
F

(z,Du) =
∫
F
|Du|.

We have proved that there is a solution of (6.10) for each f ∈ L∞(F )∩L2(F ). Our
next purpose is to prove that the operator A′

g is closed. As a consequence we obtain
that (6.10) has a solution for any f ∈ L2(BR ∩F ). To prove the closedness of A′

g, let
(un, vn) ∈ A′

g be such that (un, vn) → (u, v) in L2(F )×L2(F ). Then there is a vector
field zn ∈ L∞(F,R2) with ‖zn‖∞ ≤ 1 such that vn = −div zn, (zn, Dun) = |Dun| and
[zn, ν

F ] = g. Up to a subsequence, we may assume that zn → z weakly∗ in L∞(F,R2)
with ‖z‖∞ ≤ 1. Since vn = −div zn → −div z in D′(F ), we have v = −div z. The
proofs of the facts [z, νF ] = g and (z,Du) = |Du| follow the same arguments as the
corresponding proofs in Theorem 5.3, and we shall omit the details. We conclude that
A′

g is closed.
Since A′

g ⊆ ∂Q and both are maximal monotone, we conclude that A′
g = ∂Q.

This proves (a).
The proof of (b) follows along the same lines as the proof of Step 2 in Theorem 5.3.
Step 2. (i) ⇐⇒ (ii). Note that, as before, we may replace the condition “∀w ∈

BV (F )” by “∀w ∈ BV (F ) such that w ≥ 0 or w ≤ 0.”
Suppose that (6.1) has a solution z. Let w ∈ BV (F ). Multiplying (6.1) by w and

integrating by parts, we obtain (6.2).
Assume now that (6.2) holds for any w ∈ BV (F ). Multiplying (6.2) by (1 − ε),

we deduce that

0 ≤
∫
F

|Dw| + (1 − ε)

k∑
i=1

∫
∂Ci

w − (1 − ε)

m∑
j=k+1

∫
∂Cj

w ∀w ∈ BV (F ).

Using Step 1(b), we deduce that u ≡ 0 is a solution of (6.8) with f = 0, and g ≡ 1− ε
on ∂Cj and g ≡ −(1 − ε) on ∂Ci for all ε > 0. Then by Step 2(a), we know that
there exists a solution ξε ∈ L∞(F,R2) such that ‖ξε‖∞ ≤ 1, −divξε = 0, [ξε, ν

F ] = g.
Letting ε → 0, we find a vector field z satisfying (6.1).

The equivalence between (ii) and (iii) can be proved in the same manner as the
equivalence between (b) and (c) in Theorem 5.3 was, and we shall omit the details.

Step 3. (iii)⇒(iv). Let X := E1 \
⋃m

j=k+1 Cj . Using (iii) we have

m∑
j=k+1

H1(∂∗X ∩ ∂Cj) −
k∑

i=1

H1(∂∗X ∩ ∂Ci) ≤ P (X,F ).(6.20)

Using Lemma 2.2, we have

P (E1) = P

(
X ∪

m⋃
j=k+1

Cj

)
= P (X) +

m∑
j=k+1

P (Cj) − 2H1

(
∂∗X ∩

(
m⋃

j=k+1

∂Cj

))
.
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Then, using (6.20), we have

P (E1) = P (X) +

m∑
j=k+1

P (Cj) − 2

m∑
j=k+1

H1(∂∗X ∩ ∂Cj)

= P (X,F ) +

m∑
j=k+1

H1(∂∗X ∩ ∂Cj) +

k∑
i=1

H1(∂∗X ∩ ∂Ci)

+

m∑
j=k+1

P (Cj) − 2

m∑
j=k+1

H1(∂∗X ∩ ∂Cj)

= P (X,F ) +

k∑
i=1

H1(∂∗X ∩ ∂Ci) +

m∑
j=k+1

P (Cj) −
m∑

j=k+1

H1(∂∗X ∩ ∂Cj)

≥
m∑

j=k+1

P (Cj).

The proof for the set E2 is analogous.
Step 4. (iv)⇒(iii). Let X ⊆ F be a set of finite perimeter. Let E1 be a minimizer

of (6.4) and set D :=
⋃m

j=k+1 Cj . Using (6.5) and the minimality of E1, we have

m∑
j=k+1

P (Cj) = P (E1) ≤ P (X ∪D) .(6.21)

Using Lemma 2.2 and (6.21), we have

P (X ∪D) = P (X) + P (D) − 2H1(∂D ∩ ∂∗X)

≤ P (X) + P (X ∪D) − 2H1(∂D ∩ ∂∗X).

Hence

2

m∑
j=k+1

H1(∂∗X ∩ ∂Cj) ≤ P (X) = P (X,F ) +

k∑
i=1

H1(∂∗X ∩ ∂Ci)

+

m∑
j=k+1

H1(∂∗X ∩ ∂Cj).

We then have

m∑
j=k+1

H1(∂∗X ∩ ∂Cj) ≤ P (X,F ) +

k∑
i=1

H1(∂∗X ∩ ∂Ci).

The other inequality follows by considering the set E2 and using condition (6.6) instead
of (6.4).

7. Examples of solutions of the eigenvalue problem (1.1). Let us give an
example of how, by pasting the solutions of problems (5.5) and (6.1), we can construct
solutions of the eigenvalue problem (1.1).



EXPLICIT SOLUTIONS OF AN EIGENVALUE PROBLEM 1125

Let Ci, i = 1, . . . ,m, 1 ≤ k ≤ m, be a family of convex sets of class C1,1 satisfying
the conditions in section 5. For each i ∈ {1, . . . ,m} let us consider Ci1, Ci2, . . . , Cimi

open bounded sets with boundary of class C1,1 with the following properties:
• Cij ⊂ Ci for any j ∈ {1, . . . ,mi};
• Cij ∩ Cij′ = ∅ for any j, j′ ∈ {1, . . . ,mi}, j = j′.

For i ∈ {1, . . . ,m} we define

Fi := Ci \
mi⋃
j=1

Cij , Ji :=

∑ki

j=0 P (Cij) −
∑mi

j=ki+1 P (Cij)

|Fi|
,

where ki ∈ {1, . . . ,mi} are given. Assume that
(a) ess inf∂Cij

κ∂Cij ≥ Ji, i ∈ {1, . . . ,m}, j ∈ {ki + 1, . . . ,mi};
(b) Fi ∪ (

⋃mi

j=ki+1 Cij) satisfies the 1
Ji

-ball condition for any i ∈ {1, . . . ,m};
(c) dist(∂Cij , ∂Cij′) >

2
Ji

, i ∈ {1, . . . ,m}, (j, j′) ∈ {0, . . . , ki}2∪{ki+1, . . . ,mi}2,
j = j′, where we have denoted Ci0 = Ci;

(d)

ess sup
∂Cij

κ∂Cij ≤ P (Cij)

|Cij |
=: Jij , i ∈ {1, . . . ,m}, j ∈ {1, . . . ,mi}.

Notice that Ji > 0, since (b) implies ess sup∂Ci0
κ∂Ci0 ≤ Ji, and also

ess inf
∂Cij

κ∂Cij
≥ −Ji, j ∈ {1, . . . , ki}.

Using Theorems 5.10 and 6.1, together with [12, Theorem 4], we have the existence
of vector fields ξext ∈ L∞(R2 \

⋃m
i=1 Ci), ξi ∈ L∞(Fi), ξij ∈ L∞(Cij), such that

‖ξext‖∞ ≤ 1, ‖ξi‖∞ ≤ 1, ‖ξij‖∞ ≤ 1, i = 1, . . . ,m, j = 1, . . . ,mi, satisfying⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−div ξext = 0 onR2 \
m⋃
i=1

Ci,

[ξext, ν
R2\∪m

i=1Ci ] = −1 H1-a.e. on ∂Ci, i ∈ {1, . . . , k},
[ξext, ν

R2\∪m
i=1Ci ] = 1 H1-a.e. on ∂Cj , j ∈ {k + 1, . . . ,m},

(7.1)

⎧⎨
⎩

−div ξi = Ji on Fi,

[ξi, ν
Fi ] = −1 H1-a.e. on ∂Cij , j ∈ {0, . . . , ki},

[ξi, ν
Fi ] = 1 H1-a.e. on ∂Cij , j ∈ {ki + 1, . . . ,mi},

i ∈ {1, . . . ,m},(7.2)

⎧⎨
⎩−div ξij =

P (Cij)

|Cij |
on Cij ,

[ξij , ν
Cij ] = −1 H1-a.e. on ∂Cij ,

i ∈ {1, . . . ,m}, j ∈ {1, . . . ,mi}.(7.3)

Now, we may paste together these vector fields to define ξ ∈ L∞(R2, R2), ‖ξ‖∞ ≤ 1,
by

ξ :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ξext on R2 \
⋃m

i=1 Ci,
−ξi on Fi, i = 1, . . . , k,
ξi on Fi, i = k + 1, . . . ,m,
ξij on Cij , i = 1, . . . , k, j = 1, . . . , ki,
−ξij on Cij , i = 1, . . . , k, j = ki + 1, . . . ,mi,
−ξij on Cij , i = k + 1, . . . ,m, j = 1, . . . , ki,
ξij on Cij , i = k + 1, . . . ,m, j = ki + 1, . . . ,mi,
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satisfying

−div ξ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 on R2 \
⋃m

i=1 Ci,
−Ji on Fi, i = 1, . . . , k,
Ji on Fi, i = k + 1, . . . ,m,
Jij on Cij , i = 1, . . . , k, j = 1, . . . , ki,
−Jij on Cij , i = 1, . . . , k, j = ki + 1, . . . ,mi,
−Jij on Cij , i = k + 1, . . . ,m, j = 1, . . . , ki,
Jij on Cij , i = k + 1, . . . ,m, j = ki + 1, . . . ,mi.

Thus, if we define

u := −
k∑

i=1

JiχFi
+

m∑
i=k+1

JiχFi
+

k∑
i=1

ki∑
j=1

JijχCij −
k∑

i=1

mi∑
j=ki+1

JijχCij

−
m∑

i=k+1

ki∑
j=1

JijχCij
+

m∑
i=k+1

mi∑
j=ki+1

JijχCij ,

then u is a solution of (1.1). Therefore, by pasting solutions of problems like (7.1),
(7.2), (7.3), we may construct solutions of (1.1).

8. Some explicit solutions of the denoising problem. The previous results
allow us to explicitly compute the minimum of the denoising problem (1.8) for some
data f ∈ L2(R2). Let us recall that a vector field z ∈ X2(R

2) with ‖z‖∞ ≤ 1 satisfying

−div z = F ∈ L2(R2)

exists if and only if [31, 12]

‖F‖∗ := sup

{∣∣∣∣
∫
R2

Fv dx

∣∣∣∣ : v ∈ BV (R2),

∫
R2

|Dv| ≤ 1

}
≤ 1.

Proposition 8.1. Let ui ∈ BV (R2), ui ≥ 0, be such that ui ∧ uj = 0, i, j ∈
{1, . . . ,m}, i = j. Assume that ui and

∑m
i=1 ui are solutions of the eigenvalue problem

(1.1), i ∈ {1, . . . ,m}. Let bi ∈ R, i = 1, . . . ,m, and f :=
∑m

i=1 biui. Also let λ > 0.
Then the solution u of the variational problem (1.8) is u :=

∑m
i=1 sign(bi)(|bi|−λ)+ui.

Observe that if (*)
∑m

i=1 ui is a solution of (1.1), then (**) ‖
∑m

i=1 ui‖∗ ≤ 1.
Notice that, using (8.2) below, it is easy to prove that both conditions (*) and (**)
are, indeed, equivalent.

Proof. Under our assumptions we have ui ∈ BV (R2) ⊂ L2(R2), i = 1, . . . ,m,
and hence f ∈ L2(R2). Recall that a function u ∈ BV (R2) is the solution of (1.8) if
and only if u is the solution of

u− λdiv

(
Du

|Du|

)
= f.(8.1)

Observe that since each ui is a solution of (1.1), multiplying (1.1) by ui and integrating
by parts, we obtain ∫

R2

u2
i dx =

∫
R2

|Dui|.(8.2)



EXPLICIT SOLUTIONS OF AN EIGENVALUE PROBLEM 1127

Let us prove that u =
∑m

i=1 sign(bi)(|bi| − λ)+ui is the solution of (8.1). Let Iλ :=
{i ∈ {1, . . . ,m} : |bi| ≥ λ}, Hλ := {i ∈ {1, . . . ,m} : |bi| < λ}. Since, in this case,

f − u = λ
∑
i∈Iλ

sign(bi)ui +
∑
i∈Hλ

biui,

to prove that u is a solution of (8.1) we have to construct a vector field ξ ∈ L∞(R2;R2)
with ‖ξ‖∞ ≤ 1, such that

−div ξ =
∑
i∈Iλ

sign(bi)ui +
∑
i∈Hλ

bi
λ
ui(8.3)

and (ξ,Du) = |Du|. Let F ∈ L2(R2) denote the right-hand side of (8.3), and let
F+ := sup(F, 0), F− := sup(−F, 0). Let us prove that ‖F‖∗ ≤ 1. In order to prove
this, we let v ∈ BV (R2). Since∫

R2

Fv dx ≤
∫
R2

(F+v+ + F−v−) dx

and
∫
R2 |Dv| =

∫
R2 |Dv+| +

∫
R2 |Dv−|, the inequality

∫
R2 Fv dx ≤

∫
R2 |Dv| follows if

we prove that∫
R2

F+v+ dx ≤
∫
R2

|Dv+| and

∫
R2

F−v− dx ≤
∫
R2

|Dv−|.

Thus, without loss of generality, we may assume that F ≥ 0 (i.e., all bi appearing
in the definition of F are nonnegative) and v ≥ 0. Then, using that bi

λ ≤ 1 for any
i ∈ Hλ, we have that

0 ≤ F ≤
m∑
i=1

ui.

Since, by assumption, ‖
∑m

i=1 ui‖∗ ≤ 1, we have∫
R2

Fv dx ≤
∫
R2

m∑
i=1

uiv dx ≤
∫
R2

|Dv|.

Therefore ‖F‖∗ ≤ 1. Thus, there is a vector field ξ ∈ L∞(R2;R2) such that ‖ξ‖∞ ≤ 1,
satisfying (8.3).

As (|bi| − λ)+ = 0 for all i ∈ Hλ, we have∫
R2

|Du| =
∑
i∈Iλ

(|bi| − λ)

∫
R2

|Dui|.

Since ui ∧ uj = 0 for any i, j ∈ {1, . . . ,m}, i = j, then Fu =
∑

i∈Iλ
(|bi| − λ)u2

i , and
we have∫

R2

(ξ,Du) = −
∫
R2

div ξ u dx =

∫
R2

Fudx =
∑
i∈Iλ

(|bi| − λ)

∫
R2

u2
i dx;

applying (8.2) we obtain∫
R2

(ξ,Du) =
∑
i∈Iλ

(|bi| − λ)

∫
R2

|Dui| dx =

∫
R2

|Du|,

which in turn implies that (ξ,Du) = |Du|, since ‖ξ‖∞ ≤ 1.
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Abstract. In [Nonlinearity, 11 (1998), pp. 1625–1636], Clopeau, Mikelić, and Robert studied the
inviscid limit of the two-dimensional incompressible Navier–Stokes equations in a bounded domain
subject to Navier friction–type boundary conditions. They proved that the inviscid limit satisfies
the incompressible Euler equations, and their result ultimately includes flows generated by bounded
initial vorticities. Our purpose in this article is to adapt and, to some extent, simplify their argument
in order to include pth power integrable initial vorticities, with p > 2.
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1. Introduction. In a recent paper [1], Clopeau, Mikelić, and Robert studied
the inviscid limit of solutions of the two-dimensional (2D) incompressible Navier–
Stokes equations in a bounded domain with Navier friction–type boundary condi-
tions. They proved that the inviscid limit is a weak solution of the Euler equations,
and their results include flows generated by bounded initial vorticities. The purpose of
the present work is to extend their argument in order to include flows with initial vor-
ticities in Lp, p > 2. Technically this work involves many of the same tools that were
used in [1] and relies in an essential manner on the smooth data result of that work.

The main motivation for studying the vanishing viscosity limit for incompressible
2D flow is the problem of boundary layers. This motivation, together with the issue
of the physical meaning of the Navier friction condition, was well explored in the
introduction to [1]. We will not repeat that discussion here, referring the reader to
that article and the references therein for this part of our introduction. We would
like to mention that in a pair of recent papers, Jäger and Mikelić rigorously justified
the Navier friction condition as a homogenization of the no-slip condition on a rough
boundary [5, 6]. Furthermore, 2D boundary layers have been a very active field of
inquiry recently, so in addition to [1, 5, 6] we also refer the reader to [3, 14] for other
recent developments. Beyond these issues, there is additional background which is
specifically related to irregular flows which we must address here.

Existence of weak solutions to the incompressible 2D Euler equations has been
established for rather singular initial data, more precisely, initial velocities in L2

loc such
that the corresponding vorticity lies in BM+

c +L1
c , i.e., nonnegative bounded measures

with compact support plus an arbitrary compactly supported integrable function.
This result is due primarily to Delort [2]; we refer the reader also to [15]. In both of
these papers the weak solutions are obtained by compactness arguments in which the
initial data is mollified and the equations are subsequently exactly solved with this
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smooth data. Uniqueness has only been established if the initial vorticity is bounded
or nearly so [16, 17, 18], so that the issue of selection principles for singular flows is wide
open. It makes sense in this case to investigate whether other approximation schemes
also yield weak solutions. For example, this has been established for certain numerical
schemes; see [10, 13]. It is natural, from a physical point of view, to investigate the
vanishing viscosity limit as well. It is possible to adapt Delort’s arguments to study the
inviscid limit in the absence of boundaries, and this has been done for full plane flow;
see [11]. The problem of studying the existence of viscosity solutions in domains with
boundary runs into the classical problem of boundary layers if one supplements the
viscous approximations with the no-slip boundary condition. The work of Clopeau,
Mikelić, and Robert shows that the boundary layer arising from the inviscid limit with
Navier friction condition can be treated, while retaining some physical meaning. In
fact, the Navier friction condition still allows for vorticity production at the boundary,
but in a controlled fashion. It is therefore natural to investigate the existence of
viscosity solutions by considering viscous approximations satisfying the Navier friction
condition, searching for critical regularity on the initial data that guarantees the
existence of such solutions. This is the main point behind the present work.

The remainder of this article is divided into five sections: the next section contains
the basic notation and setup of the problem; the third section investigates approx-
imation of initial data that satisfy the Navier friction condition; the fourth section
contains the a priori estimate on the Lp-norm of vorticity which is the heart of this
work; the fifth section contains a well-posedness result for the viscous approximations
with Lp initial vorticity; the last section contains the passage to the inviscid limit and
conclusions.

2. Preliminaries. Let Ω ⊆ R
2 denote a bounded simply connected domain

with smooth boundary. Our point of departure is the incompressible Navier–Stokes
equations in Ω. We are interested in the initial-boundary value problem where the
velocity satisfies the Navier friction condition with friction coefficient α = α(x) ∈
C2(∂Ω), α ≥ 0. More precisely, the initial-boundary value problem is given by⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ut + u · ∇u = −∇p + ν∆u in Ω × (0, T ),
div u = 0 in Ω × [0, T ),
u · n = 0 on ∂Ω × [0, T ),
2(Du)Sn · τ + αu · τ = 0 on ∂Ω × (0, T ),
u(x, 0) = u0(x) in Ω,

(1)

where ν > 0 is the viscosity, n and τ are the unit outwards normal and coun-
terclockwise tangent vectors to ∂Ω, respectively; u is the fluid velocity; p is the
scalar pressure; and (Du)S is the symmetric part of the Jacobian matrix of u, i.e.
(Du)S = 1

2 (Du + (Du)t).
The well-posedness of this initial-boundary value problem was established by

Clopeau, Mikelić, and Robert in [1]. More precisely, given a divergence-free initial
velocity field u0 ∈ H2(Ω), tangent to the boundary, and satisfying the Navier friction
condition 2(Du)Sn · τ + αu · τ = 0 on ∂Ω in the trace sense, they showed that there
exists a unique weak solution uν ∈ L2((0, T );H1(Ω)) ∩ L∞((0, T );L2(Ω)) satisfying

d

dt

∫
Ω

ϕuν +

∫
Ω

ϕ · (uν · ∇)uνdx

+ 2ν

∫
Ω

(Dϕ)S : (Duν)Sdx + ν

∫
∂Ω

α(ϕ · τ)(uν · τ)dS = 0

(2)
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for every divergence-free test vector field ϕ ∈ H1(Ω), tangent to ∂Ω. Here the matrix
product A : B means

∑
i,j AijBij and is called the trace product.

We note that the initial condition is not included in this weak formulation. In fact,
Clopeau, Mikelić, and Robert also showed that uν

t ∈ L2((0, T );H1(Ω)), from which
it follows by integration that uν ∈ C([0, T ];H1(Ω)). Therefore the initial condition
uν(·, 0) = u0 can be meaningfully imposed. Furthermore, if one assumes that the
initial vorticity curl u0 is bounded, then uν ∈ C([0, T );H2(Ω)).

The Navier friction condition can be formulated in terms of vorticity. In order
to do so, a calculus identity was established in [1], which we reproduce in the lemma
below.

Lemma 1. Let v ∈ H2(Ω) be a vector field which is tangent to ∂Ω. Then

(Dv)Sn · τ − ω

2
+ κ(v · τ) = 0 on ∂Ω,

where ω = curl v and κ is the curvature of ∂Ω.
One of the main difficulties in addressing the classical vanishing viscosity limit in

domains with boundary resides in writing useful boundary conditions for the vorticity
formulation of the 2D Navier–Stokes equations. It is through the use of the vorticity
formulation that one finds higher order estimates for velocity that are independent
of viscosity. The inviscid limit for 2D Navier–Stokes with friction condition is more
tractable than the classical problem precisely because the friction boundary condition
translates into a useful boundary condition for vorticity. We introduce ω0 = curl u0,
the initial vorticity, and ων = curl uν , the time-dependent vorticity associated to the
weak solution uν of (1) with initial data u0. For each fixed time, the velocity uν can
be recovered from vorticity by means of the Biot–Savart law. We make this explicit
by writing

uν = KΩ(ων),

where KΩ is an integral operator of order −1, with kernel given by ∇⊥GΩ, where GΩ

is the Green’s function for the Dirichlet Laplacian in Ω. Using Lemma 1 above, it
is a standard calculation to show that ων , uν satisfies, in a weak sense, the following
parabolic initial-boundary value problem, which is the vorticity formulation of (1):⎧⎪⎪⎨

⎪⎪⎩
ων
t + uν · ∇ων = ν∆ων in Ω × (0, T ),

uν = KΩ[ων ] in Ω × [0, T ),
ων = (2κ− α)uν · τ on ∂Ω × [0, T )
ων(·, 0) = ω0 on Ω × {t = 0}.

(3)

3. Approximating nonsmooth initial data. The problem we wish to address
in this article is the inviscid limit for (1) with initial velocity u0 = KΩ[ω0], and
ω0 ∈ Lp(Ω) for some p > 2. We must first discuss this initial-boundary value problem
for fixed viscosity, as this initial condition does not satisfy the conditions for the well-
posedness mentioned in the previous section. It can be easily seen that this initial
velocity u0 is divergence free, tangent to the boundary, and it belongs to W 1,p(Ω) (by
elliptic regularity; see [9]). This means that there is not enough regularity to impose
the Navier friction condition on the initial data, so that this initial-boundary value
problem is subject to an initial layer.

Definition 1. We will call a function ω ∈ H1(Ω) ∩ L∞(Ω) compatible if the
associated velocity u = KΩ[ω] ∈ H2(Ω) satisfies the Navier condition ω = (2κ−α)u ·τ
on the boundary in the trace sense.
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The first issue we need to address is how to approximate an arbitrary function in
Lp(Ω) by compatible functions. This issue was addressed by Clopeau, Mikelić, and
Robert for ω ∈ L∞(Ω), using a fixed point argument. We will state and prove an
extension of their result that applies to functions ω ∈ Lp(Ω), p > 1. The proof is
a reasonably straightforward adaptation of their argument, which we include for the
sake of completeness.

Lemma 2. Let ω ∈ Lp(Ω) for some p > 1. Then there exists a sequence {ωn} of
compatible functions which converges to ω strongly in Lp.

Proof. Recall the notation introduced in the proof of Lemma 4.2 of [1]. For x ∈ Ω,
let d = d(x) be the distance of x to ∂Ω and let Un ≡ {x ∈ Ω : d(x) < 1/n}. Let
r = r(x) denote the orthogonal projection of Un onto ∂Ω, defined for n sufficiently
large. Let ζn be a smooth cutoff for a neighborhood of Ω\Un, so that ζn ≡ 0 in Un+1

and ζn ≡ 1 outside Un. Let ηn be a standard Friedrichs mollifier. As in Lemma 4.2
we extend ω to vanish outside of Ω. First, assume that p < 2 and let p̂ = p/(2 − p).
For any G ∈ Lp̂(∂Ω) set

β ≡ ζn(x)ηn ∗ ω(x) + (1 − ζn(x))e−nd(x)G(r(x)).(4)

As G(r(·)) appears multiplied by a function which vanishes outside Un we may assume
that G(r(·)) vanishes outside Un. Thus (the extended) G(r(·)) is defined on all of Ω.
Observe also that, by construction, β|∂Ω = G.

Let

v = KΩ[β]

and introduce

Ψ(G) = (2κ− α)v · τ.

We note that Ψ maps Lp̂(∂Ω) into itself. To see this, we begin by observing that
β ∈ Lp(Ω). This follows since G ∈ Lp̂(∂Ω), which implies, by a simple change of
variables, that G(r(·)) ∈ Lp̂(Ω). Since p̂ > p, because p > 1, we obtain β ∈ Lp(Ω).
Therefore v ∈ W 1,p(Ω), so that v · τ ∈ W 1−1/p,p(∂Ω). We conclude using the Sobolev
imbedding W 1−1/p,p(∂Ω) ⊂ Lp̂(∂Ω).

Next we show that Ψ is a contraction mapping if n is sufficiently large. Let
G1, G2 ∈ Lp̂(∂Ω). Then

‖Ψ(G1) − Ψ(G2)‖Lp̂(∂Ω) ≤ ‖2κ− α‖L∞‖v1 − v2‖Lp̂(∂Ω) ≤ Cp‖β1 − β2‖Lp(Ω)

≤ Cp‖G1(r(·)) −G2(r(·))‖Lp(Un) ≤ Cp
1

n1/p
‖G1 −G2‖Lp̂(∂Ω).

Therefore, for n sufficiently large, Ψ has a unique fixed point, which we denote by
Gn ∈ Lp̂(∂Ω). We denote the corresponding β by ωn, so that

ωn ≡ ζnηn ∗ ω + (1 − ζn)e−ndGn ◦ r.

We need to verify that ωn is compatible. We begin by observing that the fact
that Gn is a fixed point for Ψ implies that ωn satisfies the Navier friction condi-
tion. Next we show the required regularity for ωn. A standard bootstrap argument
on identity (4), involving Sobolev imbeddings and elliptic regularity, gains 1 − 1/p̂
derivatives on ωn at each step. Indeed, Gn ∈ Lp̂(∂Ω) implies that Gn ◦ r ∈ Lp̂(Ω)
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since ∂Ω is smooth. Hence ωn ∈ Lp̂(Ω) because ζnηn ∗ ω is smooth and compactly
supported in the interior of Ω. From this it follows that vn = KΩ[ωn] ∈ W 1,p̂(Ω), so
that vn|∂Ω ∈ W 1−1/p̂,p̂(∂Ω). Thus Ψ(Gn) = (2κ− α)vn · τ ∈ W 1−1/p̂,p̂(∂Ω). But Gn

is a fixed point for Ψ, so we conclude that Gn ∈ W 1−1/p̂,p̂(∂Ω). From this last step
it follows that ωn ∈ W 1−1/p̂,p̂(Ω). We may repeat this argument and gain 1 − 1/p̂
derivatives at each step. After a finite number of steps we reach ωn ∈ H1 ∩ L∞.

Finally, we argue that ωn converges strongly to ω in Lp. Since the first term on
the right-hand side of (4) clearly converges strongly to ω in Lp, all we need to show
is that the remaining term converges to zero in Lp. First note that

‖(1 − ζn)e−nd(x)Gn(r(x))‖Lp(Ω) ≤ ‖Gn(r(x))‖Lp(Un) ≤
C

n1/p
‖Gn‖Lp(∂Ω)

≤ o(1)‖Gn‖Lp̂(∂Ω).

Now we estimate ‖Gn‖Lp̂(∂Ω):

‖Gn‖Lp̂(∂Ω) ≤ ‖2κ− α‖L∞‖KΩ[ωn]‖Lp̂(∂Ω)

≤ C(p, α, κ)‖ωn‖Lp(Ω) ≤ C(‖ω‖Lp(Ω) + ‖Gn(r(x))‖Lp(Un))

≤ Cp‖ω‖Lp(Ω) +
1

2
‖Gn‖Lp̂(∂Ω)

for n sufficiently large, which implies the required bound.
For p = 2 one repeats the argument above with an arbitrary p̂, and for p > 2 one

just takes p̂ = ∞.
Remark 1. The result presented is actually more general than what we require.

It applies to initial vorticities in Lp, p > 1, when we are only going to use it for p > 2.
It is worth remarking that it is only for the cases 1 < p ≤ 2 that we needed to use a
fixed point argument in Lp̂. We could have written an argument that works for the
case p > 2 using the fixed point argument in L∞, as was done in [1], and the proof
would really be a very minor adaptation of the proof in [1], not deserving repetition
even for the sake of completeness. One of the points of the present work is to clarify
the criticality of this problem. This is the main reason to present the approximation
result in this generality. The way it is formulated implies that this approximation
issue is not part of the p > 2 limitation.

Remark 2. There is no asymptotic description of the structure of the boundary
layer for the present problem that would be the adaptation of Prandtl’s description
of the classical boundary layer. We point out that the small viscosity regime does not
appear to be physically meaningful under Navier friction conditions, so that there has
been no compelling reason to obtain such a description. However, an account of the
structure of the boundary layer under Navier friction conditions would certainly be
of mathematical interest. In the absence of such an account, the proof above gives at
least a clue as to the nature of this boundary layer, embodied in the structure of the
correction term. One key issue in the classical boundary layer is that such a correction
term would have, at best, a uniform L1 estimate, leading to a boundary vortex sheet
perturbation in the limit. This is apparent in the explicitly computable flow generated
by an impulsively started plate, known as the Rayleigh problem; see, for example, [12].
This vortex sheet at the boundary is present in the inviscid limit even for smooth initial
vorticities. Now, vortex sheet–type regularity is critical for passing to the weak limit
in approximations of the incompressible 2D Euler equations; see [2]. In some sense, it
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is this fact that is the heart of the difficulty in the classical boundary layer problem.
The correction term in the proof above suggests that the boundary layer associated to
the Navier friction condition would correspond to uniformly bounded vorticity near
the boundary for p > 2, and Lp̂ vorticity near the boundary for 1 < p ≤ 2, so that
one would expect criticality only at p = 1.

Remark 3. The argument presented breaks down when p = 1, mainly because
elliptic regularity breaks down, so that one cannot guarantee that Ψ maps L1 to
itself.

4. A priori estimate on vorticity. The purpose of this section is to derive
an a priori estimate for vorticity on solutions of (1). We begin with a compatible
initial vorticity ω0, as defined in the previous section. We use u0 = KΩ[ω0] as initial
data. The well-posedness of the initial-boundary value problem (1) for such initial
data was established in [1], as previously mentioned. Let u = u(x, t) be the unique
weak solution of (1) with data u0. The vector field u belongs to C([0,∞);H2(Ω)) and
satisfies the weak formulation (2) of the Navier–Stokes equation with Navier friction
condition. The vorticity ω = curl u satisfies the parabolic equation (3) in a weak
sense.

Lemma 3. Fix p > 2. There exists a constant C > 0, depending only on p, Ω,
and the friction coefficient α such that the vorticity satisfies

‖ω(·, t)‖Lp ≤ C(‖ω0‖Lp + ‖u0‖L2).

Proof. The proof involves applying a maximum principle to two auxiliary prob-
lems. First observe that u · τ ∈ L∞(∂Ω × (0, T )) since u ∈ C([0, T );H2(Ω)). Set

Λ = ‖(2κ− α)u · τ‖L∞(∂Ω×(0,T )).

Consider the initial-boundary value problem for the Fokker–Planck equation⎧⎨
⎩

ω̃t − ν∆ω̃ + u · ∇ω̃ = 0 in Ω × (0, T ),
ω̃(·, 0) = |ω0| in Ω,
ω̃ = Λ on ∂Ω × (0, T ).

(5)

This problem has a unique weak solution ω̃ ∈ L2((0, T );H1(Ω)) by Theorems 6.1
and 6.2 in [7]. Then ω1 = ω − ω̃ is a weak solution for the following initial-boundary
value problem: ⎧⎨

⎩
(ω1)t − ν∆ω1 + u · ∇ω1 = 0 in Ω × (0, T ),
ω1(·, 0) = ω0 − |ω0| in Ω,
ω1 = (2κ− α)u · τ − Λ on ∂Ω × (0, T ).

(6)

The coefficients of the Fokker–Planck operator ∂t−ν∆+u ·∇ are such that the max-
imum principle for weak solutions, given in Corollary 6.26 of [7], is valid. Therefore,
as ω1 ≤ 0 on the parabolic boundary ∂Ω× (0, T )∪Ω×{t = 0}, it follows that ω1 ≤ 0
a.e. in Ω × [0, T ). Analogously, we prove that ω2 = −ω − ω̃ is nonpositive. We thus
obtain

|ω| ≤ ω̃ a.e. in Ω × [0, T ).(7)

Moreover, as ω0 is compatible, it is bounded. Hence Corollary 6.26 of [7] may
also be applied to (5), yielding that ω̃ ∈ L∞((0, T ) × Ω).
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Next we obtain an estimate for ω̃. Let ω̂ = ω̃ − Λ. This is a solution of the
following problem: ⎧⎨

⎩
ω̂t − ν∆ω̂ + u · ∇ω̂ = 0 in Ω × (0, T ),
ω̂(·, 0) = |ω0| − Λ in Ω,
ω̂ = 0 on ∂Ω × (0, T ).

(8)

We formally multiply (8) by ω̂|ω̂|p−2, where p > 2, we integrate by parts and use
the incompressibility of the flow u to obtain

1

p

d

dt

∫
Ω

|ω̂|p + (p− 1)ν

∫
Ω

||∇ω̂||ω̂|(p−2)/2|2dx = 0.(9)

Then

‖ω̂(·, t)‖Lp(Ω) ≤ ‖ω̂(·, 0)‖Lp(Ω) ≤ ‖ω0‖Lp(Ω) + Λ|Ω|1/p.

Therefore,

‖ω̃‖Lp(Ω) ≤ ‖ω̂‖Lp(Ω) + Λ|Ω|1/p ≤ ‖ω0‖Lp(Ω) + 2Λ|Ω|1/p.(10)

This formal calculation can be made rigorous by using the weak formulation
of (8) given in [7]. We begin by observing that ω̂t ∈ L2((0, T );H−1(Ω)) and ω̂ ∈
L2((0, T );H1

0 (Ω)) ∩ L∞((0, T ) × Ω). This implies that ω̂|ω̂|p−2 ∈ L2((0, T );H1
0 (Ω)).

Therefore we can multiply (8) by ω̂|ω̂|p−2 if we understand the product with ω̂t

and with ∆ω̂ as duality pairings. Finally, in order to justify (9) one still needs to
approximate ω̂ by suitable smooth functions and pass to the limit in each term of the
weak formulation so as to obtain

1

p

d

dt

∫
Ω

|ω̂|p = 〈ω̂t, ω̂|ω̂|p−2〉

= ν〈∆ω̂, ω̂|ω̂|p−2〉 = −(p− 1)ν

∫
Ω

||∇ω̂||ω̂|(p−2)/2|2dx.

This can be easily accomplished using mollification in time together with the
Dirichlet heat semigroup for Ω, thus generating a family of smooth functions ω̂ε such
that ∂tω̂ε → ω̂t strongly in L2((0, T );H−1(Ω)), while ω̂ε|ω̂ε|p−2 ⇀ ω̂|ω̂|p−2 weakly in
L2((0, T );H1

0 (Ω)) and ω̂ε is uniformly bounded in Ω × (0, T ).
Given (10) we now turn to the estimate of Λ. Using Sobolev imbedding and

interpolating between W 1,p and L2, we find

‖u(·, t) · τ‖L∞(∂Ω) ≤ C‖u(·, t)‖C(Ω̄) ≤ C‖u(·, t)‖θL2(Ω)‖u(·, t)‖1−θ
W 1,p(Ω)

≤ C‖u(·, t)‖θL2(Ω)‖ω(·, t)‖1−θ
Lp(Ω),

where θ = (p− 2)/(2p− 2).
Let ε be an arbitrary positive number. We now use Young’s inequality together

with the fact that κ and α are bounded to conclude that

Λ ≤ Cε‖u‖L∞((0,T );L2(Ω) + ε‖ω‖L∞((0,T );Lp(Ω))(11)

for some Cε > 0. Taking ε small enough, from (7)–(11) we obtain

‖ω‖L∞(0,T ;Lp(Ω)) ≤ C(‖ω0‖Lp(Ω) + ‖u‖L∞(0,T ;L2(Ω)))(12)
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for any p > 2, where C = C(p,Ω, ‖κ‖L∞(∂Ω), ‖α‖L∞(∂Ω)). Finally, a standard
energy estimate, such as the one carried out in [1] (see estimate (2.16)), yields
‖u‖L∞(0,T ;L2(Ω)) ≤ ‖u0‖L2(Ω), thereby concluding the proof.

Remark 4. This lemma is the heart of this article. Note that the restriction p > 2
comes into the proof above because of the need to produce a uniform bound on the
velocity at the boundary. It would be interesting to know if this is a physically mean-
ingful restriction. This would mean that the problem of controlling the generation of
vorticity by the interaction of incompressible flow with a “Navier condition” boundary
is critical at p = 2. However, this criticality at p = 2 seems unlikely. The limitation
on the integrability of vorticity in the proof above appears to reflect a limitation on
the maximum principle technique employed rather than an essential feature of this
problem. In contrast, the exponent p = 1 found to be critical in the proof of Lemma 2
seems much more essential and is already known to be critical in terms of passage
to weak limits on the nonlinearity of the incompressible 2D Euler and Navier–Stokes
equations.

Remark 5. The natural way to extend this vorticity estimate to p ≤ 2 would be
to derive an Lp energy estimate on the vorticity equation. Multiplying the vorticity
equation (3) by pω|ω|p−2, integrating in space, and performing the usual integration
by parts yields

d

dt

∫
Ω

|ω|pdx = −νp(p− 1)

∫
Ω

|ω|p−2|∇ω|2dx + νp

∫
∂Ω

|ω|p−2ω∇ω · ndS.

We note that the boundary term is the flux of |ω|p through the boundary, over which
we have no control. One special case for which this simple estimate does provide
an improvement over Lemma 3 is the case of α = 2κ, because then the troublesome
boundary term vanishes. This corresponds to the so-called free boundary condition
ω = 0 on ∂Ω. It is a well-known fact that one can handle the inviscid asymptotics
in this case, as one is imposing that the boundary does not generate vorticity and
thus there are no boundary layers. For details, see [8] and the special case of time-
dependent domain in [4].

5. Well-posedness for the viscous problem. In this section we observe that
the initial-boundary value problem for the Navier–Stokes equations with friction-type
boundary condition is well-posed even if the initial vorticity is not compatible. This
was already done in [1] for bounded initial vorticity.

We begin by showing that if uν is a weak solution of (1), then uν satisfies an
integrated version of relation (2).

Lemma 4. Let uν ∈ L2((0, T );H1(Ω)) ∩ L∞((0, T );L2(Ω)) be a weak solution
of (1). Then for any test vector field ϕ ∈ C∞

c ([0, T )×Ω), divergence free and tangent
to ∂Ω, we have∫ T

0

∫
Ω

uνϕt + uν(uν · ∇)ϕdxdt +

∫
Ω

u0ϕ(·, 0)dx

= 2ν

∫ T

0

∫
Ω

(Dϕ)S : (Du)Sdxdt + ν

∫ T

0

∫
∂Ω

α(ϕ · τ)(uν · τ)dSdt.

(13)

Proof. Let ϕ be a test vector field. For each s ∈ [0, T ), define

g(t, s) ≡
∫

Ω

uν(x, t)ϕ(x, s)dx.
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Then by (2) we have

∂g

∂t
= −

∫
Ω

ϕ · (uν · ∇)uνdx

− 2ν

∫
Ω

(Dϕ)S : (Duν)Sdx− ν

∫
∂Ω

α(ϕ · τ)(uν · τ)dS

=

∫
Ω

uν(uν · ∇)ϕdx− 2ν

∫
Ω

(Dϕ)S : (Duν)Sdx− ν

∫
∂Ω

α(ϕ · τ)(uν · τ)dS,

using integration by parts and the fact that uν is divergence free. On the other hand,
we also have

∂g

∂s
=

∫
Ω

uν(x, t)ϕs(x, s)dx.

Therefore, it follows that

d

dt
(g(t, t)) =

∫
Ω

uν(x, t)ϕt(x, t)dx

+

∫
Ω

uν(uν · ∇)ϕdx− 2ν

∫
Ω

(Dϕ)S : (Duν)Sdx− ν

∫
∂Ω

α(ϕ · τ)(uν · τ)dS.

Integrating this last identity in time and identifying the initial data yields the desired
result.

We now state and prove the main result in this section.
Proposition 1. Let ω0 ∈ Lp(Ω) for some p > 2 and u0 = KΩ[ω0]. Fix

ν > 0. Then there exists a unique vector field uν = uν(x, t) ∈ C([0, T );L2(Ω)) ∩
L2((0, T );H1(Ω)) satisfying the weak formulation (2) of the 2D incompressible Navier–
Stokes system (1) with initial data u0. Moreover, the associated vorticity ων = curl uν

satisfies the estimate

‖ων(·, t)‖Lp(Ω) ≤ C

a.e. in time, with constant C > 0 independent of viscosity.
Proof. Let ω0,n be a sequence of compatible functions approximating ω0 strongly

in Lp, as constructed in Lemma 2, and let u0,n = KΩ[ω0,n]. Let uν
n be the weak

solution of system (1) given by the well-posedness result of [1], and let ων
n = curl uν

n

be the corresponding vorticity. We begin by observing that Lemma 3 gives the uniform
estimate

‖ων
n‖L∞((0,T );Lp(Ω)) ≤ C(‖ω0‖Lp(Ω) + ‖u0‖L2(Ω))(14)

for some C > 0. By the Poincaré and Calderón–Zygmund inequalities, it follows that

‖uν
n‖L∞((0,T );W 1,p(Ω)) ≤ C(‖ω0‖Lp(Ω) + ‖u0‖L2(Ω)).(15)

Let ϕ ∈ C∞
c ((0, T ) × Ω) be a divergence-free test vector field which is tangent to

the boundary of Ω. We compute the time-derivative of uν
n in the sense of distributions.

We have, using (13),

〈ϕ, ∂tuν
n〉 = −

∫ T

0

∫
Ω

(∂tϕ)uν
n

=

∫ T

0

∫
Ω

uν
n(uν

n · ∇)ϕ− 2ν(Dϕ)S : (Duν
n)Sdxdt− ν

∫ T

0

∫
∂Ω

α(ϕ · τ)(uν
n · τ)dS.
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Recall that p > 2, so that (15) implies that ‖uν
n‖L∞((0,T )×Ω) ≤ C for some

constant C > 0 depending only on the initial data. Similarly, ‖Duν
n‖L2((0,T )×Ω) is

bounded uniformly by a positive constant depending only on initial data. We use
these facts to estimate ∂tu

ν
n. Let ϕ be a test vector field, which we first assume to be

divergence free as above. We have

|〈ϕ, ∂tuν
n〉| ≤

(
‖uν

n‖L∞((0,T )×Ω)‖uν
n‖L2((0,T )×Ω) + 2ν‖Duν

n‖L2((0,T )×Ω)

+ νC‖αuν
n‖L2((0,T );H1(Ω))

)
‖ϕ‖L2((0,T );H1(Ω)) ≤ C‖ϕ‖L2((0,T );H1(Ω)),

where we have used the continuity of the trace operator from H1(Ω) onto L2(∂Ω) to
estimate the boundary term. Now, if the test vector field ϕ is not divergence free, we
use standard properties of the Leray projector P to obtain the estimate

‖Pϕ‖L2((0,T );H1(Ω)) ≤ C‖ϕ‖L2((0,T );H1(Ω)),

and we repeat the argument above with Pϕ in place of ϕ. Note that

〈ϕ, ∂tuν
n〉 = 〈Pϕ, ∂tu

ν
n〉

as ∂tu
ν
n is divergence free and tangent to the boundary. By duality this implies the

estimate

‖∂tuν
n‖L2((0,T );H−1(Ω)) ≤ C,(16)

with C > 0 depending only on the initial data. Thus uν
n is equicontinuous from (0, T )

to H−1(Ω), and we can use the Aubin–Lions lemma to obtain a subsequence, which
we will not relabel, converging strongly in C([0, T ];L2(Ω)). Without loss of generality
this subsequence also converges weakly in L2((0, T );H1(Ω)) to a limit uν . It is now
easy to see that we can pass to the limit in each term in the weak formulation (2) of
the Navier–Stokes equations, thereby concluding the proof of existence for the initial-
boundary value problem (1). Furthermore, from the estimate on vorticity (14) it
follows that

‖ων(·, t)‖Lp(Ω) ≤ C

a.e. in time, for some constant C > 0 depending only on the initial data.

The uniqueness portion of this result is standard and may be obtained by adapting
the classical argument using an energy estimate on the difference of two solutions
with the same data. We conclude that there exists at most one weak solution u ∈
C([0, T ];L2(Ω)) ∩ L2((0, T );H1(Ω)) of (1).

Remark 6. The proof above can be adapted for 1 < p ≤ 2, assuming of course
that Lemma 3 could be proved in that case. The main steps in this adaptation would
be the following:

• Substitute the L∞ estimate on uν
n by an L∞((0, T );Lp∗

) estimate, with p∗

either the critical Sobolev exponent if p < 2 or an arbitrary number 1 < q <
∞ if p = 2.

• Use the fact that
√
ν‖uν

n‖L2((0,T );H1(Ω)) is bounded uniformly in n and ν by
the L2-norm of the initial velocity. This is a consequence of standard energy
estimates for the Navier–Stokes equations.
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6. Inviscid limit and conclusions. Let ω0 ∈ Lp(Ω) for some p > 2 and let
u0 = KΩ[ω0]. In this last section we show that the sequence of solutions of the Navier–
Stokes equations with initial velocity u0 and with Navier friction conditions possesses
a converging subsequence to a solution of the Euler equations with the same initial
velocity as viscosity vanishes. The proof is very similar to the existence part of the
proof of Proposition 1.

Theorem 1. Let uν = uν(x, t) be the solution of (1) such that uν(·, 0) = u0.
Then there exists a sequence νk → 0 such that uνk → u strongly in C([0, T ];L2(Ω))
as k → ∞ and u is a weak solution of the incompressible 2D Euler equations in the
sense that ∫ T

0

∫
Ω

uϕt + u(u · ∇)ϕdxdt +

∫
Ω

u0ϕ(·, 0)dx = 0(17)

for any test vector field ϕ ∈ C∞
c ([0, T ) × Ω) which is divergence free and tangent to

the boundary.
Proof. We recall from the proof of Proposition 1 that the following uniform

estimates hold for uν :

‖uν‖L∞((0,T );W 1,p(Ω)) ≤ C

and

‖∂tuν‖L2((0,T );H−1(Ω)) ≤ C,

where C > 0 depends only on the initial velocity u0 and initial vorticity ω0 and is
independent of viscosity (see the proof of (15) and (16)). From these estimates it
is possible to extract a subsequence uνk which converges strongly in C([0, T ];L2(Ω))
and weakly in L2((0, T );H1(Ω)). It is easy to see that these modes of convergence
are sufficient to pass to the limit in each term of (13) and guarantee that the limit
function u satisfies the identity

∫ T

0

∫
Ω

uϕt + u(u · ∇)ϕdxdt +

∫
Ω

u0ϕ(·, 0)dx = 0

for any test vector field ϕ ∈ C∞
c ([0, T ) × Ω) which is divergence free and tangent

to ∂Ω. This is precisely the standard formulation of a weak solution of the Euler
equations, and hence we conclude the proof.

Remark 7. We note that relation (13) is the natural identity to try to pass to the
limit in order to obtain (17). Furthermore, all the derivatives which appear in (13)
either are applied to the test function or have a factor of ν, so that, in the limit ν → 0,
there are no derivatives applied to the limit flow. This is relevant since solutions of
Euler equations are less regular than solutions of Navier–Stokes equations.

We conclude this article with a few final observations. First, we call attention
once more to the fact that the authors are not convinced of the criticality of p = 2,
so the critical p remains an open problem. Second, as mentioned in section 3, there
is no asymptotic description in the fluid mechanics literature of the boundary layer
associated with the Navier friction condition, something which would clarify the issues
raised here, irrespective of physical relevance. Finally, an interesting question which
we have not explored is whether the viscosity weak solution of the incompressible
2D Euler equations obtained above conserves the Lp-norm of vorticity. Conservation
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of the Lp-norm of vorticity holds both for weak solutions in the full plane, as a
consequence of DiPerna–Lions theory (see [9]), and for strong solutions, as one can
ascertain directly from the vorticity equation. In the viscous approximation, vorticity
can be generated at the boundary, so that the question is whether this possibility
disappears in the vanishing viscosity regime.
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comments which improved the presentation and for pointing out the references [5, 6].
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Abstract. We discuss inverse problems for the Helmholtz equation at fixed energy, specifically
the inverse source problem and the inverse scattering problem from a medium or an obstacle. In
[S. Kusiak and J. Sylvester, Comm. Pure Appl. Math., 56 (2003), pp. 1525–1548], we introduced the
convex scattering support of a far field, a set which will be a subset of the convex hull of the support
of any source or scattering inhomogeneity which can produce it.

We extend these results and modify the methods to locate a source within a known inhomogeneous
background medium, or a deviation from that medium, using observations of a single far field. We
also describe some numerical examples that illustrate the robustness of the method.
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1. Introduction. We study an inverse problem for the Helmholtz equation at
fixed energy. Our aim is to deduce the location of the source or scatterer from observa-
tions of scattered waves made at a distance, which are called far fields. Typically, one
has access to several far fields. For the inverse medium problem, the index of refrac-
tion is uniquely determined by the full scattering kernel, i.e., the observed scattered
field for every possible incident wave. In special cases [9, 5, 6], substantial information
about the support of the scatterer has been obtained from the scattered field of a few,
or even only one, incident wave.

In [8], we showed that, in a homogeneous background medium, we could associate
the convex scattering support with a single far field. This set is the smallest convex
set which supports a source that can produce that far field. We also produced a test,
the circular Paley–Wiener theorem, for computing the convex scattering support in
two dimensions. In [10], we introduced a different numerical method, called the range
test, for computing this support in a two-dimensional homogeneous medium.

Our work was motivated by the linear sampling method of Colton and Kirsch (see
[2]). They first developed a Picard test, which determines whether a far field belongs
to the range of the (compact) scattering operator, as a tool for inverse scattering.
This method, and the subsequent factorization method of Kirsch [7], differ from what
we present here in that they require much more data (the full scattering map) and
compute much more (the exact support of the scatterer).

In section 2 of this paper, we introduce the necessary scattering formalism and
restate the circular Paley–Wiener theorem as a Picard test. This restatement, though
less explicit, generalizes directly to inhomogeneous media and higher dimensions.

In section 3 we produce this general test. The general test tells us if a far field
could have been produced by a source or a scatterer located within a specific domain,
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but not whether the true source was located there. Section 4 addresses this issue by
extending the concept of convex scattering support to inhomogeneous media. The
conclusion is that we can locate a smallest convex set, which must be contained in
the convex hull of the support of any source which radiates that far field. Conversely,
we produce a source, supported in any neighborhood of the convex scattering support
which does radiate that far field.

Section 5 discusses the relationship between the support of a scatterer, rather
than a source, and the convex scattering support. In this case we show that the
convex scattering support provides a lower bound for the convex hull of the scatterer.
Unlike the source case, we don’t expect this lower bound to be optimal.

Section 6 contains a description of an explicit algorithm and some numerical
results. Maybe the most important observation in this section is that the practical
implementation of the algorithm is much simpler and more robust than the theorem
guarantees.

2. Far fields in a homogeneous medium. We model the time harmonic wave
radiated by a source in a homogeneous medium as a solution to the inhomogeneous
Helmholtz equation:

(∆ + k2)u(x) = f(x), x ∈ R
n.(2.1)

Equation (2.1) has a unique outgoing solution, u = G+
0 f , which can be computed by

the limiting absorption principle (see, e.g., [11, p. 147]).

G+
0 f = lim

ε↓0
(∆ + (k − iε)2)−1f

= − lim
ε↓0

∫
Rn

ei〈x,ξ〉f̂(ξ)

|ξ|2 − (k − iε)2
dξ.(2.2)

The limiting absorption principle chooses the unique solution u of (2.1) which
extends to be holomorphic in {Im(k) ≤ 0} and is continuous up to the boundary.
According to (one of the many theorems called) the Paley–Wiener theorem, this
solution is the Fourier transform of the unique solution ũ of the wave equation which
is zero in the past. That is,

u(k, x) =

∫ ∞

0

e−iktũ(x, t)dt.

We call a function in the range of G+
0 outgoing. We shall refer to a function as

incoming if v = G−
0 f , where

G−
0 f = lim

ε↓0
(∆ + (k + iε)2)−1f.

Alternatively, u = G+
0 f may be characterized as the unique solution of (2.1) satisfying

the Sommerfeld radiation condition:

lim
r→∞

r
n−1

2 (∂ru− iku) = 0, r = |x|.

Inverting the Fourier transform in (2.2), we may also represent u = G+
0 f (cf. [4])

as

(G+
0 f)(x) := − i

4

(
k

2π

)n−2
2

∫
Rn

|x− y|
2−n

2 H
(1)
n−2

2

(k|x− y|)f(y)dy.(2.3)
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Here, H
(1)
(n−2)/2 is the Hankel function of the first kind. The representation of G−

0 uses

the other Hankel function; i.e., its kernel is the complex conjugate of the kernel of
G+

0 .
The simplest estimate for the solution operators G±

0 is on the weighted L2 spaces,
Hs

δ(R
n). For δ = 0, Hs

0(R
n) is the Sobolev space, Hs(Rn). For δ > 0,

‖f‖s,δ = ‖(1 + |x|2)δ/2f‖s,0.

Proposition 2.1. The operators G±
0 are bounded as maps between the weighted

L2 spaces

G±
0 : Hs

δ(R
n) −→ Hs+2

−δ (Rn)(2.4)

for any real s and any δ > 1
2 . Moreover, G−

0 is the Hilbert space adjoint of G+
0 on L2

(i.e., s = 0 in (2.4)). That is,

G+
0

∗
= G−

0 .

Proof. The estimate was first proved in [1]. Once we have it, it is a simple matter to
interchange the order of integration in the L2 pairing to check that the two operators
are adjoints.

The far field describes the asymptotics of u as |x| → ∞. Stationary phase applied
to (2.2) or Hankel function asymptotics applied to (2.3) yields

u(x) ∼ eik|x|

|x|(n−1)/2
Cn,k

∫
Rn

e−ik〈Θ,y〉f(y)dy, |x| → ∞,(2.5)

where Θ = x
|x| is a unit vector on the n− 1-dimensional sphere Sn−1 and

Cn,k =
−i√
8π

(
k

2π

)n−2
2

e−i(n−1)π/4.

Hence, given a source f we define the far field, u∞ = F0f , by

(F0f)(Θ) =

∫
Rn

e−ik〈Θ,y〉f(y)dy(2.6)

= f̂(kΘ).(2.7)

The mapping properties of F+
0 are important for us.

Proposition 2.2. F+
0 is a compact linear map

F+
0 : Hs

δ(R
n) −→ L2(Sn−1).

Its adjoint with respect to the distributional (not the Hilbert space) pairing

F+
0

†
: L2(Sn−1) −→ H−s

−δ(R
n)

is the Herglotz operator

(F+
0

†
α)(x) = (Hf)(x)(2.8)

=

∫
Sn−1

eik〈Θ,x〉α(Θ)dS(Θ).
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Remark 2.3. Functions in the range of the Herglotz operator are usually re-
ferred to as incident fields. They are the Hs

−δ solutions of the homogeneous (or free)

Helmholtz equation for all real s and any δ > 1
2 . The Herglotz operator represents

these free solutions as superpositions of plane waves.
Proof. The boundedness of F+

0 follows easily from the representation (2.7). We

need only note that if f ∈ Hs
δ, then f̂ ∈ Hδ

s. As δ > 1
2 , the restriction map from

Hδ
s(R

n) to L2 of the codimension one sphere, Sn−1, is a compact operator.

The boundedness of F †
0 follows from the boundedness of F0. The equality (2.8)

can be seen by using formula (2.6), pairing with an L2 far field, and interchanging
the order of integration. Nevertheless, we give a proof that relies more on scattering.

Let u = G+
0 f and v = Hα. Stationary phase shows that v has the asymptotics

v(x) ∼ Cn,k
eik|x|

|x|(n−1)/2
α(θ) + Cn,k

e−ik|x|

|x|(n−1)/2
α(−θ), |x| → ∞.(2.9)

Applying Green’s theorem on the ball of radius R gives∫
∂BR

v
∂u

∂ν
− ∂v

∂ν
u =

∫
BR

v(∆ + k2)u− (∆ + k2)vu.(2.10)

Letting R → ∞ and making use of (2.5) and (2.9) allows us to evaluate the left-hand
side of (2.10). Recalling that v is a free solution of the Helmholtz equation removes
the second term from the left-hand side so that∫

Sn−1

α(θ)(F0f)(θ)dS(θ) =

∫
BR

vf

〈α, F0f〉 = 〈Hα, f〉.

Proposition 2.2 has a more general statement which will prove convenient in the
next section.

Theorem 2.4. Suppose that s1 + s2 > −2, δ > 1
2 , and that u and v satisfy

u ∈ Hs1+2
−δ (Rn) and (∆ + k2)u ∈ Hs1

δ (Rn),(2.11)

v ∈ Hs2+2
−δ (Rn) and (∆ + k2)v ∈ Hs2

δ (Rn);(2.12)

then as |x| → ∞,

u(x) ∼ eik|x|

|x|(n−1)/2
u+
∞(θ) +

e−ik|x|

|x|(n−1)/2
u−
∞(θ),(2.13)

v(x) ∼ eik|x|

|x|(n−1)/2
v+
∞(θ) +

e−ik|x|

|x|(n−1)/2
v−∞(θ),

and

〈u+
∞, v−∞〉 − 〈u−

∞, v+
∞〉 = 〈u, (∆ + k2)v〉 − 〈(∆ + k2)u, v〉.(2.14)

Remark 2.5. When we write “∼” meaning “asymptotic to,” we mean classical
asymptotics only in the case that u happens to be smooth near infinity. This is always
the case if (∆ + k2)u has compact support. In the more general setting, the space
of functions that satisfy (2.11) (or (2.12)) form a Hilbert space, and we are asserting
that the mappings

u 
→ u±
∞
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extend by continuity as mappings from that Hilbert space into L2(Sn−1).
Proof. Suppose first that u and v are compactly supported and smooth. Then

every such u (and v) is a linear combination of an outgoing function and a solution of
the homogeneous Helmholtz equation, i.e., an outgoing wave plus a Herglotz function.
Each of these has the asymptotics asserted in (2.5) and in (2.9), and therefore their
sum had these asymptotics as well. Now apply Green’s formula as in (2.10) to obtain
(2.14).

Finally, notice that the left-hand side of (2.14) is a continuous bilinear functional
with respect to L2 convergence and the right-hand side is continuous when un → u
and vn → v in the topologies of (2.11).

Definition 2.6. We shall refer to u+
∞ as the outgoing far field of u and u−

∞ as
its incoming far field. An outgoing function has zero incoming far field, i.e., u−

∞ = 0.
A Herglotz function has outgoing and incoming far fields related by the antipodal map
(2.9). Intuitively, one can see this by thinking about a spherical incoming wave passing
through the origin to become an outgoing wave.

In [8], we began to study the scattering support of a far field. The first step is to
ask whether a far field could have been produced by a source which is a distribution
supported in a closed set. We recall that the restricting of a distribution to an open
set means restricting it to act on the subspace C∞

0 (Ω) of C∞
0 (Rn). The support of a

distribution is the closed set defined below.
Definition 2.7. A point x belongs to the support of a distribution f if there

exists no open neighborhood, Ox, such that f |Ox = 0.
Distributions supported on a closed set form natural subspaces of Hs

δ(R
n).

Definition 2.8. Hs
0(Ω) is the closed subspace of Hs

δ(R
n) consisting of those

distributions which are supported in Ω.
The definition is independent of δ as long as Ω is bounded.
We point out that this is different from Hs(Ω), which denotes the restrictions

of distributions to a bounded open set, and is not a subspace of any Hs
δ(R

n). In
fact, H−s(Ω) is the natural dual to Hs

0(Ω) for all real s. For bounded open sets Ω
and positive s, our definition of Hs

0(Ω) coincides with the common definition, i.e., the
closure of C∞

0 (Ω) in the Hs norm. In [8], we proved the following theorem.
Theorem 2.9. Let α ∈ L2(S1) represent a far field. There exists f ∈ Hs

0(BR)
such that

F+
0 f = α =

∞∑
n=−∞

αne
inθ(2.15)

if and only if

∞∑
n=−∞

∣∣∣∣ αnn
s

σn(R)

∣∣∣∣
2

< ∞,(2.16)

where

σn(R) =

(∫ R

0

|Jn(kr)|2rdr
) 1

2

.

In section 3 of this paper, we will prove a generalization of this result to variable
index of refraction, higher dimensions, and more general domains. We close this section
with a restatement of this theorem which anticipates the generalization to follow.
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We don’t give the proof here, as it will follow as a corollary of the more general
Theorem 3.6 in section 3.

Theorem 2.10. Let α ∈ L2(Sn−1) represent a far field. Let F+
0 |Hs

0(Ω) represent

the restriction of the compact operator F+
0 to Hs

0(Ω) and let

F+
0 |Hs

0(Ω) =
∑

σnψn ⊗ φn

be its singular value decomposition. Then

α ∈ Range(F+
0 |Hs

0(Ω))

if and only if

∑∣∣∣∣ (α, ψn)

σn

∣∣∣∣
2

< ∞.(2.17)

To facilitate the comparison of Theorems 2.9 and 2.10, we describe two examples
with Ω equal to BR ∈ R

2, the ball of radius R centered at the origin. We can separate
variables in this case, representing the operator F+

0 in terms of complex exponentials,
Bessel functions, and the characteristic function of the ball, χBR

.

F+
0 |L2(BR) =

∞∑
n=−∞

ein(θ−π
2 ) ⊗ χBR

e−in(φ−π
2 )Jn(kr).(2.18)

Because we are in L2, its Hilbert space adjoint is

(F+
0 |L2(BR))

∗ =

∞∑
n=−∞

χBR
ein(φ−π

2 )Jn(kr) ⊗ e−in(θ−π
2 )

and its singular values are the eigenvalues of (F+
0 |L2(BR)F

+
0 |∗L2(BR))

σ2
n = 4π2

∫ R

0

J2
n(ks)sds,

so we see that (2.16) and (2.17) agree in the case s = 0.
Next, we consider F+

0 |H1
0(BR). The operator itself has the same representation

as in (2.18); we are just considering it on a smaller subspace. A bit of a calculation
shows that the Hilbert space adjoint is now

(F+
0 |H1

0(BR))
∗ =

∞∑
n=−∞

χBR
ein(φ−π

2 )

(
Jn(kr) −

( r

R

)|n|
Jn(kR)

)
⊗ e−in(θ−π

2 )

with singular values (we’ll call them σ̃n’s)

σ̃2
n = 4π2

[∫ R

0

J2
n(ks)sds− Jn(kR)

Rn

∫ R

0

Jn(ks)sn+1ds

]
.(2.19)

Now, the large n asymptotics of the Bessel function is

Jn(kr) ∼ 1√
πn

(
ekr

2n

)n

for n � kr.
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Integrating with respect to r then gives

σ2
n ∼ 8π

(ek)2

(
ekR

2n

)2n+2 (
1 + O

(
1

n

))
, n → ∞,

while the leading order asymptotics of the two terms in (2.19) cancel, so that

σ̃2
n = O

(
σ2
n

n2

)
,

which agrees with (2.16) in the case s = 1.

3. Far fields in an inhomogeneous medium. If the medium is inhomoge-
neous, (2.1) is replaced by

(∆ + k2n(x))u(x) = f(x), x ∈ R
n.(3.1)

The coefficient n(x) is the index of refraction and is the square of the reciprocal of
the wave speed at x. We will assume that n has positive imaginary part, that n − 1
is compactly supported, and that n ∈ Lp(Rn) for p > max(n − 2, n/2). The unique
continuation principle holds for this is the class of n’s.

It will be convenient to rewrite (3.1) as

(∆ + k2 − q(x))u = f

with q = k2(n−1). Because q is not necessarily smooth, we must restrict the regularity
of the Sobolev spaces. We want to allow single and double layer potentials as sources,
so that the application of our results to active scattering will include scattering from
an obstacle. We will treat f ∈ Hs−2

δ (Rn) with 0 ≤ s ≤ n/p and δ > 1
2 .

We will standardize the notation used in this section. We will use η and σ to
denote unrestricted real numbers. The symbols δ, p, and s will always satisfy the
inequalities

δ > 1/2,

p > max(2, n/2),(3.2)

0 ≤ s ≤ n/p.

Our next theorem asserts the existence of the analogues of G0 and F0.
Theorem 3.1. Let q ∈ Lp(Rn) and have compact support. Let f ∈ Hs−2

δ (Rn)
with p, s, δ satisfying (3.2). Then there exists a unique outgoing (resp., incoming)
solution of

(∆ + k2 − q(x))u = f

which has the asymptotic behavior

u(x) ∼ eik|x|

|x|(n−1)/2
u±
∞(Θ), |x| → ∞.

Moreover, the unique solution u is computed by the operator

u(x) = (G±
q f)(x)

:= (I −G±
0 q)

−1G±
0 f(3.3)

= G±
0 (I − qG±

0 )−1f(3.4)
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and

u±
∞(Θ) = (F±

q f)(Θ)

:= F±
0 (I − qG±

0 )−1f.(3.5)

Additionally, both G±
q and F±

q are compact operators:

G±
q : Hs−2

δ (Rn) → H
s−n/p
−δ (Rn),(3.6)

F±
q : Hs−2

δ (Rn) → L2(Sn−1).(3.7)

The proof requires that we show that (I −G±
0 q) is invertible. Let Mq denote the

operator of multiplication by q. Then we have the following lemma.
Lemma 3.2. Let q be a compactly supported function on R

n. For any real p ≥ 2,
any real δ and η, and any 0 ≤ s ≤ n

p ,

Mq : Hs
η1

(Rn) → H
s−n

p
η2 (Rn)(3.8)

is bounded.
Proof. According to Hölder’s inequality,

‖qu‖L2(Rn) ≤ ‖q‖Lp(Rn)‖u‖
L

2p
p−2 (Rn)

≤ ‖q‖Lp(Rn)‖u‖H
n
p (Rn)

,

with the second line a consequence of the Sobolev inequality. Thus

Mq : H
n
p

0 (Rn) → L2(Rn)

is bounded. Duality implies that

Mq : L2(Rn) → H
−n

p

0 (Rn)

is also bounded. Interpolation then gives (3.8) in the case that δ = η = 0. However,
because q is compactly supported,∥∥∥(1 + |x|2)

η−δ
2 q

∥∥∥
Lp(Rn)

≤ C‖q‖Lp(Rn),

which implies (3.8) for any δ and any η.
As a consequence, we have the following corollary.
Corollary 3.3. Let p ≥ 2, 0 ≤ s ≤ n

p , and δ > 1
2 . Then

G+
0 q : Hs

η(R
n) → H

s+2−n
p

−δ (Rn),(3.9)

and

qG+
0 : Hs−2

δ (Rn) → H
s−n

p
η (Rn)

is bounded. If, in addition, p > n
2 , then

G±
0 q : Hs

−δ(R
n) → Hs

−δ(R
n)

are compact.
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Proof. The first statement is a direct consequence of Proposition 2.1 and Lemma
3.2, while the second follows from the compact embedding of Hs1

η in Hs2
δ whenever

η > δ and s1 > s2.
Corollary 3.4. Let q ∈ Lp(Rn) with compact support and let p, s, δ sat-

isfy (3.2). Then (I − G+
0 q)

−1 exists as a bounded linear operator from Hs
−δ(R

n) to
Hs

−δ(R
n).

Proof. Corollary 3.3 implies that (I −G+
0 q) is Fredholm, so we only need to show

uniqueness. Suppose that u ∈ Hs
−δ(R

n) satisfies

(I −G+
0 q)u = 0.(3.10)

Repeated application of (3.9) shows us that u ∈ H2
−δ(R

n) and satisfies

(∆ + k2)u = qu.

Since u is outgoing, u is incoming and satisfies

(∆ + k2)u = qu

so that we may apply (2.14) to obtain the identities

2ik
〈
u+
∞, u∞

〉
= 〈qu, u〉 − 〈u, qu〉,

2ik‖u+
∞‖2

L2 = 2i

∫
Im q|u|2,

which implies

‖u+
∞‖2

L2 ≤ 0.

Thus, u is an outgoing function with no far field. Rellich’s lemma [3] implies that
u vanishes outside the support of q, and unique continuation then implies that u = 0
everywhere.

Corollary 3.5. Let q ∈ Lp(Rn) with compact support and let p, s, δ sat-
isfy (3.2). Then (I − qG+

0 )−1 exists as a bounded linear operator from Hs−2
δ (Rn) to

Hs−2
δ (Rn).

Proof. (I−qG+
0 )−1 is also Fredholm, so only uniqueness need be checked. Suppose

f = qG+
0 f . Then u = G+

0 f satisfies (3.10), and therefore it must be zero. However,
f = (∆ + k2)u, so f must also vanish.

Proof of Theorem 3.1. We have shown that formulas (3.3), (3.4), and (3.5) make
sense. Both (3.6) and (3.7) follow from the previous corollaries and the mapping
properties of F0 and G0. To verify that (3.3) and (3.4) are equal, we start with the
factorization

(I −G±
0 q)G

±
0 = G±

0 (I − qG±
0 ).

Now, both (I −G±
0 q) and (I − qG±

0 ) are invertible, so that

(I −G±
0 q)

−1(I −G±
0 q)G

±
0 (I − qG±

0 )−1 = (I −G±
0 q)

−1G±
0 (I − qG±

0 )(I − qG±
0 )−1,

which implies

G±
0 (I − qG±

0 )−1 = (I −G±
0 q)

−1G±
0 .
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With Theorem 3.1 in place, we may extend the Picard test (2.17) to the inhomo-
geneous equation.

Theorem 3.6. Let α ∈ L2(Sn−1) represent a far field and let F+
q |Hs

0(Ω) represent
the restriction of the compact operator F+

q to Hs
0(Ω). Then

α ∈ Range(F+
q |Hs

0(Ω))

if and only if

∑∣∣∣∣ (αn, ψn)

σn

∣∣∣∣
2

< ∞,

where

F+
q |Hs

0(Ω) =
∑

σnψn ⊗ φn

is the singular value decomposition of F+
q |Hs

0(Ω).
This theorem tells us that we can look for a source in a known inhomogeneous

background by simply replacing F0 by Fq in the convergence test given in Theo-
rem 2.10. Of course, to apply it we must numerically or analytically compute the
singular value decomposition of F+

q |Hs
0(Ω).

4. The convex scattering support. We are ready to use Theorem 3.6 to locate
the support of a source in an inhomogeneous medium. In Theorem 5.2 of section 5, we
will locate the region where a medium differs from a known background by applying
this test. In both cases our data will be a single far field.

As we pointed out in [8], a single far field is not enough information to uniquely
determine the support of a source. For example, if φ has compact support, then
fφ = (∆ + k2)φ will always have zero far field. We can always add fφ to a source to
produce a new one with bigger support which produces the same far field. Thus we
cannot associate with a far field a set which contains the support of any source which
produces it.

However, we can determine a unique smallest convex set which must be a subset
of the convex hull of the support of any source which produces that far field. We refer
to this set as the convex scattering support of a far field. We will show below that the
convex scattering support of any nonzero far field is a nonempty closed set, and that
there always exists an L2 source, supported in an arbitrarily small neighborhood of
the convex scattering support, which will reproduce the far field.

We begin with the definition.
Definition 4.1. The convex scattering support of the far field u∞, with respect

to the background q, is

cSksuppqu∞ =
⋂

Fqf=u∞
f∈Hs

δ(R
n)

ch(supp f).(4.1)

Here, ch(supp f) denotes the convex hull of the support of f .
We must take s > −2 because Fq is only defined for such sources. The next

lemma asserts that the cSksuppqu∞ doesn’t depend on s for −2 < s ≤ 0. It doesn’t
depend on s at all if q is smooth. We will use the notation Nε(Ω) to denote an open
epsilon neighborhood of a set Ω.
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Lemma 4.2. For any f ∈ Hs
0(Ω) and any ε > 0, there exists f̃ ∈ L2(Nε(Ω)) such

that

F+
q f̃ = F+

q f.

Proof. Let u = G+
q f and let φ ∈ C∞(Rn) satisfy

φ =

{
1, x ∈ R

n\Nε(Ω),

0, x ∈ Nε(Ω),

and set

f̃ = (∆ + k2 − q(x))φu.

Now, G+
q f = u outside Nε(Ω) and therefore has the same far field. Note that φu is

supported outside supp f so that u is H2 there, and thus f̃ ∈ L2.
Theorem 4.3. For any far field α ∈ L2(Sn−1) with a compactly supported source,

and any ε > 0, there exists an L2 source fε such that G+
q fε = α and

ch(supp fε) ⊂ Nε(cSksuppqα).

We shall need two lemmas for the proof.
Lemma 4.4. Suppose supp f1 ⊂ Ω1, supp f2 ⊂ Ω2, and that R

n \ (Ω1

⋃
Ω2) is

connected and contains a neighborhood of ∞. If

F+
q f1 = F+

q f2 = α,

then, for any ε > 0, there exists an f3 ∈ C∞(Rn) with

supp f3 ⊂ Nε(Ω1 ∩ Ω2)

and

F+
q f3 = α.

Proof. According to Rellich’s lemma and unique continuation [3], u1 = G+
q f1 and

u2 = G+
q f2 agree on the R

n \ (Ω1

⋃
Ω2).

Let φ ∈ C∞(Rn) satisfy

φ =

{
1, x ∈ R

n\Nε(Ω1 ∩ Ω2),

0, x ∈ N ε
2
(Ω1 ∩ Ω2);

then

v =

⎧⎪⎨
⎪⎩
φu1, x ∈ R

n\Ω1,

φu2, x ∈ R
n\Ω2,

0, x ∈ Ω1 ∩ Ω2

is a well-defined C∞ function and v = u1 = u2 outside a compact set, so that

f3 = (∆ + k2 − q(x))v

must also have far field α.
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Lemma 4.5. For any ε > 0 and any far field α with a compactly supported source,
there exists an integer N and a sequence of sources fn such that

Nε(cSksuppqα) ⊃
N⋂

n=1

ch supp(fn).(4.2)

Proof. Let B denote the complement of cSksuppqα, let Bε denote the complement
of Nε(cSksuppqα), and let Af denote the complement of ch supp(f). The Af ’s are
open and Bε is closed. Taking complements in the definition (4.1) tells us that

B =
⋃

F+
q f=α

Af .

We will prove the theorem by showing that we may choose fn such that

Bε ⊂
N⋃

n=1

Afn .

Let f1 be a compactly supported source which radiates α. Now Bε\Af1 is compact
and the Af ’s provide an open cover of that compact set, so a finite subcover exists.
Numbering that finite subcover Af2 through AfN establishes (4.2) and proves the
theorem.

Proof of Theorem 4.3. Lemma 4.5 implies that Nε(cSksuppqα) is contained in the
intersection of finitely many sources. We may take Ω1 and Ω2 in Lemma 4.4 to be
the convex hulls of the supports of two of the sources, so that the hypothesis that
R

n\(Ω1

⋃
Ω2) is connected is automatic. Thus we can produce a source supported

on a neighborhood of the intersection of the convex hulls of the supports of any two
sources, and we complete the proof by induction.

5. Active sensing: Finding the support of a scatterer. The convex scat-
tering support of a far field which was not radiated by a source, but rather scattered
by an inhomogeneity in a homogeneous medium, detects the deviation of the index of
refraction from that of the homogeneous background medium. That is, when we illu-
minate the medium with an incoming wave, the inhomogeneity becomes a secondary,
or induced, source, and our test can be applied to locate that source.

Similarly, we can apply the Picard test in an inhomogeneous background if we
wish to locate the deviation of the index of refraction from that known background. In
both cases, we apply the test to the deviation of the measured outgoing far field from
the outgoing far field that we should have measured if no deviation were present. If
the background is homogeneous, the test is applied to the scattered wave, the outgoing
far field minus the antipodal map of the incoming field, which is the outgoing far field
of the free solution with the same incoming far field. In the case of an inhomogeneous
background, we subtract the wave scattered by the background.

In order to be mathematically precise we need to recall the scattering operator.
We may formulate the scattering problem as

(∆ + k2 − q(x))u = 0,

u−
∞(Θ) = β(Θ),
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where β ∈ L2(Sn−1) parameterizes the incoming far field (recall (2.13)). It is custom-
ary to seek the total wave u as the sum of an incident wave and a scattered wave:

u = uinc + usc

= Hβ + usc.

In our notation, the incident wave is just the Herglotz operator (2.8) acting on β.
Because Hβ has incoming far field equal to β, the scattered wave is outgoing and
satisfies

(∆ + k2 − q(x))usc = qHβ,(5.1)

(usc)
−
∞ = 0.

Thus,

usc = G+
q qHβ

and has far field

(usc)
+
∞ = F+

q qHβ.

The scattering operator, which maps the incoming far field to the scattered far
field, is given by

Sq = F+
q qH

= F+
0 q(I −G+

0 q)
−1H.

If we can measure the far field Sqβ for a single incoming wave β, we may apply
the Picard test to Sqβ to find what must be a subset of the convex hull of the support
of the induced source

f = q(I −G+
0 q)

−1Hβ

= qu.

Because the unique continuation principle guarantees that u cannot vanish on an
open set, we can be certain that we are truly estimating the support of q, i.e., we have
the following lemma.

Lemma 5.1.

supp qu = supp q.

Suppose now that we are looking to locate not the support of q, but the support
of q − qbg. That is, we want to find the places where the medium deviates from the
known inhomogeneous background qbg. We rewrite (5.1) as

(∆ + k2 − qbg)usc = qbgHβ + (q − qbg)u,

(usc)
−
∞ = 0,

which shows that

usc = G+
qbg

Hβ + G+
qbg

(q − qbg)u
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with outgoing far field

Sqβ = Sqbgβ + F+
qbg

(q − qbg)u.

Thus, if we apply the Picard test to the far field

Sqβ − Sqbgβ,

we obtain an estimate of the support of the induced source (q−qbg)u, which, according
to Lemma 5.1, is a lower bound on the support of q− qbg. We state this as a corollary
of Theorem 3.6.

Theorem 5.2. For every incident field α,

cSksuppq(S
+
qbg

− S+
q )α ⊂ ch supp(q − qbg),

i.e., if q = qbg in R
n \ Ω,

(S+
qbg

− S+
q )α ∈ Range(F+

qbg
|L2(Ω))

for every incident field α.

6. Computing the convex scattering support. In the previous section, we
have shown how to unambiguously associate a closed convex set, the convex scattering
support, with a far field; we showed that any source which produces that far field must
contain that set in the convex hull of its support, and that there always exists a source
supported in any neighborhood of the convex scattering support which radiates that
far field.

Theorem 3.6 tests whether that set is contained in a test region Ω. In this sec-
tion we describe a simple algorithm to make use of Theorem 3.6 to find the convex
scattering support and show a numerical result for a homogeneous background in two
dimensions to illustrate how the method works. We do not intend to suggest that
what we present below is careful numerical study. It is meant to be illustrative. We
do, however, view it as strong evidence that this provides a stable numerical method.

Algorithm. We will choose as test domain, Ω = BR(c), the ball of radius R
with center c.

1. Choose the center c = 0 and find the smallest R such that BR(0) contains the
scattering support. For a homogeneous background medium this is easily seen
by simply plotting the modulus of the Fourier coefficients of the far field and
looking for the place they become effectively zero (i.e., uniformly small). In
the plot on the bottom left in Figure 1, the modulus of the Fourier coefficients
are effectively zero for |n| a little bigger than 50. The wavenumber in this
example is k = 50, so the radius R of the circle about zero is one ( 50

50 ).

This succeeds because the decomposition of F+
0 |L2(Bc(R)) is exactly

F+
0 |L2(B0(R)) =

∞∑
n=−∞

ein(θ−π
2 ) ⊗ χB0(R)(r)Jn(kr)e−in(φ−π

2 )

(here χB0(R)(r) is the characteristic function of the ball) so that its singular
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Fig. 1. Estimating the convex scattering support of a triangular source.

values are

σn =

(∫ R

0

J2
n(ks)sds

) 1
2

(6.1)

∼

⎧⎪⎨
⎪⎩

(R2 − n2)
1
4 for n < kR,

1√
n

(
eR

2n

)n

for n > kR,

which means that the σn are uniformly large for n < kR and decay rapidly
to zero as soon as n > kR.

2. Choose another center and repeat. In the homogeneous case, we compute the
far field of the translated source instead of translating the test region. We
use the formula

F+
0 f(x− c) = eik|c| cos(θ−θc)F+

0 f(6.2)

and then apply the test from the previous step to the new far field given
by the left-hand side of (6.2). The plots on the left-hand sides of Figures 1
and 2 are the results of translating the far fields to the centers indicated in
the figures.
We don’t suggest a specific algorithm for choosing the centers here. In the
first example, we chose a new center to be on the intersection of previous
circles. In the second, we needed to choose centers far from the line source to
see that it was flat. One expensive alternative is just to grid space and then
choose centers at each grid point.

3. Our estimate of the convex scattering support is the intersection of these balls
as in the large plots at the top left of Figures 1 and 2).
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Fig. 2. Estimating the convex scattering support of a line source.

7. Conclusions. We have shown that the notion of the convex scattering sup-
port extends to scattering in an inhomogeneous background. Theoretically, the notion
is actually quite general, relying only on unique continuation, and we expect it to hold
in a very general mathematical setting. The observation of a far field can easily be
replaced by the observation of a set of Cauchy data on all or part of the boundary of
a region.

From a practical point of view, it is the threshold behavior of the σn’s in (6.1)
that is the most encouraging and intriguing. Equation (6.1) tells us not only that
the Fourier coefficients of a far field produced in the ball of radius R will go to zero
rapidly when n becomes greater than kR, but that they can, in general,1 be expected
to be uniformly large for n even slightly less than kR. This means that we need only
look for this transition to zero, which is much less sensitive to noise than any sort of
convergence or ratio test.

This threshold is intimately associated with wave propagation, and not merely a
consequence of unique continuation. While the convex scattering support can easily be
defined for Laplace’s equation (the Helmholtz equation with ω = 0), the corresponding
σn’s exhibit no such behavior.

From our point of view, one very relevant question is whether this thresholding
behavior occurs for other test domains and for Helmholtz equations with inhomoge-
neous backgrounds. If it does, we can expect these tests to be robust in the presence
of noise as well.

1Theorem 3.6 itself guarantees that we can always artificially choose examples where the first 1000
Fourier coefficients are zero, and only after that do the hypotheses of the theorem hold. Nevertheless,
we expect that, for a broad class of sources, this won’t be the case.
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Abstract. We are interested in the life span and the asymptotic behavior of the solutions to
a system governing the motion of a pressureless gas that is submitted to a strong, inhomogeneous
magnetic field ε−1B(x) of variable amplitude but fixed direction; this is a first step in the direction
of the study of rotating Euler equations. This leads to the study of a multidimensional Burgers-type
system on the velocity field uε, penalized by a rotating term ε−1uε∧B(x). We prove that the unique,
smooth solution of this Burgers system exists on a uniform time interval [0, T ]. We also prove that
the phase of oscillation of uε is an order one perturbation of the phase obtained in the case of a pure
rotation (with no nonlinear transport term), ε−1B(x)t. Finally, going back to the pressureless gas
system, we obtain the asymptotics of the density as ε goes to zero.
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1. Introduction. The aim of this paper is to study the asymptotic behavior of
a fluid submitted to a strong external inhomogeneous magnetic field.

The case when the field is constant has been studied by a number of authors, both
for compressible and incompressible models of fluids (see, for instance, [1], [3], or [7]
for incompressible fluids, and [4] or [6] for rarefied plasmas). In that case, one cannot
only derive the asymptotic average motion (which is given by the weak limit of the
velocity field), but one can also describe all the oscillations in the system and possibly
their coupling: the filtering techniques used for that rely on explicit computations in
Fourier space.

In the case when the magnetic field is inhomogeneous, those methods are not
relevant anymore. Weak compactness and compensated compactness arguments nev-
ertheless allow us to determine the average motion (see [6] in the case of a rarefied
plasma governed by the Vlasov–Poisson system, and [5] in the case of a viscous in-
compressible fluid). In order to describe the oscillating component of the motion, one
has to understand the interaction between the penalization and the nonlinear term
of transport: indeed one expects that the flow modifies substantially the phase of
oscillation (which is of course inhomogeneous).

We propose here to analyze this interaction for a simplified model of magnetohy-
drodynamics, the so-called Euler system of pressureless gas dynamics.

1.1. A simple model for magnetohydrodynamics. We consider the follow-
ing system of partial differential equations:

∂tρ + ∇· (ρu) = 0, x ∈ R3, t > 0,
∂t(ρu) + ∇· (ρu⊗ u) = ρu ∧B, x ∈ R3, t > 0,

ρ(t = 0) ≡ ρ0, u(t = 0) ≡ u0, x ∈ R3,
(1.1)
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where ρ denotes the density of the fluid, u its mean velocity, and B the external
magnetic field (∇·B = 0). The first equation expresses the local conservation of mass,
while the second one gives the local conservation of momentum provided that there
is no internal force (no pressure). This assumption is relevant only in some particular
regimes (corresponding to sticky particles [2]). From a physical point of view, this
may seem a strong restriction, but it allows us to perform a first mathematical study
of that type of inhomogeneous singular perturbation problem: indeed in this special
case a major simplification arises since the equation on the mean velocity can be (at
least formally) decoupled from the rest of the system:

∂tu + (u · ∇)u = u ∧B, x ∈ R3, t > 0.

We then obtain a system of Burgers type that is a prototype of hyperbolic system.
A work in progress should extend the present results to more realistic models, in
particular to the three-dimensional incompressible Euler system.

In order to further simplify the analysis, we assume that the direction of the field
B is constant,

B(x) ≡ 1

ε
b(x1, x2)e3, (x1, x2) ∈ R2 and e3 = t(0, 0, 1),

which allows us to get rid of the geometry of the field lines (for detailed comments
on this subject, see, for instance, [5, Remark 1.4]). Any solution to the system
(1.1) has then uniform regularity with respect to the variable x3. To isolate the
phenomenon of inhomogeneous oscillations with instantaneous loss of regularity, we
restrict therefore our attention to the two-dimensional singular perturbation problem
in the plane orthogonal to the magnetic field. We finally have

∂tρ + ∇· (ρu) = 0, x ∈ R2, t > 0,

∂t(ρu) + ∇· (ρu⊗ u) =
b

ε
ρu⊥, x ∈ R2, t > 0,

ρ(t = 0) ≡ ρ0, u(t = 0) ≡ u0, x ∈ R2,

(1.2)

where u⊥ denotes the vector field with components (u2,−u1), and the intensity b of
the magnetic field satisfies the following assumptions:

(H0) b ∈ C∞(R2) ∩W 2,∞(R2),

(H1) inf
x∈R2

b(x) = b− > 0.

A standard fixed point argument then allows us to prove the local well-posedness
of (1.2). The result is the following.

Theorem 1. Consider a function b satisfying assumptions (H0) and (H1). Let
ρ0 be a nonnegative function and let u0 be a vector field in Hs(R2) (s > 2). Then,
for all ε > 0, there exist Tε ∈ ]0,+∞] and a unique solution of (1.2), (ρε, uε) ∈
L∞
loc([0, Tε[, H

s(R2)).
Note that the lifespan Tε of the solution depends on ε, and that the lower bound

on Tε coming from the Duhamel formula goes to zero as ε → 0. The first difficulty
in studying the asymptotics ε → 0 consists then in understanding why the magnetic
penalization does not destabilize the system, and in proving that the solution (ρε, uε)
exists on a uniform interval of time.
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1.2. Formal analysis. Before stating more precise results on the life span of
the solutions and on the asymptotics ε → 0, we have chosen to give some simple
observations about the problem to guide intuition. In this first approach we restrict
our attention to the analysis of the equation governing the velocity.

The first step of the formal analysis consists in determining the mean behavior of
the velocity field, that is, the weak limit of uε. We have

uε =
ε

b
(∂tuε + (uε · ∇)uε)

⊥
.

As b is bounded from below, if we are able to establish convenient a priori bounds on
uε, this will imply

uε ⇀ 0

in some weak sense. This means that we expect the velocity to oscillate at high
frequency (on vanishing temporal or spatial scales).

Another way to get an idea of the asymptotic behavior of the velocity is to study
the simple case when b is constant. The group of oscillations generated by the mag-
netic penalization is then homogeneous,

R

(
t

ε

)
u = u cos

(
bt

ε

)
− u⊥ sin

(
bt

ε

)
,

which corresponds to the rotation with frequency 2πb/ε. As the coefficients are con-
stant, this group is not perturbed by the transport. Classical filtering methods (see
namely [7], [8]) can then be applied: setting

vε
def
= R

(
− t

ε

)
uε

leads to

∂tvε + Q

(
t

ε
, vε, vε

)
= 0,

where Q
(
t
ε , ., .

)
is a quadratic form with bounded coefficients depending on t/ε. As

there is only one oscillation frequency, there is no resonance, which implies that

vε → u0

in some strong sense, provided that convenient a priori bounds on uε (and conse-
quently on vε) hold. This means that we can describe completely the oscillations and
get a strong convergence result. Of course, we get as a corollary that the life span Tε

is uniformly bounded from below, and we even expect that Tε → +∞ as ε → 0.
The case we consider here is much more complicated. The group of oscillations

generated by the magnetic penalization is again very easy to describe,

R

(
t

ε
, x

)
u = u cos

(
b(x)t

ε

)
− u⊥ sin

(
b(x)t

ε

)
,

but it is nonhomogeneous, which entails
• a loss of regularity (R

(
t
ε , x

)
u blows up in all Sobolev norms Hs(R2) for s > 0);

• an interaction with the transport operator (with the same definition of vε =
R
(
− t

ε , x
)
uε as previously, we do not expect ∂tvε to be bounded in any space of

distributions).
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The purpose behind this model problem is to understand how to overcome these
difficulties. The first step is to explain how the phase of oscillations is modified by the
flow: note that even a small correction on the phase changes strongly the vector field.
Then we have to establish a strong convergence result using a new method: classical
energy methods fail because of the lack of regularity on approximate solutions. Here
an appropriate rewriting of the system by means of characteristics associated with the
flow allows us to understand the underlying structure and to answer both questions:
in particular we will see that the spaces which are well adapted for this type of study
are constructed on L∞(R2). In the case of incompressible dynamics, the analysis
will be therefore much more difficult since the transport is replaced by a nonlocal
pseudodifferential operator.

1.3. Main results. As long as the solution (ρε, uε) of system (1.2) is smooth,
the velocity uε satisfies the following equation of Burgers type:

∂tuε + (uε · ∇)uε +
b

ε
u⊥
ε = 0, x ∈ R2, t > 0,

uε(t = 0) = u0, x ∈ R2.

(1.3)

Using refined a priori estimates on this last equation, we can prove that for all ε > 0 it
admits a smooth solution on a uniform time T > 0. We will prove the following result.

Theorem 2. Consider a function b satisfying assumptions (H0) and (H1). Let ρ0

be a nonnegative function in W s−1,∞(R2), and let u0 be a vector field in W s,∞(R2)
(s ≥ 1). Then there exists T ∗ ∈ ]0,+∞] such that, for all T < T ∗ and all ε ≤ εT , there
is a unique (ρε, uε) ∈ L∞([0, T ],W s−1,∞(R2) ×W s,∞(R2)) solution of (1.2) (which
is nevertheless not uniformly bounded in L∞([0, T ],W s−1,∞(R2) × W s,∞(R2)) for
s > 0).

Remark 1. The proof of Theorem 2 shows actually that the supremum lifetime T ∗
ε

of the solution (ρε, uε) (corresponding to the first crossing of characteristics) converges
to T ∗∗ as ε goes to 0 with

T ∗∗ = C‖u0‖−1
L∞‖∇b‖−1

L∞ .

In this framework, it is relevant to consider the asymptotics ε → 0 on the time
interval [0, T ]. The same type of computations as used previously allows us to prove
that the velocity field behaves almost as in the constant case (with slight modifications
of the phase of oscillations).

Theorem 3. Consider a function b satisfying assumptions (H0) and (H1). Let
u0 be a vector field in W s,∞(R2) (s ≥ 1). For all T ≤ T ∗ as in Theorem 2 and all
ε ≤ εT , denote by uε the solution of (1.3) in L∞([0, T ],W s,∞(R2)). Then

uε(t, x) −
(
u0(x) cos θε(t, x) − u⊥

0 (x) sin θε(t, x)
)

converges strongly to 0 in L∞([0, T ]×R2), where the phase θε is defined by the equation

θε(t, x) =
b(x)t

ε
− tu0(x) · ∇ log b(x) sin θε(t, x)(1.4)

+ tu⊥
0 (x) · ∇ log b(x) cos θε(t, x).

Rewriting the equation on the density ρε with a transport term and a penalization
term (coming from the divergence of uε which is of order 1/ε)

∂tρε + (uε · ∇)ρε + ρε∇· uε = 0, x ∈ R2, t > 0,

ρε(t = 0) = ρ0, x ∈ R2,
(1.5)
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we can then determine the global asymptotics of the Euler system of pressureless
gases (1.2).

Theorem 4. Consider a function b satisfying assumptions (H0) and (H1). Let ρ0

be a nonnegative function in W s−1,∞(R2), and let u0 be a vector field in W s,∞(R2)
(s ≥ 1). For all T ≤ T ∗ as in Theorem 2 and all ε ≤ εT , denote by (ρε, uε) the
solution of (1.2) in L∞([0, T ],W s−1,∞(R2) ×W s,∞(R2)). Then

ρε(t, x) − ρ0(x)
(
1 + tu0 · ∇ log(x) cos θε(t, x) − tu⊥

0 · ∇ log b(x) sin θε(t, x)
)

converges strongly to 0 in L∞([0, T ] × R2), where the phase θε is defined as in equa-
tion (1.4).

Remark 2. It should be noted that assumption (H1) is not merely a technical
artifact which could be removed with some work. In fact all the uniform estimates in
this paper blow up if the field B is allowed to have a level curve where B = 0—which
could occur in many physical cases—and new mathematical difficulties arise in that
case.

Let us comment a little on the proof of those theorems and give the structure of
the paper.

It is quite clear that energy methods will not enable us to have a good control on
the asymptotics of (ρε, uε), since as soon as we want a control on derivatives of uε,
unbounded terms will appear. So the most appropriate way to study system (1.2) is
to rewrite it using the characteristics of the flow and to study those characteristics
precisely.

Section 2 is therefore devoted to rewriting system (1.2) in characteristic form, and
in the derivation of a few a priori estimates.

In order to establish the existence of a solution (ρε, uε) to system (1.2) on a
uniform time interval [0, T ], it is enough to see that the solution is well-defined (and
smooth) as long as the flow generates a diffeomorphism Xε(t, .),

dXε

dt
(t, x) = uε(t,Xε(t, x)),

and hence to prove that the characteristics cannot cross before time T . The precise
estimates on DXε leading to Theorem 2 are performed in section 3; they use in a
crucial way some results of nonstationary phase type.

The asymptotic behavior of uε(t,Xε(t, .)) and ρε(t,Xε(t, .)) is then simply ob-
tained from the explicit approximation of the characteristics Xε, using Taylor expan-
sions for the various fields. In order to establish the convergence results stated in
Theorems 3 and 4, the main difficulty lies therefore in getting a precise description of
the inverse characteristics X−1

ε (t, .), which is done in section 4.

2. Appropriate formulation of the system. As pointed out in the introduc-
tion, energy estimates do not seem to be the right angle of attack for our problem.
We shall therefore in this short section present a new formulation of system (1.2), by
means of characteristics (subsection 2.1). In that way some a priori estimates can be
deduced immediately (see subsection 2.2).

To simplify notation, from now on we shall drop the index ε in uε and simply
write u (and similarly for any other ε-dependent function).
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2.1. Trajectories associated with the flow. Let us write system (1.2) in the
following form:

dX

dt
= u(t,X), X|t=0 = x,

d

dt
(ρ(t,X)) + ρ∇ · u(t,X) = 0, ρ|t=0 = ρ0,

d

dt
(u(t,X)) +

b(X)

ε
u⊥(t,X) = 0, u|t=0 = u0.

(2.1)

As seen in Theorem 1, there is a solution to system (1.2) for a time depending on ε,
and as long as the trajectories do not intersect we can write in particular

u(t,X(t, x)) = u0(x) cos

(
φ(t, x)

ε

)
− u⊥

0 (x) sin

(
φ(t, x)

ε

)
,(2.2)

where we have defined the functions

φ(t, x) =

∫ t

0

β(s, x) ds, β(t, x)
def
= b(X(t, x))

(these functions are well-defined as long as the characteristics do not cross each other).
If u is smooth enough, then ρ is uniquely defined by the transport equation it

satisfies. So from now on we can concentrate on u (and X). As one of the aims of this
article is to prove Theorem 2 (which will be achieved in the next section), we shall
from now on call T ε the largest time before which no characteristics intersect; one of
our goals is to prove that T ε is uniformly bounded from below as ε goes to zero.

In the next subsection we are going to derive from (2.1) and (2.2) some easy a
priori estimates for times 0 ≤ t ≤ T ε, which will help us prove Theorem 2 in section 3,
and Theorems 3 and 4 in section 4.

2.2. A priori estimates. Formula (2.2) immediately enables us to deduce the
a priori estimate

‖u‖L∞([0,T ε[×R2) ≤ 2‖u0‖L∞ ,(2.3)

which implies that ∥∥∥∥dXdt
∥∥∥∥
L∞([0,T ε[×R2)

≤ 2‖u0‖L∞ .(2.4)

In particular X − x remains bounded in space for all times 0 ≤ t < T ε, and we have

∀t ∈ [0, T ε[, ‖X(t, ·) − x‖L∞(R2) ≤ 2t‖u0‖L∞(R2).(2.5)

Since β(t, x) = b(X(t, x)), we have

‖∂tβ‖L∞([0,T ε[×R2) ≤ ‖∇b‖L∞(R2)

∥∥∥∥dXdt
∥∥∥∥
L∞([0,T ε[×R2)

≤ 2‖∇b‖L∞(R2)‖u0‖L∞ ,(2.6)

as well as

∀t ∈ [0, T ε[, ∀x ∈ R2, b− ≤ β(t, x) ≤ ‖b‖L∞(R2)(2.7)
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with b− defined in (H1).
Now we are going to look for an approximation of X: integrating formula (2.2)

in time yields

X(t, x) = x + u0(x)

∫ t

0

cos

(
φ(s, x)

ε

)
ds− u⊥

0 (x)

∫ t

0

sin

(
φ(s, x)

ε

)
ds,(2.8)

recalling that φ(t, x) =
∫ t

0
b(X(s, x)) ds. The following section will be devoted to a

precise study of the trajectories X, which will enable us to infer Theorem 2.

3. Study of the trajectories. Formulation (2.1) of system (1.3) shows that
the study of the Euler system of pressureless gases with magnetic penalization comes
down to a precise analysis of the characteristics, and in particular of their invertibility.

In this section we will establish that the trajectories defined by (2.8) are invertible
on a time interval [0, T ε[ with

lim
ε→0

T ε = T ∗ > 0,

where T ∗ depends on the magnetic field b and on the initial velocity field u0. This
result is based on an asymptotic expansion of the Jacobian

J(t, x)
def
= |det(DX(t, x)) |,

which implies that

∀t ∈ [0, T ∗[, lim inf
ε→0

J(t, x) > 0.

The asymptotic expansions of X and DX (subsections 3.2 and 3.4) are obtained
using some results of nonstationary phase type and the L∞-bounds established in
subsections 3.1 and 3.3.

3.1. Bounds on X(t, ·). The first step of the analysis consists in showing that
for any point x ∈ R2, the characteristic stemming from x stays in a ball of size O(ε)
around x. This shows that the rotation has a drastic influence over the transport
by u.

We have the following proposition.
Proposition 1. Let x ∈ R2 be given, and let X(·, x) be the trajectory starting

from x at time 0, defined by (2.8). As long as it is defined, it satisfies

∀t < min(T, T ε), |X(t, x) − x| ≤ 4
ε

b−
‖u0‖L∞

(
1 + T

‖∇b‖L∞‖u0‖L∞

b−

)
·

Proof of Proposition 1. The proof is an immediate application of the nonstationary
phase theorem. As we will be using such arguments many times in the following, let
us state and prove the following lemma, which will be invoked systematically in the
following sections.

Lemma 1. Let T be a given real number, possibly depending on ε. Let F be
a function uniformly bounded in W 1,∞([0, T ], L∞(R2)), and let β be a positive func-
tion, also uniformly bounded in W 1,∞([0, T ], L∞(R2)), and bounded from below by b−.
Then for all t ∈ [0, T ] and all x ∈ R2, the following bounds hold:∣∣∣∣

∫ t

0

F (s, x) cos

(∫ s

0

β(s′, x)

ε
ds′

)
ds

∣∣∣∣
≤ ε

(
‖F (t, ·)‖L∞(R2)

b−
+ t

∥∥∥∥∂sF (s, ·)
β(s, ·)

∥∥∥∥
L∞([0,t]×R2)

)



1166 ISABELLE GALLAGHER AND LAURE SAINT-RAYMOND

and ∣∣∣∣
∫ t

0

F (s, x) sin

(∫ s

0

β(s′, x)

ε
ds′

)
ds

∣∣∣∣
≤ ε

(
‖F (t, ·)‖L∞(R2) + ‖F (0, ·)‖L∞(R2)

b−
+ t

∥∥∥∥∂sF (s, ·)
β(s, ·)

∥∥∥∥
L∞([0,t]×R2)

)
.

Proof of Lemma 1. The proof is a simple application of the nonstationary phase
theorem: an integration by parts leads to∫ t

0

F (s, x) cos

(∫ s

0

β(s′, x)

ε
ds′

)
ds = ε

F (t, x)

β(t, x)
sin

(∫ t

0

β(s, x)

ε
ds

)

− ε

∫ t

0

∂s

(
F (s, x)

β(s, x)

)
sin

(∫ s

0

β(s′, x)

ε
ds′

)
ds,

and similarly∫ t

0

F (s, x) sin

(∫ s

0

β(s′, x)

ε
ds′

)
ds = ε

F (0, x)

β(0, x)
− ε

F (t, x)

β(t, x)
cos

(∫ t

0

β(s, x)

ε
ds

)

+ ε

∫ t

0

∂s

(
F (s, x)

β(s, x)

)
cos

(∫ s

0

β(s′, x)

ε
ds′

)
ds.

The result follows immediately.
Now let us go back to the proof of Proposition 1. Recalling formula (2.8), we

simply apply Lemma 1 to the case F (t, x) = u0(x) to get

|X(t, x) − x| ≤ 4ε
‖u0‖L∞

b−
+ 2εt

∥∥∥∥u0
∂sβ(s, ·)
β2(s, ·)

∥∥∥∥
L∞([0,t]×R2)

.

Estimates (2.6) and (2.7) immediately yield Proposition 1.

3.2. Asymptotics of X(t, ·). The same type of computations based on the
nonstationary phase theorem allows us actually to obtain an explicit approximation
of the characteristic X at any order with respect to ε (in fact we will stop at order 2,
but the argument can be pushed as far as wanted if necessary).

Lemma 2. For any point x ∈ R2 and any time t ≤ min(T, T ε), the following
approximation of the trajectories defined in (2.8) holds:∣∣∣∣X(t, x) − x− ε

u0(x)

b(x)
sin

(
φ(t, x)

ε

)
+ ε

u⊥
0 (x)

b(x)

(
1 − cos

(
φ(t, x)

ε

))
+ εtv(x)

∣∣∣∣ ≤ CT ε
2,

where the drift velocity is given by

v(x) =
1

2b2(x)

(
(u⊥

0 · ∇b)u0(x) − (u0 · ∇b)u⊥
0 (x)

)
,

and CT denotes a constant depending only on T , u0, and b.
Proof of Lemma 2. Let us write the following expression for X(t, x), obtained

from (2.8): we have

X(t, x) = x + Rε(t, x),
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with

Rε(t, x)
def
= u0(x)

∫ t

0

cos

(
φ(s, x)

ε

)
ds− u⊥

0 (x)

∫ t

0

sin

(
φ(s, x)

ε

)
ds(3.1)

= Rε
1(t, x) + Rε

2(t, x).

We shall compute only the approximation for Rε
1(t, x), and we leave Rε

2(t, x) to the
reader. By an integration by parts we have

Rε
1(t, x) = ε

u0(x)

β(t, x)
sin

(
φ(t, x)

ε

)
− εu0(x)

∫ t

0

∂s

(
1

β(s, x)

)
sin

(
φ(s, x)

ε

)
ds.(3.2)

The first term is easy to approximate: we have, due to Proposition 1,∣∣∣∣ 1

β(t, x)
− 1

b(x)

∣∣∣∣ ≤ ‖∇b‖L∞

b2−
|X(t, x) − x|

≤ 4‖∇b‖L∞‖u0‖L∞

b3−

(
1 + T

‖∇b‖L∞‖u0‖L∞

b−

)(3.3)

for all t ≤ min(T, T ε) and all x ∈ R2. So β(t, x) can be replaced by b(x) in the first
term of Rε

1 in (3.2), up to a remainder εRε with ‖Rε‖L∞([0,T ]×R2) ≤ CT .
Now we need to approximate the second term. Using the fact that

∂sβ(s, x) = (u · ∇b)(s,X(s, x))

with

u(s,X(s, x)) = u0(x) cos

(
φ(s, x)

ε

)
− u⊥

0 (x) sin

(
φ(s, x)

ε

)
,

we can therefore write

−
∫ t

0

∂s

(
1

β(s, x)

)
sin

(
φ(s, x)

ε

)
ds =

∫ t

0

u0(x) · ∇b(X(s, x))

2b2(X(s, x))
sin

(
2φ(s, x)

ε

)
ds

−
∫ t

0

u⊥
0 (x) · ∇b(X(s, x))

2b2(X(s, x))

(
1 − cos

(
2φ(s, x)

ε

))
ds.(3.4)

Note that similar computations lead to the following formula, which is useful to esti-
mate Rε

2:∫ t

0

∂s

(
1

β(s, x)

)
cos

(
φ(s, x)

ε

)
ds =

∫ t

0

u⊥
0 (x) · ∇b(X(s, x))

2b2(X(s, x))
sin

(
2φ(s, x)

ε

)
ds

−
∫ t

0

u0(x) · ∇b(X(s, x))

2b2(X(s, x))

(
1 + cos

(
2φ(s, x)

ε

))
ds.(3.5)

Both formulas (3.4) and (3.5) show that new harmonics have been created by the
coupling in the equation.

Let us go back to the estimate of the right-hand side in (3.4). To estimate the
oscillating terms, we use Lemma 1 with

F1(s, x) = u0(x) · ∇b(X(s, x))

2b2(X(s, x))
and F2(s, x) = u⊥

0 (x) · ∇b(X(s, x))

2b2(X(s, x))
·
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We get

∣∣∣ ∫ t

0

F1(s, x) sin

(
2φ(s, x)

ε

)
ds
∣∣∣ ≤ 2ε‖u0‖L∞

‖∇b‖L∞

b3−

+ εt‖u0‖L∞

∥∥∥∥∂s∇b(X(s, ·))
b2(X(s, ·))

∥∥∥∥
L∞([0,t]×R2)

,

and similarly

∣∣∣ ∫ t

0

F2(s, x) cos

(
2φ(s, x)

ε

)
ds
∣∣∣ ≤ ε‖u0‖L∞

‖∇b‖L∞

b3−

+ εt‖u0‖L∞

∥∥∥∥∂s∇b(X(s, ·))
b2(X(s, ·))

∥∥∥∥
L∞([0,t]×R2)

.

By (2.4) and (2.6) we have∥∥∥∥∂s∇b(X(s, ·))
b2(X(s, ·))

∥∥∥∥
L∞([0,t]×R2)

≤ 2‖D2b‖L∞
‖u0‖L∞

b2−
+ 4‖∇b‖2

L∞
‖u0‖L∞

b3−
·

Plugging that estimate along with (3.3) into the definition of Rε
1 in (3.2), we finally

get

Rε
1(t, x) = ε

u0(x)

b(x)
sin

(∫ t

0

β(s, x)

ε
ds

)
+ε2Rε(t, x)−εu0(x)

∫ t

0

u⊥
0 (x) · ∇b(X(s, x))

2b2(X(s, x))
ds.

Since the trajectories lie in balls of size ε,

|∇b(X(τ, x)) −∇b(x)| ≤ CT ‖D2b‖L∞ε(3.6)

for all x ∈ R2 and all τ ≤ t ≤ min(T ε, T ). So we can approximate ∇b(X(s,x))
b2(X(s,x)) by ∇b(x)

b(x)

up to a remainder εRε, and we have

−εu0(x)

∫ t

0

u⊥
0 (x) · ∇b(X(s, x))

2b2(X(s, x))
ds = −εt

u⊥
0 (x) · ∇b(x)

2b2(x)
u0(x) + ε2Rε.

The estimate of Rε
2(t, x) is similar and left to the reader. This ends the proof of

Lemma 2.

3.3. A priori estimates on DX(t, ·). A necessary and sufficient condition for
X(t, ·) to be invertible is that

J(t, x)
def
= |det(DX(t, x))|

does not cancel. In order to obtain a lower bound on the time T ε (before which the
characteristics do no cross each other), we therefore need to study the behavior of the
derivatives DX(t, ·). First of all we derive a uniform L∞-bound which will allow us
to neglect some terms in the asymptotic expansion.

Lemma 3. Let x ∈ R2 be given, and let X(·, x) be the trajectory starting from x
at time 0, defined by (2.8). As long as it is defined, it satisfies

∀t < min(T, T ε), ∀x ∈ R2, ‖DX(t, x)‖ ≤ CT ,
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where CT denotes a constant depending only on b, u0, and T .
Proof of Lemma 3. Differentiating (2.8) leads to

DX(t, x) − Id = Du0(x)

∫ t

0

cos

(
φ(s, x)

ε

)
ds−Du⊥

0 (x)

∫ t

0

sin

(
φ(s, x)

ε

)
ds

−1

ε
u0(x)

∫ t

0

Dφ(s, x) sin

(
φ(s, x)

ε

)
ds− 1

ε
u⊥

0 (x)

∫ t

0

Dφ(s, x) cos

(
φ(s, x)

ε

)
ds,

with

Dφ(s, x)
def
=

∫ s

0

DX(τ, x) · ∇b(X(τ, x))dτ.

Applying the Fubini theorem to both last terms, we can set this identity in a suitable
form to get a Gronwall estimate

DX(t, x) − Id = Du0(x)

∫ t

0

cos

(
φ(s, x)

ε

)
ds−Du⊥

0 (x)

∫ t

0

sin

(
φ(s, x)

ε

)
ds

− 1

ε
u0(x)

∫ t

0

(DX(τ, x) · ∇)b(X(τ, x))

∫ t

τ

sin

(
φ(s, x)

ε

)
ds dτ

− 1

ε
u⊥

0 (x)

∫ t

0

(DX(τ, x) · ∇)b(X(τ, x))

∫ t

τ

cos

(
φ(s, x)

ε

)
ds dτ.

(3.7)

From formula (2.8) we deduce that

u0(x)

∫ t

τ

sin

(
φ(s, x)

ε

)
ds + u⊥

0 (x)

∫ t

τ

cos

(
φ(s, x)

ε

)
ds = (X(t, x) −X(τ, x))⊥.

Plugging this identity back into (3.7) leads to

DX(t, x) − Id = Du0(x)

∫ t

0

cos

(
φ(s, x)

ε

)
ds−Du⊥

0 (x)

∫ t

0

sin

(
φ(s, x)

ε

)
ds

−1

ε

∫ t

0

(X(t, x) −X(τ, x))⊥ ⊗ (DX(τ, x) · ∇)b(X(τ, x)) dτ.

(3.8)

As in the proof of Proposition 1, Lemma 1 yields the following estimate: for all
t ≤ min(T, T ε),

(3.9)∣∣∣∣Du0(x)

∫ t

0

cos

(
φ(s, x)

ε

)
ds−Du⊥

0 (x)

∫ t

0

sin

(
φ(s, x)

ε

)
ds

∣∣∣∣ ≤ CT ε‖∇u0‖L∞ ,

with

CT =
4

b−

(
1 + T

‖∇b‖L∞‖u0‖L∞

b−

)
.

From (3.8) we then deduce an inequality of Gronwall type:

‖DX(t, ·)‖L∞ ≤ 1 + CT ε‖∇u0‖L∞(3.10)

+

∫ t

0

‖DX(τ, ·)‖L∞‖∇b‖L∞

∥∥∥∥1

ε
(X(τ, x) −X(t, x))

∥∥∥∥
L∞

dτ.
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By Proposition 1,

∀t ≤ min(T, T ε),

∥∥∥∥1

ε
(X(t, ·) −X(τ, ·))

∥∥∥∥
L∞

≤ 2CT ‖u0‖L∞ ,

and hence

‖DX(t, ·)‖L∞ ≤ (1 + CT ε‖∇u0‖L∞) exp (2CT ‖∇b‖L∞‖u0‖L∞t) ,

which is the expected estimate, proving Lemma 3.

3.4. Asymptotics of DX. In view of the results established in Lemma 2, we
expect actually the derivatives ∂iX(t, x) to behave asymptotically as

λ(t, x) + µ(t, x) cos

(
φ(t, x)

ε

)
+ ν(t, x) sin

(
φ(t, x)

ε

)
,

where λ, µ, and ν denote some functions which do not depend on ε. Such asymptotics
can be justified using the same techniques as in the previous subsection: let us prove
the following lemma.

Lemma 4. Let x ∈ R2 be given, and let X(·, x) be the trajectory starting from x
at time 0, defined by (2.8). Then, for all t ≤ min(T ε, T ) and for all x ∈ R2,∥∥∥∥DX(t, x) − Id− tu0 ⊗∇ log b cos

(
φ(t, x)

ε

)
+ tu⊥

0 ⊗∇ log b sin

(
φ(t, x)

ε

)∥∥∥∥ ≤ CT ε,

where CT denotes a constant depending only on b, u0, and T .

Proof of Lemma 4. Denote by g the function defined on [0, T ] × R2 by

g(t, x)
def
= DX(t, x) − Id− tu0 ⊗∇ log b cos

(
φ(t, x)

ε

)
+ tu⊥

0 ⊗∇ log b sin

(
φ(t, x)

ε

)
·

In view of (3.10), we expect g to satisfy a Gronwall inequality of the type

‖g(t, x)‖ ≤
∫ t

0

‖g(τ, x)‖
∥∥∥∥1

ε
(X(t, ·) −X(τ, ·))

∥∥∥∥
L∞

‖∇b‖L∞dτ + CT ε(3.11)

for all t ≤ min(T ε, T ), where CT denotes a constant depending only on T , u0, and b.

Let us postpone the proof of this inequality for a while and show how it enables
us to infer Lemma 4. It is easy to see that

g(0, x) = 0.

Applying the Gronwall lemma and using Proposition 1 as in (3.10) leads to

∀t ≤ min(T ε, T ), ∀x ∈ R2, ‖g(t, x)‖ ≤ CT ε.

Now let us go back to the proof of (3.11). We first compute

A(t, x)
def
=

∫ t

0

(
1

ε
(X(t, x) −X(τ, x))

)⊥
⊗ (g(τ, x) · ∇b(X(τ, x))) dτ.(3.12)
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By Lemma 2,

1

ε
(X(t, x) −X(τ, x))⊥ =

u⊥
0

b
(x)

(
sin

(
φ(t, x)

ε

)
− sin

(
φ(τ, x)

ε

))

− u0

b
(x)

(
cos

(
φ(t, x)

ε

)
− cos

(
φ(τ, x)

ε

))
− t− τ

2b2(x)

(
(u⊥

0 · ∇b)u⊥
0 (x) + (u0 · ∇b)u0(x)

)
+ εRε(t, τ, x),

where Rε is uniformly bounded in L∞([0, T ]2 ×R2). Plugging this formula back into
the integral (3.12) leads to∫ t

0

(
1

ε
(X(t, x) −X(τ, x))

)⊥
⊗(g(τ, x) · ∇b(X(τ, x))) dτ = A1(t, x)−A2(t, x),(3.13)

with

A1(t, x)
def
=

∫ t

0

(
1

ε
(X(t, x) −X(τ, x))

)⊥
⊗ (DX(τ, x) · ∇b)(X(τ, x))dτ

and

A2(t, x)
def
=

∫ t

0

[
u⊥

0

b
(x)

(
sin

(
φ(t, x)

ε

)
− sin

(
φ(τ, x)

ε

))

− u0

b
(x)

(
cos

(
φ(t, x)

ε

)
− cos

(
φ(τ, x)

ε

))

− 1

2b2(x)
(t− τ)

(
(u⊥

0 · ∇b)u⊥
0 (x) + (u0 · ∇b)u0(x)

)
+ εRε(t, τ, x)

]

⊗
[
∇b(X(τ, x)) + (u0(x) · ∇b(X(τ, x)))∇ log b(x)τ cos

(
φ(τ, x)

ε

)

− (u⊥
0 (x) · ∇b(X(τ, x)))∇ log b(x)τ sin

(
φ(τ, x)

ε

)]
dτ.

From (3.8) and (3.9) we deduce that

A1(t, x) = Id−DX(t, x)

up to terms of order ε.
In order to estimate the second term A2(t, x), we again use a nonstationary phase

theorem. We can use (3.6) again, and as ∂sβ is uniformly bounded according to (2.6),
Lemma 1 shows that

A2(t, x) =

[
t
u⊥

0

b
(x) sin

(
φ(t, x)

ε

)
− t

u0

b
(x) cos

(
φ(t, x)

ε

)
− t2

2
v⊥(x)

]
⊗∇b(x)

+

∫ t

0

(
u⊥

0

b
(x) sin

(
φ(τ, x)

ε

))

⊗
(

(τu⊥
0 (x) · ∇b(x))∇ log b(x) sin

(
φ(τ, x)

ε

))
dτ

+

∫ t

0

(
u0

b
(x) cos

(
φ(τ, x)

ε

))

⊗
(

(τu0(x) · ∇b(x))∇ log b(x) cos

(
φ(τ, x)

ε

))
dτ + εRε(t, x).
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Using the identities

cos2 φ =
1

2
(1 + cos(2φ)), sin2 φ =

1

2
(1 − cos(2φ)),

we then obtain that

A2(t, x) =

(
t
u⊥

0

b
(x) sin

(
φ(t, x)

ε

)
− t

u0

b
(x) cos

(
φ(t, x)

ε

))
⊗∇b(x)

up to terms of order ε.
Then (3.13) can be rewritten

∫ t

0

(
1

ε
(X(t, x) −X(τ, x))

)⊥
⊗ (g(τ, x) · ∇b(X(τ, x))) dτ = −g(t, x) + εRε(t, x),

which implies immediately (3.11) and yields Lemma 4 as explained above.

3.5. Existence on a uniform time interval. As an immediate corollary of
Lemma 4, we obtain that X(t, ·) is a diffeomorphism of R2 on a uniform time interval.
Indeed, DX is invertible as long as

‖DX − Id‖L∞ < 1.

Corollary 1. Consider a function b satisfying assumptions (H0) and (H1). Let
(ρ0, u0) be, respectively, a nonnegative function of W s−1,∞(R2) and a vector field of
W s,∞(R2) (s ≥ 1). Then, for all T < ‖u0‖−1

L∞‖∇b‖−1
L∞ , there exists εT > 0 such that

system (1.2) admits a unique solution (ρε, uε) ∈ L∞([0, T ],W s−1,∞(R2)×W s,∞(R2))
for all ε ≤ εT .

Proof of Corollary 1. By Lemma 4, the trajectories defined by (2.8) are continu-
ously differentiable and satisfy, for all t ≤ T and all x ∈ R2,∥∥∥∥DX(t, x) − Id− tu0 ⊗∇ log b cos

(
φ(t, x)

ε

)
+ tu⊥

0 ⊗∇ log b sin

(
φ(t, x)

ε

)∥∥∥∥ ≤ CT ε.

This implies in particular the following estimate on the Jacobian J(t, x)
def
=

|det(DX(t, x))|:∣∣∣∣J(t, x) − 1 − tu0 · ∇ log b cos

(
φ(t, x)

ε

)
+ tu⊥

0 · ∇ log b sin

(
φ(t, x)

ε

)∣∣∣∣ ≤ CT ε.

Then for T < ‖u0‖−1
L∞‖∇b‖−1

L∞ , there exists εT such that

∀ε ≤ εT , ∀t ∈ [0, T ], sup
x∈R2

|J(t, x) − 1| < 1,

which means that X is a C1-diffeomorphism of R2.
Moreover, from formula (2.8) we can deduce by induction that X(t, .) (and conse-

quently its inverse X−1(t, ·)) is smooth, its regularity being the same as the regularity
of the initial velocity field u0. Then the vector field u given by

u(t, x) = u0(X
−1(t, x)) cos

(
φ(t,X−1(t, x))

ε

)
− u⊥

0 (X−1(t, x)) cos

(
φ(t,X−1(t, x))

ε

)
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belongs to L∞([0, T ],W s,∞(R2)), and it is easy to check that it satisfies system (1.3)
in a strong sense.

The density ρ is then obtained as the strong solution of the linear transport
equation

∂tρ + u · ∇ρ + ρ∇ · u = 0

whose coefficients belong to L∞([0, T ],W s−1,∞(R2)), with initial data in W s−1,∞(R2).
It therefore stays in L∞([0, T ],W s−1,∞(R2)). We emphasize once again that no uni-
form bound on (ρ, u) is available in L∞([0, T ],W s−1,∞(R2) ×W s,∞(R2)).

Theorem 2 is proved.
Remark 3. The supremum of the life span of the solutions corresponds to a

crossing phenomenon, to be compared with the caustic in geometrical optics. Beyond
this time, the differential system {

Ẋ = ξ,

ξ̇ = ξ ∧ b

with initial data (x, u0(x))x∈R2 still admits a unique smooth solution, but the appli-
cation (X(t, x), ξ(t, x)) → X(t, x) is no longer injective, and it cannot be lifted. The
hyperbolic system (1.3) no longer has a solution.

4. Study of the asymptotics of uε and ρε. Let T < T ∗ = ‖u0‖−1
L∞‖∇b‖−1

L∞ be
fixed. Then, for any ε ≤ εT as in Corollary 1, the solution (ρ, u) of system (1.2) with
initial data (ρ0, u0) ∈ W s−1,∞(R2)×W s,∞(R2) belongs to L∞([0, T ],W s−1,∞(R2)×
W s,∞(R2)). Then it makes sense to study their asymptotic behavior as ε → 0, and
the aim of this section is to prove Theorems 3 and 4.

Subsection 4.1 is devoted to the asymptotics of u(t,X(t, x)) and ρ(t,X(t, x)).
Subsection 4.2 consists in inverting the characteristics in order to infer Theorems 3
and 4.

4.1. Asymptotics of u(t, X) and ρ(t, X). From the characteristic formula-
tion of system (1.2) and the asymptotic expansion of X(t, ·), we immediately deduce
the asymptotic behavior of u(t,X(t, ·)) and ρ(t,X(t, ·)).

Proposition 2. Consider a function b satisfying assumptions (H0) and (H1).
Let u0 be a vector field in W s,∞(R2) (s ≥ 1). For all T < T ∗ and ε ≤ εT as in
Theorem 2, denote by u the solution of (1.3) in L∞([0, T ],W s,∞(R2)). Then

u(t,X(t, x)) −
(
u0(x) cos(φ̃ε(t, x)) − u⊥

0 (x) sin(φ̃ε(t, x))
)

converges strongly to 0 in L∞([0, T ]×R2), at speed O(ε), where the phase φ̃ε is defined
by

φ̃ε(t, x) =
b(x)t

ε
− t

(
u⊥

0 (x) · ∇
)
log b(x).(4.1)

Proof of Proposition 2. Let us first recall that

u(t,X(t, x)) = u0(x) cos

(
φ(t, x)

ε

)
− u⊥

0 (x) sin

(
φ(t, x)

ε

)
,

where the phase φ is given by

φ(t, x) =

∫ t

0

b(X(s, x))ds.
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Then in order to establish Proposition 2, we have to approximate the phase. By
Lemma 2,

b(X(t, x)) = b(x) +
εu0(x)

b(x)
sin

(
φ(t, x)

ε

)
· ∇b(x)

− εu⊥
0 (x)

b(x)

(
1 − cos

(
φ(t, x)

ε

))
· ∇b(x) + ε2Rε(t, x),

noticing that v · ∇b = 0. It follows that

u(t,X(t, x)) = u0(x) cos

(
b(x)t

ε
+

u0(x) · ∇b(x)

b(x)

∫ t

0

sin

(
φ(s, x)

ε

)
ds

− u⊥
0 (x) · ∇b(x)

b(x)

∫ t

0

(
1 − cos

(
φ(s, x)

ε

))
ds + εRε(t, x)

)

− u⊥
0 (x) sin

(
b(x)t

ε
+

u0(x) · ∇b(x)

b(x)

∫ t

0

sin

(
φ(s, x)

ε

)
ds

− u⊥
0 (x) · ∇b(x)

b(x)

∫ t

0

(
1 − cos

(
φ(s, x)

ε

))
ds + εRε(t, x)

)
.

Finally, remembering that due to Lemma 1∣∣∣∣
∫ t

0

sin

(
φ(s, x)

ε

)
ds

∣∣∣∣ +

∣∣∣∣
∫ t

0

cos

(
φ(s, x)

ε

)
ds

∣∣∣∣ ≤ εRε(t, x),

with the usual uniform bounds on Rε, this yields Proposition 2.
The asymptotic behavior of ρ is obtained in a similar way using the fact that ρ

is proportional to the Jacobian J(t, x) = |detDX(t, x)|.
Proposition 3. Consider a function b satisfying assumptions (H0) and (H1).

Let ρ0 be a nonnegative function in W s−1,∞(R2), and let u0 be a vector field in
W s,∞(R2) (s ≥ 1). For all T < T ∗ and ε ≤ εT as in Theorem 2, denote by (ρ, u) the
solution of (1.2) in L∞([0, T ],W s−1,∞(R2)) and L∞([0, T ],W s,∞(R2)), respectively.
Then

ρ(t,X(t, x)) − ρ0(x)
(
1 + tu0 · ∇ log b(x) sin(φ̃ε(t, x)) − tu⊥

0 · ∇ log b(x) cos(φ̃ε(t, x))
)

converges strongly to 0 in L∞([0, T ]×R2), where the phase φ̃ε is defined as in (4.1).
Proof of Proposition 3. As long as the solution of (1.2) is regular, the equation

governing ρ can be rewritten

d

dt
(log ρ) = ∇ · u,

where d
dt denotes as usual the derivative along the trajectories associated with the

flow. Of course, the Liouville theorem implies that the equation on the Jacobian of
the flow states

d

dt
(J) = ∇ · u.

Then, for all ε ≤ εT , all t ∈ [0, T ], and all x ∈ R2,

ρ(t,X(t, x)) = ρ0(x)J(t, x),
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since J0(t, x) = det(Id) = 1.
From Lemma 4 we then deduce that∣∣∣∣ρ(t,X(t, x)) − ρ0(x)

(
1 + tu0 · ∇ log b(x) sin

(
φ(t, x)

ε

)
− tu⊥

0 · ∇ log b(x)

(
φ(t, x)

ε

))∣∣∣∣
≤ CT ε.(4.2)

Plugging back into formula (4.2) the approximation of the phase obtained previously,

φ(t, x)

ε
= φ̃ε + εRε(t, x),(4.3)

then leads to the expected asymptotics.

4.2. Inversion of the characteristics. In this section we shall prove Theo-
rems 3 and 4. From now on T ∗ is the time given by Theorem 2, and we will call T
any time smaller than T ∗ (in the following we will also suppose ε ≤ εT as given in
Theorem 2).

Let X−1(t, x) be the point at time 0 of the trajectory reaching x at time t. By
Proposition 2, we have

u(t, x) = u0(X
−1(t, x)) cos

(
φ̃ε(t,X

−1(t, x))
)

− u⊥
0 (X−1(t, x)) sin

(
φ̃ε(t,X

−1(t, x))
)

+ εRε(t, x)

with the usual uniform bounds on Rε. That remainder function Rε(t, x) is liable to
change from line to line in this subsection.

By Proposition 1 there is a constant CT (depending on T , u0, and b), such that

∀x ∈ R2, ∀t ∈ [0, T ], |X−1(t, x) − x| ≤ CT ε,(4.4)

so we can write rather

u(t, x) = u0(x) cos
(
φ̃ε(t,X

−1(t, x))
)
− u⊥

0 (x) sin
(
φ̃ε(t,X

−1(t, x))
)

+ εRε(t, x).

By definition of φ̃ε in (4.1), we have, using again (4.4),

φ̃ε(t,X
−1(t, x)) =

b(x)t

ε
+

t

ε
(X−1(t, x) − x) · ∇b(x) − tu⊥

0 (x) · ∇ log b(x) + εRε(t, x),

and hence, defining

θ̃ε(t, x)
def
=

t

ε
(X−1(t, x) − x) · ∇b(x) − tu⊥

0 (x) · ∇ log b(x),

we have

φ̃ε(t,X
−1(t, x)) =

b(x)t

ε
+ θ̃ε(t, x) + εRε(t, x).(4.5)

Now we shall try to make θ̃ε more precise. According to Lemma 2 and the approxi-
mation for the phase derived in the previous paragraph, we have

x−X−1(t, x) = ε
u0(x)

b(x)
sin

(
φ̃ε(t,X

−1(t, x)) + εRε(t, x)
)

− ε
u⊥

0 (x)

b(x)

(
1 − cos

(
φ̃ε(t,X

−1(t, x)) + εRε(t, x)
))

− εtv(x) + ε2Rε(t, x),
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where again we have used (4.4). So we obtain, using the fact that v · ∇b = 0,

θ̃ε(t, x) = −tu0(x) · ∇ log b(x) sin
(
φ̃ε(t,X

−1(t, x)) + εRε(t, x)
)

+ tu⊥
0 (x) · ∇ log b(x) cos

(
φ̃ε(t,X

−1(t, x)) + εRε(t, x)
)

+ εRε(t, x),

which by (4.5) yields directly the result (1.4), defining θε(t, x) = θ̃ε(t, x) + b(x)t
ε ·

Theorem 3 is proved.
The proof of Theorem 4 is now immediate: we use the formula obtained in Propo-

sition 3 and replace ρε(t,X(t, x)) by ρε(t, x) using the above formulation of X−1(t, x).
The result follows.
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Abstract. A widespread phenomenon in moving microorganisms and cells is their ability to
reorient themselves depending on changes of concentrations of certain chemical signals. In this paper
we discuss kinetic models for chemosensitive movement, which also takes into account evaluations of
gradient fields of chemical stimuli which subsequently influence the motion of the respective microbi-
ological species. The basic type of model was discussed by Alt [J. Math. Biol., 9 (1980), pp. 147–177],
[J. Reine Angew. Math., 322 (1981), pp. 15–41] and by Othmer, Dunbar, and Alt [J. Math. Biol., 26
(1988), pp. 263–298]. Chalub et al. rigorously proved that, in three dimensions, these kinds of kinetic
models lead to the classical Keller–Segel model as its drift-diffusion limit when the equation for the
chemo-attractant is of elliptic type [Monatsh. Math., 142 (2004), pp. 123–141], [On the Derivation
of Drift-Diffusion Model for Chemotaxis from Kinetic Equations, ANUM preprint 14/02, Vienna
Technical University, 2002]. In [H. Hwang, K. Kang, and A. Stevens, Drift-diffusion limits of kinetic
models for chemotaxis: A generalization, Discrete Contin. Dyn. Syst. Ser. B., to appear] it was
proved that the macroscopic diffusion limit exists in both two and three dimensions also when the
equation of the chemo-attractant is of parabolic type. So far in the rigorous derivations, only the
density of the chemo-attractant was supposed to influence the motion of the chemosensitive species.
Here we show that in the macroscopic limit some types of evaluations of gradient fields of the chem-
ical stimulus result in a change of the classical parabolic Keller–Segel model for chemotaxis. Under
suitable structure conditions, global solutions for the kinetic models can be shown.

Key words. chemosensitive movement, sensing of gradient fields, nonlinear transport equations,
global solutions, drift-diffusion limit, Keller–Segel model
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1. Introduction. The starting point of our considerations is the classical chemo-
taxis model as discussed by Keller and Segel (see [14] and [15]). This system is of
advection-diffusion type and consists of two coupled parabolic equations:

∂ρ

∂t
= ∇ · (D(ρ, S)∇ρ− χ(ρ, S)ρ∇S),(1.1)

τ
∂S

∂t
= D0∆S + αρ− βS, α, β, τ ≥ 0.(1.2)

Here ρ = ρ(x, t) denotes the density of chemotactic cells and S = S(x, t) is the
density of the chemo-attractant. The cells are attracted by the chemical, and χ
denotes their chemotactic sensitivity. The first rigorous derivation of the macroscopic
chemotaxis equations from microscopic models, namely, interacting stochastic many
particle systems, was given in [21]. In [11] a survey about known results on existence
of global solutions and finite time blowup for this type of model was given.
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In [3] a kinetic model for (1.1) was discussed coupled with the Poisson equation
without decay term

−∆S = αρ.(1.3)

In [3, p. 3] the following kinetic equation for the oriented cell density f = f(x, v, t) ≥ 0
was considered:

∂f

∂t
+ v · ∇xf =

∫
V

(T [S]f ′ − T ∗[S]f)dv′,(1.4)

where x, v, and t indicate position, velocity, and time, respectively. Here the abbre-
viations f ′ = f(x, v′, t), T [S] = T [S](x, v, v′, t), and T ∗[S] = T [S](x, v′, v, t) are used.
The first term on the right-hand side of (1.4) describes the turning into direction v,
and the second term the turning away from v. The cell density ρ fulfills

ρ(x, t) =

∫
V

f(x, v, t)dv,

where V is the set of admissible velocities which is assumed to be compact.
Using stochastic models for the motion of bacteria and leukocytes, Alt derived

(1.1) from a transport equation similar to (1.4) [1, section 8], [2, section 3]. Later a
general formulation of this velocity-jump process was presented and studied in [18,
section 3]. In [10] and [19] Othmer and Hillen studied the formal diffusion limit of
a transport equation of (1.4) by moment expansions, which generalizes parts of Alt’s
earlier works [1], [2]. A hyperbolic scaling and its formal limit were discussed in [6].

Based on [19] a rigorous proof of the macroscopic limit was given in [3]. After
using diffusive scaling of time and space, the nondimensional form of (1.4) leads to
[3, p. 4]

ε2
∂fε
∂t

+ εv · ∇xfε = −Tε[Sε](fε), x ∈ R
n, v ∈ V, t > 0,(1.5)

where

Tε[Z](g) =

∫
V

(T ∗
ε [Z]g − Tε[Z]g′)dv′.

The diffusion limit ε → 0 was studied for initial conditions

fε(x, v, 0) ≡ f0(x, v), x ∈ R
n, v ∈ V,(1.6)

with (1.5) coupled to (1.3) for the chemo-attractant. In [3] it was shown that the
coupled nonlinear system (1.5), (1.6), and (1.3) resulted in Keller–Segel-type equations
for chemotaxis as its macroscopic drift-diffusion limit under suitable conditions on the
turning kernel in three dimensions (compare, e.g., [3, Theorem 5] and [4, Theorem
2]). In [3] and [4] also global solutions were proved for suitable turning kernels for
fixed ε > 0.

In [12], as an extension of [3], the authors proved that such kinetic models have a
macroscopic diffusion limit in both two and three dimensions also when the equation
of the chemo-attractant is of parabolic type, i.e., τ > 0, which is the original version
of the chemotaxis model. An independent related result was given in [5].
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In this article, we consider turning kernels depending not only on S but also on
∇S, as formally discussed, among others, in [22] and [19], i.e.,

ε2
∂fε
∂t

+ εv · ∇xfε = −Tε[Sε,∇Sε](fε), x ∈ R
n, v ∈ V, t > 0,(1.7)

with initial condition (1.6) coupled to

τ
∂Sε

∂t
= ∆Sε + αρε − βSε, τ ≥ 0, α > 0, β ≥ 0,(1.8)

where

ρε =

∫
V

fεdv.(1.9)

In what follows, for notational convenience, we write Tε[Sε] instead of Tε[Sε,∇Sε],
unless any confusion is to be expected. Here we emphasize that the conditions on the
turning kernel include also detection of spatial gradients of the chemo-attractant by
the chemotactic cells. This behavior results under certain conditions in a macroscopic
model which varies from the classical Keller–Segel system by additional higher order
terms.

Our main result is that for suitable turning kernels which take into account the
effects of gradient measurements of the chemical, global solutions exist also in two
dimensions, and thus blowup of the solutions does not happen in finite time (compare
Theorems 3.6 and 3.12 for the elliptic and parabolic cases, respectively).

The result is extended to three dimensions under some restrictions on the turning
kernels. We also show the existence of a macroscopic diffusion limit of the kinetic
model in two and three dimensions. More precisely, under similar assumptions on
the turning kernel T [S] as given in [3], we prove that the coupled nonlinear system
(1.6), (1.7), and (1.8) converges to Keller–Segel-type equations and their variants for
ε → 0 (compare Theorem 4.4). Our main tool is the potential estimate for S. In
particular, in case the chemo-attractant equation is of elliptic type, i.e., τ = 0 and
in two dimensions, log-type estimates for the chemical S are used to obtain global
existence for the kinetic model (similar techniques were used in [13, Lemma 4]).

The plan of this paper is as follows: In section 2, we introduce some notation used
and briefly review the derivation of the macroscopic equation as presented in [3] and
[12]. In section 3, we prove that the kinetic model (1.7)–(1.9) has a global solution for
“suitable” turning kernels. In section 4, we prove the existence of the diffusion limit
for a short time interval. In section 5 we give concrete examples on how the specific
dependencies of the turning kernel result in different types of macroscopic equations.

2. Preliminaries. We first introduce some notation which will be used through-
out this article and recall some of the observations presented in [3].

• By G we denote the Bessel potential, which is the fundamental solution of
the differential operator 1 − ∆ in R

n (see [20, pp. 130–132]):

G(x) =
1

4π

∫ ∞

0

e−π
|x|2
4s − s

4π s
−n+2

2
ds

s
.(2.1)

• By Γ we denote the fundamental solution of the differential operator ∂t −
∆x + β in R

n × R+:

Γ (x, t) =
1

(4πt)
n
2

exp

(
−|x|2

4t
− βt

)
.(2.2)
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• By C = C(α, β, . . . ) we denote a constant depending on the prescribed quan-
tities α, β, . . . . The domain Ω considered in this article is R

n, n = 2, 3.
To make this note self-contained, we review the formal derivation of the macroscopic
equation from the kinetic model presented in [3] (compare the details in [3, pp. 5–7]).
For simplicity we assume for a moment that τ = 1, α = 1, and β = 1 (other cases
can be formally derived in a similar way without any difficulty). Since the integral of
Tε[S](f) with respect to the velocity vanishes, we obtain the macroscopic conservation
equation

∂ρε
∂t

+ ∇ · Jε = 0,(2.3)

where Jε(x, t) = ε−1
∫
V
vfε(x, v, t)dv is the flux density. The turning kernel is assumed

to have the following asymptotic expansion: Tε[S] = T0[S]+ εT1[S]+O(ε2). Then the
turning operator can be expanded in a similar way and

Tε[S](f) =

∫
V

(T ∗
ε [S]f − Tε[S]f ′)dv′.

By asymptotic expansion of fε = f0 + εf1 + O(ε2) and Sε = S0 + εS1 + O(ε2), the
equation for the leading order terms can be obtained from (1.7):

T0[S0](f0) = 0, S0 = ρ0 ∗ Γ, ρ0 =

∫
V

f0dv.(2.4)

Comparing coefficients in (1.7) results in

v · ∇xf0 = −T0[S0](f1) − T1[S0](f0) − T0S [S0, S1](f0),

where T0S [S0, S1] is part of the turning operator T and its kernel is the Fréchet
derivative of T0 with respect to S, evaluated at S0 in the direction S1. Here, we recall
the assumptions on the leading order terms of the turning operator and two useful
lemmas presented in [3, (A0), Lemma 1, Lemma 2, pp. 6–7].

Assumption 2.1. There exists a bounded velocity distribution F (v) > 0, such
that T ∗

0 [S]F = T0[S]F ′ and∫
V

vF (v)dv = 0,

∫
V

F (v)dv = 1.

The turning rate T0[S] is bounded, and there exists a constant γ = γ[S] > 0 such
that T0[S]/F ≥ γ for all (v, v′) ∈ V × V , x ∈ R

n, and t > 0.
Lemma 2.2. Let ζ : R→R, g : V→R, and let

φS
ε [S] =

Tε[S]F ′ + T ∗
ε [S]F

2
, φA

ε [S] =
Tε[S]F ′ − T ∗

ε [S]F

2

denote, respectively, the symmetric and antisymmetric parts of Tε[S]F ′. Then∫
V

∫
V

Tε(Fg)ζ(g)dv =
1

2

∫
V

∫
V

φS
ε [S](g − g′)(ζ(g) − ζ(g′))dv′dv

+
1

2

∫
V

∫
V

φA
ε [S](g + g′)(ζ(g) − ζ(g′))dv′dv.

The same holds for Tε[S] with analogous definitions of φS
ε [S] and φA

ε [S].
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Proof. See Lemma 1 in [3] for the proof.
With g = f/F and ζ = id one obtains the following.
Lemma 2.3. Let Assumption 2.1 hold. Then the entropy equality

∫
V

T0[S](f)
f

F
dv =

1

2

∫
V

∫
V

φS
0 [S]

(
f

F
− f ′

F ′

)2

dv′dv ≥ 0

holds. For g ∈ L2(V ; dv/F ), the equation T0[S](f) = g has a unique solution f ∈
L2(V ; dv/F ) satisfying

∫
V
fdv = 0 if and only if

∫
V
gdv = 0.

Proof. See Lemma 2 in [3] for the proof.
From the entropy equality, we deduce that

f0(x, v, t) = ρ0(x, t)F (v).

Since T0S [S0, S1](f0) = 0, we obtain

T0[S](f1) = −vF · ∇ρ0 − ρ0T1[S0](F ).

The right-hand side satisfies the solvability condition from Lemma 2.3, and therefore
the solution can be written as

f1 = −κ(x, v, t) · ∇ρ0(x, t) − Θ(x, v, t)ρ0(x, t) + ρ1(x, t)F (v),

where κ = κ[S0] and Θ = Θ[S0] are the solutions of

T0[S0](κ) = vF, T0[S0](Θ) = T1[S0](F ),

and ρ1 is the macroscopic density of f1, which is a new unknown. By passing to the
limit ε→0 in (2.3), the convection-diffusion equation reads

∂tρ0 −∇ · (D[S0]∇ρ0 − ρ0H[S0]) = 0,

where

D[S0](x, t) =

∫
V

v ⊗ κ[S0](x, v, t)dv, H[S0] = −
∫
V

vΘ[S0](x, v, t)dv,

together with

∂S0

∂t
= ∆S0 + ρ0 − S0.

The specific form of D[S0] and H[S0] will depend on the choice of the turning kernels
and will be discussed later.

3. Global solution of the kinetic model. In this section we show that solu-
tions of the coupled system (1.6)–(1.9) in two and three dimensions do not blow up in
finite time for fixed ε > 0 if the turning kernel satisfies a certain structure condition.
Without loss of generality we set ε = 1 in (1.6) and α = 1 in (1.8). We consider two
problems, namely, the elliptic and the parabolic equations for the chemo-attractant.

We start with an inequality of Gronwall type in the next lemma. Since it is of
the nonstandard form among the Gronwall-type inequalities, we present its proof for
clarity, although the proof is similar to that of the usual one.
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Lemma 3.1. Let a and b be positive constants. Let y(t) and y′(t) be positive and
differentiable in t and satisfy

y′ ≤ ay ln y′ + by.(3.1)

Then

y(t) ≤
[
y(0) exp

(
2b

∫ t

0

e−2asds

)]exp(2at)

.

Proof. We subtract and add ln y from the right-hand side of (3.1) to get y′ ≤
ay ln y + ay ln (ln y)

′
+ by. Dividing both sides of the above inequality by y, we get

(ln y)
′ ≤ a ln y + a ln (ln y)

′
+ b. Set z = ln y to get z′ ≤ az + a ln z′ + b. Since we may

assume ln z′ ≤ (1/2a)z′ (otherwise, ln z′ ≤ C and the above inequality reduces to a
standard Gronwall inequality), we have z′ ≤ az+ 1

2z
′ + b. We get z′ ≤ 2az+2b, where

z = ln y. Using a standard Gronwall argument, we deduce the lemma.
The structure condition on the turning kernel T [S] is assumed to be as follows.
Assumption 3.2 (structure condition). There exist nonnegative constants Ci ≥ 0,

i = 1, 2, . . . , 5, such that for all x ∈ R
n, n = 2, 3, v, v′ ∈ V , t ∈ R

+, and S ∈
W 1,∞(Rn), the turning kernel T satisfies

0 ≤ Tε[S](x, v, v′, t) ≤ C1 + C2S(x + εv, t) + C3S(x− εv′, t)

+C4|∇S(x + εv, t)| + C5|∇S(x− εv′, t)|,(3.2)

|∇Tε[S](x, v, v′, t)| ≤ C2|∇S(x + εv, t)| + C3|∇S(x− εv′, t)|
+C4|∇2S(x + εv, t)| + C5|∇2S(x− εv′, t)|.(3.3)

This means that the cells can measure the concentration and the spatial gradient
of the chemo-attractant up to a distance ε from their position, and this may affect
the movement of the cells.

Remark 3.3. The turning kernel, as given above, describes the turning from
direction v′ into direction v. This means that the actual or “old” direction is evaluated
by checking backwards, whereas the evaluation of possible new directions are checked
forwards (e.g., by lamelliopodial protrusion). Checking the possible new directions
backwards if compared to the actual direction of motion is also possible and could have
been taken into account in the following considerations. Nevertheless, it is important
to note that a forward evaluation of the actual direction v′ causes a technical problem
in our approach so far.

We first consider the case that the chemo-attractant equation is of elliptic type.

3.1. Elliptic case: τ = 0. In this part, we consider the elliptic equation for
the chemo-attractant S for two cases: β > 0 and β = 0. When β > 0 we may set
β = 1 without loss of generality. So

−∆S = ρ− βS, β ∈ {0, 1}, n = 2, 3.(3.4)

For n = 2 we need some preliminaries and start with elementary properties of the
Bessel potential G in two dimensions.

Lemma 3.4. Let G be the Bessel potential in R
2. Then G ∈ Lp(R2) for any p

with 1 ≤ p < ∞ and ∇G ∈ Lp(R2) for any p with 1 ≤ p < 2. Furthermore,

‖G‖Lp(R2) ≤ Cp, 1 ≤ p < ∞,(3.5)

‖∇G‖Lp(R2) ≤ C
2p

2 − p
, 1 ≤ p < 2.(3.6)
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Proof. For n = 2, the Bessel potential is (cf. (2.1))

G(x) =
1

4π

∫ ∞

0

e−π
|x|2
4s − s

4π
ds

s
.

Using a change of variables, we have

‖G‖Lp(R2) ≤ C

∫ ∞

0

e−s

s

∥∥e− |x|2
4s

∥∥
Lp(R2)

ds ≤ C

∫ ∞

0

e−ss−1+1/pds ≤ Cp.

We thus obtain (3.5). In a similar way we get

‖∇G‖pLp(R2) ≤ C

∫ ∞

0

e−s

s2

∥∥xe− |x|2
4s

∥∥
Lp(R2)

ds ≤ C

∫ ∞

0

e−ss−
3
2+ 1

p ds ≤ C
2p

2 − p
,

as long as 1 ≤ p < 2. Therefore we deduce (3.6).
The next lemma shows various estimates for the chemo-attractant S.
Lemma 3.5. Let S be a solution of (3.4) in R

2. Then S satisfies the following
estimates:

‖S(t)‖Lp(R2) + ‖∇S(t)‖Lq(R2) ≤ C(p, q)‖ρ0‖L1(R2), 1 ≤ p < ∞, 1 ≤ q < 2,(3.7)

‖∇S(t)‖L2(R2) ≤ C‖ρ0‖L1(R2)

[
ln
(
‖ρ(t)‖2

L2(R2) + 1
)]1/2

.(3.8)

Proof. The first estimate (3.7) is an easy consequence of mass conservation,
Lemma 3.4, and Young’s inequality (see, e.g., [7, pp. 624–625]). Thus it suffices to
show the estimate (3.8).

From (3.4) we obtain the Fourier transform Ŝ(ξ) = ρ̂(ξ)/(|ξ|2 + 1), and thus

‖∇S(t)‖L2(R2) = ‖ξŜ(t)‖L2(R2) =

∥∥∥∥ |ξ|ρ̂(t)
|ξ|2 + 1

∥∥∥∥
L2(R2)

,

where Plancherel’s equality is used. The above integral can be estimated by splitting
R

2 of the ξ-space into two parts:∫
R2

|ξρ̂(t)|2
(|ξ|2 + 1)2

dξ =

∫
|ξ|<R

+ · · · +
∫
|ξ|>R

+ · · · = I1 + I2,

where R > 0 will be chosen later. Using Hölder’s inequality and Plancherel’s equality
we have

I1 ≤ ‖ρ̂(t)‖2
L∞(R2)

∫
|ξ|<R

|ξ|2
(|ξ|2 + 1)2

dξ ≤ C‖ρ(t)‖2
L1(R2) ln(R2 + 1),

I2 ≤
∥∥∥∥ |ξ|
|ξ|2 + 1

∥∥∥∥
2

L∞(|ξ|>R)

‖ρ̂(t)‖2
L2(R2) ≤ CR−2‖ρ(t)‖2

L2(R2).

Therefore, by choosing R = ‖ρ(t)‖L2(R2), we obtain

‖∇S(t)‖L2(R2) ≤ C‖ρ(t)‖L1(R2){ln(R2 + 1)}1/2 + CR−1‖ρ(t)‖L2(R2)

≤ C
[
1 + ‖ρ(t)‖L1(R2)

{
ln
(
‖ρ(t)‖2

L2(R2) + 1
)}1/2

]
.

Since ‖ρ‖L1(R2) = ‖f0‖L1(R2×V ), we deduce (3.8) and our lemma.
The next theorem shows global existence of solutions for system (1.6)–(1.9) with

τ = 0, namely, blowup does not happen in finite time.
Theorem 3.6. Suppose the chemo-attractant equation is of elliptic type (τ = 0).

Assume that f0,∇f0 ∈ (L1 ∩ L∞)(Rn × V ), with n = 2, 3.
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1. Case n = 2, β > 0: Let Assumption 3.2 hold. Then there exist global solutions
f,∇f ∈ L∞

loc((0,∞);L1 ∩ L∞(R2 × V )) and S ∈ L∞
loc((0,∞);W 1,p(R2)) for all 1 ≤

p ≤ +∞ of the system (1.6)–(1.9) with ε > 0 fixed but arbitrary.
2. Case n = 2, β = 0: Let Assumption 3.2 hold with C2 = C3 = C5 = 0.

Then there exist global solutions f,∇f ∈ L∞
loc((0,∞);L1 ∩ L∞(R2 × V )) and ∇S ∈

L∞
loc((0,∞);Lp(R2)) for all 2 < p ≤ ∞ of the system (1.6)–(1.9) with ε > 0 fixed but

arbitrary.
3. Case n = 3, β > 0: Let Assumption 3.2 hold with C3 = C5 = 0. Then there

exist global solutions f,∇f ∈ L∞
loc((0,∞);L1 ∩ L∞(R3 × V )) and S ∈ L∞

loc((0,∞);
W 1,p(R3)) for all 1 ≤ p ≤ +∞ of the system (1.6)–(1.9) with ε > 0 fixed but arbitrary.

4. Case n = 3, β = 0: Let Assumption 3.2 hold with C3 = C5 = 0. Then there
exist global solutions f,∇f ∈ L∞

loc((0,∞);L1 ∩ L∞(R3 × V )) and S ∈ L∞
loc((0,∞);

Lp(R3)) for any 3 < p ≤ ∞ and ∇S ∈ L∞
loc((0,∞);Lp(R3)) for any 3/2 < p ≤ ∞ of

the system (1.6)–(1.9) with ε > 0 fixed but arbitrary.
Proof. (a) We first consider the case n = 2 and β > 0. Without loss of generality,

we assume ε = 1. Mass is conserved for ρ, and thus ‖ρ(·, t)‖L1(R2) = ‖f0‖L1(R2×V ).

∂tf(x, v, t) + v · ∇xf(x, v, t) =

∫
V

T [S](x, v, v′, t)f(x, v′, t)dv′

−
∫
V

T [S](x, v′, v, t)f(x, v, t)dv′.

Using Assumption 3.2, we get

f(x, v, t) ≤ f0(x− vt, v) + C

∫ t

0

ρ(x− vs, t− s)ds + Cf1(x, v, t) + Cf2(x, v, t),

where f1 and f2 satisfy

∂tf1(x, v, t) + v · ∇xf1(x, v, t) =

∫
V

[S(x + v, t) + |∇S(x + v, t)|]f(x, v′, t)dv′,

∂tf2(x, v, t) + v · ∇xf2(x, v, t) =

∫
V

[S(x− v′, t) + |∇S(x− v′, t)|]f(x, v′, t)dv′,

with initial conditions fi(x, v, 0) = 0 for i = 1, 2. We first consider f1. One can easily
see that

f1(x, v, t) =

∫ t

0

[S(x− vs + v, t− s) + |∇S(x− vs + v, t− s)|]ρ(x− vs, t− s)ds.

After simple calculations, we obtain the following estimates:

‖f1(·, ·, t)‖Lp(R2×V ) ≤ C sup
0≤s≤t

‖S(·, s)‖W 1,p(R2)

∫ t

0

‖ρ(·, t− s)‖Lp(R2)ds.

For the term f2, we have

f2(x, v, t) =

∫ t

0

∫
V

[S(x− vs− v′, t− s)+|∇S(x− vs− v′, t− s)|f(x− vs, v′, t− s)dv′ds.

Applying Young’s inequality, we get

‖(S(·, t− s) + |∇S(·, t− s)|) ∗ f(x− vs, ·, t− s)‖L∞(V )

≤ sup
0<s<t

‖S(·, s)‖W 1,p(R2)‖f(x− vs, ·, t− s)‖Lp′ (V ),
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where p and p′ are conjugate exponents. If p ≥ 2, then p′ ≤ p, and so we have, by
interpolation between p and 1,

‖f(x− vs, ·, t− s)‖Lp′ (V ) ≤ C(V )‖f(x− vs, ·, t− s)‖Lp(V ).

Hence,

‖f2(·, ·, t)‖Lp(R2×V ) ≤ sup
0<s<t

‖S(·, s)‖W 1,p(R2)

∫ t

0

‖f(·, ·, t− s)‖Lp(R2×V )ds.

Therefore, summing up the estimates above, we obtain for p ≥ 2

‖f(·, ·, t)‖Lp(R2×V ) ≤ ‖f0(·, ·)‖Lp(R2×V )

+C

(
1 + sup

0≤s≤t
‖S(·, s)‖W 1,p(R2)

)∫ t

0

‖f(·, ·, s)‖Lp(R2×V ).(3.9)

By Lemma 3.5, we have for p = 2

‖f(·, ·, t)‖L2(R2×V )≤‖f0(·, ·)‖L2(R2×V )

+C

(
1+ sup

0≤s≤t

[
ln
(
‖f‖2

L2(R2×V )+1
)]1/2)∫ t

0

‖f(·, ·, s)‖L2(R2×V ).

Then, applying Gronwall’s inequality as in Lemma 3.1, we obtain f ∈ L2(R2 × V ).
Now, using bootstrap arguments we obtain the L∞-estimate by applying repeat-
edly Lemma 3.4, Young’s inequality, and Gronwall’s inequality. Next we show L∞-
estimates for the derivatives of f . For convenience let j = 1, 2 be arbitrary but fixed,
and we denote by f̃ and T̃ [S] the partial derivatives ∂xjf and ∂xj

T [S], respectively.

∂tf̃(x, v, t) + v · ∇xf̃(x, v, t) =

∫
V

T̃ [S](x, v, v′, t)f(x, v′, t)dv′

+

∫
V

T [S](x, v, v′, t)f̃(x, v′, t)dv′

−
∫
V

T̃ [S](x, v′, v, t)f(x, v, t)dv′

−
∫
V

T [S](x, v′, v, t)f̃(x, v, t)dv′.

Then, in the same manner as before, we obtain

f̃(x, v, t) ≤ f̃0(x− vt, v) + Cf̃1(x, v, t) + Cf̃2(x, v, t) + Cf̃3(x, v, t) + Cf̃4(x, v, t),

where

f̃1(x, v, t) =

∫ t

0

∫
V

T̃ [S](x− vs, v, v′, t− s)f(x− vs, v′, t− s)dv′ds,

f̃2(x, v, t) =

∫ t

0

∫
V

T [S](x− vs, v, v′, t− s)f̃(x− vs, v′, t− s)dv′ds,

f̃3(x, v, t) = −
∫ t

0

∫
V

T̃ [S](x− vs, v′, v, t− s)f(x− vs, v, t− s)dv′ds,

f̃4(x, v, t) = −
∫ t

0

∫
V

T [S](x− vs, v′, v, t− s)f̃(x− vs, v, t− s)dv′ds.
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We consider first f̃1(x, v, t). Here we use the fact that the L∞- and Lp-norms of f ,
depending on t, are bounded, which was shown above. Therefore we have

|f̃1(x, v, t)| ≤ sup
0<s<t

‖f(·, s)‖L∞(R2×V )

∫ t

0

∫
V

|T̃ [S](x− vs, v, v′, t− s)|dv′ds.

Using Assumption 3.2, one can easily see

‖f̃1(·, ·, t)‖Lp(R2×V ) ≤ C sup
0<s<t

‖f(·, s)‖L∞(R2×V ) sup
0<s<t

‖S(·, s)‖W 2,p(R2)

≤ C sup
0<s<t

‖f(·, s)‖L∞(R2×V ) sup
0<s<t

‖ρ(·, s)‖Lp(R2) ≤ C = C(t, |V |),

where we used a standard estimate for the chemo-attractant equation. Since f̃3 has
the same structure as f̃1, f̃3 satisfies the estimates above. On the other hand, f̃2 is
estimated, due to Assumption 3.2, as follows:

|f̃2(x, v, t)| ≤ sup
0<s<t

‖S(·, s)‖W 1,∞(R2)

∫ t

0

∫
V

f̃(x− vs, v′, t− s)dv′ds.

Again, due to a standard estimate for the chemo-attractant equation, we get

|f̃2(x, v, t)| ≤ sup
0<s<t

‖f̃‖Lq(R2)

∫ t

0

∫
V

f̃(x− vs, v′, t− s)dv′ds,

where q is sufficiently large (i.e., q > 2). Integration over R
2 × V yields

‖f̃2(·, ·, t)‖Lp(R2×V ) ≤ C

∫ t

0

‖f̃(·, ·, t− s)‖Lp(R2)ds,

where we again used the boundedness of the Lp-norm of f and C = C(|V |, t). f̃4 can
be treated in the same manner, so we omit the details. To sum up, we obtain

‖∇f(·, ·, t)‖Lp(R2×V ) ≤ C(|V |, t) + C(|V |, t)
∫ t

0

‖∇f(·, ·, t− s)‖Lp(R2×V )ds.

Gronwall’s inequality justifies our claim. Repeating this process for higher regularity
of f and S, we can easily see that this estimate is valid also in case p = ∞. This
completes the proof of the case β > 0.

(b) Next we consider the case n = 2, β = 0. Again, for simplicity, we assume
ε = 1. We first decompose ∇S into two parts,

∇S = ∇SL + ∇SS = ρ ∗
(
− x

2π|x|2 I|x|≥1

)
+ ρ ∗

(
− x

2π|x|2 I|x|≤1

)
,

where IA denotes the characteristic function of a set A. By mass conservation and
Young’s inequality, we have

‖∇SL(t)‖L∞(R2) ≤ 1

2π
‖f0‖L1(R2×V ).

Hence the estimate reduces to considering ∇SS only, and we may replace ∇S by
∇SS in the assumption on the turning kernel. Following similar procedures to those
described in the case β > 0, we obtain for p ≥ 1

f(x, v, t) ≤ f0(x− vt, v) + C

∫ t

0

ρ(x− vs, t− s)ds + Cf1(x, v, t),
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where

f1(x, v, t) =

∫ t

0

|∇SS(x− vs + v, t− s)|ρ(x− vs, t− s)ds.

Simple calculations show

‖f1(·, ·, t)‖Lp(R2×V ) ≤ C sup
0≤s≤t

‖∇SS(·, s)‖Lp(R2)

∫ t

0

‖ρ(·, t− s)‖Lp(R2)ds.

To sum up, we obtain

‖f(·, ·, t)‖Lp(R2×V ) ≤ C + C

(
1 + sup

0≤s≤t
‖∇SS(·, s)‖Lp(R2)

)

×
∫ t

0

‖f(·, ·, t− s)‖Lp(R2×V )ds.(3.10)

Here we note that the above a priori estimate (3.10) holds for all p ≥ 1. First we
choose a specific p with 1 < p < 2, which ensures, due to Young’s inequality, that

‖∇SS(·, t)‖Lp(R2) ≤ C‖f0‖L1(R2×V ).

Then by Gronwall’s inequality we get a bound, globally in time, for f in Lp(R2) for
such chosen p. By bootstrap arguments, we obtain f ∈ L∞

loc([0,∞);L∞(R2 × V )).
By similar procedures to those given in the proof of Theorem 3.6, an L∞-estimate

for ∇f can be obtained. ∇S ∈ L∞((0,∞);Lp(R2)), 2 < p ≤ ∞, is due to the Hardy–
Littlewood–Sobolev theorem (see [20, pp. 119–120]). Since this is also verified by
embedding arguments for general elliptic equations, we skip the details.

Remark 3.7. Although similar results, in the theorem above, are expected for
nonzero C2, C3, C5 also in case β = 0, there are some technical difficulties in prov-
ing global existence when the chemo-attractant equation is of elliptic type. Indeed,
the chemo-attractant equation becomes the Poisson equation without decay term
−∆S = ρ, and thus S has the Newtonian potential representation, i.e., S = Γ ∗ ρ,
where Γ(x) = 1/2π log |x|. Due to the behavior of Γ at infinity, we cannot, in general,
control S in terms of ρ. (We do not have these kind of estimates in Lemma 3.5 if
β = 0.) Thus we leave the global existence as an open question for nonzero C2, C3,
and C5 in case β = 0 and τ = 0.

(c) The three-dimensional case: In this situation, unlike the two-dimensional case
in Theorem 3.6, it is not necessary to distinguish proofs for β = 0 and β �= 0. We
briefly explain why C3, C5 are assumed to be zero in three dimensions. Indeed, as
seen in the previous calculations, we end up with the following estimate:

‖f(·, ·, t)‖Lp(R3×V ) ≤ C + C

(
1 + sup

0≤s≤t
‖SS(·, s)‖W 1,p(R3)

)

×
∫ t

0

‖f(·, ·, t− s)‖Lp(R3×V )ds.(3.11)

On the other hand, in three dimensions, due to behavior of the potential, we have

‖SS(·, s)‖W 1,p(R3) ≤ C‖ρ0‖L1(R3) for 1 ≤ p <
3

2
.(3.12)
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However, in case C3 or C5 are nonzero, one can easily show that estimate (3.11) is
still valid provided that p ≥ 2 (compare the estimates for f2 and f4 before), but this
does not enable us to use bootstrap arguments to get higher regularity for f because
of (3.12). Therefore we assume C3 = C5 = 0. With this assumption the proof for the
case n = 3 is similar to the case n = 2.

Remark 3.8. It is worth mentioning that Theorem 3.6 also holds in case n = 3
when the turning kernel satisfies Assumption 3.2 with C2 = C4 = 0 instead of C3 =
C5 = 0, namely,

0 ≤ T [S](x, v, v′, t) ≤ C (1 + S(x− εv′, t) + |∇S(x− εv′, t)|) ,
|∇T [S](x, v, v′, t)| ≤ C(|∇S(x− εv′, t)| + |∇2S(x− εv′, t)|).

This can be seen by changing the roles of p and p′ in the estimate of f2 and by
following a similar procedure to the one given for the proof of Theorem 3.6.

We do not know if the theorem above is also valid if the turning kernel fulfills the
structure conditions (3.2) and (3.3) as in the two-dimensional case.

3.2. Parabolic case: τ > 0. In this part, the parabolic equation for the chemo-
attractant in (1.8) is considered. From now on we let τ = 1 without loss of generality
and, for simplicity, we set here α = 1. Then (1.8) for S reads

∂tS − ∆S = ρ− βS, S(x, 0) = S0(x), β ≥ 0.(3.13)

To make our arguments simpler, from now on we assume S0 = 0 (compare Remark 3.11
in the following for the case S0 �= 0).

In the next lemma we recall some basic properties of Γ in two dimensions.
Lemma 3.9. Let Γ be the fundamental solution for the operator ∂t − ∆x + β in

R
2. Then Γ ∈ Lp(R2) for any p with 1 ≤ p < ∞, and ∇Γ ∈ Lp(R2) for any q with

1 ≤ p < 2, satisfying∫ t

0

‖Γ(·, s)‖Lp(R2)ds ≤ C(β)p, 1 ≤ p < ∞,∫ t

0

‖∇Γ(·, s)‖Lp(R2)ds ≤ C(β)
2p

2 − p
, 1 ≤ p < 2.

Proof. The proof is similar to that of Lemma 3.4, so we omit details.
In the next lemma, we show Lp- and L2-estimates for S and ∇S, respectively.
Lemma 3.10. Let S be a solution of (3.13) in R

2 and S0 = 0. Then S satisfies
the estimates

‖S(t)‖Lp(R2) + ‖∇S(t)‖Lq(R2) ≤ C(β, p, q)‖ρ0‖L1(R2),(3.14)

where 1 ≤ p < ∞, 1 ≤ q < 2, and

‖∇S(t)‖2
L2(R2) ≤ C

(
1 + ‖ρ0‖L1(R2)

(
1 + (ln t)+ + sup

0≤τ≤t

∣∣ ln ‖ρ(τ)‖2
L2(R2)

∣∣)) ,

(3.15)

where (f)+ indicates the positive part of f .
Proof. By Duhamel’s principle and using the fundamental solution Γ in (2.2), we

have

S(x, t) =

∫ t

0

Γ(·, s) ∗ ρ(·, t− s)ds.(3.16)
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By using Lemma 3.9, mass conservation, and Young’s inequality, we easily get (3.14).
To estimate ‖∇S‖L2(R2), we take the Fourier transform of (3.16) and use Plancherel’s
equality to get

‖∇S(t)‖L2(R2) = ‖ξŜ(t)‖L2(R2)≤
∫ t

0

‖|ξ|Γ̂(·, s)ρ̂(·, t− s)‖L2(R2)ds =

∫ r

0

+ · · · +
∫ t

r

+ · · · ,

where r > 0 will be chosen appropriately later. Note that the Fourier transform of
Γ is Γ̂(ξ, s) = exp(−s(4ξ2 + β)). For 0 < s < r, due to the Hölder’s inequality and
Plancherel’s equality, we have∫ r

0

· · · ≤
∫ r

0

‖|ξ| exp(−s(4ξ2 + β))‖L∞(R2)‖ρ̂(s)‖L2(R2)ds

≤ C sup
0≤s≤t

‖ρ‖L2(R2)

∫ r

0

s−1/2ds ≤ Cr1/2 sup
0≤s≤t

‖ρ‖L2(R2).

For r < s < t, due to mass conservation and Hölder’s inequality, now applied in the
opposite way, we have∫ t

r

· · · ≤
∫ t

r

‖|ξ| exp(−s(4ξ2 + β))‖L2(R2)‖ρ̂(s)‖L∞(R2)ds

≤ C‖ρ0‖L1(R2)

∫ t

r

1

s
ds ≤ C‖ρ0‖L1(R2)| ln t− ln r|,

where we used ‖ρ̂‖L∞(R2) ≤ ‖ρ‖L1(R2). Therefore we obtain

‖∇S(t)‖L2(R2) ≤ C

(
r1/2 sup

0≤s≤t
‖ρ‖L2(R2) + ‖ρ0‖L1(R2)| ln t− ln r|

)
.

By choosing r = min{(sup0≤s≤t ‖ρ‖L2(R2))
−2, t} in the above inequality, we deduce

our lemma.
Remark 3.11. For the case S0 �= 0, which is assumed to be sufficiently smooth,

one has

S(x, t) =

∫ t

0

Γ(·, s) ∗ ρ(·, t− s)ds +

∫
R2

Γ(x− y, t)S0(y)dy.

This gives the following variants of the estimates in the above lemma:

‖S(t)‖Lp(R2) + ‖∇S(t)‖Lq(R2) ≤ C
(
‖S0‖Lp(R2) + ‖∇S0‖Lq(R2) + ‖ρ0‖L1(R2)

)
,

where 1 ≤ p < ∞, 1 ≤ q < 2 and

‖∇S(t)‖2
L2(R2) ≤ C

(
1 + ‖∇S0‖L2(R2)

+ ‖ρ0‖L1(R2)

(
1 + (ln t)+ + sup

0≤τ≤t

∣∣ ln (
‖ρ(τ)‖2

L2(R2)

)∣∣)) .

Since computations are straightforward, we omit the details.
As in the previous elliptic case, we can establish global existence for the system

(1.6)–(1.9) with τ = 1. To be more precise, once we have the essential estimate (3.15)
for ‖∇S‖L2(R2), its proof is more or less the same as that for the elliptic case with
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τ = 0. Regularity of S is due to standard theory of general parabolic equations. For
dimension three, under the weaker assumptions of the turning kernel (Assumption 3.2
with C3 = C5 = 0) than those in the elliptic case, we can also show global existence
of solutions. Since the arguments are straightforward if compared to the elliptic case,
we just state the results and skip its proof.

Theorem 3.12. Suppose the chemo-attractant equation is of parabolic type. As-
sume that f0,∇f0 ∈ (L1 ∩ L∞)(Rn × V ).

1. (Case n = 2.) Let β ≥ 0 and Assumption 3.2 hold. Then there exist global
solutions f,∇f ∈ L∞

loc((0,∞); (L1 ∩ L∞)(R2 × V )) and S,∇S ∈ L∞
loc((0,∞);Lp(R2))

for all 1 ≤ p ≤ +∞ of system (1.6)–(1.9).
2. (Case n = 3.) Let β ≥ 0 and Assumption 3.2 with C3 = C5 = 0. Then

there exist global solutions f,∇f ∈ L∞
loc((0,∞); (L1 ∩ L∞)(R3 × V )) and S,∇S ∈

L∞
loc((0,∞);Lp(R3)) for all 1 ≤ p ≤ +∞ of system (1.6)–(1.9).

4. Diffusion limits of the kinetic model. In this section, the diffusion limit
for kinetic models of type (1.6)–(1.9) is presented. First, in a lemma, we review
estimates for S which satisfies an equation of elliptic type, i.e.,

−∆S = ρ− βS, β ≥ 0, in R
n, n = 2, 3.

We use standard arguments, which are known as potential theory. Proofs are straight-
forward (compare, e.g., [9, Chapters 2 and 8] and [20, Chapter V] for the two-
dimensional case, and [16, Chapter 4] and [17, Chapters 4 and 6] for the three-
dimensional case).

Lemma 4.1. Let I = [0, T ) ⊂ R and 0 < T < ∞. Suppose ρ ∈ L∞(I; (W 1,1(Rn)∩
W 1,q(Rn))), where q > n. Let S satisfy the chemo-attractant equation of either elliptic
or parabolic type with β ≥ 0.

(i) In the case either n = 2, β > 0 or n = 3, β ≥ 0, and S fullfils the chemo-
attractant equation of either elliptic or parabolic type,

S ∈ L∞(I;W 2,p(Rn)) ∩ L∞(I; C2+α(Rn)), 1 ≤ p < ∞, 0 < α ≤ q − n

q
,

and S satisfies the estimate

‖S‖L∞(I;W 2,p(Rn)) + ‖S‖L∞(I;C2+α(Rn)) ≤ C
(
‖ρ‖L∞(I;W 1,1(Rn)) + ‖ρ‖L∞(I;W 1,q(Rn))

)
.

(ii) The result of (i) is true also for n = 2, β = 0, when S fullfils the chemo-
attractant equation of parabolic type.

(iii) In the case n = 2 and β = 0 and S fullfils the chemo-attractant equation of
elliptic type,

∇S ∈ L∞(I;W 1,p(R2)) ∩ L∞(I; C1+α(R2)), 1 ≤ p < ∞, 0 < α ≤ q − 2

q
,

and S satisfies the estimate

‖∇S‖L∞(I;W 1,p(R2)) + ‖∇S‖L∞(I;C1+α(R2)) ≤ C
(
‖ρ‖L∞(I;W 1,1(R2)) + ‖ρ‖L∞(I;W 1,q(R2))

)
.

As in [3] we need similar assumptions on φS
ε [S] and φA

ε [S], which are the symmetric
and antisymmetric parts of Tε[S] (see Lemma 2.2).
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Assumption 4.2. There exist γ > 0 and a nondecreasing function Λ ∈ L∞
loc, such

that

φS
ε [S] ≥ γ

(
1 − εΛ

(
‖∇S‖W 1,∞(Rn)

))
FF ′,∫

V

φA
ε [S]2

FφS
ε [S]

dv′ ≤ ε2Λ
(
‖∇S‖W 1,∞(Rn)

)
,

where F ∈ L∞(V ) is a positive velocity distribution satisfying Assumption 2.1.
Theorem 4.3. Let Assumptions 2.1 and 4.2 hold and let q > n with n = 2, 3.

Suppose that the equation for the chemo-attractant S is either of elliptic (τ = 0) or
parabolic type (τ �= 0). Let one of following conditions hold:

(i) If τ = 0, n = 2, β > 0 or if τ > 0, n = 2, β ≥ 0, the turning kernel satisfies
Assumption 3.2.

(ii) If τ = 0, n = 2, β = 0, the turning kernel satisfies Assumption 3.2 with
C2 = C3 = C5 = 0.

(iii) If τ ≥ 0, n = 3, β ≥ 0, the turning kernel satisfies Assumption 3.2 with
C3 = C5 = 0.
Assume further that

f0 ∈ Υq ≡ W 1,1(Rn × V ) ∩W 1,q

(
R

n × V ;
dxdv

F q−1

)
.

Then there exists t∗ > 0, independent of ε, such that the solutions fε, Sε satisfy

fε ∈ L∞((0, t∗); Υq),

∇Sε ∈ L∞((0, t∗);W 1,p(Rn) ∩ C1+α(Rn)), 1 ≤ p < ∞, α =
q − 2

q

if τ = 0, n = 2, β = 0.

Sε ∈ L∞((0, t∗);W 2,p(Rn) ∩ C2+α(Rn)), 1 ≤ p < ∞, α =
q − n

q
in all other cases,

rε =
fε − ρεF

ε
∈ L2

(
(0, t∗); Rn × V :

dxdvdt

F

)
.(4.1)

Proof. This can be shown by following the same procedure as that given in the
proof of Theorem 4 in [3], and therefore we present only a brief sketch of this proof.
Simple calculations show

d

dt

∫
Rn

∫
V

fq
ε

F q−1
dvdx ≤ CΛ

(
‖∇S‖W 1,∞(Rn)

) ∫
Rn

∫
V

fq
ε

F q−1
dvdx.

The next step is to estimate Sε:

‖∇Sε(·, t)‖C1,α(Rn) ≤ C
(
1 + ‖∇ρε(·, t)‖Lq(Rn)

)
≤ C̃

(
1 + ‖ρε(·, t)‖Lq(Rn)

)
.

Here we used the estimates in Lemma 4.1.

d

dt

∫
Rn

∫
V

fq
ε

F q−1
dvdx ≤ C

[
1 +

(∫
Rn

∫
V

fq
ε

F q−1
dvdx

) 1
q

]∫
Rn

∫
V

fq
ε

F q−1
dvdx.

This shows the first two statements. The rest can be done by using the same method
as that given in the proof of Theorem 4 in [3], and thus we omit the details.



1192 H. J. HWANG, K. KANG, AND A. STEVENS

Now we are ready to prove the existence of the diffusion limit in a short time
interval.

Theorem 4.4. Let the assumption of Theorem 4.3 hold. Suppose that the equa-
tion for the chemo-attractant S is of elliptic (τ = 0) or parabolic (τ �= 0) type. Assume
further that for families (Sε), which are uniformly bounded in L∞

loc([0,∞); C2+α(Rn))
for some α with 0 < α ≤ 1, such that Sε, ∇Sε, and ∇2Sε converge to S0,∇S0, and
∇2S0 as ε → 0, respectively, in Lp

loc([0,∞); Rn) for some p > n/(n− 1) with n = 2, 3,
we have the convergence

Tε[Sε] → T0[S0] in Lp
loc([0,∞); Rn × V̄ × V̄ ),

Tε[Sε](F )

ε
=

2

ε

∫
V

φA
ε [Sε]dv

′ → T1[S0](F ) in Lp
loc([0,∞); Rn × V̄ ).(4.2)

Then the solutions fε and Sε of (1.6)–(1.9) satisfy

fε → ρ0F in L∞((0, t∗); Υq) weak ∗,

and for τ = 0

∇Sε → ∇S0 in W 1,q
loc ((0, t∗); Rn), 1 ≤ q < ∞ if n = 2, β = 0,

Sε → S0 in W 2,q
loc ((0, t∗); Rn), 1 ≤ q < ∞ otherwise,

whereas for τ �= 0

Sε → S0 in Lq
loc((0, t

∗);W 2,q(Rn)), 1 ≤ q < ∞.

Proof. Since the proof is similar to that of Theorem 5 in [3], we again present
only a brief sketch of the procedure. First we note, due to (4.1), that

Jε =
1

ε

∫
V

vfεdv =

∫
V

vrεdv ∈ L2((0, t∗);L2(Rn))

uniformly in ε. From the cell conservation equation ∂tρε + div Jε = 0, one can easily
see that

∂t(∇Sε) ∈ L2((0, t∗);L2
loc(R

n))

by considering the gradient of the convolution of (1.8). The strong convergence fol-
lows combining the above estimate and the parabolic regularity for the convolutions
defining Sε and ∇Sε from ρε. Therefore, the kinetic equation (1.7) leads to

ε
∂fε
∂t

+ v · ∇xfε = −ρε
T [Sε](F )

ε
− Tε[Sε](rε).

By assumption (4.2) and passing to the limit, we obtain

T0[S0](r0) = −vF · ∇ρ0 − ρ0T1[S0](F ).

This equation can be solved due to Lemma 2.3. The limit of the cell conservation
equation is ∂tρ0 + ∇ · J0 = 0 with J0 =

∫
V
vr0dv. This completes the proof.
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5. Examples. When dealing with chemosensitive movement of biological spe-
cies, questions of major interest are, How do the individuals “measure” the chemical
signal? How is this information processed, and what kind of behavior results? The
model we have introduced before and its macroscopic limit give a partial answer to
this problem.

First we give a short summary of possible evaluations of the chemical signal by
the cells as suggested by Tranquillo and Alt [22] and later discuss related examples.
The individuals might evaluate the chemical signal

spatially - the signal is evaluated at (at least) two distinct locations around the
individual, which are related to its direction (cf. Examples 5.1, 5.3, and 5.4);

temporal(ly) differential - the signal is evaluated at (at least) two different times
(cf. Example 5.1);

positionally - the signal is evaluated momentarily (cf. Example 5.4);

directionally - the signal is evaluated along the individual direction or its relation
to a directional signal field, e.g., a spatial gradient at its position (cf. Examples 5.1,
5.3, 5.4, 5.5, and 5.6).

Discussions of possible turning rates of the cells which depend on the given chem-
ical signal in this context are also given in [1], [2], [18] and [10], [19].

In [10], [19] the macroscopic limit is formal. It is assumed that the turning kernel
has an expansion in ε which is supposed to be given. Here the ε-expansion is directly
related to possible evaluations of the chemo-attractant by the cells, and thus the
connection between the micro- and macroparameters can be derived.

To understand the different influences of the evaluations of the chemical signal,
our first example is very general and allows also dependencies on time derivatives of
the chemo-attractant. Since we did not prove regularity for St so far, the macroscopic
limit in this case has to be considered only formal. Nevertheless, from this example
the other rigorous examples can be extracted later. Below we only consider the two-
dimensional case, to keep the computations simple and since this case is the most
interesting one biologically.

Example 5.1 (formal for α > 0, rigorous for α = 0). Let the turning kernel be of
general type:

Tε[s] = φ(S(x + εv, t), S(x− εv′, t), S(x, t− ε),∇S(x + εv, t),∇S(x− εv′, t),

∂tS(x + εv, t), ∂tS(x− εv′, t), ∂tS(x, t− ε), v) + εψ

(
v · v′
|v||v′|

)
,(5.1)

where φ : R
12→R and ψ : R→R are smooth and φ + εψ is strictly positive (∇S con-

tributes two entries, ∂x1S and ∂x2S). Here S satisfies the chemo-attractant equation
either of elliptic type or of parabolic type with α ≥ 0 and β > 0 in two dimensions. For
α = 0 the S-equation is completely decoupled. In this case the derivation given below
is rigorous. We do not include direct dependencies such as S(x, t), St(x, t),∇S(x, t)
at this point. These will be discussed later.

We use the following notational abbreviations:

φ[S,∇S, ∂tS, v] := φ(S(x, t), S(x, t), S(x, t),∇S(x, t),

∇S(x, t), ∂tS(x, t), ∂tS(x, t), ∂tS(x, t), v),

φi[S,∇S, ∂tS, v] := φi(S(x, t), S(x, t), S(x, t),∇S(x, t),∇S(x, t),

∂tS(x, t), ∂tS(x, t), ∂tS(x, t), v),
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where φi(· · ·) indicates the partial derivative of φ with respect to the ith argument
for i = 1, 2, . . . , 12. By the asymptotic expansion of Tε = T0 + εT1 + O(ε2), one can
easily see that T0 = T0[S, v] = φ[S,∇S, ∂tS, v] and

T1 = T1[S, v, v
′]

= (φ1[S,∇S, ∂tS, v]v − φ2[S,∇S, ∂tS, v]v
′) · ∇S + φ3[S,∇S, ∂tS, v]∂tS

+ (φ3+i[S,∇S, ∂tS, v]v − φ5+i[S,∇S, ∂tS, v]v
′) · ∇Sxi

+ (φ8[S,∇S, ∂tS, v]v − φ9[S,∇S, ∂tS, v]v
′) · ∇St

−φ10[S,∇S, ∂tS, v]∂
2
t S + ψ

(
v · v′
|v||v′|

)
,

where we used the summation convention, which is understood over repeated indices
running from 1 to 2. Furthermore, we define Φ, Φ̃, Φ̂, and Φ̄ as follows:

Φ[S0,∇S0, ∂tS0] :=

∫
V

T0[S0, v
′]dv′, Φ̃[S0,∇S0, ∂tS0, v] :=

∫
V

T1[S0, v
′, v]dv′,

Φ̂[S0,∇S0, ∂tS0, v] :=

∫
V

T1[S0, v, v
′]f0(v

′, x, t)dv′,

Φ̄[S0,∇S0, ∂tS0, v] :=
1

Φ[S0,∇S0, ∂tS0]

∫
V

T0[S0, v
′]T1[S0, v, v

′]dv′.

From T0[S0](f0) = 0, we have

f0(v, x, t) =
φ[S0,∇S0, ∂tS0, v]ρ0(x, t)

Φ[S0,∇S0, ∂tS0]
,

and therefore it is easy to see Φ̂(v) = Φ̄(v)ρ0.

Due to T0[S0](f1) = −T1[S0](f0) − v · ∇f0, we have

f1(v, x, t) =
1

Φ[S0,∇S0, ∂tS0]
(− v · ∇f0(v, x, t) − Φ̃[S0,∇S0, ∂tS0, v]f0(v, x, t)

+ Φ̂[S0,∇S0, ∂tS0, v]).

Computing Jε =
∫
V
vf1(v, x, t)dv, we obtain

Jε = −
∫
V

vivj∂xjf0

Φ[S0,∇S0, ∂tS0]
dv −

∫
V

viΦ̃[S0,∇S0, ∂tS0, v]f0

Φ[S0,∇S0, ∂tS0]
dv

+

∫
V

viΦ̂[S0,∇S0, ∂tS0, v]ρ0

Φ[S0,∇S0, ∂tS0]
dv.(5.2)

The first integral in (5.2) becomes

∫
V

vivj∂xjf0

Φ[S0,∇S0, ∂tS0]
dv =

ρ0

Φ[S0,∇S0, ∂tS0]

∫
V

(
vivj∂xj

(
φ[S0,∇S0, ∂tS0, v]

Φ[S0,∇S0, ∂tS0]

))
dv

+
∂xjρ0

Φ2[S0,∇S0, ∂tS0]

∫
V

vivjφ[S0,∇S0, ∂tS0, v]dv

=
Ai

Φ
ρ0 +

Bij

Φ2
∂xj

ρ0,
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where

Ai = Ai[S0,∇S0, ∂tS0] =

∫
V

vivj∂xj

(
φ[S0,∇S0, ∂tS0, v]

Φ[S0,∇S0, ∂tS0]

)
dv,(5.3)

Bij = Bij [S0,∇S0, ∂tS0] =

∫
V

vivjφ[S0,∇S0, ∂tS0, v]dv.(5.4)

The second integral in (5.2) leads to∫
V

viΦ̃[S0,∇S0, ∂tS0, v]f0(v)

Φ[S0,∇S0, ∂tS0]
dv =

Ci

Φ2(S0,∇S0, ∂tS0)
ρ0,

where

Ci = Ci[S0,∇S0, ∂tS0] =

∫
V

viΦ̃[S0,∇S0, ∂tS0, v]φ[S0,∇S0, ∂tS0, v]dv.(5.5)

The last integral in (5.2) becomes∫
V

viΦ̂[S0,∇S0, ∂tS0, v]

Φ[S0,∇S0, ∂tS0]
dv =

∫
V

viΦ̄[S0,∇S0, ∂tS0, v]ρ0

Φ[S0,∇S0, ∂tS0]
dv =

Di

Φ
ρ0,

where

Di = Di[S0,∇S0, ∂tS0] =

∫
V

viΦ̄[S0,∇S0, ∂tS0, v]dv.(5.6)

Summing up, we obtain the macroscopic equation

∂tρ0 = ∂xi

(
Ai

Φ
ρ0 +

Bij

Φ2
∂xjρ0 +

Ci

Φ2
ρ0 −

Di

Φ
ρ0

)
, Φ = Φ[S0,∇S0, ∂tS0],

where Ai, Bij , Ci, and Di are defined in (5.3)–(5.6).
Remark 5.2. If we drop out the explicit dependence of the last argument v in the

functional φ in (5.1), then the term ψ(v · v′/|v||v′|) does not influence the resulting
macroscopic equation anymore. This is due to the fact that only Ci and Di depend
on ψ (Ai, Bi do not), and Ci = Di = 0 when φ is independent of v. This is to be
expected from a biological point of view since reorientations without any bias cannot
have a macroscopic effect.

In the following we will see how to evaluate Ai, Bij , Ci, and Di more specifically.
Example 5.3 (rigorous for α ≥ 0). Let

Tε[S] = φ(S(x + εv, t), S(x− εv′, t),∇S(x + εv, t),∇S(x− εv′, t)),(5.7)

where S satisfies chemo-attractant equation of elliptic type with β > 0 in two dimen-
sions. Note that φ : R

2 ×R
2 ×R

2→R is an even function with respect to the variable
∇S, and increasing and decreasing for the first and second argument, respectively.
Also assume the structure condition of Assumptions 2.1 and 3.2, i.e.,

|Tε[S](x, v, v′, t)| ≤ C(1+S(x+εv, t)+S(x−εv′, t)+ |∇S(x+εv, t)|+ |∇S(x−εv′, t)|).

Using the asymptotic expansion of the turning kernel, i.e., Tε[S] = T0[S] + εT1[S] +
O(ε2), we can easily see that T0[S] = φ(S(x, t), S(x, t),∇S(x, t),∇S(x, t)), and

T1[S] = (φ1(S, S,∇S,∇S)v − φ2(S, S,∇S,∇S)v′) · ∇S

+

2∑
i=1

(φ2+i(S, S,∇S,∇S)v − φ4+i(S, S,∇S,∇S)v′) · ∇Sxi .
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Here φk, k = 1, 2, . . . , 6, indicates differentiation of φ with respect to the kth argument.
The symmetric φA

ε [S] and antisymmetric part φS
ε [S] of the turning kernel satisfy

φS
ε [S] ≥ γ

(
1 − εΛ

(
‖∇S‖W 1,∞(Rn)

))
FF ′,

∫
V

φA
ε [S]2

FφS
ε [S]

dv′ ≤ ε2Λ
(
‖∇S‖W 1,∞(Rn)

)
,

where γ > 0 and Λ ∈ L∞
loc is a nondecreasing function. By asymptotic expansion of

fε and Sε, the leading order equation becomes f0(x, v, t) = ρ0(x, t)/|V |. Here f0 is
independent of v. Since the ε-order equation is

T0[S0](f1) = −(v · ∇ρ0)/|V | − T1[S0](f0),

we have to calculate

T1[S0](f0) = −ρ0(φ1 + φ2)∇S0 · v −
2∑

i=1

ρ0(φ2+i + φ4+i)∇S0,xi · v.

Therefore,

T0[S0](f1) = −v · ∇ρ0

|V | + ρ0(φ1 + φ2)∇S0 · v +

2∑
i=1

ρ0(φ2+i + φ4+i)∇S0,xi · v,

due to the solvability condition, and thus we get

f1 = −v · ∇ρ0

|V |2φ +
ρ0(φ1 + φ2)∇S0 · v

|V |φ +
ρ0(φ2+i + φ4+i)∇S0,xi · v

|V |φ .

Let µ =
∫
V
|v|2dv. Using the above results, we obtain the flux density Jε =

∫
V
vf1dv+

O(ε), where

Jε = − µ

2|V |2
∇ρ0

φ
+

µ

2|V |
(φ1 + φ2)ρ0∇S0

φ
+

2∑
i=0

µ

2|V |
(φ2+i + φ4+i)ρ0∇S0,xi

φ
.

Hence the diffusion limit is

∂

∂t
ρ0 = ∇ ·

(
D∇ρ0 − χρ0∇S0 −

2∑
i=1

χ̃iρ0∇S0,xi

)
(5.8)

with

D =
µ

2|V |2φ, χ =
µ(φ1 + φ2)

2|V |φ , χ̃i =
µ(φ2+i + φ4+i)

2|V |φ , i = 1, 2,

coupled to −∆S0 = ρ0 − βS0. It is not known whether solutions for the macroscopic
equation (5.8) blow up in finite time or not.

Example 5.4. If we choose an appropriate turning kernel, then the classical
Keller–Segel model with constant coefficients can also be obtained. Indeed, if the
turning kernel (5.7) is replaced by Tε[s] = φ(S(x, t), S(x+εv, t),∇S(x+εv, t),∇S(x−
εv′, t)), then, by following similar computations to those given above, we have

∂

∂t
ρ0 = ∇ ·

(
µ

2|V |2φ∇ρ0 −
µφ2

2|V |φρ0∇S0 −
2∑

i=1

µ(φ2+i + φ4+i)

2|V |φ ρ0∇S0,xi

)
.(5.9)
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Now let

φ(x1, x2, x3, x4, x5, x6) = ϕ(x2 − x1) + ϕ(x5 − x3) + ϕ(x6 − x4),(5.10)

where ϕ(x) = C1

√
1 + x2 + C2x, C1 > C2 > 0.

Concerning the gradient terms, this example seems a bit artificial, but it shows
how higher order terms might cancel out. Since ϕ(0) = C1, ϕ′(0) = C2, we have
φ = C1, φ2 = C2, φ3 = φ4 = −C2, and φ5 = φ6 = C2. Therefore (5.9) leads to

∂

∂t
ρ0 = ∇ ·

(
µ

2|V |2C1
∇ρ0 −

µC2

2|V |C1
ρ0∇S0

)
,

which is the classical version of the Keller–Segel model. The diffusion coefficient
and chemotactic sensitivity, respectively, are D = µ/(2|V |2C1), χ = (µC2)/(2|V |C1),
which are both constants in this case.

Example 5.5 (rigorous, α ≥ 0, β > 0). The next example considers time varia-
tions of the chemical S.

Tε = σS(x + εv, t) + h(∂tS(x, t),∇S(x, t), v) + C2,(5.11)

where σ ≥ 0 is a fixed constant and h : R × R
n × R

n→R, n = 2, 3, is smooth and
bounded, say −C1 ≤ h ≤ C1 with 0 < C1 < C2. Note that the turning kernel satisfies
the structure condition in Assumption 3.2. Skipping the details of the calculations,
the macroscopic equation reads

∂tρ0 = ∇ ·
(

1

σS0|V | + H[S0]

[
∇
(

µ(σS0 + C2)

σS0|V | + H[S0]
ρ0

)
+ (Aij [S0]ρ0)xj

]

− σµ

σS0|V | + H[S0]
ρ0∇S0

)
.(5.12)

This equation is rigorously derived with related turning kernel (5.11) since it satisfies
Assumption 4.2.

As a specific example, we consider the case

h(∂tS,∇S, v) = C1
γ∂tS + v · ∇S

N (S)
, N (S) =

√
1 + γ2|∂tS|2 + |∇S|2,

where γ is a fixed constant. Then one can easily see

H[S0] =
C1γ∂tS0|V |

N (S0)
+ C2|V |, Aij [S0] =

C1µγ∂tS0

(σS0|B1| + H[S0])N (S0)
.

Therefore, the macroscopic equation (5.12) can be explicitly calculated, namely, for
γ = 0 (H[S0] = C2|V | and Aij [S0] = 0),

∂tρ0 = ∇ ·
(

µ

(σS0 + C2)|V |2∇ρ0 −
σµ

(σS0 + C2)|V |ρ0∇S0

)
.(5.13)

On the other hand, if σ = 0, then the last term in (5.12) vanishes and (5.12) reads

∂tρ0 = ∇ ·
(

1

H[S0]
∇
(

µC2

H[S0]
ρ0

)
+ (Aij [S0]ρ0)xj

)
,
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where Aij [S0] =
∫
V
vivjh(∂tS,∇S, v)/H[S0]dv. In case h is odd with respect to v,

then Aij = 0 in (5.12).
In the next example we discuss the influence of nonlocal terms in h.
Example 5.6 (formal for α > 0, rigorous for α = 0). Consider Tε = σS(x +

εv, t)+h(∂tS(x+εv, t), v ·∇S(x+εv, t))+C2, where h : R×R→R, n = 2, 3, is smooth
and bounded, say −C1 ≤ h ≤ C1 with 0 < C1 < C2. The structure condition in
Assumption 3.2 is satisfied.

Again, skipping the detailed calculations, the macroscopic equation reads

∂tρ0 = −∇ · Jε = ∇ ·
(

1

σS0|V | + H[S0]

(∫
V

vivj∂xj
f0dv + K[S0]

∫
V

vif0dv

− ρ0

∫
V

viT1[S0, v]dv

))
.

Next we consider a specific example of the turning kernel above. Let

h = h(∂tS(x + εv, t− ε), v · ∇S(x + εv, t)) =
C1v · ∇S(x + εv, t)√

1 + (v · ∇S(x + εv, t))2
.

Therefore, the macroscopic equation reads

∂tρ0 = ∇ ·
(

µ

(σS0 + C)|V |2∇ρ0 −
σµ

(σS0 + C)|V |ρ0∇S0

+
L[S0](L[S0]∆S0 −M [S0]|∇S0|2∆S0)

(σS0 + C)2|V |2 ρ0∇S0

)
,

where

L[S0] =
1

n

∫
V

|v|2√
1 + (v · ∇S0)2

dv, M [S0] =
1

n2

∫
V

|v|4

(1 + (v · ∇S0)2)
3
2

dv.(5.14)

The third term in the macroscopic equation is completely due to the nonlocal
dependencies of h. Compare (5.13) for the local formulation.

Acknowledgment. We would like to thank B. Perthame for pointing out Re-
mark 3.8 during his visit at MPI MIS in Leipzig.
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Abstract. In this paper we prove a global existence result for pair diffusion models in two di-
mensions. Such models describe the transport of charged particles in semiconductor heterostructures.
The underlying model equations are continuity equations for mobile and immobile species coupled
with a nonlinear Poisson equation. The continuity equations for the mobile species are nonlinear
parabolic PDEs involving drift, diffusion, and reaction terms; the corresponding equations for the
immobile species are ODEs containing reaction terms only. Forced by applications to semiconduc-
tor technology, these equations have to be considered with nonsmooth data and kinetic coefficients
additionally depending on the state variables.

Our proof is based on regularizations, on a priori estimates which are obtained by estimates of
the free energy and by Moser iteration, as well as on existence results for the regularized problems.
These are obtained by applying the Banach fixed point theorem for the equations of the immobile
species, and the Schauder fixed point theorem for the equations of the mobile species.
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1. The model. Pair diffusion models describe the transport of charged particles
(dopant atoms, point defects, dopant-defect pairs) in semiconductors [4, 7]. In [11]
we treated a rather general model of this kind, which we continue to study in this
paper. We consider m species Xi. The first l ≤ m species are mobile, the other
ones are immobile. The particle densities ui of the ith species and some additional
potential ψ are the primary unknown functions. They have to satisfy the following
initial boundary value problem:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ui

∂t
+ ∇ · ji +

∑
(α,β)∈RΩ

(αi − βi)R
Ω
αβ = 0 on (0,∞) × Ω,

ν · ji −
∑

(α,β)∈RΓ

(αi − βi)R
Γ
αβ = 0 on (0,∞) × Γ,

i = 1, . . . , l;

∂ui

∂t
+

∑
(α,β)∈RΩ

(αi − βi)R
Ω
αβ = 0 on (0,∞) × Ω,

i = l + 1, . . . ,m;

−∇ · (ε∇ψ) + e(·, ψ) −
m∑
i=1

Qi(ψ)ui = f on (0,∞) × Ω,

ν · (ε∇ψ) = 0 on (0,∞) × Γ;

ui(0) = Ui on Ω, i = 1, . . . ,m.

(1.1)
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Here Γ denotes the boundary of the domain Ω ⊂ R
2, and ν is the outer unit normal.

For specifying the flux densities ji and the reaction rates RΩ
αβ , RΓ

αβ we introduce
other functions related to the primary ones, namely, the chemical activities bi and
electrochemical activities ai,

bi =
ui

p0i
, ai = bie

Pi(ψ), Pi(ψ) =

∫ ψ

0

Qi(s)ds, i = 1, . . . ,m,(1.2)

where p0i denotes a reference density, and Qi is the charge number of the ith species
which depends on ψ. Then the flux densities of the mobile species are given by

ji = −Di(·, b, ψ) p0i (∇bi + Qi(ψ) bi∇ψ) , i = 1, . . . , l,

where Di is the diffusivity which depends on the state variables b = (b1, . . . , bm)
and ψ. All m continuity equations contain volume source terms generated by mass
action–type reactions of the form

α1X1 + · · · + αmXm � β1X1 + · · · + βmXm, (α, β) ∈ RΩ,

where α, β ∈ Z
m
+ are the vectors of stoichiometric coefficients, and RΩ describes the

set of all reactions under consideration. The corresponding reaction rates are given
by

RΩ
αβ = kΩ

αβ(x, b1, . . . , bm, ψ)

[
m∏
i=1

aαi
i −

m∏
i=1

aβi

i

]
, (α, β) ∈ RΩ.

The continuity equations for the mobile species include additional boundary source
terms generated by boundary reactions with reaction rates given by

RΓ
αβ = kΓ

αβ(x, b1, . . . , bl, ψ)

[
l∏

i=1

aαi
i −

l∏
i=1

aβi

i

]
, (α, β) ∈ RΓ.

Finally, the nonlinear Poisson equation contains various source terms, namely, the
fixed charge density f , the charge density e depending on ψ, and the charge density∑m

i=1 Qiui of all particles; ε is the dielectric permittivity.
In heterostructures, which we want to include in our considerations, the reference

densities p0i (and other quantities such as Di, k
Ω
αβ , kΓ

αβ , ε, and e) depend on x, and
they may jump when crossing interfaces between different materials. The densities
ui may jump, too, but for the chemical activities bi of the mobile species and for
the potential ψ one can assume that b1(t, ·), . . . , bl(t, ·), ψ(t, ·) belong to H1(Ω). This
regularity can be improved slightly. For example, one obtains that ψ(t, ·) belongs to
W 1,2+δ(Ω) if ε is an arbitrary element of L∞(Ω) (see [14]), but W 2,p-regularity can
not be expected in general.

It is the aim of the present paper to show that the initial boundary value problem
(1.1) has a global solution in a sense which is precisely defined in section 2. In that
section all needed assumptions are also listed, and they are motivated by considering
the special model in [4, 7]. Here let us only observe that the charge numbers Qi (see
(2.8) for the special model) are monotonic decreasing functions of ψ. This property
as well as the special structure of the kinetic relations and natural assumptions on
the kinetic coefficients ensure that the evolution problem (see (P) later on) as well
as needed regularizations of this problem (see (PN ), (PM ) later on) have a convex
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Lyapunov function, namely, the free energy. Section 3 contains the proof of the exis-
tence result and related assertions. Here we make use of some results derived in our
earlier papers [11, 16]. There we did not prove any existence result, but we studied
qualitative properties of (possible) solutions, especially the long-time behavior. We
give a short summary of these properties in section 4 of the present paper.

Let us yet discuss some simplified models for which results are already known. At
first we consider the case that each species has a constant charge number, Qi(ψ) =
qi = const. Then we arrive at a model which we have studied in [13, 8, 9, 10]. There we
assumed that all species are mobile, l = m, that the diffusivities do not depend on b,
and that the initial values are strongly positive, Ui ≥ c > 0. The continuity equations
were reformulated by introducing the electrochemical potentials ζi = ln ai = ln bi+qiψ
(defined for ai > 0). Then the kinetic relations were obtained as

ji = −Di ui ∇ζi,

RΩ
αβ = kΩ

αβ

[
e
∑m

i=1 αiζi − e
∑m

i=1 βiζi
]
, RΓ

αβ = kΓ
αβ

[
e
∑l

i=1 αiζi − e
∑l

i=1 βiζi
]
.

We proved the global existence and uniqueness of a solution and studied its asymptotic
behavior. The methods developed in the present paper allow us to handle this class
of models also in the case that l < m, that D1, . . . , Dl may depend on b, and that
only Ui ≥ 0 is assumed.

At last we consider the case of a homogeneous material where no physical param-
eter explicitly depends on x. Especially p0i = const > 0 holds, and for the mobile
species ui(t, ·) ∈ H1(Ω) follows. Therefore the flux densities can be rewritten as

ji = −Di (∇ui + Qi(ψ)ui∇ψ), i = 1, . . . , l.

Under some additional assumptions (two-dimensional domain with smooth boundary,
kinetic coefficients depend only on ψ) global existence and uniqueness results were
proven in [21] (all species are mobile, l = m) and in [12] (some species can be immobile,
l ≤ m). There higher regularity of the solution was obtained. For example, ψ(t, ·)
belongs to W 2,p(Ω), p ≥ 2. One may find in [1] a local existence result for the same
simplified model, but in arbitrary space dimension. A special pair diffusion model for
uncharged species (and without the Poisson equation) was studied in [15]. The case
l < m was treated by passing to the limit Di → 0, i = l + 1, . . . ,m. Several different
asymptotic limits for variants of such a model are discussed in [17].

2. Notation, assumptions, and main result.

2.1. Notation. The notation of function spaces corresponds to that in [18]. By
Z
k
+,R

k
+, L

p
+, H

1
+ we denote the cones of nonnegative elements. If u ∈ R

k, then u ≥ 0
(u > 0) means ui ≥ 0 ∀i (ui > 0 ∀i).

√
u denotes the vector {√ui}i=1,...,k. For the

scalar product in R
k we use a centered dot. If u, v ∈ R

k, then uv = {uivi}i=1,...,k,
and u/v is to be understood analogously. If u ∈ R

k
+ and α ∈ Z

k
+, then uα means the

product
∏k

i=1 u
αi
i . In our estimates positive constants, which depend at most on the

data of the problem, are denoted by c. Some auxiliary results which are relevant for
the paper are collected in the appendix. Finally, we make use of the following.

Definition 2.1. Consider a function f : (x, y) ∈ M×E → f(x, y) ∈ R, where E
is a closed subset of R

k. We say that f(x, ·) is locally Lipschitz continuous uniformly
with respect to (w.r.t.) x if f(x, ·) is Lipschitz continuous on each compact set K ⊂ E
where the Lipschitz constant depends on K, but not on x.
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2.2. Assumptions. Let us summarize all needed assumptions, which we will
apply throughout the rest of the paper:⎧⎨

⎩
Ω ⊂ R

2 is a bounded Lipschitzian domain, Γ = ∂Ω,

m, l ∈ N, 1 ≤ l ≤ m, U ∈ L∞
+ (Ω,Rm), f ∈ L2(Ω);

(2.1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε ∈ L∞(Ω), ess infx∈Ω ε(x) > 0,

e: Ω × R → R satisfies the Carathéodory conditions,

e(x, ·) is locally Lipschitz continuous uniformly w.r.t. x,

|e(x, ψ)| ≤ c ec|ψ| for a.a. x ∈ Ω, ∀ψ ∈ R with some c > 0,

e(x, ψ) − e(x, ψ) ≥ e0(x) (ψ − ψ) for a.a. x ∈ Ω, ∀ψ,ψ ∈ R with ψ ≥ ψ,

where e0 ∈ L∞
+ (Ω), ‖e0‖L1 > 0;

(2.2)

⎧⎪⎪⎨
⎪⎪⎩

for i = 1, . . . ,m :

p0i ∈ L∞(Ω), ess infx∈Ω p0i(x) ≥ ε0 > 0,

Qi ∈ C1(R), |Qi(ψ)| ≤ c, Q′
i(ψ) ≤ 0 ∀ψ ∈ R;

(2.3)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

RΣ is a finite subset of Z
mΣ
+ × Z

mΣ
+ , Σ = Ω, Γ, mΩ = m, mΓ = l;

for Σ = Ω, Γ, (α, β) ∈ RΣ :

kΣ
αβ : Σ × R

mΣ
+ × R → R+ satisfies the Carathéodory conditions,

kΣ
αβ(x, ·, ·) is locally Lipschitz continuous uniformly w.r.t. x,

∀R > 0 there exists a constant cR > 0 such that

kΣ
αβ(x, b, ψ) ≤ cR for a.a. x ∈ Σ, ∀b ∈ R

mΣ
+ , ∀ψ ∈ [−R,R];

(2.4)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(αl+1 + · · · + αm) (βl+1 + · · · + βm) = 0 ∀(α, β) ∈ RΩ,

there exists a constant c > 0 such that

max
k=1,...,m

{
(aα − aβ)(βk − αk)

}
≤ c

m∑
k=1

a2
k + c ∀ a ∈ R

m
+ , (α, β) ∈ RΩ,

max
k=1,...,l

{
(aα − aβ)(βk − αk)

}
≤ c

l∑
k=1

ak + c ∀ a ∈ R
l
+, (α, β) ∈ RΓ;

(2.5)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

for i = 1, . . . , l :

Di: Ω × R
m
+ × R → R+ satisfies the Carathéodory conditions,

Di(x, b, ψ) ≥ c > 0 for a.a. x ∈ Ω, ∀b ∈ R
m
+ , ∀ψ ∈ R,

∀R > 0 there exists a constant cR > 0 such that

Di(x, b, ψ) ≤ cR for a.a. x ∈ Ω, ∀b ∈ R
m
+ , ∀ψ ∈ [−R,R];

(2.6)
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

for i = l + 1, . . . ,m :

there is a reaction of the form

RΩ
α(i)β(i)

(x, b, ψ) = kΩ
α(i)β(i)

(x, b, ψ)

[
l∏

k=1

a
α(i)k

k − a2
i

]
,

∀R > 0 there exists a constant cR > 0 such that

kΩ
α(i)β(i)

(x, b, ψ) ≥ cR for a.a. x ∈ Ω, ∀b ∈ R
m
+ , ∀ψ ∈ [−R,R].

(2.7)

2.3. Example. We would like to comment on our assumptions by considering
the special pair diffusion model in [4, 7]. This example is concerned with the redis-
tribution of a single dopant (phosphorus) in a homogeneous semiconductor (silicon).
Here we have to deal with m = 5 species, namely, X1 = I (silicon interstitials),
X2 = V (vacancies in the silicon lattice), X3 = PI (phosphorus–interstitial pairs),
X4 = PV (phosphorus–vacancy pairs), and X5 = P (phosphorus atoms on lattice
site). The only immobile species is X5, and hence l = 4.

The charge density e (of electrons and holes, except for the sign) is given by
e(ψ) = e1e

ψ − e2e
−ψ, e1, e2 = const > 0, and fulfills the properties required in (2.2).

The reference densities p0i, the charge numbers Qi, and the diffusivities Di (of the
mobile species) are expressions of the form

p0i =

ki∑
k=1

Kik, Qi(ψ) =

∑ki

k=1 qikKike
−qikψ∑ki

k=1 Kike−qikψ
, Di(ψ) =

∑ki

k=1 DikKike
−qikψ∑ki

k=1 Kike−qikψ
,(2.8)

where ki ≥ 1, Kik, Dik = const > 0, qik = const. Obviously, all properties required
in (2.3) and (2.6) are fulfilled. Finally, volume reactions as described in Table 2.1
are considered. The set RΩ contains the corresponding (α, β)-pairs. The kinetic
coefficients kΩ

αβ are finite sums of the form

kΩ
αβ(ψ) =

∑
γ

kαβ,γe−qαβ,γψ, kαβ,γ = const > 0, qαβ,γ = const

and satisfy the requirements in (2.4). All reactions fulfill the first condition in (2.5),
namely, α5β5 = 0. Moreover, all reactions are of second order and provide the first
growth condition in (2.5). Reaction no. 6 in Table 2.1 is that which fulfills the as-
sumptions in (2.7). Since here boundary reactions do not occur, we set RΓ = ∅, and
the flux boundary conditions in (1.1) result in ν · ji = 0, i = 1, . . . , l. Thus we see
that our basic assumptions can be verified when considering this special model.

Table 2.1

Volume reactions, stoichiometric coefficients, and reaction rates.

No. Reaction α β Reaction rate RΩ
αβ

1 I + P � PI (1, 0, 0, 0, 1) (0, 0, 1, 0, 0) kΩ
αβ(ψ) (a1a5 − a3)

2 V + P � PV (0, 1, 0, 0, 1) (0, 0, 0, 1, 0) kΩ
αβ(ψ) (a2a5 − a4)

3 I + V � 0 (1, 1, 0, 0, 0) (0, 0, 0, 0, 0) kΩ
αβ(ψ) (a1a2 − 1)

4 I + PV � P (1, 0, 0, 1, 0) (0, 0, 0, 0, 1) kΩ
αβ(ψ) (a1a4 − a5)

5 V + PI � P (0, 1, 1, 0, 0) (0, 0, 0, 0, 1) kΩ
αβ(ψ) (a2a3 − a5)

6 PI + PV � 2P (0, 0, 1, 1, 0) (0, 0, 0, 0, 2) kΩ
αβ(ψ) (a3a4 − a2

5)
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For various reasons we formulated our assumptions in somewhat more general
forms. First, we want to take into account more immobile dopants and corresponding
mobile dopant–defect pairs as well as dopant–dopant pairs, if necessary (see, e.g., [20]).
Then the number of volume reactions increases. Second, we allow the appearance of
boundary reactions of first order (see the second growth condition in (2.5)). Third, the
kinetic coefficients Di, k

Σ
αβ should depend on the state variables ui (or bi), too. Fourth,

we attach importance to the study of heterostructures where physical parameters
explicitly depend on x, namely, discontinuously.

Finally, we give reasons for our assumption that the domain Ω should be two-
dimensional. In the continuity equations appear quadratic drift terms and quadratic
source terms coming from the reactions. We use Gröger’s result concerning the W 1,2+δ-
regularity of the potential ψ, δ > 0 small [14], and the two-dimensional version of the
Gagliardo–Nirenberg inequality (5.3) to estimate the L∞(R+, L

p(Ω))-norms of ui (or
bi) for p ≥ 2. In three dimensions the corresponding procedure does not work. More-
over, in two dimensions we can use Trudinger’s imbedding result [25] to simplify the
investigation of the nonlinear Poisson equation and of the free energy functional.

2.4. Formulation of the problem. We use the function spaces

Y = L2(Ω,Rm), X =
{
b ∈ Y : bi ∈ H1(Ω), i = 1, . . . , l

}
and define operators

B:Y → Y, A,R: [X∩L∞
+ (Ω,Rm)]×[H1(Ω)∩L∞(Ω)] → X∗, E:H1(Ω)×Y → H1(Ω)∗

by the relations

(Bb, b)Y =

∫
Ω

m∑
i=1

p0i bi bi dx, b ∈ Y,

〈A(b, ψ), b〉X =

∫
Ω

l∑
i=1

Di(·, b, ψ)p0i(∇bi + biQi(ψ)∇ψ) · ∇bi dx, b ∈ X,

〈R(b, ψ), b〉X =

∫
Ω

∑
(α,β)∈RΩ

RΩ
αβ(·, b1, . . . , bm, ψ)

m∑
i=1

(βi − αi) bi dx

+

∫
Γ

∑
(α,β)∈RΓ

RΓ
αβ(·, b1, . . . , bl, ψ)

l∑
i=1

(βi − αi) bi dΓ, b ∈ X,

〈E(ψ, u), ψ〉H1 =

∫
Ω

{
ε∇ψ · ∇ψ + e(·, ψ)ψ −

m∑
i=1

uiQi(ψ)ψ − fψ

}
dx, ψ ∈ H1(Ω).

Let us recall that

RΣ
αβ(x, b, ψ) = kΣ

αβ(x, b, ψ) (aα − aβ), x ∈ Σ, b ∈ R
mΣ
+ , ψ ∈ R, Σ = Ω, Γ,

where a is related to b and ψ according to (1.2), ai = bie
Pi(ψ), i = 1, . . . ,mΣ.
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The precise formulation of the initial boundary value problem (1.1) reads as fol-
lows:⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

u′(t) + A(b(t), ψ(t)) = R(b(t), ψ(t)),

E(ψ(t), u(t)) = 0, u(t) = Bb(t) for a.a. t > 0, u(0) = U,

u ∈ H1
loc(R+, X

∗) ∩ L2
loc(R+, Y ), b ∈ L2

loc(R+, X) ∩ L∞
loc(R+, L

∞
+ (Ω,Rm)),

ψ ∈ L2
loc(R+, H

1(Ω)) ∩ L∞
loc(R+, L

∞(Ω)).

(P)

Remark 2.2. Let (u, b, ψ) be a solution of (P). Lemma 5.1(ii), (iii) ensure that
u, b ∈ C(R+, Y ). Furthermore one easily obtains that u, b ∈ C(R+, (L

∞(Ω,Rm), w∗)),
and ψ ∈ C(R+, H

1(Ω)); see Lemma 3.1, too. These properties imply that the relations

E(ψ(t), u(t)) = 0 in H1(Ω)∗,

u(t) = p0 b(t) in L∞(Ω,Rm), u(t), b(t) ≥ 0 a.e. on Ω
(2.9)

are fulfilled not only for a.a. t ∈ R+, but also ∀t ∈ R+.

2.5. Main result. Now we formulate the main result of the paper.
Theorem 2.3. There exists a solution of (P).
Further qualitative properties of the evolution problem (P) are summarized in

section 4.

3. Proofs.

3.1. The nonlinear Poisson equation. We start with some results concerning
the Poisson equation which we need in what follows.

Lemma 3.1. For any u ∈ Y there exists a unique solution ψ ∈ H1(Ω) of the
equation E(ψ, u+) = 0. Moreover, there is an exponent q > 2, a positive constant c,
and a monotonously increasing function d: R+ → R+ such that

‖ψ − ψ‖H1 ≤ c ‖u− u‖Y ∀u, u ∈ Y, E(ψ, u+) = E(ψ, u+) = 0,(3.1)

‖ψ‖L∞ ≤ c

{
1 +

m∑
i=1

‖u+
i lnu+

i ‖L1 + d(‖ψ‖H1)

}
∀u ∈ Y, E(ψ, u+) = 0,(3.2)

‖ψ‖W 1,q ≤ c

{
1 +

m∑
i=1

‖ui‖L2q/(2+q) + d(‖ψ‖H1)

}
∀u ∈ Y, E(ψ, u+) = 0,(3.3)

‖ψ‖H1 ≤ c(1 + ‖u‖Y ) ∀u ∈ Y, E(ψ, u+) = 0.(3.4)

Finally, let S = [0, T ], T > 0. Then for every u ∈ L2(S, Y ) there exists a unique
ψ ∈ L2(S,H1(Ω)) such that

E(ψ(t), u+(t)) = 0 for a.a. t ∈ S.

If u ∈ C(S, Y ), then ψ ∈ C(S,H1(Ω)) follows and the last equation holds ∀t ∈ S.
Proof. For the first existence result and the estimates (3.1), (3.2) we refer to

[16, Lemma 1]. The estimate (3.3) is a consequence of Gröger’s regularity result
for elliptic equations [14, Theorem 1] and of Trudinger’s imbedding theorem [25].
Moreover, let ψ0 be the (unique) solution of E(ψ0, 0) = 0. According to (3.1) we
have ‖ψ − ψ0‖H1 ≤ c‖u‖Y if u ∈ Y and E(ψ, u+) = 0. Thus (3.4) follows. The last
assertions result from the pointwise existence result and (3.1).
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3.2. First regularized problem (PN). In order to prove Theorem 2.3 we shall
consider two regularized problems which are defined on an arbitrary given interval
S = [0, T ]. First we introduce a problem (PN ) as follows. Let N ∈ R, N > 0, be
given and let ρN : R

m+1 → [0, 1] be a Lipschitz continuous function with

ρN (y) =

⎧⎨
⎩

0 if |y|∞ ≥ N,

1 if |y|∞ ≤ N/2,
|y|∞ = max{|y1|, . . . , |ym+1|}.

We define the functions rΣ
i : Σ × R

mΣ
+ × R → R, i = 1, . . . ,mΣ, Σ = Ω,Γ, by

rΩ
i (x, b, ψ) = ρN (b, ψ)

∑
(α, β)∈RΩ

RΩ
αβ(x, b, ψ)(βi − αi),

rΓ
i (x, b1, . . . , bl, ψ) = ρN (b1, . . . , bl, 0, . . . , 0, ψ)

∑
(α, β)∈RΓ

RΓ
αβ(x, b1, . . . , bl, ψ)(βi − αi).

These functions satisfy the Carathéodory conditions, and the functions rΣ
i (x, ·, ·) are

Lipschitz continuous uniformly w.r.t. x since RΣ
αβ(x, ·, ·) are locally Lipschitz con-

tinuous uniformly w.r.t. x and ρN is a Lipschitz continuous function with compact
support. Further important properties of these functions are

|rΣ
i (x, b, ψ)| ≤ c(N) for a.a. x ∈ Σ, ∀(b, ψ) ∈ R

mΣ
+ × R, i = 1, . . . ,mΣ,(3.5)

mΣ∑
i=1

rΣ
i (x, b, ψ) (ln bi + Pi(ψ)) ≤ 0 for a.a. x ∈ Σ, ∀(b, ψ) ∈ R

mΣ
+ × R, b > 0.(3.6)

We define the operator RN :X+ ×H1(Ω) → X∗ by

〈RN (b, ψ), b〉X =

∫
Ω

m∑
i=1

rΩ
i (·, b1, . . . , bm, ψ) bi dx

+

∫
Γ

l∑
i=1

rΓ
i (·, b1, . . . , bl, ψ) bi dΓ, b ∈ X.

Now our first regularized problem is formulated as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

u′(t) + A(b(t), ψ(t)) = RN (b(t), ψ(t)),

E(ψ(t), u(t)) = 0, u(t) = Bb(t) for a.a. t ∈ S, u(0) = U,

u ∈ H1(S,X∗) ∩ L2(S, Y ), b ∈ L2(S,X) ∩ L∞(S,L∞
+ (Ω,Rm)),

ψ ∈ L2(S,H1(Ω)) ∩ L∞(S,L∞(Ω)).

(PN )

3.3. Energy estimates for solutions of (PN). We summarize some results

which can be obtained as in [11, 16]. Let F̃1, F̃2 : Y → R be given by

F̃1(u) =

∫
Ω

{
ε

2
|∇ψ|2 + g(·, ψ) −

m∑
i=1

uihi(ψ)

}
dx, u ∈ Y+,(3.7)
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where the functions g, hi are defined by

g(x, ψ) = e(x, ψ)ψ −
∫ ψ

0

e(x, z) dz, x ∈ Ω, ψ ∈ R,

hi(ψ) =Qi(ψ)ψ −
∫ ψ

0

Qi(z) dz = P ′
i (ψ)ψ − Pi(ψ), ψ ∈ R, i = 1, . . . ,m,

and ψ ∈ H1(Ω) ∩ L∞(Ω) is the unique solution of the Poisson equation E(ψ, u) = 0,

F̃2(u) =

∫
Ω

m∑
i=1

{
ui

[
ln

ui

p0i
− 1

]
+ p0i

}
dx, u ∈ Y+,(3.8)

F̃1(u) = +∞, F̃2(u) = +∞, u ∈ Y \ Y+.

Finally, we define the functionals

Fk = (F̃ ∗
k |X)∗ : X∗ → R, k = 1, 2, F = F1 + F2 : X∗ → R.(3.9)

The value F (u) represents the free energy of the state u ∈ X∗.
Lemma 3.2. The functional F = F1 + F2 : X∗ → R is proper, convex, and lower

semicontinuous. For u ∈ Y+ it can be evaluated according to (3.7), (3.8).
For the proof see [11, Lemma 3.2]. Next, we introduce the functional D : MD → R

by the formula

D(u) = 4

∫
Ω

l∑
i=1

Di(·, b, ψ)pi(·, ψ)|∇√
ai|2 dx, u ∈ MD,(3.10)

MD =
{
u ∈ L∞

+ (Ω,Rm) :
√
a ∈ X, where a = u/p(·, ψ) and E(ψ, u) = 0

}
,(3.11)

where pi(·, ψ) = p0i e
−Pi(ψ), i = 1, . . . ,m. The functional D is a nonnegative lower

estimate for the dissipation rate of problem (PN ) (and also of problem (P); see
(4.3)), where the contributions arising from the reactions have been omitted in view
of (3.6). Following the ideas in [16, section 5]) and [11] (see also the similar proof of
Lemma 3.15) we obtain the following.

Lemma 3.3. Along any solution (u, b, ψ) of (PN ) the free energy F (u) remains
bounded from above and decreases monotonously; more precisely,

F (u(t2)) +

∫ t2

t1

D(u(t)) dt ≤ F (u(t1)) ≤ F (U), 0 ≤ t1 ≤ t2 ≤ T,(3.12)

holds. Moreover, there exist constants c, c3.13 > 0 depending only on the data but not
on N and T such that

m∑
i=1

‖ui lnui‖L∞(S,L1(Ω)) ≤ c, ‖u‖L∞(S,L1(Ω,Rm)) ≤ c,

‖ψ‖L∞(S,H1(Ω)) ≤ c, ‖ψ‖L∞(S,L∞(Ω)), ‖ψ‖L∞(S,L∞(Γ)) ≤ c3.13

(3.13)

for any solution of (PN ).
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Remark 3.4. Note that the last two estimates of Lemma 3.3 together with the
assumptions (2.4), (2.6), (2.7) ensure the existence of constants c, ε̃, ε > 0 such that

kΣ
αβ(·, b1, . . . , bmΣ

, ψ) ≤ c a.e. in S × Σ, (α, β) ∈ RΣ, Σ = Ω, Γ,

ε̃ ≤ 2kΩ
α(i)β(i)

(·, b, ψ) ePi(ψ) a.e. in S × Ω, i = l + 1, . . . ,m,

ε ≤ Di(·, b, ψ)p0i ≤ c a.e. in S × Ω, i = 1, . . . , l,

for any solution (u, b, ψ) of (PN ).

3.4. Further a priori estimates for solutions of (PN). The constants in
the estimates of this subsection will depend on T . Therefore it is not possible to use
these results to obtain global (w.r.t. time) bounds for solutions of (P). Such global
bounds are derived in [11] by a modified method.

Lemma 3.5. There is a constant c3.14 > 0 not depending on N such that

‖bi(t)‖L2 ≤ c3.14 ∀t ∈ S, i = 1, . . . ,m,(3.14)

for any solution (u, b, ψ) of (PN ).
Proof. Let (u, b, ψ) be a solution of (PN ).
1. Choosing q as in Lemma 3.1 we obtain by Lemmas 3.1 and 3.3 that

‖ψ(t)‖W 1,q ≤ c

(
1 +

m∑
i=1

‖bi(t)‖L2q/(2+q)

)
for a.a. t ∈ S.(3.15)

2. We take into account the assumptions (2.5) and (2.7) concerning the order of
the source terms of the reactions and the presence of reactions with quadratic sink
terms for the immobile species, respectively. Since ‖ψ‖L∞(S,L∞(Σ)) ≤ c3.13, Σ = Ω,Γ,
and |ρN (b, ψ)| ≤ 1 we find that∫

Ω

m∑
i=1

rΩ
i (·, b, ψ) bi dx

≤
∫

Ω

ρN (b, ψ)

m∑
k=l+1

{
c

l∑
i=1

(b3i + b2i bk + bib
2
k + b2k + 1) − ε̃ b3k

}
dx ≤ c

l∑
i=1

‖bi‖3
L3 + c,

∫
Γ

l∑
i=1

rΓ
i (·, b1, . . . , bl, ψ) bi dΓ ≤ c

l∑
i=1

‖bi‖2
L2(Γ) + c.

3. Testing the evolution equation in (PN ) with 2b, and using the estimates from
step 2 as well as (5.1), (5.3), and Young’s inequality, we obtain

m∑
i=1

(
ε0‖bi(t)‖2

L2 − c‖Ui‖2
L2

)

≤
∫ t

0

l∑
i=1

{
− 2ε‖bi‖2

H1 + c(‖bi‖Lr‖ψ‖W 1,q‖bi‖H1 + ‖bi‖3
L3 + ‖bi‖2

L2(Γ) + 1)
}

ds

≤
∫ t

0

l∑
i=1

{
−ε‖bi‖2

H1 + c(‖bi‖Lr‖ψ‖W 1,q‖bi‖H1 + ‖bi‖4
L2 + 1)

}
ds ∀t ∈ S,

where r = 2q/(q − 2). Using the estimate ‖bk‖L2q/(2+q) ≤ ‖bk‖(r−2)/r
L1 ‖bk‖2/r

L2 as well
as Lemma 3.3 and (3.15), (5.3) we calculate
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c‖bi‖Lr‖ψ‖W 1,q‖ui‖H1 ≤ c‖bi‖2/r
L2

(
1 +

m∑
k=1

‖bk‖2/r
L2

)
‖bi‖2(r−1)/r

H1

≤ ε‖bi‖2
H1 + c‖bi‖2

L2

m∑
k=1

‖bk‖2
L2 + c.

Therefore we can continue the first estimate in step 3 as

m∑
k=1

‖bk(t)‖2
L2 ≤ c

∫ t

0

m∑
k=1

l∑
i=1

‖bi‖2
L2‖bk‖2

L2 ds + c ∀t ∈ S.

Let i, 1 ≤ i ≤ l, be fixed. By Lemma 3.3 and (3.10) we find that

‖∇√
ai‖L2(S,L2) ≤ c, ‖ui‖L∞(S,L1) ≤ c, ‖ψ‖L∞(S,L∞) ≤ c

and ‖√ai‖L2(S,H1) ≤ c, ‖√ai‖L∞(S,L2) ≤ c. Thus interpolation yields ‖√ai‖L4(S,L4) ≤
c and ‖bi‖L2(S,L2) ≤ c. A special form of Gronwall’s lemma (see [26, pp. 14, 15]) leads
to the desired result.

Again, let q be chosen as in Lemma 3.1. Since 2q/(2 + q) < 2 we obtain from
(3.14), (3.15) the estimate ‖ψ‖L∞(S,W 1,q) ≤ cq. We define

κ = c2rq + 1, where r = 2q/(q − 2), q is as in Lemma 3.1.(3.16)

Lemma 3.6. There is a constant c3.17 ≥ 1 not depending on N such that

‖bi(t)‖L4 ≤ c3.17 ∀t ∈ S, i = 1, . . . ,m,(3.17)

for any solution (u, b, ψ) of (PN ).
Proof. Let (u, b, ψ) be a solution of (PN ). We use the test function 4(b31, . . . , b

3
m).

Using an argument similar to that in step 2 of the proof of Lemma 3.5, we find that

∫
Ω

m∑
i=1

rΩ
i (·, b, ψ) b3i dx

≤
∫

Ω

ρN (b, ψ)

m∑
k=l+1

{
c

l∑
i=1

(
(b2i + 1)b3k + (b2k + 1)b3i + b5i

)
− ε̃b5k

}
dx ≤ c

l∑
i=1

‖bi‖5
L5 + c,

∫
Γ

l∑
i=1

rΓ
i (·, b1, . . . , bl, ψ) b3i dΓ ≤ c

l∑
i=1

‖bi‖4
L4(Γ) + c.

Therefore we obtain ∀t ∈ S

m∑
i=1

(
ε0‖bi(t)‖4

L4 − c‖Ui‖4
L4

)

≤
∫ t

0

l∑
i=1

{
− 2ε‖b2i ‖2

H1 + c(‖∇ψ‖Lq‖∇(b2i )‖L2‖b2i ‖Lr + ‖bi‖5
L5 + ‖bi‖4

L4(Γ) + 1)
}

ds.

We apply the trace inequality (5.1), Gagliardo–Nirenberg’s inequality (5.3), (3.16),
and Young’s inequality,
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ε0

m∑
i=1

‖bi(t)‖4
L4≤

∫ t

0

l∑
i=1

{
− ε

2
‖b2i ‖2

H1 + c(‖ψ‖W 1,q‖b2i ‖
1/r
L1 ‖b2i ‖

2−1/r
H1

+ ‖b2i ‖L1‖b2i ‖
3/2
H1 + ‖b2i ‖

1/2
L1 ‖b2i ‖

3/2
H1 + 1)

}
ds + c

≤ c

∫ t

0

l∑
i=1

(
κ‖b2i ‖2

L1 + ‖b2i ‖4
L1 + ‖b2i ‖2

L1 + 1
)

ds + c ∀t ∈ S,

and the assertion follows from Lemma 3.5.
Theorem 3.7. There exists a constant c3.18 > 0 not depending on N such that

‖bi(t)‖L∞ ≤ c3.18 ∀t ∈ S, i = 1, . . . ,m,

‖bi‖L∞(S,L∞(Γ)) ≤ c3.18, i = 1, . . . , l,
(3.18)

for any solution (u, b, ψ) of (PN ).
Proof. The proof will be done in two steps. First, by Moser iteration we establish

global upper bounds for the mobile species. Then, using these bounds we derive
global upper bounds for the immobile species. Let (u, b, ψ) be a solution of (PN ). Let
K = max {1,maxi=1,...,m ‖Ui/p0i‖L∞} and define zi = (bi −K)+, i = 1, . . . ,m.

1. Bounds for the mobile species. Let p ≥ 8. We use p(zp−1
1 , . . . , zp−1

l , 0, . . . , 0)

as the test function and define wi = z
p/2
i , i = 1, . . . , l. At first let us remark that

l∑
i=1

rΩ
i (·, b, ψ) zp−1

i ≤ c

l∑
i=1

m∑
k=1

(b2k + 1)zp−1
i ≤ c

l∑
i=1

(
zp+1
i +

m∑
k=l+1

zp−1
i z2

k

)
+ c.

With Lemma 3.6 and Hölder’s inequality we can estimate∫
Ω

zp−1
i z2

k dx ≤ ‖zi‖p−1
L2(p−1)‖zk‖2

L4 ≤ c23.17‖wi‖2(p−1)/p

L4(p−1)/p .

Therefore we obtain ∀t ∈ S

ε0

l∑
i=1

‖wi(t)‖2
L2 ≤

∫ t

0

l∑
i=1

{−2ε‖wi‖2
H1 + cp(‖∇ψ‖Lq‖∇wi‖L2(‖wi‖Lr + 1)

+‖wi‖2(p+1)/p

L2(p+1)/p + c23.17‖wi‖2(p−1)/p

L4(p−1)/p + ‖wi‖2
L2(Γ) + 1)}ds.

We apply for k = 1 and p̃ = r, p̃ = 2(p + 1)/p, and p̃ = 4(p − 1)/p, respectively,
Gagliardo–Nirenberg’s inequality (5.3) and continue:

ε0

l∑
i=1

‖wi(t)‖2
L2

≤
∫ t

0

l∑
i=1

{−ε‖wi‖2
H1 + cp2r(‖ψ‖2r

W 1,q + 1)(‖wi‖2
L1 + 1) + cp(‖wi‖(p+2)/p

H1 ‖wi‖L1

+ c23.17‖wi‖(3p−4)/2p
H1 ‖wi‖1/2

L1 + ‖wi‖3/2
H1 ‖wi‖1/2

L1 + 1)}ds

≤
∫ t

0

l∑
i=1

c{p2rκ(‖wi‖2
L1 + 1) + p4‖wi‖2p/(p−2)

L1 + p4c83.17‖wi‖2p/(p+4)
L1 + p4‖wi‖2

L1}ds

≤ cp2r(κ + c83.17)

∫ t

0

l∑
i=1

(
‖wi‖2p/(p−2)

L1 + 1
)
ds

≤ cp2r
(
κ + c83.17

)
T

l∑
i=1

(
sup
s∈S

‖zi(s)‖p
2/(p−2)

Lp/2 + 1

)
.
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Therefore the iteration formula

l∑
i=1

‖zi(t)‖pLp + 1 ≤ c p2r
(
κ + c83.17

)
T

(
l∑

i=1

sup
s∈S

‖zi(s)‖p/2Lp/2 + 1

)2p/(p−2)

∀t ∈ S

results, where c > 1 depends only on the data, and κ, r, c3.17 are defined in (3.16) and
Lemma 3.6. Now we set p = 2k, k ∈ N, k ≥ 3. The iteration formula yields

γk ≤
(
24r

(
κ + c83.17

)
T c γ2

)c02k

, γk =

l∑
i=1

sup
s∈S

‖zi(s)‖2k

L2k + 1, c0 =

∞∏
j=1

2j

2j − 1
.

Passing to the limit k → ∞ we obtain

l∑
i=1

‖zi(t)‖L∞ ≤
√
l

(
24r

(
κ + c83.17

)
T c

(
l∑

i=1

sup
s∈S

‖zi(s)‖4
L4 + 1

))c0

∀t ∈ S.

With Lemma 3.6 and (5.2) the desired estimates for bi, i = 1, . . . , l, are verified.
2. Bounds for the immobile species. Now, let p ≥ 2. We use the test function

p(0, . . . , 0, zp−1
l+1 , . . . , z

p−1
m ). Taking into account the assumptions (2.7), (2.5), the es-

timates for bi, i = 1, . . . , l, obtained in step 1, as well as the inequalities bk ≥ zk ≥ 0
we find that

m∑
k=l+1

rΩ
k (·, b, ψ) zp−1

k ≤ c

l∑
i=1

m∑
k=l+1

(b2i + bi + 1)zp−1
k − ε̃

m∑
k=l+1

zp+1
k

≤ c̃

m∑
k=l+1

zp−1
k − ε̃

m∑
k=l+1

zp+1
k ≤ (m− l)

c̃(p+1)/2

ε̃(p−1)/2
.

The last estimate follows from Young’s inequality. Therefore we obtain

ε0

m∑
k=l+1

‖zk(t)‖pLp ≤ pT |Ω|(m− l)
c̃(p+1)/2

ε̃(p−1)/2
∀t ∈ S.

And consequently,

‖zk(t)‖Lp ≤ (pT |Ω|(m− l)/ε0)
1/p c̃(p+1)/2p

ε̃(p−1)/2p
≤ c∞ ∀t ∈ S, k = l + 1, . . . ,m.

Passing to the limit p → ∞ we get ‖zk(t)‖L∞ ≤ c∞ ∀t ∈ S, k = l + 1, . . . ,m, which
leads to the desired estimates for bk, k = l + 1, . . . ,m.

3.5. Second regularized problem (PM). We prove the solvability of (PN )
for fixed N > 0 by means of a second regularization (PM ). Let

M∗ = max
{
N + 1, max

i=1,...,m
‖Ui/p0i‖L∞

}
,(3.19)

and let M ≥ M∗. We denote by σM the projection from R onto [−M,M ],

σM (y) = sign(y) min{|y|,M}, y ∈ R.

Moreover, we introduce the functions
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DiM (x, b, ψ) = Di(x, b
+, σM (ψ)), i = 1, . . . , l, x ∈ Ω, b ∈ R

m, ψ ∈ R,

define the operator AM :X ×H1(Ω) → X∗,

〈AM (b, ψ), b〉X =

∫
Ω

l∑
i=1

DiM (·, b, ψ)p0i(∇bi + [σM (bi)]
+Qi(ψ)∇ψ) · ∇bi dx, b ∈ X,

and consider the following problem:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u′(t) + AM (b(t), ψ(t)) = RN (b+(t), ψ(t)),

E(ψ(t), u+(t)) = 0, u(t) = Bb(t) for a.a. t ∈ S, u(0) = U,

u ∈ H1(S,X∗) ∩ L2(S, Y ), b ∈ L2(S,X), ψ ∈ L2(S,H1(Ω)).

(PM )

Let us remark that we have u, b ∈ C(S, Y ), ψ ∈ C(S,H1(Ω)) for solutions of (PM ).

3.6. Existence result for (PM). First we derive an equivalent formulation of
(PM ). We write b in the form b = (v, w), where v = (b1, . . . , bl) and w = (bl+1, . . . , bm)
denote the chemical activities of the mobile and immobile species, respectively. We
introduce the spaces

Y l = L2(Ω,Rl), Y m−l = L2(Ω,Rm−l), X l = H1(Ω,Rl)

and the operators Bmob:L2(S, Y l) → L2(S, Y l), Bimm:L2(S, Y m−l) → L2(S, Y m−l),

〈(Bmobv)(t), v〉Y l=

∫
Ω

l∑
i=1

p0i vi(t) vi dx, v ∈ Y l,

〈(Bimmw)(t), w〉Y m−l=

∫
Ω

m−l∑
i=1

p0(l+i) wi(t)wi dx, w ∈ Y m−l, t ∈ S.

Moreover, we define the operators

Rmob:L2(S,X l) × L2(S, Y m−l) × L2(S,H1(Ω)) → L2(S,X l∗),

Rimm:L2(S,X l) × L2(S, Y m−l) × L2(S,H1(Ω)) → L2(S, Y m−l),

Amob:L2(S,X l) × L2(S,X l) × L2(S, Y m−l) × L2(S,H1(Ω)) → L2(S,X l∗),

A0
mob:L2(S,X l) × L2(S, Y m−l) × L2(S,H1(Ω)) → L2(S,X l∗)

as follows:

〈Rmob(v, w, ψ), v〉L2(S,Xl)=

∫
S

〈RN (v+, w+, ψ), (v, 0)〉X ds, v ∈ L2(S,X l),

〈Rimm(v, w, ψ), w〉L2(S,Y m−l)=

∫
S

〈RN (v+, w+, ψ), (0, w)〉X ds, w ∈ L2(S, Y m−l),

〈Amob(v; v̂, w, ψ), v〉L2(S,Xl)=

∫
S

∫
Ω

l∑
i=1

(DiM (·, v̂, w, ψ) p0i ∇vi · ∇vi + vivi) dxds,

〈A0
mob(v, w, ψ), v〉L2(S,Xl)=

∫
S

∫
Ω

l∑
i=1

(DiM (·, v, w, ψ) p0i [σM (vi)]
+Qi(ψ)∇ψ · ∇vi

− vivi) dxds, v ∈ L2(S,X l).
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For any given v ∈ L2(S, Y l), w ∈ L2(S, Y m−l) we have that (Bmobv,Bimmw) ∈
L2(S, Y ), and by Lemma 3.1 we find a unique ψ ∈ L2(S,H1(Ω)) ∩ L∞(S,L∞(Ω))
such that

E(ψ(t), ((Bmobv)
+(t), (Bimmw)+(t))) = 0 for a.a. t ∈ S.

We denote by N :L2(S, Y l)×L2(S, Y m−l) → L2(S,H1(Ω)) the corresponding solution
operator, ψ = N (v, w). Problem (PM ) is obviously equivalent to the system of
equations

(Bmobv)
′ + Amob(v; v, w,N (v, w)) =Rmob(v, w,N (v, w))

−A0
mob(v, w,N (v, w)),

(Bmobv)(0) = Umob = (U1, . . . , Ul), v ∈ W l,

(3.20)

where W l =
{
v ∈ L2(S,X l): (Bmobv)

′ ∈ L2(S,X l∗)
}
⊂ C(S, Y l),

(Bimmw)′ = Rimm(v, w,N (v, w)),

(Bimmw)(0) = Uimm = (Ul+1, . . . , Um), Bimmw ∈ H1(S, Y m−l).
(3.21)

Let us briefly outline how these equations will be solved. We start with some
fixed v̂ ∈ W l. First we solve the initial value problem

(Bimmw) ′ = Rimm(v̂, w,N (v̂, w)),

(Bimmw)(0) = Uimm, Bimmw ∈ H1(S, Y m−l).
(3.22)

This problem has a unique solution w = T v̂ (see Lemma 3.8). Next we solve the
initial boundary value problem

(Bmobv)
′ + Amob(v; v̂, T v̂,N (v̂, T v̂)) =Rmob(v̂, T v̂,N (v̂, T v̂))

−A0
mob(v̂, T v̂,N (v̂, T v̂)),

(Bmobv)(0) =Umob, v ∈ W l.

(3.23)

Also this problem has a unique solution v = Qv̂ (see Lemma 5.2). The operator Q is
compact and continuous (see Lemma 3.10). Using Schauder’s fixed point theorem we
obtain a fixed point v of Q (see Lemma 3.11). Then (v, T v) is a solution of (3.20),
(3.21).

Now we give the detailed proofs. The constants c in the estimates of this subsec-
tion can depend on the data and on M,N, T .

Lemma 3.8. For any v̂ ∈ W l there exists a unique solution w of problem (3.22),
and w belongs to H1(S, Y m−l) ⊂ C(S, Y m−l).

Proof. Let v̂ ∈ W l be fixed. The initial value problem (3.22) is obviously equiva-
lent to the initial value problem

w′ + Gw = 0, w(0) = (Bimm)−1Uimm, w ∈ H1(S, Y m−l),(3.24)

where G:L2(S, Y m−l) → L2(S, Y m−l) is defined by

Gw = −(Bimm)−1[Rimm(v̂, w,N (v̂, w))], w ∈ L2(S, Y m−l).
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For v̂ ∈ L2(S, Y l), w ∈ L2(S, Y m−l) we have N (v̂, w) ∈ L2(S,H1(Ω)) and

‖N (v̂, w1) −N (v̂, w2)‖L2(S,H1) ≤ c‖w1 − w2‖L2(S,Y m−l) ∀w1, w2 ∈ L2(S, Y m−l).

Since the functions rΩ
i (x, ·, ·) are Lipschitz continuous uniformly w.r.t. x, the estimate

‖Gw1 −Gw2‖L2(S,Y m−l) ≤ L‖w1 − w2‖L2(S,Y m−l) ∀w1, w2 ∈ L2(S, Y m−l)

follows, and [6, Chapter V, Theorem 1.3] ensures the existence of a unique solution
of (3.24). In principle, this result was obtained by means of the Banach fixed point
theorem.

We denote by T :W l → H1(S, Y m−l) the operator which assigns to v̂ the solution
w of (3.22).

Lemma 3.9. There exists a constant c > 0 such that the following estimates hold:

‖T v̂1 − T v̂2‖C(S,Y m−l) ≤ c‖v̂1 − v̂2‖L2(S,Y l) ∀ v̂1, v̂2 ∈ W l,

‖T v̂‖C(S,Y m−l) ≤ c ∀ v̂ ∈ W l.

Proof. Let wk = T v̂k, k = 1, 2. Using the test function w = w1 − w2 for the
corresponding problems (3.22), the Lipschitz continuity of rΩ

i , Hölder’s inequality,
and Lemma 3.1, we find that

‖w(t)‖2
Y m−l ≤ c‖(Bimm(w(t))‖2

Y m−l

≤ c

∫ t

0

(
‖w‖Y m−l + ‖v̂1 − v̂2‖Y l + ‖N (v̂1, w1) −N (v̂2, w2)‖H1

)
‖w‖Y m−l ds

≤ c

∫ t

0

(
‖w‖2

Y m−l + ‖v̂1 − v̂2‖2
Y l

)
ds.

Gronwall’s lemma leads to the first assertion. Next, testing (3.22) with w = T v̂ and
using (3.5), the estimate

‖w(t)‖2
Y m−l ≤ c + c

∫ t

0

‖w(s)‖Y m−l ds ≤ c +

∫ t

0

‖w(s)‖2
Y m−l ∀t ∈ S

follows, where c does not depend on v̂. Again applying Gronwall’s lemma the second
assertion is obtained.

Next we conclude that for given v̂ ∈ W l the initial boundary value problem
(3.23) has a unique solution. This follows from Lemma 5.2 since Bmob and Amob are
diagonal and the right-hand side belongs to L2(S,X l∗). We denote by Q:W l → W l

the operator which assigns to v̂ the solution v of (3.23).
Lemma 3.10. The operator Q is compact and continuous.
Proof. 1. Let {v̂n} ⊂ W l be bounded. We show that {Qv̂n} ⊂ W l contains a

convergent subsequence. Because of Lemma 5.1(v) we may assume that there exists
an element v̂ ∈ W l such that v̂n → v̂ in L2(S, Y l) as well as in L2(S,L2(Γ,Rl)). Let

vn = Qv̂n, v = Qv̂, wn = T v̂n, w = T v̂, ψn = N (v̂n, wn), ψ = N (v̂, w).

From Lemmas 3.9 and 3.1 it follows that

wn → w in L2(S, Y m−l), ψn → ψ in L2(S,H1).
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Using the test function vn − v we obtain

ε0
2
‖(vn − v)(t)‖2

Y l +

∫ t

0

ε‖vn − v‖2
Xl ds

≤
∫ t

0

c

{(
‖v̂n − v̂‖L2(Γ,Rl) + ‖ψn − ψ‖L2(Γ)

)
‖vn − v‖L2(Γ,Rl)

+ (‖v̂n − v̂‖Y l + ‖wn − w‖Y m−l + ‖ψn − ψ‖L2) ‖vn − v‖Y l

+

∫
Ω

l∑
i=1

{(|∇vi| + |∇ψ|) |DiM (·, v̂n, wn, ψn) −DiM (·, v̂, w, ψ)| |∇(vni − vi)|

+
(
|Qi(ψn) −Qi(ψ)| + |[σM (v̂ni)]

+ − [σM (v̂i)]
+|
)
|∇ψ| |∇(vni − vi)|

+ |∇(ψn − ψ)| |∇(vni − vi)|}dx

}
ds ∀t ∈ S.

Applying Hölder’s inequality and Lemma 3.9 we arrive at

‖vn − v‖2
L2(S,Xl) ≤ c‖vn − v‖L2(S,Xl){‖v̂n − v̂‖L2(S,Y l) + ‖v̂n − v̂‖L2(S,L2(Γ,Rl))

+ ‖ψn − ψ‖L2(S,H1) + In},

In =

l∑
i=1

{[∫ T

0

∫
Ω

|DiM (·, v̂n, wn, ψn) −DiM (·, v̂, w, ψ)|2 |∇vi|2 dxds

]1/2

+

[∫ T

0

∫
Ω

|DiM (·, v̂n, wn, ψn) −DiM (·, v̂, w, ψ)|2 |∇ψ|2 dxds

]1/2

+

[∫ T

0

∫
Ω

|Qi(ψn) −Qi(ψ)|2 |∇ψ|2 dxds

]1/2

+

[∫ T

0

∫
Ω

|[σM (v̂ni)]
+ − [σM (v̂i)]

+|2 |∇ψ|2 dxds

]1/2}
.

Properties of superposition operators ensure that the last four bracketed terms tend
to zero if n → ∞. Thus in summary we find that vn → v in L2(S,X l). Next we
obtain

‖(Bmobvn)′−(Bmobv)
′‖L2(S,Xl∗) ≤‖Rmob(v̂n, wn, ψn) −Rmob(v̂, w, ψ)‖L2(S,Xl∗)

+‖Amob(vn; v̂n, wn, ψn)−Amob(v; v̂, w, ψ)‖L2(S,Xl∗)

+‖A0
mob(v̂n, wn, ψn) −A0

mob(v̂, w, ψ)‖L2(S,Xl∗)

≤ c { ‖vn − v‖L2(S,Xl) + ‖v̂n − v̂‖L2(S,Y l)

+ ‖v̂n − v̂‖L2(S,L2(Γ,Rl)) + ‖wn − w‖L2(S,Y m−l)

+ ‖ψn − ψ‖L2(S,H1) + In},

and we arrive at vn → v in W l.
2. The continuity of the operator Q can be shown by similar arguments.
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Lemma 3.11. The operator Q has a fixed point.
Proof. Let v̂ ∈ W l, ψ = N (v̂, T v̂), and v = Qv̂. We use v as the test function

for (3.23), take into account the properties of DiM , Qi, and apply Lemma 3.1, (5.1),
Lemma 3.9, the boundedness of rΣ

i , and Young’s inequality. Thus we obtain

ε0‖v(t)‖2
Y l − c‖(U1, . . . , Ul)‖2

Y l + 2ε

∫ t

0

‖v‖2
Xl ds

≤ c

∫ t

0

(
1 + ‖v‖2

Y l + ‖v̂‖2
Y l + ‖ψ‖H1‖v‖Xl + ‖v‖2

L2(Γ,Rl)

)
ds

≤
∫ t

0

(
ε‖v‖2

Xl + c
(
1 + ‖v‖2

Y l + ‖v̂‖2
Y l

))
ds ∀t ∈ S.

(3.25)

Therefore we find a constant c > 0 such that ∀k > 0

e−kt

(
‖v(t)‖2

Y l +

∫ t

0

‖v‖2
Xl ds

)

≤ c + ce−kt

∫ t

0

{{
‖v‖2

Y l + ‖v̂‖2
Y l +

∫ s

0

(
‖v‖2

Xl + ‖v̂‖2
Xl

)
dτ

}
e−kseks

}
ds

≤ c + ce−kt sup
s∈S

{{
‖v(s)‖2

Y l + ‖v̂(s)‖2
Y l +

∫ s

0

(
‖v‖2

Xl + ‖v̂‖2
Xl

)
dτ

}
e−ks

}
ekt − 1

k
.

Choosing now k ≥ 3c we obtain

sup
t∈S

e−kt

(
‖v(t)‖2

Y l +

∫ t

0

‖v(s)‖2
Xl ds

)

≤ 3

2
c +

1

2
sup
t∈S

{
e−kt

(
‖v̂(t)‖2

Y l +

∫ t

0

‖v̂(s)‖2
Xl ds

)}
.

Again using Lemmas 3.1 and 3.9 we estimate

‖(Bmobv)
′‖L2(S,Xl∗)

= sup
‖v‖

L2(S,Xl)
≤1

〈Rmob(v̂, T v̂, ψ) −Amob(v; v̂, T v̂, ψ) −A0
mob(v̂, T v̂, ψ), v〉L2(S,Xl)

≤ c
(
‖v‖L2(S,Xl) + ‖ψ‖L2(S,H1) + 1

)
≤ c

(
‖v‖L2(S,Xl) + ‖v̂‖L2(S,Y l) + 1

)
≤ c̃

(
‖v‖L2(S,Xl) +

[
sup
t∈S

{
e−kt

(
‖v̂(t)‖2

Y l +

∫ t

0

‖v̂(s)‖2
Xl ds

)}
ekT

]1/2

+ 1

)
.

Now we define the set

B =

{
v ∈ W l: sup

t∈S

{
e−kt

(
‖v(t)‖2

Y l +

∫ t

0

‖v‖2
Xl ds

)}
≤ 3c,

‖(Bmobv)
′‖L2(S,Xl∗) ≤ c̃

(
2
√

3cekT + 1
)}

.

This set is a nonempty, bounded, closed, and convex subset of W l with the property
that Q(B) ⊂ B. Since the operator Q is compact and continuous, the assertion follows
from the Schauder fixed point theorem.
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Theorem 3.12. There exists a solution (u, b, ψ) of (PM ).
Proof. Because of Lemma 3.11 there exists a solution v of the problem

(Bmobv)
′+Amob(v; v, Tv,N (v,Tv)) = Rmob(v, Tv,N (v,Tv))−A0

mob(v, Tv,N (v,Tv)),

(Bmobv)(0) = (U1, . . . , Ul), v ∈ W l.

We set w = T v ∈ H1(S, Y m−l). Then the pair (v, w) fulfills (3.20) and (3.21), which
represent an equivalent formulation of problem (PM ).

3.7. Energy estimates for solutions of (PM). First, we prove the following.
Lemma 3.13. For any solution (u, b, ψ) of (PM ) and for every t ∈ S the inequal-

ities b(t), u(t) ≥ 0 a.e. on Ω are fulfilled.
Proof. Let (u, b, ψ) be a solution of (PM ). We test the evolution equation with

the function −b−. Taking into account that

(∇bi + [σM (bi)]
+Qi(ψ)∇ψ) · ∇b−i ≤ 0, i = 1, . . . , l,

−rΣ
i (·, b+1 , . . . , b+mΣ

, ψ) b−i ≤ 0, i = 1, . . . ,mΣ, Σ = Ω,Γ,

we find that ‖b−(t)‖2
Y ≤ 0 ∀t ∈ S.

Next, we introduce a regularized free energy functional FM , which is adapted to
the regularizations in problem (PM ). We define the function

lM (y) =

⎧⎨
⎩

ln y if 0 < y ≤ M,

lnM − 1 +
y

M
if y > M

and the functional F̃M2 : Y → R by

F̃M2(u) =

⎧⎪⎪⎨
⎪⎪⎩
∫

Ω

m∑
i=1

∫ ui

p0i

lM (z/p0i) dz dx if u ∈ Y+,

+∞ if u ∈ Y \ Y+.

(3.26)

Moreover, we set

FM2 = (F̃ ∗
M2|X)∗ : X∗ → R, FM = F1 + FM2 : X∗ → R,

where F1 was introduced in subsection 3.3. Since the function lM has the same
essential properties as the function ln which occurs in the definition of the functional
F2, arguments similar to those in [11] give the following results.

Lemma 3.14. The functional FM = F1 + FM2 : X∗ → R is proper, convex,
and lower semicontinuous. For u ∈ Y+ it can be evaluated according to (3.7), (3.26).
The restriction FM |Y+ is continuous. If u ∈ Y+, then P (ψ) ∈ ∂F1(u), where ψ is
the solution of E(ψ, u) = 0. If u ∈ Y , u ≥ δ > 0 and u/p0 ∈ X, then lM (u/p0) ∈
∂FM2(u), where lM (b) denotes the vector {lM (bi)}i=1,...,m.

By the definition of lM the inequality∫ y

p0i

lMi(z/p0i) dz ≥ y ln
y

p0i
− y + p0i a.e. on Ω, ∀y ∈ R+
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holds. Therefore it follows that

FM (u) ≥ c1

{
‖ψ‖2

H1 +

m∑
i=1

‖ui lnui‖L1

}
− c2, u ∈ Y+.(3.27)

Lemma 3.15. Along any solution (u, b, ψ) of (PM ) the regularized free energy
FM (u) remains bounded by its initial value and decreases monotonously,

FM (u(t2)) ≤ FM (u(t1)) ≤ FM (U) = F (U), 0 ≤ t1 ≤ t2 ≤ T.

Moreover, there exist positive constants c, c3.28, c3.29 not depending on M , such that

m∑
i=1

‖ui lnui‖L∞(S,L1(Ω)) ≤ c, ‖u‖L∞(S,L1(Ω,Rm)) ≤ c,

m∑
i=1

‖bi ln bi‖L∞(S,L1(Ω)) ≤ c3.28,(3.28)

‖ψ‖L∞(S,H1(Ω)) ≤ c, ‖ψ‖L∞(S,L∞(Ω)), ‖ψ‖L∞(S,L∞(Γ)) ≤ c3.29(3.29)

for any solution of (PM ).
Proof. Let (u, b, ψ) be a solution of (PM ).
1. We know that u ∈ H1(S,X∗), ψ ∈ L2(S,H1(Ω)), P (ψ) ∈ L2(S,X), ∇P (ψ) =

Q(ψ)∇ψ. By Lemma 3.14 we find that P (ψ(t)) ∈ ∂F1(u(t)) for a.a. t ∈ S. Thus, the
function t �→ F1(u(t)) is absolutely continuous on S, and according to the chain rule
(see [3, Lemma 3.3]) we obtain

d

dt
F1(u(t)) = 〈u′(t), P (ψ(t))〉X for a.a. t ∈ S.

2. We choose some δ ∈ (0, 1) and define uδ = u + δp0, b
δ = uδ/p0 = b + δ. Then

we find that uδ ∈ H1(S,X∗), lM (bδ) ∈ L2(S,X), ∇lM (bδi ) = ∇bi/σM (bδi ), i = 1, . . . , l.
Lemma 3.14 ensures that lM (bδ(t)) ∈ ∂FM2(u

δ(t)) for a.a. t ∈ S. Thus, the function
t �→ FM2(u

δ(t)) is absolutely continuous on S and

d

dt
FM2(u

δ(t)) =
〈
u′(t), lM (bδ(t))

〉
X

for a.a. t ∈ S.

3. We set ζδM = lM (bδ) + P (ψ) and obtain

[
F1(u(t)) + FM2(u

δ(t))
] ∣∣t2

t1
=

∫ t2

t1

〈u′(t), ζδM (t)〉X dt

=

∫ t2

t1

〈RN (b(t), ψ(t)) −AM (b(t), ψ(t)), ζδM (t)〉X dt.

The volume integral in the definition of 〈RN (b, ψ), ζδM 〉X , namely,

I =

∫
Ω

ρN (b, ψ)
∑

(α, β)∈RΩ

kΩ
αβ(·, b, ψ)(aα − aβ)

m∑
i=1

(βi − αi)ζ
δ
Mi dx, ai = bie

Pi(ψ),

is estimated as follows. Since for |(b, ψ)|∞ > N the integrand vanishes we may assume
that |(b, ψ)|∞ ≤ N and thus bi ≤ N , bδi ≤ N +1 ≤ M , ζδMi = ln aδi with aδi = bδi e

Pi(ψ),
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i = 1, . . . ,m, |ψ| ≤ N . Then we have

[
(aδ)α − (aδ)β

] m∑
i=1

(βi − αi) ln aδi ≤ 0,

∣∣∣∣∣[aα − aβ − (aδ)α + (aδ)β
] m∑
i=1

(βi − αi) ln aδi

∣∣∣∣∣ ≤ cNδ(1 + | ln δ|)

and I ≤ cNδ(1 + | ln δ|). The boundary integral is handled analogously and, in sum-
mary, we obtain

〈RN (b(t), ψ(t)), ζδM (t)〉X ≤ hδ
1 = cNδ(1 + | ln δ|) for a.a. t ∈ S.

Next we consider the term −〈AM (b, ψ), ζδM 〉X , i.e., the integral

−
∫

Ω

l∑
i=1

DiM (·, b, ψ)p0i(∇bi + σM (bi)Qi(ψ)∇ψ) · ∇ζδMi dx.

Here we write

∇bi + σM (bi)Qi(ψ)∇ψ = σM (bδi )∇ζδMi +
[
σM (bi) − σM (bδi )

]
Qi(ψ)∇ψ,

and in view of DiM (·, b, ψ) ≤ cM we obtain

−〈AM (b(t), ψ(t)), ζδM (t)〉X ≤ hδ
2(t) for a.a. t ∈ S,

hδ
2(t) = cM

∫
Ω

l∑
i=1

δ|∇ψ(t)|
[
|∇ψ(t)| + 1

σM (bδi (t))
|∇bi(t)|

]
dx.

The last estimates ensure that

[
F1(u(t)) + FM2(u

δ(t))
] ∣∣t2

t1
≤
∫ t2

t1

(
hδ

1 + hδ
2(t)

)
dt,

and letting δ → 0, the inequality FM (u(t2)) − FM (u(t1)) ≤ 0 follows. The choice of
M guarantees that FM (U) = F (U). The remaining assertions of the lemma are a
consequence of (3.27), Lemma 3.1, and (5.2).

3.8. Further estimates for solutions of (PM). We prove the following.
Theorem 3.16. There is a constant c3.30 > 0 not depending on M such that

‖b‖L∞(S,L∞(Ω,Rm)) ≤ c3.30, ‖bi‖L∞(S,L∞(Γ)) ≤ c3.30, i = 1, . . . , l,(3.30)

for any solution (u, b, ψ) of (PM ).
Proof. Let (u, b, ψ) be a solution of (PM ). Let q > 2 be chosen as in Lemma 3.1,

r = 2q/(q−2), r′ = 2q/(2+q). Other constants in the following estimates can depend
on the data and on N,T .

1. Testing (PM ) with (0, . . . , 0, bl+1, . . . , bm) we obtain in view of (3.5) that

‖bi(t)‖L2 ≤ c ∀t ∈ S, i = l + 1, . . . ,m,(3.31)

which ensures that ‖ui(t)‖Lr′ ≤ c ∀t ∈ S, i = l + 1, . . . ,m. Hence we get

‖ψ(t)‖W 1,q ≤ c

[
1 +

m∑
i=1

‖ui(t)‖Lr′

]
≤ c

[
1 +

l∑
i=1

‖bi(t)‖Lr′

]
∀t ∈ S.(3.32)
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2. Testing (PM ) with 2(b1, . . . , bl, 0, . . . , 0), estimating [σM (bi)]
+ by bi, using

(3.5), (3.32), (5.1), (5.3), Young’s inequality, and Lemma 3.15, we find that

l∑
i=1

(
ε0‖bi(t)‖2

L2 − c‖Ui‖2
L2

)

≤
∫ t

0

l∑
i=1

{−2ε‖bi‖2
H1 + c(‖bi‖Lr‖ψ‖W 1,q‖bi‖H1 + ‖bi‖2

L2 + ‖bi‖2
L2(Γ) + 1)}ds

≤
∫ t

0

l∑
i=1

{
−ε‖bi‖2

H1 + c‖bi‖Lr‖bi‖H1

l∑
k=1

‖bk‖Lr′ + c

}
ds.

Using the inequality (5.4) for p = 2 and Lemma 3.15 we have

c

l∑
i=1

‖bi‖Lr‖bi‖H1

l∑
k=1

‖bk‖Lr′ ≤
l∑

i=1

{
ε

2
‖bi‖2

H1 + c‖bi‖2
L2

l∑
k=1

‖bk‖2
L2

}

≤
l∑

i=1

{
ε

2
‖bi‖2

H1 +

[ √
ε

2c3.28
‖bi ln bi‖L1‖bi‖H1 + c‖bi‖L1

]2
}

≤
l∑

i=1

ε‖bi‖2
H1 + c.

The previous estimates and the inequalities (3.31), (3.32) ensure the existence of
positive constants c, κ̃ not depending on M such that

‖bi(t)‖L2 ≤ c, i = 1, . . . ,m, ‖ψ(t)‖2r
W 1,q + 1 ≤ κ̃ ∀t ∈ S.(3.33)

3. Following the estimates in the proofs of Lemma 3.6 and Theorem 3.7, but
estimating [σM (bi)]

+ by bi and using κ̃ from (3.33) instead of κ, we find that

‖bi(t)‖L4 ≤ c̃, i = 1, . . . ,m,

l∑
i=1

‖(bi −K)+(t)‖L∞ ≤
√
l

(
24r

(
κ̃ + c̃ 8

)
cT

(
l∑

i=1

sup
s∈S

‖(bi −K)+(s)‖4
L4 + 1

))c0

,

‖(bi −K)+(t)‖L∞ ≤ c, i = l + 1, . . . ,m, ∀t ∈ S,

where the constants K, c0 have the same meaning as in the proof of Theorem 3.7.
This provides the desired estimates.

3.9. Existence result for (PN).
Theorem 3.17. There exists a solution of (PN ).
Proof. Let N > 0 be fixed. We choose M = max{M∗, c3.29, c3.30} (see (3.19),

Lemma 3.15, and Theorem 3.16). By Theorem 3.12 there is a solution (u, b, ψ) of
(PM ). Since b ≥ 0 (see Lemma 3.13) and

‖ψ‖L∞(S,L∞(Ω)), ‖ψ‖L∞(S,L∞(Γ)) ≤ M,

‖bi‖L∞(S,L∞) ≤ M, i = 1, . . . ,m, ‖bi‖L∞(S,L∞(Γ)) ≤ M, i = 1, . . . , l

(see Lemma 3.15 and Theorem 3.16) this solution is a solution of (PN ), too.

3.10. Existence result for (P).
Proof of Theorem 2.3. It suffices to prove the existence of a solution of (P)

on any finite time interval S = [0, T ]. Such problems are denoted by (PS). We
choose N = 2 max{c3.13, c3.18} (see Lemma 3.3 and Theorem 3.7). Then according to
Theorem 3.17 there is a solution (u, b, ψ) of (PN ). The choice of N guarantees that
RN (b, ψ) = R(b, ψ). Therefore (u, b, ψ) is a solution of (PS), too.
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4. Remarks. For the sake of completeness we summarize here some results of
our earlier papers [11, 16] concerned with qualitative properties of solutions of (P),
the existence of which is now established by the results of the present paper.

4.1. Uniqueness. Under the restrictive assumption that⎧⎨
⎩Di: Ω × R → R+ does not depend on b,

Di(x, ·) is locally Lipschitz continuous uniformly w.r.t. x, i = 1, . . . , l,
(4.1)

the solution of (P) is unique (see [11, Lemma 7.2]).

4.2. Steady states. We regard the set RΓ ⊂ Z
l
+ × Z

l
+ as a subset of Z

m
+ × Z

m
+

by setting αi = βi = 0, i = l+1, . . . ,m, (α, β) ∈ RΓ, and introduce the stoichiometric
subspace S belonging to all reactions,

S = span{α− β : (α, β) ∈ RΩ ∪RΓ} ⊂ R
m.

Every solution of (P) fulfills the invariance property
∫
Ω

{
u(t) − U

}
dx ∈ S, t ∈ R+.

Therefore we consider the following stationary problem:⎧⎪⎨
⎪⎩
A(b, ψ) = R(b, ψ), E(ψ, u) = 0, u = Bb,

∫
Ω

{
u− U

}
dx ∈ S,

u ∈ Y, b ∈ X ∩ L∞
+ (Ω,Rm), ψ ∈ H1(Ω) ∩ L∞(Ω).

(S)

In addition to the assumptions in subsection 2.2 we suppose that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
Ω

U · ζ dx > 0 ∀ζ ∈ S⊥, ζ ≥ 0, ζ �= 0;{
a ∈ R

m
+ : aα = aβ ∀(α, β) ∈ RΩ ∪RΓ,

∫
Ω

(u− U) dx ∈ S, where

u = ap(·, ψ) and ψ is the solution of E(ψ, u) = 0

}
∩ ∂R

m
+ = ∅;

kΣ
αβ(x, b, ψ) ≥ bΣαβ,R(x) for a.a. x ∈ Σ, ∀b ∈ R

mΣ
+ , ∀ψ ∈ [−R,R], R > 0,

where bΣαβ,R ∈ L∞
+ (Σ), ‖bΣαβ,R‖L1(Σ) > 0 ∀(α, β) ∈ RΣ, Σ = Ω,Γ.

(4.2)

Here p(·, ψ) denotes the vector pi(·, ψ) = p0i e
−Pi(ψ), i = 1, . . . ,m. Then the sta-

tionary problem (S) has a unique solution (u∗, b∗, ψ∗), which is a thermodynamic
equilibrium (see [11, Theorem 3.1]).

4.3. Energy estimates. The free energy functional F related to problem (P)
is again given by (3.7)–(3.9), while the dissipation functional D now reads as

D(u) = 4

∫
Ω

l∑
i=1

Di(·, b, ψ)pi(·, ψ)|∇√
ai|2 dx

+ 4

∫
Ω

∑
(α,β)∈RΩ

kΩ
αβ(·, b1, . . . , bm, ψ)|

√
a
α −

√
a
β |2 dx(4.3)

+ 4

∫
Γ

∑
(α,β)∈RΓ

kΓ
αβ(·, b1, . . . , bl, ψ)|

√
a
α −

√
a
β |2 dΓ, u ∈ MD,
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where the set MD is the same as in (3.11). The free energy F is a Lyapunov function
for problem (P); more precisely, the inequality (3.12) holds for any solution of (P)
where D has to be replaced by the expression (4.3) (see [11, Theorem 3.2]). Using the
additional assumption (4.2) the following estimate of the free energy by the dissipation
rate can be derived (see [16, Theorem 3]):

F (u)−F (u∗) ≤ c(R)D(u) ∀u ∈
{
u ∈ MD:F (u) − F (u∗) ≤ R,

∫
Ω

(u− U) dx ∈ S
}
.

This is a logarithmic Sobolev inequality adapted to the structure of (P) and guarantees
the exponential decay of the free energy along any solution of (P),

0 ≤ F (u(t)) − F (u∗) ≤ e−λt (F (U) − F (u∗)) ∀t ∈ R+

(see [11, Theorem 3.3]).

4.4. Global upper and lower bounds. Again under the additional assump-
tion (4.2) there exists a constant c > 0 such that

‖ui(t)‖L∞ , ‖bi(t)‖L∞ , ‖ψ(t)‖L∞ ≤ c ∀t ∈ R+, i = 1, . . . ,m,

if (u, b, ψ) is a solution of (P) (see [11, Theorem 4.1, Theorem 3.2]). Moreover, if
the initial densities are strictly positive, Ui ≥ c0 > 0, i = 1, . . . ,m, then we find a
constant c > 0 such that

ess infx∈Ω ui(t) ≥ c > 0 ∀t ∈ R+, i = 1, . . . ,m,

for any solution of (P) (see [11, Corollary 5.1]).

4.5. Asymptotic behavior. Let q be fixed as in Lemma 3.1, p ∈ [1,+∞). Then
there exist constants c, λp, λ > 0 such that

‖u(t) − u∗‖Lp(Ω,Rm), ‖b(t) − b∗‖Lp(Ω,Rm) ≤ c e−λp t ∀ t ∈ R+,

‖ψ(t) − ψ∗‖W 1,q , ‖ψ(t) − ψ∗‖L∞ ≤ c e−λ t ∀ t ∈ R+

if (u, b, ψ) is a solution of (P) (see [11, Theorem 6.1]; again (4.2) has to be assumed).

4.6. Example. Let us consider the example in subsection 2.3. Here we have

S⊥ = span{(0, 0, 1, 1, 1), (1,−1, 1,−1, 0)} ⊂ R
5,

and the first assumption in (4.2) is fulfilled if we require that∫
Ω

(U3 + U4 + U5) dx > 0.

Then the second assumption in (4.2) is fulfilled, too. In general, this assumption
means that the underlying reaction system has no false equilibria in the sense of [23].

5. Appendix. We assume that Ω ⊂ R
2 is a bounded Lipschitzian domain. We

apply Sobolev’s imbedding theorems (see [18]) and some other imbedding results,
especially the trace inequalities

‖w‖qLq(Γ) ≤ cΩ q ‖w‖q−1
L2(q−1)(Ω)

‖w‖H1(Ω) ∀w ∈ H1(Ω), q ≥ 2,(5.1)
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‖w‖L∞(Γ) ≤ ‖w‖L∞(Ω) ∀w ∈ H1(Ω) ∩ L∞(Ω),(5.2)

and the following version of the Gagliardo–Nirenberg inequality (see [5, 22]):

‖w‖Lp ≤ cp,k ‖w‖k/pLk ‖w‖1−k/p
H1 ∀w ∈ H1(Ω), 1 ≤ k < p < ∞.(5.3)

As an extended form of this inequality one obtains that for any δ > 0 and any
p ∈ (1,∞) there exists a constant cδ,p > 0 such that

‖w‖pLp ≤ δ ‖w ln |w|‖L1 ‖w‖p−1
H1 + cδ,p ‖w‖L1 ∀w ∈ H1(Ω).(5.4)

This inequality is proven in [2] for bounded domains with smooth boundary and p = 3.
But (5.4) is valid also for bounded Lipschitzian domains and p ∈ (1,∞), since (5.3)
is true in this case, too.

Let p0 ∈ L∞(Ω), ess infx∈Ω p0(x) > 0. We define B:L2(Ω) −→ L2(Ω) by

(Bw,w)L2 =

∫
Ω

p0 wwdx, w ∈ L2(Ω).

Let S = [0, T ] be a compact interval. The extended operator B:L2(S,L2(Ω)) −→
L2(S,L2(Ω)) is defined by (Bw)(t) = B(w(t)) for a.a. t ∈ S. Because of properties
of p0 the operator B is linear, continuous, self-adjoint, and positive definite, and
there exists the inverse operator B−1:L2(S,L2(Ω)) −→ L2(S,L2(Ω)) with the same
properties. Let

WB = {w ∈ L2(S,H1): (Bw)′ ∈ L2(S,H1∗)}.

The following assertions can be verified as in [6, 19, 24].
Lemma 5.1.

(i) Equipped with the scalar product

(w,w)WB
= (w,w)L2(S,H1) + ((Bw)′, (Bw)′)L2(S,H1∗) ,

the linear space WB is a Hilbert space.
(ii) WB is continuously embedded in C(S,L2(Ω)).
(iii) The operator B:WB → C(S,L2(Ω)) is continuous.
(iv) For w ∈ WB and t1, t2 ∈ S the formula∫ t2

t1

〈
(Bw)′(s), w(s)

〉
H1 ds =

1

2
((Bw)(t2), w(t2))L2 −

1

2
((Bw)(t1), w(t1))L2

holds.
(v) The imbeddings of WB in L2(S,L2(Ω)) and in L2(S,L2(Γ)), respectively, are

compact.
Finally, the following existence result can be obtained as in [6, Chapter VI].
Lemma 5.2. Let A:L2(S,H1(Ω)) → L2(S,H1(Ω)∗) be the operator

〈Aw,w〉L2(S,H1) =

∫ T

0

∫
Ω

(a∇w · ∇w + dww) dxds, w, w ∈ L2(S,H1(Ω)),

where a, d ∈ L∞(S × Ω) with a(t, x), d(t, x) ≥ c > 0 a.e. on S × Ω. Then for every
f ∈ L2(S,H1(Ω)∗) and every U ∈ L2(Ω) there is a unique solution of the problem

(Bw)′ + Aw = f, (Bw)(0) = U, w ∈ WB .
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Gauthier-Villars, Paris, 1969.
[20] B. Margesin, R. Canteri, S. Solmi, A. Armigliato, and F. Baruffaldi, Boron and anti-

mony codiffusion in silicon, J. Mater. Res., 6 (1991), pp. 2353–2361.
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1. Introduction. In the last forty years a great deal has been written about
existence and multiplicity of solutions to nonlinear second order elliptic problems in
bounded and unbounded domains of R

n (n ≥ 2). Important achievements on this
topic have been made by applying various combinations of analytical techniques, and
among all of them we mention only the variational and topological methods. For
the latter, especially when the main interest is focused on the existence of positive
solutions, the fundamental tool which has been used is the maximum principle [A1]
and its consequences [GNN].

For higher order problems, a possible failure of the maximum principle causes
several technical difficulties. This fact is very likely the reason why the knowledge on
higher order nonlinear problems is far from being reasonably complete, as it is in the
second order case.

One of the most interesting and intensively studied second order model problems
that exhibits several peculiar features of most nonlinear elliptic equations is the so-
called Gel’fand problem [G, section 15],{

−∆u = λeu in Ω,
u = 0 on ∂Ω.

(1)

Here Ω is a bounded smooth domain in R
n (n ≥ 3) and λ ≥ 0 is a parameter. This

problem appears in connection with combustion theory [G, JL] and stellar structure
[C]. From a mathematical point of view, one of the main interests is that it may have
both unbounded (singular) solutions and bounded (regular) solutions (see [BV, GMP,
MP1, MP2]): by the results in [CR, BCMR] it is known that there exists λ∗ > 0
such that if λ > λ∗ there exists no solution of (1) (neither regular nor singular),
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while if 0 ≤ λ < λ∗, there exists a minimal regular solution Uλ of (1) and the map
λ �→ Uλ is smooth and increasing. In the unit ball B, the bifurcation picture of radial
solutions is rather complete. There is always a singular solution uσ := −2 log |x| with
corresponding parameter λσ = 2(n− 2). If n ≥ 10, the solution branch consists only
of minimal solutions and terminates at λ∗ = λσ in the singular solution. If 3 ≤ n ≤ 9,
then λ∗ > λσ and the extremal point (λ∗, U∗) is a turning point. The branch bends
back and meanders infinitely many times around λσ while approaching the singular
solution uσ. We refer to [BV, Figure 1] for the pictures. The interested reader may
see also [BE] for an account on motivations and related results.

Some interesting generalizations of (1) have been considered in the framework of
second order quasi-linear operators. We refer to [GPP] for equations associated to
the p-Laplace operator and to [J, JS] for the case of the k-Hessian operator.

The aim of this paper is to give a contribution to the solution of a special case of a
problem formulated in [Li, section 4.2 (c)], namely, Is it possible to obtain a description
of the solution set for higher order semilinear equations associated to exponential
nonlinearities?

Recently, interest in higher order nonlinear problems due to its exciting and
promising developments has become increasingly evident especially for fourth order
equations [PT]. Following this trend, we shall consider in this paper the fourth order
version of (1), a semilinear elliptic problem which involves the biharmonic operator,
more precisely,

{
∆2u = λeu in B,

u =
∂u

∂n
= 0 on ∂B.

(Pλ)

Here B denotes the unit ball in R
n (n ≥ 5) centered at the origin and ∂

∂n the dif-
ferentiation with respect to the exterior unit normal, i.e., in radial direction; λ ≥ 0
is a parameter. We are interested in two kinds of solutions of (Pλ), regular solutions
and singular solutions; see Definition 1 in the next section. We restrict our attention
to the case n ≥ 5, where the nonlinearity is supercritical. In low dimensions 1 ≤ n ≤ 4
the problem is subcritical and has a different behavior; see Remark 14 at the end of
the following section.

Many techniques, familiar from second order equations like the maximum prin-
ciple, are not available here. But since we restrict ourselves to the ball, at least
a comparison principle is available; see Lemma 16 below. Moreover, in fourth or-
der equations, one usually does not succeed in finding suitable nontrivial auxiliary
functions satisfying again a differential inequality. This is a serious difficulty in prov-
ing Theorem 3 (cf. the proof of [BCMR, Theorem 3]), and it is overcome by carefully
exploiting the properties of the exponential nonlinearity and the construction of mini-
mal solutions, based upon the already mentioned comparison principle. Finally, when
looking for radial solutions, one may perform a phase space analysis for the corre-
sponding system of ODEs. Here, the phase space is no longer two-dimensional, where
the topology is relatively simple and the Poincaré–Bendixson theory is available, but
we have to work in a four-dimensional phase space. Some of the resulting difficulties
could be overcome only with computer assistance.

This paper is organized as follows: In the next section we state some definitions
and the main results contained in this work (see Theorems 3, 4, 6, 7, and 12 below).
The content of sections 3 through 7 is devoted to the proofs of these theorems. Sec-
tion 8 contains some results on the stability of regular solutions of (Pλ) and a list
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of open problems that we consider of some interest and related to the main results
of this paper. Finally, in section 9 we describe the algorithm used in the computer
assisted proof of Theorem 7.

2. Main results. We first make precise in which sense we intend a function to
solve (Pλ). For this purpose, we fix some exponent p with p > n

4 and p ≥ 2. The
definitions and results below do not depend on the special choice of p.

Definition 1. We say that u ∈ L2(B) is a solution of (Pλ) if eu ∈ L1(B) and∫
B

u∆2v = λ

∫
B

euv for all v ∈ W 4,p ∩H2
0 (B).(2)

We say that a solution u of (Pλ) is regular (resp., singular) if u ∈ L∞(B) (resp.,
u �∈ L∞(B)).

Clearly, according to this definition, regular and singular solutions exhaust all
possible solutions. Note that by standard regularity theory for the biharmonic op-
erator (see [ADN]), any regular solution u of (Pλ) satisfies u ∈ C∞(B). Note also
that by the positivity preserving property of ∆2 in the ball [B] any solution of (Pλ) is
positive; see also Lemmas 16 and 18 below for a generalized statement. This property
is known to fail in general domains. For this reason, we restrict ourselves to balls also
in Theorems 3 and 4; cf. also Open Problem 8 in section 8.

We also need the notion of minimal solution, as follows.
Definition 2. We call a solution Uλ of (Pλ) minimal if Uλ ≤ uλ a.e. in B for

any further solution uλ of (Pλ).
In order to state our results, we denote by λ1 > 0 the first eigenvalue for the

biharmonic operator with Dirichlet boundary conditions{
∆2u = λ1u in B,

u =
∂u

∂n
= 0 on ∂B;

(3)

it is known from the mentioned positivity preserving property and Jentzsch’s (or
Krein–Rutman’s) theorem that λ1 is isolated and simple and that the corresponding
eigenfunctions do not change sign.

We may now state the following theorem.
Theorem 3. There exists

λ∗ ∈
[
14.72(n− 1)(n− 3),

λ1

e

)

such that the following hold:
(i) (Pλ) admits a minimal regular solution Uλ for all λ < λ∗ and no solutions if

λ > λ∗.
(ii) The map λ �→ Uλ(x) is strictly increasing for all x ∈ B. Moreover, there

exists a solution U∗ of (Pλ∗) which is the pointwise limit of Uλ as λ ↑ λ∗.
(iii) Uλ → U∗ in the norm topology of H2

0 (B) as λ ↑ λ∗.
(iv) The extremal solution U∗ and all the minimal solutions Uλ (for λ < λ∗) are

radially symmetric and radially decreasing.
It is remarkable that at λ∗ there is an immediate switch from existence of regular

minimal solutions to nonexistence of any (even singular) solution. The only possibly
singular minimal solution corresponds to λ = λ∗. This result is known from [BCMR]
for the second order problem (1), but the method used there may not be carried over
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to fourth order problems. Nevertheless, the result extends to the biharmonic case.
The proof is given in Lemma 20 below.

We may also characterize the uniform convergence to 0 of Uλ as λ → 0 by giving
the precise rate of its extinction.

Theorem 4. For all λ ∈ (0, λ∗) let Uλ be the minimal solution of (Pλ) and let

Vλ(x) =
λ

8n(n + 2)

[
1 − |x|2

]2
.

Then Uλ(x) > Vλ(x) for all λ < λ∗ and all |x| < 1, and

lim
λ→0

Uλ(x)

Vλ(x)
= 1 uniformly with respect to x ∈ B.

A complete result in the spirit of Gidas, Ni, and Nirenberg [GNN] does not hold
for fourth order equations under Dirichlet boundary conditions. It has been recently
proved by Sweers in [Sw] that for general semilinear autonomous biharmonic equations
in a ball under Dirichlet boundary conditions, we may have positive radially symmetric
solutions which are not radially decreasing, provided the right-hand side is not positive
everywhere. This phenomenon may not occur in our situation; however, it is not
known whether any smooth solution of (Pλ) is radially symmetric. Moreover, also in
the second order case it is not known whether singular solutions are always radially
symmetric. Nevertheless, Theorem 3 suggests that we pay particular attention to
radially symmetric solutions. In this context, we put r = |x| and consider the functions
u = u(r).

First of all, in the following definition we introduce a new notion of solution which
seems to be the natural framework for radially symmetric solutions.

Definition 5. We say that a radial singular solution u = u(r) of (Pλ) is weakly
singular if the limit limr→0 ru

′(r) exists.

We do not know whether every singular solution is also weakly singular. In the
second order case, Joseph and Lundgren [JL] reduce (1) to a system of two ODEs and
study its phase portrait in R

2; using Bendixson’s theorem, they show that singular
solutions are also weakly singular. For the fourth order equation (Pλ) a similar argu-
ment should be carried out in R

4 (see section 3) where a general result of Bendixson’s
type does not hold. Therefore, the equivalence between singular and weakly singular
solutions seems out of reach in our context; see Open Problem 5 in section 8.

If we seek radially symmetric solutions, we rewrite problem (Pλ) as (0 < r ≤ 1)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

d4u

dr4
+

2(n− 1)

r

d3u

dr3
+

(n− 1)(n− 3)

r2

d2u

dr2
− (n− 1)(n− 3)

r3

du

dr
= λeu(r),

u(1) = 0,

du

dr
|r=1= 0.

(4)

In [GPP, JL, MP2] the second order equation (1) was reduced to a system of two
autonomous ODEs. Here, we reduce (4) to a system of four equations. First, we make
the change of variables

s = log r, v(s) = u(es), s ∈ (−∞, 0](5)



1230 G. ARIOLI, F. GAZZOLA, H.-CH. GRUNAU, AND E. MITIDIERI

so that (4) becomes⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

d4v

ds4
+ 2(n− 4)

d3v

ds3
+ (n2 − 10n + 20)

d2v

ds2
− 2(n− 2)(n− 4)

dv

ds
= λe4s+v(s),

v(0) = 0,

dv

ds
|s=0= 0;

(6)

then we set ⎧⎪⎪⎨
⎪⎪⎩

v1(s) = v′(s) + 4,
v2(s) = −v′′(s) − (n− 2)v′(s),
v3(s) = −v′′′(s) + (4 − n)v′′(s) + 2(n− 2)v′(s),
v4(s) = −λev(s)+4s.

(7)

Finally, we obtain the following (nonlinear) differential system:⎧⎪⎪⎨
⎪⎪⎩

v′1(s) = (2 − n)v1(s) − v2(s) + 4(n− 2),
v′2(s) = 2v2(s) + v3(s),
v′3(s) = (4 − n)v3(s) + v4(s),
v′4(s) = v1(s)v4(s)

(8)

with initial conditions

v1(0) = 4, v4(0) = −λ.(9)

It turns out that (8) admits only the two stationary points P1 = (4, 0, 0, 0) and
P2 = (0, 4n − 8, 16 − 8n,−8(n − 2)(n − 4)); see section 3.1. Then, in section 3.2, we
prove the following result.

Theorem 6. Let u = u(r) be a radial solution of (Pλ) and let

V (s) = (v1(s), v2(s), v3(s), v4(s))

be the corresponding trajectory relative to (8). Then
(i) u is regular (i.e. u ∈ L∞(B)) if and only if

lim
s→−∞

V (s) = P1;

(ii) u is weakly singular if and only if

lim
s→−∞

V (s) = P2.

Our following results concern the existence of weakly singular solutions and a
lower bound λ∗

min on the value of λ∗. For all n = 5, . . . , 16 we prove the existence of
λσ such that (Pλσ ) admits a weakly singular solution; we provide a lower and upper
bound on the value of λσ. For all n = 5, . . . , 16 let λmin

σ and λmax
σ be as given in

Table 1, and for all n = 5, . . . , 10 let λ∗
min be as given in Table 1.

Theorem 7. For all n = 5, . . . , 16 there exists λσ ∈ [λmin
σ , λmax

σ ] such that (Pλσ )
admits a weakly singular solution Uσ. In particular, λσ > 8(n− 2)(n− 4).

For all n = 5, . . . , 10 the value of λ∗ is larger than λ∗
min.

In section 6 we use Theorem 6 to show that Theorem 7 is equivalent to some
intersection properties of the unstable manifolds of P1 and P2 with the hyperplane
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Table 1

n λσ λ∗ λmin
σ λmax

σ λ∗
min

5 113.19 236.49 113.11 113.26 235.89
6 260.82 362.10 260.72 260.86 361.34
7 449.55 524.70 449.45 449.60 523.16
8 679.45 728.36 679.04 679.55 724.50
9 950.28 976.66 949.58 950.49 969.81
10 1261.79 1272.09 1260.71 1262.23 1268.48
11 1613.78 1615.77 1610.89 1615.30
12 2006.09 2006.11 1997.53 2010.41
13 2438.60 2438.60 2403.42 2457.15
14 2911.21 2911.21 2843.32 2947.17
15 3423.83 3423.83 3260.54 3514.51
16 3976.40 3976.40 3597.37 4211.88

v1 = 4. The remaining part of the proof of Theorem 7 is divided into two parts.
First, in section 6 a rigorous bound on the location of the unstable manifold close
to the stationary point is obtained by analytical methods. Then the intersection of
the manifold with the hyperplane and its location are proved by a computer assisted
algorithm; see section 9. The following definition explains exactly what we mean by
a computer assisted proof.

Definition 8. A proof is called computer assisted if it consists in finitely many
elementary operations, but their number is so large that, although each step may be
written down explicitly, it is only practical to perform such operations with a computer.

We believe that a weakly singular solution exists in any dimension n ≥ 5, but
since our type of proof requires a finite number of steps for each value of n, we cannot
prove this conjecture. We performed the computer assisted proof for n = 5, . . . , 16
because the “interesting” phenomena of (Pλ) arise in these dimensions.

We expect the “singular parameter” λσ and the singular solution to be unique.
However, also for this statement, we do not yet have a proof. See Open Problem 3 in
section 8 below.

Table 1 summarizes our results: λ∗ and λσ are the best, purely numerical, esti-
mates for the values, up to two decimal places, while the numbers λmin

σ , λmax
σ , and

λ∗
min are rigorously computed values as stated in Theorem 7.

Remark 9. We point out that both the approximate numerical computation and
the computation with rigorous estimate on the error for λ∗ become very difficult as
n increases. For this reason the best rigorous estimate we have on λ∗

min for n ≥ 11 is
nothing but for λmin

σ , while the best numerical estimate we have on λ∗ for n ≥ 13 is
λσ. These values of n may be improved with a more accurate algorithm, but we do
not feel that this would lead to a qualitative improvement of the result.

From Table 1 we immediately get the following.
Corollary 10. For all n = 5, . . . , 10 we have λσ < λ∗.
Remark 11. We have numerical evidence that λσ < λ∗ for n = 11, 12 as well,

but λ∗ − λσ is much smaller than the rigorous estimate of the numerical error, and
thus we do not have a proof. For n ≥ 13 the values of λσ and λ∗ are closer than the
numerical error; therefore we cannot even provide a conjecture supported by numerical
evidence. If one could show uniqueness of the singular parameter λσ and that in fact
λσ < λ∗ in dimensions n ≤ 12, one could conclude that here the extremal solution U∗
is either regular or “strongly singular” (i.e., limr→0 ru

′(r) does not exist). For n ≥ 13
we expect the extremal solution U∗ to be weakly singular. See Open Problems 3, 4,
and 5 in section 8.
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Fig. 1.

To complete the numerical inspection of the problem, we provide Figure 1, which
shows the (regular) solution for n = 5 and λ = λ∗.

Theorem 6 states that any weakly singular solution u = u(r) of (4) corresponds
to a (weakly singular) solution v = v(s) of (6) which satisfies v(s) ≈ −4s as s → −∞:
this is because v(s) = −4s is precisely the stationary point P2. Hence, as a further
consequence of Theorem 6, we have that any weakly singular solution Uσ behaves
asymptotically like −4 log r as r → 0. Moreover, as may be checked by a simple
calculation, the function r �→ −4 log r solves the equation and the first boundary
condition in (Pλ) for λ = 8(n − 2)(n − 4) but not the second boundary condition
(recall also λσ > 8(n − 2)(n − 4) by Theorem 7). Contrary to what happens for the
second order equation (1), the explicit form of the radial weakly singular solution does
not seem simple to be determined; see also Proposition 34 below. To this end, we
characterize it further by means of the following theorem.

Theorem 12. Let Uσ be a weakly singular solution with λσ > 8(n− 2)(n− 4) as
it is obtained in Theorem 7 for 5 ≤ n ≤ 16. Then

Uσ(r) = −4 log r + W (r),

where W is a bounded function satisfying

lim
r→0

W (r) = W0 := log
8(n− 2)(n− 4)

λσ
< 0

and (at least) one of the two following facts holds true:
(i) W (r) −W0 changes sign infinitely many times in any neighborhood of r = 0.
(ii) W (r) ≥ max[W0, 2r

2 − 2] for all r ∈ (0, 1].
If n ≥ 13, case (ii) necessarily occurs.

Finally, the function W (r) is not analytic, i.e., not a convergent power series in
r2 close to r0 = 0.

Remark 13. It is quite surprising that the asymptotic behavior of weakly singular
solutions of (Pλ) is the same as that of the quasi-linear equation −∆4u = λeu; see
[GPP]. Here −∆p denotes the p-Laplace operator.

We conclude this section with a short remark concerning the behavior of (Pλ) in
low dimensions.

Remark 14. In dimensions 1 ≤ n ≤ 4 the problem is subcritical and has a different
behavior. In particular, there are no singular solutions.
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The minimal solution is constructed as in the present paper. There is a parameter
λ∗ > 0 such that for any λ ∈ (0, λ∗) there is precisely one minimal stable positive
solution. Taking this one as a “trivial” solution, with the help of variational techniques
(which apply only in a subcritical setting) one finds a second positive “large” solution
above the minimal solution and unstable. For λ > λ∗ there is no positive solution.
Concerning the bifurcation diagram, one expects a smooth branch emanating from 0,
extending until λ∗, where it bends back and approaches λ = 0, while the L∞ norm of
the solutions blows up. See also [We, Wi].

3. Characterization of regular and weakly singular radial solutions. In
this section we perform a phase space analysis for the system (8), which corresponds
to the radial version of (Pλ). This gives some insight into which behavior of regular
and of weakly singular radial solutions may be expected in dependence on the space
dimension. These results are essential for the proofs of Theorems 7 and 12. For the
proofs of Theorems 3 and 4 one may skip directly to sections 4 and 5.

3.1. Analysis of the stationary points. It is easy to verify that system (8)
has only two stationary points:

P1 = (4, 0, 0, 0) and P2 = (0, 4n− 8, 16 − 8n,−8(n− 2)(n− 4)).

In order to linearize (8) in a neighborhood of P1, we must just replace (8)4 with

v′4(s) = 4v4(s).

Then the linearized system has two distinct positive eigenvalues, µ1 = 2, µ2 = 4,
and two distinct negative ones, µ3 = 2 − n, µ4 = 4 − n. We conclude that P1 is a
hyperbolic point independently of the dimension.

Eigenvectors corresponding to the positive eigenvalues µ1, µ2 in the neighborhood
of P1 have the form

α1(1,−n, 0, 0) and α2(−1, n + 2, 2n + 4, 2n2 + 4n),

where α1, α2 ∈ R \ {0}. Therefore, the tangent hyperplane to the unstable manifold
of P1 consists of those points in R

4 whose coordinates can be represented as

(α1 − α2,−nα1 + (n + 2)α2, (2n + 4)α2, (2n
2 + 4n)α2)(10)

with α1, α2 ∈ R.
Similarly, the tangent hyperplane to the stable manifold of P1 is spanned by

eigenvectors corresponding to negative eigenvalues of the linearized system, that is,

α3(1, 0, 0, 0) and α4(1,−2, 2n− 4, 0),

where α3, α4 ∈ R \ {0}.
Now consider the second critical point P2 of (8). In its neighborhood the linear

approximation of (8)4 (the only nonlinear equation) takes the form

v′4(s) = −8(n− 2)(n− 4)v1(s).

Therefore, the eigenvalues of the linearized system in the neighborhood of P2 are
the solutions of the fourth order algebraic equation

ν(ν − 2)(ν + n− 2)(ν + n− 4) − 8(n− 2)(n− 4) = 0;
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hence,

ν1,2,3,4 =
1

2

(
4 − n±

√
M1(n) ±M2(n)

)
,

where M1(n) = n2−4n+8 = (n−2)2 +4 > (n−2)2 and M2(n) = 4
√

68 − 52n + 9n2.
Therefore,

ν1 =
1

2

(
4 − n +

√
M1(n) + M2(n)

)
and ν2 =

1

2

(
4 − n−

√
M1(n) + M2(n)

)
are real numbers. It is easy to see that

ν2 < 0 < ν1 for all n ≥ 4.

Moreover, for 5 ≤ n ≤ 12, we have M1(n) −M2(n) < 0, while for n ≥ 13 there holds
M1(n) −M2(n) > 0. Therefore, for 5 ≤ n ≤ 12 the eigenvalues

ν3 =
1

2

(
4 − n +

√
M1(n) −M2(n)

)
and ν4 =

1

2

(
4 − n−

√
M1(n) −M2(n)

)
are complex conjugate with the real part

Re ν3 = Re ν4 =
1

2
(4 − n) < 0,

while for n ≥ 13 both ν3 and ν4 are real, ν3 < 0 and ν4 < 0.
This analysis implies that for all n ≥ 5 the critical point P2 of system (8) is also

hyperbolic, but its stable manifold is three-dimensional and the unstable manifold
is one-dimensional. Moreover, taking into account that for 5 ≤ n ≤ 12 we have
Imν3 = −Imν4 �= 0, we deduce from the general theory of critical points (see, for
example, [A2]) that for these values of n (and only for them) trajectories in the stable
manifold of P2 locally have the form of a spiral.

3.2. Proof of Theorem 6. We first consider regular solutions. It will prove to
be useful to have the following meaning of v1, . . . , v4 in terms of derivatives of u in
mind: ⎧⎪⎪⎨

⎪⎪⎩
v1(s) = es u′ (es) + 4,
v2(s) = −e2s · ∆u (es) ,

v3(s) = −e3s (∆u)
′
(es) ,

v4(s) = −λe4seu(es).

(11)

If u is a regular solution of (Pλ), then u, u′,∆u, and (∆u)′ stay bounded in particular
for r ↘ 0, i.e., for s → −∞. So, we get immediately from (11) the first part of the
statement.

To prove the converse, assume that

lim
s→−∞

(v1(s), v2(s), v3(s), v4(s)) = P1

so that

lim
r↘0

ru′(r) = lim
r↘0

r2∆u(r) = lim
r↘0

r3(∆u)′(r) = lim
r↘0

r4eu(r) = 0.(12)
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The first limit yields particularly, that for r > 0 small enough,

u(r) ≤ −1

2
log(r), eu(r) ≤ r−1/2.

Using the differential equation (Pλ) and the growth conditions (12) (observe n > 4),
we obtain successively for r close to 0

(∆u)′(r) = O(r1/2), ∆u(r) = O(1), u′(r) = O(r), u(r) = O(1).

That means that u is regular.
Next, we characterize weakly singular solutions. All the limits are intended as

s → −∞; with c we denote generic constants.
Note first that if limV (s) = P2, then the solution is weakly singular.
In order to prove the converse, we claim that

v′(s) → −4.(13)

To this end, we exclude all the other cases; recall that lim v′(s) exists by definition of
weakly critical solutions.

(A) It cannot be that lim v′(s) = c ∈ (−∞,−4).
For contradiction, if lim v′(s) = c < −4, then by (7)1 we infer

lim v1(s) = c + 4 < 0,(14)

and by (7)4 we get

v4(s) → −∞.(15)

Write (8)3 as

d

ds
[e(n−4)sv3(s)] = e(n−4)sv4(s)

so that by (15) we infer that the map s �→ e(n−4)sv3(s) is decreasing in a neighborhood
of −∞, and therefore it admits a limit. If e(n−4)sv3(s) → c ≥ 0, then by (8)3 and
(15) we get v′3(s) → −∞ and hence v3(s) → +∞. If e(n−4)sv3(s) → c < 0, then
v3(s) → −∞. In any case we obtain

|v3(s)| → +∞.(16)

A completely similar (but slightly more involved) argument shows that (8)2 and (16)
entail

|v2(s)| → +∞.(17)

Finally, (8)1, (14), and (17) furnish |v′1(s)| → +∞, which contradicts (14).
(B) It cannot be that v′(s) → −∞.
For contradiction, assume that v′(s) → −∞: then by (7)1 we have

v1(s) → −∞,(18)

and by (7)4 we get

v4(s) → −∞;(19)
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moreover,

v(s)

s
→ −∞.(20)

We may rewrite (8)3 as

d

ds
[e(n−4)sv3(s)] = e(n−4)sv4(s) = −λens+v(s) → −∞,

where the second equality is just (7)4 and the infinite limit is a consequence of (20):
the previous limit yields e(n−4)sv3(s) → +∞ and, in turn,

v3(s) → +∞.(21)

Similarly, we may rewrite (8)2 as

d

ds
[e−2sv2(s)] = e−2sv3(s) → +∞,

where the infinite limit is a consequence of (21): hence, we deduce that e−2sv2(s) →
−∞, which, together with (8)2 and (21), shows that v2(s) → −∞. Inserting this into
(7)2 gives v′′(s)+(n−2)v′(s) → +∞, and therefore v′(s)+(n−2)v(s) → −∞: hence,

there exists σ < 0 such that v′(s) + (n− 2)v(s) < 0 for all s ≤ σ.

We rewrite this inequality as

d

ds
[e(n−2)sv(s)] < 0 for all s ≤ σ;

integrating it over [s, σ] and taking into account that v(σ) > 0, we infer that

there exists K > 0 such that v(s) ≥ Ke(2−n)s for all s ≤ σ.

Using (5) and returning to the function u (solution of (Pλ) and (4)), this shows that

there exists K > 0 such that u(r) ≥ K

rn−2
for all r ≤ eσ;

this contradicts eu ∈ L1(B).
(C) It cannot be that lim v′(s) = c ∈ (−4, 0].
For contradiction, if lim v′(s) = c ∈ (−4, 0], then by (7)1 we infer

lim v1(s) = c + 4 > 0,(22)

and by (7)4 we get

v4(s) → 0.(23)

Then from (8)3 we deduce

v3(s) → 0,(24)

because otherwise we would get a contradiction similar to that of case (A). Next, from
(8)2 and (24) we obtain

v2(s) → 0.(25)
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Since, by assumption, v1 has a limit, we deduce that necessarily v1(s) → 4. This,
together with (23), (24), and (25), contradicts part (i) proved above.

By (A), (B), (C), statement (13) is proved. This shows that v1(s) → 0: inserting
this into (8)1 gives v2(s) → 4(n − 2). Inserting the latter into (8)2 yields v3(s) →
−8(n − 2); finally, inserting this into (8)3 gives v4(s) → −8(n − 2)(n − 4). This
completes the proof of (ii).

Remark 15. If in case (ii) of Theorem 6 we do not assume that lim v′(s) exists,
then we can merely show that lim inf v′(s) ≤ −4 ≤ lim sup v′(s). Clearly, if one could
prove that both inequalities are in fact equalities, then we would again have (13).

4. Proof of Theorem 3. We denote by K the cone of nonnegative L2-functions
in B,

K = {u ∈ L2(B); u(x) ≥ 0 for almost every x ∈ B},

and (for the sake of completeness) we prove the following weak formulation of Boggio’s
positivity preserving property [B], which we extensively use.

Lemma 16. Assume that u ∈ L2(B) satisfies∫
B

u∆2v ≥ 0 for all v ∈ K ∩H4 ∩H2
0 (B);

then u ∈ K. Moreover, one has either u ≡ 0 or u > 0 a.e. in B.
Proof. (i) Take any ϕ ∈ K ∩ C∞

c (B) and let vϕ be the unique (classical) solution
of {

∆2vϕ = ϕ in B,

vϕ =
∂vϕ

∂n = 0 on ∂B.

Then, by the classical Boggio principle [B], we infer that vϕ ∈ K. Hence, vϕ is a
possible test function for all ϕ so chosen, and therefore∫

B

uϕ =

∫
B

u∆2vϕ ≥ 0 for all ϕ ∈ K ∩ C∞
c (B).

This shows that u ∈ K.
(ii) By (i) we know that u ∈ K. So, assume that u �> 0 a.e. in B and let φ denote

the characteristic function of the set {x ∈ B; u(x) = 0} so that φ ≥ 0, φ �≡ 0. Let v0

be the unique (a.e.) solution of the problem{
∆2v0 = φ in B,

v0 = ∂v0

∂n = 0 on ∂B.

Then

v0 ∈

⎛
⎝⋂

q≥1

W 4,q(B)

⎞
⎠ ⊂ C3(B)

and by Boggio’s principle [B] we have v0 > 0 in B. By the biharmonic analogue of
Hopf’s lemma in balls (see [GS, Theorem 3.2], which also holds if ∆2v0 ∈ Lp(B) for
some p > n/2), we necessarily have ∆v0 > 0 on ∂B. This last inequality allows us to
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state that for all v ∈ C4(B) ∩H2
0 (B) there exists t1 ≤ 0 ≤ t0 such that v + t0v0 ≥ 0

and v + t1v0 ≤ 0 in B. This, combined with the fact that∫
B

u∆2v0 =

∫
{u=0}

u = 0,

enables us to show that both

0 ≤
∫
B

u∆2(v + t0v0) =

∫
B

u∆2v and 0 ≥
∫
B

u∆2(v + t1v0) =

∫
B

u∆2v.

Hence, we have for all v ∈ C4(B) ∩H2
0 (B)∫
B

u∆2v = 0.

We need to show that C4(B)∩H2
0 (B) is dense in H4 ∩H2

0 (B). For this purpose, take
any function U ∈ H4(B) ∩H2

0 (B) and put f := ∆2U . We approximate f in L2(B)
by C∞(B)-functions fk and solve ∆2Uk = fk in B under homogeneous Dirichlet
boundary conditions. We then even have Uk ∈ C∞(B), and by L2-theory there holds
‖Uk − U‖H4(B) → 0 as k → ∞.

By the previous statement we may now conclude that

for all v ∈ H4 ∩H2
0 (B) :

∫
B

u∆2v = 0.

Since u ∈ L2(Ω), we may take as v ∈ H4 ∩ H2
0 (B) the solution of ∆2v = u under

homogeneous Dirichlet boundary conditions. This finally yields u ≡ 0.
In particular, thanks to Lemma 16 we may establish a result in the spirit of

[BCMR], as follows.
Lemma 17. For all f ∈ L1(B) such that f ≥ 0 a.e. in B there exists a unique

u ∈ L1(B) such that u ≥ 0 a.e. in B and which satisfies∫
B

u∆2v =

∫
B

fv for all v ∈ C4(B) ∩H2
0 (B);

moreover, there exists C > 0 (independent of f) such that ‖u‖1 ≤ C‖f‖1.
Proof. Uniqueness follows by means of the observation that L∞-functions may be

approximated by a pointwise convergent but uniformly bounded sequence of C∞
c (B)-

functions. This is applied to truncations of u, and suitable test functions v are ob-
tained from approximations of the truncations of u by solving the biharmonic Dirichlet
problems.

Existence follows by truncating f and by arguing as in the proof of [BCMR,
Lemma 1], the only difference being the positivity preserving property, which is stan-
dard for the Laplacian; in our case we invoke Lemma 16.

Combining the method of proof of Lemmas 16 and 17, one also has the following.
Lemma 18. Assume that u ∈ L1(B) satisfies∫

B

u∆2v dx ≥ 0 for all v ∈ K ∩ C4(B) ∩H2
0 (B);

then u ≥ 0 a.e. in B.
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As was pointed out to us by Anna Dall’Acqua (TU Delft), similar techniques and
the application of Weierstraß’s approximation theorem yield that also for the stronger
conclusion of Lemma 16 it is enough to require u ∈ L1(B).

The previous lemmas enable us to make use of the super-subsolutions method, as
follows.

Lemma 19. Let λ > 0 and assume that there exists ū ∈ K such that eū ∈ L1(B)
and ∫

B

ū∆2v ≥ λ

∫
B

eūv for all v ∈ K ∩W 4,p ∩H2
0 (B).

Then there exists a solution u of (Pλ) such that 0 ≤ u ≤ ū a.e. in B.
Proof. Let u0 = ū, and for all m ∈ N, define inductively the function um+1 as the

unique solution of∫
B

um+1∆
2v = λ

∫
B

eumv for all v ∈ W 4,p ∩H2
0 (B).(26)

Note that by Lemmas 16 to 18 the sequence {um} is well-defined and

um ∈ K, eum ∈ L1(B), 0 ≤ um+1(x) ≤ um(x) for almost every x ∈ B

for all m ∈ N.

Since this sequence is pointwise decreasing, there exists u ∈ K such that eu ∈ L1(B)
and which is the pointwise limit of {um}. Then, letting m → ∞ in (26) and applying
Lebesgue’s theorem, we obtain the result.

Define Λ := {λ ≥ 0; (Pλ) admits a solution} and

λ∗ := sup Λ;

clearly 0 ∈ Λ and so Λ �= ∅. Moreover, by the implicit function theorem we know that
λ∗ > 0. It follows directly from Lemma 19 that Λ is an interval.

Let λ ∈ Λ; then there exists uλ satisfying (2). Taking into account that es ≥ es for
all s ≥ 0 with strict inequality whenever s �= 1, and choosing v = φ1 (the normalized
positive first eigenfunction of (3)) as a test function in (2), we get

λ1

∫
B

uλφ1 =

∫
B

uλ∆2φ1 = λ

∫
B

euλφ1 > λe

∫
B

uλφ1,

which proves that

λ <
λ1

e
for all λ ∈ Λ.(27)

We now prove the most delicate part of Theorem 3, namely, that for any λ < λ∗,
there exists a regular solution.

Lemma 20. Assume that for some µ > 0 there exists a (possibly singular) solution
u0 of (Pµ). Then for all 0 < λ < µ there exists a regular solution of (Pλ).

Proof. Let 0 < λ < µ and consider the (unique) functions u1, u2 ∈ L1(B) satisfy-
ing, respectively,∫

B

u1∆
2v = λ

∫
B

eu0v for all v ∈ W 4,p ∩H2
0 (B),
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B

u2∆
2v = λ

∫
B

eu1v for all v ∈ W 4,p ∩H2
0 (B).(28)

Such functions exist by Lemma 17 and also belong to L2(B), since by Lemma 18 we
have

u0 >
λ

µ
u0 = u1 ≥ u2 almost everywhere in B.(29)

Let ϕ(x) = (1 − |x|2)2; it is readily verified that

ϕ ∈ H2
0 (B), ∆2ϕ = 8n(n + 2).(30)

We also need the following elementary statement:

for all ϑ > 1 and δ > 0 there exists γ > 0

such that eϑs + γ − (1 + δ)es ≥ 0 for all s ≥ 0.(31)

Take ϑ = µ/λ, δ = nλ/4µ and choose k > 0 in such a way that

e
µ
λ s +

8n(n + 2)

λ
k ≥ (1 + δ)es for all s ≥ 0;(32)

this choice is clearly allowed by (31). Thanks to (30) and (32) we find∫
B

(u1 + kϕ)∆2v =

∫
B

[λeu0 + 8n(n + 2)k]v =

∫
B

[λe
µ
λu1 + 8n(n + 2)k]v

≥ λ(1 + δ)

∫
B

eu1v = (1 + δ)

∫
B

u2∆
2v

for all v ∈ K ∩W 4,p ∩H2
0 (B).

Hence, by Lemma 16 we infer that u2 ≤ u1+kϕ
1+δ in B; in particular, we get

eu2 ≤ e
k

1+δϕ e
λ

µ(1+δ)
u0 ,

from which we get at once that

eu2 ∈ L
n
4 +µ

λ (B)(33)

since ϕ ∈ L∞(B) and eu0 ∈ L1(B) (recall also our choice of δ). Finally, consider
u3 ∈ L2(B) such that∫

B

u3∆
2v = λ

∫
B

eu2v for all v ∈ W 4,p ∩H2
0 (B).

By (33) and elliptic regularity [ADN], we deduce that

u3 ∈ W 4,n4 +µ
λ (B) ⊂ L∞(B).

Moreover, by (28), (29), and Lemma 16 we infer that u3 ≤ u2 and hence∫
B

u3∆
2v ≥ λ

∫
B

eu3v for all v ∈ K ∩W 4,p ∩H2
0 (B).
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We have so found a weak bounded supersolution u3 of (Pλ), and the statement follows
from Lemma 19.

With the help of Lemma 20 we can now show the following.
Lemma 21. For all 0 ≤ λ < λ∗, the minimal solution Uλ exists, is regular, and

is radially symmetric.
Proof. By the preceding lemma we have the existence of a regular solution uλ

of (Pλ). This may serve as a (classical) supersolution of (Pλ), while U0 ≡ 0 is a
subsolution. Hence, the minimal solution Uλ of (Pλ) may be obtained as the increasing
limit of the following sequence {Um}:⎧⎨

⎩
∆2Um+1 = λeUm in B,

Um+1 =
∂Um+1

∂n
= 0 on ∂B

(m ≥ 0).

Since U0 is radially symmetric, so is U1; similarly, all the functions Um are radially
symmetric: therefore, their (pointwise) limit Uλ is also radially symmetric.

The previous lemma allows us to show that the interval Λ is closed: we first remark
that the map λ �→ Uλ(x) is strictly increasing for all x ∈ B (in view of Lemma 16). If
0 ≤ λ < µ < λ∗, the minimal solution Uµ of (Pµ) is a (strict) supersolution for (Pλ).
Therefore

U∗(x) := lim
λ→λ∗

Uλ(x) ∈ [0,∞](34)

exists for all x ∈ B. In fact, more can be said about this limit, as follows.
Lemma 22. Let U∗ be the function defined in (34). Then U∗(x) is finite for

almost every x ∈ B and U∗ solves (Pλ) for λ = λ∗. Moreover, Uλ → U∗ in H2
0 (B) as

λ ↑ λ∗. Finally, U∗ is radially symmetric.
Proof. By Lemma 21 we have Uλ ∈ C∞(B), and therefore, by using the gener-

alized Pohozaev identity [P] by Pucci and Serrin [PS] and by arguing as in the proof
of [GMP, Théorème 2], we obtain that the set {Uλ; λ < λ∗} is bounded in H2

0 (B),
and hence Uλ ⇀ U∗ in H2

0 (B), up to a subsequence (this follows by uniqueness of the
pointwise limit). This shows that U∗ is a.e. finite, that U∗ solves (Pλ) for λ = λ∗, and
also that U∗e

U∗ ∈ L1(B). Finally, since Uλe
Uλ ≤ U∗e

U∗ , by Lebesgue’s theorem we
deduce that

1

λ

∫
B

|∆Uλ|2 =

∫
B

Uλe
Uλ →

∫
B

U∗e
U∗ =

1

λ∗

∫
B

|∆U∗|2 as λ ↑ λ∗,

which, together with weak convergence, shows that Uλ → U∗ in the norm topology of
H2

0 (B); since the above arguments may be repeated for any sequence in {Uλ; λ < λ∗},
the result follows without extracting subsequences.

Finally, by Lemma 21, all the minimal solutions Uλ (for 0 < λ < λ∗) are radially
symmetric. Then by (34) also U∗ is radially symmetric.

Remark 23. The proof of Lemma 22 may also be obtained by exploiting the
stability of the minimal solution Uλ (see Proposition 37(i) below) and by arguing as
in [BV, Remark 3.3].

Finally, we claim that

λ∗ ≥ 14.72(n− 1)(n− 3).(35)

Indeed, this holds true by Lemma 19 since the function ū(x) = 7.36(1−|x|)2 is a weak
supersolution (ū ∈ C∞(B̄ \ {0})) of (Pλ) for all λ ≤ 14.72(n− 1)(n− 3).
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Proof of Theorem 3. The upper bound for λ∗ follows from (27) and from Lemma 22,
the latter saying that λ∗ ∈ Λ. The lower bound for λ∗ is proved in (35). Statement
(i) follows from Lemmas 20 and 21. The map λ �→ Uλ(x) is nondecreasing for all
x by Lemma 19 and strictly increasing by Lemma 16; this proves the first part of
statement (ii). The second parts of (ii) and (iii) follow from Lemma 22. Finally, the
radial symmetry of U∗ and of all the minimal solutions Uλ (for λ < λ∗) is obtained in
Lemmas 22 and 21, respectively. The regular minimal solutions Uλ (for λ < λ∗) are
strictly radially decreasing in view of [So]. Passing to the limit, we also get that U∗

is radially decreasing.
Remark 24. The above analysis does not allow us to establish whether the ex-

tremal solution U∗ is regular, weakly singular, or singular. However, since it is radially
symmetric, in the regular and weakly singular case, Theorem 6 describes the behavior
of U∗ when studied in the phase space R

4. With our computer assisted proof, we may
then find some space dimensions where the first case certainly occurs, provided that
we can also show uniqueness of the weakly singular solution and the corresponding
parameter λσ.

5. Proof of Theorem 4. We first show that

Uλ → 0 uniformly as λ → 0.(36)

Since this is standard, we just briefly sketch its proof. By Theorem 3 we know that

0 < λ < µ < λ∗ =⇒ Uλ(x) < Uµ(x) if |x| < 1.

Then, by multiplying the equation in (Pλ) by Uλ and by integrating by parts, we
obtain that ‖Uλ‖H2

0 (B) remains bounded. Hence, up to a subsequence, {Uλ} converges

in the weak H2
0 (B) topology to U0 ≡ 0, which is the unique solution of (P0). By

convergence of the norms, we infer that the convergence is in the norm topology.
Finally, by pointwise convergence and elliptic regularity, we infer (36).

Next, note that Vλ satisfies⎧⎨
⎩

∆2Vλ = λ in B,

Vλ =
∂Vλ

∂n
= 0 on ∂B.

(37)

Therefore, ∆2Uλ > ∆2Vλ, and the inequality Uλ > Vλ follows by Lemma 16.
In order to prove the last statement of Theorem 4, note that from (36) we infer

for all ε > 0 there exists λε > 0 such that λ < λε =⇒ ‖Uλ‖∞ < ε.

So, fix ε > 0 and let λ < λε. Then (37) entails

∆2Uλ = λeUλ < λeε = eε∆2Vλ in B.

This shows that Uλ(x) < eεVλ(x) for all x ∈ B, and the result follows by arbitrariness
of ε.

6. Proof of Theorem 7. The proof of Theorem 7 is obtained with computer
assistance. We first describe the numerical procedure used to obtain the approximate
values for λσ and λ∗; then we show how the algorithm can be made rigorous. We main-
tain here the same notation as in section 3. The computation of λσ is somehow simpler
than the computation of λ∗, since the unstable manifold of P2 is one-dimensional. We
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choose a point v̄ = P2 + re1 where e1 is an eigenvector corresponding to the unstable
manifold and r is some small value. We solve system (8) with v̄ as the initial condition
and look for the intersection of the solution with the hyperplane v1 = 4. The choice
of a positive or negative r leads to a different result, since the manifold is made of
two branches: it turns out that one branch never appears to intersect the hyperplane,
while the other branch always does. If the solution intersects the hyperplane v1 = 4
at some point v̂ = (v̂1, v̂2, v̂3, v̂4) such that v̂4 < 0, by Theorem 6 and by (7) we have
numerical evidence of a singular solution at λ = −v̂4.

In order to compute the value of λ∗, we have to study the two-dimensional un-
stable manifold of P1. The direction on the tangent hyperplane can be parametrized
by an angle ϑ. In order to find the largest value for λ, we use a directional shooting
method; i.e., we choose some value ϑ (the shooting direction) and solve the equation
with starting point v̄ = P1 + r(e1 sinϑ + e2 cosϑ), where e1 and e2 are the orthonor-
malized eigenvectors corresponding to the (tangent) unstable manifold and r > 0 is
some small arbitrarily chosen value. If the solution intersects the hyperplane v1 = 4
at some point v̂ = (v̂1, v̂2, v̂3, v̂4) such that v̂4 < 0, then by Theorem 6 and by (7) and
(8) we have numerical evidence of a regular solution for λ = −v̂4. By varying ϑ we
can look for the maximal value of λ.

Of course these procedures do not lead to an exact value for two reasons. First, we
can choose only v̄ on the unstable manifold of the linearized equation, and although
we know that we are close to the manifold of the full equation, we are not exactly on
it. Second, the algorithm used to solve the differential equation provides an accurate,
but not rigorous, solution. We address the problem of proving that a branch of the
unstable manifold of P2 does intersect the hyperplane v1 = 4 and of computing a
rigorous estimate for the values λσ and λ∗ in the following sections.

6.1. Rigorous bounds for the manifolds. We first address the general prob-
lem of computing rigorous bounds for the location of the unstable manifold in the
neighborhood of a stationary hyperbolic point of an ODE. The same technique could
be applied to the stable manifold as well, but in this paper we are not interested in it.

Let f ∈ C2(Rd,Rd), d ≥ 2. We consider the equation ẋ = f(x) and assume that
0 is a hyperbolic stationary point. Then

ẋ = Ax + N(x),(38)

where

A = ∇f(0), N(x) = O(|x|2) as x → 0(39)

and all eigenvalues of A have nonzero real part. Let ϕ(x, t) be the flow induced by (38)
and let ϕA(x, t) be the flow induced by the linear equation ẋ = Ax. Let S0 (resp., U0)
be the span of all eigenvectors corresponding to the eigenvalues with negative (resp.,
positive) real part. S0 (resp., U0) is called the stable (resp., unstable) subspace, and
it is characterized as follows: S0 (resp., U0) is the set of points x ∈ R

d such that
ϕA(x, t) → 0 as t → +∞ (resp., t → −∞). It is well known that the full equation also
admits a stable manifold S (resp., an unstable manifold U) still defined as the set of
points x ∈ R

d such that ϕ(x, t) → 0 as t → +∞ (resp., t → −∞). Such a manifold
is tangent at the origin to S0 (resp., U0). If S0 (resp., U0) is empty, then there exists
a neighborhood of the origin which is a subset of U (resp., S). We are interested in
the case when both manifolds are nontrivial, and we wish to study the intersection
of the unstable manifold with some other manifold P . In order to achieve this goal,
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we consider a point x̄ ∈ U \ {0} and study ϕ(x̄, t). If we can prove that ϕ(x̄, t0) ∈ P
for some positive t0, then we infer that U ∩P �= ∅, and we also know the intersection
point. The main problem to address is that the only point of the manifold we know
precisely is the origin: the other points lie very close to U0, at least in a neighborhood
of 0, but we do not know their explicit position. We proceed as follows.

There exists an invertible matrix M such that B := M−1AM is block diagonal,
i.e., the canonical basis {ei} of R

d is split in S′
0 ∪U ′

0, where S′
0 = span{e1, . . . , em} is

the stable eigenspace and U ′
0 = span{em+1, . . . , ed} is the unstable eigenspace. If we

let y = M−1x, the (38) can be written as

ẏ = By + M−1N(My) =: g(y).(40)

By (39), for all ε > 0 there exists β > 0 such that |N(x)| ≤ β |x|2 for all |x| ≤ ε.
Let α < 0 be the maximum of the real parts of the eigenvalues with negative real
parts, γ = − α

βm2
1m2

, m1 = ‖M‖, and m2 =
∥∥M−1

∥∥. Choose ε > 0; let β > 0 as above;

choose a vector ŷ ∈ U ′
0 \ {0} of norm r ≤ ε and k > 1. Let Ps be the orthogonal

projection onto S′
0; let Pu be the orthogonal projection onto the linear space spanned

by ŷ; and let

Ξ =
{
y ∈ R

d :
γ

k
|Psy| ≤ |Puy|2 ≤ r2

}
.(41)

We show that, under a suitable choice of k > 1 and 0 < r ≤ ε, for all y ∈ ∂Ξ such
that |Puy| < r the flow is inward; i.e., given ȳ ∈ Ξ we want the solution of the Cauchy
problem ẏ(t) = g(y(t)), y(0) = ȳ to leave Ξ only through the set {y ∈ ∂Ξ : |Puy| = r}.
If this happens, then for all ŷ ∈ U ′

0 satisfying |ŷ| = r either the unstable manifold
intersects the set

κ := κŷ := ŷ +

{
ỹ ∈ S′

0 : |ỹ| ≤ k

γ
r2

}
(42)

or it is entirely contained in Ξ. As a result, to study a branch of the unstable manifold
it is sufficient to exclude the second case and consider the initial value problem for all
ȳ ∈ κ.

Lemma 25. Choose ε > 0 and k > 1. Let α, β, γ, m1, m2, and Ξ be as above
and let

r = min

{
εγ

m1

√
γ2 + k2

, 1,

√
k − 1

k
γ,

γ

2

}
.(43)

For all ȳ ∈ ∂Ξ such that 0 < |Puȳ| < r we have

(g(ȳ), Psȳ) < 0.(44)

Proof. Let ŷ = Psȳ, ỹ = Puȳ, r̂ = |ŷ|, and r̃ = |ỹ|. Since r̃ < r ≤ εγ

m1

√
γ2+k2

, then

|Mȳ| ≤ ε, and therefore |N(ȳ)| ≤ β |ȳ|2. We have

(Bȳ, ŷ) + (M−1N(Mȳ), ŷ) = (Bŷ, ŷ) + (N(Mȳ), (M−1)tŷ)

≤ αr̂2 + βm2
1m2(r̂

2 + r̃2)r̂.

Then a simple computation shows that (44) is implied by

1

2

(
γ +

√
γ2 − 4r̃2

)
> r̂ >

1

2

(
γ −

√
γ2 − 4r̃2

)
.(45)
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The first inequality is satisfied because r̃ < r ≤ γ
2 . For all ȳ ∈ ∂Ξ, 0 < |Puȳ| < r, by

(41), we have r̂ = k
γ r̃

2 and

1

2

(
γ −

√
γ2 − 4r̃2

)
< k

r̃2

γ
if r̃ <

√
k − 1

k
γ .

Since r̃ < r, then (45) and therefore (44) hold.
We need a condition which ensures that the invariant manifold is not entirely

contained in Ξ, but it intersects κ at some point. Let α′ be the minimum of the real
parts of the eigenvalues of B with positive real parts.

Lemma 26. If r, α, α′, k, and Ξ are as above and

α′ +
α

γ

(
r +

k2

γ2
r3

)
> 0,(46)

then there exists δ > 0 such that (g(ȳ), Puȳ) ≥ δ|Puȳ|2 for all ȳ ∈ Ξ, and therefore the
component of the flow in the direction of the unstable manifold is always increasing
in Ξ, together with its first derivative.

Proof. Choose δ > 0 satisfying

βm2
1m2

(
r +

k2

γ2
r3

)
≤ α′ − δ.

Fix ȳ ∈ Ξ and let ŷ = Psȳ, ỹ = Puȳ, r̂ = |ŷ|, and r̃ = |ỹ|. By (46) and the definition
of γ, such a δ exists. We have

(Bȳ, ỹ) + (M−1N(Mȳ), ỹ) = (Bỹ, ỹ) + (N(Mȳ), (M−1)tỹ)

≥ α′r̃2 − βm2
1m2

(
r̂2 + r̃2

)
r̃ ≥ δr̃2,

because r̂ ≤ k
γ r̃

2 by the definition of Ξ.

Lemma 27. Let r, α, α′, k, ŷ, and κ be as above. The unstable manifold tangent
to ŷ intersects κ.

Proof. By Lemma 26 the unstable manifold cannot be entirely contained in Ξ.
By Lemmas 25 and 26 it can only exit through κ.

In the next subsection we apply these ideas in order to prove Theorem 7.

6.2. The computer assisted proofs. We apply the general result stated in
the previous subsection to system (8).

We first consider the point P1 = (4, 0, 0, 0). Let x = v−P1. System (8) takes the
form (38) with

A1 =

⎡
⎢⎢⎣

2 − n −1 0 0
0 2 1 0
0 0 4 − n 1
0 0 0 4

⎤
⎥⎥⎦ ,

N(x) = (0, 0, 0, x1x4), and α = 4 − n.
If we consider the linearization at P2 = (0, 4n− 8, 16− 8n,−8(n− 2)(n− 4)) and

set x = v − P2, then system (8) can be written as (38) with

A2 =

⎡
⎢⎢⎣

2 − n −1 0 0
0 2 1 0
0 0 4 − n 1

−8(−4 + n)(−2 + n) 0 0 0

⎤
⎥⎥⎦ ,
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and again N(x) = (0, 0, 0, x1x4). From section 3.1 we know that if n = 5, . . . , 12, the
eigenvalues are ((4 − n)/2 + iσ, (4 − n)/2 − iσ, λ1, λ2), where λ1 < (4 − n)/2 < 0 and
λ2 > 0. It turns out that α = (4 − n)/2. If n ≥ 13, all eigenvalues are real and

α = 2 − 1

2
n +

1

2

√
8 − 4n + n2 − 4

√
68 − 52n + 9n2.

We remark that since the nonlinear part is very simple, it is possible to obtain a
better estimate for the coefficients β, m1, and m2 than the one we had in section 6.1.

In the following, let M be the matrix that diagonalizes either A1 or A2 and let
|Mi| be the (Euclidean) norm of the ith row of M .

Lemma 28. For all y1, y2 ∈ R
4 the following inequality holds:

(N(My1), (M
−1)ty2) ≤ |M1| |M4|

∣∣(M−1)t4
∣∣ |y1|2 |y2| .

Proof. We have

(N(My1), (M
−1)ty2) = (My1)1(My1)4((M

−1)ty2)4,

where we denoted by (Av)i the ith component of the vector (Av), i.e., the scalar
product of the ith row of A with the vector v. The conclusion follows by the definition
of |Mi|.

By the above lemma we infer that γ may be obtained as

γ = − α

|M1| |M4| |(M−1)t4|
(47)

and ε may be chosen arbitrarily.
To compute a rigorous enclosure [λmin

σ , λmax
σ ] for the value of λσ, we fix n and

compute the value γ in (47). We can choose k > 1 and r > 0 satisfying (43) and (46).
We have some degree of arbitrariness: we prefer a small r in order to have a small set
κ, but we also like a large r in order to reach the hyperplane in fewer time steps. It
is also convenient to have the smallest possible k, since it also implies a smaller set κ.
We have to make an empirical choice by trying different values and selecting the best
trade-off. It turns out that it is convenient to choose r first, set

k =
γ2 −

√
γ4 − 4r2γ2

2r2
,(48)

and check whether (46) holds. Since the unstable manifold in P2 is one-dimensional,
we have to choose between two possible directions. The numerical experiment gave
us the correct direction. Once we choose r and compute k, we have the set κ as given
in (42). We should compute the evolution of all points in κ and its intersection with
the hyperplane v1 = 4. This would require a very long computer time, but since two
solutions of (38) cannot intersect, then it is enough to compute the evolution of the
points in the boundary of κ, provided we can prove that the trajectories of all points
in the interior of κ also reach the hyperplane v1 = 4. This can be checked by the
following lemma.

Lemma 29. Set

κ′ := κ′
ŷ := ŷ +

{
ỹ ∈ S0 : |ỹ| =

k

γ
r2

}
.(49)
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Assume that the trajectories of all points in κ′ intersect the hyperplane v1 = 4 and do
not intersect the hyperplane (2 − n)v1 − v2 + 4(n − 2) = 0. Let κ̂ be the intersection
of all such trajectories with v1 = 4.

Then the trajectories of all points in κ also intersect the hyperplane v1 = 4, and
the intersection takes place in the region bounded by κ̂.

Proof. Since v′1 = (2−n)v1 − v2 +4(n− 2), then v′1 is positive and bounded away
from zero for all points of the trajectories starting from κ′. Then, by the uniqueness
and continuous dependence on the initial condition of the Cauchy problem, it follows
that the union τ(κ′) of such trajectories is a “tube” in R

4 and the trajectories of all
points in κ \ κ′ cannot exit τ(κ′). Then v′1 is also positive and bounded away from
zero for all points starting in κ, and the trajectory of every point in κ reaches v1 = 4
in a finite time.

Our strategy is as follows: We compute the intersection of the flow starting from
all points in κ′ with the hyperplane v1 = 4. If all the trajectories intersect the
hyperplane, we have a proof that the singular solution exists; furthermore the envelope
in the v4-direction of all intersections yields the desired λ-interval. Note that the set
κ′ is the image of S2 through an invertible affine map, and therefore we need an
efficient discretization of a sphere.

Lemma 30. For all n = 5, . . . , 16, let r = .001, let k be as in (48), and, let
κ′ = κ′

ŷ as in (49). For a suitable choice of the direction ŷ in the one-dimensional
unstable manifold U0, the following conclusions hold:

1. The flow starting in κ′ intersects the hyperplane v1 = 4.
2. The absolute value of the first coordinate of the intersection point is in the

interval set [λmin
σ , λmax

σ ] defined in Table 1.
3. The flow starting in κ′ and ending on the hyperplane v1 = 4 does not intersect

the hyperplane (2 − n)v1 − v2 + 4(n− 2) = 0.

The proof is by computer assistance, as described in section 9.

In order to compute a rigorous lower bound for λ∗, we consider the trajectories
of points in the unstable manifold of P1 and compute the intersection with the hyper-
plane v1 = 4. Since the manifold is two-dimensional, we have to decide the direction
to follow: we use the numerical results presented above to compute the direction that
gives the highest possible value for λ. We define κ as above, and we wish to prove
that all trajectories starting from κ intersect the hyperplane v1 = 4. We also need
to estimate the location of such intersections. It would save some computer time
to restrict the computation to the boundary of κ as in the proof of Lemma 30, but
we cannot proceed as in Lemma 29 because P1 lies on the hyperplane v1 = 4 and
therefore v1 cannot be monotone. Furthermore, since the unstable manifold has now
dimension 2, we do not have the topological argument (the tube) used before. On the
other hand, in this case we only have to consider a region which is the affine image of
a disk; therefore it is feasible to compute the trajectory for all point in the disk.

Lemma 31. For all n = 5, . . . , 10, let r = .001 if n ≤ 9 and r = .0001 if n = 10;
let ŷ = P1 + r(e1 sinϑn + e2 cosϑn), where e1 and e2 are the eigenvectors of A1 with
unit norm and positive first component corresponding, respectively, to the eigenvalues
2 and 4 and ϑ5 = 6.2829856, ϑ6 = 6.28298854, ϑ7 = 6.2829901, ϑ8 = 6.2829918,
ϑ9 = 6.2829914, ϑ10 = 6.28316589; let k be as in (48) and let κ be as in (42).

1. The flow starting at all points of κ intersects the hyperplane v1 = 4.
2. The absolute value of the first coordinate of the intersection point is larger

than the λ∗
min displayed in Table 1.

We point out that this statement shows only that there exists a regular solution
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for some value of λ obtained as the intersection of a one-dimensional submanifold of
the unstable manifold with the hyperplane v1 = 4. Since we cannot exclude that there
exists a solution for a larger value of λ, we only have a lower bound for λ∗.

The proof of Theorem 7 follows by Lemmas 27–31.

7. Proof of Theorem 12. In this section we use both the PDE notation ∆2

and the ODE notation with primes denoting differentiation (with respect to r or s,
depending on the context).

We assume that Uσ is any radial weakly singular solution of (Pλσ ) with

λσ > 8(n− 2)(n− 4).(50)

In particular, we deal with those solutions obtained in Theorem 7; see also Table 1.
Then, by Theorem 6(ii), we know that

Uσ(r) = −4 log r + o(| log r|) as r → 0.

Therefore, we define the function

W (r) := Uσ(r) + 4 log r

and study its behavior. After some calculations, we find that it weakly solves the
equation ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
∆2W =

1

|x|4 [λσe
W − 8(n− 2)(n− 4)] in B,

W = 0 on ∂B,
∂W

∂n
= 4 on ∂B.

(51)

The proof of Theorem 12 follows from the next two lemmas and Proposition 34
at the end of this section.

Lemma 32. Assume (50) and assume that W ∈ C4(0, 1] weakly solves (51)
(W = W (r)); then

lim
r→0

W (r) = log
8(n− 2)(n− 4)

λσ
= W0 < 0.(52)

Moreover, at least one of the two following facts holds true:
(i) The function W (r) −W0 changes sign infinitely many times in any neighbor-

hood of r = 0.
(ii) W (r) ≥ max[W0, 2r

2 − 2] for all r ∈ (0, 1].
Proof. The negativity of W0 follows from (50), while (52) is a consequence of

Theorem 6.
Assume that case (i) in the statement does not occur; we first claim that

W (r) ≥ W0 for all r ∈ (0, 1].(53)

For contradiction, assume that (53) does not hold; then there exists R̄ ∈ (0, 1) such
that W (R̄) < W0 and two cases may occur, as follows.

First case. There exists R ∈ (0, 1) such that W ′(R) = 0 and W0 ≤ W (r) < W (R)
for all r ∈ (0, R). In this case, let H(r) = W (r) − W (R) so that H(r) < 0 for all
r ∈ (0, R); on the other hand, H weakly solves the problem⎧⎨

⎩
∆2H = ∆2W ≥ 0 in BR,

H =
∂H

∂n
= 0 on ∂BR,
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so that by Lemma 16, one gets H(r) ≥ 0 for all r ∈ (0, R), a contradiction.
Second case. There exists R ∈ (0, 1) such that W ′(R) = 0 and W0 ≥ W (r) >

W (R) for all r ∈ (0, R). In this case, H(r) = W (r) −W (R) satisfies both H(r) > 0
for all r ∈ (0, R) and ⎧⎨

⎩
∆2H = ∆2W ≤ 0 in BR,

H =
∂H

∂n
= 0 on ∂BR,

giving again a contradiction.
We have so proved (53): hence, if we define the function φ(r) = W (r) + 2 − 2r2,

we infer that φ = φ(|x|) weakly satisfies⎧⎨
⎩

∆2φ = ∆2W ≥ 0 in B,

φ =
∂φ

∂n
= 0 on ∂B;

this yields φ(r) ≥ 0, namely, W (r) ≥ 2r2 − 2 for all r ∈ (0, 1].
We have so proved that if (i) does not occur, then (ii) holds true, that is, the

statement follows.
In high dimensions the previous alternative breaks down, and we can describe the

behavior of weakly singular solutions.
Lemma 33. If n ≥ 13, then case (i) of Lemma 32 cannot occur.
Proof. Let W = W (r), let W0 be as in Lemma 32, and consider the function

Z(s) = W (es) −W0, s ∈ (−∞, 0).

Then, since W satisfies (51), we deduce that

L4Z + p(s)Z = 0, s ∈ (−∞, 0),(54)

where L4Z = Z ′′′′ + 2(n− 4)Z ′′′ + (n2 − 10n + 20)Z ′′ − 2(n− 2)(n− 4)Z ′ and

p(s) = −8(n− 2)(n− 4)
eZ(s) − 1

Z(s)
.

Note that p(s) is well-defined for all s < 0 and that, by (52), p(s) → −8(n− 2)(n− 4)
as s → −∞. In particular, for all ε > 0 there exists sε < 0 such that

p(s) ≥ −[8(n− 2)(n− 4) + ε] for all s ≤ sε.(55)

Since n ≥ 13, for sufficiently small ε, the linear equation

L4Z − [8(n− 2)(n− 4) + ε]Z = 0(56)

admits four linearly independent solutions of “exponential type,” namely, Zi(s) = eνis

for some νi ∈ R (i = 1, . . . , 4); see also the discussion in section 3.1. Hence, (56) is
nonoscillatory in (−∞, 0) according to the definition in [E]. Therefore, by (55) and [E,
Corollary 1], also (54) is nonoscillatory in (−∞, 0) and the statement follows.

Let us conclude this section with the observation that an explicit form of the
weakly singular solution Uσ seems not so easy to be obtained.

Proposition 34. Assume that the function W is a solution of (51) as considered
in Lemma 32. Then the function W = W (r) is not analytic in r close to 0.
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Proof. For contradiction, let ak = W (2k)(0)/(2k)! and assume that

W (r) =
∞∑
k=0

akr
2k

is a convergent power series for r close to 0. Since W is regular, the right-hand side
of the equation in (51) is bounded as r → 0, and we necessarily have

a0 = log
8(n− 2)(n− 4)

λσ
, a1 =

W ′′(0)

2
= 0.(57)

Then

W (k)(r) =
W ′′′′(0)

(4 − k)!
r4−k + O

(
r5−k

)
as r → 0 (k = 1, 2, 3),

and hence

n(n + 2)

3
W ′′′′(0) = ∆2W |r=0 =

λσe
a0W ′′′′(0)

24
=

(n− 2)(n− 4)

3
W ′′′′(0),

where we have used (51) and (57). This shows that W ′′′′(0) = 0 and a2 = 0.
We now proceed by induction. Assume that for some k ≥ 2 we have shown

that a1 = · · · = ak = 0; we claim that ak+1 = 0. Once we show this, we achieve
a contradiction and the statement follows. Note that λσe

W − 8(n − 2)(n − 4) =
8(n− 2)(n− 4)[eW−a0 − 1] and, by induction assumption,

1

r4

(
eW−a0 − 1

)
= ak+1r

2k−2 + O
(
r2k

)
.

Therefore, from (51) we get

(
d

dr

)2k−2

∆2W
∣∣∣
r=0

= 8(2k − 2)!(n− 2)(n− 4)ak+1.(58)

On the other hand, recalling the radial form of ∆2 (see the left-hand side of (4)) and
taking into account that (as r → 0)

W ′(r) ∼ W (2k+2)(0)

(2k + 1)!
r2k+1 , W ′′(r) ∼ W (2k+2)(0)

(2k)!
r2k,

W ′′′(r) ∼ W (2k+2)(0)

(2k − 1)!
r2k−1 , W ′′′′(r) ∼ W 2k+2(0)

(2k − 2)!
r2k−2,

we also deduce that(
d

dr

)2k−2

∆2W |r=0 = 2k(2k + 2)(n + 2k)(n + 2k − 2) · (2k − 2)! ak+1.

Combining this with (58), we get

ak+1 {2k(2k + 2)(n + 2k)(n + 2k − 2) − 8(n− 2)(n− 4)} = 0.

Since the term in brackets is strictly positive, this yields ak+1 = 0.
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8. Further results and open problems. First, we discuss the stability of the
linearizations around regular solutions of problem (Pλ). For this purpose we observe
that the minimal solution depends continuously on λ.

Proposition 35. As before, let Uλ denote the minimal solution of (Pλ). Then
[0, λ∗) � λ �→ Uλ ∈ C4,α(B) is continuous from the left. Moreover, if λ0 ∈ [0, λ∗) is
such that the first eigenvalue of the linearization LUλ0

:= ∆2 − λ0 exp(Uλ0
) is strictly

positive, then λ �→ Uλ is also continuous in λ = λ0.
Proof. Let λk ↗ λ0. Since Uλk

≤ Uλ0
and since the (Uλk

)k are monotonically

increasing, we get Ũ := limk→∞ Uλk
, first in any Lq-space, then by elliptic theory in

W 4,q, and finally in C4,α(B). Hence, Ũ also solves (Pλ0
), and 0 < Ũ ≤ Uλ0 . We

conclude that Ũ = Uλ0 by minimality of Uλ0 .
The second statement follows from the implicit function theorem and again the

monotonicity of Uλ in λ.
The next statement extends some results of [CR] to the biharmonic case; see

Proposition 2.15 there. In order to show the sign condition of eigenfunctions, we use
a decomposition method with respect to pairs of dual cones.

Proposition 36. Let u be a regular solution for (Pλ), where λ ∈ (0, λ∗]. Let
the first eigenvalue µ1 of the linearization Lu := ∆2 − λeu under Dirichlet boundary
conditions be nonnegative: µ1 ≥ 0. Then every eigenfunction of Luϕ = µ1ϕ is of
fixed sign. Moreover, if v ∈ C4(B̄) solves ∆2v ≥ λev in B and v = ∂v

∂n = 0 on ∂B,
then it follows that v ≥ u. Finally, if µ1 = 0, then we even have v = u.

Proof. In order to show that the first eigenfunction ϕ of Lu is of fixed sign, we
need to explain a decomposition technique with respect to dual cones, which was
found in the abstract setting by Moreau [Mo] and adapted to biharmonic Dirichlet
problems in [GG]. As usual we equip H2

0 (B) with the scalar product

(u,w)H2
0

:=

∫
B

∆u∆w dx.

Here, let

K =
{
u ∈ H2

0 (B); u ≥ 0 a.e. in B
}
,

denote the convex closed cone of nonnegative H2
0 -functions and

K′ =
{
u ∈ H2

0 (B); for all w ∈ K : (u,w)H2
0
≤ 0

}
its dual cone in H2

0 of weak subsolutions of the clamped plate equation. By Lemma 16
we see that K′ ⊂ −K. For any w ∈ K′ we even have that either w ≡ 0 or w < 0 in B.

Assume now by contradiction that ϕ is not of fixed sign. Then, according to [Mo],
we may decompose

ϕ = ϕ1 + ϕ2

with ϕ1 ∈ K, ϕ2 ∈ K′, and ϕ1 ⊥ ϕ2 in H2
0 (B). By assumption we have that ϕ1 ≥ 0,

ϕ1 �≡ 0, and ϕ2 < 0. But then

0 ≤ µ1 = inf
w∈H2

0 (B)\{0}

∫
B

(
(∆w)

2 − λ exp(u)w2
)
dx∫

B
w2 dx

≤

∫
B

(
(∆(ϕ1 − ϕ2))

2 − λ exp(u)(ϕ1 − ϕ2)
2
)
dx∫

B
(ϕ1 − ϕ2)2 dx



1252 G. ARIOLI, F. GAZZOLA, H.-CH. GRUNAU, AND E. MITIDIERI

<

∫
B

(
(∆(ϕ1 + ϕ2))

2 − λ exp(u)(ϕ1 + ϕ2)
2
)
dx∫

B
(ϕ1 + ϕ2)2 dx

=

∫
B

(
(∆ϕ)

2 − λ exp(u)ϕ2
)
dx∫

B
ϕ2 dx

= µ1,

a contradiction. Hence, ϕ is of fixed sign, say ϕ ≥ 0, and in a second step we may
conclude from the equation and the strict positivity of the biharmonic Green function
(in the ball) that ϕ > 0.

We consider now u and v as in the statement. For τ ∈ [0, 1] we look at

∆2 (u + τ(v − u)) − λ exp (u + τ(v − u))(59)

≥ ∆2 (u + τ(v − u)) − λ (τ exp(v) + (1 − τ) exp(u)) ≥ 0.

Since (59) equals 0 for τ = 0, its first derivative at τ = 0 must be nonnegative:

∆2(v − u) − λeu(v − u) =: f ≥ 0.(60)

If µ1 > 0, a decomposition trick as above applied to the functional w �→
∫
B

((∆w)2 −
λeuw2 − fw)dx shows that v ≥ u.

If µ1 = 0, we test (60) with the positive first eigenfunction ϕ and get

∆2(v − u) − λeu(v − u) = 0.

That means that also the first derivative of (59) with respect to τ = 0 vanishes, so
that the second derivative needs to be nonnegative:

−λeu (v − u)2 ≥ 0.

But this immediately yields v = u.
Concerning the stability behavior of the linearizations around regular solutions,

we have the following.
Proposition 37. Let λ > 0, let u be a regular solution of (Pλ), let Lu = ∆2−λeu

be the linearized operator at u, and let µ1 = µ1(Lu) be the smallest eigenvalue of Lu;
then

(i) if λ < λ∗ and u is the minimal solution, then µ1 > 0;
(ii) if λ < λ∗ and u is not the minimal solution, then µ1 < 0;
(iii) if λ = λ∗ and the extremal solution u = U∗ is regular, then µ1 = 0.

Finally, if Uλ denotes the minimal (regular) solution of (Pλ) and µ1(λ) = µ1(LUλ
),

then the map λ �→ µ1(λ) is decreasing.
Proof. (i) The monotonicity of µ1(λ) follows immediately from the variational

characterization

µ1(λ) = inf
w∈H2

0 (B)\{0}

∫
B

(∆w)
2
dx−

∫
B

exp(Uλ)w2 dx∫
B
w2 dx

and from the monotonicity of Uλ with respect to λ. By Proposition 35 we see that
the function λ �→ µ1(λ) is continuous from the left on (0, λ∗) and even on (0, λ∗],
provided the extremal solution U∗ is regular.

Assume by contradiction that there exists a λ̃ ∈ (0, λ∗) with µ1(λ̃) ≤ 0. We put

λ0 := sup {λ ≥ 0 : µ1(λ) > 0} ≤ λ̃ < λ∗.
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According to the mentioned continuity from the left, we have µ1(λ0) ≥ 0. If we
assume µ1(λ0) > 0, then the second part of Proposition 35 would give µ1(λ) > 0 also
for some λ > λ0, a contradiction. Consequently we have µ1(λ0) = 0. Let u = Uλ0 > 0
be the corresponding minimal solution:

∆2u = λ0e
u in B, u = ∇u = 0 on ∂B.

Consider any λ ∈ (λ0, λ
∗) with minimal solution v = Uλ > 0:

∆2v = λev in B, v = ∇v = 0 on ∂B.

Since λ > λ0, Proposition 36 applies and yields v = u and hence λ = λ0, a contradic-
tion.

(ii) Let Uλ be the minimal solution for (Pλ) so that u ≥ Uλ. If the linearization
around u had nonnegative first eigenvalue, then Proposition 36 would also yield u ≤
Uλ so that u and Uλ necessarily coincide, a contradiction.

(iii) Assume that the extremal solution u = U∗ is regular. By continuity, we have
µ1 ≥ 0. If µ1 > 0, the implicit function theorem would also yield solutions for some
λ > λ∗. This is a contradiction, so that µ1 = 0.

Open Problem 1. Does (ii) of Proposition 37 extend to weak solutions u as
formulated in [BV, Theorem 3.1]?

We now turn to the extremal solution U∗. We first suggest the following open
problem.

Open Problem 2. Do we have uniqueness of weak solutions for (Pλ∗)? By Propo-
sition 37(iii), and arguing as in Lemma 2.6 in [BV], one obtains that if the extremal
solution is regular, then it is unique even in a weak sense. However, without the
regularity assumption on U∗, the proof seems much more difficult; we refer to [Ma]
for the corresponding result related to the second order problem (1). In particular,
the proof of a result in the spirit of [Ma, Lemma 2.1] requires a new trick, probably
of the same kind as the one we used to prove Lemma 20.

Perhaps, the precise characterization of all singular solutions Uσ and the corre-
sponding “singular” parameters λσ is the most interesting and difficult problem we
have to leave open in the present paper.

Open Problem 3. Are the singular parameter and the weakly singular solution
unique? In order to construct a weakly singular radial solution, according to Theo-
rem 6, one has to follow the unstable branch arising from P2. One can do so in two
(opposite) exit directions. In one direction we actually find at most (and presumably
precisely) one solution by the result of Soranzo [So]: the solution of the PDE has to
be strictly decreasing. We emphasize that this result extends to the class of weakly
singular radial solutions. For the ODE system (8) this means that any “singular”
trajectory may intersect the hyperplane v1 = 4 only once and cannot come back to it.
But we do not have a proof that the unstable branch leaving P2 in the other direction
will not intersect the hyperplane v1 = 4 even if numerical experiments suggest so.

Next, we recall that in [GGM] it was shown that for any open bounded domain
Ω ⊂ R

n there exist C1, C2 > 0 such that the following improved Hardy inequality
holds:

∫
Ω

|∆u|2 dx ≥ n2(n− 4)2

16

∫
Ω

u2

|x|4 dx + C1

∫
Ω

u2

|x|2 dx + C2

∫
Ω

u2 dx for all u ∈ H2
0 (Ω).

(61)
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A similar inequality was used in [BV] in order to establish the space dimensions in
which the extremal solution for (1) is regular or singular. For (Pλ) this seems more
intriguing: it is not clear which is the role of each of the remainder terms in (61).
Furthermore, as we have seen in Theorem 12 and Proposition 34, the singular solution
is difficult to describe. However, we have a partial result relating Hardy’s inequality
with extremal solutions: clearly, this statement is weaker than Corollary 10 if n ≤ 10.

Proposition 38. Let λσ and Uσ be as in Theorem 7 and assume that λσ = λ∗.
Then if n ≤ 12, case (ii) in Theorem 12 cannot occur.

Proof. By Proposition 37(i), by Theorem 3(ii)–(iii), and by using the notation of
Theorem 12, we infer that∫

B

|∆φ|2 ≥ λ∗
∫
B

eU∗φ2 = λ∗
∫
B

eW

|x|4φ
2 for all φ ∈ H2

0 (B).(62)

For contradiction, if (ii) in Theorem 12 holds, then

λ∗
∫
B

eW

|x|4φ
2 ≥ 8(n− 2)(n− 4)

∫
B

φ2

|x|4 for all φ ∈ H2
0 (B).

Since 8(n− 2)(n− 4) > n2(n−4)2

16 whenever n ≤ 12, the last inequality, together with
(62), would improve the best constant in Hardy’s inequality, a contradiction.

Proposition 38 and Corollary 10 suggest the following question and conjecture.
Open Problem 4. Which are all the space dimensions n ≥ 5 for which λσ < λ∗?

We conjecture that the answer is n ≤ 12. In view of Corollary 10 we know that
among these dimensions n, there are at least 5 ≤ n ≤ 10. Moreover, Theorem 12
and Proposition 38 prove “half” of this conjecture when n = 11, 12. Maybe the proof
relies on the interpretation of the two remainder terms in (61).

Open Problem 5. Show that any radial singular solution is also weakly singu-
lar, according to Definition 5. In particular, this would strengthen the statement of
Theorem 6.

If the previous three open problems could be solved in the affirmative, then we
could also conclude that the extremal solution U∗ is singular if and only if n ≥ 13.

We conclude this paper with some further problems. The next one is not yet
completely solved even in the second order case.

Open Problem 6. Do there exist singular nonradial solutions to (Pλ) for some
λ > 0? We conjecture that the answer is positive; see also Problem 7 in [BV].

Figure 2 displays the numerically computed value of −v4 of the intersection of a
portion of the unstable manifold of P1 with the hyperplane v1 = 4 in the case n = 5.

More precisely, −v4 is displayed as a function of x := − log(−ϑ). One may observe
the estimated value of λ∗ as the maximum value reached by −v4; furthermore, as
ϑ → 0− the value of −v4 appears to asymptotically reach λσ oscillating around it.
This leads us to the following problem.

Open Problem 7. Assume n ≤ 12. Prove that for every N ∈ N there exists
ε = ε(N) > 0 such that for λ ∈ [λσ − ε, λσ + ε] there exist at least N distinct regular
radial solutions. For the second order problem the same statement holds true; see
[GPP, Theorem 15].

Open Problem 8. How can one proceed in arbitrary smooth domains where it
is known that comparison principles like Lemma 16 become false? How can one
construct and characterize the minimal solution? Does one have similar bifurcation
diagrams, where the solutions, however, can no longer be expected to be positive
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everywhere? Or does the lack of comparison principles lead to a completely different
behavior, at least in geometrically very complicated domains?

9. Appendix. Computation techniques. We describe here the algorithm
used in the computer assisted proofs. In order to prove Theorem 7 we need a rigorous
estimate of the intersection of a branch of the unstable manifold with the hyperplane
v1 = 4. Since we do not know the exact location of any point of the manifold, except
for the stationary point, we compute the trajectory of the whole set κ′ as described
in section 6. Since no analytical solution of the equation is available, we estimate the
trajectories of all points of the set and compute the intersections with the hyperplane
v1 = 4 with rigorous error bounds. In order to compute the image of an infinite set
of points, we partition it into boxes with small enough sides, which we call interval
sets, and we compute their trajectories using interval arithmetics. More precisely,
we start with a Taylor approximation of order 10; i.e., we estimate the trajectory of
an interval by using the Taylor expansion of order 10 and estimate the error by the
Lagrange remainder. If h is the time step, we compute a rough but rigorous enclosure
D of the trajectory at times [0, h], which is an interval set D such that the solution
of the equation lies in D for all times between 0 and h. By Lagrange theorem we
estimate the error we make neglecting the remaining terms of the Taylor expansion

by computing x(11)(D)h
11

11! . We compute x(11)(D) (which is an interval enclosing all
possible values assumed by the 11th derivative of the trajectory, therefore enclosing
the Lagrange remainder) using a recursive algorithm for the time derivatives of the
solutions (see section I.8 in [HNW]). We point out that it takes a finite amount of
s-time to go from any point in the set κ′ (in Lemma 30) or κ (in Lemma 31) to the
hyperplane v1 = 4. The actual number and size of the intervals that we used as a
partition of the sets κ′ and κ can be read directly from the Mathematica notebook,
together with the time step we used for the integration. We feel that it is pointless to
display here the long list of numbers which represents such partitions, but since such a
list is an essential part of the proof, we make it available in the Mathematica notebook.

The interval arithmetics algorithms address the problem of computing the tra-
jectory of an interval and of keeping track of the errors in an elegant and rigorous
way, but they introduce another problem. Indeed, even in the simplest dynamical
system, the procedure described above leads to a very rough estimate of trajectories,
due to the wrapping effect which makes the bounds on the error grow exponentially
fast. The wrapping effect is one of the main problems one faces when trying to do
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rigorous numerics for ODEs.
We describe it with one example: Consider a square centered at the origin x =

[−δ, δ]2 and the matrix that represents the rotation in R
2 by an angle α,

R(α) =

[
cos(α) − sin(α)
sin(α) cos(α)

]
.

Assume for simplicity that 0 < |α| < π/2. If we apply Rα to x and wish to repre-
sent the result by another interval (i.e., another rectangle with sides parallel to the
coordinate axes), we see that we need (cos(α) + | sin(α)|)[−δ, δ]2; therefore, although
Rα is an isometry, its computer realization has a growth factor cos(α) + | sin(α)| > 1.
When solving the system of equations of the harmonic oscillator

ẋ = −y, ẏ = x,(63)

the 2π-shift along the trajectory is an identity map, but when we compute it numer-
ically in interval arithmetics, say with time step h = 2π/N , we have to compose N
times the map induced by R(h). An easy computation shows this computation yields
a growth factor e2π ≈ 535 as h → 0.

We substantially reduce the wrapping effect by using the Lohner algorithm. A
complete description of interval arithmetics and of the Lohner algorithm is beyond the
scope of this paper; we refer to section 6 in [AZ] and the references cited therein for
an exhaustive treatment of the topic. More specifically, see [MZ] concerning interval
arithmetics and [Lo] for the Lohner algorithm. For the purpose of this description
it suffices to consider the Lohner algorithm as a finite number of interval arithmetic
operations based on the Taylor expansion which, given (8), an (interval) initial condi-
tion V0 ⊂ R

4, and a time step h, returns an interval V1 ⊂ R
4 such that for all points

v0 ∈ V0 the solution v(s) of the Cauchy problem with initial condition v(0) = v0 sat-
isfies v(h) ∈ V1. In other words, the Lohner algorithm provides a rigorous enclosure
of the solution at time h of a given Cauchy problem by performing a finite number
of operations. The fact that the operations involved are in finite number and purely
arithmetical (they are basically sums and multiplications, which can be performed
with computer representable numbers with rigorous control on the round-off) makes
it suitable for implementation with a computer.

We must determine the intersection of the trajectory with the hyperplane v1 = 4.
Since we are computing the trajectory of an interval, it takes a finite (nonzero) amount
of “time” to cross the hyperplane; therefore we necessarily introduce another error
when estimating the intersection point and have to give a rigorous bound for this error
as well. We proceed as follows. We numerically compute the time s1 required for the
flow to reach the intersection. We compute with the Lohner algorithm the solution
V1 of the problem at time s1. We check if the first component (V1)1 of V1 is contained
in (−∞, 4]. If (V1)1 ⊂ (−∞, 4], then no points in V1 have crossed the hyperplane. If
(V1)1 �⊂ (−∞, 4], we choose (arbitrarily) a smaller value of s1 and repeat the step.
Then we roughly compute the time s2 required for the set V1 to cross the hyperplane.
With the Lohner algorithm we compute the solution V2 of the problem at time s2.
We check that all points in V2 have crossed the hyperplane, i.e., (V2)1 ⊂ [4,+∞). If
not, we choose a larger value for s2 and repeat the step. We are interested only in
the value of the fourth component of the solution: since at all points of our interest
v′4 < 0 (because v′4 = v1v4), it suffices to compute the hull of the interval value of v4

before and after the crossing of the hyperplane. We now have a rigorous proof that
the intersection takes place at some v4 ∈ [min(V2)4,max(V1)4], and this last interval
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(with the left bound rounded down and the right bound rounded up) is the value we
display in Table 1. For the λ∗ computation we display only max(V1)4 rounded down,
since the other side of the interval does not have any meaning.

In order to check the third statement in Lemma 30, it is not enough to check
that the evolution of all points is in A as defined in subsection 6.2. Indeed, if the
time step is large, it may happen that some trajectory leaves A and reenters it in a
single integration step. We have therefore to check at every time step that the whole
rough enclosure D as defined above is in A and that the part of the set A which is
contained in the flow tube has a trivial topology, i.e., it does not have holes. The
round-off errors are taken care directly by suitable C++ procedures. Such errors may
vary by changing computers and/or operating systems, but since they are usually very
small when compared to the wrapping effect, we expect that the proofs can be easily
reproduced on any recent computer obtaining very similar bounds.

To perform the proofs, we implemented a version of the whole algorithms in
a combination of Mathematica 4.0 and C++ (gcc version 2.95.1) under the Linux
operating system. More precisely, Mathematica was used to handle all the data and to
perform a few algorithms which are less demanding for the CPU, but more complicated
to implement. Furthermore Mathematica was used to make all numerical experiments
and to draw the pictures. On the other hand C++ was used for the heavy interval
arithmetic computations, where it offered much higher speed and more controllable
accuracy. The connection between the two languages was obtained by MathLink. The
verification of the whole proof takes a few days of CPU time on a machine equipped
with an Athlon XP1700 processor. The computer programs which are part of the
proofs can be obtained from the authors upon request, while the interval algorithms
are provided by [CAPD].
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Abstract. We consider a simplified model that describes steady flows of a miscible mixture of
fluids. The corresponding system of equations is studied in the whole space R
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1. Introduction.

1.1. Description of the model. There are various approaches to model the
behavior of mixtures. In this paper we deal with a continuum mechanics model
describing flows of the mixture of N compressible fluids (we call such a material
N -component or multicomponent fluid) at constant temperature. Based on the as-
sumption that the mixture is sufficiently dense, it is reasonable to assume that at
each point of the space occupied by the mixture there are particles belonging to each
component.

Following the theory introduced in [24] that generalizes the earlier pioneering
works by Fick [10], Darcy [2], and later on by Truesdell [26], isothermal flows of such
a material can be fully captured by 2N functions (ρi, u

(i)), i = 1, . . . , N , representing
the densities ρi and the velocities u(i) of the ith component of the mixture, and solving
the equations

(ρi)t + div
(
ρiu

(i)
)

= 0 ,(1.1) (
ρiu

(i)
)
t
+ div

(
ρiu

(i) ⊗ u(i)
)
− div T (i) = ρif

(i) + J (i) ,(1.2)

where f (i) is a given external force, T (i) represents the partial Cauchy stress, and J (i)

is an interaction term (the momentum source); all quantities are associated to the ith
constituent. Note that (1.1) and (1.2) follow from the balance of mass (no chemical
reactions) and the balance of linear momentum for each constituent.

Just for simplicity we “restrict” ourselves to a two-component fluid, i.e., N = 2.
Then the principle of action and reaction implies that

J (1) = −J (2) .(1.3)
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Let further ψi denote the Helmholtz potential associated to the ith constituent. Then
the balance of entropy for the total mixture and the second law of thermodynamics
imply (recall that the temperature is supposed to be constant) that

2∑
i=1

T (i) · ∇u(i) + J (1) ·
(
u(2) − u(1)

)
−

2∑
i=1

[
ρi(ψi)t + ρiu

(i)
k (ψi)xk

]
≥ 0 ,(1.4)

where we also used (1.3). Inequality (1.4) helps to identify the structure of the con-
stitutive equations for T (i) and J (i).

We start with the assumption that the energy storage mechanism is the same for
each constituent, i.e., ψ1 = ψ2, and for i = 1, 2 we have

ψi = Ψ(ρ1 + ρ2) or more generally ψi = Ψ̃

(
ρ1

ρ1,ref
+

ρ2

ρ2,ref

)
,(1.5)

where ρi,ref , i = 1, 2, are positive reference densities. Considering the former for
simplicity, inserting it into (1.4), using also (1.1), and setting

Pi(ρ) = Pi( (ρ1, ρ2)
T ) = ρi(ρ1 + ρ2) Ψ′(ρ1 + ρ2) ,(1.6)

we eventually arrive at

2∑
i=1

[
T (i) + Pi(ρ)I

]
· ∇u(i) +

[
J (1) + Ψ′(ρ1 + ρ2) (ρ1∇ρ2 − ρ2∇ρ1)

]
· (u(2) − u(1)) ≥ 0 ,

(1.7)

where I denotes the identity tensor. Put

σ(i) := T (i) + Pi(ρ)I and G := J (1) + Ψ′(ρ1 + ρ2) (ρ1∇ρ2 − ρ2∇ρ1) .(1.8)

Then, denoting D(w) := 1
2

(
∇w + (∇w)T

)
for w : R

3 → R
3, we observe that setting

σ(i) = µi1D(u(1)) + µi2D(u(2)) + νi1 div u(1)I + νi2 div u(2)I ,

G = a(ρ1, ρ2, |u(1) − u(2)|)(u(2) − u(1))

and requiring1 that for a certain c0 > 0

2∑
i=1

σ(i) · ∇u(i) ≥ c0|∇u|2 and a(ρ1, ρ2, |u(1) − u(2)|) ≥ 0 ,(1.9)

(1.7) is automatically fulfilled. This means that the system (1.1)–(1.2) with

T (i) = −Pi(ρ)I + σ(i),(1.10)

J (1) = a(ρ1, ρ2, |u(1) − u(2)|)(u(2) − u(1)) − Ψ′(ρ1 + ρ2) (ρ1∇ρ2 − ρ2∇ρ1)(1.11)

1In terms of the viscosities, (1.9)1 is equivalent to

µ11 > 0 , µ22 > 0 , 2µ11 + ν11 > 0 , 2µ22 + ν22 > 0 ,

4µ11µ22 − (µ12 + µ21)2 > 0 ,

4(2µ11 + ν11)(2µ22 + ν22) − (2µ12 + ν12 + 2µ21 + ν21)2 > 0 .
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is thermomechanically consistent. It means the basic energy estimates are in place.
We, however, consider an approximation of this system neglecting the second term

in (1.11). In other words, we assume that the momentum source due to ρ1∇ρ2−ρ2∇ρ1

is of much lower order than the effects due to the difference between the velocities of
the constituents. Numerical simulations of flows in special geometries have also shown
that there is no significant difference in the resulting flows regardless of whether the
second term in (1.11) is considered or neglected (see also [25]). One may also argue
that it is difficult to identify the second term in (1.11) experimentally. Thus, in what
follows the interaction terms take the form2

J (1) = −J (2) = a(ρ1, ρ2, |u(1) − u(2)|) (u(2) − u(1)) .(1.12)

However, once we accept (1.12) instead of (1.11), the basic energy identity is lost. We
will return to this issue in subsection 1.4.

We also restrict ourselves to steady flows, i.e., (ρi)t = 0 and (ρiu
(i))t = 0 in (1.1)

and (1.2).
Finally, we neglect the convective term div(ρiu

(i) ⊗ u(i)) in (1.2), which may be
justified either geometrically (there are flows in special geometries where div(ρu⊗u) =
0) or via a proper scaling that leads to a nondimensional form which allows us to
neglect the convective term for slow flows. Since the full system is very complex, our
motivation to neglect the convective term has been rather technical: to start with
the investigation of a simpler yet interesting system first. Thus, in analogy to the
mathematical theory for incompressible fluids, we start with the Stokes-like system
for a mixture of fluids.

To summarize, we end up with the system (i = 1, 2)

div
(
ρiu

(i)
)

= 0 ,(1.13)

L(i)u = −∇Pi(ρ) + ρif
(i) + J (i),(1.14)

where J (i) is of the form (1.12), L(i)u is defined through

L(i)u = −div σ(i) = −
2∑

k=1

(µik∆u(k) + (µik + νik)∇ div u(k)) ,(1.15)

and the constant coefficients µik and νik and the function a fulfill (1.9).
The structure of Pi(ρ) comes from (1.6). To give an example, assuming that

Ψ = (ρ1 + ρ2)
γ−1 in (1.5) with γ > 1, we obtain

Pi(ρ) = ciρi (ρ1 + ρ2)
γ−1

with γ > 1 (ci > 0) .(1.16)

In this paper we study (1.13)–(1.14) in the whole space R
3, assuming that for

given positive ρi∞, i = 1, 2, the following holds:

u(i) → 0 and ρi → ρi∞ as |x| → ∞ (i = 1, 2) .(1.17)

We are interested in proving the existence of solutions to (1.13)–(1.14) and (1.17),
completed with, say, (1.12), (1.15) with (1.11)1, and (1.16). The precise assumptions
on Pi(ρ) and J (i) are given in subsection 1.2. The precise formulation of the main
result is postponed to subsection 1.3.

2The main reason we prefer (1.12) rather than (1.11) comes of course from the analysis of the
system: We have not been able to find sufficient information in order to pass to the limit in the
nonlinear terms containing ∇ρi.



1262 JENS FREHSE, SONJA GOJ, AND JOSEF MÁLEK

1.2. Effective viscous flux and assumptions on Pi and J(i). Applying div
to (1.14) we obtain

(−∆)

(
2∑

k=1

(2µik + νik) div u(k) − Pi(ρ)

)
= div

(
ρif

(i) + J (i)
)
,

which can be rewritten as

(
2µ11 + ν11 2µ12 + ν12

2µ21 + ν21 2µ22 + ν22

)(
div u(1)

div u(2)

)
−
(

P1(ρ)
P2(ρ)

)
=

(
F (1)

F (2)

)
,(1.18)

where

F (i) = (−∆)−1 div
(
ρif

(i) + J (i)
)
.(1.19)

Alternatively, (1.18) can be viewed as

(
div u(1)

div u(2)

)
=

(
2µ11 + ν11 2µ12 + ν12

2µ21 + ν21 2µ22 + ν22

)−1 [(
P1(ρ)
P2(ρ)

)
+

(
F (1)

F (2)

)]
.(1.20)

Since the matrix on the right-hand side of (1.20) is not necessarily symmetric, one
may choose β0 such that A0 defined through

A0 =

(
β0 0
0 1

)(
2µ11 + ν11 2µ12 + ν12

2µ21 + ν21 2µ22 + ν22

)−1

(1.21)

is symmetric, and positive definite if 2µik + νik > 0. With this notation (1.20) results
in the form

(
β0 div u(1)

div u(2)

)
= A0

[(
P1(ρ)
P2(ρ)

)
+

(
F (1)

F (2)

)]
.(1.22)

This equation will play a key role in our analysis. Analogously to the theory of a
single compressible fluid we call (1.22) the equation for the effective viscous flux.

Now, we can formulate the assumptions on Pi(ρ). We suppose that there are
γ > 1 and β0 �= 0 such that P (ρ) = (P1(ρ), P2(ρ))

T fulfills

(i) the monotonicity condition:
there is λ0 > 0 such that for all ρ = (ρ1, ρ2)

T and ρ̂ = (ρ̂1, ρ̂2)
T , ρi, ρ̂i ≥ 0,

(ρ− ρ̂)TA0 (P (ρ) − P (ρ̂)) ≥ λ0

(
|ρ|γ−1 + |ρ̂|γ−1

)
|ρ− ρ̂|2 ;(1.23)
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(ii) the coerciveness condition:
there are λ1 > 0, λ2 ∈ R such that for all ρ = (ρ1, ρ2)

T , ρi ≥ 0,

(ργ − ργ∞)TA0 (P (ρ) − P (ρ∞)) ≥ λ1|ρ− ρ∞|2γ − λ2|ρ− ρ∞|2 ;(1.24)

(iii) the growth condition:
there is K > 0 such that for all ρ = (ρ1, ρ2)

T and ρ̂ = (ρ̂1, ρ̂2)
T

|P (ρ) − P (ρ̂)| ≤ K
(
|ρ|γ−1 + |ρ̂|γ−1

)
|ρ− ρ̂| .(1.25)

In the appendix of [12], we show that P (ρ) of the form (1.16) fulfills the coerciveness
condition (1.24). Similarly, one can show that P (ρ) of the form (1.16) fulfills (1.23)
under reasonable conditions3 on γ. Note also that (1.25) is satisfied by (1.16) as well.

Next, we give the assumptions on the interaction terms. We suppose that J (1)

and J (2) satisfy (1.12) and

there are θ ∈ (0, 1) and K > 0 such that

|J (1)| = |J (2)| = |a(x, ρ, |u(1) − u(2)|)(u(2) − u(1))| ≤ K(1 + |u(1) − u(2)|)θ
(1.26)

and there is R0 	 1 such that

a ∈ C(R3 × R
+
0 × R

+
0 ) and a(x, ·, ·) = 0 if |x| ≥ R0 .(1.27)

Sublinear growth of J (i), i = 1, 2, seems to be crucial in our method in order to deduce
estimates for ρ, while the assumption concerning the compact support of a is useful
in order to avoid technical difficulties concerning the asymptotic behavior of u(1), u(2)

as |x| → ∞.

We complete this part with two inequalities that follow from (1.23) and (1.25).
First of all, taking ρ̂ = ρ∞ in (1.25) and using some elementary considerations, we
obtain that there is a K = K(ρ∞) > 0 such that for all ρ = (ρ1, ρ2)

T

|P (ρ) − P (ρ∞)| ≤ K(ρ∞) (|ρ− ρ∞|γ + |ρ− ρ∞|) .(1.28)

Also, there is λ̂0 such that for all ρ = (ρ1, ρ2)
T

(ρ− ρ∞)TA0 (P (ρ) − P (ρ∞)) ≥ λ̂0

(
|ρ− ρ∞|γ+1 + |ρ− ρ∞|2

)
,(1.29)

which is a consequence of (1.23) and the algebraic inequality

(g + h)γ−1 ≥ 1

2γ−1
gγ−1 − hγ−1 (g, h ≥ 0)(1.30)

3These conditions will be addressed in [14]. Let us mention two special cases where (1.23) holds.

(i) µij > 0 ( =⇒ Aij < 0, i �= j, where A0 = (Aij)) and for all r ∈ R with (Bij) = A0

(
c1 0
0 c2

)
:

(B11 + B12(γ − 1))r2 + (B21 + γB12 + B22(γ − 1))r + γB22 ≥ λ0(1 + r2) ,

(B22 + A21(γ − 1))r2 + (B12 + γB21 + B11(γ − 1))r + γB11 ≥ λ0(1 + r2) .

These conditions are fulfilled if γ is not too large, say, γ ≤ 2, and the diagonal terms of A0 dominate
the nondiagonal ones.

(ii) A11 = A22, A12 = A21, A12/A11 = χ ≤ 0, and γ(1+χ(γ− 1))− 1/4(χ(γ +1)+γ− 1)2 > 0.
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that follows from gγ−1 ≤ (g + h − h)γ−1 ≤ 2γ−1
(
(g + h)γ−1 + hγ−1

)
. To see that

(1.29) holds, we take ρ̂ = ρ∞ in (1.23) and compute

(ρ− ρ∞)TA0 (P (ρ) − P (ρ∞)) ≥ λ0

(
|ρ− ρ∞ + ρ∞|γ−1 + |ρ∞|γ−1

)
|ρ− ρ∞|2

≥ λ0

2

(
|ρ− ρ∞ + ρ∞|γ−1 + |ρ∞|γ−1

)
|ρ− ρ∞|2 +

λ0

2
|ρ∞|γ−1|ρ− ρ∞|2

(1.30)

≥ λ0

2

(
1

2γ−1
|ρ− ρ∞|γ−1

)
|ρ− ρ∞|2 +

λ0

2
|ρ∞|γ−1|ρ− ρ∞|2 ,

which implies (1.29) with λ̂0 = min{λ0/2
γ , λ0|ρ∞|γ−1/2}.

1.3. Formulation of the result. First, we fix the notation of the function
spaces we will use. The symbols Lq(R3), or Lq in short, 1 ≤ q < ∞, denote the
standard Lebesgue spaces of scalar-valued measurable functions. The space norm is
denoted by ‖u‖qLq =

∫
R3 |u(x)|q dx. If X(R3) is a space of (scalar) functions, then

X(R3; R3) denotes the space of all w = (w1, w2, w3)
T : R

3 → R
3 such that wj ∈

X(R3), j = 1, 2, 3.
We will further use the space H1

0 := H1
0 (R3; R3) defined as the closure of the

space of smooth functions with compact support in R
3 with respect to the norm

‖u‖H1
0

= ‖∇u‖L2 . Recall that H1
0 ↪→ L6, but H1

0 is not embedded into L2.
We formulate our result.
Theorem 1.1. Let ρ∞ = (ρ1∞, ρ2∞)

T
, ρ1∞, ρ2∞ > 0, be given. Let

f (i) ∈ L∞(R3; R3) and have compact support.(1.31)

Assume that νik, µik forming the operators L(i) according to (1.15) fulfill the condition
(1.9)1. Assume further that P (ρ) = (P1(ρ), P2(ρ))

T satisfies (1.23)–(1.25) with γ > 1.
Finally, assume that J (i), i = 1, 2, of the form (1.12) fulfill (1.26)–(1.27). Then there
is a weak solution (ρ, u), ρ = (ρ1, ρ2)

T , u = (u(1),T , u(2),T )T , such that for i = 1, 2

ρi ≥ 0 ,(1.32)

ρi − ρi∞ ∈ L2(R3) ∩ L2γ(R3) ,(1.33)

u(i) ∈ H1
0 (R3; R3) ,(1.34)

solving the equations (1.13)–(1.14) in a distributional sense.
The proof of Theorem 1.1 is performed in the consequent sections via the following

scale of approximations.
For α > 0, β > 0, σ > 0, and s0 > max{4, 2γ}, we consider the system (i = 1, 2)

− σ∆ρi + α
(
1 + |ρi − ρi∞|s0−2

)
(ρi − ρi∞) + div

(
ρiu

(i)
)

= 0,(1.35)

L(i)u = −∇ (wβ(Pi(ρ) − Pi(ρ∞))) + ρif
(i) + (−1)i+1J (1)

with wβ = (1 + β|x|)−4.
(1.36)

Clearly, if we set σ = 0, α = 0, and β = 0 in (1.35) and (1.36), we obtain (1.13)–(1.14).
In section 2 we prove the existence of weak solutions to (1.35)–(1.36) in R

3. In
section 3, we derive the equation for the effective viscous flux related to this ap-
proximation. Using this tool, we can then derive estimates for the densities and the
velocities that are uniform with respect to β. This allows us to show not only that
there is a weak solution to (1.35) and (1.36) with wβ replaced by 1, but also that this
solution satisfies certain types of inequalities, from which estimates uniform with re-
spect to α can be derived. The derivation of these estimates is performed in section 4,
together with the passage to the limit as α → 0. Finally, in section 5, we let σ → 0.
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1.4. Main difficulties. First of all, we would like to point out a remarkable
difference between the analysis of the system (1.13)–(1.14) describing the steady flow
of two miscible fluids on the one hand and the analysis of the analogous model for a
one-constituent compressible fluid on the other hand. This difference manifests itself
in the first step, i.e., in the derivation of a priori estimates. To be more precise,
consider the equations for one single fluid that are analogous to (1.13)–(1.14):

div(�v) = 0 in R
3,(1.37)

−µ∆v − (λ + µ)∇ div v = −∇�γ + �f in R
3,(1.38)

v → 0 and � → �∞ as |x| → ∞ ,(1.39)

with � : R
3 → R, v : R

3 → R
3, and a given �∞ > 0. Multiplying (1.38) by v and

integrating by parts, we observe that the left-hand side controls the L2-norm of the
velocity gradient, and the first term on the right-hand side leads to

−
∫

∇�γv dx = − γ

γ − 1

∫
�v · ∇�γ−1 dx = − γ

γ − 1

∫
div (�v) �γ−1 dx = 0 ,(1.40)

thanks to (1.37). Thus, energy estimates are available once we control the term∫
�fv dx, which is in some sense a lower order term. We will not complete this step.

Rather we wish to emphasize that the cancellation property (1.40) cannot be
expected for the model for mixtures (1.13)–(1.14). If we imitate the above outlined
procedure and multiply the ith equation in (1.14), where Pi(ρ) is of the form (1.16),
by u(i) and sum the resulting equations over i = 1, 2, we obtain again with the aid
of (1.9)1 the control of the L2-norm of the velocity gradient on the left-hand side;
however, the terms containing the partial pressures on the right-hand side taking
the form

2∑
i=1

ci

∫
R3

(ρ1 + ρ2)
γ−1ρi div u(i) dx(1.41)

are not vanishing, as one can easily check. This means that we have to proceed in a
different way.

Our approach is based on the equation for the effective viscous flux (1.22), known
from the theory for standard compressible fluid models (see [19, 23, 7, 8]). We multiply
this equation gradually by ρi−ρi∞ or ργi −ργi∞, integrate, and use also the properties of
Pi(ρ) and (1.1). Consequently, we succeed in proving estimates on the (approximate)
densities.

In this procedure, there arise boundary terms which we are not able to treat
up to now for the standard Dirichlet (no-slip) or Neumann-type (no-stick) boundary
conditions. Thus, we deal with the problem in R

3, where, however, some additional
technical difficulties occur.

Finally, we have to handle the difficulties due to the nonlinearity of the pressure
term P (ρ). For this purpose we apply the techniques which were developed to treat
the compressible Navier–Stokes equations (see [19, 7]).

1.5. Related results. To our knowledge such systems as (1.13)–(1.14) have not
been considered so far for space dimension d ≥ 2. (The one-dimensional case has
been treated, for example, in [17] and [27].) This is in contrast to the successful
mathematical theory of “immiscible” mixtures of fluids (cf. [20, 21, 4, 16]), the theory
of the density-dependent incompressible Navier–Stokes equations ([18, 1]), and the
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compressible Navier–Stokes equations in the steady case (cf. [22, 23, 19]) and in the
evolutionary case (cf. [19, 7, 9, 5, 3]).

The result of Theorem 1.1 was announced in [11], where we sketch the limit from
σ-approximations to the original problem (cf. section 5 in this paper). In [11], we also
show the additional regularity property of the solutions ρ ∈ Lq

loc, ∇u ∈ Lq
loc for all

q < ∞.
Let us remark that the methods of the present paper can be adapted to treat

the stationary case on a bounded domain with Dirichlet boundary conditions in the
presence of the convective term, provided that an H1-estimate for u is available. This
is, e.g., possible if Pi(ρ) ∼ |ρ| 12 , which holds for some examples of mixtures. The quasi-
stationary case is studied in [15], where even first derivatives of ρi can be estimated.
Finally, in [13], the authors show that in the absence of f (i) and interaction terms
the only solution to (1.13)–(1.14) is u(i) = 0 and ρi = ρi∞. This is a uniqueness type
result.

2. Solvability of the (β, α, σ)-approximations. The goal of this section is
to prove the following statement.

Proposition 2.1. For each α > 0, β > 0, and σ > 0, under the assumptions of
Theorem 1.1, there exists a weak solution (ρ, u) = (ρβ,α,σ, uβ,α,σ), ρ = (ρ1, ρ2)

T , u =
(u(1),T , u(2),T )T solving (1.35) and (1.36) such that for i = 1, 2

ρi ≥ 0 , ρi − ρi∞ ∈ L2(R3) ∩ Ls0(R3) ∩H1(R3) and u(i) ∈ H1
0 (R3; R3).

Proof. We consider the system (1.35)–(1.36) in the ball BR = {x ∈ R
3; |x| ≤ R},

where we impose the following boundary conditions:

u(i) = 0 and ∇ρi · n = 0 on ∂BR (n being the outer normal to ∂BR).(2.1)

We focus on only two steps. First, we find energy estimates to (1.35)–(1.36) in BR that
are uniform with respect to R. Note that these estimates are then not only sufficient
for the existence of a solution for fixed R, but they also suffice to pass to the limit as
R → ∞. We skip these standard arguments based on the compact embeddings. In
the second step, we outline that ρi are nonnegative.

Step 1. Energy inequalities. First, we test (1.36) by u(i) and sum over i = 1, 2
(in the next computation, in contrast to the rest of the paper, we use the summation
convention over repeated indices i). It leads to (for q > 2)

c0

∫
BR

|∇u|2 dx ≤
∫
BR

L(i)u · u(i) dx(2.2)

=

∫
BR

wβ(Pi(ρ) − Pi(ρ∞)) div u(i) dx +

∫
BR

(ρi − ρi∞)f (i) · u(i) dx

+ρi∞

∫
BR

f (i) · u(i) dx + (−1)i+1

∫
BR

a(ρ, |u(1) − u(2)|)(u(2) − u(1)) · u(i) dx

≤ ε

∫
BR

|∇u|2 dx + δ

∫
BR

|P (ρ) − P (ρ∞)|q dx + Kδ

∫
BR

w
2q

q−2

β dx

+2ε

∫
BR

|u|6 dx + ε

∫
BR

|ρ− ρ∞|2 dx + Kε

∫
BR

|f |3 dx

+Kε

∫
BR

|f |6/5 dx +

∫
BR0

(1 + |u(1) − u(2)|)θ|u| dx ,
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where we used (1.26) and (1.27). Since 0 < θ < 1, the last term is bounded (using
also Young’s inequality) by

C

∫
BR0

(
|u| + |u|1+θ

)
dx ≤ ε

∫
BR

|∇u|2 dx + K(R0) for all R ≥ R0.(2.3)

Note that if θ were greater than or equal to 1, the last estimate would not be available.
The sublinear growth of J (1) seems to be important.

Next, since f ∈ L∞(R3) and has compact support and w
2q

q−2

β is integrable over R
3

for any β > 0, it follows directly from (2.2) and (2.3) and then from (1.28) that∫
BR

|∇u|2 dx ≤ ε̃

∫
BR

|P (ρ) − P (ρ∞)|q dx + ε̃

∫
BR

|ρ− ρ∞|2 dx + K

≤ ε̃K(ρ∞)

∫
BR

|ρ− ρ∞|qγ + |ρ− ρ∞|q dx + ε̃

∫
BR

|ρ− ρ∞|2 dx + K,

(2.4)

where ε̃ is chosen as small as needed and K = K(β−1, δ−1, R0).

Next, we test (1.35) by ρi − ρi∞. Using inequality (2.4), we obtain

σ

∫
BR

|∇ρi|2 dx + α

∫
BR

|ρi − ρi∞|2 + |ρi − ρi∞|s0 dx =

∫
BR

ρiu
(i)∇(ρi − ρi∞) dx

= −1

2

∫
BR

div u(i)(ρi − ρi∞)2 dx− ρi∞

∫
BR

div u(i)(ρi − ρi∞) dx

≤ α

8

∫
BR

|ρi − ρi∞|4 dx + Kα

∫
BR

|∇u|2 dx +
α

8

∫
BR

|ρi − ρi∞|2 dx

≤ α

8

∫
BR

|ρi − ρi∞|4 dx +
α

8

∫
BR

|ρi − ρi∞|2 dx + ε̃K(ρ∞)

∫
BR

|ρ− ρ∞|qγ dx .

Observing that for s0 > 2γ there is always a q > 2 such that s0 > qγ, we can (via
interpolation) subtract all the terms containing ρ to finally obtain

σ

∫
BR

|∇ρi|2 dx + α

∫
BR

|ρi − ρi∞|2 dx + α

∫
BR

|ρi − ρi∞|s0 dx ≤ K .(2.5)

From (2.4) it then follows that∫
BR

|∇u|2 dx ≤ K with K = K(α−1, β−1, R0) but independent of R .(2.6)

Step 2. Nonnegativity of the densities. The proof is performed via standard weak
maximum principles. To be more specific, we multiply (1.35) (for fixed i = 1 or 2) by
a function G solving

−σ∆G− u
(i)
k

∂G

∂xk
+ αG + α|ρi − ρi∞|s0−2G = χ{ρi<0} in BR ,

∇G · n = 0 on ∂BR .

Before doing so, one may prefer to mollify the coefficients u
(i)
k and |ρi − ρi∞|s0−2 to

construct G smooth enough. Integrating the resulting equation over BR and using
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integration by parts together with the boundary conditions for ρi, G and u(i) lead
finally to the conclusion that ∫

BR

ρiχ{ρi<0} dx ≥ 0 ,

which implies ρ−i = 0 a.e. in BR. Thus ρi ≥ 0 a.e. in BR.

The sketch of the proof of Proposition 2.1 is finished.

3. Solvability of the (α, σ)-approximations.

3.1. The equation for the effective viscous flux. Let (ρ, u) = (ρβ,α,σ, uβ,α,σ)
be solutions of (1.35)–(1.36) constructed above. The aim is to show that (ρ, u) also
satisfy (a.e. in R

3) the equation for the effective viscous flux

A0 (wβ (P (ρ) − P (ρ∞))) −
(

β0 div u(1)

div u(2)

)
= A0 div ∆−1

(
ρ1f

(1) + J (1)

ρ2f
(2) − J (1)

)
.(3.1)

Thus, we multiply (1.36) by ∇ϕ(i), where ϕ(i) is a smooth function with compact
support in R

3. In matrix notation, we obtain

∫ (
∆ϕ(1)

∆ϕ(2)

)T (
2µ11 + ν11 2µ12 + ν12

2µ21 + ν21 2µ22 + ν22

)(
div u(1)

div u(2)

)
dx

=

∫ (
∆ϕ(1)

∆ϕ(2)

)T (
wβ (P1(ρ) − P1(ρ∞)) − div ∆−1

(
ρ1f

(1) + J (1)
)

wβ (P2(ρ) − P2(ρ∞)) − div ∆−1
(
ρ2f

(2) − J (1)
) )

dx ,

where we used the identity∫
(ρif

(i) + J (i))∇ϕ(i) dx = −
∫

div ∆−1(ρif
(i) + J (i))∆ϕ(i) dx,(3.2)

which is valid certainly for smooth functions ϕ(i) with compact support, and by
density arguments also for functions such that ∆ϕ(i) ∈ L2. To see this, we first denote
hi = ∆−1(ρif

(i) + J (i)) so that ∆hi = ρif
(i) + (−1)i+1a(·, ρ, |u(1) − u(2)|)(u(2) − u(1))

in R
3. Then, using (1.26)–(1.27),

∣∣∣∣
∫

div hi∆ϕ(i) dx

∣∣∣∣ ≤ ‖∆ϕ(i)‖L2‖div hi‖L2 ≤ c‖∆ϕ(i)‖L2‖ρif (i)‖(H1
0 )∗

≤ c‖∆ϕ(i)‖L2

(
‖(ρi − ρi∞)f (i)‖L6/5 + ρi∞‖f (i)‖L6/5

+‖1 + |u(1) − u(2)| ‖2θ

L
12θ
5 (BR0

)

)
(3.3)

≤ c‖∆ϕ(i)‖L2

(
‖ρi − ρi∞‖Ls0‖f (i)‖

L
6s0

5s0−6
+ ‖∇u‖2θ

L2 + Kf

)
≤ K‖∆ϕ(i)‖L2 ,

as follows from the facts that ρi − ρi∞ ∈ Ls0 , u ∈ H1
0 , and f (i) ∈ L∞ and a have

compact supports. Thus, the validity of (3.2) for ϕ(i) with ∆ϕ(i) ∈ L2 is verified.
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Choose ϕ = A0ψ̃, where ϕ =
(
ϕ(1),T , ϕ(2),T

)T
, ψ̃ = (ψ̃(1),T , ψ̃(2),T )T , and A0 is

introduced in (1.21). Then we obtain

∫ (
∆ψ̃(1)

∆ψ̃(2)

)T (
β0 div u(1)

div u(2)

)
dx

=

∫ (
∆ψ̃(1)

∆ψ̃(2)

)T

A0

(
wβ (P1(ρ) − P1(ρ∞)) − div ∆−1

(
ρ1f

(1) + J (1)
)

wβ (P2(ρ) − P2(ρ∞)) − div ∆−1
(
ρ2f

(2) − J (1)
) )

dx .

For any z ∈ L2(R3) solve −∆ψ̃(i) = z in L2, i = 1, 2. Then (3.1) follows.

3.2. Limit β → 0. We prove the following statement.
Proposition 3.1. Let α > 0 and σ > 0 be fixed. Let all assumptions of

Theorem 1.1 be fulfilled. Then there exists a solution (ρ, u) = (ρα,σ, uα,σ), ρ =
(ρ1, ρ2)

T , u = (u(1),T , u(2),T )T , such that (for i = 1, 2 and ε > 0 small)

ρi ≥ 0, ρi − ρi∞ ∈ L1+ε(R3) ∩ Ls0(R3) ,(3.4)

u(i) ∈ H1
0 (R3; R3)(3.5)

solving weakly (1.35), (1.36), and (3.1) with β = 0 ( =⇒ wβ = 1).
In addition, (ρ, u) satisfies

2∑
i=1

σβ̂i

∫ |∇ρi|2
ρi

dx +

2∑
i=1

αβ̂i

2

∫
(ρi − ρi∞)(log ρi − log ρi∞) dx(3.6)

+

2∑
i=1

αβ̂i

2

∫
|ρi − ρi∞|s0−2(ρi − ρi∞)(log ρi − log ρi∞) dx

+

∫
A0 (P (ρ) − P (ρ∞)) · (ρ− ρ∞) dx ≤

∫
A0F · (ρ− ρ∞) =: YF ,

where F is introduced in (1.19), β̂1 = β0 (cf. (1.21)), and β̂2 = 1.
Proof. We split the proof into two steps. First, we derive (3.6) for

(
ρβ,α,σ, uβ,α,σ

)
.

This means that wβ occurs in the last term of the left-hand side of (3.6). Let us call
this inequality (3.6)β . To be able to pass to the limit as β → 0 we need to find the
estimates that are uniform with respect to β. This is done in the second step.

Step 1. Derivation of (3.6)β. We take the L2 scalar product of (3.1) with τ(ρ−
ρ∞), where τ is the usual cut-off function with τ = 1 on the ball BR and τ = 0
outside of B2R. We have verified in (3.3) that F (i) is bounded in L2, which implies
that A0F · (ρ− ρ∞) ∈ L1. Thus, it is easy to pass to the limit as R → ∞ in all terms
except for the terms with div u(i) that require a detailed investigation. Clearly,

−
(
div u(i), τ(ρi − ρi∞)

)
=

(
u(i),∇τ(ρi − ρi∞)

)
+
(
u(i), τ∇ρi

)
=: H1 + H2 ,(3.7)

where

H2 =
(
(ρi + δ)u(i)τ,∇ log(ρi + δ)

)
= −

(
div

(
ρiu

(i)
)
τ, log(ρi + δ) − log(ρi∞ + δ)

)
−δ

(
div u(i)τ, log(ρi + δ) − log(ρi∞ + δ)

)
−
(
(ρi + δ)u(i)∇τ, log(ρi + δ) − log(ρi∞ + δ)

)
=: H3 + H4 + H5 .
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First we observe that

|H1| ≤ ‖u(i)‖L6(B2R\BR)‖∇τ‖L3‖ρi − ρi∞‖L2(B2R\BR) → 0 as R → ∞(3.8)

due to the fact that u ∈ L6(R3; R3), ρi−ρi∞ ∈ L2(R3), and ‖∇τ‖L3 ≤ C. Also, since
| log(ρi + δ) − log(ρi∞ + δ)| ≤ δ−1(ρi − ρi∞), similar arguments (ρi − ρi∞ ∈ L4(R3))
imply that

|H5| ≤ δ−1

∫
(ρi − ρi∞)2|u(i)||∇τ | dx + (ρi∞ + δ)δ−1|H1| → 0 as R → ∞ .(3.9)

Since H4 = −
∫

div u(i)τ(δ
∫ 1

0
1

δ+tρi+(1−t)ρi∞
dt)(ρi − ρi∞) dx and div u(i) · (ρi − ρi∞)

belongs to L1, and also

δ

∫ 1

0

1

δ + tρi + (1 − t)ρi∞
dt ≤ δ

∫ 1

0

1

δ + (1 − t)ρi∞
dt =

2δ log δ

ρi∞
→ 0 as δ → 0 ,

we observe that

H4 is uniformly bounded with respect to R and H4 → 0 as δ → 0 .(3.10)

Finally, inserting (1.35) into H3 we obtain

H3 = σ

∫
∇ρi · ∇τ (log(ρi + δ) − log(ρi∞ + δ)) dx

+ σ

∫ |∇ρi|2
ρi + δ

τ dx + α

∫
(ρi − ρi∞)τ (log(ρi + δ) − log(ρi∞ + δ)) dx

+ α

∫
|ρi − ρi∞|s0−2(ρi − ρi∞)τ (log(ρi + δ) − log(ρi∞ + δ)) dx .

(3.11)

As R → ∞, the first term on the right-hand side of (3.11) vanishes, arguing as in (3.8)
or (3.9). In the remaining terms the cut-off function τ tends to 1. Thus, letting first
R → ∞ and then δ → 0 we obtain inequality (3.6)β , using (3.7)–(3.11) and Fatou’s
lemma.

Step 2. Estimates uniform with respect to β. Using the same arguments as in
(3.3) to estimate YF we conclude that

|YF | ≤
αβ̂

4
‖ρ− ρ∞‖2

L2 +
αβ̂

4
‖ρ− ρ∞‖s0Ls0 + KR0‖∇u‖2θ

L2 + Kf .(3.12)

Thus, the terms including the norms of densities can be absorbed into the left-hand
side of (3.6)β .

Next, multiplying (1.36) by u(i) (and summing over i = 1, 2) gives similarly4 as
in (2.2) with the help of inequality (1.28) and Hölder’s inequality

c0‖∇u‖2
L2 ≤ K

(
‖ρi − ρi∞‖s0Ls0 + ‖ρi − ρi∞‖2

L2

)
+ K ,(3.13)

which implies

‖∇u‖2θ
L2 ≤ K

(
‖ρi − ρi∞‖s0Ls0 + ‖ρi − ρi∞‖2

L2

)θ
+ K(3.14)

≤ ε
(
‖ρi − ρi∞‖s0Ls0 + ‖ρi − ρi∞‖2

L2

)
+ K .

4This time we have to avoid the dependence of the estimates on β. We therefore use the fact
that |wβ | ≤ 1.
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Inserting (3.14) into (3.12) and then into (3.6)β , we obtain (first from (3.6)β and then
from (3.13))

2∑
i=1

(∫ |∇ρi|2
ρi

dx + ‖ρ− ρ∞‖2
L2 + ‖ρ− ρ∞‖s0Ls0

)
+ ‖∇u‖2

L2 ≤ K = K(α−1, σ−1),

where K is independent of β. Since s0 > 4, this estimate implies that

‖∇ρ‖L8/5 ≤ K.

Letting β → 0, it is straightforward to find a subsequence of (ρβ,α,σ, uβ,α,σ) weakly
converging to (ρα,σ, uα,σ) in W 1,8/5×H1

0 , and converging strongly in (Ls0−ε∩L2)×L6

locally and a.e. in R
3. This is certainly enough to show that (ρα,σ, uα,σ) is a weak

solution to (1.35) and (1.36) with wβ = w0 = 1.
What remains is to consider the limit β → 0 in (3.6)β . Here, we incorporate (in

addition to the above mentioned a.e. convergence) lower semicontinuity arguments
and Fatou’s and Vitali’s lemmas in order to obtain (3.6).

4. Solvability of the σ-approximations. In this section, we prove three asser-
tions. In Proposition 4.1, we find estimates for (ρ, u) = (ρα,σ, uα,σ) that are uniform
in both α and σ. Then, in Proposition 4.2, we derive estimates involving the gradient
of the density. In these estimates, which are uniform with respect to α only, the
parameter ε appearing therein is such that 1+ε ≤ γ. If we were allowed to take ε = 1
in these estimates (which means that γ has to be greater than 2), we could simplify
the approximating procedure by setting σ = α (however, we want to avoid any bound
on γ).

Based on the estimates from Propositions 4.1 and 4.2 we are able to show, in
Proposition 4.3, that a suitable weak limit (ρσ, uσ) of {(ρα,σ, uα,σ)} is a solution
of the σ-approximations. Even more, we show that (ρσ, uσ) fulfills a corresponding
equation for the effective viscous flux, and due to weak lower semicontinuity of the
norms, the estimates presented in Proposition 4.1 are also valid for (ρσ, uσ) uniformly
with respect to σ. These estimates then play a starting role for further consideration
regarding the compactness of ρσ, which is presented in section 5.

Proposition 4.1. Let (ρα,σ, uα,σ) be weak solutions to (1.35)–(1.36) with β = 0.
Then there exists a constant K > 0 independent of α and σ such that

‖ρα,σ − ρ∞‖2
L2 + ‖ρα,σ − ρ∞‖2γ

L2γ + ‖∇uα,σ‖2
L2 ≤ K < ∞ .(4.1)

Proof. Step 1. Derivation of the inequality

‖ρα,σ − ρ∞‖2
L2 + ‖ρα,σ − ρ∞‖γ+1

Lγ+1 ≤ K + K‖∇uα,σ‖2θ
L2 .(4.2)

Since (ρ, u) = (ρα,σ, uα,σ) fulfills (3.6), neglecting the first three nonnegative terms
and using inequality (1.29), we obtain

λ̂0

(
‖ρ− ρ∞‖γ+1

Lγ+1 + ‖ρ− ρ∞‖2
L2

)
≤ |YF | .

Then |YF | is estimated as in (3.12) replacing αβ̂ by λ̂0 and the Ls0-norm by the
Lγ+1-norm. Doing so, we obtain (4.2) (K depends neither on α nor on σ).

Step 2. Derivation of the inequality

‖ρα,σ − ρ∞‖2γ
L2γ ≤ K + K‖∇uα,σ‖2θ

L2 .(4.3)
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According to Proposition 3.1, the equation for the effective viscous flux (3.1) with
wβ = 1 holds for (ρ, u) = (ρα,σ, uα,σ). Multiplying the ith equation by τ2(ργi − ργi∞),
where τ is the standard cut-off function (τ = 1 on BR and τ = 0 outside of B2R,
|∇τ | ≤ CR−1), and integrating it, we end up with5

(
(A0(P (ρ) − P (ρ∞)))i, (ρ

γ
i − ργi∞)τ2

)
= β̂i

(
div u(i), τ2(ργi − ργi∞)

)
− ZF ,

where ZF : =
(
a
(i)
0 F (i), (ργi − ργi∞)τ2

)
.

(4.4)

In Step 4 below, we will be able to show that (for α, σ fixed)

lim sup
R→∞

(
div u(i), τ2(ργi − ργi∞)

)
≤ 0 .(4.5)

Assuming that (4.5) is valid, it follows from (4.4)–(4.5) and inequality (1.24) that

‖ρ− ρ∞‖2γ
L2γ ≤ K‖ρ− ρ∞‖2

L2 + lim sup
R→∞

|ZF | .(4.6)

Since, by the mean value theorem (t ∈ (0, 1)),

|ργi − ργi∞| = γ|(ρi∞ + t(ρi − ρi∞))γ−1(ρi − ρi∞)| ≤ K (|ρi − ρi∞| + |ρi − ρi∞|γ) ,

(4.7)

we conclude from (4.6) and (4.7) that

‖ρi − ρi∞‖2γ
L2γ + ‖ργi − ργi∞‖2

L2 ≤ K

(
‖ρi − ρi∞‖2

L2 + lim sup
R→∞

|ZF |
)
.(4.8)

Next, we estimate |ZF | using similar arguments as in (3.3) and obtain

|ZF | ≤
1

2
‖ργi − ργi∞‖2

L2 + K‖∇u(i)‖2θ
L2 + K‖ρi − ρi∞‖2

L2 + Kf .(4.9)

Taking (4.8)–(4.9) into account together with (4.2) leads to (4.3).
Step 3. Derivation of (4.1). We multiply (1.36) (with β = 0) by u(i). Using

standard manipulations we obtain (cf. (3.13))

c0‖∇uα,σ‖2
L2 ≤ K

2∑
i=1

(
‖ρα,σi − ρi∞‖2γ

L2γ + ‖ρα,σi − ρi∞‖2
L2

)
.(4.10)

The required energy estimates are thus obtained from (4.2), (4.3), and (4.10).
Step 4. A proof of (4.5). We start with observing that(

div u(i), τ2(ργi − ργi∞)
)

= −
(
u(i),∇τ2(ργi − ργi∞)

)
− γ

(
u(i), τ2ργ−1

i ∇ρi

)
= −

(
u(i),∇τ2(ργi − ργi∞)

)
− γ

(
u(i), τ2∇ρi(ρi + δ)γ−1

)
(4.11)

+ γ
(
u(i), τ2∇ρi

(
(ρi + δ)γ−1 − ργ−1

i

))
=: F1 + F2 + F3 .

5Recall that β̂1 = β0, β̂2 = 1, and a
(i)
0 is the ith row of A0.
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Recalling that (cf. (3.4)) ρi − ρi∞ ∈ L1+ε ∩ Ls0 for ε > 0 small and s0 > 2γ, we
conclude, with the help of (4.7), that (for α, σ > 0 fixed)

|F1| ≤ ‖∇τ‖L3‖u(i)‖L6(B2R\BR)‖ργi − ργi∞‖L2(B2R\BR) → 0 as R → ∞ .(4.12)

Also, it is not difficult to see that F3 → 0 as δ → 0.
Next, defining T (ρi) := (ρi + δ)γ−1 − (ρi∞ + δ)γ−1, we have

F2 = − γ

γ − 1

(
(ρi + δ)u(i), τ2∇

(
(ρi + δ)γ−1 − (ρi∞ + δ)γ−1

))
=

γ

γ − 1

(
div

(
(ρi + δ)u(i)

)
, τ2T (ρi)

)
+

γ

γ − 1

(
(ρi + δ)u(i),∇τ2T (ρi)

)
:= F4 + F5 .

Inserting (1.35) into F4, we obtain

F4 =
γ

γ − 1

(
σ∆ρi, τ

2T (ρi)
)
− α

(
|ρi − ρi∞|s0−2(ρi − ρi∞) + (ρi − ρi∞), τ2T (ρi)

)
.

Since the last term is nonpositive (it is a monotone operator), we can neglect it. We
integrate the first term by parts. Dropping the term with −σ

∫
|∇ρi|2(ρi + δ)γ−2 dx,

we obtain

F4 ≤ − σγ

γ − 1

(
∇τ2∇ρi, (ρi + δ)γ−1 − (ρi∞ + δ)γ−1

)
= γσ

(
(ρi + δ)γ − (ρi∞ + δ)γ ,∆τ2

)
and the last term vanishes as R → ∞ since ‖∆τ‖L2 → 0 and (ρi + δ)γ − (ρi∞ + δ)γ

is an L2-integrable function (α, σ fixed).
Concerning F5, we first write ρi + δ = (ρi − ρi∞) + (ρi∞ + δ) and consider two

cases: γ ≥ 2 and γ ∈ (1, 2). If γ ≥ 2, then (4.7) with γ − 1 instead of γ implies

|F5| ≤ Kγ

∫
B2R\BR

|u(i)| |∇τ |
(
|ρ− ρ∞|2 + |ρ− ρ∞|γ + |ρ− ρ∞|γ−1 + |ρi − ρi∞|

)
dx

≤ K‖∇τ‖L3‖∇u‖L2(B2R)\BR)

(
‖ρi − ρi∞‖L4 + ‖ρi − ρi∞‖L2γ

+‖ρi − ρi∞‖L2(γ−1) + ‖ρi − ρi∞‖L2

)
→ 0 as R → ∞ .

If γ ∈ (1, 2), then (ρ + δ)γ−1 − (ρi∞ + δ)γ−1 ≤ (ρi∞)γ−2(ρi − ρi∞). Then, however,
the same arguments complete the proof of the fact that |F5| → 0 as R → ∞.

Proposition 4.2. Let (ρα,σ, uα,σ) be weak solutions to (1.35)–(1.36) with wβ =
1. For ε > 0 small enough (i.e., 1 + ε ≤ γ) there is a K, independent of α and σ,
such that

σ

∫
|∇ρα,σi |2ρε−1

i dx + α

∫
|ρi − ρi∞|s0−1+ε dx + α

∫
|ρi − ρi∞|1+ε dx ≤ K .(4.13)

Proof. We multiply (1.35) by ϕε(ρi) = ((ρi + δ)ε − (ρi∞ + δ)ε) τ2, where τ is as
above. After integrating over R

3 we obtain

εσ

∫
|∇ρi|2(ρi + δ)ε−1τ2 dx + σ

∫
((ρi + δ)ε − (ρi∞ + δ)ε)∇ρi · ∇τ2 dx

+

∫
div

(
ρiu

(i)
)

((ρi + δ)ε − (ρi∞ + δ)ε) τ2 dx

+ α

∫
(ρi − ρi∞) ((ρi + δ)ε − (ρi∞ + δ)ε) τ2 dx

+ α

∫
|ρi − ρi∞|s0−2(ρi − ρi∞) ((ρi + δ)ε − (ρi∞ + δ)ε) τ2 dx = 0 .

(4.14)
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Note that the first, fourth, and fifth terms in (4.14) are nonnegative; in fact, when
letting R → ∞ and δ → 0, these terms provide information on the left-hand side of
(4.13). It then remains to estimate the second and third terms in (4.14)—we denote
them S and T . Starting with the former, we observe that

S = σ

∫ (
1

1 + ε
∇(ρi + δ)1+ε − (ρi∞ + δ)ε∇(ρi − ρi∞)

)
∇τ2 dx

= − σ

1 + ε

∫ (
(ρi + δ)1+ε − (ρi∞ + δ)1+ε − (1 + ε)(ρi∞ + δ)ε(ρi − ρi∞)

)
∆τ2 dx .

Then the Taylor expansion for (δ + x)1+ε and (4.1) imply

|S| ≤ σε

2δ

∫
|ρi − ρi∞|2∆τ2 dx ≤ σε

2δR2
‖ρi − ρi∞‖2

L2 → 0 as R → ∞ .

Next,

−T =

∫
ρiu

(i)∇(ρi + δ)ετ2 dx +

∫
(ρi − ρi∞)u(i)

(
(ρi + δ)ε − (ρi∞ + δ)ε

)
∇τ2 dx

+ ρi∞

∫
u(i)

(
(ρi + δ)ε − (ρi∞ + δ)ε

)
∇τ2 dx =: T1 + T2 + T3 .

Recall that

(ρi + δ)ε − (ρi∞ + δ)ε = ε

∫ 1

0

(δ + ρi∞ + s(ρi − ρi∞))ε−1 ds(ρi − ρi∞)

≤ ε

∫ 1

0

(δ + s(ρi − ρi∞))ε−1 ds(ρi − ρi∞) .

(4.15)

Since the right-hand side of (4.15) is bounded by 2ε(δ + |ρi − ρi∞|)ε, we see that

|T2| ≤ K
(
|T3| + ‖ρi − ρi∞‖1+ε

L2(1+ε)(B2R\BR)
‖u(i)‖L6(B2R\BR)‖∇τ‖L3

)
.

The right-hand side of (4.15) is also bounded by εδ−1(ρi−ρi∞). This helps to conclude
that

|T3| ≤ εδ−1ρi∞‖u(i)‖L6(B2R\BR)‖ρi − ρi∞‖L2(B2R\BR)‖∇τ‖L3 .

Since the L3-norm of ∇τ is bounded, we see that for α and σ fixed and R → ∞ both
T3 and T2 vanish. (In fact, there is no restriction on ε as we could still use the fact
that ρi − ρi∞ belongs to Ls0 ∩ L2.)

Finally,

T1 =

∫ (
∇
(
(ρi + δ)1+ε − (ρi∞ + δ)1+ε

)
1 + ε

− δ∇
(
(ρi + δ)ε − (ρi∞ + δ)ε

))
u(i)τ2 dx .

The integration by parts leads to four terms. Those with ∇τ2 are treated as T2 and
T3 above. The terms with div u(i) are estimated in an analogous way; we present the
proof of the most difficult one. We have (t∗ ∈ (0, 1))∫ (

(ρi + δ)1+ε − (ρi∞ + δ)1+ε
)
div u(i)τ2 dx

= (1 + ε)

∫
(δ + ρi∞ + t∗(ρi − ρi∞))ε(ρi − ρi∞) div u(i)τ2 dx

≤ (1 + ε)K
(
‖ρi − ρi∞‖L2 + ‖ρi − ρi∞‖1+ε

L2(1+ε)

)
‖div u(i)‖L2 ,

which is bounded due to (4.1) provided that 2(1 + ε) ≤ 2γ.
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The proof of Proposition 4.2 is complete.
Proposition 4.3. Let σ > 0 be fixed and let all assumptions of Theorem 1.1 be

fulfilled. Then there exists a solution (ρ, u) = (ρσ, uσ) such that (for i = 1, 2)

ρi ≥ 0, ρσi − ρi∞ ∈ L2(R3) ∩ L2γ(R3) , and u(i)
σ ∈ H1

0 (R3; R3),

solving weakly

−σ∆ρσi + div
(
ρσi u

(i)
σ

)
= 0 in R

3 ,(4.16)

L(i)uσ = −∇Pi(ρ
σ
i ) + ρσi f

(i) + J (i)
σ in R

3,(4.17)

satisfying the equation for the effective viscous flux

A0 (P (ρσ) − P (ρ∞)) −
(

β0 div u
(1)
σ

div u
(2)
σ

)
= A0 div ∆−1

(
ρσ1f

(1) + J
(1)
σ

ρσ2f
(2) − J

(1)
σ

)
(4.18)

and the estimates

‖ρσi − ρi∞‖2γ
L2γ + ‖ρσi − ρi∞‖2

L2 + ‖∇u(i)
σ ‖2

L2 ≤ K,(4.19)

where K is independent of σ.
Proof. Letting α → 0, it follows from (4.1) that there is (ρ, u) = (ρσ, uσ) such

that modulo subsequences (i = 1, 2)

ρα,σi − ρi∞ ⇀ ρσi − ρi∞ weakly in L2(R3) ∩ L2γ(R3) ,(4.20)

∇u(i)
α,σ ⇀ ∇u(i)

σ weakly in L2(R3) ,(4.21)

and due to the weak lower semicontinuity of the norms, (ρσ, uσ) fulfills (4.19).
Even more, for q ∈ [1, 6),

u(i)
α,σ → u(i)

σ strongly in Lq
loc and u(i)

α,σ → u(i)
σ a.e. in R

3.(4.22)

We will show below that (4.1) and (4.13) imply

‖∇ρα,σ‖L2r
loc

≤ K with r =
2γ

2γ + 1 − ε
.(4.23)

Consequently, for s ∈ [1, r∗),

ρα,σ → ρσ strongly in Ls
loc(R

3) and ρα,σ → ρσ a.e. in R
3.(4.24)

Having (4.20)–(4.24), (4.1), and (4.8) in hand, it is straightforward to pass to the
limit, as α → 0, in the weak formulations of (1.35), (1.36) and (3.1) with wβ = 1 and
to obtain (4.16)–(4.19).

Thus, the proof of Proposition 4.3 is complete once we verify (4.23). This, how-
ever, follows from

∫
|∇ρα,σ|2r dx =

∫ (
|∇ρα,σ|2
(ρα,σ)1−ε

)r

(ρα,σ)(1−ε)r dx
(4.13)

≤ K

(∫
(ρα,σ)(1−ε) r

r−1 dx

)1−r

if we put (1 − ε) r
r−1 = 2γ, which implies r = 2γ

2γ+1−ε , and use (4.1).
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5. Solvability of the original problem. Due to the estimates (4.19), which
are uniform with respect to σ, we have, as σ → 0,

u(i)
σ ⇀ u(i) weakly in H1(R3; R3) and ρσi ⇀ ρi weakly in L2γ

loc(R
3)(5.1)

and, owing to the compact embedding,

u(i)
σ → u(i) strongly in L2

loc(R
3) and ρσi → ρi strongly in (H1

loc(R
3))∗ ,(5.2)

and we can pass to the limit in the weak formulations of (4.16) and (4.17). The only
difficult terms are those including Pi(ρ). Since ρσi is uniformly bounded in L2γ , the
weak limit Pi(ρ

σ) ⇀ Pi(ρ) will follow if we show that (modulo subsequences)

ρσi → ρi a.e. in R
3 .(5.3)

Let us emphasize that as soon as (5.3) is proved, the proof of Theorem 1.1 is complete.
The rest of this section is focused on proving (5.3).

Proof. Let τ = τR be our usual localization function: τ = 1 on the ball BR and
τ = 0 on R

3 \B2R. We multiply the ith component of (4.18) by (ρσi − ρi)τ and study
the limits of particular terms as σ → 0. First of all, we observe that

(div ∆−1(ρσi f
(i) + J (i)

σ ), (ρσi − ρi)τ) → 0 as σ → 0 ,(5.4)

which follows from (5.2) and the fact that (ρσi − ρi∞)f (i) + ρi∞f (i) + J
(i)
σ is bounded

in L2(R3; R3) (implying that div ∆−1(ρif
(i) + J

(i)
σ ) is bounded in H1

0 ). Thanks to
(5.4), we have

lim
σ→0

∫
A0 (P (ρσ) − P (ρ∞)) · (ρσ − ρ)τ dx

= lim
σ→0

2∑
i=1

β̂i

∫
ρσi div u(i)

σ τ dx−
2∑

i=1

β̂i

∫
ρi div u(i) dx

= β0 lim
σ→0

Dσ
1 − β0D1 + lim

σ→0
Dσ

2 −D2.

(5.5)

Next,

Dσ
i =

∫
ρσi div u(i)

σ τ dx = −
∫

u(i)
σ ∇ρσi τ dx−

∫
u(i)
σ ρσi ∇τ dx

= −
∫

(ρσi + δ)u(i)
σ ∇ log(ρσi + δ)τ dx−

∫
u(i)
σ ρσi ∇τ dx

=

∫
div

(
(ρσi + δ)u(i)

σ

)
log(ρσi + δ)τ dx

+

∫
(ρσi + δ)u(i)

σ log(ρσi + δ)∇τ dx−
∫

u(i)
σ ρσi ∇τ dx =: Dσ

i1 + Dσ
i2 −Dσ

i3.

Using (4.16), we obtain

Dσ
i = σ

∫
∆ρσi log(ρσi + δ)τ dx + δ

∫
div u(i)

σ log(ρσi + δ)τ dx + Dσ
i2 −Dσ

i3 .

and with the help of (4.19) (F (ξ) is the primitive function to ξ log ξ)

σ

∫
∆ρσi log(ρσi + δ)τ dx ≤ −σ

∫
∇ρσi log(ρσi + δ)∇τ dx

= σ

∫
F (ρσi + δ)∆τ dx → 0 as σ → 0.
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Furthermore, since log(ρσi + δ) ≤ log δ + ρσi , we have

δ

∫
div u(i)

σ log(ρσi + δ)τ dx ≤ δ

∫
|ρσi | |div u(i)

σ |τ dx + δ| log δ|
∫ ∣∣∣div u(i)

σ

∣∣∣ τ dx
≤ δ| log δ|KR

3
2 + Kδ ≤ δ| log δ|KR

3
2 .

Applying (5.2) to limσ→0 D
σ
i3 we conclude that

lim
σ→0

Dσ
i ≤ δ| log δ|KR

3
2 + lim

σ→0
Dσ

i2 −
∫

ρiu
(i)∇τ dx .

Since

lim
σ→0

Dσ
i2 = lim

σ→0

∫
(ρσi + δ)u(i)

σ log(ρσi + δ)∇τ dx

= lim
σ→0

∫
ρσi u

(i)
σ log(ρσi + δ)∇τ dx + a term smaller than δ| log δ|KR

3
2

and ∫
ρσi u

(i)
σ log(ρσi + δ)∇τ dx =

∫
ρσi u

(i)
σ log(ρi∞ + δ)∇τ dx

+

∫
ρσi u

(i)
σ (log(ρσi + δ) − log(ρi∞ + δ))∇τ dx

=: Dσ
i4 + Dσ

i5 ,

we observe first that

Dσ
i4 →

∫
ρiu

(i) log(ρi∞ + δ)∇τ dx as σ → 0 ,

and then concentrate on Dσ
i5. We choose ε0 = ρi∞

2 and we split the integral into one
over the set {ρσi ≤ ε0}, denoted Dσ

i5(ρ
σ
i ≤ ε0), and one over the complement {ρσi > ε0},

denoted Dσ
i5(ρ

σ
i > ε0). Since

∫
|ρσi −ρi∞|2 dx ≤ K, we have (ρi∞/2)2|{ρσi ≤ ε0}| ≤ K,

which means that the measure of the set where ρσi ≤ ε0 is finite. Consequently,

Dσ
i5(ρ

σ
i ≤ ε0) ≤ Kε0

∫
ρσ
i ≤ε0

|u(i)
σ | |∇τ | dx

≤ Kε0‖u(i)
σ ‖6 ‖∇τ‖∞ |{ρσi ≤ ε0}|

5
6 ≤ Kε0R

−1 .

The other part is estimated as follows:

Dσ
i5(ρ

σ
i > ε0) ≤

∫
ρσ
i >ε0

|ρσi − ρi∞| |u(i)
σ | | log(ρσi + δ) − log(ρi∞ + δ)| |∇τ | dx

+ ρi∞

∫
ρσ
i >ε0

|u(i)
σ | | log(ρσi + δ) − log(ρi∞ + δ)| |∇τ | dx

=: E0σ + E1σ .
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Since log(ξ + δ) is a Kε0-Lipschitz function on {ξ ≥ ε0}, we have

E1σ ≤ Kε0ρi∞

∫
B2R\BR

|u(i)
σ | |ρσi − ρi∞| |∇τ | dx

and hence, since ‖ρσi − ρi∞‖L2 ≤ K, via Hölder’s inequality and with (5.2)

lim
σ→0

E1σ ≤ Kε0K

(∫
B2R\BR

|∇τ |2 |u(i)|2 dx
) 1

2

.

The other term E0σ is split again, with L := 2ρ∞ this time:

∫
ρσ
i >ε0

· · · =

∫
L>ρσ

i >ε0

· · · +
∫

ρσ
i ≥L

· · · =: E2σ + E3σ .

Since
∫
|ρσi − ρi∞|2 dx ≤ K uniformly, |{ρσi ≥ L}| ≤ K, and we have

∫
ρσ
i ≥L

|ρσi |2 dx ≤ K +

∫
ρσ
i ≥L

|ρi∞|2 dx ≤ K.

Similarly, for all s > 1 we have
∫
ρσ
i ≥L

| log(ρσi + δ)|s dx ≤ Ks. Thus, we conclude from

Hölder’s inequality (recalling ‖u(i)
σ ‖6 ≤ K) that |E3σ| ≤ K‖∇τ‖∞ ≤ KR−1.

To estimate E2σ, we use | log(ρσi + δ)| ≤ Kε0,L on {L ≥ ρσi ≥ ε0}. Thus

E2σ ≤ LKε0,L

∫
R3

|u(i)
σ | |ρσi − ρi∞| |∇τ | dx ≤ LKε0K

(∫
B2R\BR

|u(i)
σ |2|∇τ |2 dx

) 1
2

,

and thanks to (5.2) we can pass to limit as σ → 0.

Collecting our estimates, we obtain

lim
σ→0

Dσ
i ≤ δ| log δ|KR

3
2 −

∫
ρiu

(i)∇τ dx +

∫
ρiu

(i) log(ρi∞ + δ)∇τ dx

+ Kε0R
−1 + LKε0K

(∫
B2R\BR

|u(i)|2 |∇τ |2 dx
) 1

2

.

We now analyze the terms Di introduced in (5.5):

Di =

∫
ρi div u(i)τ dx =

∫
(ρi ∗ ωh) div u(i)τ dx + εh ,
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where ωh is a mollifier and εh → 0 as the parameter h tends to 0. We have

Di = −
∫

∇(ρi ∗ ωh)u(i)τ dx−
∫

(ρi ∗ ωh)u(i)∇τ dx + εh

= −
∫

(ρi ∗ ωh + δ)u(i)∇ log(ρi ∗ ωh + δ)τ dx−
∫

(ρi ∗ ωh)u(i)∇τ dx + εh

=

∫
div

[
(ρi ∗ ωh + δ)u(i)

]
log(ρi ∗ ωh + δ)τ dx

+

∫
(ρi ∗ ωh)u(i) log(ρi ∗ ωh + δ)∇τ dx + δ

∫
u(i) log(ρi ∗ ωh + δ)∇τ dx

−
∫

(ρi ∗ ωh)u(i)∇τ dx + εh

=: Di1 + Di2 + δ

∫
u(i) log(ρi ∗ ωh + δ)∇τ dx−Di3 + εh ,

where δ
∫
u(i) log(ρi∗ωh+δ)∇τ dx ≤ δ log δ K. The terms limh→0 Di3 will cancel with

the terms limσ→0 D
σ
i3. The terms Di1 are treated in a way known from the theory of

compressible fluids (cf. [19, 7, 9]), namely, with the aid of the lemma of DiPerna and
Lions (cf. [6]) we know that

τ
(
div

[
(ρi ∗ ωh)u(i)

]
− div

[
ωh ∗ (ρiu

(i))
])

⇀ 0 weakly in L
2γ

γ+1 (h → 0) .(5.6)

(In fact, we use ρi ∈ L2γ
loc(R

3),∇u(i) ∈ L2(R3), write down the explicit definition
of the two mollified terms, and estimate ∇ωh(r)ρi(x + r) (u(x) − u(x + r)) by using
Poincaré’s inequality for u, which gives the factor r ∼ h and the estimate |∇ωh(r)| ≤
K
h .)

Since div
(
ρiu

(i)
)

= 0 weakly, we conclude from (5.6) that

τ div
[
(ρi ∗ ωh)u(i)

]
⇀ 0 weakly in L

2γ
γ+1 (h → 0) (δ,R fixed) .

Since log(ρi ∗ ωh + δ)τ is uniformly bounded in Lq for all q when δ and R are fixed,
we conclude that

Di1 =

∫
div

[
(ρi ∗ ωh + δ)u(i)

]
log(ρi ∗ ωh + δ)τ dx

= ε1
h + δ

∫
div u(i) log(ρi ∗ ωh + δ)τ dx → δ

∫
div u(i) log(ρi + δ)τ dx (h → 0) .

It remains to treat the term Di2. As Di2 →
∫
ρiu

(i) log(ρi + δ)∇τ dx for h → 0,
we have

lim
h→0

Di2 = log(ρi∞ + δ)

∫
ρiu

(i)∇τ dx +

∫
ρiu

(i) (log(ρi + δ) − log(ρi∞ + δ))∇τ dx

=: Di4 + Di5 .

The term Di4 cancels with the corresponding term limσ→0 D
σ
i4 and the term Di5 is

treated in the same way as Dσ
i5 above; one obtains

Di5 ≤ KR−1 + K

∫
B2R\BR

|u(i)|2 |∇τ |2 dx .
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Bringing all these estimates together, we arrive at the inequality

lim
σ→0

Dσ
i −Di ≤ Kδ| log δ|R 3

2 + KR−1 + K

∫
B2R\BR

|u(i)|2 |∇τ |2 dx .

We first let δ → 0, then let R → ∞. The term
∫
B2R\BR

|u(i)|2 |∇τ |2 dx → 0 since

|∇τ |2 ∈ L
3
2 (R3) and |u(i)|2 ∈ L3(R3) (implying that ‖u(i)‖L6(B2R\BR) → 0). Hence

we obtain

lim
σ→0

∫
A0P (ρσ) · (ρσ − ρ) dx = 0 in L2 ,

and the strong convergence ρσi → ρi follows from the monotonicity condition (1.23)
and (5.3) follows.

Acknowledgment. J. Málek thanks K. R. Rajagopal and L. Tao for many useful
discussions explaining the modeling of the mixtures in the framework of continuum
mechanics.
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Abstract. We establish an optimal stability estimate for the determination of a finite number
of Lipschitz perfectly insulating cracks inside a planar conductor by performing two suitably chosen
electrostatic boundary measurements.
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1. Introduction. We study the inverse problem of determining a finite number
of unknown perfectly insulating cracks σj , j = 1, . . . , N , whose union is denoted
with Σ, inside a known, possibly inhomogeneous and anisotropic, planar conductor
Ω, whose known background conductivity is given by A, through voltage and current
electrostatic measurements at the boundary.

We prescribe two current densities ψ1, ψ2, and we measure on Γ0, a subarc of
the boundary of Ω, ∂Ω, the corresponding electrostatic potentials ui. We recall that
the electrostatic potential ui satisfies the following Neumann-type boundary value
problem: ⎧⎨

⎩
div(A∇ui) = 0 in Ω\Σ,
A∇ui · ν = 0 on either side of σj , j = 1, . . . , N,
A∇ui · ν = ψi on ∂Ω,

(1.1)

where ν denotes the unit normal, with the outward orientation when on ∂Ω.

If ψ1 and ψ2 are suitably chosen—for example, they can model a two-electrode
configuration where the positive electrode is kept fixed whereas the negative one is
moved in a different position as we change the current density from ψ1 to ψ2—then
the measurements ui|Γ0 , i = 1, 2, uniquely determine the unknown multiple crack Σ.

This inverse problem was introduced in [8], where the first uniqueness result in
two dimensions was proved. Since then, many results concerning uniqueness and
stability have been obtained; we refer to [5] and the references therein for a detailed
account of these issues in two and three dimensions.

We are interested in estimating the error, in the Hausdorff distance, on the de-
termination of Σ from an estimate of the error on the measurements ui|Γ0 . It has
already been proven that

(a) if the components of Σ are a priori known to be Lipschitz regular, then the
stability estimate is of log-log type (see [12, Theorem 4.1, part (I)]);

(b) if we a priori know either the coordinate system with respect to which the
components of Σ are Lipschitz regular, or that the components of Σ are C1,α
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regular, with 0 < α ≤ 1, then the stability estimate is of log type (see [12,
Theorem 4.1, parts (II) and (III)]).

These results were proved first in the case of a single crack. More precisely, part (a)
in [3] and part (b), at least for what concerns the C1,α case, in [11]. Their extension
to the case of multiple cracks is essentially based on arguments developed in [4] for
the treatment of the multiple cavities case.

The aim of the present paper is to fill the gap between cases (a) and (b). In fact,
we prove that, under the same assumptions as those of [12, Theorem 4.1, part (I)],
Lipschitz regularity is enough to obtain a stability estimate of log type. We remark
that single log estimates are usually obtained through a two-step procedure; see [1],
where this argument was developed for the first time. For example, the proof of
(b) relies on (a), as the first step, and, as the second step, on carefully studying
the relation between two unknown multiple cracks Σ and Σ′ (corresponding to two
different sets of measurements) if they are close enough in the Hausdorff distance, in
particular, on proving a uniform interior cone property for the open set Ω\(Σ ∪ Σ′).
However, if we consider case (a), it might happen that no kind of uniform interior
cone property holds for all the points of Σ∪Σ′, no matter how close the two multiple
cracks are in the Hausdorff distance. On the other hand, if we consider the proof of
[12, Theorem 4.1], it is clear that the arguments, at a given stage, in particular in the
proof of Proposition 4.9 in [12] (or of Proposition 5.1 in [3] for the case of a single
crack), are developed only locally in a suitable neighborhood of the point z where the
Hausdorff distance between Σ and Σ′ is reached. In this paper we establish that if Σ
and Σ′ are Lipschitz and close enough, then the points in Σ ∪ Σ′ belonging to such
a suitable neighborhood of the point z can be reached through a suitable sequence
of discs contained in Ω\(Σ ∪ Σ′); see Lemma 3.3. Such a condition, which allows us
to carry over the second step of the procedure, is similar to the so-called corkscrew
condition used in [9] to define nontangentially accessible domains.

We wish to emphasize that logarithmic stability estimates are optimal for this in-
verse problem. In fact, the abstract method developed in [6] from an idea of Mandache
[10] provides the instability character of the problem; see [7], an expanded version of
[6], for details.

Finally we wish to remark that, with a completely analogous procedure, we can
extend this stability result to the inverse problem of multiple cavities. That is, if we
perform two measurements of this kind, corresponding to prescribed current densities
ψ1 and ψ2 as above, then we can obtain a stability estimate of log type for the
determination of Lipschitz multiple cavities. We notice that we have uniqueness and
stability results for the determination of multiple cavities with a single measurement,
which can be of the most general type; see [3] and the references therein for the two-
dimensional case and [2] for the higher-dimensional one. However, in the planar case,
with a single measurement the stability estimate is of log-log type if the cavities are
assumed to be Lipschitz, and it is of log type if the cavities satisfy the conditions
described in case (b) above. Unfortunately, the technique used to prove the stability
results with a single measurement is quite different, even if it has many common
features with the one used for the inverse crack problem. In particular, in order to
exploit the fact that the defects Σ and Σ′ are the closures of open sets, we need to study
the stability of a Cauchy-type problem up to the whole boundary of Ω\(Σ∪Σ′); thus
we cannot restrict our analysis to a neighborhood of the point where the Hausdorff
distance is reached. This can be clearly observed once we notice that, locally, we are
not able to distinguish between a portion of a crack and a portion of the boundary of
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a cavity. Therefore the approach developed in this paper cannot be directly applied
to improve the stability with a single measurement. It remains an interesting open
problem to establish log-type estimates for the determination of Lipschitz multiple
cavities by a single measurement.

The plan of the paper is as follows. In section 2 we precisely state the stability
result Theorem 2.3 and make some preliminary considerations. In section 3 the proof
of Theorem 2.3 is developed.

2. Statement of the stability result. We begin with the definition of a quan-
titative notion of smoothness for open and closed curves in R

2. The following standard
notation will be used. For every z = x + iy ∈ C, x = �z and y = �z being the real
and imaginary parts of z, respectively, and for every r > 0, we denote with Br(z) the
open disc with center z and radius r. As usual, we shall identify complex numbers
z = x + iy ∈ C with points (x, y) ∈ R

2. We shall use the following notation for
complex derivatives:

fz = (fx + ify)/2, fz = (fx − ify)/2.

We denote by J =
[

0 −1
1 0

]
the counterclockwise rotation of 90◦ and by (·)T transpose.

Definition 2.1. Let γ ⊂ R
2 be a bounded, simple curve, either open or closed.

Then, with two fixed positive constants δ and M , we say that γ is Lipschitz with
constants δ, M if for every z ∈ γ there exists a coordinate system (x, y) with origin
in z such that with respect to these coordinates γ ∩ Bδ(z) is a Lipschitz graph with
constant M , that is, γ∩Bδ(z) = {y = φ(x) : a ≤ x ≤ b}∩Bδ(z), where φ is a Lipschitz
function on [−δ, δ] such that ‖φ‖C0,1[−δ,δ] ≤ M , a and b satisfy −δ ≤ a ≤ 0 ≤ b ≤ δ,
and at least one of them has modulus equal to δ.

Let Ω ⊂ R
2 be a bounded, simply connected domain. We say that σ ⊂ Ω is a

crack in Ω if it is a closed set in Ω, which can be represented as the image of a simple
open curve. We say that Σ ⊂ Ω is a multiple crack in Ω if it is the finite union of
pairwise disjoint cracks in Ω.

We suppose that the following assumptions on the data of the inverse problem and
the following a priori information on the unknown multiple crack present in Ω hold.
We wish to remark that these assumptions and a priori information are essentially
minimal and coincide with those used in previous papers, and we repeat them here
for the convenience of the reader.

Assumptions on the domain. Let Ω be a bounded, simply connected domain
in R

2. We assume that the diameter of Ω is bounded by a given positive constant
L and that its boundary ∂Ω is a simple closed curve which is Lipschitz with given
positive constants δ, M .

From these assumptions we may deduce the following properties of Ω. We may
find a constant L1 depending on δ, M , and L only such that

0 < δ ≤ length(∂Ω) ≤ L1.

Furthermore, there exists a constant M1, depending on δ, M , and L only, such that

length∂Ω(z0, z1) ≤ M1|z0 − z1| for any z0, z1 ∈ ∂Ω.(2.1)

Here length∂Ω(z0, z1) is the length of the smallest arc in ∂Ω connecting z0 to z1. More-
over the measure of Ω, |Ω|, is bounded from below and above by positive constants
depending on δ, M , and L only.
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Assumptions on the background conductivity. Let A = A(z), z ∈ Ω, be
a conductivity tensor with bounded measurable entries satisfying, for given positive
constants λ and Λ,

A(z)ξ · ξ ≥ λ|ξ|2 for every ξ ∈ R
2 and for a.e. z ∈ Ω,

|aij(z)| ≤ Λ for every i, j = 1, 2 and for a.e. z ∈ Ω.
(2.2)

Assumptions on the boundary data. Let γ0, γ1, γ2 be three fixed simple
arcs in ∂Ω, pairwise internally disjoint.

Given H > 0, let us fix three functions η0, η1, η2 ∈ L2(∂Ω) such that for every
i = 0, 1, 2

ηi ≥ 0 on ∂Ω, supp(ηi) ⊂ γi,∫
∂Ω

ηi = 1, ‖ηi‖L2(∂Ω) ≤ H.
(2.3)

Then we prescribe the current densities on the boundary ψ1, ψ2 to be given by

ψ1 = η0 − η1, ψ2 = η0 − η2.(2.4)

We have ∫
∂Ω

ψi = 0, ‖ψi‖L2(∂Ω) ≤ 2H for every i = 1, 2.(2.5)

We shall consider also the antiderivatives along ∂Ω of ψ1, ψ2,

Ψi(s) =

∫
ψi(s)ds, i = 1, 2,(2.6)

where the indefinite integral is taken, as usual, with respect to arclength on ∂Ω in
the counterclockwise direction. The functions Ψ1, Ψ2 are defined up to an additive
constant.

We remark that from the assumptions on Ω, through (2.1), we have that, for every
i = 1, 2, Ψi satisfies the following Hölder continuity property for any z0, z1 ∈ ∂Ω:

|Ψi(z0) − Ψi(z1)| ≤ 2H(length∂Ω(z0, z1))
1/2 ≤ H1|z0 − z1|1/2,(2.7)

where H1 = 2HM
1/2
1 , M1 as in (2.1).

Assumptions on the measurements. Let Γ0 ⊂ ∂Ω be a subarc whose length
is greater than or equal to δ.

A priori information on the multiple interior crack. We assume that an
admissible multiple crack Σ ⊂ Ω is the union of finitely many, pairwise disjoint cracks
σj , j = 1, . . . , N , N ≥ 1.

We suppose that each crack σj , j = 1, . . . , N , is Lipschitz with constants δ, M .
Moreover we suppose that

dist(Σ, ∂Ω) ≥ δ(2.8)

and that

dist(σj , σl) ≥ δ for any j �= l.(2.9)
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Let us make some remarks about the properties of the admissible multiple cracks.
First we notice that Σ is not empty and each component of Σ is a simple open curve
whose length is bounded from below and above by positive constants depending on
δ, M , and L only.

Let Σ and Σ′ =
⋃N ′

l=1 σ
′
l, N

′ ≥ 1, be two multiple interior cracks satisfying the
a priori information. Then the following lemma is easy to prove. We recall that we
denote the Hausdorff distance with dH and that throughout the paper we set

p = dH(Σ,Σ′).

Lemma 2.2. There exists a constant p0 > 0, depending on δ, M , and L only,
such that if p ≤ p0, then these two properties hold.

First, the number of connected components of Σ and Σ′ is the same, for instance,
equal to N , and, up to rearranging their order and swapping Σ with Σ′, we can assume
that

dH(σj , σ
′
j) ≤ dH(Σ,Σ′) for every j = 1, . . . , N(2.10)

and that there exists z′0 ∈ σ′
1 so that

dist(z′0, σ1) = dH(σ1, σ
′
1) = p.(2.11)

Furthermore, Σ ∪ Σ′ ⊂ ∂G, where G is the connected component of Ω\(Σ ∪ Σ′)
whose boundary contains ∂Ω.

For any i = 1, 2, let ui ∈ W 1,2(Ω\Σ) be the weak solution to (1.1). That is, we
understand that ui satisfies∫

Ω\Σ
A∇ui · ∇ϕ =

∫
∂Ω

ψiϕ for any ϕ ∈ W 1,2(Ω\Σ).

We remark that ui is unique up to additive constants. We denote by u′
i the solution

to (1.1) when Σ is replaced with Σ′.
The set of constants δ, M , L, λ, Λ, and H will be referred to as the a priori data.

We are now in position to state the main result.
Theorem 2.3. Under the previously stated assumptions, let ε > 0 be such that

max
i=1,2

‖ui − u′
i‖L∞(Γ0) ≤ ε.(2.12)

Then

dH(Σ,Σ′) ≤ ω(ε),(2.13)

where ω : (0,+∞) → (0,+∞) satisfies

ω(ε) ≤ K| log ε|−β for every ε, 0 < ε < 1/e,(2.14)

and K, β > 0 depend on the a priori data only.
We conclude this section by describing some properties of the solution to (1.1)

and its stream function, assuming that the hypotheses of Theorem 2.3 are satisfied.
For details and proofs we refer to [12, Chapter 4].

Let i = 1, 2 and let ui solve (1.1). Then there exists a global single-valued function
vi ∈ W 1,2(Ω\Σ) which satisfies

∇vi = JA∇ui almost everywhere in Ω\Σ.(2.15)
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Such a function is referred to as the stream function associated to ui. Moreover,
letting fi = ui + ivi, we have

(fi)z = µ1(fi)z + µ2(fi)z almost everywhere in Ω\Σ,(2.16)

where µ1 and µ2 are bounded, measurable, complex-valued coefficients which depend
on fi and satisfy

|µ1| + |µ2| ≤ k < 1 almost everywhere in Ω\Σ,(2.17)

where k is a constant depending on λ, Λ only.
Moreover, vi satisfies in the weak sense the following Dirichlet-type boundary

value problem:⎧⎪⎪⎨
⎪⎪⎩

div(B∇vi) = 0 in Ω\Σ,
vi = dj on σj , j = 1, . . . , N,
vi = Ψi on ∂Ω,∫
γ
B∇vi · ν = 0 for any smooth Jordan curve γ ⊂ Ω\Σ,

(2.18)

where B = (detA)−1AT . We remark that the constants dj are unknown and depend
on i = 1, 2.

The weak formulation of (2.18) is the following. We want to find vi ∈ W 1,2(Ω)
such that vi is constant in the trace sense on any crack σj , its trace on ∂Ω equals Ψi,
and it satisfies∫

Ω\Σ
B∇vi · ∇ϕ = 0 for any ϕ ∈ W 1,2

0 (Ω) : ϕ = const. on any crack.

Let us finally remark that the stream function vi is unique up to additive constants.
For any i = 1, 2, the following Hölder estimates hold (see [12, Proposition 4.6]):

|vi(z1) − vi(z2)| ≤ C1|z1 − z2|α1 for every z1, z2 ∈ Ω,(2.19)

|ui(z1) − ui(z2)| ≤ C1(d̃(z1, z2))
α1 for every z1, z2 ∈ Ω̃.(2.20)

Here C1 and α1 > 0 depend on the a priori data only. We denote with Ω̃ the compact
manifold obtained by the appropriate gluing of Ω\Σ to the degenerate simple closed
curve σ̃j obtained by overlapping two copies of σj , j = 1, . . . , N , and with d̃ the

geodesic distance on Ω̃.
It is useful to stress the difference between the estimates (2.19), (2.20). In fact,

since vi is constant on each σj , it is expected that vi is continuous across each σj .
Instead ui may have different one-sided limits on σj . This is the main motivation for

the introduction of the metric d̃.
For any i = 1, 2, let v′i be the stream function associated to u′

i and f ′
i = u′

i + iv′i.
In what follows, we shall always normalize vi and v′i in such a way that vi = v′i on
∂Ω. Then we have that, for any i = 1, 2,

‖fi − f ′
i‖L∞(Γ0) ≤ ε,(2.21)

and, by (2.19), (2.20) and by assuming that ε ≤ 1/e,

‖fi − f ′
i‖L∞(Ω) ≤ C2,(2.22)
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where C2 depends on the a priori data only.
Furthermore (see [12, Proposition 4.11]),

|vi(z) − v′i(z)| ≤ η(ε) for any z ∈ Ω,(2.23)

where η is a positive function defined on (0,+∞) such that

η(ε) ≤ C3(log | log ε|)−α2 for every ε, 0 < ε < 1/e.(2.24)

Here C3 and α2 are positive constants depending on the a priori data only.

3. Proof of Theorem 2.3. We begin with the following two results.
Theorem 3.1. Theorem 2.3 holds true if we replace (2.14) with

ω(ε) ≤ K1(log | log(ε)|)−β1 for every ε, 0 < ε < 1/e,(3.1)

K1, β1 > 0 depending on the a priori data only.
Proposition 3.2. Suppose that the assumptions of Theorem 2.3, with the ex-

ception of (2.12), are satisfied. Let us further assume that p ≤ p0, and hence (2.10)
and (2.11) are satisfied.

If there exist positive constants c0 and η such that for every r, 0 ≤ r ≤ c0p, there
exists z′ ∈ σ′

1 ∩ ∂Br(z
′
0) such that

|vi(z′) − v′i(z
′)| ≤ η for any i = 1, 2,(3.2)

then we have

p ≤ K2η
β2 ,(3.3)

where K2 and β2 are positive constants depending on c0 and the a priori data only.
Theorem 3.1 is the first part of Theorem 4.1 in [12]. The proof of Proposition 3.2

follows exactly the same argument as that used to prove Proposition 4.9 in [12]. It
appears clear that our aim is to improve the estimate (2.23)–(2.24) at least for points
which are near to the point where the Hausdorff distance is reached.

The following geometric construction is crucial. Let us recall that G is the con-
nected component of Ω\(Σ ∪ Σ′) whose boundary contains ∂Ω and that whenever
p ≤ p0, we assume that the conclusions of Lemma 2.2 hold.

Lemma 3.3. Let Ω, Σ, and Σ′ be as in Theorem 2.3. Then there exist positive
constants p1, 0 < p1 ≤ p0, c0, δ0, C4, and C5, 0 < C5 < 1, depending on δ, M , and L
only, such that if p ≤ p1, then for every r, 0 ≤ r ≤ c0p, there exists z′ ∈ σ′

1 ∩ ∂Br(z
′
0)

satisfying the following condition
(a) there exists a sequence of discs Dn = Brn(zn) such that, for any n ∈ N,

Dn ∩Dn+1 �= ∅, 2Dn = B2rn(zn) ⊂ G,

|zn − z′| ≤ C4rn, rn+1 ≤ C5rn,
(3.4)

and, moreover,

dist(D1, ∂G) ≥ δ0.(3.5)

Let us remark that a point z ∈ Σ∪Σ′ satisfies condition (a) provided there exists
an open sector of a cone with vertex in z which is contained in G. In fact, in such a
case, we can construct the discs satisfying condition (a) as follows. We take discs Dn
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centered on the bisecting line of the sector so that 2Dn is contained in the sector and
Dn is tangent to Dn+1, which is obviously chosen to be closer to z; see [1] for details.
However, such a cone condition might not be satisfied if Σ and Σ′ are only Lipschitz
regular, even if they are very close in the Hausdorff distance; see Example 2.14 in [12].
Nevertheless, we show that, roughly speaking, in a neighborhood of the point where
the Hausdorff distance is reached, condition (a) is satisfied, even if we might still lack
the cone condition.

We begin with some preliminaries and by fixing some notation. Without loss of
generality, by (2.8) and (2.9), we can restrict ourselves to the case of single cracks, σ1

and σ′
1, and take as G the unbounded connected component of R

2\(σ1 ∪ σ′
1).

Let us assume that p ≤ min{p0, δ/4} and that z′0 ∈ σ′
1 satisfies dist(z′0, σ1) = p, as

in Lemma 2.2. Furthermore, let z0 ∈ σ1 be the point where this distance is reached,
that is, such that |z′0 − z0| = p.

Let us consider the coordinate system (x, y) with origin in z′0 such that with
respect to these coordinates σ1 ∩ Bδ(z0) is a Lipschitz graph with constant M and
z0 = (x0, y0) with x0 ≥ 0 and y0 ≤ 0. For any i = 1, 2, let zi = (xi, yi) ∈ ∂Bp(z

′
0) be

such that yi ≤ 0 and the tangent line to ∂Bp(z
′
0) at the point zi has slope (−1)iM .

Clearly we have x2 > 0, x1 = −x2, and y1 = y2.
With the notation Sr(θ1, θ2), where r > 0 and θ1 < θ2, we denote the open sector

of a cone so defined:

Sr(θ1, θ2) = {z = (x, y) : |z| < r and θ1 < arg z < θ2}.

We say that r is the radius and θ2 − θ1 is the amplitude of such a sector. Let θ,
0 < θ < π/2, be the angle between a line of slope M and the y-axis and let

S0 = Sδ/2(π/2 − θ, π/2 + θ).

The proof of Lemma 3.3 is rather technical. Before entering into details, let us
sketch its main features. Let us consider, for simplicity, the case in which x1 ≤ x0 ≤
x2. Let us consider the function

f(x) =

⎧⎨
⎩

−M(x− x1) + y1 if x ≤ x1,

−
√

1 − x2 if x1 ≤ x ≤ x2,
M(x− x2) + y2 if x ≥ x2.

We have that since σ1 ∩ Bδ(z0) is a Lipschitz graph with constant M , then σ1 must
be, locally, below the graph of f . In particular, S0(zi) = zi + S0, for any i = 0, 1, 2,
and S0(z

′
0) = z′0 + S0 do not contain points of σ1. Moreover, by construction, any

point z belonging to S0(z
′
0) has distance greater than p from the graph of f and,

consequently, also from σ1. Since p is the Hausdorff distance between σ1 and σ′
1, we

infer that S0(z
′
0) ∩ σ′

1 is empty.
We have shown that there exists an open sector of a cone with vertex in z′0 which

is contained in G, and thus condition (a) is satisfied for r = 0. For r > 0, we proceed
as follows. Let z ∈ σ′

1 ∩ ∂Br(z
′
0), and let us consider the two opposite sectors with

vertex in z which do not intersect σ′
1, which exist by the Lipschitz character of σ′

1.
Such sectors, at least for small r and near z, are contained in the epigraph of f , and
thus do not intersect σ1, too. Then the main idea is the following. We proceed from
z along the bisecting line of one of these two sectors until we meet the bisecting line
of one among the sectors S0(zi), i = 1, 2, or S0(z

′
0). Then we turn and continue along

this other bisecting line. This piecewise linear curve will be the direction along which
we approach z with the sequence of balls contained in G that provides condition (a).
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Proof of Lemma 3.3. Under the previous hypotheses and notation, we have two
cases: Either

(i) the tangent line to ∂Bp(z
′
0) at the point z0 has slope m less than or equal to M ;

or
(ii) the tangent line to ∂Bp(z

′
0) at the point z0 has slope m greater than M (including

the extreme case of a vertical tangent, when z0 = (p, 0)).

If (i) holds, that is, when x1 ≤ x0 ≤ x2, then S0(z
′
0) = z′0+S0 satisfies dist(S0(z

′
0),

σ1) ≥ p. Therefore, since p = dH(σ1 ∪ σ′
1), we have S0(z

′
0) ∩ (σ1 ∪ σ′

1) = ∅.
On the other hand, if (ii) holds, then we pick S̃0(z

′
0) as S̃0(z

′
0) = z′0 + S̃0 =

z′0 + Sδ/2(π/2, 3π/2 − θ), and we still have that S̃0(z
′
0) ∩ (σ1 ∪ σ′

1) = ∅. We wish to
remark that (ii) can hold only if z0 is an endpoint of σ1.

The construction of S0(z
′
0) or S̃0(z

′
0), respectively, already proves that the lemma

is true for r = 0, that is, for z′0.

We have that, with respect to a coordinate system which is rotated in the counter-
clockwise sense of an angle θ̃, 0 ≤ θ̃ < π, with respect to the system (x, y), σ′

1∩Bδ(z
′
0)

is a Lipschitz graph with constant M , which implies that for any z′ ∈ σ′
1∩Bp(z

′
0), the

sectors S′
0(z

′)± = z′±Sδ/2(π/2−θ+ θ̃, π/2+θ+ θ̃) do not intersect σ′
1. Furthermore,

S0(z
′) = z′ + S0 does not contain points of σ1.

If θ̃ ∈ [0, 15θ/8] ∪ [π − 15θ/8, π), then for any z′ ∈ σ′
1 ∩Bp(z

′
0), we have that the

intersection of S0(z
′) either with S′

0(z
′)+ or with S′

0(z
′)− contains a sector of a cone

of radius δ/2 and amplitude at least θ/8. Such a sector has empty intersection with
σ1 ∪ σ′

1; thus a uniform cone property holds and the lemma easily follows.

We now consider the case in which θ̃ ∈ (15θ/8, π−15θ/8). We restrict ourselves to
the case in which (i) holds; the case in which (ii) holds can be treated in a completely
analogous way.

Let us consider the ball Bδ/2(z
′
0). We have that Bδ/2(z

′
0)\(S′

0(z
′
0)

+ ∪ S′
0(z

′
0)

−)

consists of two closed sectors S̃+ and S̃−, where the first one is the only one whose
intersection with S0(z

′
0) is not empty. If we further subtract S0(z

′
0), then we obtain

at most three closed sectors, S̃−, Ŝ1, and Ŝ2, the last ones being contained in S̃+.
We order Ŝ1 and Ŝ2 in the counterclockwise direction; that is, we take Ŝ1 as the one
contained in {x ≥ 0} and Ŝ2 as the one contained in {x ≤ 0}, keeping in mind that
one or both of them can be empty or have an empty interior. We observe that at
most one between Ŝ1 and Ŝ2 contains points of σ′

1.

Assume that σ′
1 ∩ Ŝ1 is not empty. Then there exist constants c1, 0 < c1 < 1, and

c2 > 0, depending on δ and M only, such that for every z′ ∈ σ′
1 ∩ Ŝ1 ∩ Bc1p(z

′
0) we

have that S′
0(z

′)+ ∩S0(z
′
0) is not empty, S′

0(z
′)+ ∩S0(z

′
0) ⊂ z′0 + (Sδ/4(π/2− θ, π/2 +

θ)\Sc2|z′−z′
0|(π/2 − θ, π/2 + θ)), and the angle between the bisecting lines of S′

0(z
′)+

and S0(z
′
0) is greater than a positive constant depending on M only. Then we can

prove that for every z′ ∈ σ′
1 ∩ Ŝ1 ∩Bc1p(z

′
0), condition (a) holds. We take a sequence

of discs in S0(z
′
0), each one so that its center is on the bisecting line of S0(z

′
0), it is

tangential to the next one, and the disc with double radius and same center is still
contained in S0(z

′
0), till we reach the intersection of the bisecting lines of S′

0(z
′)+

and S0(z
′
0). From that point on, we continue the construction by taking discs, with

analogous properties as before, along the sector S′
0(z

′)+.

If σ′
1 ∩ Ŝ2 is not empty, then we can repeat the same reasoning using S′

0(z
′)−

instead of S′
0(z

′)+.

It might happen that σ′
1∩(Ŝ1∪ Ŝ2) is strictly contained in Bc1p(z

′
0), and therefore

the proof is not yet concluded. In this case, we can find positive constants p1, 0 <
p1 ≤ min{p0, δ/4}, c3, c4, and θ1, 0 < θ1 ≤ θ, depending on δ and M only, such that
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if p ≤ p1, then for any r, 0 < r ≤ c3p, there exists z′ ∈ σ′
1 ∩ S̃− such that |z′ − z′0| = r

and the following holds. Let S̃′
0(z

′)± be the sector with vertex in z′, radius δ/2, the
same bisecting line as S′

0(z
′)±, and amplitude 2θ1. Then either (i) S̃′

0(z
′)+ ∩ S0(z1)

is not empty, S̃′
0(z

′)+ ∩S0(z1) ⊂ z1 + (Sδ/4(π/2− θ, π/2 + θ)\Sc4p(π/2− θ, π/2 + θ)),

the angle between the bisecting lines of S̃′
0(z

′)+ and S0(z1) is greater than a positive
constant depending on M only, and S0(z1)\(z1 + Sc4p(π/2 − θ, π/2 + θ)) does not

contain points of σ′
1; or (ii) the same properties are satisfied by S̃′

0(z
′)− and S0(z2).

Then we repeat the construction used before using either the two sectors S̃′
0(z

′)+ and
S0(z1) or S̃′

0(z
′)− and S0(z2).

We can now conclude the proof of our stability result.
Proof of Theorem 2.3. By Theorem 3.1, we can assume without loss of generality

that p ≤ p1. Then, by Lemma 3.3, we can find c0, δ0, C4, and C5, 0 < C5 < 1,
depending on δ, M , and L only, such that for every r, 0 ≤ r ≤ c0p, there exists
z′ ∈ σ′

1 ∩ ∂Br(z
′
0) satisfying condition (a).

Then, for any i = 1, 2, and any of these z′ satisfying condition (a), we have

|vi(z′) − v′i(z
′)| ≤ C6| log ε|−α3 ,(3.6)

where C6 and α3 > 0 depend on the a priori data only.
In fact, let us fix i ∈ {1, 2} and let us call f = u+iv = ui−u′

i+i(vi−v′i). We have
that f is quasiregular inside Ω\(Σ ∪Σ′); that is, it satisfies a Beltrami-type equation
like (2.16)–(2.17).

Let Gδ0 be the set of points in G whose distance from Σ ∪ Σ′ is greater than or
equal to δ0. We assume, without loss of generality, that δ0 ≤ δ/4; thus a neighborhood
of ∂Ω in G is contained in Gδ0 .

Let Ω1 = Gδ0 ∪ (
⋃

n∈N
2Dn), with Dn as in condition (a) applied to z′. We have

that Ω1 is a domain contained in G such that ∂Ω ⊂ ∂Ω1.
Let us observe that for any r, 0 < r ≤ |z1 − z′|, with z1 the center of D1, there

exists wr ∈
⋃

n∈N
Dn such that |wr − z′| = r. Furthermore, we can take such a wr in

Dn, where n satisfies n < C7(1 + | log r|), with C7 depending on C4, C5, and L only.
Then (3.6) can be obtained as follows. By recalling (2.21) and (2.22), we can

estimate, in terms of ε, |f | inside Ω1 by using the method of harmonic measure,
which has been generalized to operators with nonconstant and anisotropic coefficients
in [3].

We can estimate |v(z′)| using the interior estimate of |f | at the point wr, 0 < r ≤
|z1 − z|, and (2.19). A precise estimate of |f(wr)| is obtained through a repeated use
of the Harnack inequality along the sequence of discs Dn. We refer to the proof of
Proposition 4.12 in [12] for details.

Then the conclusion follows immediately from (3.6) and Proposition 3.2.
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Abstract. We consider scalar conservation laws where the flux function depends discontinuously
on both the spatial and temporal locations. Our main results are the existence and well-posedness of
an entropy solution to the Cauchy problem. The existence is established by showing that a sequence
of front tracking approximations is compact in L1, and that the limits are entropy solutions. Then,
using the definition of an entropy solution taken from [K. H. Karlsen, N. H. Risebro, and J. D.
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1. Introduction. In this paper we are concerned with the Cauchy problem for
scalar conservation laws where the flux function depends on both the x and t co-
ordinates. We study the case where this dependence takes the form f(u, x, t) =
f(u, a(x), g(t)) through some functions a and g. Hence, we shall study the initial
value problem {

ut + f(u, a(x), g(t))x = 0, x ∈ R, t > 0,

u(x, 0) = 0, x ∈ R,
(1.1)

where f = f(u, a, g) is a smooth function. We regard the function a(x) and g(t) as
coefficients, and if these are smooth, the classical results of Kružkov [16] and Olĕınik
[19] state that the above initial value problem is well posed in the class of entropy
solutions.

In our case, the coefficients are allowed to be discontinuous, and we cannot apply
the techniques of Kružkov and Olĕınik directly to reach their conclusion. The main
obstacle is that of the discontinuity of the spatial coefficient a. The equation where
g is constant has recently received considerable attention, beginning with the paper
of Temple [23], in which he studied a system of nonstrictly hyperbolic conservation
laws. By a Lagrangian transformation, this system is equivalent to a scalar equation
with discontinuous coefficients; see Wagner [26]. If one writes the scalar conservation
law as a system by introducing a as a new component of the solution, we have{

ut + f(u, a, g(t))x = 0,

at = 0.
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This system has eigenvalues fu and 0, and if fu(u, a, g) = 0 for some (u, a, g), then
the system is nonstrictly hyperbolic, and the standard theory for systems (see Glimm
[7] and, more recently, [8, 1]) does not apply. In particular, one can show by a
concrete example (see, e.g., [23]) that the total variation of the approximate solutions
produced by the Glimm scheme (and also by front tracking) is not bounded in terms
of the discretization parameters. Such systems are commonly called resonant. For
resonant systems, one cannot show compactness by the usual method of establishing
BV estimates on a sequence of approximate solutions.

To overcome this difficulty, in [23] Temple introduced a nonlinear mapping Ψ =
Ψ(u) and used this mapping to prove that the sequence of approximations produced
by the Glimm scheme is compact. This approach has since been used in a number of
papers for related systems, using other approximations; see Gimse and Risebro [6] and
Klingenberg and Risebro [14, 15] for front tracking approximations; Lin, Temple, and
Wang [18] for Godunov-type approximations; Towers [24, 25] for monotone difference
schemes; and Hong [9] for Godunov schemes for resonant n× n and for 2× 2 systems
with inhomogeneous source terms.

As an alternative to the use of Ψ to prove compactness, in [12, 10] Karlsen et al.
used the Murat–Tartar compensated compactness approach to prove convergence of
numerical approximations.

The conservation law (1.1) is formally equivalent to the Hamilton–Jacobi equation

vt + f(vx, a(x), g(t)) = 0.

In several papers, Ostrov (see, e.g., [20] and [21]) considered this type of equation,
and he showed the existence of a viscosity-type solution and discussed the question
of uniqueness.

Regarding uniqueness of weak solutions to (1.1) in the case where a and g are
not smooth, this was first studied (for the constant g case) in [15] and [13]. In
these papers it was shown that the solution is unique if it is the limit of solutions to
equations where the coefficients are smoothed. More recently, L1-contractivity was
shown for piecewise smooth solutions in the case of convex flux functions in [25], and
in a more general case by Karlsen, Risebro, and Towers [12]. Also, Seguin and Vovelle
[22] proved uniqueness for L∞ solutions for a special case of (1.1) with g = const.
and a(·) taking two values separated by a jump discontinuity. The techniques used
in the present paper are heavily inspired by those used in [11], in which Karlsen,
Risebro, and Towers show uniqueness of solutions in the case where g is constant, and
where u �→ f(u, a) is not required to have a single local maximum. The authors of
[25, 12, 22, 11] all use a Kružkov-type entropy condition.

The purpose of the present paper is to extend the well-posedness theory for con-
servation laws with discontinuous coefficients by including a t dependent coefficient.

Conservation laws with discontinuous coefficients, both in x and t, occur in many
models. The simplest such model is the hydrodynamic traffic flow model; see Lighthill
and Whitham [17]. In this case the x and t dependency model the road conditions,
specifically the maximal speed of any vehicle. Both of these dependencies can vary
discontinuously—for instance, when modeling a traffic light. Another model in which
such conservation laws occur is a clarifier-thickener model of continuous sedimenta-
tion; see Bürger et al. [4, 2, 3]. In the papers [2, 3] the actual models were simplified
so that g(t) was assumed to be constant.

Now we briefly state our main result and detail our assumptions. In order for the
Riemann problem to have a bounded solution, it is convenient to assume that there is
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a finite interval [α, β] such that f(α, a, g) = f(β, a, g) for all a and g, and we can choose
α = 0 and β = 1. This is not necessary for the solution of the Riemann problem to be
bounded, but it is certainly sufficient; see [5], however, for less restrictive assumptions
that yields the same conclusions.

So therefore we assume that f : [0, 1]×R2 �→ R, g : R+ �→ R and a : R �→ R are
given functions which satisfy the following:

(A.1) a is piecewise C1 with finitely many jump discontinuities at x = x1, . . . , xM .
(A.2) ‖a‖L∞ < ∞, supx�∈{xi}M

1
|a′(x)| < ∞, and a ∈ BV (R).

(A.3) f ∈ C2([0, 1] × R2;R), fuu(u, a, g) ≤ −cuu < 0 for some positive constant
cuu for all a and g.

(A.4) f(0, ·, ·) ≡ f(1, ·, ·) ≡ 0, and there is a unique value u∗ such that fu(u∗, ·, ·) ≡
0.

(A.5) ∂f/∂g ≥ 0 and ∂f/∂a ≥ 0. Furthermore

∂2f

∂g∂a

is bounded.
(A.6) g ∈ BV (R+), and g(t) > 0 for all t > 0.

Next, let Ψ(u, a, g) be defined by

Ψ(u, g, a) = sign (u− u∗)
f (u∗, a, g) − f (u, a, g)

f(u∗, a, g)
.(1.2)

We demand that the initial data are such that u0 ∈ L1(R; [0, 1]) and

|Ψ(u0, a, g)|BV < ∞.(1.3)

We use the following definition of a weak entropy solution of (1.1).
Definition 1.1. Let T > 0, and let u : ΠT = 〈0, T 〉×R �→ [0, 1] be a measurable

function. We call u an entropy weak solution of (1.1) if the following conditions hold:
(D.1) u ∈ L1(ΠT ), and the map 〈0, T 〉 � t �→ u(·, t) ∈ L1(R) is Lipschitz continu-

ous.
(D.2) The following entropy inequality holds for all constants c and all nonnegative

test functions ϕ,

∫∫
ΠT

|u− c|ϕt + F (u, x, t, c)ϕx dtdx

−
M∑

m=0

∫ xm+1

xm

∫ T

0

sign (u− c) fa(c, a(x), g(t))a′(x)ϕdtdx

+

M∑
m=1

∫ T

0

∣∣f(c, a
(
x+
m

)
, g(t)) − f(c, a

(
x−
m

)
, g(t))

∣∣ dt ≥ 0,

(1.4)

where we have set x0 = −∞, xM+1 = ∞ and F is given by

F (u, x, t, c) = sign (u− c) [f (u, a(x), g(t)) − f (c, a(x), g(t))] , t > 0, x ∈ R.

(D.3) u(·, t) → u0 in L1(R) as t ↓ 0.
(D.4) |Ψ(u(·, t), a, g(t))|BV < ∞ for all t ∈ 〈0, T 〉.
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The inequality (1.4) implies that any entropy solution is a weak solution, as setting
c = 1 and c = 0 will show. The condition (D.4) implies that the limits

lim
x→x±

m

Ψ(u, a, g)

exist for almost all t. Since u �→ Ψ(u, a, g) is invertible, and the inverse is continuous,
the limits

lim
x→x±

m

u(x, t)

also exist for almost all t. This will be needed to show uniqueness. Our main result
is the following.

Main theorem. Assume that f , a, and g satisfy the above assumptions, (A.1)–
(A.6). If u0 and v0 are two functions that satisfy (1.3), then there exist corresponding
entropy solutions u and v taking initial values u0 and v0, respectively. These entropy
solutions satisfy

‖u(·, t) − v(·, t)‖L1(R) ≤ ‖u0 − v0‖L1(R) .

The rest of this paper is organized as follows. In the next section, section 2,
we define a sequence of approximate solutions by the front tracking method. This
is based on the front tracking method defined in [14]. In section 3 we proceed to
establish interaction estimates, which allows us to deduce that the total variation
of Ψ is bounded for the front tracking approximations. Then we can use Helly’s
theorem and show that any limit is an entropy solution in the above sense. Then,
using an adaptation of arguments taken from [11], one can show that the entropy
solution operator is L1 contractive. In this way our main theorem is proved. Finally,
we conclude with a section showing the front tracking scheme used on a concrete
example.

2. The front tracking scheme. We start this section by defining a front track-
ing scheme for the case where g(t) ≡ const. This scheme is slightly different from the
front tracking scheme defined for this case in, e.g., [14]. The reason for this difference
is that our front tracking scheme also must work when g is not constant.

Therefore we first consider the initial value problem,{
ut + f(u, a)x = 0 for x ∈ R, t > 0,

u(x, 0) = u0(x) for x ∈ R,
(2.1)

where f and a are as described above. The Riemann problem for (2.1) is the initial
value problem where

u0(x) =

{
ul, x ≤ 0,

ur, x > 0,
a(x) =

{
al, x ≤ 0,

ar, x > 0,

and its solution is detailed in [14]. This solution consists of at most one u-wave
separating the u-values ul and u′

l, followed by a so-called a-wave separating the states
(u′

l, al) and (u′
r, ar). This wave is a contact discontinuity having zero speed. The

solution is then completed by a u-wave separating u′
r and ur. The first u-wave has

nonpositive speed, and the second nonnegative. The intermediate states u′
l and u′

r

are unique, provided (1.4) holds. Furthermore u′
l,r can equal ul,r.
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Let

z(u, a) = sign (u∗ − u) (f(u, a) − f(u∗, a)) and α(a) = f(u∗, a).

Since a �→ f(u∗, a) is nondecreasing, a �→ α(a) is invertible. In the (z, α) plane, a-
waves are straight lines of slope ±1. An a-wave connecting two points (z1, α1) and
(z2, α2) has slope 1 if z1 and z2 are nonpositive, and slope −1 if these values are
nonnegative. If z1 and z2 have different sign, there is no a-wave connecting these
points. Since u-waves connect points with the same a-values, these are horizontal
lines in the (z, α) plane. Now fix a (small) number δ > 0, and set αi = iδ and zj = jδ
for integers i and j. We define uδ

0 and aδ as piecewise constant functions, with a finite
number of jump discontinuities, such that∥∥a− aδ

∥∥
L1(R)

→ 0∥∥u0 − uδ
0

∥∥
L1(R)

→ 0

⎫⎬
⎭ as δ → 0.(2.2)

Label the (finite number of) values of uδ and aδ u1, . . . , uM , and a1, . . . , aN , respec-
tively. Let αj be the jth member of the ordered set

{αk}M
′

k=m′ ∪ {α(ak)}Mk=1 ,

where m′ and M ′ are chosen such that

0 < m′ ≤ min
x

α(aδ(x)) < max
x

α(aδ(x)) ≤ M ′.

For ease of notation, set

aj = α−1 (αj) .

Next, for each αj , we define zj,k to be the kth member of the ordered set

{zi}N
′(j)

i=−N ′(j) ∪ {z (ui, aj)}Mi=1 ,

where N ′(j) is such that

z−1
(
z−N ′(j), aj

)
= 0 and z−1

(
zN ′(j), aj

)
= 1.

We also set

uj,k = z−1 (zj,k, aj) and fj,k = f (uj,k, aj) .

Then, for each j, let the approximate flux function fδ(u, a) be the piecewise linear
interpolant,

fδ (u, aj) = fj,k + (u− uj,k)
fj,k+1 − fj,k
uj,k+1 − uj,k

for u ∈ [uj,k, uj,k+1].(2.3)

We have chosen the grid so that the entropy solution to the initial value problem

ut + fδ
(
u, aδ

)
x

= 0, t > 0, x ∈ R,

u(x, 0) = uδ
0(x), x ∈ R,

(2.4)
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can be constructed by front tracking for any time t. We call this front tracking solution
uδ. Furthermore uδ will take values that are grid points; i.e., for any point (x, t) such
that uδ and aδ are constant at (x, t),

z
(
uδ (x, t) , aδ(x)

)
= zj,k for some j and k.

In particular, this means that

fδ
(
uδ, aδ

)
= f

(
uδ, aδ

)
almost everywhere.

For an elaboration and proof of these statements, see [14]. The construction used here
differs from the construction in [14] in that we have added grid points corresponding
to the discretization of the initial function u0 and the coefficient a, instead of choosing
discretization that takes values on the fixed grid in the (z, α) plane.

Now we can define the front tracking approximation in the case where g is not
constant; cf. (1.1). Let gδ be a piecewise constant approximation to g, such that∥∥gδ − g

∥∥
L1(R+)

→ 0 as δ → 0,∣∣gδ∣∣
BV (〈0,T ])

≤ |g|BV (〈0,T ]) .
(2.5)

Define tn such that gδ is constant on each interval In = 〈tn, tn+1]. Assuming that
we can define front tracking for t < tn, we can then use uδ(·, tn) as initial values for
a front tracking approximation defined in [tn, tn+1〉. In order to do this we must use
a “new” mapping z, since z = z(u, a, g), and redefine the grid on which we operate.
However, we keep the grid points corresponding to uδ(·, tn). In this way, the grid used
in the interval In+1 will contain more points than the one used in In, but since there
are only a finite number of intervals In such that tn ≤ T , for a fixed δ, we use a finite
number of grid points for t ≤ T . If, for t ∈ In, fδ(·, ·, gδ(t)) denotes the approximate
flux function constructed above using f(·, ·, gδ

∣∣
In) and uδ(·, tn), then we have that

the front tracking construction uδ will be an entropy solution of

uδ
t + fδ

(
uδ, aδ(x), gδ(t)

)
x

= 0, t > 0, x ∈ R,

uδ(x, 0) = uδ
0(x), x ∈ R.

(2.6)

We call the discontinuities in uδ fronts, and we have three types: u-fronts, a-fronts,
and g-fronts (that have infinite speed!).

3. Compactness. In this section we show that the sequence
{
uδ

}
δ>0

is compact

in L1 by estimating the variation of Ψ(uδ, aδ, gδ). For each time t, such that gδ is
constant at t, we can view uδ as consisting of a sequence of fronts, u-fronts and
a-fronts.

We defined the map Ψ by (1.2), and we define the associated Temple functional
of a front w by

T (w) =

⎧⎪⎨
⎪⎩

|∆Ψ| if w is a u-front,

2 |∆f(u∗, a, g)| if w is an a-front, and Ψr < Ψl,

4 |∆f(u∗, a, g)| if w is an a-front, and Ψr > Ψl.

(3.1)

If Ψl < Ψr, we call an a-front counterclockwise; otherwise we call it clockwise. For
sequence of fronts, define T additively. Next, for the front tracking approximation uδ,
we define the interaction estimate Q by

Q(t) = T (t)
∣∣gδ(·)∣∣

BV ([t,T ])
,(3.2)
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ar g−al
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′

u+

u− a′

Fig. 1. The states used in an interaction between an a-wave and a g-wave.

where with a slight abuse of notation we write T (t) = T (uδ(·, t)). With these defini-
tions, we can state the following lemma.

Lemma 3.1. There exists a positive constant C, depending only on f , a, and g,
such that for all t > 0, we have that the “Glimm functional”

G(t) = T (t) + CQ(t)(3.3)

is nonincreasing in time.
Proof. In each interval In, we know from [14] that T is nonincreasing, and the

lemma holds. To prove the lemma we must study interactions between u-fronts and
g-fronts, and between a-fronts and g-fronts.

We start by considering the interaction between a single a-front and a single
g-front. The states involved are depicted in Figure 1. We label the “incoming” a-
wave (front) a, the outgoing a-wave a′, the left-moving outgoing u-wave u−, and the
right-moving outgoing u-wave u+. See Figure 1.

In this case we claim that

T (u−) + T (a′) + T (u+) − T (a) ≤ C |∆g| |∆a|(3.4)

for some constant C depending on f and its derivatives, but not on δ. In this case it
will follow from the discussion of cases below that if a is (counter)clockwise, then a′

is (counter)clockwise. Next, from this it follows that

|T (a′) − T (a)| ≤ 4
(∣∣f (

u∗, al, g
+
)
− f

(
u∗, ar, g

+
)∣∣− ∣∣f (

u∗, al, g
−)− f

(
u∗, ar, g

−)∣∣)
≤ 4

[∫ ar

al

∣∣∣∣∂f∂a
∣∣∣∣ (u∗, z, g+) dz −

∫ ar

al

∣∣∣∣∂f∂a
∣∣∣∣ (u∗, z, g−) dz

]

≤ 4

∫ ar

al

∫ g+

g−

∣∣∣∣ ∂2f

∂g∂a

∣∣∣∣ (u∗, z, y) dydz

≤ C |∆a∆g|

for some C depending on the partial derivatives of f . Therefore it suffices to show
that

T (u−) + T (u+) ≤ C |∆g| |∆a| .(3.5)

First observe that since an a-wave cannot cross the line z = 0, either both ul and ur

are less than or equal to u∗ or both are greater than or equal to u∗. If this is not so,
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then the “a-wave” is in fact a stationary u-wave followed by an a-wave, or vice versa.
If this is so, we can perturb uδ an arbitrarily small amount by shifting the stationary
u-wave a small distance and then treat the interaction of the g-wave and the u-wave
separately.

We now let

G
(
al, ar, g

−, g+
)

= T
(
u−) + T

(
u+

)
.

For simplicity, we regard al and g− as fixed, and the emerging waves as functions of
a = ar and g = g+. Trivially we have that

G(al, al, g
−, g) = G(al, a, g

−, g−) = 0,

and (3.5) follows if G is continuous and

∂2G

∂a∂g

is bounded, since

G(al, ar, g
−, g+) =

∫ ar

al

∫ g+

g−

∂2G

∂a∂g
(al, a, g

−, g) dgda.

First we assume that both ul and ur are less than or equal to u∗. In this case, if

f (ul, al, g) ≤ f (u∗, a, g) ,(3.6)

then there are no left-moving waves u−, while if

f (ul, al, g) > f (u∗, a, g) ,(3.7)

there will be emerging u-waves of both positive and negative speeds. These two case
are depicted in Figure 2. Note that in both cases both a and a′ are counterclockwise.
So we find that

G
(
al, a, g

−, g
)

=
sign (ul − ur)

f (u∗, a, g)
[f (ul, al, g) − f (ur, a, g)]χ{f(ul,al,g)≤f(u∗,a,g)}

+

{
1

f (u∗, al, g)
[f (ul, al, g) − f (u∗, a, g)]

+
1

f (u∗, a, g)
[f (u∗, a, g) − f (ur, a, g)]

}
χ{f(ul,al,g)>f(u∗,a,g)}.

From this expression it is straightforward to check that G is sufficiently regular, and
(3.5) holds.

The case where ul,r ≥ u∗ is similar: If

f (ur, a, g) ≤ f (u∗, al, g) ,(3.8)

there is only one outgoing u-wave, with negative speed. If

f (ur, a, g) > f (u∗, al, g) ,(3.9)
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f

uu∗

al

al

g−

g−ar

arg
+

g+

ulur

f

uu∗

al

al

g−

g−ar

arg
+

g+

ulur

Fig. 2. The possible results of an interaction if ul,r ≤ u∗. Left: (3.6) holds. Right: (3.7) holds.

f

uu∗

alg−

g−ar

arg
+

alg
+

ul ur

f

uu∗

alg−

g−ar

arg
+

alg
+

ul ur

Fig. 3. The possible results of an interaction if ul,r ≥ u∗. Left: (3.8) holds. Right: (3.9) holds.

there are two outgoing u-waves. See Figure 3. Note that in both cases a and a′ are
clockwise. In this case we have

G
(
al, a, g

−, g
)

=
sign (ul − ur)

f (u∗, al, g)
[f (ul, al, g) − f (ur, a, g)]χ{f(ur,a,g)≤f(u∗,al,g)}

+

{
1

f (u∗, a, g)
[f (ur, a, g) − f (u∗, al, g)]

+
1

f (u∗, al, g)
[f (u∗, al, g) − f (ul, al, g)]

}
χ{f(ur,a,g)>f(u∗,al,g)}.

Also in this case G is sufficiently regular for (3.5) to hold and thereby (3.4). This
finishes the study of the interaction of a- and g-fronts

Now we consider the interaction of a single u-wave and a single g-wave. The
situation is depicted in Figure 4. For this interaction we claim that

∣∣Ψ (
ur, a, g

+
)
− Ψ

(
ul, a, g

+
)∣∣− ∣∣Ψ (

ur, a, g
−)− Ψ

(
ul, a, g

−)∣∣
≤ C

∣∣g+ − g−
∣∣ ∣∣Ψ (

ur, a, g
−)− Ψ

(
ul, a, g

−)∣∣ .
(3.10)
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x

t

ul ur

ul ur
g+

g−

Fig. 4. The states used in an interaction between a u-wave and a g-wave.

Since Ψ(u∗, ·, ·) = Ψu(u∗, ·, ·) = 0, we can write

Ψ
(
ur, a, g

+
)
−Ψ

(
ul, a, g

+
)
− Ψ

(
ur, a, g

−) + Ψ
(
ur, a, g

−)
=

∫ ur

ul

(
Ψu

(
σ, a, g+

)
− Ψu

(
σ, a, g−

))
dσ

=

∫ ur

ul

∫ σ

u∗

(
Ψuu

(
η, a, g+

)
− Ψuu

(
η, a, g−

))
dη dσ

=

∫ ur

ul

∫ σ

u∗

∫ g+

g−
Ψuug (η, a, g) dg dη dσ.(3.11)

We also find that

Ψ
(
ur, a, g

−)− Ψ
(
ul, a, g

−) =

∫ ur

ul

Ψu

(
σ, a, g−

)
dσ

=

∫ ur

ul

(
Ψu

(
σ, a, g−

)
− Ψu

(
u∗, a, g−

))
dσ

=

∫ ur

ul

∫ σ

u∗
Ψuu

(
η, a, g−

)
dη dσ.(3.12)

We also have that

Ψuu(u, a, g) = sign (u− u∗)
−fuu(u, a, g)

f(u∗, a, g)
≥ cuu

Cu∗
,

|Ψuug(u, a, g)| =

∣∣∣∣fuu(u, a, g)fg(u
∗, a, g) − fuug(u, a, g)f(u∗, a, g)

f2(u∗, a, g)

∣∣∣∣ ≤ C1

for some constant C1. To fix ideas, assume that ul ≤ ur, so that also

Ψ
(
ul, a, g

±) ≤ Ψ
(
ur, a, g

±) .
To show (3.10), we consider different cases.

Case 1. u∗ ≤ ul ≤ ur. By (3.11) we have∣∣Ψ (
ur, a, g

+
)
− Ψ

(
ul, a, g

+
)∣∣− ∣∣Ψ (

ur, a, g
−)− Ψ

(
ul, a, g

−)∣∣
≤ C ′ ∣∣g+ − g−

∣∣ ∫ ur

ul

∫ σ

u∗
dη dσ

= C ′ ∣∣g+ − g−
∣∣(∣∣u2

r − u2
l

∣∣
2

− u∗ (ur − ul)

)
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for some constant C ′ depending on the partial derivatives of f . By (3.12) we also
have that

Ψ
(
ur, a, g

−)− Ψ
(
ul, a, g

−) ≥ cuu
Cu∗

∫ ur

ul

∫ σ

u∗
dη dσ,

so (3.10) follows with C = C ′Cu∗/cuu.
Case 2. ul ≤ ur ≤ u∗. In this case,∣∣Ψ (

ur, a, g
+
)
− Ψ

(
ul, a, g

+
)∣∣− ∣∣Ψ (

ur, a, g
−)− Ψ

(
ul, a, g

−)∣∣
≤ Ĉ

∣∣g+ − g−
∣∣ ∫ ur

ul

∫ u∗

σ

dη dσ

= Ĉ
∣∣g+ − g−

∣∣ [u∗ (ur − ul) −
∣∣u2

r − u2
l

∣∣
2

]

for some constant Ĉ, and also by (3.12)

Ψ
(
ur, a, g

−)− Ψ
(
ul, a, g

−) ≥ cuu
Cu∗

∫ ur

ul

∫ u∗

σ

dη dσ.

Hence (3.10) follows as in the first case.
Case 3. ul ≤ u∗ ≤ ur. Now we write∣∣Ψ (

ur, a, g
+
)
− Ψ

(
ul, a, g

+
)∣∣− ∣∣Ψ (

ur, a, g
−)− Ψ

(
ul, a, g

−)∣∣
≤ C2

∣∣g+ − g−
∣∣ [∫ u∗

ul

∫ σ

u∗
dη dσ +

∫ ur

u∗

∫ u∗

σ

dη dσ

]

= C2

∣∣g+ − g−
∣∣(u2

r − 2 (u∗)
2

+ u2
l

2
− u∗ (ur − 2u∗ + ul)

)
.

Also, by (3.12) we can estimate

Ψ
(
ur, a, g

−)− Ψ
(
ul, a, g

−) ≥ cuu
Cu∗

[∫ u∗

ul

∫ σ

u∗
dη dσ +

∫ ur

u∗

∫ u∗

σ

dη dσ

]
.

So again (3.10) follows.
If ul > ur, we can use the same arguments as in Cases 1 or 2 above to show (3.10).

Since T (t) ≥
∣∣aδ∣∣

BV
, the lemma now follows.

Let Tn = T
∣∣
In and gn = gδ

∣∣
In . Since T is nonincreasing in each interval In,

from Lemma 3.1, we have that

Tn+1 ≤ Tn
(
1 + C

∣∣gn+1 − gn
∣∣) .

By the Grönwall inequality it follows that

T (t) ≤ T 1(0+) exp

(
C
∑
n

∣∣gn − gn−1
∣∣)

≤ lim
s↓0

T (s) exp (C |g|BV )

≤ (|Ψ (u0, a, g(0))|BV + 4 |a|BV |g(0)|) eC|g|BV ,(3.13)
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where the sum in the first line above is over those n such that tn < t.
From this it immediately follows that the total variation of Ψ(uδ, aδ, gδ(t)) is

bounded independently of δ and t. Furthermore

−1 ≤ Ψ
(
uδ(x, t), aδ(x), gδ(t)

)
≤ 1.

By Helly’s theorem, for each fixed t ∈ [0, T ],

Ψ
(
uδ(·, t), aδ, gδ(t)

)
→ ψ almost everywhere as δ ↓ 0,

and by the Lebesgue dominated convergence theorem also in L1(R). Furthermore,
by a diagonal argument, we can achieve this convergence for a dense countable set
{tγ} ⊂ [0, T ]. For tγ in this set, define

u(·, tγ) = Ψ−1 (ψ, a, g (tγ)) .

Hence also uδ(·, tγ) → u(·, tγ). For any t ∈ [0, T ] we have that∥∥uδ1(·, t) − uδ2(·, t)
∥∥
L1(R)

≤
∥∥uδ1(·, tγ) − uδ1(·, t)

∥∥
L1(R)

+
∥∥uδ1(·, tγ) − uδ2(·, tγ)

∥∥
L1(R)

+
∥∥uδ2(·, tγ) − uδ2(·, t)

∥∥
L1(R)

,

where tγ is such that uδ(·, tγ) → u(·, tγ). By Lemma 3.2, t �→ uδ(·, t) is L1 Lipschitz
continuous, so the first and third terms above can be made arbitrarily small by choos-
ing δ1 and δ2 small, and the middle term can be made small by choosing tγ close to
t. Hence we have that uδ converges to some function u in L1(R × [0, T ]). For the
reader’s convenience we show the following.

Lemma 3.2. There exists a positive constant C, independent of t, s, and δ, such
that ∥∥uδ(·, t) − uδ(·, s)

∥∥
L1(R)

≤ C |t− s| .(3.14)

Proof. We start by noting that since∣∣Ψ (
uδ(x, t), aδ(x), gδ(t)

)
− Ψ

(
uδ(y, t), aδ(y), gδ(t)

)∣∣
≥

∣∣f (
uδ(x, t), aδ(x), gδ(t)

)
− f

(
uδ(y, t), aδ(y), gδ(t)

)∣∣ ,
it follows that the total variation of f is bounded by some constant C, and C is
independent of t and δ. Next, assume that 0 ≤ s < t ≤ T , and let αh be a smooth
approximation to the characteristic function of the interval [s, t], so that

αh → χ[s,t] and α′
h → δs − δt,

as h ↓ 0, where δs denotes the Dirac delta function centered at s. Choose a test
function ϕ(x) such that |ϕ| ≤ 1, and set ϕh(x, t) = ϕ(x)αh(t). Since uδ is a weak
solution, we have that∫∫

ΠT

uδ∂tϕh + f
(
uδ, aδ, gδ

)
∂xϕh dtdx = 0,

and sending h ↓ 0 we find that∫
R

ϕ(x)
(
uδ(x, t) − uδ(x, s)

)
dx =

∫ t

s

∫
R

ϕx(x)f
(
uδ, aδ, gδ

)
dtdx.
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Now

∥∥uδ(·, t) − uδ(·, s)
∥∥
L1(R)

= sup
|ϕ|≤1

∫
ϕ(x)

(
uδ(x, t) − uδ(x, s)

)
dx

= sup
|ϕ|≤1

∫ t

s

∫
R

ϕx(x)f
(
uδ, aδ, gδ

)
dxdσ

≤
∫ t

s

∣∣f (
uδ(·, σ

)
, aδ, gδ(σ)

∣∣
BV

dσ

≤ (t− s)C.

Next, we shall show that the limit u is an entropy solution. First we study how
uδ differs from an entropy solution in each interval 〈xm, xm+1〉. Assume that yk are
the discontinuity points of aδ inside this interval, such that

xm = y0 < y1 < · · · < yK = xm+1,

and we have that a = ak for x ∈ 〈yk, yk+1〉. Since uδ is an entropy solution inside
each interval 〈yk, yk+1〉,

∫ yk+1

yk

∫ T

0

∣∣uδ − c
∣∣ϕt + F δ(uδ, x, t, c) dtdx−

∫ T

0

F δ(uδ, x, t, c)
∣∣∣x=y−

k+1

x=y+
k

dt ≥ 0,

(3.15)

where

F δ(u, x, t, c) = sign (u− c)
(
fδ(u, aδ(x), gδ(t)) − fδ(c, aδ(x), gδ(t))

)
.

If we set yl,rk = y∓k , and observe that since uδ is a weak solution,

f
(
uδ

(
t, ylk

)
, ak, g

δ
)

= f
(
uδ (t, yrk) , ak+1, g

δ
)

=: fk

for almost all t. Summing (3.15) for k = 0, . . . ,K − 1, we obtain

∫ xm+1

xm

∫ T

0

∣∣uδ − c
∣∣ϕx + F δ

(
uδ, x, t, c

)
ϕx dtdx−

∫ T

0

ϕF δ(uδ, x, t, c)
∣∣∣x=x−

m+1

x=x+
m

dt

(3.16)

−
∫ T

0

K−1∑
k=1

ϕ(xk, t)
[
sign (ur

k − c) (fk − fr
k (c)) − sign

(
ul
k − c

) (
fk − f l

k(c)
)]

dt(3.17)

≥ 0,

where we have used the notation

ul,r
k = uδ(y∓k , t), f l,r

k (c) = fδ(c, aδ(y∓k ), gδ).

Since at each discontinuity yk, u
δ is the solution of a Riemann problem, either both

ul
k and ur

k are less than or equal to u∗ or both are greater than or equal to u∗. Using
this we can label those discontinuities where both u-values are less than or equal to
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u∗ as L, and the remaining ones as G. Hence we can write the integrand in (3.17) as
(for brevity we use a notation where ϕ(xk, t) is invisible; it will reappear later)

−
∑
L

sign
(
ul
k − c

) (
f l
k(c) − fr

k (c)
)

+
[
sign (ur

k − c) − sign
(
ul
k − c

)]
(fk − fr

k (c))

(3.18)

−
∑
G

sign (ur
k − c)

(
f l
k(c) − fr

k (c)
)

+
[
sign

(
ul
k − c

)
− sign (ur

k − c)
] (

f l
k(c) − fk

)
.

(3.19)

Since fδ
u(u, ·, ·) > 0 for u < u∗, if ul

k ≤ c ≤ ur
k, the second term in (3.18) equals

2 (fr
k (ur

k) − fr
k (c)) ≥ 0,

and if ur ≤ c ≤ ul, the second term equals

−2 (fr
k (ur

k) − fr
k (c)) ≥ 0.

Similarly we find that the second term in (3.19) is always nonnegative. Hence

(3.17) ≤ −
∫ T

0

K−1∑
k=1

sign
(
ul,r
k − c

) (
fδ(c, ak+1, g

δ) − fδ(c, ak, g
δ)
)
dt

= −
∫ T

0

K−1∑
k=1

sign
(
ul,r
k − c

) fδ(c, ak+1, g
δ) − fδ(c, ak, g

δ)

∆yk
dt∆yk,

where ∆yk = yk+1 − yk, and we use ul
k for discontinuities in L, and ur

k for disconti-
nuities in G. Since a is continuously differentiable in 〈xm, xm+1〉 and aδ → a, gδ → g
and uδ → u as δ ↓ 0, we find that

lim
δ↓0

(3.17) ≤ −
∫ T

0

∫ xm+1

xm

sign (u− c) f(c, a, g)xϕdxdt.(3.20)

For a rigorous proof of this inequality, see [11, Lemma 4.4]. By the same arguments,
we find that for each discontinuity xm

F δ
(
uδ

(
x+
m, t

)
, x+

m, t, c
)
− F δ

(
uδ

(
x−
m, t

)
, x−

m, t, c
)

= sign (ur
m − c) (fm − fr

m(c)) − sign
(
ul
m − c

) (
fm − f l

m(c)
)

≥
∣∣f l

m(c) − fr
m(c)

∣∣ .
Finally, adding (3.16)–(3.17) for m and using the above, we find that∫∫

ΠT

|u− c|ϕt + F (u, x, t, c)ϕx dtdx−
∑
m

∫ xm+1

xm

∫ T

0

sign (u− c) fa(u, a, g)a
′(x)ϕdtdx

+
∑
m

∫ T

0

∣∣f(c, a(x+
m, g(t)) − f(c, a(x−

m), g(t))
∣∣ϕ(xm, t) dt

≥ lim
δ↓0

∑
m

[
(3.16) + (3.17)

]
≥ 0.
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Hence the limit u is an entropy solution of (1.1), since by the Lemma 3.2 also u(·, t) →
u0 as t ↓ 0. Summing up, we have shown the following.

Theorem 3.3. Assume that the assumptions (A.1), (A.2), (A.3), (A.4), (A.5),
and (A.6) hold. Then the sequence of front tracking solutions defined in section 2
converges in L1(ΠT ) to an entropy weak solution of (1.1).

Now it is straightforward to use methods from [11] to show that this problem has
a unique solution. This is contained in the following theorem.

Theorem 3.4. Assume that the assumptions (A.1), (A.2), (A.3), (A.4), (A.5),
and (A.6) hold. Let u = u(x, t) and v = v(x, t) be two entropy weak solutions of

ut + f(u, a, g)x = 0 in the strip ΠT

for some T > 0, satisfying the initial conditions

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ R.

Then we have that

‖u(t, ·) − v(t, ·)‖L1(R) ≤ ‖u(s, ·) − v(s, ·)‖L1(R)(3.21)

for each 0 ≤ s ≤ t < T .

4. An example. To demonstrate that the front tracking construction also has
some potential as a practical numerical method, in this section we show an example of
how the front tracking construction works on a concrete example. We use the simple
flux function

f(u, a, g) = 4agu(1 − u),(4.1)

and

a(x) =
(
1 + 8χ{x<0.25} |x|

)
+ 2 cos2(πx),

g(t) = 0.6 + 0.55 cos
(
2πt

(
χ{0.15<t<0.65} + 1

))
,

u0(x) = 0.5(1 − 0.8 sin(πx)).

(4.2)

In the example we present, we have used periodic initial data in the interval x ∈ [0, 1],
δ = 1/20, and ∆t = 0.025. In Figure 5 we show the initial data uδ

0 and the approximate
coefficients aδ and gδ. In Figure 6 we show the front tracking solution at t = 0.5 and
the fronts for 0 ≤ t ≤ 0.5. The a-fronts are depicted as broken horizontal lines, the
g-fronts as vertical broken lines, and the u-fronts as solid lines.

 0.08

 0.35

 0.62

 0.89

 0.00 0.33  0.67 1.00
1.1

2.3

3.6

4.8

 0.00 0.33  0.67 1.00
 0.00

 0.41

 0.82

1. 2

 0.00 0.17  0.33 0.50

Fig. 5. The initial function uδ
0 (left), the coefficients aδ (middle) and gδ (right).
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 0.04

 0.30

 0.56

 0.81

 0.00  0.33  0.67  1.00

uδ(x, 0.5)u

x

 0.00

 0.17

 0.33

 0.50

 0.00  0.33  0.67  1.00

t

x

Fig. 6. The front tracking solution uδ(x, 0.5) (top) and the fronts (bottom).
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Abstract. We study the existence of multiple blowup solutions for a semilinear elliptic equation
with homogeneous Dirichlet boundary condition, exponential nonlinearity, and a singular source term
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1. Main results and examples. Let Ω ⊂ R
2 be a smooth bounded open set.

We are concerned with the existence of solutions in the distributional sense for the
problem {

−�u = ρ2eu − 4π
∑N

i=1 αiδpi in Ω,
u = 0 on ∂Ω

(1)

with the property that ρ2eu “concentrates” when the parameter ρ → 0. Here {α1, . . . ,
αN} are positive numbers, δp defines the Dirac mass at p, and Γ := {p1, . . . , pN}
⊂ Ω is the set of singular sources in (1).

Problem (1) with Γ = ∅ has been largely studied in connection with many physical
models such as thermionic emission [21], the theory of the isothermal gas sphere [14],
gas combustion [25], and in the context of statistical mechanics in [11], [12], and [23].
The asymptotic analysis for blowup solutions to problem (1) as ρ → 0 is contained in
[36] (see also [27]) and alternatively it can be obtained as a by-product of the general
blowup analysis of [8]: it leads in the limit to a quantization property of the energy
ρ2
∫
Ω
eu in terms of the number of blowup points and to a characterization of the

location of the blowup points. For the converse question, namely, the construction of
solutions to (1) which do blow up at the “admissible” points as ρ → 0, the first result
is due to Weston [38] who constructed a sequence of solutions on simply connected
domains “concentrating” on a single blowup point according to [36] (see also [26] for
more general nonlinearities). The general case of the existence of multiple blowup
solutions has been treated only in the beautiful paper [4]. Subsequently Chen and
Lin in [17] have given an alternative proof in the special case of an annulus. Thus,
perturbative problems with exponential nonlinearities in dimension two seem to be
very difficult to handle. So far only a few results have been derived that cover some
special cases (beside [4] and its extensions [2], [3], and [5], see also [13] and [29]) in
contrast to the vast literature available in higher dimensions; see, for example, [1],
[15], [28], and [32].
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Motivated by some singular elliptic equations arising in the study of Chern–
Simons vortex theory (we refer the reader to [39] and the references therein), we
are interested in analyzing (1) with Γ �= ∅. We mention that some of the progress
made about condensates in Chern–Simons models is contained in [10], [30], [33], [34],
[35], and [37] to quote a few.

Let G(z, z′) denote the Green’s function of −� on Ω with Dirichlet boundary
condition, namely, {

−�zG(z, z′) = δz′ in Ω,
G(z, z′) = 0 on ∂Ω,

and let H(z, z′) = 1
2π ln |z − z′| + G(z, z′) be the regular part of G(z, z′). Problem

(1) is equivalent to solving for v = u + 4π
∑N

i=1 αiG(z, pi), the regular part of u, the
equation{

−�v = ρ2|z − p1|2α1 · · · |z − pN |2αN e−4π
∑N

i=1
αiH(z,pi)ev in Ω,

v = 0 on ∂Ω.
(2)

Thus, we may consider the following general model problem:{
−�v = ρ2|z − p1|2α1 · · · |z − pN |2αN f(z)ev in Ω,
v = 0 on ∂Ω,

(Q)ρ

where Γ = {p1, . . . , pN} ⊂ Ω and {α1, . . . , αN} are positive numbers, f : Ω → R is
a smooth function such that f(pi) > 0 for any i = 1, . . . , N . An extension to the
singular case of the blowup analysis in [8] is due to [7] (see also [6]). It permits us
to perform an asymptotic analysis in the spirit of [36] (see [20] for a proof). To this
purpose, set Γ = {p1, . . . , pN} and Ω′ = Ω ∩ {f > 0}, and for given m ∈ N and
s ∈ {1, . . . , N} define

F̃(z1, . . . , zm) =

m∑
i=1

H(zi, zi) +
∑
i �=j

G(zi, zj)

+
1

4π

m∑
i=1

ln
(
|zi − p1|2α1 · · · |zi − pN |2αN f(zi)

)

which is well defined in (Ω′ \ Γ)m for zi �= zj whenever i �= j, and let

G(z1, . . . , zm, ω1, . . . , ωs) =
1

4π

⎛
⎝ m∑

i=1

s∑
j=1

8π(1 + αj)G(zi, ωj)

⎞
⎠

be well defined for zi �= ωj , with zi ∈ Ω, ωj ∈ C, i = 1, . . . ,m, j = 1, . . . , s.
Theorem 1.1. Let Ω ⊂ R

2 be a smooth bounded open set and let f be a smooth
positive function. Let vρ be a sequence of solutions of (Q)ρ such that supρ Tρ < +∞,
Tρ = ρ2

∫
Ω
|z − p1|2α1 · · · |z − pN |2αN f(z)evρ . If Tρ → 0 as ρ → 0, then vρ → 0 in

C2,β(Ω) and, for ρ small, vρ coincides with the unique minimal solution of (Q)ρ.
If Tρ → L �= 0, then (up to a subsequence) there exists a nonempty finite set
S = {q1, . . . , qK} ⊂ Ω (blowup set) such that ρ2|z − p1|2α1 · · · |z − pN |2αN f(z)evρ ⇀∑K

i=1 biδqi in the sense of measures and vρ →
∑K

i=1 biG(z, qi) in C2,β
loc (Ω\S) for some

β ∈ (0, 1), with bi = 8π if qi /∈ Γ, or bi = 8π(1 +αj) if qi = pj for some j = 1, . . . , N.
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Moreover, if S ∩ Γ = ∅, then (q1, . . . , qK) is a critical point for the function F̃ ; if
S ∩ Γ = {pj1 , . . . , pjs} and S \ Γ = {qi1 , . . . , qim} with m + s = K, then (qi1 , . . . , qim)

is a critical point for the function F̃ + G(·, pj1 , . . . , pjs).
For the existence of a minimal solution of (Q)ρ, we refer the reader to [19]. As a

vice versa of Theorem 1.1, we establish the following result.
Theorem 1.2. Let Ω ⊂ R

2 be a smooth bounded open set, f be a smooth function,
and {α1, . . . , αN} ⊂ (0,+∞) \ N be real numbers. We have

(a) let S = {pj1 , . . . , pjs} ⊂ Γ, then there exist ρ0 > 0 small and a family
{vρ}0<ρ<ρ0

of solutions for equation (Q)ρ such that ρ2|z − p1|2α1 · · · |z − pN |2αN

f(z)evρ ⇀
∑s

i=1 8π(1 + αji)δpji
in the sense of measures and vρ →

∑s
i=1 8π(1 +

αji)G(z, pji) in C2,β
loc (Ω \ S) for some β ∈ (0, 1);

(b) let S = {q1, . . . , qm} ⊂ Ω′\Γ and (q1, . . . , qm) be a nondegenerate critical point
of F̃ such that ∆ ln f(q1) = · · · = ∆ ln f(qm) = 0, then there exist ρ0 > 0 small and a
family {vρ}0<ρ<ρ0 of solutions for (Q)ρ such that ρ2|z−p1|2α1 · · · |z−pN |2αN f(z)evρ ⇀∑m

i=1 8πδqi in the sense of measures and vρ →
∑m

i=1 8πG(z, qi) in C2,β
loc (Ω \ S) for

some β ∈ (0, 1);
(c) let S be such that S∩Γ = {pj1 , . . . , pjs}, S\Γ = {q1, . . . , qm}, and (q1, . . . , qm)

is a critical point of F̃ +G(·, pj1 , . . . , pjs) such that ∆ ln f(q1) = · · · = ∆ ln f(qm) = 0,
then there exist ρ0 > 0 small and a family {vρ}0<ρ<ρ0 of solutions for (Q)ρ such that
ρ2|z−p1|2α1 · · · |z−pN |2αN f(z)evρ ⇀

∑s
k=1 8π(1+αjk)δpjk

+
∑m

j=1 8πδqj in the sense

of measures and vρ →
∑s

k=1 8π(1 + αjk)G(z, pjk) +
∑m

j=1 8πG(z, qj) in C2,β
loc (Ω \ S)

for some β ∈ (0, 1).
Let us point out that the assumption ∆ ln f(qi) = 0 for any qi ∈ S \ Γ is always

fulfilled by the original problem (2), so in some sense it seems a “natural” assumption
from a physical point of view. In case Γ = ∅, part (b) in Theorem 1.2 gives a
direct extension of the result in [4], which has largely motivated our approach. More
precisely, it states the following.

Corollary 1.3. Let Ω ⊂ R
2 be a smooth bounded open set, f be a smooth

function, and S = {q1, . . . , qm} ⊂ Ω′ be a nonempty set. Assume that (q1, . . . , qm) is
a nondegenerate critical point of F̃(z1, . . . , zm) =

∑m
i=1 H(zi, zi) +

∑
i �=j G(zi, zj) +

1
4π

∑m
i=1 ln f(zi) in (Ω′)m such that ∆ ln f(q1) = · · · = ∆ ln f(qm) = 0. There exist

ρ0 > 0 small and a family {vρ}0<ρ<ρ0 of solutions for the equation{
−�v = ρ2f(z)ev in Ω,
v = 0 on ∂Ω,

such that ρ2f(z)evρ ⇀
∑m

i=1 8πδqi in the sense of measures and vρ →
∑m

i=1 8πG(z, qi)

in C2,β
loc (Ω \ S) for some β ∈ (0, 1).
Thus, from Corollary 1.3 the result in [4] is recovered by taking f = const > 0.
To avoid technicalities, we derive the proof of Theorem 1.2 only in the following

significant cases: (a) holds with S = {p} and p ∈ Γ, (b) holds with S = {q} and
q /∈ Γ, and (c) holds with S = {p, q}, p ∈ Γ, and q /∈ Γ. Our approach generalizes to
any number of “peaks,” the technical details are worked out in [20]. So we restrict
our attention to the problem{

−�v = ρ2|z − p|2αf(z)ev in Ω,
v = 0 on ∂Ω,

(P )ρ

where α ∈ (0,+∞) \ N is a real number and f : Ω → R is a smooth function not
necessarily positive. We will prove the following result.
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Theorem 1.4. Under the above assumptions we have
(a) if p ∈ Ω with f(p) > 0, there exist ρ0 > 0 small and a family {vρ}0<ρ<ρ0 of

solutions for (P )ρ such that ρ2|z−p|2αf(z)evρ ⇀ 8π(1+α)δp in the sense of measures

and vρ → 8π(1 + α)G(z, p) in C2,β
loc (Ω \ {p}) for some β ∈ (0, 1);

(b) if q ∈ Ω′ \ {p} is a nondegenerate critical point of F(z) = H(z, z) + 1
4π ln[|z−

p|2αf(z)] in Ω′ \ {p} such that ∆ ln f(q) = 0, then there exist ρ0 > 0 small and a
family {vρ}0<ρ<ρ0 of solutions for (P )ρ such that ρ2|z − p|2αf(z)evρ ⇀ 8πδq in the

sense of measures and vρ → 8πG(z, q) in C2,β
loc (Ω \ {q}) for some β ∈ (0, 1);

(c) if p ∈ Ω with f(p) > 0 and q �= p is a nondegenerate critical point of F(z) =
F̃(z) +G(z, p) = H(z, z) + 1

4π ln(|z− p|2αf(z)) + 2(1 +α)G(z, p) in Ω′ \ {p} such that
∆ ln f(q) = 0, then there exist ρ0 > 0 small and a family {vρ}0<ρ<ρ0 of solutions for
(P )ρ such that ρ2|z− p|2αf(z)evρ ⇀ 8π(1 +α)δp + 8πδq in the sense of measures and

vρ → 8π(1 + α)G(z, p) + 8πG(z, q) in C2,β
loc (Ω \ {p, q}) for some β ∈ (0, 1).

We now discuss some applications of the results above. As it is well known, for
α ≥ 0, the problem {

−�v = λ |z−p|2αf(z)ev∫
Ω
|z−p|2αf(z)ev

in B(0, 1),

v = 0 on ∂B(0, 1)
(3)

with p = 0 and f(z) = 1 possesses a radial solution for 0 < λ < 8π(α + 1) and, as a
consequence of a Pohozaev identity, has no solution for λ ≥ 8π(α + 1). By means of
Theorem 1.4, we can show that such a threshold for existence of (3) is no longer valid
if we perturb (3) either by replacing f = 1 with a suitable nonconstant function or
by moving p close to ∂B(0, 1). In fact we will be able to produce solutions vρ for (3)
with λρ = ρ2

∫
Ω
|z − p|2αf(z)evρ → 8π(α+ 1) + 8π > 8π(α+ 1) concentrating on two

points. According to Theorem 1.4, for this purpose we need to exhibit a nondegenerate
critical point q for F(z) = H(z, z)− 2+α

2π ln |z− p|+ 2(1 +α)H(z, p) + 1
4π ln f(z) such

that ∆ ln f(q) = 0. Let us recall that H(z, p) = 1
4π ln

(
|p|2|z|2 − 2〈p, z〉 + 1

)
and

H(z, z) = 1
2π ln

(
1 − |z|2

)
, where 〈·, ·〉 denotes the inner product in R

2. Hence we
obtain for F(z) the expression

F(z) =
1

2π
ln
(
1 − |z|2

)
− 2 + α

2π
ln |z − p| + 1 + α

2π
ln
(
|p|2|z|2 − 2〈p, z〉 + 1

)
+

1

4π
ln f(z).

Example 1.5. We study now the case p = 0. For fixed q ∈ B(0, 1) \ {0}, we can
define a function f(z) such that in a small neighborhood of q it takes the form

f(z) = exp
(
(z1 − q1)

2 − cq(z2 − q2)
2 − 2 ln

(
1 − |z|2

)
+ 2(2 + α) ln |z|

)
,

where cq = 1+ 4
(1−|q|2)2 > 0. For such a function f(z), the function F(z) near q takes

the form F(z) = 1
4π

[
(z1 − q1)

2 − cq(z2 − q2)
2
]

and hence q is a nondegenerate critical
point of F(z) such that ∆ ln f(q) = 2 − 2cq + 8

(1−|q|2)2 = 0. Moreover, if we choose q

such that |q| = rα, with rα ∈ (0, 1) satisfying r2+α
α + r2

α − 1 = 0, then such an f may
be constructed as a small perturbation of the constant function 1. In fact, for ε small
we can just take fε of the form

fε(z) =

(
1 − χ

(
z − q

ε

))
+ χ

(
z − q

ε

)
× exp

(
ε(z1 − q1)

2 − cε(z2 − q2)
2 − 2 ln

(
1 − |z|2

)
+ 2(2 + α) ln |z|

)
,
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where cε = ε + 4
(1−|q|2)2 and 0 ≤ χ ≤ 1 is a smooth cut-off function such that χ = 1

in B(0, 1) and χ = 0 in R
2 \B(0, 2).

Example 1.6. We study now the case f(z) = 1. The function F(z) becomes

F(z) =
1

2π
ln
(
1 − |z|2

)
− 2 + α

2π
ln |z − p| + 1 + α

2π
ln
(
|p|2|z|2 − 2〈p, z〉 + 1

)
.

Let us remark that, according to the nonexistence result stated above, for p = 0 the
function F(z) = 1

2π ln
(
1 − |z|2

)
− 2+α

2π ln |z| has no critical points in B(0, 1) \ {0} and
this remains true for p close to zero. On the other hand, we can take p ∈ B(0, 1)
such that p → e ∈ ∂B(0, 1) along a straight line. We consider a point q = se for
s ∈ (−1, 1). We have that

∇F(q) =

(
(α + 2)s + α

2π(s2 − 1)
+ o(1)

)
e as p → e

for |s − 1| bounded away from zero. Let s0 = − α
α+2 , for p close to e we find a point

sp such that ∇F(spe) = 0 and sp → s0 as p → e. We evaluate now the determinant
of D2F(spe):

det D2F(spe) =
(α + 2)6

64π2(α + 1)3
+ o(1) as p → e.

Hence qp = spe is a nondegenerate critical point of F(z) for p close to e such that
qp → − α

α+2e as p → e.
As in [4], Theorem 1.4 is based on the construction of a suitable family of approx-

imate solutions v(ρ, λ, a) for problem (P )ρ, with (λ, a) a suitable set of parameters,
such that the linearized operator about v(ρ, λ, a) is invertible. Thus, for ρ small a
fixed point argument will provide a solution vρ close in some sense to v(ρ, λ, a) with
the required asymptotic properties.

2. Construction of approximating solutions. As far as part (a) in Theo-
rem 1.4 is concerned, in view of the expected asymptotic behavior, the approximating
function v(ρ, 0, 0) will be constructed by gluing in a small neighborhood of p the limit
function 8π(1 + α)G(z, p) with a suitable local solution of −∆v = ρ2|z − p|2αf(p)ev.
Using the scale invariance v(z) → vt(z) = v(tz) + 2(α + 1) ln t, t > 0, valid for the
solutions of the equation

−∆v = ρ2|z|2αev,(4)

we can construct local solutions which are very concentrated near p in such a way
that the gluing with 8π(1 +α)G(z, p) is sufficiently accurate. This is possible in view
of the fact that 8π(1 + α)G(z, p) → +∞ as z → p. For part (b) in Theorem 1.4,
we glue in a small neighborhood of q the limit function 8πG(z, q) with a suitable
local solution of −∆v = ρ2|q − p|2αf(q)ev. The scale invariance involved here is
v(z) → vt(z) = v(tz) + 2 ln t, t > 0, valid for solutions of

−∆v = ρ2ev.(5)

Finally, for part (c) in Theorem 1.4 we combine the two previous constructions by
gluing the limit function 8π(1 +α)G(z, p) + 8πG(z, q) with a local solution of −∆v =
ρ2|z− p|2αf(p)ev near p and with a local solution of −∆v = ρ2|q− p|2αf(q)ev near q.
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To this purpose, we recall some known facts. The solutions of −∆u = eu in R
2

have been completely classified by Liouville in [24] and in complex notations they
satisfy the so-called Liouville formula

ln
8|F ′(z)|2

(1 + |F (z)|2)2(6)

for some meromorphic function F with F ′(z) �= 0 whenever defined.
This representation formula generalizes to solutions in the punctured plane C\{0},

as proved in [18], by choosing some multivalued meromorphic function F : C → C,
locally univalent in C \ {0}, satisfying

either F (z) = G(z)zγ , γ ∈ R, or F (z) = Φ(
√
z),

where G and Φ are single-valued holomorphic functions away from the origin and
where Φ(z)Φ(−z) = 1.

A complete classification for solutions of{
−∆u = eu in R

2,∫
R2 e

u < +∞(7)

can be performed either by the Liouville formula or via the moving plane method (see
[16]) and it leads to the only possible choice of F (z) = az + b, with a, b ∈ C. The
complete classification for solutions of{

−∆u = eu − 4παδp=0 in R
2,∫

R2 e
u < +∞(8)

is due to [31] and it corresponds to the choice F (z) = azα+1 + b, with a, b ∈ C and
b = 0 if α /∈ N. By choosing F (z) = 1

τρz(1+γz2), τ > 0, γ ∈ C such that |γ| < 1
3 , and

F (z) = 1
τρz

α+1, we can provide, respectively, solutions for (7) and (8) in B(0, 1). By

taking the regular part of this functions and adding a term 2 ln 1
ρ , we obtain a large

class of solutions for (4) and (5) in B(0, 1), respectively, in the form

vρ,τ = ln
8(α + 1)2τ2

(τ2ρ2 + |z|2(α+1))2
, vρ,τ,γ = ln

8τ2|1 + 3γz2|2
(τ2ρ2 + |z|2|1 + γz2|2)2 .(9)

Let h(z) be some smooth function such that h(0) > 0. The function vρ,τ −
lnh(0) satisfies the equation −∆ (vρ,τ − lnh(0)) = ρ2h(0)|z|2αevρ,τ−lnh(0) in B(0, 1).
Similarly vρ,τ,0 − lnh(0) is a solution for −∆ (vρ,τ,0 − lnh(0)) = ρ2h(0)evρ,τ,0−lnh(0)

in B(0, 1). For ρ > 0 small, they can be viewed as approximating solutions when we
replace h(0) by h(z): such an approximation, however, may not be accurate enough
to carry out our fixed point argument. In fact, we will need to define the local
approximating solution Uρ,τ as the difference between, respectively, vρ,τ , vρ,τ,0 and a
Taylor expansion of lnh(z) at z = 0, taking into account two basic facts:

(a) Uρ,τ must be a “good” local approximating solution;
(b) translating Uρ,τ at some point q ∈ S, the difference between this local function

and the related limit function as ρ → 0 must be small in a small annulus centered
at q.

In case α > 0, vρ,τ − lnh(0) is satisfactory for (a). For (b), if p ∈ S∩Γ, we choose
some τ > 0 such that the Taylor expansion corresponding to the difference function in
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a small annulus centered in p contains powers of z − p of degree 1. In case α = 0 the
situation is more delicate as there is more degeneracy. Assuming ∆ lnh(0) = 0, for
(a) we need to take the local function Uρ,τ of the form vρ,τ,γ− lnh(0)−2z̄ ·∂z lnh(0)−
z̄2 · ∂zz lnh(0). While for (b) we need the difference function to be an infinitesimal
term of order 3 as z → q. This condition will be attained by specifying τ > 0 and γ
suitably and by the condition ∂zF(q) = 0. The invertibility of D2F(q) will guarantee
the invertibility of the linearized operator around such an approximating solution at
ρ = 0.

Summarizing, an appropriate approximating solution for our problem near a
blowup point should look like

Uρ,τ (z) =

{
vρ,τ (z) − lnh(0) if α > 0,

vρ,τ,γ(z) − lnh(0) − 2z̄ · ∂z lnh(0) − z̄2 · ∂zz lnh(0) if α = 0

with τ and γ suitably chosen. Introduce the differential operators ∂z = 1
2 (∂1 − i∂2),

∂z̄ = 1
2 (∂1 + i∂2), and the notation 2z · z′ = zz′ + z̄z′ = 2Re (zz′). Thus ∆ = 4∂z∂z̄

and the Taylor expansion in 0 for any smooth function h : Ω → R takes the form

h(z) = h(0) + 2z̄ · ∂zh(0) + z̄2 · ∂zzh(0) +
|z|2
4

∆h(0) + O(|z|3).

Hence Uρ,τ is a solution in B(0, 1) of

−∆Uρ,τ =

{
ρ2|z|2αh(0)eUρ,τ if α > 0,

ρ2elnh(0)+2z̄·∂z lnh(0)+z̄2·∂zz lnh(0)eUρ,τ if α = 0,
(10)

and we see that the right-hand side (RHS) of (10) may be expressed as follows:

RHS =

{
ρ2|z|2αh(z)eUρ,τ + O

(
ρ2|z|2α+1eUρ,τ

)
if α > 0,

ρ2h(z)eUρ,τ + O
(
ρ2|z|3eUρ,τ

)
if α = 0

provided that when α = 0 we also satisfy ∆ lnh(0) = 0.
By the assumptions in Theorem 1.4, we may translate the function Uρ,τ (z) around

the points p and q by defining⎧⎪⎨
⎪⎩

U1
ρ (z) = vρ,τ1(z − p) − ln f(p),

U2
ρ (z) = vρ,τ2,γ(z − q) − ln

(
|z − p|2αf

)
(q) − 2z − q · ∂z ln

(
|z − p|2αf

)
(q)

−z − q
2 · ∂zz ln

(
|z − p|2αf

)
(q)

with τ1, τ2, and γ to be specified below. Thus, we have

∆U i
ρ(z) + ρ2|z − p|2αf(z)eU

i
ρ(z) =

⎧⎨
⎩

O
(
ρ2|z − p|2α+1eU

1
ρ (z)

)
in B(p, 1),

O
(
ρ2|z − q|3eU2

ρ (z)
)

in B(q, 1).
(11)

Note that the following expansions hold as ρ → 0:

vρ,τ (z − p) = ln 8(1 + α)2τ2 − 4(1 + α) ln |z − p| + O

(
τ2ρ2

|z − p|2(α+1)

)
,

vρ,τ,γ(z − q) = ln 8τ2 − 4 ln |z − q| + 2z − q
2 · γ + O

(
|z − q|4 +

τ2ρ2

|z − q|2

)
.
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Let us define the limit function L(z) as

L(z) =

⎧⎪⎨
⎪⎩

8π(1 + α)G(z, p) if S = {p},
8πG(z, q) if S = {q},
8π(1 + α)G(z, p) + 8πG(z, q) if S = {p, q}.

Hence in |z − p| < 1 we get

U1
ρ (z) − L(z) = ln 8(α + 1)2τ2

1 −F1(p) + O

(
τ2
1 ρ

2

|z − p|2(1+α)
+ |z − p|

)
,

while for |z − q| < 1,

U2
ρ (z) − L(z) = ln 8τ2

2 −F2(q) − 2z − q · ∂zF2(q)

−z − q
2 · (∂zzF2(q) − 2γ) + O

(
τ2
2 ρ

2

|z − q|2 + |z − q|3
)
,

where

F1(z) =

{
8π(1 + α)H(z, p) + ln f(z) if S = {p},
8π(1 + α)H(z, p) + 8πG(z, q) + ln f(z) if S = {p, q}

and

F2(z) =

{
8πH(z, q) + ln

(
|z − p|2αf(z)

)
if S = {q},

8πH(z, q) + ln
(
|z − p|2αf(z)

)
+ 8π(1 + α)G(z, p) if S = {p, q}.

Let us remark that by assumption ∂zF2(q) = 0. Now we specify the values for τ1, τ2,
and γ to be fixed as follows:

τ1 =
e

1
2F1(p)

√
8(1 + α)

, τ2 =
e

1
2F2(q)

√
8

, γ =
1

2
∂zzF2(q).

In such a way we obtain

U1
ρ (z) − L(z) = O

(
τ2
1 ρ

2

|z − p|2(1+α)
+ |z − p|

)
in |z − p| < 1(12)

and

U2
ρ (z) − L(z) = O

(
τ2
2 ρ

2

|z − q|2 + |z − q|3
)

in |z − q| < 1.(13)

By scaling the variables, we can always assume that B(p, 2)∩B(q, 2) = ∅, B(p, 2) ⊂ Ω,
B(q, 2) ⊂ Ω, and |γ| < 1

3 . For i = 1, 2 let ri = ri(ρ) be a positive smooth function

such that ρ2

r4α+5
1

= O(1) as ρ → 0 and ρ2

r5
2

= O(1) as ρ → 0. Let χ be a radial smooth

function such that 0 ≤ χ ≤ 1, χ = 1 in B(0, 1), and χ = 0 in R
2 \B(0, 2).

To obtain part (a) in Theorem 1.4, for λ1 ∈ R, |λ1| < 1
2τ1, we consider the

approximating function

v(ρ, λ1)(z) =

(
1 − χ

(
z − p

r1

))
8π(1 + α)G(z, p)

+χ

(
z − p

r1

)
(vρ,τ1+λ1

(z − p) − ln f(p)).
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So v(ρ, 0) = U1
ρ in |z−p| < r1. For part (b) in Theorem 1.4, we need a three-parameter

family of approximating functions and, for (λ2, a) ∈ R × C, |λ2| < 1
2τ2, |a| <

1
2 , and

g(z) = |z − p|2αf(z), we consider

v(ρ, λ2, a)(z) =

(
1 − χ

(
z − q − a

r2

))
8πG(z, q + a)

+χ

(
z − q − a

r2

)
(vρ,τ2+λ2,γ(z − q − a) − Pa(z)),

where Pa(z) = ln g(q + a) + 2z − q − a · ∂z ln g(q + a) + z − q − a
2 · ∂zz ln g(q + a). So

v(ρ, 0, 0) = U2
ρ in |z − q| < r2. Finally, for part (c) in Theorem 1.4, we need a four-

parameter family of approximating functions and, for (λ, a) ∈ R
2 × C, λ = (λ1, λ2),

|λ| < 1
2 min{τ1, τ2}, |a| < 1

2 , and g(z) = |z − p|2αf(z), we take

v(ρ, λ, a)(z) =

(
1 − χ

(
z − p

r1

))
(8π(1 + α)G(z, p) + 8πG(z, q + a))

+χ

(
z − p

r1

)
(vρ,τ1+λ1

(z − p) − ln f(p)) in B(p, 1),

v(ρ, λ, a)(z) =

(
1 − χ

(
z − q − a

r2

))
(8π(1 + α)G(z, p) + 8πG(z, q + a))

+χ

(
z − q − a

r2

)
(vρ,τ2+λ2,γ(z − q − a) − Pa(z)) in B(q, 1),

and

v(ρ, λ, a)(z) = 8π(1 + α)G(z, p) + 8πG(z, q + a) in Ω \ (B(p, 1) ∪B(q, 1)).

To unify notation, from now on we will use the convention that
• λ2 = 0, a = 0 if S = {p},
• λ1 = 0 if S = {q},
• every expression containing p (or q) does really exist only if p ∈ S (or q ∈ S).

We remark that in such a way the last definition of v(ρ, λ, a) contains the previous
ones and (λ, a) always lie in R

2 × C.

3. A fixed point argument. In this section we obtain the desired existence
result by means of a fixed point argument. To this end we have postponed the proof
of the most technical aspects necessary to such an approach in the next two sections.

For a ∈ C, |a| < 1
2 , it is possible to construct a diffeomorphism Ψ(a, ·) : Ω → Ω,

smoothly depending on a, such that Ψ(0, ·) = Id, Ψ(a, z) = z − a for all z ∈ B(q, 3
2 ),

and Ψ(a, ·) = Id for all z ∈ Ω \B(q, 2). We can suppose that all derivatives of Ψ(a, z)
in a, ā, z, z̄ up to order 3 are bounded in Ω.

We define now suitable function spaces of weighted Hölder type appropriate for
our problem, which were introduced for the first time by Caffarelli, Hardt, and Simon
in [9].

Definition 3.1. For any ν ∈ R, k ∈ N, β ∈ [0, 1], define the space

Ck,β
ν (B(0, 1)) :=

{
w ∈ Ck,β (B(0, 1) \ {0},R) : ||w||k,β,ν < +∞

}
,
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where

||w||k,β,ν := sup
r≤1

r−ν

{
sup

{z: r
2<|z|<r}

(
k∑

j=0

rj |∇jw(z)|
)

+ rk+β sup
{x,y: |x|,|y|∈( r

2 ,r)}

(
|∇kw(x) −∇kw(y)|

|x− y|β

)}
.

Let ν1 ∈ (0, 1) and ν2 ∈ (1, 2) be two real numbers. Set Ω̃ = Ω \ B, B =
B(p, 1) ∪B(q, 1), and define

X = {w ∈ C2,β(Ω \ S,R) : w ≡ 0 on ∂Ω , ||w||X < +∞},

where ||w||X = ||w||2,β,Ω̃ + ||w||2,β,ν1,B(p,1) + ||w||2,β,ν2,B(q,1), and

Y = {w ∈ C0,β(Ω \ S,R) : ||w||Y < +∞},

where ||w||Y = ||w||0,β,Ω̃ + ||w||0,β,ν1−2,B(p,1) + ||w||0,β,ν2−2,B(q,1).
We can replace the norm in X with an equivalent one (for ρ fixed) of the form

||w||X′ = ||w||2,β,Ω̃ + rν1
1 ||w||2,β,ν1,B(p,1) + rν2

2 ||w||2,β,ν2,B(q,1)

and we will refer to the space X, endowed with the norm || · ||X′ , as X ′.
Finally, we define

E = {(w, λ, a) : w ∈ X, λ ∈ R
2, a ∈ C}

with the norm ||(w, λ, a)||E = ||w||X + |λ| + |a|, and E ′ as the space E endowed with
the equivalent norm ||(w, λ, a)||E′ = ||w||X′ + |λ| + |a|.

We can produce a solution v(ρ, λ, a)+w ◦Ψ(a, ·), (w, λ, a) ∈ E ′, for problem (P )ρ
if (w, λ, a) is a zero for the nonlinear map

N : E ′→ Y

( w, λ, a) → N(w, λ, a) = ∆ [v(ρ, λ, a) + w ◦ Ψ(a, ·)] ◦ Ψ(a, ·)−1

+ ρ2g ◦ Ψ(a, ·)−1ev(ρ,λ,a)◦Ψ(a,·)−1+w,

where g(z) = |z − p|2αf(z). Define L(0,λ,a) : E ′ → Y as the linearized operator of N
at (0, λ, a). Hence,

L(0,λ,a)(h, σ, b) = ∆ (h ◦ Ψ(a, ·)) ◦ Ψ(a, ·)−1 + ρ2g ◦ Ψ(a, ·)−1ev(ρ,λ,a)◦Ψ(a,·)−1

h

+
∑
i

σi

[
∆∂λiv(ρ, λ, a) + ρ2g(z)ev(ρ,λ,a)∂λiv(ρ, λ, a)

]
◦ Ψ(a, ·)−1

+ 2b ·
[
∆∂av(ρ, λ, a) + ρ2g(z)ev(ρ,λ,a)∂av(ρ, λ, a)

]
◦ Ψ(a, ·)−1

+ 2∂z̄
[
∆v(ρ, λ, a) + ρ2g(z)ev(ρ,λ,a)

]
|Ψ(a,·)−1 ·

[(
b∂a + b∂a

)
Ψ(a, ·)−1

]
.

In Theorem 4.13 below, we show that the map L(0,0,0) : E ′ → Y is uniformly invertible
for ρ small. We can decompose

N(w, λ, a) −N(0, 0, 0) − L(0,0,0)(w, λ, a)

=
[
N(w, λ, a) −N(0, λ, a) − L(0,λ,a)(w, 0, 0)

]
+
(
L(0,λ,a) − L(0,0,0)

)
(w, 0, 0)

+
[
N(0, λ, a) −N(0, 0, 0) − L(0,0,0)(0, λ, a)

]
.
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In the following three steps we estimate in Y each term above. For simplicity, we
show only how to derive the estimates for the L∞ part in || · ||Y since the estimates of
the Hölder term can be established in a similar way: all along the paper we will use
implicitly this fact to simplify all the computations.

Step 1. Let

f1(w, λ, a) = N(w, λ, a) −N(0, λ, a) − L(0,λ,a)(w, 0, 0)

= ρ2g ◦ Ψ(a, ·)−1ev(ρ,λ,a)◦Ψ(a,·)−1

(ew − 1 − w).

Since

Ψ(a, ·)−1 :
B(q, 1) → B(q + a, 1)
z → z + a,

we obtain the bounds

|ρ2g ◦ Ψ(a, ·)−1ev(ρ,λ,a)◦Ψ(a,·)−1 | =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

O
(

ρ2|z−p|2α
(ρ2+|z−p|2α+2)2

)
in B(p, r1),

O
(

ρ2

|z−p|2α+4

)
in B(p, 1) \B(p, r1),

O
(

ρ2

(ρ2+|z−q|2)2

)
in B(q, r2),

O
(

ρ2

|z−q|4

)
in B(q, 1) \B(q, r2),

O(ρ2) in Ω̃,

(14)

|∂a ρ2g ◦ Ψ(a, ·)−1ev(ρ,λ,a)◦Ψ(a,·)−1 | =

⎧⎪⎪⎨
⎪⎪⎩

O
(

ρ2

(ρ2+|z−q|2)2

)
in B(q, r2),

O
(

ρ2

|z−q|4

)
in B(q, 1) \B(q, r2),

O(ρ2) in Ω \B(q, 1),

(15)

|∂λi ρ
2g ◦ Ψ(a, ·)−1ev(ρ,λ,a)◦Ψ(a,·)−1 | =

⎧⎪⎪⎨
⎪⎪⎩

O
(

ρ2|z−p|2α
(ρ2+|z−p|2α+2)2

)
in B(p, 2r1) if i = 1,

O
(

ρ2

(ρ2+|z−q|2)2

)
in B(q, 2r2) if i = 2,

0 elsewhere.

(16)

Hence, we can derive

||f1(w1, λ1, a1) − f1(w2, λ2, a2)||0,β,Ω̃
= O

[
ρ2(||w1||2,β,Ω̃ + ||w2||2,β,Ω̃)||(w1, λ1, a1) − (w2, λ2, a2)||E

]
,

||f1(w1, λ1, a1) − f1(w2, λ2, a2)||0,β,ν1−2,B(p,1)

= O
[
ρ

ν1
α+1 (||w1 − w2||2,β,ν1,B(p,1)

+ |λ1 − λ2| + |a1 − a2|)
(
||w1||2,β,ν1,B(p,1) + ||w2||2,β,ν1,B(p,1)

) ]
,
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and

||f1(w1, λ1, a1) − f1(w2, λ2, a2)||0,β,ν2−2,B(q,1)

= O
[
ρν2

(
||w1 − w2||2,β,ν2,B(q,1)

+ |λ1 − λ2| + |a1 − a2|
) (

||w1||2,β,ν2,B(q,1) + ||w2||2,β,ν2,B(q,1)

)]
.

Since ρ2

r4α+5
1

+ ρ2

r5
2

= O(1), finally we get

||f1(w1, λ1, a1) − f1(w2, λ2, a2)||Y = O [||(w1, λ1, a1) − (w2, λ2, a2)||E′

× (||(w1, λ1, a1)||E′ + ||(w2, λ2, a2)||E′)] .

Step 2. Define

f2(w, λ, a) =
(
L(0,λ,a) − L(0,0,0)

)
(w, 0, 0) = f1

2 (w, a) + f2
2 (w, λ, a),

where

f1
2 (w, a) = ∆ [w ◦ Ψ(a, ·)] ◦ Ψ(a, ·)−1 − ∆w

and

f2
2 (w, λ, a) = ρ2g ◦ Ψ(a, ·)−1ev(ρ,λ,a)◦Ψ(a,·)−1

w − ρ2gev(ρ,0,0)w.

Using the identities

∂z̄(w ◦ Ψ) = (∂zw ◦ Ψ) ∂z̄Ψ + (∂z̄w ◦ Ψ) ∂z̄Ψ̄,

∆(w ◦ Ψ) = (∆w ◦ Ψ)
[
|∂zΨ|2 + |∂z̄Ψ|2

]
+ 8Re [(∂zzw ◦ Ψ) ∂zΨ∂z̄Ψ]

+ 8Re [(∂zw ◦ Ψ) ∂zz̄Ψ],

we obtain

f1
2 (w1, a1)− f1

2 (w2, a2) = ∆(w1 −w2)
(
|∂zΨ(a1, ·)|2 + |∂z̄Ψ(a1, ·)|2 − 1

)
|Ψ(a1,·)−1

+ 8Re
(
∂zz(w1 − w2)∂zΨ(a1, ·) |Ψ(a1,·)−1 ∂z̄Ψ(a1, ·) |Ψ(a1,·)−1

)
+ 8Re

(
∂z(w1 − w2)∂zz̄Ψ(a1, ·) |Ψ(a1,·)−1

)
+ ∆ [w2 ◦Ψ(a1, ·)]◦Ψ(a1, ·)−1 −∆ [w2 ◦Ψ(a2, ·)]◦Ψ(a2, ·)−1.

Therefore

f1
2 (w1, a1) − f1

2 (w2, a2) = O
(
|D2(w1 − w2)||a1| + |∇(w1 − w2)||a1|

+ |D2w2||a1 − a2| + |∇w2||a1 − a2|
)

in B(q, 2) \B(q, 1) and f1
2 (w1, a1) − f1

2 (w2, a2) = 0 outside this region. Hence

||f1
2 (w1, a1) − f1

2 (w2, a2)||Y = O [||(w1, λ1, a1) − (w2, λ2, a2)||E′

× (||(w1, λ1, a1)||E′ + ||(w2, λ2, a2)||E′)] .

By (14), (15), and (16), for f2
2 we get

||f2
2 (w1, λ1, a1) − f2

2 (w2, λ2, a2)||Y
= O [(||w1||X + ||w2||X) ||(w1, λ1, a1) − (w2, λ2, a2)||E′

+||w1 − w2||X (||(w1, λ1, a1)||E′ + ||(w2, λ2, a2)||E′)] .
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Step 3. Set f3(λ, a) = N(0, λ, a) −N(0, 0, 0) − L(0,0,0)(0, λ, a). Let us write explicitly
N(0, λ, a) in B(p, 1),

N(0, λ, a)(z) =
1

r2
1

∆χ

(
z − p

r1

)
∆1(z) +

8

r1
∂z̄χ

(
z − p

r1

)
· ∂z̄∆1(z)

−χ

(
z − p

r1

)
ρ2|z − p|2αevρ,τ1+λ1

(z−p)

+ ρ2|z − p|2αf(z)e8π(1+α)G(z,p)+8πG(z,q+a)+χ( z−p
r1

)∆1(z)

and in B(q, 1)

N(0, λ, a)(z) =
1

r2
2

∆χ

(
z − q

r2

)
∆2(z) +

8

r2
∂z̄χ

(
z − q

r2

)
· ∂z̄∆2(z)

−χ

(
z − q

r2

)
ρ2evρ,τ2+λ2,γ(z−q)

+ ρ2g(z + a)e8π(1+α)G(z+a,p)+8πG(z+a,q+a)+χ( z−q
r2

)∆2(z),

where g(z) = |z − p|2αf(z) and

∆1(z) : = vρ,τ1+λ1(z − p) − ln f(p) − 8π(1 + α)G(z, p) − 8πG(z, q + a) in B(p, 1),

∆2(z) : = vρ,τ2+λ2,γ(z − q) − Pa(z + a) − 8π(1 + α)G(z + a, p)

−8πG(z + a, q + a) in B(q, 1).

In B(p, 1) we get

∂λsλk
N(0, λ, a)(z) =

1

r2
1

∆χ

(
z − p

r1

)
v1
sk(z)δs1δk1 +

8

r1
∂z̄χ

(
z − p

r1

)
· ∂z̄v1

sk(z)δs1δk1

−χ

(
z − p

r1

)
ρ2|z − p|2αevρ,τ1+λ1

(z−p)
(
v1
s(z)v

1
k(z) + v1

sk(z)
)
δs1δk1

+ ρ2|z − p|2αf(z)e8π(1+α)G(z,p)+8πG(z,q+a)+χ( z−p
r1

)∆1(z)

×χ

(
z − p

r1

)(
v1
sk(z) + χ

(
z − p

r1

)
v1
s(z)v

1
k(z)

)
δs1δk1,

∂aλk
N(0, λ, a)(z) = ρ2|z − p|2αf(z)evρ,τ1+λ1

(z−p)−ln f(p)+(χ( z−p
r1

)−1)∆1(z)

×χ

(
z − p

r1

)(
χ

(
z − p

r1

)
− 1

)
v1
k(z)∂a∆

1(z)δk1,

and

∂aaN(0, λ, a)(z) =
1

r2
1

∆χ

(
z − p

r1

)
∂aa∆

1(z) +
8

r1
∂z̄χ

(
z − p

r1

)
· ∂aaz̄∆1(z)

+ ρ2|z − p|2αf(z)evρ,τ1 + λ1
(z−p)−ln f(p)+(χ( z−p

r1
)−1)∆1(z)

×
{(

χ

(
z − p

r1

)
−1

)
∂aa∆

1(z)+

(
χ

(
z − p

r1

)
− 1

)2

∂a∆
1(z)∂a∆

1(z)

}
,

where v1
j (z) := ∂λjvρ,τ1+λ1(z − p) and v1

jm(z) := ∂λjλmvρ,τ1+λ1(z − p) for any j,m.
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Similarly, in B(q, 1) we get

∂λsλk
N(0, λ, a)(z) =

1

r2
2

∆χ

(
z − q

r2

)
v2
sk(z)δs2δk2 +

8

r2
∂z̄χ

(
z − q

r2

)
· ∂z̄v2

sk(z)δs2δk2

−χ

(
z − q

r2

)
ρ2evρ,τ2+λ2,γ(z−q)

(
v2
s(z)v

2
k(z) + v2

sk(z)
)
δs2δk2

+ ρ2g(z + a)e8π(1+α)G(z+a,p)+8πG(z+a,q+a)+χ( z−q
r2

)∆2(z)

×χ

(
z − q

r2

)(
v2
sk(z) + χ

(
z − q

r2

)
v2
s(z)v

2
k(z)

)
δs2δk2,

∂aλk
N(0, λ, a)(z) = ρ2evρ,τ2+λ2,γ(z−q)+(χ( z−q

r2
)−1)∆2(z)χ

(
z − q

r2

)
v2
k(z)δk2

×
[(

χ

(
z − q

r2

)
− 1

)
∂a∆

2(z)g(z + a)e−Pa(z+a)

+ ∂a

(
g(z + a)e−Pa(z+a)

)]
,

and

∂aaN(0, λ, a)(z) =
1

r2
2

∆χ

(
z − q

r2

)
∂aa∆

2(z) +
8

r2
∂z̄χ

(
z − q

r2

)
· ∂aaz̄∆2(z)

+ ρ2evρ,τ2+λ2,γ(z−q)+(χ( z−q
r2

)−1)∆2(z)

{
∂aa

(
g(z + a)e−Pa(z+a)

)

+

(
χ

(
z − q

r2

)
− 1

)[
2∂a∆

2(z)∂a

(
g(z + a)e−Pa(z+a)

)
+ ∂aa∆

2(z)g(z + a)e−Pa(z+a)
]

+

(
χ

(
z − q

r2

)
− 1

)2

(∂a∆
2(z))2g(z + a)e−Pa(z+a)

}
,

where v2
j (z) := ∂λjvρ,τ2+λ2,γ(z− q) and v2

jm(z) := ∂λjλm
vρ,τ2+λ2,γ(z− q) for any j,m.

We have that

|∂τvρ,τ,λ(z)| + |∂ττvρ,τ,λ(z)| + |z||∇∂ττvρ,τ,λ(z)| = O(1)

for λ ∈ {0, γ}, f(z)e− ln f(p) = 1+O(|z− p|), g(z+ a)e−Pa(z+a) = 1+O(|z− q|2), and

|∂a∆1(z)| + |∂aa∆1(z)| + |z − p||∂aaz̄∆1(z)| = O(1) in B(p, 1),

|∂a∆2(z)| + |∂aa∆2(z)| + |z − q||∂aaz̄∆2(z)| = O(1) in B(q, 1),∣∣∣∂a (g(z + a)e−Pa(z+a)
)∣∣∣+ ∣∣∣∂aa (g(z + a)e−Pa(z+a)

)∣∣∣ = O(|z − q|2).

So we can derive ||∂2N(0, λ, a)||0,β,ν1−2,B(p, 12 ) = O(r−ν1
1 ), ||∂2N(0, λ, a)||0,β,ν2−2,B(q, 12 )

= O(r−ν2
2 ), where ∂2 denotes some second-order derivative of N(0, λ, a) in the vari-

ables λ and a. Since ||∂2N(0, λ, a)||0,β = O(ρ2) in Ω̃, we conclude that ||∂2N(0, λ, a)||Y
= O(

∑2
i=1 r

−νi
i ). Finally, we obtain

||f3(λ1, a1) − f3(λ2, a2)||Y = O

((
2∑

i=1

r−νi
i

)
||(w1, λ1, a1) − (w2, λ2, a2)||2E′

)
.



1324 PIERPAOLO ESPOSITO

Step 4. We define

K : E ′→ E ′

( w, λ, a) → −L−1
(0,0,0)

[
N(0, 0, 0) +

(
N(w, λ, a) −N(0, 0, 0) − L(0,0,0)(w, λ, a)

)]
.

Let us remark that (w, λ, a) is a zero for N ⇔ (w, λ, a) is a fixed point for K. Sum-
marizing the previous steps and by means of the uniform estimates derived in Theo-
rem 4.13 below, we have

||K(w1, λ1, a1) −K(w2, λ2, a2)||E′

≤ C0

(
2∑

i=1

r−νi
i

)
(||(w1, λ1, a1)||E′ + ||(w2, λ2, a2)||E′)

× ||(w1, λ1, a1) − (w2, λ2, a2)||E′

for some constant C0 > 0, where we have taken into account that

||w||X ≤
(

2∑
i=1

r−νi
i

)
· ||(w, λ, a)||E′ .

We can choose ν1 ∈ (0, 1) and ν2 ∈ (1, 2) in such a way that (ν1, 1 − ν1) ∩ (ν2 −
1, 2 − ν2) �= ∅ and let us fix some δ > 0 in this set. Define σ = 4α+5

2ν1
+ 1, ri = ρ

1
σνi ,

and note that N(0, 0, 0) = η where η is the error term defined and estimated in
section 5. In fact, from the technical estimates contained in sections 4 and 5 we see
that ||L−1

(0,0,0)η||E′ = O(r1−δ
1 + r2−δ

2 ) (see (37) below), and we get

||K(w, λ, a)||E′ ≤ C1

[(
2∑

i=1

r−νi
i

)
||(w, λ, a)||2E′ + r1−δ

1 + r2−δ
2

]

for some constant C1 > 0, where we have used the fact that ||K(w, λ, a)−K(0, 0, 0)||E′ ≤
C0(

∑2
i=1 r

−νi
i )||(w, λ, a)||2E′ . Thus, the suitable choice of r1, r2, as expressed by prop-

erty (38) below, allows us to conclude that for ρ small the map K is a contraction of
the space

E ′ ∩
{
(w, λ, a) : ||(w, λ, a)||E′ ≤ 2C1

(
r1−δ
1 + r2−δ

2

)}
into itself. So there exists a unique fixed point (wρ, λρ, aρ) of the map K for 0 < ρ <
ρ0, ρ0 > 0 small, such that

||wρ||2,β,Ω̃ +rν1
1 ||wρ||2,β,ν1,B(p,1) +rν2

2 ||wρ||2,β,ν2,B(q,1) + |λρ|+ |aρ| ≤ 2C1

(
r1−δ
1 + r2−δ

2

)
.

Hence vρ = v(ρ, λρ, aρ)+wρ◦Ψ(aρ, ·) is the solution we are looking for in Theorem 1.4.
It admits the desired properties in view of the definition of v(ρ, λ, a), the fact that

ρ2

r2α+4
1

+ ρ2

r4
2
→ 0 as ρ → 0 and wρ → 0 uniformly in Ω and in C2,β

loc (Ω \ S), as follows

by (38).
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4. Invertibility of the linearized operator L(0,0,0).

4.1. Some local operator. The radial case. We are interested in studying
the linearized operator of the equation

−∆v = ρ2|z|2αev in B(0, 1) , α ≥ 0(17)

about the radial solutions vρ,τ defined in (9) in case either α = 0 or α /∈ N. We define
the linearized operator about vρ,τ by setting

Lρ,τw = ∆w + ρ2|z|2αevρ,τw

and we investigate the invertibility of Lρ,τ under Dirichlet boundary condition. In-
spired by the work of Caffarelli, Hardt, and Simon in [9] also used in [4], we have the
following result.

Proposition 4.1. Let α /∈ N. For all ν ∈ (0, 1) and τ > 0, there exist ρ0 > 0,

a continuous linear form H0
ρ,τ : C0,β

ν−2 (B(0, 1)) → R, and a linear operator Gρ,τ :

C0,β
ν−2 (B(0, 1)) → C2,β

ν (B(0, 1)), uniformly bounded for 0 < ρ < ρ0, such that for all

ρ ∈ (0, ρ0) and for all f ∈ C0,β
ν−2 (B(0, 1)) there exists a unique bounded solution w of

{
Lρ,τw = f in B(0, 1),

w = 0 on ∂B(0, 1)
(18)

which can be uniquely decomposed as follows:

w(z) = Gρ,τ (f)(z) + H0
ρ,τ (f)

τ2ρ2 − |z|2(α+1)

τ2ρ2 + |z|2(α+1)
.

Moreover, H0
ρ,τ (f) = 0 for any f such that

∫ 2π

0
f(reiθ)dθ = 0 for all r ∈ (0, 1].

Proposition 4.2. Let α = 0, ν ∈ (1, 2), and τ > 0. There exist ρ0 > 0, two

continuous linear forms H0
ρ,τ : C0,β

ν−2 (B(0, 1)) → R, H1
ρ,τ : C0,β

ν−2 (B(0, 1)) → C,

and a linear operator Gρ,τ : C0,β
ν−2 (B(0, 1)) → C2,β

ν (B(0, 1)), uniformly bounded for

0 < ρ < ρ0, such that for all ρ ∈ (0, ρ0) and for all f ∈ C0,β
ν−2 (B(0, 1)) there exists a

unique bounded solution w of

{
Lρ,τw = f in B(0, 1),

w = 0 on ∂B(0, 1)

which can be uniquely decomposed as follows:

w(z) = Gρ,τ (f)(z) + H0
ρ,τ (f)

τ2ρ2 − |z|2
τ2ρ2 + |z|2 + 2H1

ρ,τ (f) · z

τ2ρ2 + |z|2 .

Moreover, H0
ρ,τ (f) = 0, H1

ρ,τ (f) = 0 for any f such that
∫ 2π

0
f(reiθ)dθ = 0 and∫ 2π

0
f(reiθ)e−iθdθ = 0 for all r ∈ (0, 1].

By the Liouville formula (6), we get that, for any j ∈ Z and |a| < α+1
|j|+α+1 ,

ln
8(α + 1)2τ2|1 + j+α+1

α+1 azj |2

(τ2ρ2 + |z|2(α+1)|1 + azj |2)2
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solves (17). Hence by taking its derivative with respect to a, evaluated at a = 0, we
obtain a solution of Lρ,τw = 0 in the form

1

α + 1

(j + α + 1)τ2ρ2 + (j − α− 1)|z|2(α+1)

τ2ρ2 + |z|2(α+1)
zj , j ∈ Z.

Consequently,

aj(r) :=
(j + α + 1)τ2ρ2 + (j − α− 1)r2(α+1)

τ2ρ2 + r2(α+1)
rj , j ∈ Z

is a solution for the ordinary differential equation

äj +
1

r
ȧj −

j2

r2
aj +

8(α + 1)2τ2ρ2r2α

(τ2ρ2 + r2(α+1))2
aj = 0 in (0, 1).

Let us remark that for j > 0, {aj(r), a−j(r)} is a set of linearly independent solutions
for the same homogeneous equation. Hence any other solution is obtained as a linear
combination of aj(r) and a−j(r). For j = 0, another independent solution can be
explicitly found and it behaves like ln r as r → 0. Since ln r and a−j(r), j > 0, are
not bounded in a neighborhood of r = 0 and aj(1) �= 0, j ≥ 0, by means of Fourier
decomposition, it is easy to derive the following lemma.

Lemma 4.3. Let w be a bounded solution of

{
Lρ,τw = 0 in B(0, 1),

w = 0 on ∂B(0, 1).

Then w = 0.

We decompose w and f into Fourier series:

w(z) = w0(r) + 2
∑+∞

j=1 wj(r) · e−ijθ, f(z) = f0(r) + 2
∑+∞

j=1 fj(r) · e−ijθ.

So problem (18) becomes equivalent to{
ẅj + 1

r ẇj − j2

r2wj + 8(α+1)2τ2ρ2r2α

(τ2ρ2+r2(α+1))2
wj = fj , in (0, 1),

wj(1) = 0
(Pj)

for j ∈ N. Set jα = min{j ∈ N : j > α + 1} and mα = max{j ∈ N : j < α + 1}.
Step 1. By the variation of constants formula, for j ≥ jα and ν > −j,

wj(r) =

(∫ r

1

ds

sa2
j (s)

∫ s

0

taj(t)fj(t)dt

)
aj(r), r > 0

defines a solution of (Pj). Since 0 < j−α−1 ≤ (j+α+1)τ2ρ2+(j−α−1)r2(α+1)

τ2ρ2+r2(α+1) ≤ j+α+1,

we have that for −j < ν < j r−ν |wj(r)| ≤ (j+α+1)2

(j−α−1)2
1

j2−ν2 ||fj ||0,β,ν−2 and, by classical

rescaled Schauder estimates (see [22]), we find

||wj ||2,β,ν ≤ C
(j + α + 1)2

(j − α− 1)2
1

j2 − ν2
||fj ||0,β,ν−2
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for suitable C > 0. Finally, for −jα < ν < jα, we can define h(z) = 2
∑+∞

j=jα
wj(r) ·

e−ijθ and, since ||fj ||0,β,ν−2 ≤ ||f ||0,β,ν−2, there holds the estimate

+∞∑
j=jα

||wj ||2,β,ν ≤ C

⎛
⎝ +∞∑

j=jα

(j + α + 1)2

(j − α− 1)2
1

j2 − ν2

⎞
⎠ ||f ||0,β,ν−2.

So h(z) is a well-defined function in C2,β
ν (B(0, 1)) and satisfies{

Lρ,τh = 2
∑+∞

j=jα
fj(r) · e−ijθ in B(0, 1),

h = 0 on ∂B(0, 1)

together with the estimate ||h||2,β,ν ≤ C||f ||0,β,ν−2 for −jα < ν < jα.

Step 2. For 0 < j ≤ mα, ν > −j, and r > r̄ := ( j+α+1
α+1−j τ

2ρ2)
1

2α+2 , it is possible to
define

w̃j(r) =

(∫ r

1

ds

sa2
j (s)

∫ s

0

taj(t)fj(t)dt

)
aj(r).

Note that aj(r̄) = 0 and hence w̃j(r) is not well defined up to r̄. To be able to obtain
an extension of w̃j for r ≤ r̄, define ψj(s, ρ) = (s− r̄)2 1

sa2
j
(s)

∫ s

0
taj(t)fj(t)dt and set

wj(r) = aj(r)

[∫ r

1

ψj(s, ρ) − ψj(r̄, ρ)

(s− r̄)2
ds− 1 − r

(1 − r̄)(r − r̄)
ψj(r̄, ρ)

]
.(19)

The function wj is well defined also for r ≤ r̄ and gives an extension of w̃j . We will
refer to the first and second terms in the expression of wj(r) above as w1

j (r) and

w2
j (r), respectively. Since for 0 < r < r̄ − δ, δ > 0, we have

wj(r) = aj(r)

[∫ r̄−δ

1

ψj(s, ρ) − ψj(r̄, ρ)

(s− r̄)2
ds

+

∫ r

r̄−δ

ds

saj(s)2

∫ s

0

taj(t)fj(t)dt +

(
1

1 − r̄
+

1

δ

)
ψj(r̄, ρ)

]
,

the function wj(r) does solve (Pj) for r > 0. Note that for ν < j, we have that
supr∈(r̄,1)r

−ν |wj(r)| ≤ C||fj ||0,β,ν−2. In fact, for r ≥ 2r̄ we find |wj(r)| = |w̃j(r)| ≤
C||fj ||0,β,ν−2r

ν as 1
a2
j
(s)

= O( 1
s2j ) for s ≥ r. While for r̄ ≤ r ≤ 2r̄ there holds

|wj(r)| = |w̃j(r)| ≤ C||fj ||0,β,ν−2

(r
r̄
− 1

)
r̄j
∫ 1

r

(τ2ρ2 + s2(α+1))2sν−j−1ds

[(j + α + 1)τ2ρ2 + (j − α− 1)s2(α+1)]2

≤ C||fj ||0,β,ν−2

(r
r̄
− 1

)
r̄ν
[
r̄

∫ 2r̄

r

ds

(s− r̄)2
+ 1

]
≤ C||fj ||0,β,ν−2r̄

ν .

Since |ψj(s, ρ)| ≤ C||fj ||0,β,ν−2r̄
2sν−j−1 for s ≤ r̄, then |ψj(r̄, ρ)| ≤ C||fj ||0,β,ν−2r̄

ν−j+1

and in turn for s ≤ r̄
2∣∣∣∣ψj(s, ρ) − ψj(r̄, ρ)

(s− r̄)2

∣∣∣∣ ≤ C||fj ||0,β,ν−2

(
sν−j−1 + r̄ν−j−1

)
.(20)



1328 PIERPAOLO ESPOSITO

For s ∈ [ r̄2 , 2r̄] \ {r̄}, we decompose

ψj(s, ρ) − ψj(r̄, ρ)

(s− r̄)2
=

[
1

sa2
j (s)

− r̄−(2j−1)(s− r̄)−2

[(α + 1)2 − j2]2

]∫ r̄

0

taj(t)fj(t)dt

+
1

sa2
j (s)

∫ s

r̄

taj(t)fj(t)dt

and hence, using a homogeneity argument, we get∣∣∣∣ψj(s, ρ) − ψj(r̄, ρ)

(s− r̄)2

∣∣∣∣
≤ C||fj ||0,β,ν−2r̄

ν−j−1

{
[1 + z2(α+1)]2

(1 − z2(α+1))2z2j+1

∣∣∣∣∣
∫ z

1

1 − t2(α+1)

1 + t2(α+1)
tν+j−1dt

∣∣∣∣∣
+

∣∣∣∣∣ [(α + 1 − j) + (α + 1 + j)z2(α+1)]2

(1 − z2(α+1))2z2j+1
− 1

(z − 1)2

∣∣∣∣∣
} ∣∣∣∣∣

z= s
r̄∈[ 12 ,2]\{1}

.

Consequently, for r̄
2 ≤ s ≤ 2r̄ we obtain∣∣∣∣ψj(s, ρ) − ψj(r̄, ρ)

(s− r̄)2

∣∣∣∣ ≤ C||fj ||0,β,ν−2s
ν−j−1.(21)

Finally, it is easy to see that for r ≤ 2r̄ and for w2
j there holds

sup
r∈(0,2r̄)

r−ν |w2
j (r)| ≤ C||fj ||0,β,ν−2 sup

0≤t≤2
t−ν+j |1 − t2(α+1)|

|1 − t| ≤ C||fj ||0,β,ν−2

in view of the estimate available for ψj(r̄, ρ) and ν < j. Since |w1
j (2r̄)| ≤ |wj(2r̄)| +

|w2
j (2r̄)| ≤ C||fj ||0,β,ν−2r̄

ν , then |
∫ 2r̄

1
ψj(s,ρ)−ψj(r̄,ρ)

(s−r̄)2 ds| ≤ C||fj ||0,β,ν−2r̄
ν−j . So we

derive, by splitting the integral in (19) as
∫ r

1
=

∫ 2r̄

1
+
∫ r

2r̄
and using (20) and (21),

the estimate supr∈(0,r̄) r
−ν |w1

j (r)| ≤ C||fj ||0,β,ν−2 for ν < j. Finally, the estimate

supr∈(0,1) r
−ν |wj(r)| ≤ C||fj ||0,β,ν−2 does hold and, using classical rescaled Schauder

estimates, we get the existence of some constant C > 0 such that ||wj ||2,β,ν ≤
C||f ||0,β,ν−2 for 0 < j ≤ mα and −j < ν < j.

Step 3. Analogously, for j = 0 and ν > 0, it is possible to consider, for 0 < r <

r̄ := (τρ)
1

α+1 ,

w̃0(r) =

(∫ r

0

ds

sa2
0(s)

∫ s

0

ta0(t)f0(t)dt

)
a0(r).

By defining ψ0(s, ρ) = (s − r̄)2 1
sa2

0(s)

∫ s

0
ta0(t)f0(t)dt, we can extend w̃0 for r ≥ r̄ by

considering

ŵ0(r) = a0(r)

[∫ r

0

ψ0(s, ρ) − ψ0(r̄, ρ)

(s− r̄)2
ds +

r

r̄(r̄ − r)
ψ0(r̄, ρ)

]

which defines a solution for (P0), with ŵ0(1) �= 0 in general. We have the estimate
supr∈(0,r̄)r

−ν |ŵ0(r)| ≤ C||f0||0,β,ν−2. In fact, for r ≤ r̄
2 we see that |ŵ0(r)| = |w̃0(r)| ≤

C||f0||0,β,ν−2r
ν since 1

a2
0(s)

= O(1) for s ≤ r. While for r̄
2 ≤ r ≤ r̄ there holds

|ŵ0(r)| = |w̃0(r)| ≤ C||f0||0,β,ν−2

(
1 − r

r̄

)
r̄ν+1

∫ r

0

ds

(s− r̄)2
≤ C||f0||0,β,ν−2r̄

ν .
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Furthermore, since |ψ0(s, ρ)| ≤ C||f0||0,β,ν−2r̄
2sν−1 for s ≤ r̄, as above for s ≤ r̄

2 we
obtain ∣∣∣∣ψ0(s, ρ) − ψ0(r̄, ρ)

(s− r̄)2

∣∣∣∣ ≤ C||f0||0,β,ν−2

(
sν−1 + r̄ν−1

)
.(22)

On the other hand, for s ≥ r̄
2 we have∣∣∣∣ψ0(s, ρ) − ψ0(r̄, ρ)

(s− r̄)2

∣∣∣∣ ≤ C||f0||0,β,ν−2s
ν−1.(23)

In fact, (23) follows as in (21) when s ∈ [ r̄2 , 2r̄] \ {r̄}. While for s ≥ 2r̄, we have

∣∣∣∣ψ0(s, ρ) − ψ0(r̄, ρ)

(s− r̄)2

∣∣∣∣ =

[
1

sa2
0(s)

− r̄

(α + 1)4(s− r̄)2

] ∫ r̄

0

ta0(t)f0(t)dt

+
1

sa2
0(s)

∫ s

r̄

ta0(t)f0(t)dt

≤ C||f0||0,β,ν−2

(
r̄ν

s
+

sν−1

( sr̄ )ν−1( sr̄ − 1)2
+ sν−1

)
.

Finally, since ν > 0 it is easy to see that supr∈(r̄,1) r
−ν |a0(r)ψ0(r̄, ρ)

r
r̄(r−r̄) | ≤

C||f0||0,β,ν−2. While by (22) and (23) for r ≥ r̄ we get |a0(r)
∫ r

0
ψ0(s,ρ)−ψ0(r̄,ρ)

(s−r̄)2 ds| ≤
C||f0||0,β,ν−2r

ν . Hence supr∈(0,1) r
−ν |ŵ0(r)| ≤ C||f0||0,β,ν−2. Consequently, by clas-

sical rescaled Schauder estimates, we find a suitable constant C > 0 such that
||ŵ0||2,β,ν ≤ C||f ||0,β,ν−2. We set now

w0(r) = ŵ0(r) + H0
ρ,τ (f)

τ2ρ2 − r2(α+1)

τ2ρ2 + r2(α+1)
,(24)

where H0
ρ,τ (f) ∈ R is such that w0(1) = 0. Hence w0(r) is a solution for (P0) and for

ν > 0,

|H0
ρ,τ (f)| ≤ C|ŵ0(1)| ≤ C||f ||0,β,ν−2.

Notice that for α > 0, α /∈ N, Steps 1–3 lead to the proof of Proposition 4.1 by
choosing ν ∈ (0, 1) and Gρ,τ (f) = ŵ0(r) + 2

∑+∞
j=1 wj(r) · e−ijθ.

Step 4. To obtain Proposition 4.2, it remains for problem (P1) to be considered
with α = 0 while for the validity of Steps 1–3 we must specify ν ∈ (0, 2). To account
also for (P1) we further specify 1 < ν < 2. Then it is possible to define

ŵ1(r) =

(∫ r

0

ds

sa2
1(s)

∫ s

0

ta1(t)f1(t)dt

)
a1(r)

=
r

τ2ρ2 + r2

∫ r

0

(τ2ρ2 + s2)2

s3
ds

∫ s

0

t2

τ2ρ2 + t2
f1(t)dt.

To estimate ||ŵ1(r)||2,β,ν , introduce z = r
τρ and observe that

sup
r∈(0,1)

r−ν |ŵ1(r)| ≤ ||f1||0,β,ν−2 sup
z∈(0,(τρ)−1)

z1−ν

1 + z2

∫ z

0

(1 + s2)2

s3
ds

∫ s

0

tν

1 + t2
dt

≤ C||f ||0,β,ν−2.
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Set

w1(r) = ŵ1(r) + H1
ρ,τ (f)

r

τ2ρ2 + r2
,(25)

where H1
ρ,τ (f) ∈ C is such that w1(1) = 0. Hence w1(r) is a solution for (P1) and

|H1
ρ,τ (f)| ≤ C|ŵ1(1)| ≤ C||f ||0,β,ν−2.

Therefore, for α = 0 Proposition 4.2 also follows with

Gρ,τ (f) = ŵ0(r) + 2ŵ1(r) · e−iθ + 2

+∞∑
j=2

wj(r) · e−ijθ

whenever ν ∈ (1, 2). Finally, using Lemma 4.3 we can deduce the uniqueness of
wj(r). The uniqueness of the decomposition (24) follows by evaluating w0(r) at r = 0.

Similarly, if α = 0 the uniqueness of the decomposition (25) follows by evaluating w1(r)
r

at r = 0. Hence Propositions 4.1 and 4.2 are completely established.
Remark 4.4. The function Gρ,τ (f) is the unique solution in C2,β

ν (B(0, 1)) for
Lρ,τw = f in B(0, 1) such that

Gρ,τ (f)|∂B(0,1) =

{
ŵ0(1) if α /∈ N,
ŵ0(1) + 2ŵ1(1) · e−iθ if α = 0.

4.2. Some local operator. The nonradial case. In case α = 0, we discuss
now the invertibility of the operator

Lρ,τ,γw = ∆w + ρ2evρ,τ,γw

under Dirichlet boundary condition. The following result holds.
Proposition 4.5. Let α = 0. For all ν ∈ (1, 2) and γ ∈ C, |γ| < 1

3 , τ > 0,

there exist ρ0 > 0, two continuous linear forms H0
ρ,τ,γ : C0,β

ν−2 (B(0, 1)) → R, H1
ρ,τ,γ :

C0,β
ν−2 (B(0, 1)) → C, and a linear operator Gρ,τ,γ : C0,β

ν−2 (B(0, 1)) → C2,β
ν (B(0, 1)),

uniformly bounded for 0 < ρ < ρ0, such that for all ρ ∈ (0, ρ0) and for all f ∈
C0,β

ν−2 (B(0, 1)) there exists a unique bounded solution w of{
Lρ,τ,γw = f in B(0, 1),

w = 0 on ∂B(0, 1)

which can be uniquely decomposed as

w(z) = Gρ,τ,γ(f)(z) + H0
ρ,τ,γ(f)∂τvρ,τ,γ + 2H1

ρ,τ,γ(f) · ∂z̄vρ,τ,γ .

Moreover, the following estimates hold:

||Gρ,τ,γ(f)||2,β,ν ≤ C
(
||Gρ,τ (f)||2,β,ν + ρ2|H0

ρ,τ (f)| + |H1
ρ,τ (f)|

)
,(26)

|H0
ρ,τ,γ(f)| ≤ C

(
ρ2||Gρ,τ (f)||2,β,ν + |H0

ρ,τ (f)| + ρ2|H1
ρ,τ (f)|

)
,(27)

|H1
ρ,τ,γ(f)| ≤ C

(
ρ2||Gρ,τ (f)||2,β,ν + ρ2|H0

ρ,τ (f)| + |H1
ρ,τ (f)|

)
,(28)
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||∂rGρ,τ,γ(f)|∂B(0,1)||1,β ≤ C
(
||∂rGρ,τ (f)|∂B(0,1)||1,β + ρ2||Gρ,τ (f)||2,β,ν

+ ρ2|H0
ρ,τ (f)| + |H1

ρ,τ (f)|
)(29)

for some constant C > 0.
Proof. In case α = 0, we compute

lim
ρ→0

∂τvρ,τ,γ(z) = lim
ρ→0

(
2

τ

|z|2|1 + γz2|2 − τ2ρ2

|z|2|1 + γz2|2 + τ2ρ2

)
=

2

τ
,

lim
ρ→0

∂z̄vρ,τ,γ(z) = lim
ρ→0

(
6γ̄z̄

1 + 3γ̄z̄2
− 2

z(1 + γz2)(1 + 3γ̄z̄2)

|z|2|1 + γz2|2 + τ2ρ2

)

= 6γ̄z̄

(
+∞∑
k=0

(−1)k3kγ̄kz̄2k

)
− 2(1 + 3γ̄z̄2)

(
+∞∑
k=0

(−1)kγ̄kz̄2k−1

)

= −2

z̄
+ 2γ̄z̄ + η⊥(z)

uniformly on compact sets in B(0, 1) \ {0}, where η⊥(z) = 2
∑+∞

k=0(−1)k+1(3k+2 −
2)γ̄k+2z̄2k+3 is orthogonal to {1, e±iθ} (in the sense η⊥(reiθ) is orthogonal to 1 and
e±iθ in L2([0, 2π]) for any r ∈ (0, 1]) and it is a harmonic function. Set Span{1, e−iθ} =
{a0 + 2a1 · e−iθ : a0 ∈ R, a1 ∈ C} and define π as the orthogonal projection over
Span{1, e−iθ}. Define the mapping ψρ : (h0, h1) ∈ R×C → (ψ1

ρ(h0, h1), ψ
2
ρ(h0, h1)) ∈

R × C by setting

ψ1
ρ(h0, h1) + 2ψ2

ρ(h0, h1) · e−iθ = π
(
h0∂τvρ,τ,γ(eiθ) + 2h1 · ∂z̄vρ,τ,γ(eiθ)

)
.

Note that ψρ → ψ0 as ρ → 0 in the operatorial norm, where ψ0(h0, h1) = ( 2
τ h0,−2h̄1

+ 2γh1) is an invertible operator for |γ| < 1 with inverse ψ−1
0 (h̃0, h̃1) = ( τ2 h̃0,− 1

2(1−|γ|2) ·
(γ̄h̃1 + h̃1)). Hence, for ρ small ψρ is invertible with uniformly bounded inverse. Let

f ∈ C0,β
ν−2 (B(0, 1)) be a given function and ν ∈ (1, 2). By Remark 4.4, there exists a

unique w0 ∈ C2,β
ν (B(0, 1)) such that{

Lρ,τw0 = f in B(0, 1),

w0 |∂B(0,1)= h̃0 + 2h̃1 · e−iθ ∈ Span {1, e−iθ}.

Let (h0, h1) = ψ−1
ρ (h̃0, h̃1). We define on ∂B(0, 1)

φ(θ) := h0∂τvρ,τ,γ(eiθ) + 2h1 · ∂z̄vρ,τ,γ(eiθ) − h̃0 − 2h̃1 · e−iθ

in such a way that πφ = 0. We extend φ in B(0, 1) as φ̃(z) = σ(r)φ(θ), where
0 ≤ σ ≤ 1 is a smooth function with σ ≡ 1 in [12 , 1] and σ ≡ 0 in [0, 1

4 ]. Since Lρ,τ φ̃ ∈
Span {1, e−iθ}⊥, by Proposition 4.2 we get H0

ρ,τ (−Lρ,τ φ̃) = 0, H1
ρ,τ (−Lρ,τ φ̃) = 0 and

hence w1 := Gρ,τ (−Lρ,τ φ̃) vanishes on ∂B(0, 1). The function w2 := w0 + φ̃ + w1 ∈
C2,β

ν (B(0, 1)) solves{
Lρ,τw2 = f in B(0, 1),

w2 |∂B(0,1)= h0∂τvρ,τ,γ(eiθ) + 2h1 · ∂z̄vρ,τ,γ(eiθ)

with ||w2||2,β,ν ≤ C||f ||0,β,ν−2. Moreover, w2 is the unique solution in C2,β
ν (B(0, 1))

for the problem. If w′
2 is a solution in C2,β

ν (B(0, 1)) with

w′
2 |∂B(0,1)= h′

0∂τvρ,τ,γ(eiθ) + 2h′
1 · ∂z̄vρ,τ,γ(eiθ) = h̃′

0 + 2h̃′
1 · e−iθ + φ′,
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then by the uniqueness part in Proposition 4.2 we derive w0 = w′
2 − φ̃′ −w′

1, h̃
′
0 = h̃0,

h̃′
1 = h̃1, where w′

1 = Gρ,τ (−Lρ,τ φ̃
′) and φ̃′ extends φ′ as before. Since ψρ is injective,

then h′
0 = h0, h

′
1 = h1, φ

′ = φ and hence φ̃′ + w′
1 = φ̃ + w1 and w′

2 = w2.
Then Lρ,τ , as an operator between

{w ∈ C2,β
ν (B(0, 1)) : w |∂B(0,1)= h0∂τvρ,τ,γ(eiθ)+2h1 ·∂z̄vρ,τ,γ(eiθ), (h0, h1) ∈ R×C}

and C0,β
ν−2 (B(0, 1)), is an isomorphism with inverse uniformly bounded with respect to

||·||0,β,ν−2 and ||·||2,β,ν . We will denote this inverse operator as L−1
ρ,τ . Moreover, we have

the estimate |h0(f)| + |h1(f)| ≤ C||f ||0,β,ν−2. We use now a perturbation argument
to prove Proposition 4.5. Since for z, x, y ∈ B(0, 1) we have

|vρ,τ,γ − vρ,τ |(z) =

∣∣∣∣ln (τ2ρ2 + |z|2)2|1 + 3γz2|2
(τ2ρ2 + |z|2|1 + γz2|2)2

∣∣∣∣ ≤ C|z|2,

∣∣∣∣ (vρ,τ,γ − vρ,τ ) (x) − (vρ,τ,γ − vρ,τ ) (y)

|x− y|β

∣∣∣∣ ≤ 2|∂z(vρ,τ,γ − vρ,τ )(ξ)||x− y|1−β

≤ C (max{|x|, |y|})2−β

for some point ξ on the segment joining x and y, we get that ||vρ,τ,γ − vρ,τ ||0,β,2 ≤ C.
Hence, for w ∈ C2,β

ν (B(0, 1)) we have the estimate

|| (Lρ,τ,γ − Lρ,τ )w||0,β,ν−2 = ρ2|| (evρ,τ,γ − evρ,τ )w||0,β,ν−2 ≤ Cρ2||w||2,β,ν .(30)

A solution for the problem{
Lρ,τ,γw = f in B(0, 1),

w |∂B(0,1)= −H0
ρ,τ,γ(f)∂τvρ,τ,γ(eiθ) − 2H1

ρ,τ,γ(f) · ∂z̄vρ,τ,γ(eiθ)

corresponds to a fixed point for the map w → L−1
ρ,τf + L−1

ρ,τ (Lρ,τ − Lρ,τ,γ)w. By (30)
we deduce that this map is a contraction. So it has a unique fixed point w = Gρ,τ,γ(f)
which satisfies ||Gρ,τ,γ(f)||2,β,ν ≤ C||L−1

ρ,τ (f)||2,β,ν . At this point, we deduce (26)–(29):
since

|∂τvρ,τ,γ(eiθ) − 2

τ
| + |∂z̄vρ,τ,γ(eiθ) −

(
−2eiθ + 2γ̄e−iθ + η⊥(eiθ)

)
| ≤ Cρ2,

there holds the estimate ||ψρ − ψ0|| + ||ψ−1
ρ − ψ−1

0 || ≤ Cρ2. Therefore

(h0, h1) = ψ−1
0 (h̃0, h̃1) + O

(
ρ2|H0

ρ,τ (f)| + ρ2|H1
ρ,τ (f)|

)
=
(
O(|H0

ρ,τ (f)| + ρ2|H1
ρ,τ (f)|), O(ρ2|H0

ρ,τ (f)| + |H1
ρ,τ (f)|)

)
(31)

as h̃0 = −H0
ρ,τ (f) τ

2ρ2−1
τ2ρ2+1 and h̃1 = −H1

ρ,τ (f) 1
τ2ρ2+1 . On ∂B(0, 1) there holds

φ(θ)=
2

τ
h0 + 2(−2h̄1 + 2γh1) · e−iθ − h̃0 − 2h̃1 · e−iθ + 2h1 · η⊥(eiθ)

+ O
(
ρ2|h0| + ρ2|h1|

)
= 2h1 · η⊥(eiθ) + O

(
ρ2|H0

ρ,τ (f)| + ρ2|H1
ρ,τ (f)|

)
= O

(
ρ2|H0

ρ,τ (f)| + |H1
ρ,τ (f)|

)
and we deduce

||φ̃||2,β,ν + ||w1||2,β,ν = O
(
ρ2|H0

ρ,τ (f)| + |H1
ρ,τ (f)|

)
.(32)
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Since Gρ,τ,γ(f) = L−1
ρ,τf +L−1

ρ,τ (Lρ,τ −Lρ,τ,γ)Gρ,τ,γ(f) with L−1
ρ,τf = Gρ,τ (f)+ φ̃+w1,

we get (26) as follows:

||Gρ,τ,γ(f)||2,β,ν ≤ C
(
||Gρ,τ (f)||2,β,ν + ||φ̃||2,β,ν + ||w1||2,β,ν

)
≤ C

(
||Gρ,τ (f)||2,β,ν + ρ2|H0

ρ,τ (f)| + |H1
ρ,τ (f)|

)
and in turn by (32) and (26) we obtain (29).

Letting S = f + (Lρ,τ − Lρ,τ,γ)Gρ,τ,γ(f), by (31) and (26) we find

|H0
ρ,τ,γ(f)| = |h0(S)| = O

(
ρ2||Gρ,τ (f)||2,β,ν + |H0

ρ,τ (f)| + ρ2|H1
ρ,τ (f)|

)
,

|H1
ρ,τ,γ(f)| = |h1(S)| = O

(
ρ2||Gρ,τ (f)||2,β,ν + ρ2|H0

ρ,τ (f)| + |H1
ρ,τ (f)|

)
,

and the proof of Proposition 4.5 is completed.

4.3. Some global operator. Let α ∈ (0,+∞) \N be a fixed number. Let χ be
a radial smooth function such that 0 ≤ χ ≤ 1, χ = 1 in B(0, 1), χ = 0 in R

2 \B(0, 2).
In Theorem 1.4 we are interested in dealing with three possible cases:

(a) the concentration set S is a single point which is a singular source, that is,
S = {p}, and in this case we consider the associated potential as given by Vρ(z) =
ρ2χ(z − p)|z − p|2αevρ,τ1

(z−p) where τ1 > 0 is defined in section 2;
(b) the concentration set S is a single point which is not a singular source, that

is, S = {q} with q �= p, and the associated potential considered in this case is Vρ(z) =
ρ2χ(z − q)evρ,τ2,γ(z−q) where τ2 > 0 and γ are defined in section 2;

(c) the concentration set S = {p, q} and the associated potential is Vρ(z) =
ρ2χ(z − p)|z − p|2αevρ,τ1 (z−p) + ρ2χ(z − q)evρ,τ2,γ(z−q) where τ1, τ2 > 0 and γ are
defined in section 2.

We are assuming that B(p, 2) ∩ B(q, 2) = ∅, B(p, 2) ⊂ Ω, and B(q, 2) ⊂ Ω. Set
B = B(p, 1) ∪B(q, 1) and Ω̃ = Ω \B.

We introduce the operator Lρ = ∆ + Vρ where the potential Vρ is defined above
according to the cases (a), (b), and (c) we wish to deal with. We investigate the
invertibility of Lρ between X and Y (see section 3 for the definition of X and Y ). We
will prove the following result.

Theorem 4.6. There exist ρ0 > 0 small, continuous linear forms H0
ρ,1,H0

ρ,2 :
Y → R and H1

ρ,2 : Y → C, a linear operator Gρ : Y →, X, uniformly bounded for
ρ ∈ (0, ρ0), such that for all f ∈ Y and ρ ∈ (0, ρ0) there exists a unique solution w(z)
of {Lρw = f in Ω,

w = 0 on ∂Ω

which can be decomposed in a unique way in the form

w(z) = Gρ(f)(z) + χ(z − p)H0
ρ,1∂τvρ,τ1(z − p)

in case (a), in the form

w(z) = Gρ(f)(z) + χ(z − q)H0
ρ,2∂τvρ,τ2,γ(z − q) + 2χ(z − q)H1

ρ,2 · ∂z̄vρ,τ2,γ(z − q)

in case (b), and in the form

w(z) = Gρ(f)(z) + χ(z − p)H0
ρ,1∂τvρ,τ1(z − p)

+χ(z − q)H0
ρ,2∂τvρ,τ2,γ(z − q) + 2χ(z − q)H1

ρ,2 · ∂z̄vρ,τ2,γ(z − q)
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in case (c).
We collect some preliminary results which will be crucial to the proof of Theo-

rem 4.6. Since |Vρ| ≤ Cρ2 in Ω̃, from classical elliptic theory we have the following
lemma.

Lemma 4.7. There exists ρ0 > 0 small such that for all f ∈ C0,β(Ω̃) there exists
a unique solution w ∈ C2,β(Ω̃) for the problem{

Lρw = f in Ω̃,

w = 0 on ∂Ω̃.

Moreover, ||w||2,β,Ω̃ ≤ C||f ||0,β,Ω̃.

We introduce now the exterior Dirichlet to Neumann map. Let Φ ∈ C2,β(∂B);
we can extend Φ inside Ω̃ in such a way that Φ̃ ∈ C2,β(Ω̃), Φ̃ = 0 on ∂Ω, and
||Φ̃||2,β,Ω̃ ≤ C||Φ||2,β,∂B .

By Lemma 4.7 we can find a solution w̄ for{
Lρw̄ = −LρΦ̃ in Ω̃,

w̄ = 0 on ∂Ω̃

and hence wΦ = w̄ + Φ̃ solves ⎧⎪⎨
⎪⎩

LρwΦ = 0 in Ω̃,

wΦ = 0 on ∂Ω,

wΦ = Φ on ∂B

with ||wΦ||2,β,Ω̃ ≤ C||Φ||C2,β(∂B).
Define

Sρ : C2,β(∂B) → C1,β(∂B)

Φ → Sρ(Φ) =
∂wΦ

∂n
|∂B ,

where n is the unit inward normal on ∂B to Ω̃. If w̃ denotes the solution of{
∆w̃ = −∆Φ̃ in Ω̃,

w̃ = 0 on ∂Ω̃,

then {
∆(w̄ − w̃) = −VρwΦ in Ω̃,

w̄ − w̃ = 0 on ∂Ω̃

and so, by classical Schauder estimates, ||w̄ − w̃||2,β,Ω̃ ≤ Cρ2||Φ||C2,β(∂B). Hence, if

S0 denotes the Dirichlet to Neumann map corresponding to ∆ on Ω̃, we have that
Sρ = S0 + O(ρ2). Summarizing, we have the following lemma.

Lemma 4.8. There exists ρ0 > 0 small such that for ρ ∈ (0, ρ0) the map Sρ is
well defined and Sρ → S0 as ρ → 0 in the operatorial norm.

We introduce now the interior Dirichlet to Neumann map. Let Φ ∈ C2,β(∂B),
which we extend as Φ̃ in B in such a way that ||Φ̃||2,β,ν1,B(p,1) + ||Φ̃||2,β,ν2,B(q,1) ≤
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C||Φ||2,β,∂B . By Propositions 4.1 and 4.5, we see that there exists a unique solution
v̄ of {

Lρv̄ = −LρΦ̃ in B,

v̄ = 0 on ∂B

and hence vΦ = v̄ + Φ̃ uniquely solves{LρvΦ = 0 in B,

vΦ = Φ on ∂B

with ||vΦ |B(p,1) ||E1 + ||vΦ |B(q,1) ||E2
≤ C||Φ||2,β,∂B .

The space

E1 = {w = h + λ∂τvρ,τ1(z − p) : h ∈ C2,β
ν1

(B(p, 1)) , λ ∈ R}

is endowed with the norm ||w||E1
= ||h||2,β,ν1,B(p,1) + |λ|, and the space

E2 = {w = h+λ∂τvρ,τ2,γ(z−q)+2a·∂z̄vρ,τ2,γ(z−q) : h ∈ C2,β
ν2

(B(q, 1)) , λ ∈ R, a ∈ C}

with the norm ||w||E2 = ||h||2,β,ν2,B(q,1) + |λ| + |a|.
Define

T 1
ρ : C2,β(∂B(p, 1)) → C1,β(∂B(p, 1))

φ1 → T 1
ρ (φ1) = ∂r1vΦ |∂B(p,1),

T 2
ρ : C2,β(∂B(q, 1)) → C1,β(∂B(q, 1))

φ2 → T 2
ρ (φ2) = ∂r2vΦ |∂B(q,1),

where Φ = (φ1, φ2), r1 = |z−p|, and r2 = |z− q|. T i
ρ is a uniformly bounded operator

such that the following lemma holds.
Lemma 4.9. T i

ρ → T i
0 as ρ → 0 in the operatorial norm, where

T 1
0 φ1 = 2

+∞∑
n=1

nan · e−inθ

with φ1 = a0 + 2
∑+∞

n=1 an · e−inθ, while

T 2
0 φ2 = −2a1 · (eiθ + γ̄e−iθ) + 2

+∞∑
n=2

nan · e−inθ,

where φ2 = a0 + 2a1 · (eiθ − γ̄e−iθ) + 2
∑+∞

n=2 an · e−inθ. The variable θ denotes the
angular variable of z−p

|z−p| and z−q
|z−q| , respectively.

Remark 4.10. (1) The map a1 ∈ C → ā1−γa1 ∈ C is invertible; see the discussion
for the invertibility of ψ0. Since a1 · (eiθ − γ̄e−iθ) = (ā1 − γa1) · e−iθ, the statement
of Lemma 4.9 makes good sense.

(2) The operator T 2
0 is the interior Dirichlet to Neumann map associated with ∆

on B(q, 1)\{q} with a first-order singularity in q, since w = a0+2a1 ·( z−q
|z−q|2 −γ̄z − q)+

2
∑+∞

n=2 an · z − q
n

is a harmonic extension of φ2 in B(q, 1) \ {q} with ∂r2w |∂B(q,1)=
T 2

0 φ2.
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Proof. Assume for simplicity that p = 0. Write

φ1(θ) = a0 + 2

+∞∑
n=1

an · e−inθ =
τ1(1 + τ2

1 ρ
2)

2(1 − τ2
1 ρ

2)
a0∂τvρ,τ1(e

iθ) + 2

+∞∑
n=1

an · e−inθ.

Then w =
τ1(1+τ2

1 ρ
2)

2(1−τ2
1 ρ

2)
a0∂τvρ,τ1(z) + 2

∑+∞
n=1 r

nan · e−inθ + w1 solves

{
Lρ,τ1w = 0 in B(p, 1),

w = φ1 on ∂B(p, 1)

if and only if w1 solves{
Lρ,τ1w1 = f1 := −ρ2|z − p|2αevρ,τ1 (2

∑+∞
n=1 r

nan · e−inθ) in B(p, 1),

w1 = 0 on ∂B(p, 1).

The well-known estimate ||
∑+∞

n=1 r
nan · e−inθ||2,β,1 ≤ C||φ1||2,β implies ||f1||0,β,ν1−2 ≤

Cρ
1−ν1
α+1 ||φ1||2,β . Since

∫ 2π

0
f1(re

iθ)dθ = 0 for all r ∈ (0, 1], by Proposition 4.1 w1(z) =

Gρ,τ1(f1)(z) with ||Gρ,τ1(f1)||2,β,ν1 ≤ Cρ
1−ν1
α+1 ||φ1||2,β . Therefore ||∂rw1 |∂B(p,1) ||1,β ≤

Cρ
1−ν1
α+1 ||φ1||2,β and hence

T 1
ρφ1=

τ1(1 + τ2
1 ρ

2)

2(1 − τ2
1 ρ

2)
a0∂r∂τvρ,τ1(z) |∂B(p,1) +2

+∞∑
n=1

nan · e−inθ + O
(
ρ

1−ν1
α+1 ||φ1||2,β

)

=
4(α + 1)τ2

1 ρ
2

(1 + τ2
1 ρ

2)(1 − τ2
1 ρ

2)
a0 + 2

+∞∑
n=1

nan · e−inθ + O
(
ρ

1−ν1
α+1 ||φ1||2,β

)

= T 1
0 φ1 + O

(
ρ

1−ν1
α+1 ||φ1||2,β

)
.

Assuming for simplicity that q = 0, for φ2 as above we can write

φ2(θ)=
τ2
2
a0∂τvρ,τ2,γ(eiθ) +

2τ2
2 ρ

2

τ2
2 ρ

2 + |1 + γe2iθ|2 a0 − a1 · ∂z̄vρ,τ2,γ(eiθ)

+
2τ2

2 ρ
2

τ2
2 ρ

2 + |1 + γe2iθ|2 a1 ·
1 + 3γ̄e−2iθ

1 + γ̄e−2iθ
eiθ + a1 · η⊥(eiθ) + 2

+∞∑
n=2

an · e−inθ.

Let h(z) :=
2τ2

2 ρ
2|z|2

τ2
2 ρ

2+|1+γz2|2 a0 +
2τ2

2 ρ
2|z|2

τ2
2 ρ

2+|1+γz2|2 a1 · 1+3γ̄z̄2

1+γ̄z̄2 z, then

w(z) =
τ2
2
a0∂τvρ,τ2,γ(z) − a1 · ∂z̄vρ,τ2,γ(z) + h(z) + a1 · η⊥(z) + 2

+∞∑
n=2

an · z̄n + w1

solves {
Lρ,τ2,γw = 0 in B(q, 1),

w = φ2 on ∂B(q, 1)

if and only if w1 solves{
Lρ,τ2,γw1 = f2 := −ρ2evρ,τ2,γ (2

∑+∞
n=1 an · z̄n + a1 · η⊥(z)) − Lρ,τ2,γh in B(q, 1),

w1 = 0 on ∂B(q, 1).
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Since ||2
∑+∞

n=2 an ·z̄n+a1 ·η⊥(z)||2,β,2 ≤ C||φ2||2,β , we get ||f2||0,β,ν2−2 ≤ Cρ2−ν2 ||φ2||2,β .
By Proposition 4.5,

w1(z) = Gρ,τ2,γ(f2)(z) + H0
ρ,τ2,γ(f2)∂τvρ,τ2,γ(z) + 2H1

ρ,τ2,γ(f2) · ∂z̄vρ,τ2,γ(z)

with ||Gρ,τ2,γ(f2)||2,β,ν2 + |H0
ρ,τ2,γ(f2)| + |H1

ρ,τ2,γ(f2)| ≤ Cρ2−ν2 ||φ2||2,β .
Therefore ||∂rw1 |∂B(q,1) ||1,β ≤ Cρ2−ν2 ||φ2||2,β , and so

T 2
ρφ2 =

τ2
2
a0∂r∂τvρ,τ2,γ |∂B(q,1) −a1 · ∂r∂z̄vρ,τ2,γ |∂B(q,1) +a1 · ∂rη⊥ |∂B(q,1)

+ 2

+∞∑
n=2

nan · e−inθ + O
(
ρ2−ν2 ||φ2||2,β

)
.

By direct computation, we find ∂r∂τvρ,τ2,γ |∂B(q,1)= O(ρ2) and

∂r∂z̄vρ,τ2,γ |∂B(q,1)= ∂r

(
−2

r
eiθ + 2γ̄re−iθ + η⊥(reiθ)

)
|r=1 +O(ρ2)

= 2(eiθ + γ̄e−iθ) + ∂rη
⊥(reiθ) |r=1 +O(ρ2).

Consequently, T 2
ρφ2 = T 2

0 φ2 + O(ρ2−ν2 ||φ2||2,β) and the proof of the lemma is com-
pleted.

Define

Tρ : C2,β(∂B) → C1,β(∂B)

Φ = (φ1, φ2) → TρΦ = (T 1
ρφ1, T

2
ρφ2)

and similarly the operator T0. We want to prove the following lemma.
Lemma 4.11. There exists ρ0 > 0 small such that the operator Sρ−Tρ is invertible

with uniformly bounded inverse for ρ ∈ (0, ρ0).
Proof. Since Sρ − Tρ → S0 − T0 as ρ → 0 in the operatorial norm, we want to

prove that S0 − T0 is invertible. By an idea of R. Mazzeo used in [4], we claim that
it is enough to prove that S0 − T0 is injective. Regarding S0 − T0 as an operator
from H1(∂B) into L2(∂B), it is a self-adjoint first-order pseudodifferential operator.
Since S0 and T0 are elliptic with principal symbols −|ξ| and |ξ|, respectively, the
difference S0 − T0 is also elliptic and semibounded. Hence, S0 − T0 has a discrete
spectrum and the invertibility reduces to prove injectivity. The invertibility in Hölder
spaces then will follow by classical regularity theory. Let Φ ∈ H1(∂B) such that
(S0 − T0)Φ = 0 ∈ L2(∂B). In view of (2) in Remark 4.10, by Lemmas 4.8 and 4.9
there exists a solution w0 for the problem⎧⎨

⎩
∆w0 = 0 in Ω \ S,
w0 = 0 on ∂Ω,
w0 = Φ on ∂B,

such that

w(z) =

{
s1 + 2q1 · z − p + O(|z − p|2) as z → p,

s2 + 2q2 ·
(

z−q
|z−q|2 − γ̄z − q

)
+ O(|z − q|2) as z → q

for some si ∈ R and qi ∈ C. The assumption (S0 − T0)Φ = 0 ensures that we are
gluing harmonic functions in Ω̃ and B which coincide with their normal derivative on
∂B. In this way the resulting function is harmonic in Ω \ S.
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In case S = {p}, w0 is bounded near p and it extends to a harmonic function
in Ω with homogeneous Dirichlet boundary condition, hence w0 = 0, Φ = 0, and
the injectivity of S0 − T0 is proved. In the remaining cases S contains the point
q �= p, the solution w0 must be equal to 8πq2 · ∂z̄′G(z, q) because their difference
is a harmonic function in Ω \ S with removable singularities. Moreover, there holds
2∂z (q2 · ∂z̄′H(z, q)) |z=q= − q2γ

4π which can be rewritten as follows:

q2∂zz′H(q, q) + q̄2∂zz̄′H(q, q) = −q2γ

4π
.(33)

Let us recall that, if S = {q}, F(z) = H(z, z) + 1
4π ln

(
|z − p|2αf(z)

)
and γ =

4π∂zzH(q, q) + 1
2

[
∂zz

(
|z − p|2αf(z)

)]
(q); while if S = {p, q}, F(z) = H(z, z) +

1
4π ln(|z−p|2αf(z))+2(1+α)G(z, p) and γ = 4π∂zzH(q, q)+ 1

2

[
∂zz

(
|z − p|2αf(z)

)]
(q)+

4π(1 + α)∂zzG(q, p). Hence (33) is equivalent to D2F(q)( q2
q2

) = 0 when we assume

further that ∆ ln f(q) = 0. The assumption that q is a nondegenerate critical point
for F(z) provides q2 = 0. Then w0 is not singular in the points of S and as before
w0 = 0, Φ = 0, and the injectivity of S0 − T0 follows.

We are now in position to give the proof of Theorem 4.6.
Proof of Theorem 4.6. By Lemma 4.7 and Propositions 4.1 and 4.5, for any f ∈ Y

we can find wext ∈ C2,β(Ω̃) and wint, i ∈ Ei, i = 1, 2, which solve

{
Lρwext = f in Ω̃,

wext = 0 on ∂Ω̃,

{
Lρwint, 1 = f in B(p, 1),
wint, 1 = 0 on ∂B(p, 1),

{
Lρwint, 2 = f in B(q, 1),
wint, 2 = 0 on ∂B(q, 1).

Moreover, ||wext||2,β,Ω̃ +
∑

i ||wint, i||Ei ≤ C||f ||Y . By Lemma 4.11, we find Φ ∈ C2,β ·
(∂B) such that

(Sρ − Tρ)Φ =
(
−∂r1(wext − wint, 1) |∂B(p,1),−∂r2(wext − wint, 2) |∂B(q,1)

)
with ||Φ||C2,β(∂B) ≤ C||f ||Y . At this point, we define wker ∈ C(Ω \ S) by solving

⎧⎨
⎩

Lρwker = 0 in Ω \ ∂B,
wker = 0 on ∂Ω,
wker = Φ on ∂B.

Define

w(z) =

⎧⎨
⎩

wext(z) + wker(z) in Ω̃,
wint, 1(z) + wker(z) in B(p, 1),
wint, 2(z) + wker(z) in B(q, 1).

Since the external and internal normal derivative of w(z) on ∂B coincide, we conclude
that w(z) is a solution for the problem⎧⎨

⎩
Lρw = f in Ω,
w = 0 on ∂Ω,
w ∈ C2,β(Ω \ S).

(34)

It remains to discuss the uniqueness of w: let w′ be another solution of (34). Set
Φ′ = (w′ |∂B(p,1), w

′ |∂B(q,1)). Then (Sρ − Tρ)Φ
′ = (Sρ − Tρ)Φ = 0 and, by injectivity

of Sρ − Tρ, we deduce Φ′ = Φ and so w′ = w.
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4.4. The linearized operator. Now we want to pass the information on the
invertibility of Lρ to Λρ = ∆ + Wρ, where Wρ(z) = ρ2|z − p|2αf(z)ev(ρ,0,0)(z), and
in turn to L(0,0,0). To an element (h, λ, a) ∈ E we associate in a canonical way the
function

w(z) = h(z) + χ(z − p)λ1∂τvρ,τ1(z − p) + χ(z − q)λ2∂τvρ,τ2,γ(z − q)

+χ(z − q)2a · ∂z̄vρ,τ2,γ(z − q)

(with the understanding that λ1 = 0 if p /∈ S and λ2 = 0, a = 0 if q /∈ S) and we
want to evaluate the difference Λρ − Lρ on w(z). We have

||(Λρ − Lρ)w||Y ≤ Cρ2(||h||2,β,Ω̃ + |λ| + |a|)
+ ||ρ2|z − p|2α(f(z)ev(ρ,0,0)(z) − evρ,τ1

(z−p))w||0,β,ν1−2,B(p,1)

+ ||ρ2(|z − p|2αf(z)ev(ρ,0,0)(z) − evρ,τ2,γ(z−q))w||0,β,ν2−2,B(q,1).

Therefore,

(Λρ − Lρ)(z) =

{
O
(
ρ2|z − p|2α+1evρ,τ1 (z−p)

)
in B(p, 1),

O
(
ρ2|z − q|3evρ,τ2,γ(z−q)

)
in B(q, 1)

in view of (11), (12), and (13). Since |∂τvρ,τ,λ(z)| + |z||∂z̄vρ,τ,λ(z)| = O(1) in B(0, 1)
when λ ∈ {0, γ}, we deduce ||(Λρ−Lρ)w||0,β,ν1−2,B(p,1) + ||(Λρ−Lρ)w||0,β,ν2−2,B(q,1) =
O (rs||(h, λ, a)||E′), where r := max{r1, r2} and s = min{1 − ν1, 2 − ν2} > 0. This
implies ||(Λρ − Lρ)w||Y ≤ Crs||(h, λ, a)||E′ . Note that Theorem 4.6 can be restated as
follows: for any f ∈ Y there exists (h0, λ0, a0) = L−1

ρ f ∈ E such that

w0(z)= h0(z) + χ(z − p)(λ0)1∂τvρ,τ1(z − p) + χ(z − q)(λ0)2∂τvρ,τ2,γ(z − q)

+ 2χ(z − q)a0 · ∂z̄vρ,τ2,γ(z − q)

is a solution for Lρw0 = f in Ω and ||(h0, λ0, a0)||E ≤ C||f ||Y , provided ρ > 0 is small
enough.

On the other hand, for given (h, λ, a) ∈ E the associated w(z) solves Λρw = f in
Ω if and only if it corresponds to a fixed point for the map

E→ E
(h, λ, a) → L−1

ρ f − L−1
ρ (Λρ − Lρ)w.

Since

||L−1
ρ (Λρ − Lρ)w||E ≤ C|| (Λρ − Lρ)w) ||Y ≤ Crs||(h, λ, a)||E ,

there exists ρ0 small such that for 0 < ρ < ρ0 such a map defines a contraction.
Thus, for any f ∈ Y there exists a unique (h, λ, a) ∈ E solving Λρw = f in Ω with
||(h, λ, a)||E ≤ C||L−1

ρ f ||E .
We rewrite the solution w(z) in the form

w(z) = h′(z) +
∑
i

λi∂λiv(ρ, 0, 0)(z) + 2(−a) · ∂av(ρ, 0, 0)(z)
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with

h′(z) = h(z) + χ(z − p)λ1 (∂τvρ,τ1(z − p) − ∂λ1
v(ρ, 0, 0)(z))

+χ(z − q)λ2 (∂τvρ,τ2,γ(z − q) − ∂λ2
v(ρ, 0, 0)(z))

+ 2 (1 − χ(z − q)) a · ∂av(ρ, 0, 0)(z)

+ 2χ(z − q) a · (∂z̄vρ,τ2,γ(z − q) + ∂av(ρ, 0, 0)(z)) ,

where we have taken into account that (1 − χ(z − p)) ∂λ1v(ρ, 0, 0)(z) and (1 − χ(z−
q))∂λ2

v(ρ, 0, 0)(z) are identically zero. Let us compute the derivatives of v(ρ, λ, a):

∂λ1
v(ρ, 0, 0)(z) = χ

(
z − p

r1

)
∂τvρ,τ1(z − p),

∂λ2v(ρ, 0, 0)(z) = χ

(
z − q

r2

)
∂τvρ,τ2,γ(z − q),

and

∂av(ρ, 0, 0)(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1 − χ( z−p

r1
)
)
8π∂z̄′G(z, q) in B(p, 1),

−∂z̄vρ,τ2,γ(z − q) − ∂aP0(z)

+ 1
r2
∂z̄χ( z−q

r2
)
(
8π(1 + α)G(z, p) + 8πG(z, q) − U2

ρ (z)
)

+
(
1 − χ( z−q

r2
)
)
(8π∂z̄′G(z, q)

+∂z̄vρ,τ2,γ(z − q) + ∂aP0(z)) in B(q, 1),

8π∂z̄′G(z, q) in Ω̃.

Using again that ∆ ln f(q) = 0, we get ∂ a P0(z) = O(|z − q|2), and so

||χ(z − p) (∂τvρ,τ1(z − p) − ∂λ1
v(ρ, 0, 0)(z)) ||2,β,ν1,B(p,1) ≤ C(r1)

−ν1 ,

||χ(z − q) (∂τvρ,τ2,γ(z − q) − ∂λ2
v(ρ, 0, 0)(z)) ||2,β,ν2,B(q,1) ≤ C(r2)

−ν2 ,

||χ(z − q) (∂z̄vρ,τ2,γ(z − q) + ∂av(ρ, 0, 0)(z)) ||2,β,ν2,B(q,1) ≤ C(r2)
−ν2 ,

the last estimate being valid in view of the fact that

8π∂z̄′G(z, q) + ∂z̄vρ,τ2,γ(z− q) = 2
z − q

|z − q|2 +O(1)− 2
z − q

|z − q|2 +O

(
ρ2

|z − q|3

)
= O(1)
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for any z ∈ B(q, 1) \B(q, r2). Hence ||h′||X′ ≤ C||L−1
ρ (f)||E for some uniform constant

C > 0. Thus, we have proved the following result.

Theorem 4.12. There exists ρ0 > 0 small such that for any ρ ∈ (0, ρ0), we have
that for any f ∈ Y there exists a unique solution (h, λ, a) ∈ E ′ satisfying

⎧⎨
⎩

Λρw = f in Ω,
w = 0 on ∂Ω,
w(z) = h(z) +

∑
i λi∂λiv(ρ, 0, 0)(z) + 2a · ∂av(ρ, 0, 0)(z)

with ||(h, λ, a)||E′ ≤ C||L−1
ρ (f)||E for some uniform constant C > 0.

Let us recall now the definition of L(0,0,0) : E ′ → Y (see section 3): for any
(h, σ, b) ∈ E ′ we set

L(0,0,0)(h, σ, b) = Λρ

(
h +

∑
i

σi∂λiv(ρ, 0, 0) + 2b · ∂av(ρ, 0, 0)

)

+ 2∂z̄
[
�v(ρ, 0, 0) + ρ2|z − p|2αf(z)ev(ρ,0,0)

]
·
[(
b∂a + b∂a

)
Ψ(0, ·)−1

]
.

We have to estimate in Y the term

∂z̄
[
∆v(ρ, 0, 0) + ρ2|z − p|2αf(z)ev(ρ,0,0)

]
·
[(
b∂a + b∂a

)
Ψ(0, ·)−1

]
.

Since Ψ(a, z) ≡ z for z ∈ Ω \ B(q, 2), we have that
(
b∂a + b∂a

)
Ψ(0, ·)−1 ≡ 0 in

Ω \B(q, 2). In view of (39) and (40) we get

∥∥∥∂z̄[∆v(ρ, 0, 0) + ρ2|z − p|2αf(z)ev(ρ,0,0)
]
·
[(
b∂a + b∂a

)
Ψ(0, ·)−1

]∥∥∥
Y

= o(1)|b|,

and so using a perturbation argument by Theorem 4.12 we derive the following result.

Theorem 4.13. There exists ρ0 > 0 small such that for any ρ ∈ (0, ρ0) and
f ∈ Y there exists a unique solution (h, σ, b) ∈ E ′ satisfying

⎧⎨
⎩

L(0,0,0)w = f in Ω,
w = 0 on ∂Ω,
w(z) = h(z) +

∑
i σi∂λiv(ρ, 0, 0)(z) + 2b · ∂av(ρ, 0, 0)(z)

such that ||L−1
(0,0,0)(f)||E′ ≤ C||L−1

ρ (f)||E for some uniform constant C > 0.

5. Some estimates. In order to apply a fixed point argument to K, we used
in a crucial way the fact that K : E ′ → E ′ maps a suitable small ball into itself;
see Step 4 of section 3. To obtain such information we need the estimate contained
in (37) below. For this end, first we estimate the preimage through Lρ of the error

term η = ∆v(ρ, 0, 0) + ρ2|z − p|2αf(z)ev(ρ,0,0). In Ω̃ = Ω \B, v(ρ, 0, 0) is a harmonic
function and hence

|η(z)| = |ρ2|z − p|2αf(z) exp (8π(1 + α)G(z, p) + 8πG(z, q)) | = O(ρ2)
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in Ω̃. In B(p, 1) we have that

η(z) =
1

r2
1

∆χ

(
z − p

r1

)
[vρ,τ1(z − p) − ln f(p) − 8π(1 + α)G(z, p) − 8πG(z, q)]

+
8

r1
∂z̄χ

(
z − p

r1

)
· ∂z̄ [vρ,τ1(z − p) − ln f(p) − 8π(1 + α)G(z, p) − 8πG(z, q)]

+ ρ2|z − p|2αevρ,τ1
(z−p)

{
− χ

(
z − p

r1

)
+ f(z)e− ln f(p)

× exp

[(
1 − χ

(
z − p

r1

))
(8π(1 + α)G(z, p) + 8πG(z, q)

− vρ,τ1(z − p) + ln f(p))

]}

and in B(q, 1)

η(z) =
1

r2
2

∆χ

(
z − q

r2

)
[vρ,τ2,γ(z − q) − P0(z) − 8π(1 + α)G(z, p) − 8πG(z, q)]

+
8

r2
∂z̄χ

(
z − q

r2

)
· ∂z̄ [vρ,τ2,γ(z − q) − P0(z) − 8π(1 + α)G(z, p) − 8πG(z, q)]

+ ρ2evρ,τ2,γ(z−q)

{
− χ

(
z − q

r2

)
+ |z − p|2αf(z)e−P0(z)

× exp

[(
1 − χ

(
z − q

r2

))
(8π(1 + α)G(z, p) + 8πG(z, q)

− vρ,τ2,γ(z − q) + P0(z))

]}
,

where Pa(z) is defined in section 2. In B(q, 1) there holds

∂z̄ (vρ,τ2,γ(z − q) − P0(z) − 8π(1 + α)G(z, p) − 8πG(z, q)) = −∂z̄F2(q)(35)

−z − q (∂z̄z̄F2(q) − 2γ) + O

(
|z − q|2 +

τ2
2 ρ

2

|z − q|3

)
= O

(
|z − q|2 +

τ2
2 ρ

2

|z − q|3

)

in view of the fact that ∂zF2(q) = 0 and γ = 1
2∂zzF2(q) (see section 2 for the

definitions of F2(z) and γ). Similarly, in B(p, 1) we get

∂z̄ (vρ,τ1(z − p) − ln f(p) − 8π(1 + α)G(z, p) − 8πG(z, q)) = O

(
1 +

τ2
1 ρ

2

|z − p|2α+3

)
.

As far as second derivatives are concerned, in B(q, 1) we have the estimate

∂2
z̄z̄ (vρ,τ2,γ(z − q) − P0(z) − 8π(1 + α)G(z, p) − 8πG(z, q)) = O

(
|z − q| + τ2

2 ρ
2

|z − q|4

)
.

(36)

Since ρ2

r2α+5
1

+ ρ2

r5
2

= O(1), recalling (11), (12), and (13), for any ν ∈ (0, 2) we get the

estimates

||η||0,β,ν−2,B(p,1) = O
(
r1−ν
1

)
, ||η||0,β,ν−2,B(q,1) = O

(
r3−ν
2

)
.
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Fix 0 < δ < 1 to be specified below. Following the notations of section 4.1, we find

|H0
ρ,τ1(η |B(p,1))| + ||∂r1Gρ,τ1(η |B(p,1))||1,β,∂B(p,1) = O(r1−δ

1 )

and

|H0
ρ,τ2(η |B(q,1))| + |H1

ρ,τ2(η |B(q,1))| + ||∂r2Gρ,τ2(η |B(q,1))||1,β,∂B(q,1) = O(r3−δ
2 ).

Moreover, choosing ν = ν1 in B(p, 1) and ν = ν2 in B(q, 1) we get

||Gρ,τ1(η |B(p,1))||2,β,ν1,B(p,1) = O(r1−ν1
1 ) , ||Gρ,τ2,γ(η |B(q,1))||2,β,ν2,B(q,1) = O(r3−ν2

2 ).

By Proposition 4.5 we have

|H0
ρ,τ2,γ(η |B(q,1))| + |H1

ρ,τ2,γ(η |B(q,1))| + ||∂r2Gρ,τ2,γ(η |B(q,1))||1,β,∂B(q,1) = O(r3−δ
2 ),

||Gρ,τ2,γ(η |B(q,1))||2,β,ν2,B(q,1) = O(||η||0,β,ν2−2,B(q,1)) = O(r3−ν2
2 ).

Hence, following the notation and the construction of section 4.3, we obtain ||wext||2,β,Ω̃
≤ C||η||0,β,Ω̃ = O(ρ2), ||∂r1wint,1||1,β,∂B(p,1) = O(r1−δ

1 ), and ||∂r2wint,2||1,β,∂B(q,1) =

O(r3−δ
2 ).

Let Φ = − (Sρ − Tρ)
−1

(∂r1(wext − wint,1) |∂B(p,1), ∂r2(wext − wint,2) |∂B(q,1)).

So ||Φ||C2,β(∂B) = O(r1−δ
1 + r3−δ

2 ). Consequently, ||wker||2,β,Ω̃ + ||wker |B(p,1) ||E1 +

||wker |B(q,1) ||E2
= O(r1−δ

1 + r3−δ
2 ) which in turn implies ||L−1

ρ η||E = O(r1−δ
1 + r1−ν1

1

+ r3−δ
2 + r3−ν2

2 ). We can choose ν1 ∈ (0, 1) and ν2 ∈ (1, 2) in such a way that
(ν1, 1− ν1) ∩ (ν2 − 1, 2− ν2) �= ∅ and we can suppose that δ is fixed to belong in this
set. Hence, by Theorem 4.13 we get

||L−1
(0,0,0)η||E′ = O

(
r1−δ
1 + r2−δ

2

)
.(37)

Let us define σ = 4α+5
2ν1

+ 1 and choose ri = ρ
1

σνi . In this way, we have ρ2

r4α+5
1

=

ρ2(1− 4α+5
2σν1

) → 0 as ρ → 0, ρ2

r5
2

= ρ2(1− 5
2σν2

) → 0 as ρ → 0, and

(
2∑

i=1

r−νi
i

)(
r1−δ
1 + r2−δ

2

)
= 2

(
ρ

1−δ−ν1
σν1 + ρ

2−δ−ν2
σν2

)
→ 0(38)

as ρ → 0.
Now, taking the derivative with respect to z̄ in the expression for η = ∆v(ρ, 0, 0)+

ρ2|z − p|2αf(z)ev(ρ,0,0) and using (13), (35), and (36), we can conclude∥∥∥∂z̄ (∆v(ρ, 0, 0) + ρ2|z − p|2αf(z)ev(ρ,0,0)
)∥∥∥

0,β,B(q,2)\B(q,1)
= O(ρ2)(39)

and ∥∥∥∂z̄ (∆v(ρ, 0, 0) + ρ2|z − p|2αf(z)ev(ρ,0,0)
)∥∥∥

0,β,ν2−2,B(q,1)
= O

(
r2−ν2
2

)
,(40)

where we use in a crucial way the fact that |z − p|2αf(z)e−P0(z) − 1 = O(|z − q|3).
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Abstract. In this paper we study a number of algebraic conditions connected with the stability
of strictly hyperbolic n× n systems of conservation laws in one space dimension:

ut + f(u)x = 0.

Such conditions yield existence and continuity of the flow of solutions in the vicinity of the reference
solution. Our main concern is a single rarefaction wave having arbitrarily large strength.
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1. Introduction. In this paper we study a number of algebraic conditions con-
nected with the stability of strictly hyperbolic n× n systems of conservation laws in
one space dimension:

ut + f(u)x = 0.(1.1)

The well-posedness of (1.1) has been the subject of vast research in recent years; for
an overview see [B, D, HR]. While most of the analysis (see [BLY] and more recently
[BiB]) has been carried out in the setting of initial data

u(0, x) = ū(x)(1.2)

having small total variation, at the same time examples in [BC, J] point out that for
the stability of patterns containing large waves, extra assumptions are required, also
when the large reference waves do not interact among themselves [BC, Scho, Le1, Le3].
These BV and L1 stability conditions, in essence, aim at providing an estimate on the
distance between a reference solution u0 and another solution to (1.1) which is viewed
as an infinitesimal perturbation of u0. They refer to the existence of weights with
respect to which the flow of the first order perturbation v generated by the linearized
system

vt + Df(u0)vx + [D2f(u0) · v] · (u0)x = 0

becomes a contraction with respect to the BV or the L1 norm, respectively, at states
attained by u0. Under these assumptions the existence of global solutions and their
continuous dependence on initial data has been proven in the vicinity of patterns
containing only noninteracting shocks [Le1] or being a single rarefaction wave [Le3].
The BV stability of general patterns containing shocks, contact discontinuities, and
rarefaction waves was established in [Scho].

The objective of this paper is a more detailed study of the stability conditions
arising when u0 contains rarefactions. With respect to the case with only shocks
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Fig. 1.1.

present [BC, Le2], the main difficulty here stems from the change of weights along
rarefaction curves. This accounts for the change of location of perturbation waves
of different characteristic families as they pass through each rarefaction fan. Hence
we mainly focus on the case when u0 is a single rarefaction wave of arbitrarily large
strength. The stability conditions related to patterns with multiple (noninteracting)
shocks and rarefaction waves are presented in section 8.

We now introduce the main hypothesis and set the notation.⎡
⎢⎣

The system (1.1) is strictly hyperbolic in a domain Ω ⊂ Rn to be spec-
ified later. More precisely, for each u ∈ Ω the Jacobian matrix Df(u)
of the smooth flux f : Ω −→ Rn has n distinct and real eigenvalues:
λ1(u) < · · · < λn(u).

(H1)

Let {ri(u)}ni=1 be the basis of right eigenvectors of Df having unit length:

Df(u)ri(u) = λi(u)ri(u), ||ri(u)|| = 1.

Call {li(u)}ni=1 the dual basis of left eigenvectors so that 〈ri(u), lj(u)〉 = δij for all
i, j : 1 . . . n and all u ∈ Ω.

Fix k : 1 . . . n and consider an integral curve Rk of the vector field rk:

d

dθ
Rk(θ) = rk(Rk(θ)),

ul = Rk(0), ur = Rk(Θ), Θ > 0.
(1.3)

Rk is called the rarefaction curve joining the left and right states ul, ur ∈ Ω (see
Figure 1.1). For a small ε > 0 we define the domain

Ω = Ωε = {u ∈ Rn : ||u−Rk(θ)|| < ε for some θ ∈ [0,Θ]} .(1.4)

We further assume the following:[
In Ω, each characteristic field i : 1 . . . n either is linearly degenerate,
〈Dλi, ri〉 ≡ 0, or is genuinely nonlinear, which means that 〈Dλi, ri〉 > 0.
The kth characteristic field is assumed to be genuinely nonlinear.

(H2)

The piecewise smooth, self-similar function called the centered rarefaction wave
is given by

u0(t, x) =

⎧⎨
⎩

ul if x < tλk(ul),
Rk(θ) if x = tλk(Rk(θ)), θ ∈ [0,Θ],
ur if x > tλk(ur)

(1.5)

and provides an entropy admissible solution of (1.1) [Sm, D].
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The paper is constructed as follows. In section 2 we present the BV stability
condition (BV) and the L1 stability condition (L1). We also introduce a weaker
condition which is sufficient for the solvability of Riemann problems in Ω. In section 3
we prove that our conditions are one stronger than the other, while sections 4, 5, and
6 gather their various properties. In particular, in section 5 we display an interesting
connection between the weighted stability conditions and the Riccati equation in case
n = 3. Section 7 contains examples complementing our work. In section 8 we restate
some results of sections 2 and 3, in the context of a general pattern u0 containing
several strong shocks and rarefaction waves.

To appreciate the role of the studied conditions, we end this section by recalling
the precise statements of the stability results.

Theorem 1.1 (see [Le3]). Assume that (H1), (H2), and the BV stability con-
dition (BV) hold. For c, δ > 0 let Ec,δ denote the set of all continuous functions ū
satisfying the following:

(i) ū(x) ∈ Ωc for all x ∈ R,
(ii) limx→−∞ ū(x) = ul and limx→∞ ū(x) = ur,
(iii) |TV (ū) − |Rk|| < δ, where |Rk| is the arc length of the rarefaction curve

Rk(θ), θ ∈ [0,Θ].
There exists c, δ > 0 such that for every ū ∈ cl Ec,δ, where cl denotes the closure in
L1
loc, the Cauchy problem (1.1) (1.2) has a global entropy admissible solution u(t, x).

Theorem 1.2 (see [Le3]). Assume that (H1), (H2), and the L1 stability condition
(L1) are satisfied. Then there exists a closed domain D ⊂ L1

loc(R,Ω), containing all
continuous functions ū satisfying (i), (ii), (iii) in Theorem 1.1, for some c, δ > 0, and
there exists a semigroup S : D × [0,∞) −→ D such that

(i) ||S(ū, t) − S(v̄, s)||L1 ≤ L · (|t − s| + ||ū − v̄||L1) for all ū, v̄ ∈ D, all t, s ≥ 0
and a uniform constant L, depending only on the system (1.1),

(ii) for all ū ∈ D, the trajectory t 
→ S(ū, t) is the solution to (1.1) (1.2) given in
Theorem 1.1.

2. Stability conditions for strong rarefactions. Define the square (n − 1)-
dimensional production matrix function

P(θ) = [pij(θ)]i,j:1...n,
i,j �=k

for θ ∈ [0,Θ],

pij(θ) =

{
|〈lj , [ri, rk]〉(Rk(θ))| if i �= j,

sgn(k − i) · 〈li, [ri, rk]〉(Rk(θ)) if i = j,
(2.1)

where [ri, rk] = Dri · rk −Drk · ri stands for the Lie bracket of the vector fields ri and
rk. We then have the following:⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

BV stability condition: There exist positive smooth functions
w1 . . . wk−1, wk+1 . . . wn : [0,Θ] → R+ such that

P(θ) ·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

w1(θ)
...

wk−1(θ)
wk+1(θ)

...
wn(θ)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
<

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

w′
1(θ)
...

w′
k−1(θ)

−w′
k+1(θ)
...

−w′
n(θ)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

for every θ ∈ (0,Θ).

Here w′
i = dwi/dθ and the above vector inequality holds component-

wise.

(BV)
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Define the mass production matrix function

M(θ) = [mij(θ)]i,j:1...n,
i,j �=k

for θ ∈ [0,Θ],

mij(θ) =

⎧⎪⎪⎨
⎪⎪⎩
pij(θ) ·

|λj − λk|
|λi − λk|

(Rk(θ)) if i �= j,

pij(θ) +
Dλi · rk
|λi − λk|

(Rk(θ)) if i = j.
(2.2)

Then, we have the following:[
L1 stability condition: There exist positive smooth functions
w1 . . . wk−1, wk+1 . . . wn : [0,Θ] → R+ such that the inequality in (BV)
is satisfied with M(θ) replacing the matrix P(θ).

(L1)

A version of (L1), where all weights wi are linear functions of the parameter θ, was
introduced in [BM]. Condition (L1) is more general, as can be seen from Exam-
ple 7.3; compare also Remark 7.4. On the other hand, (L1) holds if it is satisfied with
constant and equal weights, for some rescaling of the coordinate system {ri}ni=1 (see
Corollary 4.2).

In section 3 we will prove that (L1) is stronger than the condition (BV). Below
we introduce a third stability condition, guaranteeing the existence result of the type
of Theorem 1.1, in the context of the Riemann initial data.

Define the n×n transport matrix function T(θ) to be the solution of the following
ODE system: ⎧⎨

⎩
d

dθ
T(θ) = Drk(Rk(θ)) · T(θ), θ ∈ [0,Θ],

T(0) = Idn.
(2.3)

Also, for any θ1, θ2 ∈ [0,Θ] with θ1 ≤ θ2, let F (θ1, θ2) be the n × n matrix whose
columns ci(θ1, θ2) ∈ Rn, i : 1 . . . n are given by

ci(θ1, θ2) = T(θ2) · T(θ1)
−1 · ri(Rk(θ1)) for i : 1 . . . k − 1,

ci(θ1, θ2) = ri(Rk(θ2)) for i : k . . . n.
(2.4)

We may now set the following:[
Finiteness condition: For every θ1, θ2 ∈ [0,Θ] with θ1 ≤ θ2, the matrix
F (θ1, θ2) is invertible.

(F)

Theorem 2.1. Assume (H1), (H2), and let the finiteness condition (F) hold.
There exist ε, δ > 0 such that for every u−, u+ ∈ Ωε with λk(u

+) − λk(u
−) > −δ, the

Riemann problem (1.1) (1.2) with

ū = u(0, x) =

{
u−, x < 0,
u+, x > 0,

(2.5)

has the unique self-similar solution, attaining states inside Ωε. The solution is com-
posed of n−1 weak waves of families 1 . . . k−1, k+1 . . . n, and a kth rarefaction wave
or a weak kth shock.

Proof. By a standard argument the assumptions (H1) and (H2) imply the as-
sertion for u−, u+ ∈ Ωε such that |λk(u

+) − λk(u
−)| < δ, if only δ and ε are small
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[L, B]. We will prove that the invertibility of F (0,Θ) is sufficient for the solvability
of (1.1) (2.5) whenever ||u− − ul|| < δ and ||u+ − ur|| < δ with a small δ > 0. By a
compactness argument, the proof will then be complete.

For each i : 1 . . . n and u ∈ Ω, call σ 
→ Si(u, σ) and σ 
→ Ri(u, σ) the ith
shock and the ith rarefaction curves through the point u [L, Sm]. In particular,
by (1.3), we have Rk(ul, θ) = Rk(θ). Both curves are defined at least locally—that
is, for σ ∈ (−ε, ε)—and have second order contact at σ = 0. The ith wave curve
σ 
→ Wi(u, σ) is obtained by taking the positive part of Ri (σ ≥ 0) and the negative
part of Si (σ < 0).

Define an auxiliary C2 function G(u−, u+, σ1 . . . σn) ∈ Rn, whose arguments stay
close to ul, ur, σi = 0 for i �= k and σk = Θ, respectively:

G(u−, u+, σ1 . . . σn) = Wn(σn) . . . ◦Wk+1(σk+1) ◦ Rk(σk)

◦Wk−1(σk−1) . . . ◦W1(u
−, σ1) − u+.

Notice that by (1.3) the function Rk(u, σ) is defined on Ωε × (−ε,Θ + ε) for a small
ε > 0. We clearly have

∂G

∂(σ1 . . . σn)
(ul, ur, σi = 0 for i �= k and σk = Θ) = F (0,Θ),

as d/dσWi(u, 0) = ri(u) and d/dσRk(u, 0) = rk(u) for every u ∈ Ω. Since F (0,Θ) is
invertible, by implicit function theorem we conclude the result.

Remark 2.2. We have used the following property of the matrix T(θ):

T(θ) · ri(ul) = lim
ε→0

Rk(ul + εri(ul), θ) −Rk(θ)

ε
.(2.6)

For i < k, the left-hand side of (2.6) is equal to ci(0, θ). Thus the first k−1 columns of
the finiteness matrix F (θ1, θ2) are equal to the eigenvectors at Rk(θ1) corresponding
to characteristic families i < k (slow modes), transported by the flow of the ODE
(1.3) to the point Rk(θ2). The condition (F) simply says that this set of vectors can
be completed by the remaining right eigenvectors at Rk(θ2) (that is, the eigenvectors
corresponding to the fast modes i ≥ k) to form a basis of Rn. Obviously, the kth
column ck in (2.4) can be computed by any of the two formulae because the flow of
(1.3) preserves the kth eigenvector: T(θ2) · T(θ1)

−1 · rk(Rk(θ1)) = rk(Rk(θ2)).
We have shown that the invertibility of F (0,Θ) implies the solvability of any

Riemann problem (1.1) (2.5) close to the initial data (u− = ul, u
+ = ur). This

condition is strictly weaker than (F), as shown by the Example 7.1. Also, it follows
from Example 7.1 that (F) is a nontrivial condition.

3. A proof of (L1) ⇒ (BV) ⇒ (F). In this section we prove the basic relation
among the three stability conditions from section 2. We first establish an abstract
lemma on matrix analysis.

Lemma 3.1. Let P̃(θ) = [p̃ij(θ)]i,j:1...n be a continuous n × n matrix function,
defined on an interval [0,Θ]. Fix k : 1 . . . n and define an associated matrix function

P̂(θ) = [p̂ij(θ)]i,j:1...n by

p̂ij(θ) =

{
|p̃ij(θ)| if i �= j,

(sgn (i− k)) · p̃ii(θ) if i = j.
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Assume that there exist positive smooth functions w1 . . . wn : [0,Θ] → R+ such that
the following vector inequality is satisfied componentwise:

P̂(θ) ·

⎡
⎢⎣

w1(θ)
...

wn(θ)

⎤
⎥⎦ <

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

w′
1(θ)
...

w′
k−1(θ)

−w′
k(θ)
...

−w′
n(θ)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

for every θ ∈ (0,Θ).(3.1)

Then we have the following:
(i) Let b : [0,Θ] −→ Rn, b(θ) = (b1(θ) . . . bn(θ)) satisfy

d

dθ
b(θ) = b(θ)t · P̃(θ) for θ ∈ [0,Θ],(3.2)

n∑
i=1

|bi(0)| > 0.(3.3)

The above implies that

∑
i<k

(
|bi(Θ)|wi(Θ) − |bi(0)|wi(0)

)
>
∑
i≥k

(
|bi(Θ)|wi(Θ) − |bi(0)|wi(0)

)
.

(3.4)

(ii) Calling B the solution of the matrix differential equation,⎧⎨
⎩

d

dθ
B(θ) = P̃(θ) ·B(θ), θ ∈ [0,Θ],

B(0) = Idn,
(3.5)

the (k − 1) × (k − 1) principal minor of B(Θ) is invertible.
Proof. (i). Using (3.2), (3.3), and (3.1) we obtain the following:∑

i<k

(sgn bi) · (bi · wi)
′ −
∑
i≥k

(sgn bi) · (bi · wi)
′

>

n∑
i=1

⎛
⎝(sgn bi) · (sgn (k − i)) · wi ·

n∑
j=1

bj p̃ji

⎞
⎠+

n∑
i=1

⎛
⎝|bi| ·

n∑
j=1

wj p̂ij

⎞
⎠

=

⎡
⎣∑

i �=j

|bi|wj p̂ij + (sgn bj)(sgn (k − j)) · biwj p̃ij

⎤
⎦

+

[
n∑

i=1

|bi|wip̂ii + (sgn (k − i)) · |bi|wip̃ii

]

≥

⎡
⎣∑

i �=j

|biwj p̂ij | − |biwj p̃ij |

⎤
⎦+

[
n∑

i=1

|bi|wi(p̂ii + (sgn (k − i)) · p̃ii)
]
.

(3.6)

Since p̂ii = −(sgn (k−i))p̃ii for every i : 1 . . . n, and |p̃ij | = |p̂ij | for i �= j, we conclude
that the right-hand side of (3.6) is nonnegative, and thus,

∀ θ ∈ [0,Θ]
∑
i<k

(sgn bi)(θ) · (bi · wi)
′(θ) >

∑
i≥k

(sgn bi)(θ) · (bi · wi)
′(θ).(3.7)
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Applying
∫ Θ

0
dθ to both sides of (3.7) we now arrive at (3.4).

(ii). We fix k > 1 and argue by contradiction. If the (k − 1) × (k − 1) principal
minor of B(Θ) was singular, then there would exist b : [0,Θ] −→ Rn satisfying (3.2),
(3.3) together with

∀ i ≥ k bi(0) = 0 and ∀ i < k bi(Θ) = 0.(3.8)

In view of (3.4), the condition (3.8) now implies

−
∑
i<k

|bi(0)|wi(0) >
∑
i≥k

|bi(Θ)|wi(Θ),

which is clearly a contradiction, as the weights {wi} are all positive functions.
Theorem 3.2. (BV) ⇒ (F).
Proof. It suffices to show that the existence of positive weights in (BV) implies

the invertibility of the matrix F (0,Θ).
For θ ∈ [0,Θ], let R(θ) denote the n × n matrix whose columns are the right

eigenvectors of the matrix Df(Rk(θ)). Obviously R(θ) is nonsingular and the rows
of its inverse R(θ)−1 provide the basis of left eigenvectors {li(Rk(θ))}. It is easily
seen that the invertibility of F (0,Θ) is equivalent to the invertibility of the product
R(Θ)−1 · F (0,Θ), which is in turn equivalent to the following condition:

The (k−1)×(k−1) principal minor of R(Θ)−1 ·T(Θ)·R(0) is invertible.(3.9)

Recall that the transport matrix function T is defined in (2.3).
Let P̃(θ) = [p̃ij(θ)]i,j:1...n be the n×n matrix function, with its coefficients given

by

p̃ij(θ) = 〈lj , [rk, ri]〉 (Rk(θ)), θ ∈ [0,Θ].

Let

B(θ) = R(θ)−1 · T(θ) ·R(0).(3.10)

We will show that B satisfies (3.5) on [0,Θ]. Indeed, one has

B(0) = R(0)−1 · T(0) ·R(0) = R(0)−1 ·R(0) = Idn.

Using (3.10) and (2.3), we calculate

d

dθ
B(θ) =

{
d

dθ

[
R(θ)−1

]
· T(θ) + R(θ)−1 · d

dθ
T(θ)

}
·R(0)

=

{
−R(θ)−1 · d

dθ
[R(θ)] ·R(θ)−1 · T(θ) + R(θ)−1 · Drk(θ) · T(θ)

}
·R(0)

=

{
−R(θ)−1 · d

dθ
[R(θ)] + R(θ)−1 · Drk(θ) ·R(θ)

}
·R(θ)−1 · T(θ) ·R(0).

(3.11)

Since it is clear that

P̃(θ) = R(θ)−1 ·
[
Drk(θ) ·R(θ) − d

dθ
R(θ)

]
,

we conclude in view of (3.11) and (3.10) that B satisfies the differential equation in
(3.5).
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On account of (3.9), it remains thus to prove that the condition (BV) implies the
following:

The (k − 1) × (k − 1) principal minor of B(Θ) is invertible.(3.12)

Let P̂(θ) = [p̂ij(θ)]i,j:1...n be given by the formula in (2.1) for every θ ∈ [0,Θ].

Note that the kth row of P̂(θ) contains only zero elements. It is then easy to see
that the condition (BV) is equivalent to the existence of positive smooth weights
w1 . . . wn : [0,Θ] −→ R+ such that (3.1) holds. Indeed, one implication is trivial, and
the converse one is obtained by taking

wk(θ) = ε · (Θ + 1 − θ),

with ε > 0 small enough. Now (3.1) implies (3.12) by Lemma 3.1 and our proof is
complete.

Remark 3.3. The implication (F) ⇒ (BV) is not true, as shown by Example 7.5.
We end this section by an easy observation.
Theorem 3.4. (L1) ⇒ (BV).
Proof. Assume that (L1) holds. For i �= k define

w̃i(θ) = |λi(θ) − λk(θ)| · wi(θ), θ ∈ [0,Θ].(3.13)

We claim that (BV) is satisfied with weights {w̃i}i �=k as in (3.13). Indeed, for every
i �= k we have⎛

⎝∑
j �=k

pijw̃j

⎞
⎠− (sgn (k − i)) · w̃′

i

=

⎛
⎝∑

j �=i,k

pij · |λj − λk| · w̃j

⎞
⎠+ pii · |λi − λk| · w̃i

−
(
〈Dλk, rk〉wi − 〈Dλi, rk〉wi + (λk − λi)w

′
i

)

= |λi − λk| ·

⎧⎨
⎩
⎛
⎝∑

j �=i,k

pij ·
|λj − λk|
|λi − λk|

· w̃j

⎞
⎠+ piiwi +

〈Dλi, rk〉
|λi − λk|

· wi

⎫⎬
⎭

− 〈Dλk, rk〉wi

= |λi − λk| ·

⎧⎨
⎩
⎛
⎝∑

j �=i,k

mijwj

⎞
⎠+ miiwi − (sgn (k − i)) · w′

i

⎫⎬
⎭

− 〈Dλk, rk〉wi,

(3.14)

the last equality being a consequence of (2.2). The right-hand side of (3.14) is clearly
negative in view of (L1) and the genuine nonlinearity of the kth characteristic field.
This proves the theorem.

4. Miscellaneous properties of (BV) and (L1). In this section we gather
several useful properties of the BV and L1 stability conditions. We mainly focus on
(BV) because (L1) has the same structure, and consequently, results on (BV) can be
easily translated for (L1) (see Theorem 4.6).
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The next theorem states that the condition (BV) is independent of the scaling of
eigenvectors {ri}ni=1 in Ω.

Theorem 4.1. For every i : 1 . . . n and u ∈ Ω, define

r̃i(u) = αi(u) · ri(u),

where each rescaling function αi : Ω −→ R+ is positive and smooth. Call {l̃i}ni=1 the
dual basis to {r̃i}ni=1 and let R̃k be the corresponding reparametrization of Rk:

d

ds
R̃k(s) = r̃k(R̃k(s)),

ul = R̃k(0), ur = R̃k(S), S > 0.

Then (BV) holds iff there exists smooth positive weights {w̃i(s)}i �=k, defined along the
reparametrized rarefaction; s ∈ [0, S], such that the appropriate vector inequality as
in (BV) holds.

Proof. Fix s ∈ [0, S] and let θ ∈ [0,Θ] be such that Rk(θ) = R̃k(s). For every
i, j �= k we have

〈l̃j , [r̃i, r̃i]〉(R̃k(s)) =

〈
1

αj
lj , αiαk · Dri · rk + αk · 〈Dαi, rk〉 · ri

− αiαk · Drk · ri − αi · 〈Dαk, ri〉 · rk

〉
(Rk(θ))

=

{
αi

αj
αk · 〈lj , [ri, ri]〉 + δij

αk

αj
· 〈Dαi, rk〉

}
(Rk(θ)).

(4.1)

Define

w̃i(s) = αi(Rk(θ)) · wi(θ).(4.2)

Since dθ/ds = αk(R̃k(s)), by (4.1), (4.2), and (2.1) it follows for every i �= k that⎛
⎝∑

j �=i,k

w̃j(s) · |〈l̃j , [r̃i, r̃k]〉(R̃k(s))|

⎞
⎠

+ w̃i(s) · (sgn (k − i)) · 〈l̃i, [r̃i, r̃k]〉(R̃k(s)) − (sgn (k − i)) · w̃′
i(s)

=

⎛
⎝∑

j �=i,k

wj(θ) · |αiαk · 〈lj , [ri, rk]〉|(Rk(θ))

⎞
⎠

+ wi(θ) · (sgn (k − i)) · (αiαk〈lj , [ri, rk]〉) (Rk(θ))

+ wi(θ) · (sgn (k − i)) · (αk〈Dαi, rk〉) (Rk(θ))

− (sgn (k − i)) ·
{
w′

i(θ) · (αiαk)(Rk(θ)) + wi(θ) · (αk〈Dαi, rk〉)(Rk(θ))
}

= (αiαk)(Rk(θ)) ·

⎧⎨
⎩
⎛
⎝∑

j �=k

pij(θ)wj(θ)

⎞
⎠− (sgn (k − i)) · w′

i(θ)

⎫⎬
⎭ .

(4.3)

Recalling that all the rescalings αi are positive, we obtain that the negativity of
the left-hand side in (4.3) is equivalent to the inequality in (BV). This finishes the
proof.
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Corollary 4.2. The condition (BV) is equivalent to the following one. There ex-
ist smooth rescaling of eigenvectors {ri}i �=k along Rk, given by functions γi : [0,Θ] −→
R+ such that calling

r̃i(Rk(θ)) = γi(θ) · ri(Rk(θ)) for i �= k and r̃k = rk,

one has for every i �= k and every θ ∈ [0,Θ]⎛
⎝∑

j �=k,i

|〈l̃j , [r̃i, r̃k]〉(Rk(θ))|

⎞
⎠+ (sgn (k − i)) · 〈l̃i, [r̃i, r̃k]〉(Rk(θ)) < 0.(4.4)

Above, the vectors {l̃i(Rk(θ))}ni=1 are the dual basis to {r̃i(Rk(θ))}ni=1.
Proof. If (BV) holds, then one may take

γi(θ) =
1

wi(θ)
for i �= k, θ ∈ [0,Θ].

On the other hand, if the functions γi are given, take αi : Ω −→ R+ to be any smooth
positive reparametrization such that

αi(Rk(θ)) = γi(θ), θ ∈ [0,Θ].

Since the eigenvectors rk are not to be rescaled, both implications follow now from
Theorem 4.1.

Theorem 4.3. The stability condition (BV) is satisfied in either of the following
cases.

(i) k = 1 or n, that is when the wave in (1.5) is of the extreme characteristic
field.

(ii) Θ is sufficiently small, that is when the wave in (1.5) is weak.
Proof. (i). To fix the ideas, assume that k = n. Let Z be any constant (n− 1) ×

(n − 1) matrix whose components are strictly bigger than those of the matrix P(θ),
for all θ ∈ [0,Θ]. Take w = (w1 . . . wk−1, wk+1 . . . wn) to be the solution of

w′ = Z · w, wi(0) = 1 for i �= k.(4.5)

Since the fundamental solution of (4.5) has all its components positive, each wi must
be a positive function and consequently the inequality in (BV) holds.

(ii). Define Z(θ) = P(θ) + Idn−1 for θ ∈ [0,Θ]. The initial-value problem

Z(θ) ·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

w1

...
wk−1

wk+1

...
wn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(θ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

w′
1
...

w′
k−1

−w′
k+1
...

−w′
n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(θ), wi(0) = 1∀ i �= k,

has a local solution, remaining positive on some interval [0, ε], and therefore satisfying
(BV).

Recall that the system (1.1) is said to have a coordinate system of Riemann
invariants [D, Sm, S] if there exist smooth functions v1 . . . vn : Ω −→ R such that

〈Dvi, rj〉(u)

{
= 0 if i �= j,
�= 0 if i = j

for every u ∈ Ω.(4.6)
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Using the Frobenius theorem, one can prove (see [D]) that (4.6) implies

[ri, rj ](u) ∈ span {ri, rj} ∀ i, j : 1 . . . n, u ∈ Ω.

Hence the matrix P(θ) is diagonal for every θ ∈ [0,Θ] and the inequality in (BV)
becomes decoupled. Notice now that for any continuous function a : [0,Θ] −→
R, the differential inequality w′(θ) ≶ a(θ)w(θ) admits a positive solution w(θ) =

exp[
∫ θ

0
a(s)ds∓ θ].

We have thus proved the following theorem.
Theorem 4.4. If (1.1) admits a system of Riemann invariants, then (BV) is

satisfied, for every k : 1 . . . n.
Remark 4.5. It is well known that every 2× 2 hyperbolic system of conservation

laws has a coordinate system of Riemann invariants. Therefore any rarefaction wave in
such systems satisfies (BV), which is obviously also a consequence of Theorem 4.3(i).

We now restate the results of this section in the context of condition (L1); the
detailed verification is left to the reader.

Theorem 4.6. The following assertions are true.
(i) The L1 stability condition is independent of the scaling of the eigenvectors

{ri}ni=1 in Ω. In particular, it is equivalent to the condition formulated as in
Corollary 4.2 with the inequality (4.4) replaced by⎛

⎝∑
j �=k,i

∣∣∣(λj − λk) · 〈l̃j , [r̃i, r̃k]〉
∣∣∣(Rk(θ))

⎞
⎠

+
(
(λk − λi) · 〈l̃i, [r̃i, r̃k]〉

)
(Rk(θ)) + 〈Dλi, rk〉(Rk(θ)) < 0.

(ii) Any extreme field (k = 1 or n) rarefaction, or a weak (Θ small) rarefaction
satisfies (L1).

(iii) If (1.1) has a coordinate system of Riemann invariants, then (L1) holds for
every k : 1 . . . n.

In [Le3], the proof of Theorem 1.2 used the form of the mass production coeffi-
cients as in (2.2). They may be simplified as follows.

Lemma 4.7. For all θ ∈ [0,Θ] and all i �= j distinct from k there holds

mij(θ) = |〈lj ,Dri · rk〉(Rk(θ))|,(4.7)

mii(θ) = sgn (k − i) · 〈li,Dri · rk〉(Rk(θ)).(4.8)

Proof. Recall the following useful identity (see [D], pg. 126):

∀j, k 〈Dλj , rk〉 · rj − 〈Dλk, rj〉 · rk = Df · [rj , rk] − λjDrj · rk + λkDrk · rj .(4.9)

Multiplying (4.9) by a left eigenvector li we obtain

∀i �∈ {j, k} (λi − λj) · 〈li,Drj · rk〉 = (λi − λk) · 〈li,Drk · rj〉,(4.10)

∀j �= k 〈Dλj , rk〉 = (λk − λj) · 〈lj ,Drk · rj〉.(4.11)

Now (4.7) follows directly from (4.10) and (4.8) is a consequence of (4.11).

5. Discussion of the case n = 3, k = 2. In view of Theorem 4.3(i), every
rarefaction wave (1.3) in a solution to a 2×2 system (1.1), as well as both the slowest
and the fastest waves in any n × n system, is BV (and L1) stable. In this section
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we focus on intermediate field rarefactions in 3 × 3 systems. In particular, we show
the natural correspondence between the conditions in section 2 and the solvability of
certain associated Riccati equations. Using this approach we derive several sufficient
conditions for (BV) (or (L1)).

Our study relies on a number of abstract matrix analysis results.
Lemma 5.1. Let a, b, c, d : [0,Θ] −→ R be continuous functions, b and c nonneg-

ative. Then the vector inequality[
a(θ) b(θ)
c(θ) d(θ)

]
·
[

w1(θ)
w2(θ)

]
<

[
w′

1(θ)
−w′

2(θ)

]
, θ ∈ (0,Θ),(5.1)

has a positive solution w1, w2 : [0,Θ] −→ R+ iff the Riccati equation

v′(θ) = b(θ) + [a(θ) + d(θ)] · v(θ) + c(θ) · v(θ)2, θ ∈ (0,Θ),(5.2)

has a positive solution v : [0,Θ] −→ R+.
Proof. 1. If (5.1) holds, then the positive function v can be defined as w1/w2.

Hence,

v′ =
w′

1

w2
− v · w

′
2

w2
>

a · w1 + b · w2

w2
+ v · c · w1 + d · w2

w2
= b + [a + d] · v + c · v2.

2. On the other hand, if (5.2) is satisfied for some positive function v, then the
inequality

w′(θ) > ε + b(θ) + [a(θ) + d(θ)] · w(θ) + c(θ) · w(θ)2

also has a positive solution w : [0,Θ] −→ R+ if ε > 0 is small enough. Define

w2(θ) = exp

(
−
∫ θ

0

ε

w(s)
+ d(s) + c(s)w(s)ds

)
,

w1(θ) = w(θ) · w2(θ).

It follows that

w′
1 − aw1 − bw2 = w′w2 + ww′

2 − aww2 − bw2

= w2 · (w′ + w · (lnw2)
′ − aw − b)

= w2 · (w′ − w · (ε/w + d + cw) − aw − b)

= w2 ·
(
w′ − ε− b− (a + d) · w − cw2

)
> 0

and

w′
2 + cw1 + dw2 = w2 · ((lnw2)

′ + cw + d) = −w2 · ε/w < 0.

Therefore, (5.1) holds.
Remark 5.2. In the setting of Lemma 5.1, one can see that v : [0,Θ] −→ R

satisfies (5.2) iff the function w : [0,Θ] −→ R defined by

w(θ) = v(θ) · exp

(
−
∫ θ

0

(a + d)(s)ds

)
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is a solution of the Riccati equation

w′(θ) =b(θ) · exp

(
−
∫ θ

0

(a + d)(s)ds

)

+ c(θ) · exp

(∫ θ

0

(a + d)(s)ds

)
· w(θ)2.

(5.3)

Thus conditions in Lemma 5.1 are both equivalent to the following one: The initial
value problem (5.3) with w(0) = 0 has the solution defined on [0,Θ].

Lemma 5.3. Let b, c : [0,Θ] −→ R+ be continuous nonnegative functions. As-
sume that ∫ Θ

0

c(θ)

∫ θ

0

b(s)dsdθ < 1.(5.4)

Then the initial value problem{
w′(θ) = b(θ) + c(θ) · w(θ)2,
w(0) = 0

(5.5)

has the solution w defined on the entire interval [0,Θ].
Proof. As in the proof of Lemma 5.1, it is easy to see that the solvability of

(5.5) is equivalent to the existence of positive solutions w1, w2 : [0,Θ] −→ R+ of the
following system of two ODEs: {

w′
1 = bw2,

w′
2 = −cw1.

(5.6)

Indeed, take z to be a positive solution of the equation in (5.5) and define w2(θ) =∫ θ

0
c(s)z(s)ds, w1(θ) = z(θ)w2(θ). On the other hand, given w1 and w2, the function

z = w1/w2 clearly satisfies the ODE in (5.5).
We will prove that assuming (5.4), the solution to (5.6) with initial data

w1(0) = 1, w2(0) = C(5.7)

satisfies w2(θ) > 0 for all θ ∈ [0,Θ] if only C > 0 is large enough. Since, consequently,
w1 > 0, the proof will be complete. We have

w2(θ) = C −
∫ θ

0

c(s)w1(s)ds = C −
∫ θ

0

c(s)

[
1 +

∫ s

0

b(τ)w2(τ)dτ

]
ds

= C −
∫ θ

0

c(s)ds−
∫ θ

0

c(s)

∫ s

0

b(τ)w2(τ)dτds.

(5.8)

Take ε ∈ (0, 1) and C > 0 such that∫ Θ

0

c(θ)

∫ θ

0

b(s) ds dθ ≤ ε and C −
∫ Θ

0

c(θ)dθ > εC.

To obtain a contradiction, suppose that

min
[0,Θ]

w2 ≤ 0.(5.9)
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Then, by (5.8),

max
[0,Θ]

w2 = w2(θmax) ≤ C −
∫ θmax

0

c(s)ds

−
(

min
[0,Θ]

w2

)
·
∫ θmax

0

c(s)

∫ s

0

b(τ)dτds

≤ C − ε · min
[0,Θ]

w2,

(5.10)

min
[0,Θ]

w2 = w2(θmin) ≥ C −
∫ θmin

0

c(s)ds

−
(

max
[0,Θ]

w2

)
·
∫ θmin

0

c(s)

∫ s

0

b(τ)dτds

> εC − ε · max
[0,Θ]

w2.

(5.11)

Combining (5.10) and (5.11) we arrive at

max
[0,Θ]

w2 < C − ε ·
(
εC − ε · max

[0,Θ]
w2

)
,

which is equivalent to

max
[0,Θ]

w2 < C.

This contradicts (5.7) and thus we see that (5.9) cannot hold, thereby ending the
proof.

By Lemma 5.1, Remark 5.2, and Lemma 5.3, we obtain the following.
Theorem 5.4. When n = 3 and k = 2, then we have the following:
(i) The stability condition (BV) is equivalent to the existence of a positive solution

v : [0,Θ] −→ R+ of the Riccati equation

v′(θ) = p13(θ) + (p11(θ) + p33(θ)) · v(θ) + p31(θ) · v(θ)2.(5.12)

(ii) In particular, (BV) is satisfied if∫ Θ

0

∫ θ

0

e

∫ θ

s
p11+p33 · p13(s) · p31(θ)dsdθ < 1.(5.13)

Remark 5.5. Condition (5.13) is certainly satisfied if p13 or p31 are equal to
0. We also see that in this case (5.12) becomes the Bernoulli or the linear equation,
respectively. On the other hand, in general (5.13) is strictly weaker than the condition
postulated in Theorem 5.4(i). Indeed, when p11 = p33 = 0 and p13(θ) = b > 0,
p31(θ) = c > 0 are constant functions, then the solution to (5.12) takes the form

v(θ) =
√

b/c · tg
(√

bcθ + arctg
(
v(0)/

√
b/c
))

.

Therefore the condition in (i) is here equivalent to Θ
√
bc < π/2, while (5.13) reduces

to: Θ2 · bc/2 < 1. The former inequality is obviously less restrictive than the latter
one.
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In view of the above analysis, determining the BV stability of intermediate rar-
efactions in 3 × 3 systems of conservation laws reduces to evaluating the position of
the blow-up time of the solution to (5.5). In particular the inequality (5.4) provides a
sufficient condition for the blow-up to occur after the time Θ. Another proof of this
result has been communicated to me by professor Ray Redheffer [R2].

Using the analysis in [R1] one can find other interesting sufficient and necessary
conditions in this line. For example [R2], if c′(0) = 0, then

bc +
1

2

(
c′

c

)′
− 1

4

(
c′

c

)2

<
π2

4
on [0, 1](5.14)

implies that the corresponding solution exists on [0, 1]. On the other hand, if (5.14)
holds with a converse inequality, then the blow-up occurs at some point θ ≤ Θ = 1.
It can be checked that the conditions (5.14) and (5.13) are independent.

As remarked in section 4, the respective results concerning the L1 stability con-
dition can be easily recovered. In particular, we have the following theorem.

Theorem 5.6. When n = 3 and k = 2, both assertions of Theorem 5.4 remain
valid also for the condition (L1) if we replace the coefficients pij in (5.12) and (5.13)
by the mass production matrix coefficients mij given in (2.2).

6. A remark for the case n > 3. When n = 3, the numbers p11, p33, p13, and
p31(θ), playing roles in various conditions derived in the previous section, can be seen
(in view of (2.1) and standard Taylor estimates [Sm]) as transmission and reflection
coefficients in the interactions of small perturbation of families 1 and 3 with parts of
the rarefaction wave Rk (located at θ). In this section we present a generalization of
Theorem 5.4(ii) to a particular case of n×n systems (1.1) in which both transmission
matrices are zero.

Lemma 6.1. Let k, n be natural numbers and 1 < k < n. Let B(θ) and C(θ)
be two continuous matrix functions defined on [0,Θ], with all its entries nonnegative,
and of dimensions (n− k) × (k − 1) and (k − 1) × (n− k), respectively. Assume that∣∣∣∣∣

∣∣∣∣∣
∫ Θ

0

∫ θ

0

Bt(s) · Ct(θ)dsdθ

∣∣∣∣∣
∣∣∣∣∣
1

< 1,(6.1)

where the norm of a m×m matrix X = [xij ]i,j:1...m is defined by

‖ X ‖1= max
j:1...m

m∑
i=1

|xij |.

Then there exist positive functions w1 . . . wk−1, wk+1 . . . wn : [0,Θ] −→ R+ such that

B(θ) ·

⎡
⎢⎣

wk+1

...
wn

⎤
⎥⎦ (θ) <

⎡
⎢⎣

w′
1
...

w′
k−1

⎤
⎥⎦ (θ),(6.2)

C(θ) ·

⎡
⎢⎣

w1

...
wk−1

⎤
⎥⎦ (θ) < −

⎡
⎢⎣

w′
k+1
...
w′

n

⎤
⎥⎦ (θ),(6.3)

componentwise, for all θ ∈ (0,Θ).
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Proof. We will prove that under the condition (6.1), the system of ODEs ob-
tained by replacing the inequalities signs in (6.2) (6.3) by equalities has a positive
solution w1 . . . wk−1, wk+1 . . . wn on [0,Θ]. This will clearly complete the proof since
the inequality in (6.1) is strict.

Let wi(0) = 1 for all i < k, and wi(0) = C for all i > k and some constant
C > 0. Notice that the positivity of w1 . . . wk−1 is now implied by the positivity of
wk+1 . . . wn. We have, for every θ ∈ [0,Θ],⎡

⎢⎣
wk+1

...
wn

⎤
⎥⎦ (θ) =

⎡
⎢⎣

wk+1

...
wn

⎤
⎥⎦ (0) −

∫ θ

0

C(s) ·

⎡
⎢⎣

w1

...
wk−1

⎤
⎥⎦ (s)ds

=

⎡
⎢⎣

wk+1

...
wn

⎤
⎥⎦ (0) −

∫ θ

0

C(s)ds ·

⎡
⎢⎣

w1

...
wk−1

⎤
⎥⎦ (0)

−
∫ θ

0

C(s)

∫ s

0

B(τ) ·

⎡
⎢⎣

wk+1

...
wn

⎤
⎥⎦ (τ)dτds.

(6.4)

To prove that wk+1 . . . wn remain positive we argue by contradiction. Assume there
exists θ0 ∈ [0,Θ] such that

∀θ ∈ [0, θ0) ∀i > k wi(θ) > 0 and ∃s > k ws(θ0) = 0.(6.5)

Then, for every θ ∈ [0, θ0) and every i < k there holds wi(θ) > 0. Hence

∀θ ∈ [0, θ0] ∀i > k wi(θ) ≤ wi(0) = C.

Consequently, by (6.4)

0 = ws(θ0) ≥ C −
∫ Θ

0

k−1∑
j=1

Cij(s)ds− C ·
∫ θ0

0

∫ s

0

k−1∑
j=1

(C(s) ·B(τ))ij dτds

≥ C −
∣∣∣∣∣
∣∣∣∣∣
∫ Θ

0

Ct(s)ds

∣∣∣∣∣
∣∣∣∣∣
1

− C ·
∣∣∣∣∣
∣∣∣∣∣
∫ Θ

0

∫ θ

0

Bt(s) · Ct(θ)dsdθ

∣∣∣∣∣
∣∣∣∣∣
1

.

(6.6)

The right-hand side of (6.6) is strictly positive for a large constant C by (6.1). This
contradiction proves that θ0 in (6.5) does not exist and the lemma follows.

Recall now the definition (2.1) and take

A = [pij ]i,j:1...k−1, B = [pij ]i:1...k−1,
j:k+1...n

,

C = [pij ]i:k+1...n,
j:1...k−1

D = [pij ]i,j:k+1...n.

We see that if A and D are zero matrices, then the condition (6.1) clearly implies
(BV). Both this condition and (5.13) were postulated in [Scho] to be sufficient for
the existence result as in Theorem 1.1. Using Lemma 6.1 to appropriate blocks of
the mass production matrix M, it is also not difficult to find the respective condition
implying the L1 stability.
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In the general case, when A and D are not necessarily zero, one expects the
following condition to be sufficient for (BV) to hold:

∣∣∣∣∣
∣∣∣∣∣
∫ Θ

0

∫ θ

0

[
XD(θ) · C(θ) ·

(
X−A(θ)

)−1 ·X−A(s) ·B(s) ·
(
XD(s)

)−1
]t

dsdθ

∣∣∣∣∣
∣∣∣∣∣
1

< 1,

(6.7)

where X−A and XD are the fundamental solutions of the ODEs{ (
X−A

)′
= −X−A ·A,

X−A(0) = Idk−1

{ (
XD

)′
= XD ·D,

XD(0) = Idn−k.

By a change of variables, (6.7) becomes (6.1) (now with different matrices C and B)
and Lemma 6.1 can be used to recover (BV) under additional assumptions. Namely,
the integrand matrix in (6.7) should have nonnegative components and the funda-

mental matrix
(
XD(θ)

)−1
should have positive diagonal and nonnegative off-diagonal

components for each θ. This is the case when, for example, the transmission matrices
A and D are diagonal.

7. Examples. In this section we present a number of examples complementing
the analysis in sections 2–6. We will usually define a strictly hyperbolic matrix A(u),
for u in a neighborhood of Rk given by (1.3). We set Θ = 1. The right and left
eigenvectors {ri}ni=1, {li}ni=1 of A(u) will be used to compute the coefficients in P(θ)
or T(θ). We will not necessarily have A(u) = Df(u) for some smooth flux f .

Example 7.1. F (0,Θ) is invertible but F (θ1, θ2) is not, for some 0 < θ1 < θ2 < Θ.
Thus, in particular, the condition (F) is not satisfied.

Let n = 3, k = 2. Set A to be any strictly hyperbolic 3 × 3 matrix with the
eigenvectors given by

r1(x, y, z) = [cos 2y, 0, sin 2y]t, r2(x, y, z) = [0, − 1, 0]t,

r3(x, y, z) = [− sin y, 0, cos y]t.

Take R2(θ) = (0, 1 − θ, 0). Obviously T = Id3. Therefore the matrix F (0, 1) =
[r1(0, 1, 0), r2, r3(0, 0, 0)] is invertible, but F (1 − π/4, 1) is not as r1(0, π/4, 0) =
r3(0, 0, 0) = [0, 0, 1]t.

Remark 7.2. In Example 7.1 take r2(x, y, z) = [0, 1, 0]t. Consider the rarefaction
R2(θ) = (0, θ, 0) defined on [0, 1] and joining the same states as before, but in the
reverse order. Using the analysis in section 5 one can prove that the condition (BV)
is now equivalent to the existence of the nonnegative solution to the problem⎧⎨

⎩ v′(y) =
2

cos y
− 3(tan y)v(y) +

1

cos y
v(y)2, y ∈ [0, 1],

v(0) = 0.

The author used Maple to check that the solution exists on the whole interval [0, 1].
Thus, in particular, (F) is satisfied along the “inverse rarefaction curve” (with respect
to Example 7.1) R2(θ).

Example 7.3. The condition (BV) is satisfied but the weights {wi}ni=1 cannot be
taken to be linear.

Indeed, if we requested the weights {wi}i �=k in (BV) to be linear, then the condi-
tion would no longer be invariant under rescalings of the eigenvector basis (compare
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Theorem 4.1). Let n = 2, k = 2. Take A(u) to be any smooth strictly hyperbolic
2 × 2 matrix whose right eigenvectors r1, r2 satisfy

r1(θ, 0) = [
√

1 − exp(2θ − 4), exp(θ − 2)]t, r2(θ, 0) = [1 , 0]t.

By Theorem 4.3 (i), the condition (BV) must be satisfied for any rarefaction in this
system. Take R2(θ) = (θ, 0) and calculate

p11(θ) = 〈Dr1(θ, 0) · r2(θ, 0), l1(θ, 0)〉

=
[
d
√

1 − exp(2θ − 4)/dθ, exp(θ − 2)
]
·
[

0
exp(2 − θ)

]
= 1.

If w1 > 0 in (BV) could be taken linear, we would then have

p11 · (w1(0) + w′
1 · θ) < w′

1.

This inequality, however, fails to be true on the interval [1 − w1(0)/w′
1, 1).

Remark 7.4. Note that all elements of the production matrix in Example 7.3 are
nonnegative. This shows that the condition (BV) is indeed stronger than the BV
stability version of the L1 stability condition (3.44) from [BM], where all the second
order coefficients pij (including the diagonal elements pii) are taken in the absolute
value, and the existence of a linear positive solution {wi}ni=1 to the corresponding
vector inequality is asked. On the other hand, the existence of linear weights satisfying
the inequality in (BV) with a matrix P with bigger components clearly implies our
BV stability condition, which thus can be seen as a generalization of the argument
in [BM].

Example 7.5. The condition (F) is satisfied but (BV) is not.
Let n = 3, k = 2. Take A(u = (x, y, z)) to be a smooth 3 × 3 strictly hyperbolic

matrix whose eigenvectors are given by

r1(x, y, z) = [1, 0, 0]t, r2(x, y, z) = [az, 1, ax]t, r3(x, y, z) = [0, 0, 1]t,

with some a > π/2. Consider the rarefaction curve R2(θ) = (0, θ, 0). It is easy to
calculate that the production matrix P has the form

P(θ) =

[
0 a
a 0

]
.

By Remark 5.5, the condition (BV) is thus equivalent to |a| < π/2 and so it is not
satisfied.

We will show that (F) is satisfied, however. Since

Dr2(R2(θ)) =

⎡
⎣ 0 0 a

0 0 0
a 0 0

⎤
⎦ ,

we have

T(θ) = exp(θ · Dr2) =

⎡
⎣ cosh(aθ) 0 sinh(aθ)

0 1 0
sinh(aθ) 0 cosh(aθ)

⎤
⎦ .
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Fix 0 < θ1 < θ2 < 1. Using a version of (3.9), we see that the matrix F (θ1, θ2) is
invertible iff the first row–first column element of T(θ1)

−1 ·T(θ2) is nonzero. Noting
that detT(θ) = 1, this element can be easily computed as

cosh(aθ1) cosh(aθ2) − sinh(aθ1) sinh(aθ2) = cosh(aθ1 − aθ2) > 0.

Example 7.6. The study of plane waves in a half space occupied by a hyperelastic
solid leads to the following 6 × 6 system of hyperbolic conservation laws [TT]:{

Sx − ρ0Vt = 0,
Vx −G · St = 0.

(7.1)

Here S = (s1, s2, s3) and V = (v1, v2, v3) are unknown quantities whose evolution
is governed by a symmetric 3 × 3 matrix G containing appropriate derivatives of a
sufficiently regular constitutive function W (σ = s1, τ

2 = s2
2 + s2

3). The constant ρ0 is
positive. The derivation of the system, its physical relevance, and the related details
can be found in [TT]. We are merely interested in verifying the BV stability condition
for the rarefaction waves generated from the four intermediate characteristic fields of
(7.1). Taking

W (σ, τ2) =
α

2
σ2 +

β

6
σ3 +

δ

4
(τ2)2(7.2)

after a number of calculations [Mu] one arrives at explicit forms of the production
matrices P, corresponding to different rarefaction curves (which may be bounded
or unbounded, depending on the initial data and the parameters of the system).
Although the matrices P are 5 × 5 and in general with nonconstant coefficients, by
their specific structure the inequality in (BV) can be reduced to studying different
Riccati equations of the form

v′(θ) =
A

B ± θ
· (a + bv(θ) + cv2(θ)).(7.3)

By a change of variable, (7.3) is equivalent to

v′(s) = (a + bv(s) + cv2(s)).(7.4)

Since in each case a, c > 0, b < 0, and b2 − 4ac ≥ 0, the right-hand side of (7.4) has
a positive root. Thus (7.4) has a (trivial) positive solution existing for all s. Based
on this observation one obtains the BV stability of all rarefaction waves in the model
(7.1) with the constitutive function (7.2). Incorporating the term στ2 in W may lead
to a more complicated analysis [Mu].

8. Stability conditions for general patterns of noninteracting large
waves. In section 2 we have shown that for a single k-rarefaction the invertibility
of the matrix F (0,Θ) implies the assertion of Theorem 2.1 with (u−, u+) close to the
extreme states of the reference pattern u0 in (1.5). For a single k-shock the corre-
sponding property follows from the Majda stability condition [M]. It turns out that
in case of multiple waves an additional finiteness condition, accounting for the mutual
influence of the strong waves in u0 is required. The analysis related to the case with
strong shocks was the contents of [Le1, Le2].

Below we study the similar problem for a general pattern u0 of M shock and
rarefaction waves of different characteristic families. We also state the respective BV
stability condition and prove a useful generalization of Theorem 3.2.
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Let M+1 (with 2 ≤ M ≤ n) distinct states {uq
0}Mq=0 in Rn be given. Assume that

the Riemann problem (u0
0, u

M
0 ) for (1.1) has a self-similar solution composed of M

(large) waves {uq−1
0 , uq

0}Mq=1. For each q : 1 . . .M , the qth wave joining states (uq−1
0 , uq

0)
is said to belong to iqth characteristic family and all families i1 < i2 < . . . < iM are
genuinely nonlinear. The waves can be of two types.

(i) Stable rarefaction waves, that is,

d

dθ
Riq (θ) = riq

(
Riq (θ)

)
,

uq−1
0 = Riq (0), uq

0 = Riq (Θq), Θq > 0,

(8.1)

and the matrix Fq(0,Θq), defined as in (2.4) (2.3) with the field number iq
replacing k, is invertible.

(ii) Lax compressive, Majda stable shocks [L, M]. That is, calling Λq the speed
of the shock we have

Λq · (uq
0 − uq−1

0 ) = f(uq
0) − f(uq−1

0 ),(8.2)

λiq−1(u
q−1
0 ) < Λq < λiq (u

q−1
0 ) and λiq (u

q
0) < Λq < λiq+1(u

q
0),(8.3)

det
[
r1(u

q−1
0 ) . . . riq−1(u

q−1
0 ), uq

0 − uq−1
0 , riq+1(u

q
0) . . . rn(uq

0)
]
�= 0.(8.4)

We moreover assume that in a sufficiently small neighborhood of the set of states in
Rn attained by u0, the system (1.1) is strictly hyperbolic, with each characteristic
family genuinely nonlinear or linearly degenerate.

For each q : 0 . . .M , let Ωq be an open neighborhood of the state uq
0. According to

[Le2], for each shock (uq−1
0 , uq

0) conditions (8.2), (8.3), (8.4) imply (and by the shock
compressibility are essentially equivalent to) the existence of a constitutive function
Ψq : Ωq−1 × Ωq −→ Rn−1 whose zero locus is composed of pairs of states that can
be joined by a stable iq shock. Moreover, the following n − 1 vectors are linearly
independent:{

∂Ψq

∂uq−1
(uq−1

0 , uq
0) · ri(u

q−1
0 )

}iq−1

i=1

∪
{
∂Ψq

∂uq
(uq−1

0 , uq
0) · ri(u

q
0)

}n

i=iq+1

.(8.5)

In case (uq−1
0 , uq

0) is a stable rarefaction wave as in (i), the corresponding function
Ψq can be defined as

Ψq(uq−1, uq) = (σ1 . . . σk−1, σk+1 . . . σn) ,(8.6)

where {σi}ni=1 stand for the strengths of the waves in the solution of the Riemann
problem (uq−1, uq); compare Theorem 2.1 and its proof.

For each q : 1 . . .M define a (n−1)× (n−1) matrix Cq whose negative first iq−1
columns, and last n− iq columns are the vectors in (8.5). Notice that for rarefactions
Cq = Idn−1 and thus Cq is invertible for each q. Call

F left
q = −C−1

q · ∂Ψq

∂uq−1
(uq−1

0 , uq
0) ·
[
riq (u

q−1
0 ) . . . rn(uq−1

0 )
]
,

F right
q = C−1

q · ∂Ψq

∂uq
(uq−1

0 , uq
0) ·
[
r1(u

q
0) . . . riq (u

q
0)
]
.

(8.7)

By an argument as in the proof of Theorem 2.1, we see that the (n− 1) × iq matrix
F right
q expresses strengths of the weak outgoing waves in terms of strengths of waves
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perturbing the right state of the Riemann problem (uq−1
0 , uq

0). Analogously, the (n−
1)×(n−iq+1) matrix F left

q corresponds to perturbations of uq−1
0 in the same Riemann

problem.
Now define the square M · (n− 1) dimensional finiteness matrix F:

F =

⎡
⎢⎢⎢⎢⎢⎢⎣

[Θ] F right
1

F left
2 [Θ] F right

2

F left
3 [Θ] F right

3

. . .
. . .

F left
M [Θ]

⎤
⎥⎥⎥⎥⎥⎥⎦
,(8.8)

where [Θ] stands for the (n−1)×(n−1) zero matrix. The following is a generalization
of Theorem 2.1.

Finiteness condition: 1 is not an eigenvalue of the matrix F.(8.9)

Theorem 8.1. In the above setting let the condition (8.9) hold. Then any Rie-
mann problem (u−, u+) ∈ Ω0×ΩM for (1.1) has a unique self-similar solution attain-
ing n+ 1 states, consecutively connected by (n−M) weak waves and M strong waves
(shocks or rarefactions) joining states in different sets Ωq.

Proof. Define an auxiliary function

G :
(
Ω0 × Ω1 × . . .× ΩM

)
× Ii1−1 × Ii2−i1−1 × Ii3−i2−1 × · · · × IiM−iM−1−1 × In−iM −→ RM ·(n−1),

G((u−, u1, u2 . . . uM−1, u+),
(σ1, σ2 . . . σi1−1), (σi1+1 . . . σi2−1) . . . (σiM+1 . . . σn))

= Ψ1(Wi1−1(σi1−1) . . . ◦W1(u
−, σ1), u1),

Ψ2(Wi2−1(σi2−1) . . . ◦Wi1+1(u
1, σi1+1), u2),

. . .

ΨM (WiM−1(σiM−1) . . . ◦WiM−1+1(u
M−1, σiM−1+1), uM ),

where

u+ = Wn(σn) . . . ◦WiM+1(u
M , σiM+1)

and I denotes a small interval in R, containing 0. Call A the M · (n − 1) di-
mensional square matrix, that is, the derivative of G with respect to the variables
(u1 . . . uM−1), (σ1 . . . σn) at the point

(
(u0

0 . . . u
M
0 ), (0 . . . 0)

)
. We will show that A is

invertible iff the condition (8.9) holds, which by implicit function theorem will com-
plete the proof.

Note first that the invertibility of A is equivalent to the invertibility of the follow-
ing matrix (which without loss of generality we also call A), of the same dimension:

A =

⎡
⎢⎢⎢⎢⎢⎣

A1 Br
1

Bl
1 A2 Br

2

Bl
2

. . .
. . .

AM ÃM

⎤
⎥⎥⎥⎥⎥⎦ .(8.10)
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Here

Aq =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂Ψ1

∂u0
(u0

0, u
1
0) ·
[
r1(u

0
0) . . . ri1−1(u

0
0)
]

for q = 1,

∂Ψq

∂uq−1
(uq−1

0 , uq
0) ·
[
riq−1+1(u

q−1
0 ) . . . riq−1(u

q−1
0 )

]
for q : 2 . . .M

and

ÃM =
∂ΨM

∂uM
(uM−1

0 , uM
0 ) ·

[
riM+1(u

M
0 ) . . . rn(uM

0 )
]
,

Bl
q =

∂Ψq

∂uq−1
(uq−1

0 , uq
0) ·
[
r1(u

q−1
0 ) . . . rn(uq−1

0 )
]
,

Br
q =

∂Ψq

∂uq
(uq−1

0 , uq
0) ·
[
r1(u

q−1
0 ) . . . rn(uq−1

0 )
]
.

Introducing (8.7) in (8.10) and permuting the columns of A we observe that A is
invertible iff the following matrix (which we again denote by A) is invertible:

A =

⎡
⎢⎢⎢⎣

−C1 C1 · F right
1

C2 · F left
2 −C2 C2 · F right

2

. . .
. . .

CM · F left
M −CM

⎤
⎥⎥⎥⎦ .(8.11)

Multiplying A by the square block matrix

⎡
⎢⎢⎢⎣

C−1
1

C−1
2

. . .

C−1
M

⎤
⎥⎥⎥⎦ ,

we conclude that the invertibility of A in (8.11) is equivalent to the invertibility of
F − IdM ·(n−1) and hence equivalent to (8.9).

Remark 8.2. Let (uq−1
0 , uq

0) be a stable iq- rarefaction wave. After neglecting the
iqth rows of the two matrices

F (0,Θq)
−1 · Tq(Θq) ·

[
riq (u

q−1
0 ), riq+1(u

q−1
0 ) . . . rn(uq−1

0 )
]
,

F (0,Θq)
−1 ·

[
r1(u

q
0) . . . riq−1(u

q
0), riq (u

q
0)
]
,

(8.12)

they become, respectively, F left
q and F right

q .
We now formulate the following:

BV stability condition for the wave pattern u0.(8.13)

There exist positive continuous weights {wi(u)}ni=1 defined on the set of states u
attained by the reference solution u0 (that is, at the isolated endpoints of shocks and
along the rarefaction curves), such that for every q : 1 . . .M the following holds.
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(i) If (uq−1
0 , uq

0) is a shock, then

∣∣F left
q

∣∣t ·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

w1(u
q−1
0 )
...

wiq−1(u
q−1
0 )

wiq+1(u
q
0)

...
wn(uq

0)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
<

⎡
⎢⎣

wiq (u
q−1
0 )

...

wn(uq−1
0 )

⎤
⎥⎦

and
∣∣F right

q

∣∣t ·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

w1(u
q−1
0 )
...

wiq−1(u
q−1
0 )

wiq+1(u
q
0)

...
wn(uq

0)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
<

⎡
⎢⎣

w1(u
q
0)

...
wiq (u

q
0)

⎤
⎥⎦ ,

where the components of a matrix |A| are meant to be absolute values of the
components of A, and the above vector inequality is understood component-
wise.

(ii) If (uq−1
0 , uq

0) is a rarefaction, then the corresponding BV stability condition
(BV) is satisfied, with the production matrix Pq defined by (2.1) along the
rarefaction curve Rq.

Based on the results of [BM, Le1, Le3], we conjecture that the condition (8.13)
implies the BV stability of the pattern u0, in the sense of Theorem 1.1. Also, a similar
weighted L1 stability condition can be easily formulated and will imply the existence
of a continuous flow of solutions, as in Theorem 1.2. Our final result is the following
theorem.

Theorem 8.3. In the above setting, the condition (8.13) implies the solvability
of any Riemann problem in the vicinity of (u0(1, x1), u0(1, x2)) for any x1 < x2.

Proof. In view of Theorem 8.1, it is enough to show that (8.13) implies (8.9). By
Lemma 3.3 from [Le2] and Remark 8.2, this will be achieved provided we prove the
inequalities in (8.13) (i) for each rarefaction (uq−1

0 , uq
0). But this indeed follows from

Lemma 3.1 (i), applied to the matrix P̃ as in the proof of Theorem 3.2.

Acknowledgments. I thank my colleagues at the University of Chicago for pro-
viding the stimulating atmosphere which enabled me to finish this paper. I thank
professor Constantine Dafermos for his encouragement and for bringing to my atten-
tion the paper [TT]. Professor Alberto Bressan read the manuscript and pointed out
a number of improvements.

REFERENCES

[BiB] S. Bianchini and A. Bressan, Vanishing viscosity solutions of nonlinear hyperbolic systems,
Ann. of Math., to appear.

[B] A. Bressan, Hyperbolic Systems of Conservation Laws. The One-Dimensional Cauchy
Problem, Oxford University Press, Oxford, UK, 2000.

[BC] A. Bressan and R. M. Colombo, Unique solutions of 2 × 2 conservation laws with large
data, Indiana Univ. Math. J., 44 (1995), pp. 677–725.

[BLY] A. Bressan, T. P. Liu, and T. Yang, L1 Stability estimates for n× n conservation laws,
Arch. Ration. Mech. Anal., 149 (1999), pp. 1–22.



STABILITY CONDITIONS FOR STRONG RAREFACTIONS 1369

[BM] A. Bressan and A. Marson, A variational calculus for discontinuous solutions of systems
of conservation laws, Comm. Partial Differential Equations, 20 (1995), pp. 1491–1552.

[D] C. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, Springer-Verlag,
Berlin, 2000.

[HR] H. Holden and N. H. Risebro, Front Tracking for Hyperbolic Conservation Laws, Springer-
Verlag, New York, 2002.

[J] H. K. Jenssen, Blowup for systems of conservation laws, SIAM J. Math. Anal., 31 (2000),
pp. 894–908.

[L] P. Lax, Hyperbolic systems of conservation laws. II, Comm. Pure Appl. Math., 10 (1957),
pp. 537–566.

[Le1] M. Lewicka, L1 stability of patterns of non-interacting large shock waves, Indiana Univ.
Math. J., 49 (2000), pp. 1515–1537.

[Le2] M. Lewicka, Stability conditions for patterns of noninteracting large shock waves, SIAM J.
Math. Anal., 32 (2001), pp. 1094–1116.

[Le3] M. Lewicka, Lyapunov functional for solutions of systems of conservation laws containing
a strong rarefaction, submitted.

[M] A. Majda, The stability of multidimensional shock fronts, Mem. Amer. Math. Soc., 41
(1983), iv + 95 pp.

[Mu] P. Mucha, private communication, 2003.
[R1] R. Redheffer and D. Port, Differential equations: Theory and applications, Jones and

Bartlett Publishers, Boston, 1991.
[R2] R. Redheffer, private communication, 2002.
[S] D. Serre, Systems of Conservation Laws, Cambridge University Press, Cambridge, UK,

1999.
[Scho] S. Schochet, Sufficient conditions for local existence via Glimm’s scheme for large BV

data, J. Differential Equations, 89 (1991), pp. 317–354.
[Sm] J. Smoller, Shock Waves and Reaction-Diffusion Equations, Springer-Verlag, New York,

1994.
[TT] Z. Tang and T. C. T. Ting, Wave curves for the Riemann problem of plane waves in

isotropic elastic solids, Internat. J. Engrg. Sci., 25 (1987), pp. 1343–1381.



LYAPUNOV FUNCTIONAL FOR SOLUTIONS OF SYSTEMS OF
CONSERVATION LAWS CONTAINING A STRONG RAREFACTION∗

MARTA LEWICKA†

SIAM J. MATH. ANAL. c© 2005 Society for Industrial and Applied Mathematics
Vol. 36, No. 5, pp. 1371–1399

Abstract. We study the Cauchy problem for a strictly hyperbolic n×n system of conservation
laws in one space dimension:

ut + f(u)x = 0,

u(0, x) = ū(x).

The initial data ū is a small BV perturbation of a single rarefaction wave with an arbitrary strength.
All characteristic fields are assumed to be genuinely nonlinear or linearly degenerate in the vicinity
of the reference rarefaction curve. We prove that a suitable BV stability condition yields uniform
bounds on the total variation of perturbation, thus implying the existence of a global admissible
solution. On the other hand, a stronger L1 stability condition guarantees the existence of the
Lipschitz continuous flow of solutions. Our proof relies on the construction of a Lyapunov functional
which is almost decreasing in time and which is equivalent to the L1 distance between the two
solutions.

Key words. conservation laws, large data, rarefaction wave, stability conditions

AMS subject classifications. 35L65, 35L45

DOI. 10.1137/S0036141003429505

1. Introduction and statement of the main results. The system of con-
servation laws in one space dimension is the following first order system of nonlinear
PDEs:

ut + f(u)x = 0.(1.1)

The well-posedness of (1.1) has been the objective of vast research in recent years;
however, at a considerable level of generality it remains an open problem. A complete
analysis of the issue has been carried out for strictly hyperbolic flux in (1.1) and initial
data ū ∈ BV having suitably small total variation:

u(0, x) = ū(x).(1.2)

Namely, the entropy solutions to (1.1), (1.2) constitute a flow which is Lipschitz
continuous with respect to time and initial data. As shown recently in [BiB], its
trajectories are the limits of the solutions to the parabolic regularizations of (1.1),
when the viscosity parameter vanishes to zero.

Another approach was implemented in a series of papers [BC, BCP, BLY]. It
relies on building piecewise constant approximations of solutions to (1.1), (1.2) and
then controlling the evolution of their BV or L1 norm. The fundamental block in
this construction is provided by solutions of the Riemann problems, that is, for initial
data ū consisting of a single discontinuity:

u(0, x) =

{
u− x < 0,
u+ x > 0.

(1.3)
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To analyze how much the condition of the smallness of initial data can be relaxed,
one wishes to study the well-posedness of (1.1), (1.2) with ū being a small perturba-
tion of fixed Riemann data of arbitrarily large strength. We assume that the solution
of the latter is given and that it consists of a number of waves of different character-
istic families. More generally, we wish to study the stability of a reference pattern
containing possibly strong but noninteracting waves. The above mentioned results
indicate that the trivial pattern with no waves present is stable, as one can control
the amount (measured in TV or in the L1 norm) of initially small perturbation of
this pattern.

An example in [BC] points out that this is no longer true in the presence of
strong waves. Indeed, one has to account for the waves’ mutual influence as well as
for their interaction with the perturbation, and therefore extra stability conditions are
necessary. These conditions in essence refer to the existence of weights with respect
to which the flow generated by the associated linearized problem is a contraction; the
linearization is taken at states attained by the reference solution [BM]. This approach
was realized in a series of papers [BC, Scho, BM, LeT, Le1]. All these works, however,
concentrate mainly on patterns with strong shocks or deal solely with the BV stability
in the presence of rarefactions.

In [BC] the authors study systems of two equations and prove their BV and L1

stability under the corresponding nonresonance conditions relating to two shocks. The
presence of strong rarefaction waves is also admitted; however, their stability follows
without any additional restrictions [Le3], since they belong to the extreme character-
istic fields. More general n × n systems of conservation laws are studied in [Scho],
and the BV stability of patterns, including strong shocks, rarefactions, and contact
discontinuities, is established. In particular this yields the local-in-time existence of
solutions to (1.1), (1.2) within the class of initial data with bounded variation. In
[Le1] we established both the BV and the L1 stability of patterns of noninteracting
strong classical shocks in n × n systems. The crucial ingredient for proving the L1

stability was the Lyapunov functional approach from [BLY]; let us anticipate that the
same method will be used in the present article. The role of the stability conditions
from [BM, Le1] and their relations to [BC, Scho] were explained in [Le2].

As a next step, this paper studies BV and L1 stability of solutions to (1.1), (1.2)
close to a reference pattern which is a single rarefaction wave of arbitrary strength.
The results of this work combined with [Le1] thus yield the well-posedness analysis
for patterns of noninteracting shock and rarefaction waves (compare also [Le3]). The
stability conditions presented in this paper are studied in a complementary work [Le3].

We now state our basic hypotheses and set the notation:⎡
⎣ The system (1.1) is strictly hyperbolic in a domain Ω ⊂ Rn to be

specified later. That is, for each u ∈ Ω the Jacobian matrix Df(u)
of the smooth flux f : Ω −→ Rn has n distinct and real eigenvalues:
λ1(u) < · · · < λn(u).

(H1)

Let {ri(u)}ni=1 be the basis of right eigenvectors of Df ; Df(u)ri(u) = λi(u)ri(u).
Call {li(u)}ni=1 the dual basis of left eigenvectors so that 〈ri(u), lj(u)〉 = δij for all
i, j : 1 . . . n and all u ∈ Ω.

Fix k : 1 . . . n and consider an integral curve Rk of the vector field rk joining
states ul, ur ∈ Ω:

d

dθ
Rk(θ) = rk(Rk(θ)),

ul = Rk(0), ur = Rk(Θ), Θ > 0.
(1.4)
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Rk is called the rarefaction curve. For a small c > 0 we define the domain

Ω = Ωc = {u ∈ Rn : ||u−Rk(θ)|| < c for some θ ∈ [0,Θ]} ;(1.5)

all the subsequent reasoning will be restricted to this domain, with the parameter c
appropriately small. We further assume that[

In Ω, each characteristic field i : 1 . . . n is either linearly degenerate
(〈Dλi, ri〉 ≡ 0), or it is genuinely nonlinear, which means that 〈Dλi, ri〉 >
0. The kth characteristic field is assumed to be genuinely nonlinear.

(H2)

In the case of linearly degenerate fields we set ||ri(u)|| = 1, while when the ith
field is genuinely nonlinear we choose the normalization of right eigenvectors ri(u) so
that 〈Dλi(u), ri(u)〉 = 1 for all u ∈ Ω. In particular we have

〈Dλk(u), rk(u)〉 = 1 for all u ∈ Ω(1.6)

and thus Θ = λk(ur) − λk(ul).
The piecewise smooth, self-similar function, called the centered rarefaction wave

(see Figure 1.1), is given by

u0(t, x) =

⎧⎨
⎩

ul if x < tλk(ul),
Rk(θ) if x = tλk(Rk(θ)), θ ∈ [0,Θ],
ur if x > tλk(ur)

(1.7)

and provides an entropy admissible solution of (1.1) [Sm, D]. The objective of this
paper is a study of the stability of u0. Our main results are expressed in the following
theorems.

Fig. 1.1.

Theorem 1. Assume that (H1), (H2), and the BV stability condition (2.6) hold.
For c, δ > 0 let Ec,δ denote the set of all continuous functions ū satisfying

(i) ū(x) ∈ Ωc for all x ∈ R,
(ii) limx→−∞ ū(x) = ul and limx→∞ ū(x) = ur,
(iii) |TV (ū) − |Rk|| < δ, where |Rk| = TV (Rk) is the arc-length of the rarefaction

curve Rk(θ), θ ∈ [0,Θ].
There exist small parameters c, δ > 0 such that for every ū ∈ cl Ec,δ, where cl denotes
the closure in L1

loc, the Cauchy problem (1.1), (1.2) has a global entropy admissible
solution u(t, x).

Theorem 2. Assume that (H1), (H2), and the L1 stability condition (3.1) are
satisfied. Then there exists a closed domain D ⊂ L1

loc(R,Ω), containing all continuous
functions ū satisfying (i), (ii), (iii) in Theorem 1, for some c, δ > 0, and there exists
a semigroup S : D × [0,∞) −→ D such that
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(i) ||S(ū, t) − S(v̄, s)||L1 ≤ L · (|t− s| + ||ū− v̄||L1) for all ū, v̄ ∈ D, all t, s ≥ 0,
and a uniform constant L, depending only on the system (1.1),

(ii) for all ū ∈ D, the trajectory t 
→ S(ū, t) is the solution to (1.1), (1.2) given
in Theorem 1.

We now set other preliminaries. For each i : 1 . . . n and u ∈ Ω, call σ 
→ Si(u, σ)
and σ 
→ Ri(u, σ), the ith shock and the ith rarefaction curves through the point u
[L, D]. In particular we have Rk(ul, θ) = Rk(θ). Both curves are defined at least
locally, that is, for σ ∈ (−c, c), and have second order contact at σ = 0:

Si(u, σ) −Ri(u, σ) = O(1)|σ|3.(1.8)

The curves’ parametrization is consistent with the normalization of the right eigenvec-
tors ri. That is, they are parametrized by arc-length if the ith characteristic field is
linearly degenerate, and by the corresponding eigenvalue λi if the ith field is genuinely
nonlinear:

λi(Si(u, σ)) − λi(u) = σ = λi(Ri(u, σ)) − λi(u).(1.9)

By this choice of parametrization we have

Si(Si(u, σ),−σ) = u.(1.10)

The speed λ of a weak shock wave (u−, u+ = Si(u
−, σ)) with strength σ < 0 can be

computed from the Rankine–Hugoniot identity:

f(u+) − f(u−) = λ · (u+ − u−).(1.11)

Throughout the paper, by O(1) we mean any uniformly bounded function, depending
only on the system (1.1). Any sufficiently small but positive constant is denoted by
c. The Riemann data as in (1.3) is for simplicity denoted by (u−, u+).

The paper is constructed as follows. In sections 2 and 3 we present the stability
conditions and their primary motivation. In section 4 we prove Theorem 1. The
proof relies on the construction of approximate solutions by means of the wave front
tracking algorithm [HR, BaJ], and applying the Glimm analysis in view of the BV
stability condition. In section 9 we prove that the domain of applicability of these
techniques actually contains the data with properties as in Theorem 1.

Toward the proof of Theorem 2, in section 6 we give the definition of the Lya-
punov functional measuring the L1 distance between the two approximate solutions
constructed in section 4. The crucial observation for our construction is noting that
in the initial time interval where the solutions are apart from each other, this dis-
tance decreases rapidly. A convenient tool to estimate the decrease is the first order
rarefactions, introduced in section 5. For other times, the pointwise distance between
solutions is calculated along shock curves, as in [BLY]. The decrease of the func-
tional follows then from the assumed L1 stability condition and the main concern of
sections 7 and 8.

2. The weighted BV stability condition. In this section we discuss a sta-
bility condition guaranteeing the existence of solutions to the problem (1.1)(1.2) in
the vicinity of the reference rarefaction wave (1.7). To motivate our approach we first
recall the argument from [Le1, BM]. The stability conditions there were formulated
in terms of the existence of a family of weights wi > 0, i : 1 . . . n, corresponding to
different characteristic families of perturbation v, and depending on the location of
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perturbing waves inside the reference pattern u0. The conditions required that the
weighted BV or L1 norm of any solution of

vt + Df(u0)vx + [D2f(u0) · v] · (u0)x = 0

was nonincreasing in time.
Let w1 . . . wk−1, wk+1 . . . wn : (−c,Θ + c) −→ R+ be smooth, nonnegative func-

tions defined along the rarefaction curve Rk in (1.4). We can extend this definition
on the whole neighborhood Ω by setting

∀i �= k, ∀u ∈ Ω wi(u) = wi(θ), where λk(u) = λk(Rk(θ)).(2.1)

Consider an interaction of a weak ith wave with a small part of the rarefaction Rk, lo-
cated at the state u = Rk(θ). To fix the ideas, assume that i < k and call the strengths
of the incoming waves and the states they join to u, respectively, q−k > 0, q−i , u

−, u+

(as in Figure 2.1(a)). In particular, we have u = Rk(u
−, q−k ) and q−k = θ−λk(u

−). The
strengths of waves are computed in terms of change in the corresponding eigenvalue
for genuinely nonlinear fields, or the arc-length of the rarefaction curve connecting
the two states, for linearly degenerate fields. We thus remain consistent with the
parametrization of the right eigenvectors, given in section 1. Now if q−k and q−i are
small enough, the Riemann problem (u−, u+) has a self-similar solution composed of
n outgoing waves having strengths q+

1 . . . q+
n . For the basic properties of this construc-

tion we refer to [L, Sm, B, D]. Assigning to each wave the weight wi corresponding to
its characteristic family and computed at the wave’s left state, we now require that
the weighted amount of perturbation decreases across the interaction, so that∑

j �=k

w+
j |q+

j | < w−
i |q−i |.(2.2)

Recall the standard Taylor estimates [Sm]:

∀j �= k q+
j = δij · q−i + 〈lj(u), [ri, rk](u)〉 · q−i q−k

+ O(1)|q−i q−k |(|q
−
i | + |q−k |).

(2.3)

Here [ri, rk] = Dri · rk − Drk · ri stands for the Lie bracket of two vector fields, and
δij is the Kronecker delta.
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In view of (2.3), we have

∀j �= k, i w+
j |q+

j | =wj(u) · |〈lj(u), [ri, rk](u)〉| · |q−i q−k |
+ O(1)|q−i q−k |(|q

−
i | + |q−k |).

On the other hand,

w+
i q

+
i − w−

i q
−
i =(w+

i − w−
i )q−i + w+

i (q+
i − q−i )

= − w′
i(θ) · q−i q−k + wi(u) · 〈li, [ri, rk]〉(u) · q−i q−k

+ O(1)|q−i q−k |(|q
−
i | + |q−k |).

Hence,

w+
i |q+

i | − w−
i |q−i | =(sgn q−i ) · (w+

i q
+
i − w−

i q
−
i )

=
{
wi(u) · 〈li, [ri, rk]〉(u) − w′

i(θ)
}
· |q−i q−k |

+ O(1)|q−i q−k |(|q
−
i | + |q−k |).

Condition (2.2) is thus equivalent to⎛
⎝∑

j �=i,k

wj(θ) · |〈lj , [ri, rk]〉(Rk(θ))|

⎞
⎠+ wi(θ) · 〈li, [ri, rk]〉(Rk(θ)) < w′

i(θ).(2.4)

Analogously, for i > k one obtains⎛
⎝∑

j �=i,k

wj(θ) · |〈lj , [rk, ri]〉(Rk(θ))|

⎞
⎠+ wi(θ) · 〈li, [rk, ri]〉(Rk(θ)) < −w′

i(θ).(2.5)

Define the (n− 1) × (n− 1) matrix function:

P(θ) = [pij(θ)]i,j:1...n,
i,j �=k

for θ ∈ [0,Θ],

pij(θ) =

{
|〈lj , [ri, rk]〉(Rk(θ))| if i �= j,

sgn(k − i) · 〈li, [ri, rk]〉(Rk(θ)) if i = j.

Combining (2.4) and (2.5), we have proved the following.
Lemma 2.1. Condition (2.2) is equivalent to the following:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

BV stability condition: There exist positive smooth functions
w1 . . . wk−1, wk+1 . . . wn : [0,Θ] → R+ such that

P(θ) ·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

w1(θ)
...

wk−1(θ)
wk+1(θ)

...
wn(θ)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
<

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

w′
1(θ)
...

w′
k−1(θ)

−w′
k+1(θ)
...

−w′
n(θ)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

for every θ ∈ (0,Θ),

where the above vector inequality is understood componentwise.

(2.6)
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Remark 2.2. Notice that because of the strict inequalities in (2.4) and (2.5), the
condition (2.6) implies a stricter version of (2.2):

∑
j �=k

w+
j |q+

j | < w−
i |q−i | − c|q−i q−k |

for a small constant c.
Remark 2.3. The inequality in (2.6) is independent from rescaling wi 
→ α · wi,

for any α > 0. Thus, in particular we may assume that

|wi(u)| < 1 and ||Dwi(u)|| < 1

for each i and every u ∈ Ω.
Remark 2.4. If all pij(θ) ≥ 0, we can regard the quantity wi(θ) as the measure

of the amount of potential future interactions of the ith perturbation wave located
at the state Rk(θ). For i < k each wi is an increasing function of θ, and for i > k
each wi is decreasing along the curve Rk. Indeed, the slow waves (λi < λk for i < k)
travel in the direction of decreasing θ on the t − x plane, and thus the bigger the
parameter θ corresponding to their location is, the more potential contribution to the
future amount of perturbation they create. The converse assertion is true for the fast
waves of characteristic families i > k.

By an approximation argument, as the inequality in (2.6) is strict, we see that
(2.2) also holds for any state u ∈ Ωc. For the more detailed discussion of condition
(2.6) we refer to the paper [Le3]. In particular, we have the following.

Lemma 2.5 [Le3]. Let the condition (2.6) be satisfied. There exists c > 0 such
that for every u−, u+ ∈ Ω with λk(u

+)−λk(u
−) > −c, the Riemann problem (u−, u+)

for (1.1) has the unique self-similar solution attaining states in Ω. The solution is
composed of n− 1 weak waves of families 1 . . . k− 1, k + 1 . . . n and a kth wave which
is either a weak shock or a rarefaction.

Condition (2.6) is independent of the parametrization of the eigenvectors in Ω.
The next lemma gathers several other properties of this condition.

Lemma 2.6 [Le3]. In any of the following cases (2.6) is satisfied:
(i) when the reference rarefaction is sufficiently weak, that is, 0 < Θ  1,
(ii) when the reference rarefaction belongs to an extreme characteristic field (k = 1

or n),
(iii) when (1.1) has a coordinate system of Riemann invariants [Sm, D, S].

In particular, any rarefaction wave in any 2 × 2 system or the 3 × 3 system of Euler
equations of gas dynamics [D, Sm, Scho] is BV stable.

(iv) For n = 3 and k = 2, (2.6) is equivalent to the existence of a positive solution
v : [0,Θ] −→ R+ to the Riccati equation:

v′(θ) = p12(θ) + [p11(θ) + p22(θ)] · v(θ) + p21(θ) · v2(θ).

3. The weighted L1 stability condition. The production matrix P in con-
dition (2.6) accounts for the infinitesimal change of the strength of perturbation as
it passes through the rarefaction fan (1.7). The elements of P(θ) are second order
coefficients in the Taylor expansion of the strength of waves produced through the
interaction with a part of the large rarefaction Rk(θ). In order to deal with the L1 sta-
bility one is led to a “mass production” matrix M(θ) whose components additionally
account for the shifts in locations of the perturbing waves of different characteristic
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families before and after the interaction. More precisely, define

M(θ) = [mij(θ)]i,j:1...n,
i,j �=k

for θ ∈ [0,Θ],

mij(θ) =

⎧⎪⎪⎨
⎪⎪⎩
pij(θ) ·

|λj − λk|
|λi − λk|

(Rk(θ)) if i �= j,

pij(θ) +
Dλi · rk
|λi − λk|

(Rk(θ)) if i = j.

We have the following:[
L1 stability condition: There exist positive smooth functions
w1 . . . wk−1, wk+1 . . . wn : [0,Θ] → R+ such that the inequality in (2.6)
is satisfied with M(θ) replacing the matrix P(θ).

(3.1)

Note that an observation as in Remark 2.3 remains valid.
A more restrictive version of (3.1), where all weights wi are linear, was introduced

in [BM] in the context of the well-posedness of the associated variational system.
Lemma 3.1 [Le3]. We have the following:
(i) Condition (3.1) is stronger than the BV stability condition (2.6).
(ii) The assertions of Lemma 2.6 hold in their respective versions.
(iii) For all i �= j and all θ ∈ [0,Θ] there holds: mij(θ) = |〈lj ,Dri · rk〉(Rk(θ))|

and mii(θ) = sgn (k − i) · 〈li,Dri · rk〉(Rk(θ)).
We end this section by presenting a consequence of (3.1) which plays the same

role as Lemma 2.1 and Remark 2.2 for the condition (2.6). Its proof will follow from
the more general Lemma 8.2. To fix the ideas, let

Sk(q
−
k ) ◦ Si(u, q

−
i ) = Sn(q+

n ) ◦ . . .S1(u, q
+
1 )

with u ∈ Ω, {q−j }j=i,k small enough and q−k ≥ 0. Then for a small uniform constant
γ we have ∑

j �=k

w+
j |q+

j | · |λ+
j − λ+

k | < w−
i |q−i | · |λ−

i − λ−
k | − γ|q−i q−k |.

Namely, the total weighted mass of perturbation decreases as it passes through the
rarefaction wave (1.7). Recall [BM] that the ratio ∆/∆0 of shifts in the reflected or
transmitted wave with respect to the shift in an incoming wave can be computed as
|λ+ − λk|/|λ− − λk|. As in Figure 2.1(b), λ− and λ+ denote speeds of the modified
waves before and after the interaction with a reference wave traveling with speed λk.

4. Existence of solutions: A proof of Theorem 1. Recall that given a
Cauchy problem (1.1), (1.2) with ū having small total variation, its solution can be
obtained in the limit when ε → 0 of piecewise constant ε-approximations uε(t, x) con-
structed via the wave front tracking algorithm [BaJ, HR]. For the detailed description
of the algorithm we refer to [B]. The crucial ingredient in proving the global exis-
tence of the approximate solutions and the compactness of its sequence is the Glimm
functional [G] controlling the total variation of perturbation and the amount of the
future interactions. Below we briefly discuss a natural modification of this standard
construction, applicable when the reference pattern is a strong kth rarefaction Rk

rather than a constant state. We then show that our Glimm-type functional Γ is
indeed nonincreasing along any wave front tracking approximate solution, thanks to
the BV stability condition (2.6).

Definition 4.1. Let ε0 > 0. By Dε0 we denote the set of piecewise constant
functions v : R −→ Rn enjoying the following properties:
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(i) v(−∞) = ul, v(+∞) = ur,
(ii) v(x) ∈ Ω for all x ∈ R,
(iii) all jumps in v have amplitudes smaller than ε0 (and thus the corresponding

Riemann problems admit the standard self-similar solution). We order the
waves in these solutions according to their location and speed; for a wave α,
we denote its characteristic family by iα : 1 . . . n and its strength by εα,

(iv) setting ε+α = max(0, εα) and ε−α = max(0,−εα) there holds

∣∣∣∣∣
(∑

iα=k

ε+α

)
− Θ

∣∣∣∣∣+
(∑

iα=k

ε−α

)
+

⎛
⎝∑

iα �=k

|εα|

⎞
⎠ ≤ ε0.(4.1)

Remark 4.2. Let v satisfy (i), (iii) of Definition 4.1 and let the bound (4.1) hold
with ε0 exchanged by another parameter δ. Then if only δ is small enough with respect
to ε0, then v(x) ∈ Ω2c for all x ∈ R implies v(x) ∈ Ωc for all x ∈ R.

Take a function u(0, ·) ∈ Dε0 for some small ε0 > 0. Let ε  ε0. Recall that the
fundamental block for constructing the approximate solution uε(t, x) is provided by
piecewise constant approximations of self-similar solutions to Riemann problems.

As customary, the nonphysical waves generated by the simplified Riemann solver
are said to belong to the (n+1)th characteristic family. The simplified Riemann solver
is used whenever one of the interacting waves is nonphysical or when the product of
strengths of incoming waves is bigger than a threshold parameter ρ(ε). The details
can be found in Chapter 7 of [B]. The associated nonphysical weight wn+1 is defined
as follows:

wn+1(u) = c · exp(−C · λk(u)) for u ∈ Ω,(4.2)

for some suitable constants c, C > 0. Let wk be a positive constant, strictly smaller
than all other weights wi(u) defined in Ω by (2.6) and (2.1). Recall that given a weak
ith wave, we associate with it the weight wi computed at its left state.

Definition 4.3. Let u(0, ·) ∈ Dε0 , with some small ε0 > 0. Let uε be the
piecewise constant ε-approximate solution, given by the wave front tracking algorithm.
Assume t is not an interaction time of fronts in uε. Using the notation of Defini-
tion 4.1 we set

V (uε(t, ·)) =

∣∣∣∣∣
(∑

iα=k

ε+α

)
− Θ

∣∣∣∣∣+
(∑

iα=k

ε−α

)
+

⎛
⎝∑

iα �=k

|εα|

⎞
⎠,

where the summations extend on all waves α present in uε(t, ·). The quadratic inter-
action potential is defined:

Q0(u
ε(t, ·)) =

∑
(α,β)∈A

|εα · εβ |,

with the set A containing all couples of perturbation waves (α, β) in uε(t, ·) approach-
ing each other. More precisely, assuming xα < xβ, we have (α, β) ∈ A if and only if
iα > iβ or else iα = iβ and at least one of the waves is a genuinely nonlinear shock.
In both cases we require that none of the waves α, β is a positive k-wave. Finally, let

Qlarge(u
ε(t, ·)) =

∑
iα �=k

wiα(uε(t, xα−)) · |εα| +
∑
iα=k

wk · ε−α ,
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Q = Q0 + Qlarge, Γ = V + κ ·Q,

for some large constant κ, to be determined later.
Lemma 4.4. Assume that the BV stability condition (2.6) holds. Then for some

constants c, ε0, κ > 0 we have the following. Let u(0, ·) ∈ Dε0 and let uε be the
corresponding piecewise constant approximate solution obtained through the wave front
tracking algorithm. Then for any t > 0 when two wave fronts α and β interact, if
Γ(uε(t−, ·)) ≤ ε0, then

∆Q = Q(uε(t+, ·)) −Q(uε(t−, ·)) ≤ −c · |εαεβ |,
∆Γ = Γ(uε(t+, ·)) − Γ(uε(t−, ·)) ≤ −c · |εαεβ |.

(4.3)

Proof. The proof consists of several cases, depending on whether the accurate
or the simplified Riemann solver is used and whether the interaction involves a kth
positive wave which we will view as a part of the reference rarefaction Rk. We give
only the main ideas; the detailed analysis is left to the reader.

Case 1. None of the interacting waves is a positive kth wave, and the interaction
is solved by the accurate Riemann solver (Figure 4.1 (c)). By standard analysis [B]
we have

∆V = O(1)|εαεβ |,
∆Q0 ≤ −|εαεβ | + O(1)ε0 · |εαεβ |.

Further,

∆Qlarge ≤

⎛
⎝ ∑

j �=iα,iβ

wout
j · |εoutj |

⎞
⎠+

(
wout

iα |εoutα | − wiα |εα|
)

+
(
wout

iβ
|εoutβ | − wiβ |εβ |

)
.

Consequently, ∆Qlarge ≤ C · |εαεβ |, where the constant C depends linearly on
the upper bound of the weights {wi} as well as their derivatives {Dwi}. In view of
Remark 2.3 and assuming ε to be small enough we thus obtain the first estimate in
(4.3), which in turns yields the second one for large κ.

Case 2. Interaction of a wave of family iβ �= k with a kth positive wave (iα =
k, εα > 0) solved by the accurate Riemann solver (Figure 4.1 (c)). As before, we
obtain

∆V = O(1)|εαεβ |,
∆Q0 = O(1)ε0 · |εαεβ |.

(4.4)

We view ∆Qlarge as a function of the state u ∈ Ω attained by uε between the inter-
acting fronts α and β and the strengths εα and εβ :

∆Qlarge = −wiα · |εα| +
∑
j �=k

wout
j · |εoutj | = G(u, εα, εβ).

Choose θ ∈ [0,Θ] such that ||u−Rk(θ)|| < ε0. Since G(u, εα, 0) = G(u, 0, εβ) = 0, we
have

|G(u, εα, εβ) −G(Rk(θ), εα, εβ)|

≤ |εαεβ | ·
∫ 1

0

∫ 1

0

∣∣∣∣ ∂2

∂εα∂εβ
G(u, sεα, zεβ) − ∂2

∂εα∂εβ
G(Rk(θ), sεα, zεβ)

∣∣∣∣ dsdz.
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Fig. 4.1.

If only the constant c in the definition (1.5) of Ω is small enough, the integrand in
the above estimate is as small as we wish. Thus in view of Remark 2.2 we obtain
∆Qlarge ≤ −c · |εαεβ | for some different constant c > 0, taking wk sufficiently small
with respect to other weights. If ε is small enough and κ large, this implies (4.3).

We remark that if the interaction as in Case 2 is to be solved by the simplified
Riemann solver (Figure 2.1 (a)), then (4.3) follows exactly as above provided we define
εoutk to be equal to εoutk in the accurate solution and take the scaling constant c in
(4.2) small with respect to other weights wi, i : 1 . . . n.

Case 3. Interaction of a nonphysical front (iα = n + 1) with a positive k-wave
(iβ = k, εβ > 0) solved by the simplified Riemann solver (Figure 4.1 (b)). Again
(4.4) is valid. Call u the left state of the wave α and call ũ the state attained by uε

between the two outgoing waves. Then

∆Qlarge = wn+1(ũ) · |εoutn+1| − wn+1(u) · |εα|
≤ (wn+1(ũ) − wn+1(u)) · |εα| + O(1)wn+1(ũ) · |εαεβ |
= c · exp(−Cλk(ũ)) · [1 − exp(−Cεβ) + O(1)εβ ] · |εα|

= c · exp(−Cλk(ũ)) ·
[
O(1) − exp(Cεβ) − 1

εβ

]
· |εαεβ |

≤ −c
C

4
exp(−Cλk(ũ)) · |εαεβ |

if only C in (4.2) is large enough. Taking ε0 small and κ large, we conclude
(4.3).

Define now the domain

D̄ε0 = cl {v ∈ Dε0 , Γ(v) ≤ ε0},(4.5)

where cl denotes the closure in L1
loc. Relying on Lemma 4.4 and Remark 4.2, we

obtain the following.
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Lemma 4.5. In the setting of Lemma 4.4, an approximate solution uε(t, x) gen-
erated by the algorithm from initial data ū ∈ D̄ε0 exists for all times t > 0 and enjoys
the following properties:

(i) ||ū− uε(0, ·)||L1 ≤ ε,
(ii) uε is piecewise constant, with jumps occurring along finitely many lines; jumps

are of three types: shocks (and contact discontinuities), rarefaction fronts, and
nonphysical waves; all jumps have strength < ε0, while all rarefaction fronts
have strength < ε,

(iii) along each shock or a rarefaction front not belonging to the kth family we
have that its speed differs from the exact speed (Rankine–Hugoniot speed for
shocks and the eigenvalue at the left state for rarefaction fronts) at most by
ε; the speeds of all k-positive waves are exact (that is, equal to λk evaluated

at the left state); all nonphysical waves travel with speed λ̂,
(iv) at each time t ≥ 0 the sum of strengths of nonphysical waves in uε is bounded

by ε,
(v) for all t ≥ 0 we have Γ(uε(t, ·)) ≤ ε0.
Now a standard argument yields that a subsequence of approximations uε con-

verges to a solution of (1.1), (1.2) and that the domain D̄ε0 is positively invariant with
respect to the flow generated in this way. Again, all the details can be found in [B].
To prove Theorem 1 it thus suffices to show the following.

Lemma 4.6. Let ū ∈ cl Ec,δ for sufficiently small c, δ > 0, as in Theorem 1. Then
ū ∈ D̄ε0 for some ε0 = ε0(δ) and limδ→0 ε0(δ) = 0.

The proof will be given in section 9.

5. First order rarefactions. We call a positive kth wave located at y0 at time
T > 0 a first order k-rarefaction wave if there exists a continuous curve y(t) with
y(T ) = y0 such that for almost all t ∈ [0, T ], y(t) is the location of a positive kth
wave. For each t ∈ [0,+∞) let Lu(t) be the set of locations of first order k-rarefaction
waves in u.

Lemma 5.1. Let uε(t, x) be as in Lemma 4.5 (in particular uε(t, ·) ∈ Dε0 for all
t ≥ 0). Then

Ṽ (t) :=

∣∣∣∣∣∣
⎛
⎝ ∑

xα∈Lu(t)

εα

⎞
⎠− Θ

∣∣∣∣∣∣+
⎛
⎝ ∑

xα �∈Lu(t)

|εα|

⎞
⎠ = O(1) · ε0,(5.1)

with the above summations extending on all waves α present in uε(t, ·). Moreover, if
y(t) is continuous and y(t) ∈ Lu(t) for almost all t ∈ [0, T ], then

∀t, s ∈ [0, T ] |λk(u
ε(t, y(t)−)) − λk(u

ε(s, y(s)−))| = O(1) · ε0.(5.2)

Proof. Above Ṽ (0) is understood as Ṽ (t) for t close to 0. To prove (5.1) one
defines new interaction potentials by the same formula as Q0 and Qlarge but treating
positive kth waves located in R \ Lu(t) as perturbations. Then Lemma 4.4 and its
proof are still valid, with V exchanged there to Ṽ . Thus the estimate in (5.1) follows.

In order to deduce (5.2) we may restrict our attention to the case t = T and
s = 0. It is convenient to consider the evolution of the related functional

Γ̃(t) = |y′(t) − y′(0)| + κ · Ṽ (t) + κ2 ·Q(t),

where Ṽ (t) is defined as the sum of strengths of perturbation waves α in

{xα < y(t) and iα ≥ k} ∪ {xα > y(t) and iα ≤ k}
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and κ > 1 is a large constant. We see that when y(t) interacts with another wave α
then ∆Q ≤ 0, ∆y′ = O(1)|εα|, and ∆Ṽ = −|εα|. On the other hand, at any other
time ∆y′ = 0 and ∆(Ṽ + κQ) ≤ 0. Thus Γ̃ is a nonincreasing function of t only if κ
is large. Hence |y′(T ) − y′(0)| ≤ Γ̃(0) = O(1)ε0, and (5.2) follows since

y′(t) = λk(u
ε(t, y(t)−))

for almost all t ∈ [0, T ].

6. Lyapunov functional: A proof of Theorem 2. Toward a proof of The-
orem 2, in this section we carry out the construction of the Lyapunov functional Φ.
Following [LY, BLY], Φ(u, v) is supposed to control the L1 distance between the two
ε-approximate solutions u, v : [0,∞)×R −→ Rn obtained by the wave front tracking
algorithm and thus enjoying the properties in Lemma 4.5. Assuming the L1 stability
condition (3.1), the two crucial properties of Φ will be the following:

Φ(u(t, ·), v(t, ·)) ≤ Φ(u(s, ·), v(s, ·)) + C · ε · (t− s),(6.1)

1

C
· ||u(t, ·) − v(t, ·)||L1 ≤ Φ(u(t, ·), v(t, ·)) ≤ C · ||u(t, ·) − v(t, ·)||L1 ,(6.2)

for all t > s ≥ 0 and a uniform constant C > 0 depending only on the system (1.1).
In the remaining part of the article we will concentrate on proving (6.1), (6.2) for a
functional Φ constructed below. Taking then D = D̄ε0 , for a small ε0 > 0, the proof
of Theorem 2 will follow by the already standard argument as in Chapter 8.3 of [B].

Fix a positive and small constant ν. Given piecewise constant functions u and v,
let

T = sup
{
t > 0; ∃x |λk(u(t, x)) − λk(v(t, x))| > ν

}
.(6.3)

Lemma 6.1. T defined as above is finite.
Proof. Notice that since the total strength of perturbation waves is of the order

ε0 at each time t, then taking ε  ε0 we have

sup
t≥1,x

||u(t, x) − ũ(t, x)|| + sup
t≥1,x

||v(t, x) − ṽ(t, x)|| = O(1)ε0.(6.4)

The functions ũ and ṽ : [1,+∞)×R −→ Rn are smooth solutions to (1.1) with initial
data

ũ(1, x) = u0(1, ψ(x)), ṽ(1, x) = v0(1, φ(x)),

where ψ and φ : R −→ R are some increasing diffeomorphisms. We want to show
that

lim
t→+∞

sup |λk(ũ(t, x)) − λk(ṽ(t, x))| = 0,(6.5)

which in view of (6.4) and taking ε  ε0 will imply that T < +∞.
Notice that for each t ≥ 1, ũ is constant outside the interval

Ju
t =

[
ψ−1(λk(ul)) + λk(ul) · (t− 1), ψ−1(λk(ur)) + λk(ur) · (t− 1)

]
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and that it propagates along the straight lines—characteristics having slopes λk inside
the region {(t, x); x ∈ Ju

t }. Consequently, one has

sup
x∈Ju

t ∩Jv
t

|λk(ũ(t, x)) − λk(ṽ(t, x))| ≤
max

w,z∈{ul,ur}
|ψ−1(λk(w)) − φ−1(λk(z))|

t− 1
,(6.6)

where the interval Jv
t is defined as Ju

t , by means of the diffeomorphism φ. Obviously,
the right-hand side of (6.6) vanishes as t → +∞. Likewise, supx�∈Ju

t ∩Jv
t
|λk(ũ(t, x) −

λk(ṽ(t, x))| also converges to 0, because of the spreading of the rarefactions in ũ and
ṽ. This establishes (6.5).

The definition of the functional Φ(u, v) falls in two parts.
Case 1 (the profiles u and v are apart from each other): t ∈ [0,T]. Let T > 0.

Without loss of generality we may assume that for some x there holds λk(u(t, x)) >
λk(v(t, x)) + 3ν/4 (the case of the opposite inequality may be treated similarily).
Because of the estimate in (5.1) and taking ε0  ν, there exists then a nonempty
interval I(T ) = [z−0 , z+

0 ] such that z−0 ∈ Lu(T ), z+
0 ∈ Lv(T ) and

∀x, y ∈ I(T ) λk(u(T, x)) − λk(v(T, y)) > ν/2.(6.7)

For t ∈ [0, T ] call I(t) the space interval whose boundary is continuous polygonals
z−(t) ∈ Lu(t), z+(t) ∈ Lv(t) with z−(T ) = z−0 and z+(T ) = z+

0 . Notice that, taking
ε0 small enough, Lemma 5.1 yields

∀t ∈ [0, T ], ∀x, y ∈ I(t) λk(u(t, x)) − λk(v(t, y)) > ν/3.(6.8)

For all t ∈ [0, T ) the Lyapunov functional Φ is defined by the formula

Φ(u, v)(t) = ||u(t, ·) − v(t, ·)||L1 + κ1 · |I(t)|,(6.9)

where |I(t)| stands for the length of the interval I(t) and κ1 is a sufficiently large
integer constant.

Lemma 6.2. If only κ1 is large enough, then the functional Φ satisfies

Φ(u(t′, ·), v(t′, ·)) ≤ Φ(u(t, ·), v(t, ·)),(6.10)

||u(t, ·) − v(t, ·)||L1 ≤ Φ(u(t, ·), v(t, ·)) ≤ C · ||u(t, ·) − v(t, ·)||L1(6.11)

for all 0 ≤ t ≤ t′ ≤ T and a uniform constant C > 0.
Proof. The equivalence (6.11) of Φ with the L1 distance follows in view of (6.8).
Denote by J (u) and J (v) the sets of all jumps in u and v, respectively. To prove

(6.10) fix t ∈ [0, T ), which is not a time of interaction of any couple of fronts in u or
v. We have

d

dt
Φ(u, v)(t) =∑

α∈J (u)∪J (v)

∣∣∣|u(xα+, t) − v(xα+, t)| − |u(xα−, t) − v(xα−, t)|
∣∣∣ · ẋα

+ κ1 ·
d

dt
|I(t)|.

(6.12)
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The first term in (6.12) is of the order of O(1) because of the finite speed of propaga-
tion, boundedness of TV (u(t)) and TV (v(t)), and

|u(xα+, t) − v(xα+, t)| − |u(xα−, t) − v(xα−, t)| = O(1)|εα|.

On the other hand, in view of (6.8) we have d/dt |I(t)| ≤ −ν/4. Thus if κ1 is large
with respect to the system constants and the prechosen ν, we obtain

d

dt
Φ(u, v)(t) ≤ 0.

Integrating in time we conclude (6.10).

Case 2 (u and v close): t ≥ T. The Lyapunov functional Φ is defined as in
[BLY, B]:

Φ(u, v) =

∫ +∞

−∞

n∑
i=1

Wi(x) · wi(x) · |qi(x)| dx.(6.13)

The scalar quantities qi(x) are, roughly speaking, the curvilinear coordinates of the
vector v(x) − u(x), computed along combinations of shock curves in Ω. The precise
definition of Wi and wi will be our concern in what follows.

The coordinates {qi(x)}ni=1 are implicitely defined by

v(x) = Sn(qn(x)) ◦ . . .Sk(qk(x)) ◦ . . .S1(u(x), q1(x)).(6.14)

Such decomposition exists if ν is small enough, as |λk(u(x, t)) − λk(v(x, t))| ≤ ν for
all x and t ≥ T . The weights wi(x) are given by

wi(x) = wi

(
Si−1(qi−1(x)) ◦ . . .S1(u(x), q1(x))

)
,(6.15)

where the wi’s in the right-hand side are given by (2.1) and the L1 stability condition
(3.1). We see that the weights wi(x) in (6.15) are computed at the left states of the
corresponding waves. Recall that wk > 0 is constant in Ω.

We will now define the functional weights Wi(x). Recall that iα ∈ {1 . . . n+ 1} is
the family of the jump located at xα with strength εα. Also, by J (u) and J (v) we
denote the sets of all jumps in u and v. Let P(u) and P(v) be the respective subsets
of J (u) and J (v), containing those α for which iα �= n+1 and either iα �= k or iα = k
and εα < 0.

Define the quantities Ai(x) measuring the total amount of physical perturbation
waves in u and v which approach the ith wave qi(x) located at x [BLY]. More precisely,
when the ith field is linearly degenerate we set

Ai(x) =

⎡
⎣ ∑
α∈P(u)∪P(v)
xα<x, iα>i

+
∑

α∈P(u)∪P(v)
xα>x, iα<i

⎤
⎦ |εα|.
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For a genuinely nonlinear ith field

Ai(x) =

⎡
⎣ ∑
α∈P(u)∪P(v)
xα<x, iα>i

+
∑

α∈P(u)∪P(v)
xα>x, iα<i

⎤
⎦ |εα|

+

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎣ ∑

α∈P(u)
xα<x, iα=i

+
∑

α∈P(v)
xα>x, iα=i

⎤
⎦ |εα| if qi(x) < 0,

⎡
⎣ ∑

α∈P(v)
xα<x, iα=i

+
∑

α∈P(u)
xα>x, iα=i

⎤
⎦ |εα| if qi(x) ≥ 0.

Define

∀i : 1 . . . n Wi(x) = 1 + κ2(Q(u) + Q(v)) + κ3Ai(x) + δik · κ4|qk(x)|.(6.16)

Here Q stands for the Glimm’s interaction potential from Definition 4.3 and δik is the
Kronecker delta. The (large) constants κ2, κ3, κ4 are to be determined later; we see
that as soon as they have been assigned, we can impose a suitably small bound on
the amount of perturbation in u and v (by taking ε0 small in (4.5), or in particular δ
small in Theorem 1) so that

1 ≤ Wi(x) ≤ 4 for all i, x.(6.17)

This ends the definition of the functional Φ.
Lemma 6.3. The functional Φ constructed above satisfies (6.1) and

1

C
||u(t, ·) − v(t, ·)||L1 ≤ Φ(u(t, ·), v(t, ·)) ≤ ||u(t, ·) − v(t, ·)||L1(6.18)

for all t′ > t ≥ T and a uniform constant C > 0 depending only on the system (1.1).
Proof. The equivalence of Φ with the L1 distance as in (6.18) follows from (6.17)

if we take the weights {wi}ni=1 small enough.
To prove the estimate in (6.1), define λi(x) as the Rankine–Hugoniot speed of the

shock/contact qi(x).
Recall that a direct calculation [BLY] gives

d

dt
Φ(u(t), v(t)) =

∑
α∈J (u)∪J (v)

n∑
i=1

Eα,i,(6.19)

with

Eα,i = (Wi · wi · |qi|) (xα+) · (λi(xα+) − ẋα)

− (Wi · wi · |qi|) (xα−) · (λi(xα−) − ẋα).
(6.20)

Above ẋα denotes the speed of propagation of the wave α located at xα. We will
prove that

d

dt
Φ(u(t), v(t)) ≤ O(1)ε(6.21)
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for every time t ≥ T where the fronts in u or v do not interact. Indeed, this will be
the goal of the next section.

Next, let t be such that say fronts εα and εβ in u interact. It is easy to notice
that for every x and i we have

Ai(t+, x) −Ai(t−, x) ≤ O(1)|εαεβ |.

On the other hand, by Lemma 4.4, the quantity Q(u) decreases by the same order
of magnitude. Thus if κ2 in (6.16) is large enough, all functional weights Wi(x)
must decrease across the time t. Consequently, the whole functional Φ decreases as
well. Based on these two observations and integrating (6.21) in time, we conclude
(6.1).

7. Stability estimates. In this section we want to establish the inequality (6.21)
by estimating local terms Eα,i in (6.20). All calculations refer to a fixed jump α ∈
J (v), propagating with speed ẋα and belonging to a characteristic family iα : 1 . . . n+
1. When α ∈ J (u), only minimal and obvious modifications of our arguments are
required and so we leave them to the reader.

We first focus on the case iα = n + 1. We will prove that

n∑
i=1

Eα,i ≤ O(1)|εα|.(7.1)

Indeed,

∀ i �= k |w+
i q

+
i − w−

i q
−
i | + |λ+

i − λ−
i | = O(1)|εα|.

Also, for i �= k and if sgn q−i = sgn q+
i we have W+

i = W−
i . On the other hand, if

sgn q−i �= sgn q+
i , then |q+

i | + |q−i | = O(1)|εα| and, consequently,∑
i �=k

Eα,i ≤ O(1)|εα|.

In a similar manner, Eα,k ≤ O(1)|εα| if sgn q−k �= sgn q+
k . The same is true if

sgn q−k = sgn q+
k because then

∆Wk = O(1)|εα|.

The bound (7.1) is thus proven. Now, recalling Lemma 4.5(iv), (7.1) yields

∑
iα=n+1

n∑
i=1

Eα,i ≤ O(1)ε.(7.2)

Let now iα : 1 . . . n. Our goal will be to prove that

n∑
i=1

Eα,i = O(1)ε|εα|.(7.3)

Recall that by Lemma 4.5 |εα| < ε, whenever α is a rarefaction wave. In view of
(1.8) and the definition (6.20) we may thus without loss of generality replace each
rarefaction wave α by a (possibly nonentropic) shock having the original strength εα
and the speed ẋα = λk(v(xα−)). We will prove that with this modification the same
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estimate as in (7.3) holds. For simplicity, we write W+
i = Wi(xα+), q−i = qi(xα−),

etc.

The proof falls in several cases. Throughout the calculations, we often use the
estimates from section 8. When α is a part of the rarefaction Rk, our estimates rely on
the stability condition (3.1); the parameters wk and ν are chosen so that the negative
term in (8.3) overcomes extra contributions which are not of the order O(1)ε2α. When
α is a perturbation wave, our argument is essentially a modification of the one from
[BLY]. We again adjust ν appropriately and then take the constant κ3 in (6.16) to
be large with respect to other quantities in the derived estimates. The parameter ε0,
measuring the amount of perturbing waves present at any time in both approximate
solutions u and v, is always set to be as small as needed, in particular ε0  ν.

Case 1. iα = k and εα > 0. Recall that by Lemma 4.5 we have |εα| < ε. We will
prove

n∑
i=1

Eα,i = O(1)ε2α,(7.4)

which will clearly imply (7.3). We first estimate

∑
i �=k

Eα,i =
∑
i �=k

(∆Wi) · w−
i |q−i |(λ−

i − ẋα)

+
∑
i �=k

W+
i ·

[
w+

i |q+
i |(λ+

i − ẋα) − w−
i |q−i |(λ−

i − ẋα)
]
.

(7.5)

Fix i �= k. Notice that if sgn q+
i �= sgn q−i , then

|q−i | ≤ |q+
i − q−i | and ∆Wi = O(1)κ3ε0.(7.6)

On the other hand, if sgn q+
i = sgn q−i , then ∆Wi = 0. Thus the first summand in

(7.5) can be estimated using Lemma 8.1:

∑
i �=k

(∆Wi) · w−
i |q−i |(λ−

i − ẋα)

≤ O(1)κ3ε0 ·
[
εα ·

(∑
s>k

|q−s |
)

+ εα · |q−k |2 + ε2α

]
.

(7.7)

In order to deal with the second summand in (7.5), we notice that if sgn q+
i �= sgn q−i ,

then by (7.6) and Lemma 8.1, there holds

∣∣w+
i |q+

i |(λ+
i − ẋα) − w−

i |q−i |(λ−
i − ẋα)

∣∣
≤ O(1)

[
εα ·

(∑
s>k

|q−s |
)

+ εα · |q−k |2 + ε2α

]
.

(7.8)

The same is true when sgn q+
i = sgn q−i , as in this case the left-hand side of (7.8)

equals |w+
i q

+
i (λ+

i − ẋα)−w−
i q

−
i (λ−

i − ẋα)| and so one can again employ the estimates
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of Lemma 8.1. In view of Remark 2.3, combining (7.5), (7.7), and (7.8) we obtain∑
i �=k

W+
i ·

[
w+

i |q+
i |(λ+

i − ẋα) − w−
i |q−i |(λ−

i − ẋα)
]

≤ [1 + κ2(Q(u) + Q(v))] ·
∑
i �=k

[
w+

i |q+
i |(λ+

i − ẋα) − w−
i |q−i |(λ−

i − ẋα)
]

+ O(1)κ1ε0 ·
[
εα ·

(∑
s>k

|q−s |
)

+ εα · |q−k |2 + ε2α

]
.

(7.9)

Estimating the first term in the right-hand side of (7.9) by Lemma 8.3 and noting
(7.7), the quantity in (7.5) can be further bounded by

∑
i �=k

Eα,i ≤ −γ1

2
εα ·

(∑
s>k

|q−s |
)

+ O(1) ·
[
εα · |q−k |2 + ε2α

]
(7.10)

if ε0 is small enough.
We now aim at establishing (7.4) by estimating the remaining term Eα,k. We

distinguish two subcases.
Subcase 1.1. sgn q+

k �= sgn q−k . Then

∆Wk = O(1)κ4εα + O(1)κ3ε0.

Therefore we have

(∆Wk)wk|q−k |(λ
−
k − ẋα) ≤ O(1)wkεα (κ4εα + κ3ε0) ·

(
εα +

∑
s>k

|q−s |
)

≤ O(1)wkκ1ε0εα ·
(
εα +

∑
s>k

|q−s |
)

+ O(1)κ4ε
2
α.

(7.11)

On the other hand,

W+
k wk

[
|q+

k |(λ
+
k − ẋα) − |q−k |(λ

−
k − ẋα)

]
≤ O(1)wkεα

[
|λ+

k − ẋα| + |λ−
k − ẋα|

]
≤ O(1)wkεα ·

(∑
s>k

|q−s |
)
.

(7.12)

Summing (7.11) and (7.12) we obtain

Eα,k = O(1)wkεα ·
(∑

s>k

|q−s |
)

+ O(1)κ4ε
2
α.(7.13)

The bound (7.4) now follows by (7.13) and (7.10) if only wk is chosen suitably small
with respect to the constant γ1 and for small ε0.

Subcase 1.2. sgn q+
k = sgn q−k . By Lemma 8.1, we have

∆|qk| = (sgn qk) · εα + O(1)εα

(
|q−k |2 +

(∑
s>k

|q−s |
)

+ εα

)
.
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Thus, if only ε0 and ν are small enough,

(sgn qk) · ∆|qk| ≥ εα/2.

Moreover,

λ−
k − ẋα = O(1)

(∑
s>k

|q−s |
)

+ (sgn qk) ·
(
−|q−k |

2
+ O(1)|q−k |2

)
+ O(1)ε2α.(7.14)

Recall that ∆Wk = κ4∆|qk|. Hence,

(∆Wk) · wk|q−k |(λ
−
k − ẋα) = κ4wk · (∆|qk|) · |q−k |(λ

−
k − ẋα)

= wkκ4 ·
[
O(1)εα|q−k |

(∑
s>k

|q−s |
)

+ O(1)εα|q−k |3

− 1

2
(∆|qk|)(sgn qk)|q−k |2

]
+ O(1)κ4ε

2
α

≤ wk ·
[
O(1)κ4εα|q−k |

(∑
s>k

|q−s |
)

+ O(1)εα|q−k |2
]

− wk
κ4

4
εα|q−k |2 + O(1)κ4ε

2
α.

(7.15)

Now, using (7.14) and Lemma 8.1 we obtain

(q+
k − q−k )(λ−

k − ẋα) = −q−k εα
2

+ O(1)εα

(
|q−k |2 +

(∑
s>k

|q−s |
)

+ εα

)
.(7.16)

On the other hand, by Lemma 8.1

q+
k (λ+

k − λ−
k ) =

q−k εα
2

+ O(1)εα

(
|q−k |2 +

(∑
s>k

|q−s |
)

+ εα

)
.

Thus, in view of (7.16),

q+
k (λ+

k − ẋα) − q−k (λ−
k − ẋα) = O(1)εα

(
|q−k |2 +

(∑
s>k

|q−s |
)

+ εα

)
.

The above bound combined with (7.15) yields

Eα,k = wk ·
[
− κ4

5
εα|q−k |2 + O(1)κ4εα|q−k |

(∑
s>k

|q−s |
)

+ O(1)εα

(∑
s>k

|q−s |
)]

+ O(1)κ4ε
2
α,

(7.17)

if only the constant κ4 is larger than several independent quantities O(1) in the above
series of estimates. Combining (7.17) and (7.10) we obtain (7.4) for wk small and κ4

large enough.
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Case 2. iα �= k. Note that for i �= k the quantities Eα,i can be estimated exactly
as in [BLY]; see also [B] of Chapter 8.2. On the other hand, for i = k

∆Wk = κ3 · sgn (iα − k) · |εα| + κ4 · ∆|qk|

and

∆|qk| = O(1)|εα| ·
n∑

i=1

|q−i | = O(1)|εα|(ε0 + ν).

Thus the term in Eα,k containing ∆Wk can be estimated as follows:

(∆Wk)wk|q−k |(λ
−
k − ẋα) ≤− κ3wkεα|q−k ||λ

−
k − ẋα|

+ O(1)κ4wkεα(ε0 + ν)|q−k ||λ
−
k − ẋα|

≤ − κ3

2
wkεα|q−k ||λ

−
k − ẋα|,

if only ε0 + ν is small enough. The analysis in [BLY] can thus be applied to get (7.3).
Case 3. iα = k and εα < 0. If |εα| < ε and |q−k | ≤ 2|εα|, then recalling that

∆Wk ≤ W−
k + W+

k ≤ 8 by (6.17), and using (8.64) from [B], we conclude (7.3). The
same argumentation as on page 167 of [B] yields (7.3) when q+

k < 0 < q−k .
We will now focus on the case when q−k and q+

k have the same sign. In view of
the analysis of Lemma 8.3 we have

∆Wk = κ3(sgn qk)|εα| + κ4|q+
k − q−k | = κ3(sgn qk)|εα|

+ κ4(sgn qk) ·
[
−|εα| + O(1)|εα||q−k |2 + O(1)|εα|

(∑
s>k

|q−s |
)

+ O(1)ε2α

]
.

(7.18)

Recalling the formula (8.50) from [B],

ẋα − λ−
k =

q−k + εα
2

+ O(1)

⎡
⎣|q−k + εα|(|q−k | + |εα|) +

∑
s �=k

|q−s |

⎤
⎦ ,

the estimate (7.18) implies for κ3 large (also κ3 > 2κ4) and ε0 small that

(∆Wk)wk|q−k |(λ
−
k − ẋα) ≤− κ3

3
wk|εα||q−k ||q

−
k + εα|

+ O(1)κ3wk|εα||q−k | ·

⎛
⎝∑

s �=k

|q−s |

⎞
⎠+ O(1)κ4ε

2
α.

(7.19)

Now, by the same reasoning as in Chapter 8.2, page 165 [B], we see that for ν small
and some constant c > 0, there holds

Wkwk∆[|qk|(λk − ẋα)] +
∑
i �=k

Eα,i ≤ −cκ3|εα|
∑
s∈I

|q−s |

+ O(1)|εα|

⎛
⎝|q−k ||q

−
k + εα| +

∑
s �=k

|q−s |

⎞
⎠ ,

(7.20)
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∑
i �=k

|q−i | ≤ |q−k ||q
−
k + εα| + 2

∑
s∈I

|q−s |.(7.21)

The index set I is defined as I = {i : 1 . . . n; i �= k and sgn q−i = sgn q+
i }. Thus

(7.19) becomes by (7.21)

(∆Wk)wk|q−k |(λ
−
k − ẋα) ≤− κ3

4
wk|εα||q−k ||q

−
k + εα|

+ O(1)κ3wk|εα||q−k | ·
(∑

s∈I
|q−s |

)
+ O(1)κ4ε

2
α

if only ν is small enough. In view of (7.20), this implies

n∑
i=1

Eα,i ≤− cκ3|εα|
(∑

s∈I
|q−s |

)
+ O(1)|εα|

(
|q−k ||q

−
k + εα| +

∑
s∈I

|q−s |
)

− κ3

4
wk|εα||q−k ||q

−
k + εα| + O(1)κ3wk|εα||q−k | ·

(∑
s∈I

|q−s |
)

+ O(1)κ4ε
2
α,

and consequently we obtain (7.4) for κ3 large.

8. Technical lemmas.
Lemma 8.1. Let

v = Sn(q−n ) ◦ . . .S1(u, q
−
1 ), Sk(v, εα) = Sn(q+

n ) ◦ . . .S1(u, q
+
1 ),

with u ∈ Ω and {q−i }ni=1, εα small enough. For every i : 1 . . . n, call λ±
i the speed of

the shock wave q±i , as in (1.11). Let E be any quantity satisfying the bound

E = O(1)|εα|
{
|q−k |2 +

∑
s>k

|q−s | + |εα|
}
.

Then
(i) |q+

k − q−k − εα| +
∑
i �=k

|q+
i − q−i | = E,

(ii) λ+
k − λ−

k = εα/2 + E,
(iii) for all i < k we have λ+

i − λ−
i = E, while for all i > k there is λ+

i − λ−
i =

O(1)|εα| + E.
Proof. We will prove only (i), the other assertions following in similar manner.

For every i : 1 . . . n, introduce an auxiliary function Gi:

Gi(u, q
−
1 . . . q−n , εα) = q+

i − q−i .

We have

Gi = εα ·
[
∂Gi

∂εα
(u, q−1 . . . q−k , q

−
i = 0 for i > k, εα = 0) + O(1)

∑
s>k

|q−s |
]

+ O(1)ε2α.

(8.1)
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Moreover,

Gi(u, q
−
1 . . . q−k , q

−
i = 0 for i > k, εα = 0) − δik · εα

= O(1)||G(u−
k−1, q

−
k , εα)||,

(8.2)

where the quantity G is defined as

G(u−
k−1, q

−
k , εα) = Sk(u

−
k−1, q

−
k + εα) − Sk(Sk(u

−
k−1, q

−
k ), εα)

for u−
k−1 = Sk−1(q

−
k−1) ◦ . . .S1(u, q

−
1 ). Since

G(u−
k−1, q

−
k = q, εα = −q) = G(u−

k−1, q
−
k = q, εα = 0)

= G(u−
k−1, q

−
k = 0, εα = q) = 0,

consequently we obtain

∂2G

∂εα∂q
−
k

(u−
k−1, q

−
k = 0, εα = 0) = 0.

Thus

G(u−
k−1, q

−
k , εα) = O(1)(|εα| · |q−k |2 + ε2α),

which in view of (8.1) and (8.2) implies (i).

We now prove a generalization of the observation in section 3.

Lemma 8.2. Assume that the L1 stability condition (3.1) is satisfied. There exists
a constant γ > 0, depending only on the weights {wi(θ)}i �=k such that the following
holds. Let u, v, εα, {q±i } be as in Lemma 8.1 with all {q−i }i≤k equal to 0 and εα ≥ 0.
By w±

i we denote the weight associated to the shock wave q±i , computed at its left
state, by means of (2.1). Then

∑
i>k

[
w+

i |q+
i | · (λ+

i − λk(v)) − w−
i |q−i | · (λ−

i − λk(v))
]

+
∑
i<k

w+
i |q+

i | · |λ+
i − λk(v)| ≤ −γεα ·

∑
i>k

|q−i |.
(8.3)

Analogously, if

Sk(q
+
k ) ◦ Sk−1(q

−
k−1) ◦ . . .S1(u, q

−
1 )

= Sn(q+
n ) ◦ . . .Sk+1(q

+
k+1) ◦ Sk−1(q

+
k−1) ◦ . . .S1(q

+
1 ) ◦ Sk(u, εα)

for some u ∈ Ω and {q−i }i<k with εα ≥ 0, then

∑
i<k

[
w+

i |q+
i | · (λ+

i − λk(u)) − w−
i |q−i | · |λ−

i − λk(u)|
]

+
∑
i>k

w+
i |q+

i | · |λ+
i − λk(u)| ≤ −γεα ·

∑
i<k

|q−i |.



1394 MARTA LEWICKA

Proof. We prove only the formula (8.3); the second part of the lemma follows by
the same method. By standard interaction estimates [Sm] we have

∀ i > k |q+
i | − |q−i | ≤

∑
s>k, s �=i

εα|q−s | · |〈li, [rk, rs]〉(v)|

+ εα|q−i | · 〈li, [rk, ri]〉(v)

+ O(1)εα

(∑
s>k

|q−s |
)⎛⎝∑

s≥k

|q−s |

⎞
⎠ ,

(8.4)

∀ i < k |q+
i | ≤

∑
s>k

εα|q−s | · |〈li, [rk, rs]〉(v)|

+ O(1)εα

(∑
s>k

|q−s |
)⎛⎝∑

s≥k

|q−s |

⎞
⎠ .

(8.5)

Also we have

∀ i > k w+
i − w−

i = εα · w′
i(λk(v)) + O(1)

[
εα ·

(∑
s>k

|q−s |
)

+ ε2α

]
,(8.6)

∀ i > k λ+
i − λ−

i = εα · 〈Dλi, rk〉(v) + O(1)

[
εα ·

(∑
s>k

|q−s |
)

+ ε2α

]
.(8.7)

Thus ∑
i>k

|q−i |(w+
i − w−

i )|λ+
i − λk(v)| +

∑
i>k

|q−i |w−
i (λ+

i − λ−
i )

≤
∑
i>k

w′
i(λk(v)) · εα|q−i | · |λi(v) − λk(v)| +

∑
i>k

wi(v)εα|q−i | · 〈Dλi, rk〉(v)

+ O(1)

⎡
⎣ε2α ·

(∑
s>k

|q−s |
)

+ εα ·
(∑

s>k

|q−s |
)2
⎤
⎦ .

(8.8)

Moreover, by (8.4) one arrives at

∑
i>k

w+
i ·
(
|q+

i | − |q−i |
)
|λ+

i − λk(v)|

≤
∑
i>k

εα|q−i | ·
(
wi(v)|λi(v) − λk(v)| · 〈li, [rk, ri]〉(v)

+
∑

s>k, s �=i

ws(v)|λs(v) − λk(v)| · |〈ls, [ri, rk]〉(v)|
)

+ O(1)εα

(∑
s>k

|q−s |
)(

εα +
∑
s>k

|q−s |
)
.

(8.9)
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Adding (8.8) and (8.9), and noting (8.5), we see that the left-hand side of (8.3) can
be estimated as follows:

εα ·
∑
i>k

|q−i | · |λi(v) − λk(v)| ·
[
w′

i(λk(v)) + wi(v) ·
〈Dλi, rk〉(v)

|λi(v) − λk(v)|

+ wi(u) · 〈li, [rk, ri]〉(v) +
∑
i �=k,i

ws(v)
|λs(v) − λk(v)|
|λi(v) − λk(v)|

· |〈ls, [ri, rk]〉(v)|
]

+ O(1)εα

(∑
s>k

|q−s |
)(

εα +
∑
s>k

|q−s |
)
.

(8.10)

Applying the inequality (3.1) with θ ∈ (−c,Θ + c) such that λk(v) = λk(Rk(θ)) and
by a compactness argument, we obtain that (8.10) is bounded by the quantity in the
right-hand side of (8.3). The proof is done.

Lemma 8.3. Assume that the L1 stability condition (3.1) is satisfied. Let u, v, εα,
{q±i }ni=1 be as in Lemma 8.1, with εα ≥ 0. Then

∑
i �=k

[
w+

i |q+
i |(λ+

i − λk(v)) − w−
i |q−i |(λ−

i − λk(v))
]

≤ −γ1 · εα ·
(∑

s>k

|q−s |
)

+ O(1)
[
εα · |q−k |2 + ε2α

]

for some constant γ1 > 0, depending only on weights {wi(θ)}ni=1 and the uniform
system bounds O(1).

Proof. Let Ξ denote the left-hand side of the desired inequality. We write {q̃s}ns=1

and {q̂s}ns=1 for the quantities introduced implicitly by

Sn(q̃n) ◦ . . .Sk+1(q̃k+1) ◦ Sk−1(q̃k−1) ◦ . . .S1(q̃1) ◦ Sk(uk, q̃k) = Sk(v, εα),

Sk(v, εα) = Sn(q̂n) ◦ . . .S1(q̂1) ◦ Sk(uk−1, q
−
k−1 + q̃k),

uk−1 = Sk−1(q
−
k−1) ◦ . . .S1(u, q

−
1 ) and uk = Sk(uk−1, q

−
k ).

By w̃s, ŵs and λ̃s, λ̂s, we naturally denote weights and speeds corresponding to the
waves q̃s and q̂s. We then have

Ξ =

{∑
i>k

[
w̃i|q̃i|(λ̃i − λk(v)) − w−

i |q−i |(λ−
i − λk(v))

]

−
∑
i<k

w̃i|q̃i|(λ̃i − λk(v))

}

+
∑
i �=k

w+
i |q+

i |(λ+
i − λk(v)) −

∑
i<k

w−
i |q−i |(λ−

i − λk(v))

−
∑
i>k

w̃i|q̃i|(λ̃i − λk(v)) +
∑
i<k

w̃i|q̃i|(λ̃i − λk(v)).

(8.11)
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Observe that q̃k = εα + O(1)εα ·
(∑

s>k |q−s |
)
. Using the same arguments as in the

proof of Lemma 8.1, we arrive at⎛
⎝∑

i �=k

|q̃i − q̂i|

⎞
⎠+ |q̂k| ≤ O(1) ·

[
εα|q−k |2 + ε2α

]
.(8.12)

A similar bound is true for the corresponding differences of λ̂i and λ̃i, and ŵi and w̃i.
Estimating the first term in (8.11) in view of Lemma 8.3, we obtain

Ξ ≤− γεα ·
(∑

s>k

|q−s |
)

+ O(1) ·
[
εα · |q−k |2 + ε2α

]
+
∑
i>k

[
w+

i |q+
i |(λ+

i − λk(v)) − ŵi|q̂i|(λ̂i − λk(v))
]

+
∑
i<k

[
w+

i |q+
i |(λ+

i − λk(v)) − w−
i |q−i |(λ−

i − λk(v))
]

+
∑
i<k

ŵi|q̂i|(λ̂i − λk(v)).

(8.13)

Now, by standard interaction estimates [L], we have

∑
i<k

∣∣q+
i − (q−i + q̂i)

∣∣+∑
i>k

∣∣q+
i − q̂i

∣∣

= O(1) ·

⎡
⎣(∑

i<k

|q̂i|
)

·
(∑

i<k

|q−i |
)

+
∣∣q−k + εα

∣∣ ·
⎛
⎝∑

i≤k

|q̂i|

⎞
⎠
⎤
⎦

= O(1)εα ·
[(∑

s>k

|q−s |
)

+ |q−k |2 + εα

]
·
[(∑

s<k

|q−s |
)

+ |q−k | + εα

]

= O(1) · εα ·
(∑

s>k

|q−s |
)[(∑

s<k

|q−s |
)

+ |q−k |
]

+ O(1)
[
εα|q−k |2 + ε2α

]
.

(8.14)

Noting that
(∑

s<k |q−s |
)

+ |q−k | = O(1) · (ε0 + ν), we obtain

∑
i>k

[
w+

i |q+
i |(λ+

i − λk(v)) − ŵi|q̂i|(λ̂i − λk(v))
]

= O(1) · (ε0 + ν)εα ·
(∑

s<k

|q−s |
)

+ O(1) · εα|q−k |2 + O(1)ε2α.

In view of (8.14), exactly the same bound as above is valid for the terms:

∑
i<k

[
w+

i |q+
i |(λ+

i − λk(v)) + ŵi|q̂i|(λ̂i − λk(v)) − w−
i |q−i |(λ−

i − λk(v))
]
.

Hence by (8.13) the lemma follows, if only the constant ε0 and ν are small
enough.



LYAPUNOV FUNCTIONAL FOR STRONG RAREFACTIONS 1397

9. A sufficient condition for admissibility of initial data: A proof
of Lemma 4.6.

Lemma 4.6. Let ū ∈ cl Ec,δ for some sufficiently small c, δ > 0, as in Theorem 1.
Then ū ∈ D̄ε0 , defined in (4.5), for some ε0 = ε0(δ) and limδ→0 ε0(δ) = 0.

Proof. 1. Without loss of generality we may assume that ū is piecewise constant,
consecutively attaining N states ul = u0, u1 . . . uN = ur in Rn, that for each α :
1 . . . N − 1 we have ||uα+1 − uα|| < δ, and that (i), (ii), (iii) as in Theorem 1 are
satisfied. For α : 0 . . . N − 1 and i : 1 . . . n define

γi
α = 〈li(uα), uα+1 − uα〉.

Note that the self-similar solution of each Riemann problem (uα, uα+1) is composed of
n waves having corresponding strengths ε1α . . . εnα with the following obvious estimate:

N−1∑
α=0

n∑
i=1

|γi
α − εiα| ≤

N−1∑
α=0

||uα+1 − uα||2 < δ ·
N−1∑
α=0

||uα+1 − uα|| = O(1)δ.

To simplify the presentation we will assume that ||rk(u)|| = 1 for all u ∈ Ω. In order
to prove the lemma it is thus enough to show that∣∣∣∣∣

(
N−1∑
α=0

(γk
α)+

)
− |Rk|

∣∣∣∣∣ < ε0 and

N−1∑
α=0

⎛
⎝(γk

α)− +
∑
i �=k

|γi
α|

⎞
⎠ < ε0,(9.1)

where |Rk| denotes the arc-length of the curve Rk(θ), θ ∈ [0,Θ].
2. Fix a small constant c > 0 and divide the set of discontinuities in ū into three

subsets:

G =

{
α : 0 . . . N − 1,

∣∣∣∣
∣∣∣∣ uα+1 − uα

||uα+1 − uα|| − rk(u
α)

∣∣∣∣
∣∣∣∣ < c

}
,

B′ =

{
α : 0 . . . N − 1,

∣∣∣∣
∣∣∣∣ uα+1 − uα

||uα+1 − uα|| + rk(u
α)

∣∣∣∣
∣∣∣∣ < c

}
,

B = {0 . . . N − 1} \ (G ∪B′).

It follows that for all α ∈ G∣∣∣∣ γk
α

||uα+1 − uα|| − 1

∣∣∣∣+∑
i �=k

∣∣∣∣ γi
α

||uα+1 − uα||

∣∣∣∣ = O(1)c.

Thus ∣∣∣∣∣
∑
α∈G

(γk
α)+ −

∑
α∈G

||uα+1 − uα||
∣∣∣∣∣+

∑
α∈G

⎛
⎝(γk

α)− +
∑
i �=k

|γi
α|

⎞
⎠ = O(1) · c|Rk|.(9.2)

On the other hand, for all α ∈ B ∪B′

∣∣∣∣ γk
α

||uα+1 − uα|| − 1

∣∣∣∣+∑
i �=k

∣∣∣∣ γi
α

||uα+1 − uα||

∣∣∣∣ = O(1).(9.3)
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3. Let P : Ωδ −→ Rk be the orthogonal projection of Ωδ onto Rk. Note that if
u = Rk(θ) for some θ ∈ [0,Θ], then DP(u) · v = 〈v, rk(u)〉 · rk(u). We have

||uα+1 − uα|| − ||P(uα+1) − P(uα)|| ≥ O(1)δ · ||uα+1 − uα||.(9.4)

Also, for each α ∈ B, the cosine of the angle between the vectors uα+1 − uα and
rk(u

α) satisfies ∣∣cos �
(
uα+1 − uα, rk(u

α)
)∣∣ ≤ 1 − c2/2.

Thus, for α ∈ B we have

||P(uα+1) − P(uα)|| ≤ |〈uα+1 − uα, rk(u
α)〉| + O(1) · δ||uα+1 − uα||

≤
(

1 − c2

2
+ O(1)δ

)
· ||uα+1 − uα||,

and, consequently,

||uα+1 − uα|| − ||P(uα+1) − P(uα)|| ≥
[
c2

2
+ O(1)δ

]
· ||uα+1 − uα||.(9.5)

By (9.4) and (9.5) we receive

N−1∑
α=0

(
||uα+1 − uα|| − ||P(uα+1) − P(uα)||

)

≥ c2

2

∑
α∈B

||uα+1 − uα|| + O(1) · δ
N−1∑
α

||uα+1 − uα||.
(9.6)

4. On the other hand, with c  1 we have that ||P(uα+1) − P(uα)|| ≥ 1/2 ·
||uα+1 − uα|| for all α ∈ G ∪B′. Hence,

N−1∑
α=0

||uα+1 − uα|| −
N−1∑
α=0

||P(uα+1) − P(uα)||

≤ |Rk| + δ −
(
|Rk| + O(1)δ − 2 ·

∑
α∈B′

||P(uα+1) − P(uα)||
)

≤ O(1)δ −
∑
α∈B′

||uα+1 − uα||.

In view of (9.6) we thus obtain

c2 ·
∑
α∈B

||uα+1 − uα|| = O(1)δ.(9.7)

The estimates (9.2), (9.3), and (9.7) yield∣∣∣∣∣
(

N−1∑
α=0

(γk
α)+

)
− |Rk|

∣∣∣∣∣ ≤
∣∣∣∣∣
(∑

α∈G

(γk
α)+

)
−
(∑

α∈G

||uα+1 − uα||
)∣∣∣∣∣

+

∣∣∣∣∣
(∑

α∈B

(γk
α)+

)
−
(∑

α∈B

||uα+1 − uα||
)∣∣∣∣∣+ O(1)δ

≤ O(1)c + O(1)
∑
α∈B

||uα+1 − uα|| + O(1)δ

= O(1) · (c + δ/c2 + δ).
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Taking c2 =
√
δ, we receive the first estimate in (9.1) with ε0 = O(1)δ1/4. The second

estimate follows in the same manner.
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BOUNDS FOR THE STEADY-STATE SEL’KOV MODEL FOR
ARBITRARY p IN ANY NUMBER OF DIMENSIONS∗

GARY M. LIEBERMAN†

Abstract. The Sel’kov model is a system of two differential equations which describe various
complex biological and chemical systems. In this system there is an exponent p which must be
allowed to be an arbitrary number greater than one according to the underlying model but is usually
restricted in mathematical analyses. We show that the restriction is not necessary by proving some
a priori estimates for all solutions of the system. The techniques for proof include some maximum
principle arguments and the weak Harnack inequality. In fact our techniques apply to a much more
general class of problems, including the Brusselator model.

Key words. elliptic equations, a priori estimates, Sel’kov model

AMS subject classifications. 35J55, 35B45, 35B65, 35Q80, 92C15, 92C40

DOI. 10.1137/S003614100343651X

1. Introduction. In 1968, Sel’kov [13] introduced a model for glycolysis that has
become a standard for various complex biological, chemical, and biochemical systems.
The steady-state form of this model is the following boundary value problem: Find
nonnegative functions u and v such that

θ∆u = λ(uvp − 1) in Ω,(1.1a)

∆v = λ(v − uvp) in Ω,(1.1b)

∂u

∂ν
=

∂v

∂ν
= 0 on ∂Ω(1.1c)

for positive parameters p, θ, and λ. Here, Ω is a bounded domain in R
n (n ≥ 1) and

∂/∂ν denotes the inner normal derivative. We refer the reader to [2] and [14] for a
more detailed bibliography and discussion of the significance of this system.

This problem has the obvious constant solution u ≡ 1, v ≡ 1 (and this is the only
constant solution), but Eilbeck and Furter [3] used numerical bifurcation methods
to show that the one-dimensional problems has nonconstant solutions for suitable
ranges of the parameters. More recently, Davidson and Rynne [2] and Wang [14]
proved corresponding results in two and three dimensions. (In fact, their arguments
apply to any number of dimensions, but their results are only stated for two and three
dimensions because of the physical applications.) A key step in their arguments is
an a priori estimate for all such solutions, but, when n ≥ 3, they require an upper
bound on p, namely, p < n/(n− 2). We shall show that no restriction on p is needed
for this estimate and that a simpler approach can be used, which is independent of
dimension. Our interest came from the theoretical side of the problem, but there is
a more practical reason to investigate such a result: In Sel’kov’s original paper, this
parameter should be allowed to take on arbitrary values greater than one for physical
reasons. It should also be noted that the proofs in [2] and [14] of their bifurcation and
existence results along with our more general estimates give their results without the
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restriction on p. For example, we have the following result, in which µi for i = 1, 2, . . .
denote the positive eigenvalues of the Laplacian operator with Neumann conditions.

Theorem 1.1. Let λ, θ, and p be positive parameters, and suppose there is at
least one index i such that

λ(λ + µi) < θµi[λ(p− 1) − µi],(1.2)

but there are no indices j such that

λ(λ + µj) = θµj [λ(p− 1) − µj ].(1.3)

If the sum of the dimensions of the eigenspaces corresponding to all eigenvalues µi

satisfying (1.2) is odd, then there is a nonconstant solution to (1.1).
The proof of this theorem is the same as for [14, Theorem 6.2] once we have the

appropriate estimate. (In [14], it was also assumed that p < n/(n − 2) if n ≥ 3, but
this assumption was used only to derive the a priori estimate.)

The key new element in our approach is the use of a weak Harnack inequality,
described in section 2. We prove our estimate in section 3 with some generalizations
in section 4.

2. Some general results for elliptic equations. Our new element is the
following result which is well known as a local result for weak supersolutions of linear
elliptic equations (see, for example, [5, Theorem 8.18]).

Lemma 2.1. Let Ω be a bounded Lipschitz domain in R
n. Let Λ be a nonnegative

constant and suppose that v ∈ W 1,2 is a nonnegative weak solution of the inequalities

∆v − Λv ≤ 0 in Ω,
∂v

∂ν
≤ 0 on ∂Ω.(2.1)

Then, for any q ∈ [1, n/(n− 2)), there is a constant C0, determined only by q, Λ, and
Ω, such that

‖v‖q;Ω ≤ C0 inf
Ω

v.(2.2)

Proof. The proof of [5, Theorem 8.18] is easily adapted to handle the boundary
condition by using the argument in [10, Theorem 6.40]. (See also [7] for further
details.)

Similarly, we have the following Harnack inequality for weak solutions, which is
an analogue of [5, Theorem 8.16]. (See also [11, Lemma 4.3] for a proof in smooth
domains.)

Lemma 2.2. Let Ω be a bounded Lipschitz domain in R
n. Let c ∈ Lq(Ω) for some

q > n/2, and suppose that v ∈ W 1,2 is a nonnegative weak solution of the boundary
value problem

∆v + cv = 0 in Ω,
∂v

∂ν
= 0 on ∂Ω.(2.3)

Then there is a constant C1, determined only by ‖c‖q, q, and Ω such that

sup
Ω

v ≤ C1 inf
Ω

v.(2.4)

We also have the following analogue of [12, Proposition 2.2].
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Lemma 2.3. Let Ω be a bounded Lipschitz domain and let g ∈ C(Ω × R). If
w ∈ W 1,2 is a weak solution of the inequalities

∆w + g(x,w) ≥ 0 in Ω,
∂w

∂ν
≥ 0 on ∂Ω,(2.5)

and if there is a constant K such that g(x, z) < 0 for z > K, then w ≤ K a.e. in Ω.
Proof. Use the test function (w −K)+ to see that∫

{w>K}
|Dw|2 dx ≤

∫
{w>K}

g(x, z)(w −K) dx.

The integral on the left-hand side of this inequality is nonnegative, while the integrand
of the integral on the right-hand side is negative, so {w > K} must have zero measure,
as required.

3. The main a priori estimates. We now look at nonnegative solutions of the
system (1.1).

Our a priori estimate has the following simple form.
Theorem 3.1. Let P , Θ, and Λ be positive constants, and suppose that 0 <

p ≤ P , 0 < θ ≤ Θ, and 0 < λ ≤ Λ. Write C2 for the value of C0 corresponding to
q = 1 and set ε = |Ω|/C2. Then any nonnegative W 1,2 solution to (1.1) satisfies the
inequalities

ε ≤ v ≤ Θε−P + 1,(3.1a)

1

(Θε−P + 1)P
≤ u ≤ ε−P .(3.1b)

Proof. We begin by noting (see equations (2.1) and (2.2) in [2]) that∫
Ω

uvp dx =

∫
Ω

v dx = |Ω|.(3.2)

Next, v satisfies ∆v ≤ λv ≤ Λv in Ω, so Lemma 2.1 implies that∫
Ω

v dx ≤ C2 inf
Ω

v,

so v ≥ ε in Ω. (Note that inf v ≤ 1, so ε ≤ 1.)
We see that vp ≥ εP in Ω, so ∆u ≥ (λ/θ)[εPu− 1] in Ω. It follows from Lemma

2.3 that u ≤ ε−P in Ω.
Next, we set w = θu + v. Then ∆w = λ(v − 1), and v − 1 > 0 wherever

w > θε−P + 1, so Lemma 2.3 now implies that w ≤ θε−P + 1. Since u ≥ 0, it follows
that v ≤ θε−P + 1 ≤ Θε−P + 1.

Finally, we note that, at a minimum of u, we must have uvp − 1 ≥ 0, so inf u ≥
1/(sup v)p ≥ 1/(sup v)P . Hence, u ≥ (Θε−P + 1)−P .

When p = 0 (and λ > 0 and θ > 0), it follows from (1.1a) and (1.1c) that u ≡ 1
and then (1.1b) and (1.1c) imply also that v ≡ 1. Similarly, if θ = 0 (and λ > 0),
we can rewrite (1.1a) as uvp − 1 = 0, so (1.1b) becomes ∆v = λ[v − 1], so v ≡ 1 and
hence u ≡ 1 also. Hence, the estimate (3.1) is uniform over the ranges 0 ≤ θ ≤ Θ
and 0 ≤ p ≤ P . However, the restriction λ > 0 is clearly necessary, because, for
λ = 0, any positive constants are solutions of the resulting system (unless we impose
the additional assumptions (3.2), in which case the only solution is u ≡ v ≡ 1). On
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the other hand, for λ > 0, the only constant solution is u ≡ v ≡ 1. The existence of
nonconstant solutions is the focus of [2, section 4] and [14].

In fact, Wang [14, Theorem 3.1] provides estimates depending only on a lower
bound for θ if P < (n + 2)/(2(n − 2)). Our next step is to improve this result by
showing that the estimates are independent of θ for the larger range P < n/(n− 2).

Theorem 3.2. If P < n/(n − 2), then there is a constant C3, determined only
by P , Λ, and Ω such that v ≤ C3 and u ≥ C3 in Ω.

Proof. Without loss of generality, we may assume that P > 1. From the proof of
Theorem 3.1, we need only to prove an upper bound for v which is independent of θ
using the lower bound for v and the upper bound for u (which are already independent
of θ). To this end, we set c = 1 − uvp−1. Because inf v ≤ 1, we have

|c| ≤ 1 + supu(inf v)p−P vP−1 ≤ 1 + ε−2P vP−1.

In addition, there is a constant q > n/2 (determined only by P and n) such that
(P − 1)q < n/(n − 2). Now Lemma 2.1 provides a constant C4 (determined only by
P , Λ, and Ω) such that

‖v‖(P−1)q ≤ C4 inf v.

Therefore c ∈ Lq and we have an estimate for ‖c‖q. It follows that v satisfies the
hypotheses of Lemma 2.2, which then provides the required upper bound for v.

In addition, higher regularity of u and v is an immediate consequence of estimates
for solutions of linear equations. For example, [6, Theorem X.2.1] (see also [10, The-
orem 6.44]) implies Hölder estimates for u and v. From this regularity, it follows that
u and v have Hölder continuous kth-order derivatives (k ≥ 1) provided ∂Ω has the
same smoothness. (For the case k = 1, see [6, Theorem X.2.1] or [8, Theorem 5.1]
and for k = 2, see [5, Theorem 6.20].)

4. Generalizations. It should be noted that the method here applies to a much
broader class of problems than those explicitly described. Here, we suggest a few
possibilities.

The first way in which we generalize our hypotheses is to emphasize which prop-
erties of the right-hand sides of our differential equations were actually used.

Theorem 4.1. Let f and g be continuous functions defined on Ω × R
2, and

suppose u ∈ W 1,2 and v ∈ W 1,2 are nonnegative solutions of the system

∆u = f(x, u, v), ∆v = g(x, u, v) in Ω(4.1)

with boundary condition (1.1c). Suppose also that f and g satisfy the following con-
ditions:

1. There are constants α1 and β1 and a function γ ∈ L1(Ω) such that

αf(x, z1, z2) + βg(x, z1, z2) + γ(x) ≤ z2(4.2)

for all (x, z1, z2) ∈ Ω × R
2 and∫

Ω

γ(x) dx > 0.(4.3)

2. There is a positive constant δ such that g(x, z1, z2) ≤ δz2.
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3. There is a function M : (0,∞) → (0,∞) such that, for any ε > 0, we have
f(x, z1, z2) > 0 for z2 ≥ ε and z1 > M(ε).

4. There are a constant α2 ≥ 0 and a function N : (0,∞) → (0,∞) such that, for
any ε > 0, we have α2f(x, z1, z2) + g(x, z1, z2) > 0 for z1 ≤ ε and z2 > N(ε).

5. There is a function M1: (0,∞) → (0,∞) such that, for any ε > 0, we have
f(x, z1, z2) < 0 for z2 ≤ ε and z1 < M1(ε).

Then there are positive constants K1 and K2 determined only by α2,
∫
Ω
γ dx, δ, Ω,

M , M1, and N such that K1 ≤ u, v ≤ K2 in Ω.

In fact, this form of our estimate applies to several related models. First, we con-
sider the two-variable system first used by Sel’kov [13, equation (5)]. In our notation,
we have

f(x, u, v) =
λ

θ2

[
uvp

1 + vp + uvp
− ν1

]
, g(x, u, v) = λ

[
κv − uvp

1 + vp + uvp

]

for positive constants λ, θ, κ, ν1, and p. In [13], the parameter ν1 is assumed small.
Here, we assume only that it is less than one. Noting that

θ2f

λκ
+

g

κλ
= −ν1

κ
+ v,(4.4)

we see that condition 1 holds with α = θ2/(λκ), β = 1/(κλ), and γ = ν1/κ. We also
have condition 2 with δ = λκ. For condition 3, we note that

uvp

1 + vp + uvp
=

u

v−p + 1 + u
≥ u

ε−p + 1 + u
,

and this fraction can be made larger than ν1 by taking u sufficiently large. From (4.4),
we infer condition 4 with N(ε) ≡ ν1/κ, and condition 5 follows with M1(ε) = ν1/ε

p

once we note that

f(x, u, v) ≤ λ

θ2
[uvp − ν1].

Similarly, we can handle the Brusselator model (see [4], [1], etc.), in which

f(x, u, v) =
λ

θ2
[v2u−Bv], g(x, u, v) = λ[−A + (B + 1)v − v2u]

for positive constants A and B. (Note that we have relabeled variables compared with
[4].) In this case, condition 1 holds with α = θ2/λ, β = 1/λ, and γ = A. Condition 2
holds with δ = λ(B + 1), and condition 3 holds with M(ε) = B/ε. Condition 4 holds
with α2 = θ2 and M1(ε) ≡ A. Finally, we have condition 5 with M1(s) = B/s. Note
that our estimates improve those in [1, section 3].

As another generalization, we can replace the Laplace operator by any self-adjoint,
uniformly elliptic operator provided we replace the normal boundary condition by
the conormal boundary condition. Specifically, we replace ∆ by the linear operator
L = Di(a

ijDj), where [aij ] is an n×n positive-definite matrix-valued function defined
on Ω such that

µ|ξ|2 ≤ aij(x)ξiξj ≤
1

µ
|ξ|2
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for all ξ ∈ R
n, all x ∈ Ω, and some µ ≤ 1. (Of course, we observe the Einstein

summation convention, that repeated indices are summed from 1 to n.) The boundary
condition is then

aijDjuνi = aijDjvνi = 0.

The proofs of Theorems 3.1 and 4.1 are unchanged except that C0 and C1 (and hence
C2, etc.) now depend also on µ.

We can also generalize our results by replacing the Laplacian by a quasi-linear
operator Q of the form

Qu = Di(A
i(x,Du)),

with A satisfying the hypotheses

ζ ·A(x, ζ) ≥ |ζ|m, |A(x, ζ)| ≤ a0|ζ|m−1

for some constants m > 1 and a0 > 0. In this case, the appropriate weak Harnack
and Harnack inequalities are proved by slight modification of the ones already men-
tioned. (See, for example, [5, Theorem 15.7] for a brief description of the necessary
modifications for the weak Harnack inequality.) The power function tm can also be
further generalized as in [9].

Finally, it is possible to deal with other boundary conditions. For the Dirichlet
boundary condition u = ϕ and v = ψ, we cannot expect positive lower bounds for u
and v unless ϕ and ψ are strictly positive, but an upper bound for u follows from [5,
Theorem 3.7] and then an upper bound for v follows by applying that same theorem
to θu + v. On the other hand, for the Robin condition

θ
∂u

∂ν
+ γ1u = 0,

∂v

∂ν
+ γ2v = 0,

with γ1 and γ2 bounded nonpositive functions, the weak Harnack and Harnack in-
equalities (with C0 and C1 also depending on bounds for γ1 and γ2) and the maximum
principle still hold, so we still obtain a lower bound for v and an upper bound for u.
When γ1 ≤ γ2 or P < n/(n−2), our arguments immediately give an upper bound for
v. In general, we note that the supremum of w = θu + v can be estimated in terms
of Θ, Λ, P , Ω, and

∫
w dx. (See, for example [5, Theorem 8.16] and [10, Theorem

6.41].) This observation provides an upper bound for v and then the lower bound for
u follows as before.
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INITIAL BOUNDARY VALUE PROBLEMS FOR A QUASI-LINEAR
PARABOLIC SYSTEM IN THREE-PHASE CAPILLARY FLOW IN

POROUS MEDIA∗
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Abstract. We study two types of initial boundary value problems for a quasi-linear parabolic
system motivated by three-phase flows in porous media in the presence of capillarity effects. The
first type of problem prescribes a mixed boundary condition, involving a combination of the value
of the solution and its normal derivative at the boundary. The second type prescribes the value of
the solution at the boundary, which is the so-called Dirichlet boundary condition. We prove the
existence and uniqueness of smooth solution for the first type of initial boundary value problem,
and we obtain the existence of a solution for the second one as a limit case of the first type. The
main assumption about the diffusion matrix of the system is that it is triangular with strictly positive
diagonal elements. Another interesting feature is concerned specifically with the application to three-
phase capillary flow in a porous medium. Namely, we derive an important practical consequence of
the assumption that the capillarity matrix is upper triangular, if we further impose that the second
diagonal element depends only on the second variable, i.e., the second phase. We show that this
mathematical assumption in turn provides an efficient method for the definition of the capillary
pressures in the interior of the triangle of saturations through the solution of a well-posed boundary
value problem for a linear hyperbolic system. Finally, as an example, we include the analysis of a
special case of three-phase capillary flow model where the capillarity matrix is degenerate, but we
are still able to solve it due to the particular form of the flux functions.

Key words. porous media, three-phase capillary flows, existence, uniqueness
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1. Introduction. We consider initial boundary value problems for 2 × 2 quasi-
linear parabolic systems of the form

ut + f(u)x = (B(u)ux)x, 0 < t < T, x ∈ Ω := (−1, 1),(1.1)

motivated by one-dimensional three-phase capillary flows through a porous medium,
say, an oil reservoir. Here,

u =

(
u1

u2

)
, f =

(
f1

f2

)
, B =

(
B11 B12

B21 B22

)
.

We first explain our abstract results concerning (1.1) and then we discuss the appli-
cation already mentioned.

We consider two initial boundary value problems for system (1.1):

δuη + u = ub at |x| = 1, t > 0, u|t=0 = u0(x), x ∈ Ω(1.2)
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and

u = ub at |x| = 1, t > 0, u|t=0 = u0(x), x ∈ Ω,(1.3)

where δ = const > 0 and

uη|x=±1 = ±ux|x=±1, ub|x=±1 = u±(t).

Motivated by the application, the functions fi, Bij , i, j = 1, 2, are assumed to be
defined and smooth over the closed triangle

∆ := {u ∈ R
2 : 0 ≤ ui, u1 + u2 ≤ 1},(1.4)

and we take initial and boundary data satisfying

u0(x), u±(t) ∈ ∆ ∀x ∈ Ω, t > 0.(1.5)

We then seek for solutions to our problems (1.1), (1.2) and (1.1), (1.3) defined on
Q := Ω × (0, T ) for any T > 0, which satisfy

u(t, x) ∈ ∆ ∀(x, t) ∈ Q.(1.6)

For the mathematical analysis of the above problems, we need to assume that for
certain constant ν > 0 we have

Bii ≥ ν, i = 1, 2 ∀u ∈ ∆,(1.7)

and that the matrix B is (upper) triangular, i.e.,

B21(u) ≡ 0.(1.8)

Concerning the behavior of the functions fi and Bij on the boundary of ∆, we assume
the following:

f1|u1=0 = const, f2|u2=0 = const, (f1 + f2)|u1+u2=1 = const,(1.9)

B12|u2=0 = 0, (B11 −B12 −B22)|u1+u2=1 = 0.(1.10)

As for the smoothness of the functions fi, Bij over ∆, we assume

fi,
∂fi
∂uj

, Bij ,
∂Bij

∂uk
,

∂2Bij

∂uk∂ul
∈ Hβ(∆),(1.11)

where Hβ(∆) is the space of Hölder continuous functions on ∆ with β ∈ (0, 1).
The initial and boundary data are also assumed to be in Hölder spaces:

u0 ∈ H2+β(Ω), u±(t) ∈ H1+β([0, T ]).(1.12)

We can now state our result concerning the problem (1.1), (1.2).
Theorem 1.1. Let any T > 0 be given. Assume that the data B(u), f(u), u0(x),

and u±(t) satisfy the conditions (1.5), (1.7), (1.8), (1.9), (1.10), (1.11) and (1.12).
Suppose that the compatibility conditions

±δu′
0(±1) + u0(±1) = u±(0)
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are satisfied. Then problem (1.1), (1.2) has a unique solution u(t, x) such that u ∈
H2+β,1+β/2(Q). Moreover, u satisfies (1.6).

The core of the proof is the application of Leray–Schauder’s fixed-point theorem,
which requires strong a priori estimates in Hölder spaces. This was also the approach
followed in [4], where we considered the somewhat simpler case of periodic boundary
conditions. It is, actually, the main point for dealing with nonlinear equations in the
extensive theory developed by Ladyzhenskaya and Ural’ceva [7] and Ladyzhenskaya,
Solonnikov, and Ural’ceva [6], which provide the basic tools of our approach. As is
well known, the application of a fixed-point theorem to obtain a solution to an initial
boundary value problem for a nonlinear PDE, in general, requires the definition of an
operator in a suitable subset U of an appropriate space of functions. Such operator
is usually given by means of the solution of a linear problem, that is, by associating
with each element v ∈ U the solution A(v) of a linear problem, and is such that its
fixed points, that is, solutions of A(u) = u, solve our nonlinear problem. The Hölder
spaces provide the standard setting in the context of smooth solutions. The a priori
estimates in these spaces play then a twofold fundamental role. First, in order to
provide bounds for the possible fixed points of the operator mentioned above, which
will help us to conveniently define its domain. Second, these a priori estimates will
also hold (with similar proof) for the solutions of the linear problems defining the
mentioned operator, which in turn imply the properties required for the application
of the fixed-point theorem. In our application of Leray–Schauder’s theorem, as in [6],
we need a priori estimates in the space of Hölder continuous functions, in space and
time, for the solution u and its space derivative ux. Roughly speaking, after obtaining
the a priori estimate for u, to obtain the estimate for ux, we differentiate the system
with respect to x and regard the resulting equations as a linear system for w = ux.
In this way, the boundary condition (1.2) gives us the Hölder continuity of ux at the
boundary as a consequence of the regularity of ub and the Hölder continuity of u in
Q̄, obtained in the first run. This is what turns problem (1.1), (1.2) easier to handle
than problem (1.1), (1.3). The idea is then to obtain the solution of the latter as
a limit case of the first one, when δ → 0. But, in doing that, we have to give up
the context of classical solutions (up to the boundary) and content ourselves with a
weaker notion of solution, which turns out to leave the question of uniqueness, for the
moment, still open.

We now state our result concerning problem (1.1), (1.3).

Theorem 1.2. Let B(u) and f(u) be as in Theorem 1.1. Let the functions u0(x)
and u±(t) satisfy (1.5) and u0 ∈ L2(Ω), u± ∈ W 1,1(0, T ). Then problem (1.1),
(1.3) has a solution u(t, x) in the sense that u is a classical solution of (1.1) in
Q := (0, T ) × (−1, 1), and u satisfies (1.3) in the sense of L2(0, T ), for the boundary
condition, and L2(−1, 1), for the initial condition. Moreover, if u±(t) ≡ 0, t ∈ [0, T ],
and u0 ∈ H2+β(Ω), with u0(±1) = 0, then u(t, x) is a classical solution of (1.1) in
Q, u ∈ Hβ,β/2(Q) and the initial and boundary conditions are assumed in the usual
sense for continuous functions. In any case the solution u satisfies (1.6).

We prove Theorem 1.1 in sections 2 and 3. Theorem 1.2 is proved in section 4.
Concerning correlated works on the theory of quasi-linear parabolic systems, we recall
first that, in the well-known book of Ladyzhenskaya, Solonnikov, and Ural’ceva [6],
the theory developed for linear and quasi-linear equations is applied to quasi-linear
systems of the type (1.1) (in the multidimensional case, for any number of equations)
where the diffusion matrix is a scalar multiple of the identity matrix. We also recall
the results of Amann [2] which, in the case of 2× 2 one-dimensional systems, require
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∂f2

∂u1
≡ 0 and ∂B22

∂u1
≡ 0, besides (1.7) and (1.8), and assume uniform boundedness of

a certain Hölder norm of the local solution, in order to extent it to all values of time
t > 0.

In section 5 we recall the basic facts about capillary multiphase flow in a porous
medium. In this context one studies the evolution in time and space of the saturations
of three immiscible fluid phases, say, oil, gas, and water, denoted by u1, u2, u3, through
a reservoir, which is assumed to be a (porous) solid cylinder with homogeneous cross
sections. By saturation of a phase we mean the percentage of this phase in an in-
finitesimal pore, so that we must have u1 +u2 +u3 = 1. In section 5, we describe how
a system like (1.1) for the saturations u1 and u2 is derived from the mass conservation
equations together with Darcy’s basic law for flows in porous media. The dependent
vector variable u = (u1, u2) then must assume values in the triangle ∆ defined in
(1.4). By the formulas for the functions fi and Bij , derived from the mentioned basic
facts, we easily check the validity of (1.9) and (1.10), when (1.8) holds. The physical
diffusion matrix is diagonalizable with nonnegative eigenvalues everywhere in ∆, as
shown in [1]. However, it may, in general, become singular at the boundary of ∆. So,
to apply Theorems 1.1 and 1.2 one should, in general, add an artificial viscosity to
the actual system.

Also in section 5, we discuss the mobility laws and capillary pressure laws which
yield (1.8) and also the additional restriction

∂B22

∂u1
= 0,(1.13)

not needed in Theorems 1.1 and 1.2. The mobilities play a role in Darcy’s law analo-
gous to the coefficient of heat conduction in Fourier’s law (see section 5). The capillary
pressures, denoted here by P1 and P2, are defined by P1 = p1 − p3 and P2 = p2 − p3,
where pi is the pressure in the ith phase.

Actually, the main point of section 5 is a remarkable consequence of the math-
ematical assumptions (1.8) and (1.13) on the capillarity matrix. It is related with
the problem of defining the capillary pressures in the interior of the triangle of sat-
urations. As is well known by reservoir engineers, mobilities and capillary pressures
can be plotted as functions of the saturations only in the case of flows where just
two phases are present [10, 5], that is, when u ∈ ∂∆. While there are some widely
accepted models which artificially prescribe the mobility functions in the interior of
∆, such as the one proposed by Stone [13], the same is no longer true for the functions
representing the capillary pressures. Now, the constraints (1.8) and (1.13) amount to
a linear hyperbolic system of partial differential equations for the capillary pressures
P1 and P2, whose coefficients involve the mobility functions, for which we set the
boundary conditions

Pi(u)|uj=0 = πi(ui), i, j = 1, 2, j �= i,(1.14)

enforcing compatibility with the two-phase flow case, where the functions πi can be
obtained from two-phase flows experiments, as already mentioned. The result is a
consistent recipe for defining the capillary pressures in the interior of the triangle of
saturations, given the mobility functions everywhere defined therein! We call this
procedure for determining P1 and P2 in the interior of ∆ the method of physical
interpolation for capillary pressures. As an example, we study in detail the case when
the mobilities are linear functions of the corresponding phase saturation.

Finally, in section 6, the techniques developed in sections 2 to 5 are applied to
the study of a particular degenerate reservoir fluid flow model. This model yields a
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Dirichlet initial boundary value problem for a degenerate system of the form (1.1)
where (1.8), (1.13), and yet ∂f2

∂u1
= 0 hold. In this case the second equation in (1.1)

reads

∂u2

∂t
+

∂f2(u2)

∂x
=

∂

∂x

(
B22(u2)

∂u2

∂x

)
.(1.15)

Since (1.6) must hold, (1.15) is not completely decoupled from the first equation in
the corresponding system (1.1). Here, f and B in (1.1) have the form

f =
1

ku2 + 1

(
u1

(1 + k)u2

)
, B =

(
αk1(1 − ξ)π′

1(ξ) ξ(B11 −B22)

0
k1k2u2(1−u2)π

′
2(u2)

k2u2+k1(1−u2)

)
,

(1.16)

where k1, k2 are positive constants, k = k2

k1
−1, ξ = u1(1−u2)

−1, and π1, π2 are given
functions satisfying π′

1(ξ) ≥ 0, π′
2(u2) ≥ 0.

The main difficulty here is that the matrix B is degenerate at ∂∆. The introduc-
tion of the variable ξ, so-called relative saturation, plays a decisive role in overcoming
this difficulty. We then obtain the following result proved in section 6.

Theorem 1.3. Assume π1(ξ), π2(u2) are given smooth functions of ξ, u2 ∈ (0, 1),
with π′

1(ξ) ≥ 0, π′
2(u2) ≥ 0, 0 < ξ < 1, 0 < u2 < 1, and

u0 ∈ L∞(Ω), u± ∈ W 1,1(0, T ), 0 < δ ≤ u2,±(t) ≤ 1 − δ, δ ≤ ξ±(t) ≤ 1 − δ,

δ ≤ u2,0(x) ≤ 1 − δ, δ ≤ ξ0(x) ≤ 1 − δ

for some δ ∈ (0, 1), where

ξ0 =
u1,0

1 − u2,0
, ξ± =

u1,±
1 − u2,±

.

Then, with f and B given by (1.16), problem (1.1), (1.3) has a weak solution u(t, x)
such that

u ∈ L∞(Q), ux ∈ L2(Q), ut ∈ L2(0, T ;W−1,2(Ω)),

and the estimates

0 < δ ≤ u2 ≤ 1 − δ, δ ≤ ξ ≤ 1 − δ(1.17)

hold.

2. A mixed initial boundary value problem. In this section, for given ε, δ >
0, we consider the initial boundary value problem

ut + f(u)x = (B(u)ux)x + εh, (t, x) ∈ Q ≡ (0, T ) × Ω, Ω = (−1, 1),(2.1)

δuη + u = ub,ε at |x| = 1, u|t=0 = u0,ε(x).(2.2)

Here

uη|x=±1 = ±ux, ub|x=±1 = u±(t),

ui±,ε = (1 − ε)
(ε

2
+ ui±

)
, ui0,ε = (1 − ε)

(ε
2

+ ui0

)
, i = 1, 2.
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The function h = (h1, h2) is any smooth map satisfying h(ω) · ν(ω) < 0, for all
ω ∈ ∂∆, with ν(ω) the unit outer normal to ∂∆, defined everywhere in ∂∆, except at
the vertices. For example, h(u) = u∗ − u, where u∗ is any point in the interior of ∆.

The problem (2.1), (2.2) should be considered as a perturbation of problem (1.1),
(1.2). The inclusion of the perturbation term εh and the slight change in the initial
and boundary data are necessary for the proof of the positive invariance of the triangle
∆ in Lemma 2.1 below. However, we remark in advance that in all the remaining
lemmas in this section, the constants c in the estimates do not depend on ε, which
will easily allow to make ε → 0 in the conclusion of the proof of Theorem 1.1, in the
next section. In Lemmas 2.1 to 2.10 below, we omit the subscript ε when referring to
the functions u0,ε(x), u±,ε(t).

Lemma 2.1. The solution u of (2.1), (2.2) takes values in int(∆) whenever u0

and u± take values in ∆.
Proof. We follow the method of positively invariant regions [12] (see also [11]).

Let us denote u3 = 1 − u1 − u2 and Gi(u) = −ui, i = 1, 2, 3. Setting zi = Gi(u), we
prove that zi < 0 for each i. Clearly,

max
x∈Ω

zi(0, x) < 0, i ∈ {1, 2, 3}.

Suppose there is a first time t1 > 0 such that

max
x∈Ω

zi(t1, x) = zi(t1, x0) = 0

for some i. We consider separately the two cases |x0| < 1 and |x0| = 1. First, we
observe that x0 = 1 is impossible. Indeed, it follows from the equality

δzix + zi = −ui,+ε(2.3)

that zix(t1, 1) < 0, which gives a contradiction since zi(t1, x) ≤ 0, x ∈ [−1, 1]. Sim-
ilarly, we prove that x0 = −1 cannot hold either. So, the case |x0| = 1 is ruled
out.

Let us consider the case |x0| < 1. Multiplying (2.1) by ∇uGi and using (1.9),
(1.10), one arrives at

zit + αizix = (µizix)x + εh · ∇uGi at (t1, x0),(2.4)

where αi and µi ≥ 0 are scalar functions of u ∈ {Gi(u) = 0}∩∆. By the assumption,

zi(t1, x0) = max
0≤τ≤t1

|y|≤1

zi(τ, y).

Hence, we must have

zix(t1, x0) = 0, zixx(t1, x0) ≤ 0, zit(t1, x0) ≥ 0.(2.5)

Due to the choice of h, we have

h · ∇uGi < 0 at (t1, x0).

Now, it follows from (2.4) that zit(t1, x0) < 0, contradicting (2.5).
Lemma 2.2. The estimate

‖ux‖L2(Q) + δ
∑
±

∫ T

0

|ux(t,±1)|2dt ≤ c(2.6)
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holds with a constant c depending on ν and the norms ‖u̇±‖L1(0,T ) and ‖h‖L1(Q). In
particular, by (2.1), it follows that

‖ut‖L2(0,T ;W−1,2(Ω)) ≤ c(2.7)

uniformly in ε and δ.
Proof. Denote

w =
1 − x

2
u− +

1 + x

2
u+ , v = u− w.

Then we have from the second equation in (2.1) that

1

2

d

dt

∫
Ω

v2
2dx +

∫
Ω

B22|v2x|2dx = v2(B22(v2x + w2x) − f2)|+1
−1

+

∫
Ω

v2x(f2 −B22w2x) − w2tv2 + εh2v2 dx.

Since

v|x=±1 = ∓δ(vx + wx)|x=±1

and B22 ≥ ν, estimate (2.6) for u2 follows by the Cauchy inequality.
From the first equation in (2.1), we have

1

2

d

dt

∫
Ω

v2
1dx +

∫
Ω

B11|v1x|2dx = v1(B11(v1x + w1x) + B12u2x − f1)|+1
−1

−
∫

Ω

v1x(B11w1x + B12u2x − f1) − w1tv1 + εh1v1 dx.

By the same argument, one can derive the claim of the lemma for the function u1,
using estimate (2.6) for u2.

Let |u|(α)
Q denote the norm of the function u(x, t) in the Hölder space Hα,α/2(Q)

(cf. [6]):

|u|(α)
Q = sup

Q

|u(x, t)| + sup
x1,x2∈Ω,t∈[0,T ]

|u(x1, t) − u(x2, t)|
|x1 − x2|α

+ sup
x∈Ω,t1t2∈[0,T ]

|u(x, t1) − u(x, t2)|
|t1 − t2|α/2

.

The following estimates depend, in general, on δ.
Lemma 2.3. There are constants c and α ∈ (0, 1) such that

|u2|(α)
Q ≤ c.(2.8)

Moreover, if u± ≡ 0, the estimate (2.8) holds uniformly in δ.
Proof. Let ζ(t, x) be a test function with values between 0 and 1 and that is

different from zero only for x ∈ Kρ, the ball of radius ρ centered at x0 ∈ Ω. Denote

Ωρ = Ω ∩Kρ = [x0
−, x

0
+], x0

+ = min{1, x0 + ρ}, x0
− = max{−1, x0 − ρ}.
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Given δ′ > 0, we multiply the second equation in (2.1) by

ζ2 max{u2 − k, 0} ≡ ζ2u
(k)
2 , k ≥ −δ′,

and integrate over Ωρ. We have

1

2

d

dt

∫
Ωρ

ζ2|u(k)
2 |2 dx +

∫
Ωρ

ζ2B22|u(k)
2x |2 dx = ζ2B22u2xu

(k)
2 |x

0
+

x0
−
− ζ2f2u

(k)
2 |x

0
+

x0
−

−
∫

Ωρ

2ζζxB22u2xu
(k)
2 − ζζt|u(k)

2 |2 − f2(2ζζxu
(k)
2 + ζ2u

(k)
2x ) − εh2ζ

2u
(k)
2 dx.

Observe that

δux|x=±1 = ±(u± − u)|x=±1,

ζ2B22u2xu
(k)
2 |x

0
+

x0
−
≤ 1

δ
ζ2B22u

(k)
2 u2+|x=1 +

1

δ
ζ2B22u

(k)
2 u2−|x=−1,

|ζ2v(k)||x|=1 ≤ |
∫

Ωρ

ζ2v(k)
x + 2ζζxv

(k) dx|(2.9)

for small ρ. Thus, using B22 ≥ ν,

1

2

d

dt

∫
Ωρ

ζ2|u(k)
2 |2 dx + ν

∫
Ωρ

ζ2|u(k)
2x |2 dx

≤ ν

2

∫
Ωρ

ζ2|u(k)
2x |2 dx + c1

∫
Ωρ

|u(k)
2 |2(|ζx|2 + |ζζt|) + ζ21Ak,ρ(t) dx,

(2.10)

where Ak,ρ(t) is the intersection of the support of u
(k)
2 with Kρ, and 1A is the charac-

teristic function of the set A. Proceeding in an analogous way, we prove that (2.10)
also holds with u2 replaced by −u2, for k ≤ 1 + δ′. These inequalities imply that
u2 belongs to a class B2(Q ∪ Γ,M, γ, r, δ′, κ) (see [6, Chapter II, sections 7 and 8]),
with Γ = ∂Q \ {t = T}, M = 1, r = 6, κ = 2, and, hence, u2 ∈ Hα,α/2(Q) for some
α ∈ (0, 1).

As for the last statement, indeed, in this case,

ζ2B22u2xu
(k)
2

∣∣∣x0
+

x0
−

= −
∑
x=±1

1

δ
ζ2B22u2u

(k)
2 ≤ 0,

and the constant c1 in (2.10) does not depend on δ.
Lemma 2.4. There is a constant c such that

max
0≤t≤T

{∫
Ω

u2
2x dx + δ

( ∑
x=±1

u2
2x

)}
+

∫
Q

u2
2xx + u4

2x + u2
2t dx dt ≤ c.(2.11)

Moreover, if u± ≡ 0, the constant c in (2.11) does not depend on δ.
Proof. Let ζ(x) be the test function like above. We multiply the second equation

in (2.1) by (ζ2u2x)x and integrate over Ωρ. Using the equality

δu̇η + u̇ = u̇b at x = ±1,
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and the Young inequality, we obtain that

1

2

d

dt

{∫
Ωρ

ζ2u2
2x dx + δ

( ∑
x=x0

±

ζ2u2
2x

)}
+ ν

∫
Ωρ

ζ2u2
2xx dx ≤ J,

J ≡ ‖u̇b‖C([0,T ]) ×
∑
x=x0

±

|ζ2u2x| +
ν

4

∫
Ωρ

ζ2u2
2xx dx

+ c∗

∫
Ωρ

ζ2u4
2xdx + c

∫
Ωρ

ζ2(u2
2x + u2

1x) + u2
2x(ζ2

x + ζ2) + ζ2 dx.

We estimate the first term in the right-hand side of the above identity using an
inequality like (2.9) and, again, Young’s inequality, in order to obtain

‖u̇b‖C([0,T ]) ×
∑
x=x0

±

|ζ2u2x| ≤
ν

4

∫
Ωρ

ζ2u2
2xx dx + cν

∫
Ωρ

u2
2xζ

2
x + ζ2 dx.

Finally, we recall the inequality (see [6, Chapter II, Lemma 5.4])∫
Kρ

ζ2v4
xdx ≤ 16osc2{v,Kρ}

∫
Kρ

2ζ2v2
xx + ζ2v2

x dx.(2.12)

By Lemma 2.3,

osc2{u2,Kρ} ≤ cρα1 , α1 < α.

Now, the assertion of the lemma follows if we take ρ such that 32c∗ρ
α < ν/4,

where α is the constant from Lemma 2.3.
Lemma 2.5. There are constants c and α ∈ (0, 1) such that |u1|(α)

Q ≤ c. Moreover,
if u± ≡ 0, the constant c in Lemma 2.5 does not depend on δ.

Proof. Let ζ(t, x) be a function like in Lemma 2.3. Then, given δ′ > 0, for
k ≥ −δ′,(

1

2

d

dt

∫
Ωρ

ζ2|u(k)
1 |2 dx +

∫
Ωρ

ζ2B11|u(k)
1x |2 dx = J1 + J2 , J1 = ζ2B11u1xu

(k)
1

∣∣∣∣
x0
+

x0
−

,

J2 =

∫
Ωρ

ζζtu
(k)
1 − 2ζζxB11u1xu

(k)
1 + u

(k)
1 ζ2

[
(B12u2x)x − ∂f1

∂x
+ εh1

]
dx.

We have

J1 ≤ 1

δ

∑
x=±1

ζ2B11u1,±u
(k)
1

(2.9)

≤
∫

Ωρ

ν

4
ζ2|u(k)

1x |2 + c ζ2
x|u

(k)
1 |2 + ζ21Ak,ρ(t) dx,

J2 ≤
∫

Ωρ

|u(k)
1 |2(|ζζt|

+ ζ2) dx + c

(∫
Ωρ

ζ1Ak,ρ(t) dx

)1/2 (∫
Ωρ

1Ak,ρ(t)(1 + u4
2x + u2

2xx

)
dx)1/2.

As in Lemma 2.3, we can prove analogously that the above inequality also holds with
u1 replaced by −u1 and k ≤ 1 + δ′. Hence, (see [6, Chapter II, sections 7 and 8]) the
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function u1 belongs to the class B2(Q∪ Γ,M, γ, r, δ′, κ), for some γ > 0, with M = 1,
r = 6, κ = 2, and the lemma is proved.

Lemma 2.6. There is a constant c such that

max
0≤t≤T

{∫
Ω

u2
1x dx + δ

∑
x=±1

|u1x|2
}

+

∫
Q

u2
1xx + u4

1x + u2
1t dx dt ≤ c.

Moreover, if u± ≡ 0, the constant c in the above lemma does not depend on δ.
Proof. Let ζ(x) be a test function like in Lemma 2.5. Then it follows from the

first equation in (2.1) that

1

2

d

dt

{∫
Ωρ

ζ2u2
1x dx + δ

( ∑
x=x0

±

ζ2u2
1x

)}
+ ν

∫
Ωρ

ζ2u2
1xx dx ≤ cJ,

J = ‖u̇b‖C([0,T ])

∑
x=x0

±

|ζ2u1x| +
ν

2

∫
Ωρ

ζ2u2
1xx dx +

∫
Ωρ

ζ2
x(u2

2x + u2
1x + u2

2xx + u4
2x) dx

+

∫
Ωρ

ζ2(u4
1x + u4

2x + u2
1xζ

2
x + u2

2xx + u2
1x + 1 + u4

2xζ
4
x + u2

2xζ
2
x).

Applying (2.12), one arrives at the conclusion of the lemma.
Lemma 2.7. There is a constant c such that∫

Q

|uix|6 dx dt ≤ c,

∫
Q

|uixx|3 dx dt ≤ c,

∫
Q

|uixuixx|2 dx dt ≤ c.(2.13)

Proof. We start with the simple inequality

∫
Q

|uix|6 dx dt ≤
∫ T

0

max
x∈Ω

|uix|4
∫

Ω

|uix|2 dx dt.

Observe that for any x and y,

v2
x(x) − v2

x(y) = 2

∫ y

x

vxxvxdz,

so

max
|x|<1

v4
x ≤ ‖vx‖2

L2(Ω) + 8‖vxx‖2
L2(Ω)‖vx‖2

L2(Ω).

Hence,

‖uix‖6
L6(Q) ≤ ‖uix‖4

L∞(0,T ;L2(Ω))(1 + 8‖uixx‖2
L2(Q)) ≤ c,

and the first estimate of the lemma is proved.
Let us write the second equation in (2.1) as⎧⎨

⎩
u2t = B22u2xx + F,

F = ∂B22

∂u2
|u2x|2 − ( ∂f2

∂u1
u1x + ∂f2

∂u2
u2x) + ∂B22

∂u1
u1xu2x + εh2.

(2.14)
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By Lemmas 2.4 and 2.6, ‖F‖L3(Q) ≤ c. Now, the theory of linear parabolic equations
with smooth coefficients (see [6, Chapter IV, section 9]) can be applied to derive the
estimate ∫

Q

|u2xx|3 dx dt ≤ c,(2.15)

which is the second estimate in (2.13) for u2. The third estimate in (2.13) for u2

follows because of the inequality

∫
Q

|uv|2 dx dt ≤
(∫

Q

|u|6 dx dt
)1/3 (∫

Q

|v|3 dx dt
)2/3

.(2.16)

The first equation in (2.1) writes

u1t = B11u1xx + F,

F = u1x =

(
∂B11

∂u1
u1x +

∂B11

∂u2
u2x

)
+ u2x

(
∂B12

∂u1
u1x +

∂B12

∂u2
u2x

)
+ B12u2xx

−
(
∂f1

∂u1
u1x +

∂f1

∂u2
u2x

)
+ εh1,

(2.17)

where, as above, ‖F‖L3(Q) ≤ c. Hence, the estimate (2.15) is also valid for u1xx, which
concludes the verification of the second estimate in (2.13). Now, the third estimate
in (2.13) for u1 follows also due to (2.16).

Lemma 2.8. There are constants c and α ∈ (0, 1) such that |u2x|(α)
Q ≤ c.

Proof. Let us differentiate the second equation in (2.1) with respect to x. The
function v := u2x solves the linear equation

vt = (B22vx)x + F2 + gx,

F2 =
∂2B22

∂u2
2

(u2x)3 + 2
∂B22

∂u2
u2xu2xx +

∂B22

∂u1
(u1xxu2x + u1xu2xx)

+
∂2B22

∂u2
1

u2
1xu2x + 2

∂2B22

∂u1∂u2
u1xu

2
2x,

g = − ∂f2

∂u1
u1x − ∂f2

∂u2
u2x + εh2.

By the above lemmas,

‖F2‖q,r,Q ≡
(∫ (∫

Ω

F q
2

)r/q

dt

)1/r

≤ c, ‖g2‖q,r,Q ≤ c,

when q = 2, r = 2. Clearly, the constants q and r satisfy the conditions

1

r
+

1

2q
= 1 − κ, 0 < κ <

1

2
, q ∈ [1,∞], r ∈

[
1

1 − κ
,

2

1 − 2κ

]
,

with κ = 1/4. Moreover, it follows from the boundary conditions (2.2) and Lemma 2.3,
that

‖v(t,±1)‖Hα/2([0,T ]) ≤ c.
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Thus, by the theory of linear parabolic equations (see [6, Chapter III, section 10])

|v|(α
′)

Q ≤ c

for some α′ ≤ α.
Lemma 2.9. There are constants c and α ∈ (0, 1) such that |u1x|(α)

Q ≤ c.
Proof. Denoting u1x = v and differentiating the first equation in (2.1) with respect

to x, we have

vt = (B11(u1, u2)vx)x + F1 + g1x,

F1 = u1xx

(
∂B11

∂u1
u1x +

∂B11

∂u2
u2x

)
+ u1x

{
∂B11

∂u1
u1xx + u1x

(
∂2B11

∂u2
1

u1x +
∂2B11

∂u1∂u2
u2x

)

+
∂B11

∂u2
u2xx + u2x

(
∂2B11

∂u1∂u2
u1x +

∂2B11

∂u2
2

u2x

)}
,

g1 = u2x

(
∂B12

∂u1
u1x +

∂B12

∂u2
u2x

)
+ B12u2xx −

(
∂f1

∂u1
u1x +

∂f1

∂u2
u2x

)
+ εh1.

(2.18)

By Lemma 2.7, ‖F1‖L2(Q) ≤ c. With the estimate of Lemma 2.8 for u2x at hand, the
function F in (2.14) meets the estimate ‖F‖L4(Q) ≤ c. It implies that

‖u2xx‖L4(Q) ≤ c, ‖g1‖L4(Q) ≤ c.

Now, one may treat (2.18) as a linear parabolic equation for v, with

‖F1, g
2
1‖2,2,Q ≤ c, ‖v(t,±1)‖Hα/2([0,T ]) ≤ c.

By the same argument as in Lemma 2.8, we conclude that

|u1x|(α
′)

Q ≤ c

for some α
′
< α.

Lemma 2.10. Let

u0 ∈ H2+β(Ω), u± ∈ H1+β/2([0, T ]), 0 < β < 1,

and the compatibility conditions

±δu
′

0(±1) + u0(±1) = u±(0)(2.19)

be satisfied. Then there is a constant c such that solutions to problem (2.1), (2.2)

satisfy the estimate |u|(2+β)
Q ≤ c. The constant c does not depend on ε but depends

on T , ‖u0|H2+β(Ω)‖, ‖u±|H1+β/2([0, T ])‖, and the L∞-norms of f(u), ∇uf , Bij(u),
∇uBij, and ∇2

uBij.
Proof. First, we observe that the data u0ε and ubε also satisfy the compatibility

conditions (2.19). We know from the above lemmas that there are constants c and

α ∈ (0, 1) such that |ui, uix|(α)
Q ≤ c. If γ = min{α, β}, it follows from the linear

equation (2.14) that |u2|(2+γ)
Q ≤ c (see [6, Chapter IV, section 5]). By the same

argument, we conclude from (2.17) that |u1|(2+γ)
Q ≤ c. To increase γ up to β, one

should return to problem (2.14), which now ensures that |u2|(2+β)
Q ≤ c. Next, one

should pass to (2.17) to make sure that |u1|(2+β)
Q ≤ c.
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3. Existence and uniqueness. To prove the solvability of problem (2.1), (2.2),
we apply a fixed-point argument in the form of the Leray–Schauder principle as in [6].
Let B be a Banach space of vector functions u(t, x) ∈ R

2, having the bounded norm

‖u‖B = |u|(β)
Q + |ux|(β)

Q .

Given v ≡ (v1, v2) ∈ B and λ ∈ [0, 1], we define u = (u1, u2) as a solution to the linear
problem

u1t + λ

[
∂f1(v)

∂x
− (B11(v)u1x)x − (B12(v)u2x)x − εh1(a)

]
= (1 − λ)u1xx,

u2t + λ

[
∂f2(v)

∂x
− (B22(v)u2x)x − εh2(v)

]
= (1 − λ)u2xx,

(3.1)

δuη + u = ubε, u|t=0 = u0ε = (1 − ε)
(ε

2
+ u01,

ε

2
+ u02

)
.(3.2)

The second equation does not involve the function u1. So, by the theory of linear
parabolic equations, given λ ∈ [0, 1], the operator Aλ, which associates with each
v ∈ B the solution Aλ(v) of (3.1), (3.2), is well defined, and its fixed points are
solutions to problem (2.1), (2.2) when λ = 1.

In order to apply Leray–Schauder theorem, as in [6], one must choose appropri-
ately a domain U for the operators Aλ, λ ∈ [0, 1], and verify each of the conditions of
the theorem. By repeating the arguments of the lemmas in section 2, one arrives at
the a priori estimates for the fixed points uλ of the operator Aλ:

uλ ∈ ∆, |uλ, uλx|(β)
Q ≤ M,

where the constants M , M1 are independent of λ. We choose as the domain of the
operators Aλ the set

U = {u ∈ B : u(x, t) ∈ ∆′, |uλ, uλx|(β)
Q ≤ M ′},

where ∆′ ⊆ R
2 is a closed set satisfying int(∆′) ⊃ ∆ and M ′ > M . Clearly, U is the

closure of a bounded connected open set in B, and all the fixed points uλ of Aλ are
in the interior U . This means that we have verified the first and most difficult of the
following conditions for the application of Leray–Schauder theorem:

1. the boundary of U does not contain solutions of Aλ(u) = u;
2. the set ∪λ∈[0,1]Aλ(U) is compact in B;
3. the mapping (λ, v) �→ Aλ(v) is continuous from U × [0, 1] to B;
4. the family of maps {v �→ Aλ(v)}λ∈[0,1] is equicontinuous on U ;
5. the operator A0 has a unique fixed point in the interior of U , and the mapping

v �→ v −A0(v) has an inverse near this fixed point.
The verification of the conditions (2) to (4) above is immediate from all the

preceding discussion in this section and section 2, while (5) follows immediately from
the fact that A0(v) is in fact independent of v, that is, it is one and the same element
of B for all v. Hence, problem (2.1), (2.2) has at least one solution in the Hölder space
H2+β,1+β/2(Q̄). Uniqueness obtained in a standard way, by using the theory of linear
equations with smooth coefficients (see [6, Chapter IV]). Thus, we have proved the
following.

Theorem 3.1. Let the functions f(u), ∇uf , Bij(u), ∇uBij, ∇2
uBij, and the

function h(u) be Hölder continuous with the Hölder exponent β ∈ (0, 1). Let the
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conditions of Lemma 2.10 be satisfied. Then problem (2.1), (2.2) has a unique solution
u(t, x) ∈ H2+β,1+β/2(Q̄) such that u(t, x) ∈ ∆ for each (t, x) ∈ Q.

Proof of Theorem 1.1. Since the estimate of Lemma 2.10 does not depend on ε,
there is a sequence εk ↓ 0, such that the corresponding sequence uk of solutions of

problem (2.1), (2.2) converges to a function u ∈ H2+β,1+β/2(Q) in the norm | · |(2+γ)
Q

for any γ < β. Clearly, u solves the problem (1.1), (1.2). Thus, Theorem 1.1 is
proved.

4. Dirichlet boundary conditions.
Proof of Theorem 1.2. Let us consider the Dirichlet problem (1.1), (1.3). The

estimates (2.6) and (2.7) are uniform with respect to δ ↓ 0. By the Aubin–Lions
compactness theorem [8], they imply that there is a sequence uk, δk ↓ 0, of solutions
to problem (1.1), (1.2) and a function u such that

u ∈ L∞(Q), ux ∈ L2(Q), ut ∈ L2(0, T ;W−1,2(Ω)),(4.1)

uk → u in L2(Q), u(t, x) ∈ ∆ for each (t, x) ∈ Q.

Clearly, the function u solves (1.1) weakly. Now, given any open set Q′ with Q′ ⊆ Q,
we have that uk is uniformly bounded in H2+β,1+β/2(Q′), so that u ∈ H2+β,1+β/2(Q′).
In particular, u is a classical solution of (1.1) in Q. Due to estimate (2.6), the
boundary condition u|x=±1 = u± holds in L2(0, T ). The inclusions (4.1) imply that
u ∈ C(0, T ;L2(Ω)), so the function u satisfies the initial condition u|t=0 = u0 weakly
in L2(Ω). This proves the first part of Theorem 1.2. The last part is a consequence
of the fact that, when ub = 0, the estimates of Lemmas 2.2 to 2.5 are uniform
in δ. Therefore, in this case we have u ∈ Hβ,β/2(Q) and, so, the last assertion
follows.

5. Basic equations of three-phase flow. For the reader’s convenience we
recall the underlying laws of multiphase flows in a porous medium [1]. We consider
one-dimensional horizontal flows of three incompressible immiscible fluids formed in
phases. The balance of masses is governed by the mass conservation equations

∂

∂t
(muiρi) +

∂

∂x
(ρivi) = 0, ρi = const,(5.1)

where m denotes porosity of the porous medium, ui, ρi, and vi are the saturation,
density, and seepage velocity of the ith phase. The functions ui satisfy the volume-
balance equation

u1 + u2 + u3 = 1.(5.2)

The theory of multiphase flows in porous media is based on the following form of
Darcy’s law:

vi = −kλipix,(5.3)

where k stands for the absolute permeability, pi is the pressure of the ith phase, and λi

is the mobility of the ith phase and it is assumed to be a function of u = (u1, u2), that
is, λi = λi(u1, u2), i = 1, 2, 3. Experimentally, only the functions λ1(u1, 0), λ2(0, u2),
λ3(u1, 0), and λ3(0, u2) are known, which correspond to mobilities in two-phase flows.
But there are widely accepted models prescribing the mobility functions everywhere in
∆, based on the knowledge of them for two-phase flows, such as the one of Stone [13].
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The capillary pressures are defined as pressure differences (cf., e.g., [10, 1, 3, 14]),
and we assume here that they are functions of the saturations u1, u2, that is,

P1(u1, u2) = p1 − p3, P2(u1, u2) = p2 − p3.(5.4)

Similarly to what happens with the mobility functions, the capillary pressure functions
are only known in practice in the case of two-phase flows. However, as opposed to
the case of the mobility functions, so far there is no widely accepted way of defining
these functions everywhere in ∆, assuming them to be known for two-phase flows.
One of the main points in this section is the introduction of a new method to define
the capillary pressures everywhere in ∆, assuming that they are known for two-phase
flows and that the mobility functions are known everywhere in ∆.

Denote

λ =
3∑
1

λi, fi =
λi

λ
, i = 1, 2, 3.(5.5)

For

v =
3∑
1

vi,

we find from (5.1) and (5.2) that vx = 0, so v depends on t only. We assume for
simplicity that k = m = 1 as well.

Eliminating the pressure derivative p3x, we have from (2.3)

v1 = f1(v(t) + λ2P2x − (λ2 + λ3)P1x), v2 = f2(v(t) + λ1P1x − (λ1 + λ3)P2x).

If we substitute these velocities into the first two equations in (5.1) and if we pass to

the new time variable t :=
∫ t

0
v(s)ds, we reduce the function v(t) to 1 and obtain a

system of the form (1.1), where the 2 × 2-matrix B is given by

B11 =
λ1(λ2 + λ3)

λ

∂P1

∂u1
− λ1λ2

λ

∂P2

∂u1
, B12 = −λ1λ2

λ

∂P2

∂u2
+

λ1(λ2 + λ3)

λ

∂P1

∂u2
,

B21 =
λ2(λ1 + λ3)

λ

∂P2

∂u1
− λ1λ2

λ

∂P1

∂u1
, B22 = −λ1λ2

λ

∂P1

∂u2
+

λ2(λ1 + λ3)

λ

∂P2

∂u2
.

(5.6)

Since u is a saturation vector, we must have u ∈ ∆. We assume that the mobilities
λi satisfy the natural conditions (see, e.g., [1])

λi ≥ 0, λi|ui=0 = 0, i ∈ {1, 2, 3}.(5.7)

Let us describe our method for defining the capillary pressures everywhere in ∆,
assuming that they are known for two-phase flows. It is based on the assumption of
a special structure for the matrix B given by (5.6).

From the preceding discussion, in the system of the form (1.1) for the saturations
derived above, the functions Pi(u1, u2), i = 1, 2, appear only in the matrix B. We
now impose that

B21 = 0, B22 = B22(u2) ≥ 0, B11 ≥ 0 in ∆.(5.8)



1422 HERMANO FRID AND VLADIMIR SHELUKHIN

The hypothesis (5.8) means that the first and the third phases are not responsible for
the amount of diffusion in the equation for the second phase. The first two conditions
in (5.8) read

A
∂P1

∂u1
=

∂P2

∂u1
,

∂P2

∂u2
= A

∂P1

∂u2
+

λB22

λ2(λ1 + λ3)
, A =

λ1

λ1 + λ3
.(5.9)

We study these equations for Pi(u1, u2) in the case when the mobilities λi are linear
functions:

λi = kiui, ki = const.(5.10)

A symmetry group analysis (see [9]), performed for system (5.9), suggests to look for
solutions of the form

Pi = qi(ξ) + Qi(u2), ξ =
u1

1 − u2
≡ u1

u1 + u3
.(5.11)

It follows from (5.9) that the functions qi and Qi solve the system

q
′

2(ξ) = q
′

1(ξ)A(ξ), A =
k1ξ

(k1 − k3)ξ + k3
, Q

′

1(u2) = −k0B22(u2)

1 − u2
,

Q
′

2(u2) = B22(u2)(
1

k3(1 − u2)
+

1

k2u2
), k0 =

k3 − k1

k1k3
.

(5.12)

Assume that the capillary pressure P1(u) is a given function of u1 at the part of the
boundary of the triangle ∆ where u2 = 0:

P1|u2=0 = π1(u1).

Assume also that the capillary pressure P2(u) is a given function of u2 at the edge
where u1 = 0 of the triangle ∆:

P2|u1=0 = π2(u2).

It follows from (5.11) that

π1(u1) = q1(u1) + Q1(0), π2(u2) = q2(0) + Q2(u2).

It is naturally to set

q1(ξ) = π1(ξ), Q2(u2) = π2(u2).

Then the other functions Q1(u2) and q2(ξ) are defined from (5.12) as follows:

q2(ξ) =

∫ ξ

0

A(ξ)π
′

1(ξ)dξ, B22(u2) =
k2k3u2(1 − u2)π

′

2(u2)

k2u2 + k3(1 − u2)
,

Q
′

1(u2) = − k0

1 − u2
B22(u2).

Thus, we arrive at the formulas for the capillary pressures⎧⎨
⎩
P1(u1, u2) = π1(ξ) −

∫ u2

0
k0k2k3u2π

′
2(u2)

k2u2+k3(1−u2)
du2 + const,

P2(u1, u2) =
∫ ξ

0
A(ξ)π

′

1(ξ) dξ + π2(u2) + const.
(5.13)
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We call the procedure yielding formulas (5.13) the method of physical interpolation
since these formulas define the capillary pressures P1 and P2 in ∆ from their values
when u2 = 0 and u1 = 0, respectively.

Substituting (5.10) and (5.13) in (5.6), we get

B11 = k1(1 −A(ξ))π
′

1(ξ), B22 =
k2k3u2(1 − u2)π

′

2(u2)

k2u2 + k3(1 − u2)
,

B21 = 0, B12 = ξ(B11 −B22).(5.14)

When

π
′

1(ξ) ≥ 0, π
′

2(u2) ≥ 0,

system (1.1) is parabolic in ∆ but degenerate at ∂∆.
Finally, we remark that the matrix B given by (5.14) satisfies

B12|u1=0 = 0, B21 ≡ 0, (B11 −B12 −B22)|u1+u2=1 = 0.

More generally, it is easy to verify that (5.7) implies that the functions Bij of the
general capillarity matrix given by (5.6) satisfy

B12|u1=0 = 0, B21|u2=0 = 0, (B11 + B21 −B21 −B22)|u1+u2=1 = 0.(5.15)

It is also immediate to verify that (5.7) implies that the functions fi defined in (5.5),
for the general three-phase flow model, satisfy

f1|u1=0 = 0, f2|u2=0 = 0, (f1 + f2)|u1+u2=1 = 1.(5.16)

Both (5.15) and (5.16) imply sufficient conditions in order to have u(x, t) ∈ ∆ for any
smooth solution of (1.1), which behaves nicely for x ∈ ∂Ω.

6. A degenerate problem. Here, we study a particular system arising in
petroleum reservoir fluid flows. We assume that mobilities are linear functions

λi = kiui, i ∈ {1, 2, 3}, k1 = k3,

and the capillary pressures are given by the formulas (5.13). In this case, the flow is
governed by the degenerate parabolic system

u1t + f1(u1, u2)x = (B11(u1, u2)u1x)x + (B12(u1, u2)u2x)x,(6.1)

u2t + f2(u2)x = (B22(u2)u2x)x,

with

f1 =
u1

ku2 + 1
, f2 = (1 + k)

u2

ku2 + 1
, k =

k2

k1
− 1,

and B11, B22, B12 are given by (5.14), with k1 = k3 (see (1.16)). The first and second
equations in (6.1) are coupled through the condition u(t, x) ∈ ∆, which can be written
as

0 ≤ ui(t, x) ≤ 1, u2(t, x) ≤ 1 − u1(t, x).(6.2)



1424 HERMANO FRID AND VLADIMIR SHELUKHIN

We consider the Dirichlet initial boundary value problem

u|x=±1 = u±(t), u|t=0 = u0(x).(6.3)

Proof of Theorem 1.3. Consider the approximate nondegenerate problem{
ut + f(u)x = (Bν(u)ux)x,

νuη + u = uν
b at |x| = 1, u|t=0 = uν

0(x),
(6.4)

with

Bν
11 = ν + χν(u2)B11, Bν

22 = ν + χν(u2)B22, Bν
12 = χν(u2)ξ(B

ν
11 −Bν

22),

uν
0 ∈ H2+β(Ω), uν

0(x) ∈ ∆, uν
± ∈ H1+β/2([0, T ]), uν

±(t) ∈ ∆,

±νuν
0(±1) + uν

0(±1) = uν
±(0),

‖uν
± − u±‖W 1,1(0,T ) → 0, ‖uν

0 − u0‖L2(Ω) → 0, as ν ↓ 0.

Here, χν(u2) is a smooth function such that

χν(u2) = 1 if 0 ≤ u2 ≤ 1 − ν, χν(u2) = 0 if 1 − ν

2
≤ u2 ≤ 1.

Clearly, the matrix Bν satisfies the hypotheses of Theorem 1.1, and so we have the
unique solvability of problem (6.4). We also observe that, under the conditions of
Theorem 1.3 on the data uν

0 and uν
±, any smooth solution of problem (6.4) satisfies

the a priori estimate

δ ≤ u2(t, x) ≤ 1 − δ.(6.5)

With this estimate at hand, the matrix Bν , for small ν, reads

Bν
11 = ν + B11, Bν

22 = ν + B22, Bν
12 = ξ(Bν

11 −Bν
22).(6.6)

We then have Bν
22(u

ν) ≥ δ2 uniformly for ν ↓ 0. Thus, the constant c in Lemma 2.2
does not depend on ν, and

‖uν
2x‖L2(Q) ≤ c, ‖uν

2t‖L2(0,T ;W−1,2(Ω)) ≤ c(6.7)

uniformly in ν.
Taking into account the last equality in (6.6) for the entry Bν

12, one can calculate
from (6.4) that the function ξ = uν

1/(1 − uν
2) solves the problem

ξt +
ξx

kuν
2 + 1

= (Bν
11ξx)x − ξxu

ν
2x(Bν

11 + Bν
22)

1 − uν
2

,

ν(1 − uν
2)

1 − uν
±

ξη + ξ = ξ± at x = ±1, ξ|t=0 = ξ0(x).

As we saw in section 5, the variable ξ appears naturally when one is looking for
invariant solutions of the homogeneous system corresponding to (5.9). It enables us
to apply the maximum principle. By the latter,

δ ≤ ξ(t, x) ≤ 1 − δ ,(6.8)
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uniformly in ν. Now, it is a consequence of (6.5) and (6.8) that

δ2 ≤ uν
1(t, x) ≤ (1 − δ)2, Bν

11 ≥ δ2.

By the same argument as in Lemma 2.2, we have

‖uν
1x‖L2(Q) ≤ c, ‖uν

1t‖L2(0,T ;W−1,2(Ω)) ≤ c(6.9)

uniformly in ν.
Estimates (6.7) and (6.9) imply by the Aubin–Lions compactness theorem that

there are a sequence un ≡ uνn and a function u such as described in Theorem 1.3 and
such that

un(t, x) → u(t, x) a.e. in Q, un
x → ux weakly in L2(Q).

Clearly, u is a weak solution of problem (6.1)–(6.3). Theorem 1.3 is proved.
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Abstract. First we give a truly short proof of the major blowup result [T. C. Sideris, J.
Differential Equations, 52 (1984), pp. 378–406] on higher-dimensional semilinear wave equations.
Using this new method, we also establish blowup phenomenon for wave equations with a potential.
This complements the recent interesting existence result by [V. Georgiev, C. Heiming, and H. Kubo,
Comm. Partial Differential Equations, 26 (2001), pp. 2267–2303], where the blowup problem was
left open.
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1. Introduction. We study the blowup of the solutions to the following semi-
linear wave equation:{

∆u− V u− utt + |u|p = 0 in Rn × (0,∞),
u(x, 0) = u0(x), ut(x, 0) = u1(x) in Rn,

(1.1)

where ∆ = Σn
i=1∂

2/∂x2
i is the Laplace operator and V = V (x) is a potential. We

consider dimensions n ≥ 3 and exponents p ∈ (1, pc(n)), where pc(n) is the positive
root of the quadratic equation

(n− 1)p2 − (n + 1)p− 2 = 0.

The number pc(n) is known as the critical exponent of the semilinear wave equation
with V = 0 (see, e.g., [St]). The study of this equation has an interesting and exciting
history. We will give only a brief summary here and refer the reader to [St], [L], [DL],
and a recent paper [JZ] for details. Let the initial values be compactly supported and
nonnegative. John [J] proved that for n = 3 and 1 < p < pc(3), nontrivial solutions
must blow up in finite time. If p > pc(3), global solutions exist for small initial values.
Glassey [Gl1], [Gl2] established the same result in the case n = 2. Schaeffer [Sc] proved
that the critical power p = pc(n) also belongs to the blowup case when n = 2, 3. In
[GLS] the authors showed that when p > pc(n) and n ≥ 3, (1.1) has global solutions
for small initial values (see also [LS] and [T]). When n ≥ 4 and 1 < p < pc(n),
the blowup result was proven by Sideris in [Si]. The proof is quite delicate, using
sophisticated computation involving spherical harmonics. His proof was simplified in
[R] and [JZ], where spherical harmonics still play an important role. In this paper
we discover a truly short proof of the blowup result using only a simple test function.
More importantly the proof carries over to the case when the potential V is positive.
It is a well-known fact that the presence of potentials greatly increases the complexity
of wave motion. In fact there is not much progress in either the existence or blowup
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problems in higher-dimensional cases of (1.1). In the three-dimensional case, it is
known that there exist global small solutions when p > pc(3) and V ∈ C∞

0 (R3) is
nonnegative; see [GHK]. In the same case, [ST] establishes, among other things, a
blowup result for some V ≤ 0. The current paper complements the result of [GHK]
in dimension n = 3 and shows the blowup of solutions in all dimensions n ≥ 3 when
1 < p < pc(n) and V is a nonnegative potential satisfying the following condition:
There exist two functions φ0, φ1 ∈ C2(Rn) such that

{
∆φ0 − V φ0 = 0, C−1

0 ≤ φ0(x) ≤ C0,
∆φ1 − V φ1 = φ1, 0 < φ1(x) ≤ C1(1 + |x|)−(n−1)/2e|x|,

(1.2)

with positive constants C0 and C1. We show (see Lemma 3.1) that this condition
is satisfied by nonnegative potentials under very mild additional assumptions about
regularity and behavior at infinity.

We consider compactly supported nonnegative data (u0, u1) ∈ H1(Rn)×L2(Rn):

u0(x) ≥ 0, u1(x) ≥ 0 a.e., u0(x) = u1(x) = 0 for |x| > R.(1.3)

Our main result is the following theorem.

Theorem 1.1. Let (u0, u1) satisfy (1.3) and V satisfy (1.2). Suppose that problem
(1.1) has a solution (u, ut) ∈ C([0, T ), H1(Rn) × L2(Rn)) such that

supp(u, ut) ⊂ {(x, t) : |x| ≤ t + R}.

If 1 < p < pc(n), then T < ∞.

In particular, the conclusion holds if V is locally Hölder continuous and 0 ≤
V (x) ≤ C

1+|x|2+δ for some C, δ > 0 and all x ∈ Rn.

When V = 0, we choose the functions{
φ0(x) = 1,
φ1(x) =

∫
Sn−1 e

x·ωdω, φ1(x) ∼ Cn|x|−(n−1)/2e|x| as |x| → ∞.

Since condition (1.2) holds, we can apply Theorem 1.1 and deduce the well-known
results of John [J] and Sideris [Si].

The proof of Theorem 1.1 is given in sections 2 and 3. To outline the method, we
introduce

F0(t) =

∫
u(x, t)φ0(x)dx,

F1(t) =

∫
u(x, t)ψ1(x, t)dx, ψ1(x, t) = φ1(x)e−t.

(1.4)

The assumptions on u imply that F0(t) and F1(t) are well-defined C2-functions for
all t. By a standard procedure, we derive a nonlinear differential inequality for F0(t).
We also derive a linear differential inequality for F1(t) and combine these to obtain a
polynomial lower bound on F0(t) as t → ∞. Theorem 1.1 is a consequence of the lower
bound and the blowup result about nonlinear differential inequalities in Lemma 2.1.

In section 3 we prove the existence of φ0 and φ1 in (1.2) when V is locally Hölder
continuous and 0 ≤ V (x) ≤ C

1+|x|2+δ for some C, δ > 0 and all x ∈ Rn. This relies on

a latest sharp estimate of heat kernels with a potential.
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2. Proof of Theorem 1.1. We will use the following well-known ODE result
from, e.g., [Si, p. 386] to show that F0(t) in (1.4) blows up in finite time.

Lemma 2.1. Let p > 1, a ≥ 1, and (p− 1)a > q − 2. If F ∈ C2([0, T )) satisfies
(a) F (t) ≥ K0(t + R)a,

(b) d2F (t)
dt2 ≥ K1(t + R)−q[F (t)]p,

with some positive constants K0, K1, and R, then T < ∞.
To show that F0 satisfies the above differential inequalities for suitable a, q, we

multiply (1.1) by φ0 and integrate over Rn. Condition (1.2) on φ0 yields

d2F0(t)

dt2
=

∫
|u(x, t)|pφ0(x)dx.

Note that for a fixed t, u(·, t) ∈ H1
0 (Dt) where Dt is the support of u(·, t). Hence the

above equality is justified using integration by parts.
Estimating the right side by the Hölder inequality, we have∫

|u(x, t)|pφ0(x)dx ≥
∣∣∫ u(x, t)φ0(x)dx

∣∣p(∫
|x|≤t+R

φ0(x)dx
)p−1 .

By condition (1.2),∫
|x|≤t+R

φ0(x)dx ≤ C0vol{x : |x| < t + R} = C0vol(Bn)(t + R)n.

Thus, we obtain the differential inequality

d2F0(t)

dt2
≥ L1(t + R)−n(p−1)|F0(t)|p(2.1)

with some L1 > 0.
To show that F0 admits the lower bound in Lemma 2.1(a), we relate d2F0/dt

2 to
F1 using again (1.1) and the Hölder inequality:

d2F0(t)

dt2
=

∫
|u(x, t)|pφ0(x)dx ≥

∣∣∫ u(x, t)ψ1(x, t)dx
∣∣p(∫

|x|≤t+R
[φ0(x)]−1/(p−1)[ψ1(x, t)]p/(p−1)dx

)p−1 .

By (1.2), the last inequality becomes

(2.1′)
d2F0(t)

dt2
≥ C0 |F1(t)|p(∫

|x|≤t+R
[ψ1(x, t)]p/(p−1)dx

)p−1 .

The following lemmas estimate the numerator and denominator, respectively, and
provide a lower bound on d2F0/dt

2.
Lemma 2.2. Let V satisfy (1.2) and (u0, u1) satisfy (1.3). Assume that u meets

the conditions of Theorem 1.1. Then for all t ≥ 0,

F1(t) ≥
1

2
(1 − e−2t)

∫
[u0(x) + u1(x)]φ1(x)dx + e−2t

∫
u0(x)φ1(x)dx ≥ c > 0.

Lemma 2.3. Let p > 1. Assume that φ0 and φ1 satisfy condition (1.2). Then for
all t ≥ 0, ∫

|x|≤t+R

[ψ1(x, t)]
p/(p−1)dx ≤ C(t + R)n−1−(n−1)p′/2,
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where p′ = p/(p− 1).
Taking the two lemmas for granted, we combine them with (2.1′) to obtain

d2F0(t)

dt2
≥ L2(t + R)n−1−(n−1)p/2, t ≥ 0,

where L2 > 0. Integrating twice, we have the final estimate

F0(t) ≥ L0(t + R)n+1−(n−1)p/2 +
dF0(0)

dt
t + F0(0)

with some L0 > 0. When 1 < p < pc(n), it is easy to check that n+1−(n−1)p/2 > 1.
Hence the following estimate is valid when t is large:

F0(t) ≥ L0(t + R)n+1−(n−1)p/2.(2.2)

Estimates (2.1) and (2.2) and Lemma 2.1 with parameters

a ≡ n + 1 − (n− 1)p/2 and q ≡ n(p− 1)

imply Theorem 1.1 for all exponents p such that

(p− 1)(n + 1 − (n− 1)p/2) > n(p− 1) − 2 and p > 1.

It is easy to see that the solution set is p ∈ (1, pc(n)). The proof of Theorem 1.1 is
complete, assuming Lemmas 2.2 and 2.3 and the validity of (1.2).

Proof of Lemma 2.2. We multiply (1.1) by a test function ψ ∈ C2(Rn+1) and
integrate over Rn × [0, t]:∫ t

0

∫
u(∆ψ − V ψ − ψss)dxds +

∫ t

0

∫
|u|pψ dxds

=

∫
(usψ − uψs)dx|s=t −

∫
(usψ − uψs)dx|s=0.

(2.3)

We will apply this identity to ψ = ψ1. Notice that for a fixed t, u(·, t) ∈ H1
0 (Dt)

where Dt is the support of u(·, t). Hence all terms involving lateral boundary vanish
during integration by parts. Notice also that

(ψ1)t = −ψ1, ∆ψ1 − V ψ1 − (ψ1)tt = 0,

and

∫
(usψ1 − u(ψ1)s)dx|s=t =

∫
(utψ1 + u(ψ1)t)dx− 2

∫
u(ψ1)tdx

=
d

dt

∫
uψ1dx + 2

∫
uψ1dx.

Hence, (2.3) becomes

dF1(t)

dt
+ 2F1(t) =

∫
[u0(x) + u1(x)]φ1(x)dx +

∫ t

0

∫
|u(x, s)|pψ1(x, s)dxds.

Since ψ1 > 0, we conclude that

dF1(t)

dt
+ 2F1(t) ≥

∫
[u0(x) + u1(x)]φ1(x)dx.
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We multiply by e2t and integrate on [0, t]. Then

e2tF1(t) − F1(0) ≥ 1

2
(e2t − 1)

∫
[u0(x) + u1(x)]φ1(x)dx.

Dividing through by e2t, we obtain the lower bound in Lemma 2.2.
Proof of Lemma 2.3. Let I(t) be the integral in Lemma 2.3. Condition (1.2)

shows that

I(t) ≤ area(Sn−1)C
p/(p−1)
1 e−p′t

∫ t+R

0

(1 + r)−(n−1)p′/2ep
′rrn−1dr,

where p′ = p/(p− 1). Since r < r + 1, it is sufficient to show that

I(t) ≤ Ce−p′t

∫ t+R

0

(1 + r)n−1−(n−1)p′/2ep
′rdr ≤ C(t + R)n−1−(n−1)p′/2.

This estimate is evident after splitting the last integral into two parts:

∫ (t+R)/2

0

(1 + r)n−1−(n−1)p′/2erp
′
dr ≤ (1 + t + R)q1

∫ (t+R)/2

0

ep
′rdr

≤ ep
′R/2

p′
(1 + t + R)q1ep

′t/2,

where q1 = max(0, n− 1 − (n− 1)p′/2), and

∫ t+R

(t+R)/2

(1 + r)n−1−(n−1)p′/2ep
′rdr ≤ 2−q2(1 + t + R)n−1−(n−1)p′/2

∫ t+R

(t+R)/2

ep
′rdr

≤ 2−q2ep
′R

p′
(1 + t + R)n−1−(n−1)p′/2ep

′t,

where q2 = min(0, n− 1 − (n− 1)p′/2). This proves Lemma 2.3.
To complete the proof of Theorem 1.1, it remains to prove Lemma 3.1. In the

special case V = 0, the next section is redundant.

3. Existence of the two functions in (1.2). In this section we prove the
following lemma.

Lemma 3.1. Suppose V is locally Hölder continuous and 0 ≤ V (x) ≤ C
1+|x|2+δ for

some C, δ > 0 and all x ∈ Rn. Then there exist two functions φ0 and φ1 satisfying
(1.2), i.e., {

∆φ0 − V φ0 = 0, C−1
0 ≤ φ(x) ≤ C0,

∆φ1 − V φ1 = φ1, 0 < φ1(x) ≤ C1(1 + |x|)−(n−1)/2e|x|.

Proof. Let H0 and H be the fundamental solutions of

∆u− u− ut = 0, ∆u− u− V u− ut = 0

in Rn × (0,∞), respectively. Then H0 = e−tG0 and H = e−tG, where G0 and G are
the fundamental solution of

∆u− ut = 0, ∆u− V u− ut = 0.
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By Theorem 1.1(a) and Remark 1.1 in [Z1], there exists a positive constant c such
that

cG0(x, t; y, 0) ≤ G(x, t; y, 0) ≤ G0(x, t; y, 0) =
cn
tn/2

e−
|x−y|2

4t

for all x, y ∈ Rn and t > 0. We should mention that the global lower bound is
nontrivial since one needs to keep the exact coefficient 1/4 in each exponential term.

Hence we have the following global bounds:

cH0(x, t; y, 0) ≤ H(x, t; y, 0) ≤ H0(x, t; y, 0).(3.1)

Let µ0 be a positive solution of ∆µ0 − µ0 = 0 such that

µ0(x) ∼ e|x|/(1 + |x|)(n−1)/2.

The existence of such µ0 is well known and is explained in the introduction. Consider
the function

u(x, t) ≡
∫
Rn

H(x, t; y, 0)µ0(y)dy.(3.2)

Since for fixed (x, t), H(x, t; y, 0) decays super-exponentially near infinity, the above
integral is well defined. Moreover, u is a solution to

∆u− u− V u− ut = 0.(3.3)

By (3.1) and (3.2) we have

c

∫
Rn

H0(x, t; y, 0)µ0(y)dy ≤ u(x, t) ≤
∫
Rn

H0(x, t; y, 0)µ0(y)dy.

Since ∆µ0 − µ0 = 0, it is clear from differentiation that

µ0(x) =

∫
Rn

H0(x, t; y, 0)µ0(y)dy,

even though the right-hand side apparently depends on time. Indeed,

∂

∂t

∫
Rn

H0(x, t; y, 0)µ0(y)dy = −
∫
Rn

(∆y − 1)H0(x, t; y, 0)µ0(y)dy

= −
∫
Rn

H0(x, t; y, 0)(∆y − 1)µ0(y)dy = 0.

Here we observe that integration by parts is legitimate since, for fixed t > 0 and x,
H0(x, t; y, 0) has superexponential decay near infinity while µ0 only grows exponen-
tially.

Hence

cµ0(x) ≤ u(x, t) ≤ µ0(x).(3.4)

Differentiating (3.3) with respect to t, we obtain{
∆ut − ut − V ut − (ut)t = 0, (x, t) ∈ Rn × (0,∞),

ut|t=0 = ∆µ0 − µ0 − V µ0 ≤ 0.
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Here we remark that under our assumption that V is locally Hölder continuous, it is
not clear whether utt exists. However, we can work on the finite difference of ut and
use a standard approximation argument to achieve the same result.

By the maximum principle, we know that ut(x, t) ≤ 0 everywhere. This and (3.4)
show that u(x, t) converges to a function φ1 = φ1(x) as t → ∞. Moreover,

cµ0(x) ≤ φ1(x) ≤ µ0(x).(3.5)

We are going to show that

∆φ1 − φ1 − V φ1 = 0.(3.6)

To this end, let us consider the function w = w(x, t) =
∫ t+1

t
u(x, s)ds. Direct compu-

tation shows that

∆w(x, t) − w(x, t) − V (x)w(x, t) = u(x, t + 1) − u(x, t).

It is also clear that w(x, t) → φ1(x) when t → ∞. Let η = η(x) be any function in
C∞

0 (Rn). Then we obtain∫
Rn

[w(x, t)∆η(x) − w(x, t)η(x) − V (x)w(x, t)η(x)]dx

=

∫
Rn

[u(x, t + 1) − u(x, t)]η(x)dx.

Letting t → ∞, we have∫
Rn

[φ1(x)∆η(x) − φ1(x)η(x) − V (x)φ1(x)η(x)]dx = 0.

Since η is arbitrary and φ1 is locally bounded, we know that φ1 is a classical solution
to (3.6), which also satisfies (3.5). This proves the existence of φ1 in (1.2). The
existence of φ0 under our assumption is well known (see, e.g., [Z2, Theorem B]). In
fact it can be proven by exactly the same method except that we drop the term −u
everywhere.

Remark 3.1. The decay condition for V in Lemma 3.1 can be generalized. In
[Z1], a necessary and sufficient condition for the validity of the sharp comparison
result right before (3.1) was found for all nonnegative V . This class of V resembles
the Kato class in mathematical physics. It overlaps with Ln/2(Rn). But they are not
the same.
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EXISTENCE OF TRAVELLING WAVES IN DISCRETE
SINE-GORDON RINGS∗

GUY KATRIEL†

Abstract. We prove existence results for travelling waves in discrete, damped, dc-driven sine-
Gordon equations with periodic boundary conditions. Methods of nonlinear functional analysis are
employed. Some unresolved questions are raised.
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1. Introduction. The damped, dc-driven discrete sine-Gordon equation, known
also as the driven Frenkel–Kontorova model, with periodic boundary conditions, arises
as a model of many physical systems, including circular arrays of Josephson junctions,
the motions of dislocations in a crystal, the adsorbate layer on the surface of a crystal,
ionic conductors, glassy materials, charge-density wave transport, sliding friction, as
well as the mechanical interpretation as a model for a ring of pendula coupled by
torsional springs (we refer to the reader [8, 10, 11] and the references therein). This
model has thus become a fundamental one for nonlinear physics, and has been the
subject of many theoretical, numerical, and experimental studies. The system of
equations is

φ′′
j + Γφ′

j + sin(φj) = F + K[φj+1 − 2φj + φj−1] ∀j ∈ Z(1)

with the parameters Γ > 0,K > 0, F > 0, with the periodic boundary condition

φj+n(t) = φj(t) + 2πm ∀j ∈ Z,(2)

where m ≥ 1 (we note that in view of the boundary conditions we are really dealing
with an n-dimensional system of ODE’s rather than an infinite-dimensional one).
In numerical simulations, as well as in experimental work on systems modelled by
(1), (2), it is observed that solutions often converge to a travelling wave: a solution
satisfying

φj(t) = f
(
t + j

m

n
T
)
,(3)

where the waveform f : R → R is a function satisfying

f(t + T ) = f(t) + 2π ∀t ∈ R.(4)

The velocity of the travelling wave is given by

v =
2π

T
.(5)
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However, as has been pointed out in [10], even the existence of such a solution has not
been proven, except for the case of small K in which existence of a travelling wave
for some values of F had been proven in [4].

In the “superdamped” case, in which the second-derivative term in (1) is removed,
there are very satisfactory results about existence and also global stability of travelling
waves (see [1, Theorem 2], ). Such results rely strongly on monotonicity arguments.
Recently Baesens and MacKay [2] have managed to extend these arguments to the
“overdamped” case of (1): their results apply when

Γ > 2
√

2K + 1,(6)

and say that there exists a travelling-wave solution which is globally stable if and only
if (1), (2) does not have stationary solutions. We do not know whether in general the
nonexistence of stationary solutions implies the existence of a travelling wave.

We note that a function f is a waveform if and only if it satisfies (4) and

f ′′(t) + Γf ′(t) + sin(f(t)) = F + K
[
f
(
t +

m

n
T
)
− 2f(t) + f

(
t− m

n
T
)]

.(7)

Here we obtain several existence results for travelling waves under conditions not
covered by the existing work, described above.

Theorem 1. Fixing any Γ > 0 and K > 0, and given any velocity v > 0, there
exists a travelling-wave solution of (1), (2) with velocity v for an appropriate F > 0.

Theorem 2. For any F > 1 there exists a travelling-wave solution of (1), (2).
Theorem 3. Assume that n does not divide m. Fixing any F̃ > 0 and Γ̃ > 0,

for all K sufficiently large there exists a travelling-wave solution of (1), (2) for any
F ≥ F̃ and Γ ≥ Γ̃.

Theorem 4. Fixing any F̃ > 0 and K̃ > 0, for all Γ > 0 sufficiently small there
exists a travelling-wave solution of (1), (2) for any F ≥ F̃ and 0 < K ≤ K̃.

We remark that the assumption that n does not divide m cannot be removed
from Theorem 3, since if n divides m the coupling term vanishes and (7), (4) reduce
to the equation of a running solution of a dc-forced pendulum, which, fixing Γ > 0, is
known to have a solution only when F exceeds a positive critical value [5].

It is interesting to note that Theorem 4 demonstrates that for some parameter
ranges, there is coexistence of stationary solutions and travelling waves of (1), (2).
Indeed, it is well known [3] that, fixing K, for F sufficiently small, there exist sta-
tionary solutions of (1), (2), and these obviously do not depend on Γ. Hence we can
take Γ > 0 sufficiently small so that Theorem 4 ensures also the existence of travelling
waves. This phenomenon cannot happen in the superdamped case, nor in the over-
damped case in which (6) holds, since in these cases existence of stationary solutions
implies that the ω-limit set of every orbit is contained in the set of stationary solutions
[1, 2].

Along the way we will prove the following proposition.
Proposition 5. An upper bound for the velocity v of any travelling wave is given

by

v <
F

Γ
,(8)

and a lower bound, in the case F > 1, is given by

v >
F − 1

Γ
.(9)
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In the next section we prove the results stated above. In section 3 we discuss the
meaning of our results in connection with existing numerical studies of the discrete
sine-Gordon equation, and point out some further mathematical questions which arise
from our results and remain open.

2. Proofs of the results. Our method of proof involves reformulating the prob-
lem as a fixed-point problem in a Banach space, and applying results of nonlinear
functional analysis. Our approach is thus close in spirit to [6], which deals with
travelling waves in globally coupled Josephson junctions.

We transform the problem (4), (7) by setting

f(t) = u(vt) + vt,

where the wave velocity v is defined by (5) and u satisfies

u(z + 2π) = u(z) ∀z ∈ R.(10)

Equation (7) can then be written as

v2u′′(z) + Γvu′(z) + sin(z + u(z))

= F − Γv + K
[
u
(
z + 2π

m

n

)
− 2u(z) + u

(
z − 2π

m

n

)]
.(11)

Dividing by v2 and setting

λ =
1

v
,

we rewrite (11) in the form

u′′(z) + λΓu′(z) + λ2 sin(z + u(z))

= λ2F − λΓ + λ2K
[
u
(
z + 2π

m

n

)
− 2u(z) + u

(
z − 2π

m

n

)]
.(12)

We note that if u(z) satisfies (10), (12), then so does ũ(z) = u(z + c) + c, for any
c ∈ R. Thus by adjusting c we may assume that u satisfies∫ 2π

0

u(s)ds = 0.(13)

We note now that if u satisfies (10),(12), then by integrating both sides of (12) over
[0, 2π] we obtain

F =
Γ

λ
+

1

2π

∫ 2π

0

sin(s + u(s))ds.(14)

We can thus rewrite (12) as

u′′(z) + λΓu′(z) + λ2 sin(z + u(z)) = λ2 1

2π

∫ 2π

0

sin(s + u(s))ds(15)

+ λ2K
[
u
(
z + 2π

m

n

)
− 2u(z) + u

(
z − 2π

m

n

)]
.

Conversely, if u satisfies (14) and (15), then it satisfies (12). We have thus reformulated
our problem as: find solutions (λ, u) of (10), (13), (14), (15). The idea now is to
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consider λ as a parameter in (15) and try to find solutions u satisfying (10), (13),
(15), and then substitute λ and u into (14) to obtain the corresponding value of F .
This is the same idea as used in the numerical method presented in [8], but here it is
used as part of existence proofs. We have the following claim.

Proposition 6. For any value λ, there exists a solution u of (15) satisfying (10),
(13).

We note that this proposition immediately implies Theorem 1, since given any
v > 0 it shows that we can solve (15) with λ = 1

v , hence obtain a travelling wave with
velocity v, for the value of F given by (14).

To prove Proposition 6 we will use the Schauder fixed-point theorem. We denote
by X and Y the Banach spaces of real-valued functions:

X =

{
u ∈ H2[0, 2π] | u(0) = u(2π), u′(0) = u′(2π),

∫ 2π

0

u(s)ds = 0

}
,

Y =

{
u ∈ L2[0, 2π] |

∫ 2π

0

u(s)ds = 0

}
,

with the norm

‖u‖Y =
( 1

2π

∫ 2π

0

(u(s))2ds
) 1

2

,

and by Lλ : X → Y the linear mapping

Lλ(u)(z) = u′′(z) + λΓu′(z) − λ2K
[
u
(
z + 2π

m

n

)
− 2u(z) + u

(
z − 2π

m

n

)]
.

We want to show that this mapping is invertible and to derive an upper bound for
the norm of its inverse. Noting that any u ∈ X can be decomposed in a Fourier series
u(z) =

∑
l �=0 ale

ilz (with a−l = al), we apply Lλ to the Fourier elements, obtaining

Lλ(eilz) = µle
ilz,

where

µl = −l2 − 2Kλ2
(

cos
(2πml

n

)
− 1

)
+ λlΓi,

so that

|µl| =
[(

l2 + 2Kλ2
(

cos
(2πml

n

)
− 1

))2

+ λ2l2Γ2
] 1

2

,(16)

which does not vanish if Γ > 0. Thus the mapping Lλ has an inverse satisfying
L−1
λ (eilz) = 1

µl
eilz. Since L−1

λ takes Y onto X, and since X is compactly embedded in

Y , we may consider L−1
λ as a mapping from Y to itself, in which case it is a compact

mapping. We also note, using (16), that

‖L−1
λ ‖Y,Y ≤ max

l≥1

1

|µl|
≤ 1

λΓ
.(17)

We also define the nonlinear operator N : Y → Y by

N(u)(z) = − sin(z + u(z)) +
1

2π

∫ 2π

0

sin(s + u(s))ds.
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It is easy to see that N is continuous, and that the range of N is contained in a
bounded ball in Y , indeed we have

‖ sin(z + u(z))‖L2 =
( 1

2π

∫ 2π

0

(sin(s + u(s)))2ds
) 1

2 ≤ 1,

and since N(u) is the orthogonal projection of − sin(z + u(z)) into Y , we have

‖N(u)‖Y ≤ 1 ∀u ∈ Y.(18)

We can now rewrite the problem (10), (13), (15) as the fixed-point problem

u = λ2L−1
λ ◦N(u).(19)

The operator on the right-hand side is compact by the compactness of L−1
λ , and has a

bounded range by (17), (18), so that Schauder’s fixed-point theorem implies that (19)
has a solution, proving Proposition 6 (we note that by a simple bootstrap argument
a solution in Y is in fact smooth). Moreover, defining

Σ = {(λ, u) ∈ [0,∞) × Y | u = λ2L−1
λ ◦N(u)},

Rabinowitz’s continuation theorem [7] implies that the connected component of Σ
containing (λ, u) = (0, 0), which we denote by C, is unbounded in [0,∞) × Y . Since
for any λ0 > 0 we have, from (18), (19), the bound ‖u‖Y ≤ λ0

Γ for solutions (λ, u) of
(19) with λ ∈ [0, λ0], the unboundedness of the set C must be in the λ-direction, that
is, there exists (λ, u) ∈ C with arbitrarily large values of λ.

We can now consider the right-hand side of (14) as a functional on (0,∞) × Y :

Φ(λ, u) =
Γ

λ
+

1

2π

∫ 2π

0

sin(s + u(s))ds,(20)

and our strategy in proving Theorems 2–4 is to prove solvability of the equation

Φ(λ, u) = F, (λ, u) ∈ Σ(21)

(in fact we shall prove solvability of (21) with Σ replaced by C ⊂ Σ). We note that
by the boundedness of the sine function we have

lim
λ→0+, (λ,u)∈C

Φ(λ, u) = +∞,(22)

lim sup
λ→+∞, (λ,u)∈C

Φ(λ, u) ≤ 1.(23)

Since C is a connected set and Φ is continuous, (22) implies the following proposition.
Proposition 7. For any F satisfying

F > F ≡ inf
(λ,u)∈C

Φ(λ, u),(24)

there exists a travelling wave.
Since (23) implies that F ≤ 1, this proves Theorem 2.
We now prove the lower and upper bounds for the velocities of travelling waves

given in Proposition 5. These follow from (5), (14) and the following proposition.
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Proposition 8. For any (λ, u) ∈ Σ with λ > 0 we have

0 <
Γ

λ
< Φ(λ, u) <

Γ

λ
+ 1.

The upper bound follows immediately from the definition (20) of Φ(λ, u) since
1
2π

∫ 2π

0
sin(s + u(s))ds < 1. The lower bound follows from the claim that

(λ, u) ∈ Σ ⇒
∫ 2π

0

sin(s + u(s))ds > 0.(25)

To prove this claim we multiply (15) by 1 + u′(z) and integrate over [0, 2π], noting
that ∫ 2π

0

u
(
s + 2π

m

n

)
u′(s)ds =

∫ 2π

0

u(s)u′
(
s− 2π

m

n

)
ds

= −
∫ 2π

0

u′(s)u
(
s− 2π

m

n

)
ds,

so that we obtain

(λ, u) ∈ Σ ⇒ Γ
1

2π

∫ 2π

0

(u′(s))2ds = λ
1

2π

∫ 2π

0

sin(s + u(s))ds.

This proves (25) since the left-hand side is nonnegative and cannot vanish unless
u ≡ 0, but (λ, 0) ∈ Σ for λ > 0.

We now turn to the proof of Theorem 3.
Proposition 9. Assume n does not divide m and Γ̃ > 0. Given any λ0 > 0 and

ε > 0, there exists K0 such that for K ≥ K0 and Γ ≥ Γ̃ we have that

∣∣∣ 1

2π

∫ 2π

0

sin(s + u(s))ds
∣∣∣ < ε if (λ0, u) ∈ Σ.(26)

To see that Proposition 9 implies Theorem 3, we fix some F̃ > 0, Γ̃ > 0, and
assume Γ ≥ Γ̃. We choose λ0 > Γ

F̃
and set ε = F̃ − Γ

λ0
. We then choose K0 according

to Proposition 9, so that (26) holds, which implies that when K ≥ K0 we have
Φ(λ0, u) < F̃ for any u with (λ0, u) ∈ C. Thus F < F̃ , where F is defined by (24), so
Proposition 7 implies the existence of a travelling wave for any F ≥ F̃ .

We now prove Proposition 9. Let λ0 > 0 and ε > 0 be given. Assume (λ0, u) ∈ Σ,
so that (19) holds with λ = λ0. Let (m,n) denote the greatest common divisor of
m,n, and let

p =
m

(m,n)
, q =

n

(m,n)
.

Since we assume n does not divide m we have q ≥ 2. Let Y0 be the subspace of Y
consisting of 2π

q -periodic functions, and let Y1 be its orthogonal complement in Y .
We denote using P the orthogonal projection of Y to Y0. Setting

u0 = P (u), u1 = (I − P )(u),

we have u = u0 + u1 with u0 ∈ Y0 and u1 ∈ Y1. Applying P and I − P to (19), and
noting that Lλ commutes with P , we have

u0 = λ2
0L

−1
λ0

◦ P ◦N(u0 + u1),(27)
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u1 = λ2
0L

−1
λ0

◦ (I − P ) ◦N(u0 + u1).(28)

We will now use (16) to derive a bound for ‖L−1
λ0

|Y1‖Y1,Y1 which goes to 0 as K → ∞.
We note that

‖L−1
λ0

|Y1‖Y1,Y1 ≤ max
l≥1, q � | l

1

|µl|
,(29)

so we need to find lower bounds for the |µl|’s for which q does not divide l. We define

ρ = max
l≥1, q � | l

cos
(2πpl

q

)

and note that since p and q are coprime we have ρ < 1.
We define

α = 2Kλ2
0(1 − ρ) −

√
K,

and we shall henceforth assume that K is sufficiently large so that α > 0. For each
l ≥ 1 we have either l2 < α or l2 ≥ α, and we treat each of these cases separately.

(1) In case l2 < α, we have

l2 + 2Kλ2
0(ρ− 1) < −

√
K,

and by the definition of ρ,

cos
(2πml

n

)
= cos

(2πpl

q

)
≤ ρ,

so that

l2 + 2Kλ2
0

(
cos

(2πml

n

)
− 1

)
< −

√
K,

which by (16) implies

|µl| >
√
K.(30)

(2) In case l2 ≥ α, we have, since (16) implies |µl| > λ0Γl,

|µl| ≥ λ0Γ
√
α ≥ λ0Γ̃

√
α = λ0Γ̃

[
2Kλ2

0(1 − ρ) −
√
K
] 1

2

.(31)

From (30), (31) we obtain that limK→∞ |µl| = +∞ uniformly with respect to l ≥ 1
which are not multiples of q, hence by (29)

lim
K→∞

‖L−1
λ0

|Y1‖Y1,Y1 = 0.

In particular, we may choose K0 such that for K ≥ K0 we will have

‖L−1
λ0

|Y1
‖Y1,Y1

<
ε

λ2
0

.

By (28) and (18) this implies

‖u1‖Y ≤ ε.(32)
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Thus ∣∣∣ 1

2π

∫ 2π

0

sin(s + u(s))ds
∣∣∣ ≤ ∣∣∣ 1

2π

∫ 2π

0

sin(s + u0(s))ds
∣∣∣

+
∣∣∣ 1

2π

∫ 2π

0

[sin(s + u(s)) − sin(s + u0(s))]ds
∣∣∣

≤
∣∣∣ 1

2π

∫ 2π

0

sin(s + u0(s))ds
∣∣∣ +

1

2π

∫ 2π

0

|u1(s)|ds.(33)

From (32) and the Cauchy–Schwarz inequality we have

1

2π

∫ 2π

0

|u1(s)|ds ≤
1√
2π

(∫ 2π

0

(u1(s))
2ds

) 1
2 ≤ ε.(34)

From trigonometry we have∫ 2π

0

sin(s + u0(s))ds =

∫ 2π

0

sin(s) cos(u0(s))ds +

∫ 2π

0

cos(s) sin(u0(s))ds,

but the functions cos(u0(s)) and sin(u0(s)) are 2π
q -periodic with q ≥ 2, which implies

that they are orthogonal to cos(s) and sin(s), so that we have∫ 2π

0

sin(s + u0(s))ds = 0,

which together with (33) and (34) implies (26), concluding the proof of Proposition
9.

We now turn to the proof of Theorem 4. We first note that from (16) we have

|µl| ≥
∣∣∣l2 + 2Kλ2

(
cos

(2πml

n

)
− 1

)∣∣∣,
so that if we assume

0 < λ < λ0 =
1√
8K̃

≤ 1√
8K

,

then we have |µl| > 1
2 for all l ≥ 1, hence ‖L−1

λ ‖Y,Y < 2, independently of Γ. From
(19) we thus have

(λ, u) ∈ Σ, 0 < λ < λ0 ⇒ ‖u‖Y < 2λ2.

We now choose λ1 ≤ λ0 so that 2λ2
1 ≤ 1

2 F̃ . Thus (λ1, u) ∈ Σ implies that∣∣∣ 1

2π

∫ 2π

0

sin(s + u(s))ds
∣∣∣ =

∣∣∣ 1

2π

∫ 2π

0

[sin(s + u(s)) − sin(s)]ds
∣∣∣(35)

≤ 1

2π

∫ 2π

0

|u(s)|ds ≤ ‖u‖Y < 2λ2
1 ≤ 1

2
F̃ .

Finally, we choose Γ0 so that

Γ0

λ1
<

1

2
F̃ .(36)

Relations (35) and (36) thus imply that when 0 < Γ < Γ0,

(λ1, u) ∈ Σ ⇒ Φ(λ1, u) < F̃ ,

so that we have F < F̃ , where F is defined by (24), hence Proposition 7 implies the
existence of a travelling wave for any F ≥ F̃ .
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3. Discussion and further questions. In the numerical and experimental ex-
plorations of the dynamics of sine-Gordon rings [8, 10, 11], a useful method of rep-
resentation consists in displaying the velocity-force characteristic. In the case of the
travelling waves studied here, since the velocity of the waves is given by v = 1

λ , the
velocity-force characteristic is the subset of the (F, v)-plane given by{(

Φ
(1

v
, u

)
, v
) ∣∣∣ (1

v
, u

)
∈ Σ

}
,

where the set Σ and the functional Φ are as defined in the previous section. Examining
the velocity-force characteristic as numerically computed in [8, Figure 2], we see that
F is a nonmonotone function of v. This means that for some values of F equation
(21) has more than one solution, or in other words that there exist multiple travelling
waves with different velocities for the same value of F . On the other hand, the fact
that, according to the available numerical evidence F is a function of v, leads us to
conjecture that, fixing Γ > 0 and K > 0 for each given velocity v > 0, there is a
unique travelling wave with velocity v, for an appropriate F . Thus, our conjecture is
that uniqueness holds in Theorem 1, or in other words that the fixed-point problem
(19) always has a unique solution. Let us note that for 0 < λ < Γ it is easy to show,
using (17), that the right-hand side of (19) is a contraction from Y to itself, hence we
may replace the use of the Schauder fixed-point theorem by the Banach contraction-
mapping principle, which implies uniqueness. Thus, at least for velocities v > 1

Γ , we
have uniqueness in Theorem 1. However, for lower velocities this argument does not
work so a proof of the above conjecture will require some new idea.

The nonuniqueness of travelling waves for some values of the parameters Γ,K, F ,
mentioned above, implies important consequences for the dynamics of the discrete
sine-Gordon ring, such as instability of some of the travelling waves, and bistability of
travelling waves leading to hysteresis as the force F is varied. It would be interesting
to determine whether these phenomena can occur in the large K and the small Γ
regimes for which existence of a travelling wave has been proved in Theorems 3 and
4. Moreover, stationary solutions and travelling waves do not exhaust the dynamical
repertoire of the discrete sine-Gordon equations in the underdamped case: quasi-
periodic and chaotic behavior is reported in [8, 9, 11]. An interesting question is to
determine conditions on the parameters which ensure that there exists at least one
locally asymptotically stable travelling wave.

Returning to the issue of existence of travelling waves, which has been the focus
of our investigation, we note an intriguing question which arises from our results, and
remains unanswered.

Let us define, for fixed Γ > 0 and K > 0

F0(Γ,K) = inf{F ≥ 0 | a travelling wave of (1), (2) exists}.

Theorem 2 implies that F0(Γ,K) ≤ 1 for all Γ > 0 and K > 0. Theorem 3 implies
that, when n does not divide m, limK→∞ F0(Γ,K) = 0. Theorem 4 implies that
limΓ→0 F0(Γ,K) = 0. Is it true, though, that for each Γ > 0 and K > 0 we have
F0(Γ,K) > 0? In other words, is it always true that (fixing Γ > 0 and K > 0) for
sufficiently small F > 0 a travelling wave does not exist? We have not been able to
prove or disprove this conjecture, and can only offer the following remarks.

(i) If Γ and K satisfy (6), then indeed F0(Γ,K) > 0, since for sufficiently small
F there exists a stationary solution of (1), (2), so the results of [2] imply that no
travelling wave exists for small F . However, as we have remarked, Theorem 4 shows
that in general travelling waves and stationary solutions may coexist.
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(ii) If n divides m, then, as was noted in the introduction, the existence of trav-
elling waves reduces to that of running solutions of the forced pendulum, hence it is
well known that F0(Γ,K) > 0 for all Γ and K. However, in the case that n divides m
we also have noted that the result of Theorem 3 does not hold, so that the case that
n divides m is rather special and may not be indicative of the general case.

(iii) The conjecture that F0(Γ,K) > 0 is supported by the notion of “pinning”—
the phenomenon whereby travelling waves are unable to propagate in discrete systems
when the applied force is small. However, whether this effect indeed holds in general in
underdamped systems (as opposed to the overdamped case—see (i) above) is unclear
to the best of our knowledge. Moreover, it is conceivable that F0(Γ,K) = 0 but
pinning still occurs—if for small F a travelling wave exists but is unstable.

(iv) Since, by Proposition 8, we have Φ(λ, u) > 0 for all (λ, u) ∈ Σ, λ > 0, we
have that F0(Γ,K) = 0 if and only if

lim inf
λ→+∞, (λ,u)∈Σ

Φ(λ, u) = 0.

Thus, determining whether the above equality can hold could be a route to resolving
our question, but we have not been able to do so.

We conclude with one more question: clarify the connection, if any, between the
travelling waves obtained in [4] for small values of K > 0 and those obtained by us
for large values of K in Theorem 3.
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AN ELLIPTIC PROBLEM RELATED TO PLANAR VORTEX PAIRS∗
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Abstract. In this paper, we study the existence and limiting behavior of the mountain pass
solutions of the elliptic problem −∆u = λf(u− q(x)) in Ω ⊂ R2;u = 0 on ∂Ω, where q is a positive
harmonic function. We show that the “vortex core” Aλ = {x ∈ Ω : uλ(x) > q(x)} of the solution
uλ shrinks to a global minimum point of q on the boundary ∂Ω as λ → +∞. Furthermore, we show
that for each strict local minimum x0 point of q(x) on the boundary ∂Ω, there exists a solution uλ

whose vortex core shrinks to this strict local minimum point x0 as λ → +∞.

Key words. vortex ring, free boundary problem
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1. Introduction. In cylindrical coordinates in R3, a steady vortex ring corre-
sponds mathematically to a Stokes stream function Ψ defined on a domain Ω̄ ⊂ R2,
and an open set A ⊂ Ω, called the cross-section of a steady vortex ring and unknown
a priori, such that Ψ ∈ C1(Ω̄) ∩ C2(Ω\A) and satisfies the equations

−LΨ =

{
λr2f(Ψ) in A,

0 in Ω\Ā,
(1.1)

Ψ|∂A = 0, Ψ|∂Ω = −1

2
Wr2 − k,(1.2)

where L = r(∂/∂r)(1/r∂/∂r) + ∂2/∂z2. The vorticity function f is supposed to be
positive if t > 0 and equal to zero if t ≤ 0, while W > 0 and k are prescribed constants;
λ is a positive parameter which is also regarded as prescribed.

When we study the steady plane flow of an inviscid fluid of uniform density, we
are led to the following free-boundary problem:

−∆Ψ =

{
λf(Ψ) in A,

0 in Ω\Ā,
(1.3)

Ψ|∂A = 0, Ψ|∂Ω = −Wx1 − k,(1.4)

∗Received by the editors June 23, 2003; accepted for publication (in revised form) March 6, 2004;
published electronically March 25, 2005. The work of the first and third authors was supported by
National Natural Sciences Foundation of China grant 10271118. The work of the first author was
partially supported by the Academy of Finland.

http://www.siam.org/journals/sima/36-5/43055.html
†Department of Mathematics, Huazhong Normal University, Wuhan 430079, People’s Republic of

China, and Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, P.O. Box
71010, Wuhan 430071, People’s Republic of China (ligb@wipm.ac.cn).

‡School of Mathematics, Statistics and Computer Sciences, the University of New England, Armi-
dale, NSW 2351, Australia.

§Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, P.O. Box 71010,
Wuhan 430071, People’s Republic of China (jfyang@wipm.ac.cn).

1444



VORTEX RINGS 1445

where Ω is a bounded domain in {(x1, x2) : x1 > 0} ⊂ R2, both Ψ and A ⊂ Ω are
unknown, and Ψ ∈ C1(Ω̄) ∩ C2(Ω \ A). See, for example, [11]. Let A = {x ∈ Ω :
Ψ(x) > Wx1 + k}. Since f(t) = 0 if t ≤ 0, problem (1.3)–(1.4) can be rewritten as{

−∆Ψ = λf(Ψ) in Ω,

Ψ = −Wx1 − k < 0 on ∂Ω.
(1.5)

In general, we shall consider the free boundary problem

−∆Ψ =

{
λf(Ψ) in A,

0 in Ω\Ā,
(1.6)

Ψ|∂A = 0, Ψ|∂Ω = −q0(x) < 0,(1.7)

where q0(x) is a C1 function defined on ∂Ω. Problem (1.6), (1.7) can be reduced to
the following problem: {

−∆w = λf(w) in Ω ⊂ R2,

w = −q0(x) < 0 on ∂Ω.
(1.8)

Let q(x) be the solution of {
−∆v = 0 in Ω,

v = q0(x) on ∂Ω.
(1.9)

Then q(x) > 0 and q(x) achieves its maximum and minimum on ∂Ω.
Let u = w + q(x). Then (1.8) becomes{

−∆u = λf(u− q(x)) in Ω,

u = 0 on ∂Ω.
(1.10)

Our main objective is to obtain the existence result and investigate the asymptotic
behavior of the solution pair (uλ, Aλ) of problem (1.10) as λ → ∞, where Aλ = {x ∈
Ω : uλ(x) > q(x)}.

The existence problems were considered in [1, 3, 5, 6, 8, 10, 11, 12]. Precisely, the
work of [5, 6, 8, 11, 12] is related to constrained variation. Particularly, in Turkington’s
setting [12], the vorticity function f is unknown a priori, while in Badiani’s work [5],
the stream function Ψ for the flow satisfies the equation in (1.8) in a region bounded
by the line of symmetry, where f is an increasing function that is unknown a priori
either. Moreover, in [6, 8, 11], the parameter λ is a Lagrange multiplier and hence
is not known a priori. From the existence point of view, the solutions obtained in
[5, 6, 8, 11, 12] are related to the eigenvalue problem, so the corresponding eigenvalue
λ is not arbitrary. In the works of [1, 3, 4, 10, 13, 14], the mountain pass lemma
was used to get the existence results for a large class of nonlinearities f(x, u) and any
λ > 0. These results are related to “free variation” which provides more information
for the existence.

The asymptotic behavior of the solution pair (uλ, Aλ) of problem (1.10) as λ → ∞
was initiated by the work of [6], where the desingularization problem was studied for
a confined steady vortex ring. (The reader should refer to Appendix A in [6] for a
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detailed explanation of the physical background of the problem.) The asymptotic
behavior of solution pair (uλ, Aλ) of problem (1.10) was studied by [4, 6, 13, 14] for
vortex rings and vortex pairs. Particularly, it is proved that the cross-section Aλ of
a steady vortex ring shrinks to a point, and a vortex ring degenerates into a singular
vortex circle as λ → +∞. Moreover, the Stokes stream function Ψλ of a vortex
ring converges to the Stokes stream function of the filament, which is the Green’s
function of the operator −∆ in Ω. In [6], the asymptotic behavior of the solutions
obtained by the constrained variational method was discussed. There, the parameter
λ is unknown a priori. As pointed out in [3], the existence result for given λ and f(t),
and the asymptotic behavior of the core as λ → +∞ are desirable in application. In
[4], Ambrosetti and Yang freed the parameter λ. Using the mountain pass lemma,
they discussed the existence of solutions and then studied the limiting behavior of the
solution pair. The study of the limiting behavior of the solution pair relies on upper
estimates of critical level and connectedness of the Aλ. These facts allow one to show
that, under certain conditions as proposed in [4, 6], the solution uλ satisfies

uλ(·)
λ
∫
Ω
f(uλ − q(x)) dx

−G(·, xλ) → 0 in W 1,p(Ω)(1.11)

as λ → ∞, where xλ ∈ Aλ, 1 ≤ p < 2, G is the Green’s function of Ω.
It would be interesting to describe precisely the location of the core of Aλ as

λ → ∞. Our first result deals with the problem.
Suppose that f(t) ∈ C1(R1) and satisfies the following conditions:

(f1) If t ≤ 0, f(t) = 0.
(f2) There is θ > 1, such that f ′(t)t ≥ θf(t) > 0 ∀ t > 0.
(f3) There are p1 > 2 and C > 0, such that ∀t ≥ 0, f(t) ≤ C(1 + tp1−1).
(f4) There are p > 2, t0 > 0 and a0 > 0, such that f(t) ≥ a0t

p−1 ∀ t ∈ [0, t0].
We mention that (f2) implies tf(t) ≥ (θ + 1)F (t) > 0 if t > 0, where F (t) =∫ t

0
f(s) ds.
Define

Iλ(u) =
1

2

∫
Ω

|Du|2 dx− λ

∫
Ω

F (u− q(x)) dx, u ∈ H1
0 (Ω).

Using the mountain pass theorem, we know that Iλ has a critical point uλ satisfying

Iλ(uλ) = cλ, I ′λ(uλ) = 0

with

cλ = inf
w∈H1

0 (Ω)
max
t≥0

Iλ(tw).

Our first result is as follows.
Theorem 1.1. Assume that q0(x) is not a constant. Then we have the following.
(i) Aλ is connected and diamAλ → 0 as λ → +∞.
(ii) For any xλ ∈ Aλ, suppose xλ → x0. Then q(x0) = qm := minx∈∂Ω q(x).
(iii) As λ → +∞,

cλ =
2πq2

m

lnλ
(1 + o(1)),

where o(1) → 0 as λ → 0.
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(iv) As λ → +∞, we have

uλ(·)
λ
∫
Ω
f(uλ − q(x)) dx

−G(·, xλ) → 0 in W 1,p(Ω),(1.12)

where xλ ∈ Aλ, 1 ≤ p < 2, G is the Green’s function of Ω, and

uλ

λ
∫
Ω
f(uλ − q(x)) dx

−G(·, xλ) → 0 in C1,α
loc (Ω \ {x0}),(1.13)

where α is any constant in (0, 1).
From Theorem 1.1 we know that there is a solution of (1.10) whose cross-section

Aλ shrinks to a global minimum point of q0 on the boundary ∂Ω. If q0 has, for instance,
k different local minimum points on ∂Ω, does (1.10) possess at least k solution? It
seems that there is not previous work in this direction. Our next result concerns the
effect of the function q0(x) on the number of the solution pairs. It shows that each
strictly local minimum point x0 of q0 on the boundary ∂Ω corresponds to a solution
uλ of (1.10) with Aλ shrinking to x0 as λ → ∞.

Theorem 1.2. Let x0 be a strictly local minimum point of q(x) on the boundary
∂Ω. Then there exists a solution uλ of (1.10) such that

(i) Aλ is connected and diamAλ → 0 as λ → +∞;
(ii) for any xλ ∈ Aλ, we have xλ → x0 as λ → +∞.
For the case q0(x) = C, let us point out that by using the estimates in sections 2

and 3, together with the technique in [6], it might prove that if q0(x) = C, the core
would shrink to a point x0, which is a critical point of the Robin function H(x, x),
where H(y, x) is the regular part of the Green’s function of −∆ with Dirichlet bound-
ary condition. In particular, if q0 is a positive constant, the core lies in the interior
of the domain. It is known that the Robin function H(x, x) is related to the domain
geometry and the domain topology. In the case q0 	= C, our results show that the
vortex core shrinks to a point on the boundary no matter how close q0 is to a constant.
Then the effect from the boundary data is so strong that the effect from the domain
is negligible. In other words, if q0(x) 	= C, the location of the limit of the core as
λ → ∞ is not related to the Robin function H(x, x).

This paper is arranged as follows. We first obtain an upper bound for cλ in
section 2. Then the connectedness of Aλ is shown in section 3. Theorems 1.1 and 1.2
are proven in sections 4 and 5, respectively.

2. Upper bound. We will analyze the limit behavior of uλ as λ → +∞. First
we will obtain an upper bound for cλ. To this end, let q̄ > 0 be a constant. We
consider a related problem in a ball Bδ:{

−∆u = λf(u− q̄) in Bδ,

u = 0 on ∂Bδ,
(2.1)

where δ > 0 is a fixed constant.
Since f(0) = 0 and f is a C1 function, it is superlinear at zero; i.e., limt→0

f(t)
t = 0.

By (f1)–(f3), we may verify that for each λ > 0, (2.1) has a mountain pass solution
with critical value defined as

cλ,q̄ = inf
v∈H1

0 (Bδ),v �≡0
max
t≥0

(1

2
t2
∫
Bδ

|Dv|2 dx− λ

∫
Bδ

F (tv − q̄) dx
)

by the mountain pass lemma [2].



1448 GONGBAO LI, SHUSEN YAN, AND JIANFU YANG

To estimate cλ,q̄, we consider the following problem:{
−∆u = λ(u− q̄)p−1

+ in Bδ,

u = 0 on ∂Bδ,
(2.2)

where p > 2 is a fixed constant.
The existence of a solution for (2.2) can be proven in the following way.
First, we know from [2] that the problem

−∆φ = φp−1
+ in B1, φ ∈ H1

0 (B1),(2.3)

has a unique positive solution φ ∈ C2(B1(0)), and by [9], φ is radially symmetric, i.e.,
φ(x) = φ(r) with r = |x|.

Second, let φ be the solution of (2.3), and for any fixed δ > s > 0, we know that

w = λ− 1
p−2 s−

2
p−2φ

(
r

s

)

is the solution of

−∆w = λwp−1
+ in Bs, w ∈ H1

0 (Bs).

It is known that q̄ln r
δ/ ln s

δ is the solution of⎧⎪⎨
⎪⎩
−∆u = 0 for s ≤ r ≤ δ,

u = 0 on r = δ,

u = q̄ on r = s.

(2.4)

Define

vλ =

{
q̄ + λ− 1

p−2 s−
2

p−2φ( rs ) if 0 ≤ r ≤ s,

q̄ln r
δ/ln

s
δ if s ≤ r ≤ δ.

Choose s ∈ (0, δ) such that vλ ∈ C1(Bδ(0)); that is, s satisfies

λ− 1
p−2 s−

2
p−2

1

s
φ′(1) = q̄

1

s
/ln

s

δ
.

Then we have

s/δ

(ln δ
s )

p−2
2

= λ− 1
2 δ−1

(
−φ′(1)

q̄

) p−2
2

,(2.5)

and vλ is a solution of (2.2). We know from Lemma C.2 of [6] that for λ > 0 large,
(2.5) has a unique solution s, which satisfies

s ∼ λ− 1
2 ln

p−2
2 λ.(2.6)

We have the following estimate for the energy of vλ.
Lemma 2.1.

1

2

∫
Bδ(0)

|Dvλ|2 dx− λ

p

∫
Bδ(0)

(vλ − q̄)p+ dx =
2πq̄2

lnλ

(
1 + O

(
ln(lnλ)

lnλ

))
(2.7)
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as λ → ∞.
Proof. A direct calculation by using (2.6) yields∫
Bδ(0)

|Dvλ|2 dx =

∫
Bs(0)

|Dvλ|2 dx +

∫
Bδ(0)\Bs(0)

|Dvλ|2 dx

= 2πλ− 2
p−2 s−

4
p−2

1

s2

∫ s

0

r

∣∣∣∣φ′
(
r

s

)∣∣∣∣
2

dr + 2πq̄2

∫ δ

s

1

r
/

(
ln
s

δ

)2

dr

= 2πq̄2/

(
ln
δ

s

)
+ 2πλ− 2

p−2 s−
4

p−2

∫ 1

0

r|φ′(r)|2 dr(2.8)

= 2πq̄2/(ln(λ
1
2 ln− p−2

2 λ) + O(1)) + O

(
1

ln2λ

)

=
4πq̄2

lnλ

(
1 + O

(
lnlnλ

lnλ

))
and ∫

Bδ(0)

(vλ − q̄)p+ dx =

∫
Bs(0)

(vλ − q̄)p dx = 2πλ− p
p−2 s−

2p
p−2

∫ s

0

rφp

(
r

s

)
dr

= O(λ− p
p−2 s−

2p
p−2 s2) = O

(
1

λln2λ

)(2.9)

as λ → ∞.
We are now ready to estimate cλ,q̄.
Proposition 2.2.

2πq̄2

lnλ

(
1 −O

(
1

lnλ

))
≤ cλ,q̄ ≤ 2πq̄2

lnλ

(
1 + O

(
ln lnλ

lnλ

))
(2.10)

as λ → +∞.
Proof. By (f4), we know that there is a constant b > 0, such that

f(t) ≥ btp−1 ∀ t ∈ [0, 1).

Let vbλ be the solution of (2.2), with λ replaced by bλ. Then we know that
|vbλ| ≤ q̄ + 1 if λ > 0 is large enough. See the formula for vλ.

Consider

g(t) =: t2
∫
Bδ(0)

|Dvbλ|2 dx− λ

∫
Bδ(0)

f(tvbλ − q̄)vbλ dx.

Since f is superlinear at zero, we see that for t > 0 small, g(t) > 0. On the other
hand, since vbλ is a solution of (2.2) and |vbλ| ≤ q̄ + 1, we obtain

g(1) =

∫
Bδ(0)

|Dvbλ|2 − λ

∫
Bδ(0)

f(vbλ − q̄)vbλ

≤
∫
Bδ(0)

|Dvbλ|2 − λb

∫
Bδ(0)

(vbλ − q̄)p−1
+ vbλ = 0.

As a result, we know that there is a t̄ ∈ (0, 1], such that g(t̄) = 0. Thus, by Lemma 2.1
and the fact that q̄ > 0, vbλ > 0 and

max
t≥0

(1

2
t2
∫
Bδ(0)

|Dvbλ|2 dx− 1

p

∫
Bδ(0)

λb(tvbλ − q̄)p+ dx
)

=
1

2

∫
Bδ(0)

|Dvbλ|2 dx− 1

p

∫
Bδ(0)

λb(vbλ − q̄)p+ dx,
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we obtain

cλ,q̄ ≤max
t≥0

I(tvbλ) = I(t̄vbλ) =
1

2
t̄2
∫
Bδ(0)

|Dvbλ|2 dx− λ

∫
Bδ(0)

F (t̄vbλ − q̄) dx

≤1

2
t̄2
∫
Bδ(0)

|Dvbλ|2 dx− 1

p
λ

∫
Bδ(0)

b(t̄vbλ − q̄)p+ dx

≤max
t≥0

(1

2
t2
∫
Bδ(0)

|Dvbλ|2 dx− 1

p

∫
Bδ(0)

λb(tvbλ − q̄)p+ dx
)

=
2πq̄2

ln(bλ)

(
1 + O

(
ln ln(bλ)

ln(bλ)

))
=

2πq̄2

lnλ

(
1 + O

(
ln lnλ

lnλ

))
.

The upper bound thus follows.

It remains to prove the lower bound.

Let wλ be the mountain pass solution of (2.1) with critical value cλ,q̄. By [9], we
know that wλ is radially symmetric and w′

λ(r) < 0. Since cλ,q̄ > 0, we see that the set
{x ∈ Bδ : wλ(x) > q̄} is not empty. In fact, otherwise, we would have wλ ≡ 0 by (2.1)
and the maximum principle. So there is unique s̄λ ∈ (0, δ), such that wλ(s̄λ) = q̄.
Thus −∆wλ = 0 if x ∈ Bδ(0) \ Bs̄λ(0), −∆wλ = λf(wλ − q̄) if x ∈ Bs̄λ(0). We may
solve the boundary value problem −∆wλ = 0, x ∈ Bδ(0) \ Bs̄λ(0) with wλ = 0 if
|x| = δ and wλ = q̄ if |x| = s̄λ as (2.4). Therefore, letting w̃λ(r) = wλ(r/s̄λ), we
obtain

cλ,q̄ =I(wλ) =
1

2

∫
Bδ(0)\Bs̄λ

(0)

|Dwλ|2 dx +
1

2

∫
Bs̄λ

(0)

|Dwλ|2 dx− λ

∫
Bs̄λ

(0)

F (wλ − q̄) dx

=
1

2

∫
Bδ(0)\Bs̄λ

(0)

|Dwλ|2 dx

+ max
t≥0

(1

2
t2
∫
Bs̄λ

(0)

|D(wλ − q̄)|2 dx− λ

∫
Bs̄λ

(0)

F (t(wλ − q̄)) dx
)

=
1

2

∫
Bδ(0)\Bs̄λ

(0)

|Dwλ|2 dx

+ max
t≥0

(1

2
t2
∫
B1(0)

|D(w̃λ − q̄)|2 dx− λs̄2
λ

∫
B1(0)

F (t(w̃λ − q̄)) dx
)

=πq̄2/

(
ln

δ

s̄λ

)
+ max

t≥0

(1

2
t2
∫
B1(0)

|D(w̃λ − q̄)|2 dx− λs̄2
λ

∫
B1(0)

F (t(w̃λ − q̄)) dx
)

≥πq̄2/

(
ln

δ

s̄λ

)
+ inf

v∈H1
0 (B1(0)),v �≡0

max
t≥0

(1

2
t2
∫
B1(0)

|Dv|2 dx− λs̄2
λ

∫
B1(0)

F (tv) dx
)
.

(2.11)

We claim that

λs̄2
λ > 1.

In fact, suppose that there are λj → +∞, such that

λj s̄
2
λj

≤ 1.
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Then

inf
v∈H1

0 (B1(0)),v �≡0
max
t≥0

(
1

2
t2
∫
B1(0)

|Dv|2 dx− λj s̄
2
λj

∫
B1(0)

F (tv) dx

)

≥ inf
v∈H1

0 (B1(0)),v �≡0
max
t≥0

(
1

2
t2
∫
B1(0)

|Dv|2 −
∫
B1(0)

F (tv)

)
=: c̄ > 0.

Thus, (2.11) yields cλj ,q̄ ≥ c̄. This is a contradiction because of cλj ,q̄ ≤ C/ lnλj .

From λs̄2
λ > 1, we see 1

s̄λ
< λ

1
2 . Using (2.11), we obtain

cλ,q̄ ≥ πq̄2/

(
ln

δ

s̄λ

)
≥ πq̄2/(ln(δλ

1
2 )) =

2πq̄2

lnλ

(
1 −O

(
1

lnλ

))
.

Let x0 ∈ ∂Ω be a point such that q(x0) = qm = minx∈Ω̄ q(x). We turn to the
estimate of cλ.

Proposition 2.3. For any small τ > 0, we have

cλ ≤ 2π(qm + τ)2

lnλ

(
1 + O

(
ln lnλ

lnλ

))
(2.12)

as λ → +∞.
Proof. For any τ > 0, take x̄0 ∈ Ω close to x0 and δ > 0 small so that

q(x) ≤ qm + τ ∀x ∈ Bδ(x̄0).

Let ūλ ∈ H1
0 (Bδ(x̄0)) be the mountain pass solution of

−∆ū = λ(ū− (qm + τ))p−1
+ in Bδ(x̄0).

Then we deduce by Proposition 2.2 that

cλ ≤ max
t≥0

Iλ(tūλ)

= max
t≥0

(
1

2

∫
Bδ(x̄0)

|Dtūλ|2 dx− λ

∫
Bδ(x̄0)

F (tūλ − q(x)) dx

)

≤ max
t≥0

(
1

2

∫
Bδ(x̄0)

|Dtūλ|2 dx− λ

∫
Bδ(x̄0)

F (tūλ − (qm + τ)) dx

)

=
2π(qm + τ)2

lnλ

(
1 + O

(
ln lnλ

lnλ

))
(2.13)

∀τ > 0.

3. Connectedness of Aλ. Let uλ be the mountain pass solution of (1.10) ob-
tained in section 1 and Aλ = {x : uλ(x) > q(x)}.

Proposition 3.1. Aλ is connected.
Proof. We argue by contradiction. Suppose that Aλ has two components, A1 and

A2. Let ψi = uλ − q(x) in Ai, ψi = 0 for x ∈ Ω \Ai, i = 1, 2.
Let η0 be a constant, which will be chosen later. Let w̃λ = uλ + sψ1 − sη0ψ2. It

is easy to see that w̃λ ∈ H1
0 (Ω). Now we calculate maxt≥0Iλ(tw̃λ). We know that t0

is a maximum point of Iλ(tw̃λ) if and only if

t0

∫
Ω

|Dw̃λ|2 dx = λ

∫
Ω

f(t0w̃λ − q(x))w̃λ dx.(3.1)
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In fact, if t0 is a maximum point of Iλ(tw̃λ), it is clear that t0 satisfies (3.1). On the

other hand, from (f2) we know that d
dt

f(t−q(x))
t > 0 if t > 0; therefore

d

dt
I(tw̃λ) =

tλ

t0

∫
Ω

w̃λf(t0w̃λ − q(x)) dx− λ

∫
Ω

w̃λf(tw̃λ − q(x)) dx

= tλ

∫
Ω

[f(t0w̃λ − q(x))

t0w̃λ
− f(tw̃λ − q(x))

tw̃λ

]
w̃2

λ dx,

which is positive if t < t0 and negative if t > t0. Thus, we have (3.1). Let

K(s, t) = t

∫
Ω

|Dw̃λ|2 dx− λ

∫
Ω

f(tw̃λ − q(x))w̃λ dx.

Then, because uλ is a solution, we obtain K(0, 1) = 0 and

∂K(0, t)

∂t
|t=1 =

∂K(0, 1)

∂t
=

∫
Ω

|Duλ|2 dx− λ

∫
Ω

f ′(uλ − q(x))u2
λ dx

= λ

∫
Ω

f(uλ − q(x))uλ dx− λ

∫
Ω

f ′(uλ − q(x))u2
λ dx < 0.

(3.2)

Thus, by the implicit function theorem we know that for s small, there exists t(s)
which is differentiable such that t(s) → 1 as s → 0 and K(s, t(s)) = 0. On the other
hand,

Ks(0, 1) + Kt(0, 1)t′(0) = 0.

Thus,

t′(0) = −Ks(0, 1)

Kt(0, 1)
.

But by (f2) we see that

Ks(0, 1) = 2

∫
Ω

DuλD(ψ1 − η0ψ2) dx− λ

∫
Ω

f(uλ − q(x))(ψ1 − η0ψ2) dx

− λ

∫
Ω

f ′(uλ − q(x))uλ(ψ1 − η0ψ2) dx

= λ

∫
Ω

f(uλ − q(x))(ψ1 − η0ψ2) dx− λ

∫
Ω

f ′(uλ − q(x))uλ(ψ1 − η0ψ2) dx

= λ

[(∫
Ω

f(uλ − q(x))ψ1 dx−
∫

Ω

f ′(uλ − q(x))uλψ1 dx

)

− η0

(∫
Ω

f(uλ − q(x))ψ2 dx−
∫

Ω

f ′(uλ − q(x))uλψ2 dx

)]
= 0

(3.3)

if

η0 =

∫
Ω
f(uλ − q(x))ψ1 dx−

∫
Ω
f ′(uλ − q(x))uλψ1 dx∫

Ω
f(uλ − q(x))ψ2 dx−

∫
Ω
f ′(uλ − q(x))uλψ2 dx

> 0.

With such η0 > 0, we have t′(0) = 0. As a result,

t− 1 = t′(0)s + O(s2) = O(s2).(3.4)
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Now fix s > 0 small. Let t(s) be the maximum point of Iλ(tw̃λ). Then K(s, t(s)) = 0.
Since sptψ1 ∩ sptψ2 = ∅,∫

Ω

|Dw̃λ|2 dx =

∫
Ω

|Duλ|2 dx + s2

∫
Ω

|Dψ1|2 dx + η2
0s

2

∫
Ω

|Dψ2|2 dx

+ 2s

∫
Ω

DuλDψ1 dx− 2η0s

∫
Ω

DuλDψ2 dx

=

∫
Ω

|Duλ|2 dx + s2

∫
Ω

|Dψ1|2 dx + η2
0s

2

∫
Ω

|Dψ2|2 dx

+ 2sλ

∫
Ω

f(uλ − q(x))ψ1 dx− 2η0sλ

∫
Ω

f(uλ − q(x))ψ2 dx.

(3.5)

Noting that t(s) = 1 + O(s2), we have∫
Ω

F (t(s)w̃λ − q(x)) dx

=

∫
Ω

F (t(s)uλ − q(x)) dx +

∫
Ω

f(t(s)uλ − q(x))(sψ1 − η0sψ2) dx

+
1

2

∫
Ω

f ′(t(s)uλ − q(x))(sψ1 − η0sψ2)
2 dx + O(s2+σ)

=

∫
Ω

F (t(s)uλ − q(x)) dx +

∫
Ω

f(uλ − q(x))(sψ1 − η0sψ2) dx

+
1

2

∫
Ω

f ′(uλ − q(x))(s2ψ2
1 + η2

0s
2ψ2

2) dx + O(s2+σ),

(3.6)

where σ > 0. As a result,

max
t≥0

Iλ(tw̃λ) = Iλ(t(s)w̃λ)

=
1

2
t2(s)

∫
Ω

|Duλ|2 dx− λ

∫
Ω

F (t(s)uλ − q(x)) dx

+
1

2
s2

[ ∫
Ω

|Dψ1|2 dx− λ

∫
Ω

f ′(uλ − q(x))ψ2
1 dx

+ η2
0

(∫
Ω

|Dψ2|2 dx− λ

∫
Ω

f ′(uλ − q(x))ψ2
2 dx

)]
+ O(s2+σ).

(3.7)

Since

1

2
t2(s)

∫
Ω

|Duλ|2 dx− λ

∫
Ω

F (t(s)uλ − q(x)) dx

≤ max
t≥0

Iλ(tuλ) = Iλ(uλ) = cλ

and ∫
Ω

|Dψi|2 dx− λ

∫
Ω

f ′(uλ − q(x))ψ2
i dx = λ

∫
Ω

(f(ψi) − f ′(ψi)ψi)ψi dx < 0,

we obtain for s small enough that

max
t≥0

Iλ(tw̃λ) < cλ = inf
u∈H1

0 (Ω)
max
t≥0

Iλ(tu).
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This is a contradiction.
Proposition 3.2. diamAλ → 0 as λ → +∞.
Proof. It is known from (2.12) that

Iλ(uλ) ≤ C

lnλ
.

Since uλ is a solution of (1.10), we deduce by (f2) that

Iλ(uλ) =
1

2
λ

∫
Ω

f(uλ − q(x))uλ dx− λ

∫
Ω

F (uλ − q(x)) dx

= λ

∫
Ω

(
1

2
f(uλ − q(x))(uλ − q(x)) − F (uλ − q(x))

)
dx

+
λ

2

∫
Ω

q(x)f(uλ − q(x)) dx

≥ λ

∫
Ω

(
1

2
− 1

θ + 1

)
f(uλ − q(x))(uλ − q(x)) dx

+
λ

2
qm

∫
Ω

f(uλ − q(x)) dx.

As a result,

λ

∫
Ω

f(uλ − q(x)) dx ≤ C

lnλ
,

λ

∫
Ω

f(uλ − q(x))(uλ − q(x)) dx ≤ C

lnλ
,

‖uλ‖2 =

∫
Ω

|Duλ|2 dx = λ

∫
Ω

f(uλ − q(x))uλ dx ≤ C

lnλ
.

Since Aλ is connected, thus we may prove
(
as Theorem 5 of [4]; see also [7]

)
that

diamAλ → 0 as λ → 0.(3.8)

For the reader’s convenience, we sketch the proof as follows.
Let P,Q ∈ Āλ be such that |P −Q| = diamAλ, and consider a family of straight

lines lX passing through the point X ∈ [P,Q]. Denote by LX = [YX , ZX ] a segment
in lX such that YX ∈ ∂Ω, ZX ∈ ∂Aλ and intLX ⊂ Ω\Āλ. Then one has

uλ(YX) − uλ(ZX) =

∫
LX

∂uλ

∂LX
dLX .

Note that uλ(YX) = 0 while uλ(ZX) = q(ZX) ≥ qm > 0; hence we obtain

qm ≤
∣∣∣∣
∫
LX

∂uλ

∂LX
dLX

∣∣∣∣ ≤ C

∫
LX

|∇uλ| dLX .

Integrating with respect to X in [P,Q] and using the Hölder inequality, we get

qm|P −Q| ≤ c

∫
PQ

dX

∫
LX

|∇uλ| dLX ≤ C|P −Q| 12 ‖uλ‖
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which gives (3.8).
Let rλ = diamAλ. Then by Proposition 3.2, rλ → 0 as λ → +∞. Let xλ ∈ Aλ be

such that Aλ ⊂ Brλ(xλ).
Proposition 3.3. There holds

uλ

λ
∫
Ω
f(uλ − q(x)) dx

−G(·, xλ) → 0 in W 1,p(Ω)(3.9)

as λ → +∞, where 1 ≤ p < 2.
Proof. We follow the arguments of Theorem 5.2 of [6]. Denote h(λ) = λ

∫
Ω
f(uλ−

q(x)) dx and G(x, y) the Green’s function of −∆ in Ω, subject to the Dirichlet condi-
tion. Since

uλ(y) = λ

∫
Aλ

G(x, y)f(uλ(x) − q(x)) dx

and

λ

h(λ)

∫
Aλ

f(uλ(x) − q(x)) dx = 1,

for z(λ) ∈ Aλ we have

uλ(y)

h(λ)
−G(y, z(λ)) =

λ

h(λ)

∫
Aλ

{G(x, y) −G(y, z(λ))}f(uλ(x) − q(x)) dx.

By the Minkowski inequality, there holds∥∥∥∥uλ(·)
h(λ)

−G(·, z(λ))

∥∥∥∥
W 1,p(Ω)

≤ λ

h(λ)

∫
Aλ

[ ∫
Ω

|∇y(G(y, x) −G(y, z(λ))|p dy
] 1

p

f(uλ(x) − q(x)) dx.

Lemma 5.1 of [6] yields

∫
Ω

|∇y{G(y, x) −G(y, z(λ))|p dy ≤ C|x− z(λ)|2−p

(
1 + ln

(
diamΩ

|x− z(λ)|

))2

.

Since x and z(λ) are both in Aλ, then |x − z(λ)| ≤ diamAλ. The conclusion follows
from Proposition 3.2.

Proposition 3.4. Let G(x, y) be the Green’s function of −∆ in Ω, subject to the
Dirichlet condition. Then, for any α ∈ (0, 1),

uλ

λ
∫
Ω
f(uλ − q(x)) dx

−G(·, xλ) → 0 in C1,α(Ω \Bδ(x0))

as λ → +∞.
Proof. By Proposition 3.3, we know that

uλ

λ
∫
Ω
f(uλ − q(x)) dx

−G(·, xλ) → 0 in W 1,p(Ω)(3.10)

for xλ ∈ Aλ, where 1 ≤ p < 2. On the other hand, for any δ > 0, we have

Aλ ⊂ Bδ(x0)
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for λ > 0 large enough, where x0 = limλ→+∞ xλ. Thus,

−∆uλ = 0 in Ω \Bδ(x0),

that is,

−∆vλ := −∆

(
uλ

λ
∫
Ω
f(uλ − q(x)) dx

)
= 0 in Ω \Bδ(x0).

By the Lp-estimate of the elliptic equation, we have for any r > 0

‖vλ‖w2,r(Bτ (y0)) ≤ C‖vλ‖Lr(B2τ (y0))

for any B2τ (y0) ⊂ Ω \Bδ(x0). As

G(x, xλ) = − 1

2π
ln |x− xλ| −R(x, xλ) ∀x ∈ Ω,

where {
−∆xR(x, xλ) = 0, x ∈ Ω,

R(x, xλ) = − 1
2π ln |x− xλ|, x ∈ ∂Ω.

Clearly,
∣∣− 1

2π ln |x− xλ|
∣∣ ≤ C on Ω \Bδ(x0) and

sup
∂Bδ(x0)∩Ω̄

|R(x, xλ)| = |R(yλ, xλ)|

for some yλ ∈ ∂Bδ(x0) ∩ Ω̄. If |R(yλ, xλ)| → +∞ as λ → +∞, then we may assume
there exist subsequences xn := xλn , yn := yλn ∈ ∂Bδ(x0) ∩ Ω̄ such that xn → x0 and
yn → y0 ∈ ∂Bδ(x0) ∩ Ω̄. Therefore, R(x0, y0) = ∞, which is a contradiction since
x0 	= y0. Hence

|G(x, xλ)| ≤ C ∀x ∈ Ω \Bδ(x0).(3.11)

By (3.10) and (3.11), we know that

‖vλ‖Lr(B2τ (y0)) ≤ 1 + C‖G(·, xλ)‖Lr(B2τ (y0)) ≤ C ′.

Therefore, the conclusion follows.

4. Proof of Theorem 1.1. We first get a lower bound for cλ. Suppose that
xλ → x0 ∈ Ω̄. For any τ > 0, let δ > 0 be small enough such that

|q(x) − q(x0)| < τ ∀x ∈ Bδ(x0).

Then we have the following proposition.
Proposition 4.1. The point x0 is on the boundary ∂Ω and q(x0) = qm =

minx∈∂Ω q(x). Moreover,

cλ ≥ 2π(q(x0) − τ)2

lnλ

(
1 + O

(
ln lnλ

lnλ

))
.(4.1)

Proof. By Proposition 3.2, Proposition 3.4, and (3.11), we have

|uλ(y)|, |Duλ(y)| ≤ Cλ

∫
Ω

f(uλ − q(x)) dx ≤ 1

lnλ
∀y ∈ Ω \B δ

2
(x0).(4.2)
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Let ξ ∈ C∞
0 (Bδ(x0)), 0 ≤ ξ ≤ 1 and ξ = 1 in B δ

2
(x0). Then∫

Ω

|D(uλ − ξuλ)|2 dx =

∫
Ω\B δ

2
(x0)

|D(uλ − ξuλ)|2 dx ≤ C

ln2λ
.(4.3)

Choose t̃λ > 0 such that

1

2

∫
Bδ(x0)

|D(t̃λξuλ)|2 dx− λ

∫
Bδ(x0)

F (t̃λξuλ − (q(x0) − τ)) dx

= max
t≥0

(1

2

∫
Bδ(x0)

|D(tξuλ)|2 dx− λ

∫
Bδ(x0)

F (tξuλ − (q(x0) − τ)) dx
)
.

We claim that t̃λ is bounded. In fact, let t̄λ > 0 be such that

1

2

∫
Bδ(x0)

|D(t̄λξuλ)|2 dx− λ

∫
Bδ(x0)

F (t̄λξuλ − q(x)) dx

= max
t≥0

(1

2

∫
Bδ(x0)

|D(tξuλ)|2 dx− λ

∫
Bδ(x0)

F (tξuλ − q(x)) dx
)
.

From f(t − q(x)) ≤ f(t − (q(x0) − τ)) ∀ x ∈ Bδ(x0), we can check that t̃λ ≤ t̄λ.
Thus we just need to prove that t̄λ is bounded.

Let qm = minx∈Ω q(x). Take R > 0 large enough such that Ω ⊂ BR(0). Then, we
have

cλ ≥ inf
v∈H1

0 (BR(0)),v �≡0
max
t≥0

(1

2
t2
∫
BR(0)

|Dv|2 dx−
∫
BR(0)

F (tv − qm) dx
)

=
2πq2

m

lnλ
(1 + o(1)) ≥ b

lnλ

for some b > 0. Thus, we obtain by (f2) that

λ

∫
Ω

f(uλ − q(x))uλ dx ≥ b′

lnλ
,(4.4)

where b′ > 0 is a constant.
For t ∈ [0, 2], we define

g(t) =: t

∫
Bδ(x0)

|D(ξuλ)|2 dx− λ

∫
Bδ(x0)

f(tξuλ − q(x))ξuλ dx.

It follows from Proposition 3.4 that for x ∈ Ω \Bδ/2(x0), we have

|uλ(x)| ≤ Cλ

∫
Ω

f(uλ − q(x)) dx ≤ C

lnλ
.

Since q is a positive harmonic function uniformly bounded below in Ω̄, we see that

tξuλ − q(x) ≤ 0 ∀ t ∈ [0, 2], x ∈ Ω \Bδ/2(x0)

for λ > 0 large enough. This, together with (4.3), gives

g(t) = t

∫
Ω

|Duλ|2 dx− λ

∫
Ω

f(tuλ − q(x))uλ dx + O

(
1

ln2 λ

)
.(4.5)
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Define

h(σ) = (1 + σ)

∫
Ω

|Duλ|2 dx− λ

∫
Ω

f((1 + σ)uλ − q(x))uλ dx.

Then h(0) = 0, and by (f2) and (4.4) we get

h′(0) =

∫
Ω

|Duλ|2 dx− λ

∫
Ω

f ′(uλ − q(x))u2
λ dx

=λ

∫
Ω

(
f(uλ − q(x)) − f ′(uλ − q(x))uλ

)
uλ dx

≤λ

∫
Ω

(
θ−1f ′(uλ − q(x))(uλ − q(x)) − f ′(uλ − q(x))uλ

)
uλ dx

≤− c1λ

∫
Ω

f ′(uλ − q(x))(uλ − q(x))uλ dx

≤− c2λ

∫
Ω

f(uλ − q(x))uλ dx ≤ −c3/ lnλ,

where all the constants ci, i = 1, 2, 3, in the above relation are positive. As a result,

h(σ) ≤ −c3σ/ lnλ + o(σ)

if σ > 0. Thus

g(1 + σ) = h(σ) + O

(
1

ln2 λ

)
≤ −c3σ/ lnλ + o(σ) + O

(
1

ln2 λ

)
< 0

if σ > 0 is small enough and λ is large enough. Thus, t̄λ ≤ 1 + σ. Therefore, we have
proved that t̄λ, and thus t̃λ is bounded.

Using Proposition 3.4 again, we may deduce as (4.5) that for λ > 0 large enough

λ

∫
Ω

F (t̃λuλ − q(x)) dx− λ

∫
Ω

F (t̃λξuλ − q(x)) dx

= λ

∫
Ω\Bδ/2(x0)

F (t̃λuλ − q(x)) dx− λ

∫
Ω\Bδ/2(x0)

F (t̃λξuλ − q(x)) dx = 0.
(4.6)

By Proposition 2.2, (4.3), and (4.6), we have

cλ = Iλ(uλ) = max
t≥0

Iλ(tuλ)

≥ Iλ(t̃λuλ) = Iλ(t̃λξuλ) + O

(
1

ln2 λ

)

=
1

2

∫
Bδ(x0)

|D(t̃λξuλ)|2 dx− λ

∫
Bδ(x0)

F (t̃λξuλ − q(x)) dx + O

(
1

ln2 λ

)

≥ 1

2

∫
Bδ(x0)

|D(t̃λξuλ)|2 dx− λ

∫
Bδ(x0)

F (t̃λξuλ − (q(x0) − τ)) dx + O

(
1

ln2λ

)

= max
t≥0

(1

2

∫
Bδ(x0)

|D(tξuλ)|2 dx− λ

∫
Bδ(x0)

F (tξuλ − (q(x0) − τ)) dx
)

+ O

(
1

ln2λ

)

≥ inf
v∈H1

0 (Bδ(x0))
max
t≥0

(1

2
λ

∫
Bδ(x0)

|D(tv)|2 dx− λ

∫
Bδ(x0)

F (tv − (q(x0) − τ)) dx
)

+ O

(
1

ln2λ

)

≥ 2π(q(x0) − τ)2

lnλ

(
1 + o

(
ln lnλ

lnλ

))
.
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Proof of Theorem 1.1. We claim that q(x0) = qm = minx∈∂Ωq(x). In fact, by
Propositions 3.3 and 4.1, we have

2π(q(x0) − τ)2

lnλ
(1 − o(1)) ≤ cλ ≤ 2π(qm + τ)2

lnλ
(1 + o(1)) ∀τ > 0,

where o(1) → 0 as λ → +∞. Therefore,

qm ≤ q(x0) ≤ qm + 2τ ∀τ > 0.

This completes the proof.

5. Proof of Theorem 1.2. Let x̄0 ∈ ∂Ω be a strict local minimum point of
q(x). Let δ > 0 be small so that

q(x) > q(x̄0) ∀x ∈ Bδ(x̄0) ∩ (Ω̄ \ {x̄0}).

Let

f̄(x, t) = χBδ(x̄0)f(t− q(x)),

where χBδ(x̄0) is the characteristic function of Bδ(x̄0). Consider{
−∆u = λf̄(x, u) in Ω,

u ∈ H1
0 (Ω).

(5.1)

It is easy to check that (5.1) has a mountain pass solution ūλ with critical value c̄λ.
Then c̄λ has a upper bound as (2.12). Denote by Aλ = {x ∈ Ω : ū(x)λ > q(x)} the
vortex core of ūλ. Then we have the following lemma.

Lemma 5.1. Aλ is connected.
Proof. Let Ai be any component of Aλ. Then Ai ∩ Bδ(x̄0) 	= ∅. In fact, if

Ai ∩Bδ(x̄0) = ∅, then

−∆uλ = 0 in Ai; uλ = q(x) on ∂Ai.

But q(x) is harmonic; thus uλ = q(x) in Ai. This is a contradiction. The rest of the
proof is the same as Proposition 3.1. Since Ai ∩ Bδ(x̄0) 	= ∅, η0 as in the proof of
Proposition 3.1 is well defined, and the coefficient in (3.7) in front of s2 is negative.
Then the conclusion follows in the same way.

Let xλ ∈ Aλ and xλ → x0.
Lemma 5.2. x0 = x̄0.
Proof. First, we have x0 ∈ Bδ(x̄0) ∩ Ω̄. If not, we could choose δ̃ > 0 small such

that for λ large

Aλ ⊂ Bδ̃(x0) ⊂ Ω̄ \Bδ(x̄0).

Thus, Aλ∩Bδ(x̄0) = ∅. This is a contradiction, because as in the proof of Lemma 5.1,
we know that Aλ ∩Bδ(x̄0) 	= ∅.

Since q(x0) = min
Bδ(x̄0)∩Ω̄

q(x) and x0 is the only point which attains the mini-

mum in Bδ(x0) ∩ Ω̄, we can prove x0 = x̄0 in a similar way as in the proof of Theo-
rem 1.1. Since xλ → x0, we see Aλ ⊂ Bδ(x0) for λ > 0 large. So f(uλ − q(x)) = 0 for
all x ∈ Ω \Bδ(x0). As a result, uλ is a solution of (1.10).
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BIFURCATIONS OF PERIODIC SOLUTIONS SATISFYING
THE ZERO-HAMILTONIAN CONSTRAINT IN
REVERSIBLE DIFFERENTIAL EQUATIONS∗

R. E. BEARDMORE† , M. A. PELETIER‡ , C. J. BUDD§ , AND M. AHMER WADEE¶

Abstract. This is a study of the existence of bifurcation branches for the problem of finding
even, periodic solutions in fourth-order, reversible Hamiltonian systems such that the Hamiltonian
evaluates to zero along each solution on the branch. The class considered here is a generalization
of both the Swift–Hohenberg and extended Fisher–Kolmogorov equations that have been studied in
several recent papers. We obtain the existence of local bifurcations from a trivial solution under mild
restrictions on the nonlinearity and obtain existence and disjointness results regarding the global
nature of the resulting bifurcating continua for the case where the Hamiltonian has a single-well
potential.

The local results rest on two abstract bifurcation theorems which also have applications to sixth-
order problems and which show that the curves of zero-Hamiltonian solutions are contained within
two-dimensional manifolds of solutions of both negative and positive Hamiltonian.
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1. Introduction. In [25, 7, 28, 29, 36, 20, 9] the authors find periodic solutions
of systems of Hamiltonian differential equations with the property of having prescribed
zero Hamiltonian. In particular, existence theorems for even periodic orbits satisfying
the zero-Hamiltonian constraint in certain fourth-order Hamiltonian systems have
been derived by Peletier, Troy, and van den Berg using shooting techniques [35, 36].
While such shooting methods rely heavily on the particular form of the nonlinearities
in a given problem and thus suffer from a lack of generality, the techniques do provide
a great deal of quantitative information about the solutions. The problem of finding
periodic solutions of Hamiltonian systems with prescribed nonzero energy has been
studied extensively (see [31, 30] and more recently [4]).

The main contribution of this paper is to view the problem of finding zero-
Hamiltonian periodic solutions of (1.1) as a one-parameter bifurcation problem from
a zero solution, with either period or an external parameter playing the role of bifur-
cation parameter. To solve this bifurcation problem we formulate two abstract Hopf
bifurcation theorems (Theorems 2.2 and 2.4) and deduce the existence of the desired
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solutions as a corollary. The abstract results apply to reversible fourth-order Hamil-
tonian systems at 1:1 and m:n resonances, provided that the Hamiltonian is indefinite
about the trivial solution. We call these simple and double bifurcations, respectively,
as the theorems lead to either a single continuum or a pair of bifurcating continua of
solutions. Furthermore, the proofs of the bifurcation theorems are easily modified to
show that the zero-Hamiltonian solutions that we find actually lie within manifolds
of solutions of positive and negative Hamiltonian.

The proofs of our abstract results are achieved using a Lyapunov–Schmidt re-
duction technique, as can be found in many texts [38, 2, 11], and the fact that we
essentially have only one bifurcation parameter means that some of the global bi-
furcation results of [6] are applicable. Using arguments from the configuration-space
formulation of fourth-order problems [34, 17, 29], we shall be able to find bifurca-
tion invariants which demonstrate that the bifurcating continua form a countable
collection of mutually disjoint sets. Subsequently, we shall be able to show that a
simple bifurcation for fourth-order problems results in the existence of an unbounded
(in a suitable sense) continuum of solutions, rather like the classical global Hopf bi-
furcation theorem described in [1]. The global aspect of the paper is peculiar to
fourth-order equations and does not immediately apply to more general Hamiltonian
systems (like the sixth-order problem [33, equation (2)] for which we also have local
results). Consequently, we have what approaches a nonlinear Sturm–Liouville theory
(which is well known in the context of elliptic two-point boundary-value problems [5])
for zero-Hamiltonian solutions of (1.1) given below.

A Lyapunov–Schmidt reduction procedure is specifically available for systems that
are either reversible or Hamiltonian [37, 22]; however, we do not make use of those
results in this paper. The reason for this is that it is not clear that studying the
problem in a space of reduced dimension helps to elucidate the role played by the
Hamiltonian constraint, and consequently we approach the problem ab initio.

So, consider the class of fourth-order differential equations

u′′′′ + pu′′ + Fu(u) = 0,(1.1)

where primes refer to differentiation with respect to x, p is a real parameter, and the
function F ∈ Cω(R) satisfies

(F) F (0) = Fu(0) = 0 and Fuu(0) = 1.
Here, Cω(R) denotes the space of real-analytic functions on R, and a subscript u

denotes differentiation with respect to u. We shall assume throughout that F satisfies
assumption (F) and is therefore positive in some neighborhood of u = 0. Note that
the final condition in (F) is not restrictive as it can always be obtained from a suitable
scaling of u and of time (denoted x), provided that Fuu(0) > 0.

Now (1.1) is reversible (see [8] for a discussion of reversible systems) and Hamil-
tonian, with Hamiltonian

H ≡ u′u′′′ − 1

2
u′′2 +

1

2
pu′2 + F (u),(1.2)

and when suitably scaled (see [36]), (1.1) provides the extended Fisher–Kolmogorov
and Swift–Hohenberg equations, with Fu(u) = ±u(1 − u2).

Fourth-order equations like (1.1) have a burgeoning literature, as can be seen from
the recent studies in [3, 7, 24, 26, 27, 28, 29, 35, 36, 8, 12, 19, 18]; see, in particular,
the recent monograph [25] and also [36, 20]. In these references it is shown, using a
variety of variational, geometric, functional analytic, and elementary techniques, that
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(1.1) may possess periodic, homoclinic, and heteroclinic solutions, with applications
ranging from geology to buckling theory; in particular, zero-Hamiltonian periodic
solutions play an important role in the study of cellular buckling (see [12, 19, 8] and
the references therein; see also [9]).

We note at this stage that in order for a bifurcation from the trivial solution to
occur as p varies, no further restrictions will be required on the nonlinearity F than
those already given in assumption (F).

As an application of the results of the first part of the paper, we analyze the
behavior of the simple bifurcating branch which connects to (u, p) = (0, 2) for the
case

F (u; ε) =
1

2
u2 − ε

(
1

4
u4 − 1

6
u6

)
,(1.3)

where ε is a parameter that unfolds the degenerate problem from ε = 0. In particular,
we prove the existence of a fold bifurcation on this bifurcating branch, which was
conjectured to exist in [19] and [12]. Finally, the results of some numerical calculations
performed in AUTO will be presented, which indicate that similar behavior is observed
for the multiple bifurcating branches which connect to the trivial solution at p > 2.
We also compute the symmetry-breaking bifurcations on these branches and illustrate
the subsequent connecting branches of solutions.

2. Bifurcation theorems. Let X,Y , and Z be Banach spaces, and BL(X,Y )
denote the space of continuous (bounded) linear maps from X to Y . We write X∗

for the dual space of continuous linear functionals BL(X,R). If L ∈ BL(X,Y ) and
U ⊂ X is a closed subspace of X, then L|U ∈ BL(U, Y ) will denote the restriction
of L to U . We shall use ‖ · ‖X to denote the norm on X, and Iso(X,Y ) denotes the
set of continuous linear isomorphisms from X to Y . Let Cr

2π be the Banach space of
2π-periodic Cr functions from [0, 2π] to R

n, endowed with a Cr norm.
If f : X → Z is a given smooth mapping, then df(x)[h] will denote the Fréchet

derivative of f . For higher derivatives, the k-form dkf(x)[h, . . . , h] will also be written
as dkf(x)[h](k) for brevity. Partial derivatives of a function f ∈ C1(X × Y,Z) will
be written as dxf(x, y)[h] ∈ Z and dyf(x, y)[k] ∈ Z, where (h, k) ∈ X × Y , and
higher derivatives will be written as in d2

xyf(x, y)[h, k]. If X = R, we will identify
dxf(x, y)[h] with hdxf(x, y)[1], and we shall also write

dkf(x)[h1, . . . , hk] = (Πk
j=1hj)d

kf(x)[1, . . . , 1],

although we shall often omit the k-vector [1, . . . , 1] in this expression where no con-
fusion results. Given u, u1, u2 ∈ X, we will write 〈u〉 ≡ R · u and 〈u1, u2〉 =
{α1u1 + α2u2 : α1, α2 ∈ R}. For any continuous function v, we denote the delta func-
tional by δ(v) ≡ v(0).

For completeness, let us recall the following. A linear mapping L ∈ BL(X,Y ) is
said to be Fredholm if its range ran(L) is a closed subspace of Y with finite codimension
and its null space ker(L) is a finite-dimensional subspace of X. Then

ind(L) = dim ker(L) − codim ran(L)

is said to be the Fredholm index of L. We recall the following theorem, which gives a
useful collections of facts that can be found in [32].

Theorem 2.1. If L ∈ BL(X,Y ) is Fredholm and K ∈ BL(X,Y ) is a compact
linear operator, then L + K ∈ BL(X,Y ) is also Fredholm and ind(L + K) = ind(L).
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As a consequence, if L is Fredholm of index zero and is injective, then it is an isomor-
phism. The set F of Fredholm operators is open in BL(X,Y ), and ind is constant on
connected components of F .

2.1. Statement of the abstract problem. Let ψ ∈ Z∗,M ∈ Cω(X × R
2, Y ),

and g ∈ Cω(X × R
2, Z); now consider the bifurcation problem

H(u, p, µ) ≡
(

M(u, p, µ)
ψ(g(u, p, µ))

)
=

(
0
0

)
,(2.1)

where u ∈ X and µ, p ∈ R are parameters. Throughout, we shall write H = M ×ψ(g)
for brevity. We intend that (2.1) represent an abstract formulation of finding periodic
solutions of (1.1) with the property of having zero Hamiltonian; accordingly we shall
call the functional ψ ◦ g the energy of (2.1). Since the functional H in (1.2) is of
quadratic order at the origin, we impose this degree of degeneracy into the operator
g. Hence we assume that

M(0, p, µ) ≡ 0(2.2)

and

g(0, p, µ) ≡ 0, dug(0, p, µ) ≡ 0.(2.3)

By the term bifurcation from the trivial solution u = 0 of (2.1) at (u, p, µ) =
(0, p0, µ0) we mean that there is a sequence (un, pn, µn) ⊂ X\{0}×R

2 which satisfies

H(un, pn, µn) ≡ 0, un → 0 and (pn, µn) → (p0, µ0) as n → ∞.

2.2. Local bifurcations. Let us now seek conditions under which there is a
bifurcation of (2.1) from the trivial solution. The implicit function theorem applied
to (2.1) shows that (0, p0, µ0) can be a bifurcation point for (2.1) only if

duM(0, p0, µ0) 
∈ Iso(X,Y ).(2.4)

Furthermore, if M is a assumed to be a Fredholm mapping, then a bifurcation can
occur only when duM(0, p0, µ0) is not injective. Motivated by this, we shall now
consider two such cases:

(i) dim ker(duM(0, p0, µ0)) = 1,
(ii) dim ker(duM(0, p0, µ0)) = 2.
Case (i) is reminiscent of the theorem on bifurcation from a simple eigenvalue

and will give rise to a unique bifurcating continuum. In case (ii), however, we will be
able to locate exactly two distinct bifurcating continua. Let us now proceed with the
promised results.

Theorem 2.2 (simple abstract Hopf bifurcation). Suppose that (2.2)–(2.3) hold
and that duM(0, p0, µ0) ∈ BL(X,Y ) is Fredholm of index zero, where ker(duM(0, p0, µ0))
= 〈k〉. Suppose also that X = 〈k〉 ⊕ U , V = ran(duM(0, µ0, p0), Y = 〈K〉 ⊕ V, P :
Y → V is the projection operator along 〈K〉, and Q is the projection onto 〈K〉 which
is identified with R.

Suppose further that ψ(d2
uug(0, p0, µ0)[k, k]) = 0 and that the operator D ∈ BL(U×

R
2, V × R

2) given by

D =

⎛
⎝ PduM(0, p0, µ0) Pd2

upM(0, p0, µ0)[k, 1] Pd2
uµM(0, p0, µ0)[k, 1]

0 Qd2
upM(0, p0, µ0)[k, 1] Qd2

uµM(0, p0, µ0)[k, 1]
ψ(d2

uug[k, ·]) ψ(d3
uupg[k, k, 1]) ψ(d3

uuµg[k, k, 1])

⎞
⎠
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is an isomorphism.
Then, (0, p0, µ0) is a bifurcation point for (2.1). Moreover, there is an interval I

containing 0 and a unique analytic branch B of solutions of (2.1) on which (u, p, µ) =
(u(β), p(β), µ(β)) for β ∈ I and which satisfies u(β) 
= 0 for β 
= 0, (u(0), p(0), µ(0)) =
(0, p0, µ0). Moreover, there results ‖u(β) − βk‖X = O(β2) as β → 0.

Proof. Let us express u in terms of the decomposition of X as u = βk + r =
β(k + ρ) ∈ 〈k〉 ⊕ U ; then (2.1) is equivalent to

(P + Q)M(β(k + ρ), p, µ) = 0,(2.5)

ψ(g(β(k + ρ), p, µ)) = 0.(2.6)

Using analyticity, it follows that there are analytic mappings M̃ and g̃ such that

M(β(k + ρ), p, µ) = βduM(0, p, µ)[k + ρ] + β2M̃(β, ρ, p, µ)

and

ψ(g(β(k + ρ), p, µ)) = ψ

(
β2

2
d2
uug(0, p, µ)[k + ρ, k + ρ] +

β3

2
g̃(β, ρ, p, µ)

)
.

As we are seeking nonzero solutions to (2.1), we can divide by appropriate powers
of β in (2.5)–(2.6) and solve the equivalent problems

(P + Q)duM(0, p, µ)[k + ρ] + βM̃(β, ρ, p, µ) = 0,(2.7)

ψ
(
d2
uug(0, p, µ)[k + ρ, k + ρ] + βg̃(β, ρ, p, µ)

)
= 0.(2.8)

In turn, (2.7)–(2.8) is equivalent to

P
(
duM(0, p, µ)[k + ρ] + βM̃(β, ρ, p, µ)

)
= 0 ∈ V,(2.9)

Q
(
duM(0, p, µ)[k + ρ] + βM̃(β, ρ, p, µ)

)
= 0 ∈ R,(2.10)

ψ
(
d2
uug(0, p, µ)[k + ρ, k + ρ] + βg̃(β, ρ, p, µ)

)
= 0 ∈ R,(2.11)

where the one-dimensional space 〈K〉 is identified with R.
Let us now define (2.9)–(2.11) as Φ1(β, ρ, p, µ) = 0, where Φ1 is an analytic

mapping of Banach spaces

Φ1 : R × U × R
2 → V × R

2.(2.12)

Under the stated assumptions it is clear that Φ1(0, 0, p0, µ0) = 0, and one can show
that D = dρ,p,µΦ1(0, 0, p0, µ0), noting Q[duM(0, p0, µ0)] = 0 by definition. It now
follows by the implicit function theorem that we may locally solve (2.9)–(2.10) for ρ,
p, and µ as a function of β. The fact that ρ(0) = 0 completes the proof.

The following result tells us that Theorem 2.2 is a special case of a more general
result which says that the branch B of zero energy solutions from this theorem is
formed from the intersection of a manifold of solutions of M(u, p, µ) = 0 with the
zero-energy surface {(u, p, µ) : ψ(g(u, p, µ)) = 0}.

Theorem 2.3. The curve of zero-energy solutions B from Theorem 2.2 is con-
tained within a (locally) two-dimensional analytic manifold M of solutions of

M(u, p, µ) = 0(2.13)

of both positive and negative energy.
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Proof (sketch). Repeat the same argument as in Theorem 2.2 but for the system

Hε(u, p, µ) ≡
(

M(u, p, µ)
ψ(g(u, p, µ)) − ε

)
=

(
0
0

)
.(2.14)

One obtains a mapping Φ1(β, ρ, p, µ, ε), entirely analogous to (2.12), such that

Φ1(0, 0, p0, µ0, 0) = 0 and D = dρ,p,µΦ1(0, 0, p0, µ0, 0).

One can then solve ρ, p, and µ locally as analytic functions of (β, ε).
The following technical lemma shows that one can parameterize the bifurcating

branch from Theorem 2.2 using one of p or µ as parameters, and this result will be
used at a later stage in the paper.

Lemma 2.1. If (u, p, µ) = (u(β), p(β), µ(β)) is an element of the bifurcating
branch B obtained in Theorem 2.2, then at least one of

du,p(M × ψ(g)) or du,µ(M × ψ(g)) ∈ BL(X × R, Y × R)

(evaluated at (u, p, µ)) is an isomorphism for sufficiently small nonzero |β|.
Proof. Note from Theorem 2.2 that∣∣Qd2

upM(0, p0, µ0)[k, 1]
∣∣ +

∣∣Qd2
uµM(0, p0, µ0)[k, 1]

∣∣ 
= 0,

and let us therefore assume for definiteness that

Qd2
upM(0, p0, µ0)[k, 1] 
= 0.(2.15)

Now define the one-parameter family of linear mappings

L(β) ≡
(

duM(u(β), p(β), µ(β)) dpM(u(β), p(β), µ(β))
ψ(dug(u(β), p(β), µ(β)) ψ(dpg(u(β), p(β), µ(β))

)

and note that this is an (at most) rank-two perturbation of a Fredholm mapping with
index zero. It follows that we need to prove only that L(β) is injective for β 
= 0.

Using analyticity, a straightforward but lengthy calculation shows that we may

write L(β) = L0(β) + βL1(β) + β2

2 L2(β) + O(β3), where

L0(β) =

(
duM 0

0 0

)
,

L1(β) =

(
d2
uuM [k + O(β), ·] d2

upM [k + O(β), ·]
ψ(d2

uug[k + O(β), ·]) 0

)
,

and

L2(β) =

(
d3
uuuM [k + O(β), k + O(β), ·] d3

uupM [k + O(β), k + O(β), ·]
ψ(d3

uuug[k + O(β), k + O(β), ·]) ψ(d3
uupg[k + O(β), k + O(β), ·])

)
,

where each of the given derivatives is evaluated at (u, p, µ) = (0, p(β), µ(β)). For
β 
= 0, one can see that L(β) is injective if and only if T (β) is, where

T (β) =

(
duM 0

ψ(d2
uug[k + O(β), ·]) 0

)

+
β

2

(
2d2

uuM [k + O(β), ·] 2d2
upM [k + O(β), ·]

ψ(d3
uuug[k + O(β), k + O(β), ·]) ψ(d3

uupg[k + O(β), k + O(β), ·])

)
+O(β2).
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Again, each of the derivatives is evaluated at (u, p, µ) = (0, p(β), µ(β)).
Clearly T (0) is not injective, but the fact that d2

uug(0, p0, µ0)[k, k] 
= 0 implies

ker(T (0)) = 〈κ〉 ⊂ X × R,

where κ = (0X , 1) ∈ X × R. To prove that T (β) is injective for small β it suffices to
prove that

T ′(0)κ 
∈ ran(T (0)).(2.16)

However

T ′(0) =
1

2

(
2d2

uuM [k, ·] 2d2
upM [k, ·]

ψ(d3
uuug[k, k, ·]) ψ(d3

uupg[k, k, ·])

)
,

evaluating derivatives at (u, p, µ) = (0, p0, µ0), and ran(T (0)) = ran(duM(0, p0, µ0))×
ran(ψ(d2

uug(0, p0, µ0))). It follows that T ′(0)κ ∈ ran(T (0)) can be satisfied only if

d2
upM(0, p0, µ0)[k, 1] ∈ ran(duM(0, p0, µ0)),

but this contradicts (2.15). Finally, one can use an analogous argument to cover the
case whereby Qd2

uµM(0, p0, µ0)[k, 1] 
= 0.
Next we consider case (ii), where duM(0, p0, µ0) has a two-dimensional null-space.
Theorem 2.4 (double abstract Hopf bifurcation). Suppose that (2.2)–(2.3) hold

and ker(duM(0, p0, µ0)) = W , where dim(W ) = 2 with W = 〈k1, k2〉. Suppose further
that X = W ⊕ U and

Y = Z ⊕ V, V = ran(duH(0, p0, µ0)),

where V is closed, dim(Z) = 2, and Z = 〈u1, u2〉.
Now, let P : Y → V be the projection along Z and Q = I − P . For i = 1, 2,

let Qi be the projection of Y onto 〈ui〉 (which we identify with R) such that Q[y] =
Q1[y]u1 + Q2[y]u2. Set

A = ψ(d2
uug(0, p0, µ0)[k2, k2]), B = ψ(d2

uug(0, p0, µ0)[k1, k2])

and

C = ψ(d2
uug(0, p0, µ0)[k1, k1]).

Suppose that C 
= 0, B2 > AC, and let α± be the two (real nonzero distinct) roots of
the quadratic equation Aα2 + 2Bα + C = 0. Suppose also that

det

(
Q1d

2
upM [k1 + α±k2, 1] Q1d

2
uµM [k1 + α±k2, 1]

Q2d
2
upM [k1 + α±k2, 1] Q2d

2
uµM [k1 + α±k2, 1]

)

= 0

when (u, p, µ) = (0, p0, µ0).
Then (0, p0, µ0) is a bifurcation point for (2.1). Moreover, there is an inter-

val I containing 0 and exactly two analytic branches B± of solutions of (2.1) on
which (u, p, µ) = (u±(β), p±(β), µ±(β)) for β ∈ I, with u±(0) 
= 0 for β 
= 0 and
(u±(0), p±(0), µ±(0)) = (0, p0, µ0). Moreover, there are analytic functions α± : I → R

and ρ : I → V such that α±(0) = α±, ‖ρ(β)‖Y = O(β) as β → 0, and u±(β) =
βk1 + βα±(β)k2 + βρ(β).
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Proof. Using the analyticity of M , let us write

M(u, p, µ) = duM(0, p, µ)[u] + O(2)

and

g(u, p, µ) = g(0, p, µ) + dug(0, p, µ)u +
1

2
d2
uug(0, p, µ)[u, u] + O(3),

where O(n) represents any function, Θ(u, p, µ) say, where there is a γ > 0 such that
‖Θ(u, p, µ)‖ ≤ γ‖u‖n for all (u, p, µ) in a neighborhood of (0, p0, µ0).

Now let u = β(k1+αk2+αρ) ∈ W⊕U , and note that there is an analytic function
φ1 such that the equation M(u, p, µ) = 0 is locally equivalent to

βduM(0, p, µ)[k1 + αk2 + αρ] + β2φ1(α, β, ρ, p, µ) = 0.(2.17)

We may also use the analyticity of g to write

(2.18)

g(β(k1 + αk2 + αρ), p, µ) =
β2

2
d2
uug(0, p, µ)[k1 + αk2 + αρ](2) +

β3

2
φ2(α, β, ρ, p, µ),

where φ2 is another suitably defined analytic function. Now the equation M(u, p, µ) =
0 is equivalent to

(P + u1Q1 + u2Q2)M(u, p, µ) = 0,

and, after dividing (2.17) and (2.18) by β and β2, respectively, we obtain the locally
equivalent problem

P [duM(0, p, µ)[k1 + αk2 + αρ] + βφ1(α, β, ρ, p, µ)] = 0 ∈ V,(2.19)

Q1 [duM(0, p, µ)[k1 + αk2 + αρ] + βφ1(α, β, ρ, p, µ)] = 0 ∈ R,(2.20)

Q2 [duM(0, p, µ)[k1 + αk2 + αρ] + βφ1(α, β, ρ, p, µ)] = 0 ∈ R,(2.21)

ψ
(
d2
uug(0, p, µ)[k1 + αk2 + αρ](2) + βφ2(α, β, ρ, p, µ)

)
= 0 ∈ R.(2.22)

Setting β = 0, ρ = 0, p = p0, and µ = µ0 in (2.19)–(2.22), we find an equation for α:

ψ(d2
uug(0, p, µ)[k1 + αk2, k1 + αk2]) = 0.(2.23)

From the definitions of A, B, and C given in the statement of the theorem, (2.23) is
simply the equation C + 2Bα + Aα2 = 0 with solutions α = α±.

We now write (2.19)–(2.22) as Φ2(ρ, p, µ, α, β) = 0, say, where Φ2 is an analytic
mapping Φ2 : U × R

4 → V × R
3. The derivative dρ,p,µ,αΦ2(0, p0, µ0, α±, 0) is given

by the operator matrix

L ≡

⎛
⎝ A0 B0 0

0 D0 0
E0 F0 G0

⎞
⎠ ∈ BL(U × R

3, V × R
3),

where

A0 = α±PduM
0, B0 =

[
Pd2

upM
0[k1 + α±k2, 1]

∣∣Pd2
uµM

0[k1 + α±k2, 1]
]
,
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E0 = 2α±ψ(d2
uug

0[·, k1 + α±k2]), G0 = 2ψ(d2
uug

0[k2, k1 + α±k2]),

F0 =
[
ψ(d3

uupg
0[1, k1 + α±k2, k1 + α±k2])

∣∣ψ(d3
uuµg

0[1, k1 + α±k2, k1 + α±k2])
]

and

D0 =

(
Q1d

2
upM

0[k1 + α±k2, 1] Q1d
2
uµM

0[k1 + α±k2, 1]
Q2d

2
upM

0[k1 + α±k2, 1] Q2d
2
uµM

0[k1 + α±k2, 1]

)
,

and a superscript zero (0) denotes evaluation of a function at (u, p, µ) = (0, p0, µ0).
Clearly, for L to be an isomorphism we require G0 
= 0, that is, ψ(d2

uug
0[k2, k1 +

α±k2]) 
= 0, but this is just B + α±A 
= 0, which is true by assumption. Since
A0 ∈ Iso(U, V ), L is an isomorphism if det(D0) 
= 0, and this is also an assumption.
Using the implicit function theorem, we can now determine all of the
variables as analytic functions of β locally to the two points (ρ, p, µ, α, β) =
(0, p0, µ0, α±, 0).

As was the case for Theorems 2.2 and 2.3, we can prove that the branches of zero-
energy solutions B± from Theorem 2.4 are obtained from the intersection of solutions
of M(u, p, µ) = 0 with the zero-energy surface.

Theorem 2.5. The two curves of zero-energy solutions B± from Theorem 2.4 are
each contained within (locally) two-dimensional analytic manifolds M± of solutions
of M(u, p, µ) = 0 of both positive and negative energy. Moreover, M+ ∩ M− =
{(0, p0, µ0)}.

Proof. This is almost a verbatim repetition of the proof of Theorem 2.4, but
modified to deal with an energy constraint of the form ψ(g(u, p, µ)) = ε.

3. The existence of bifurcations for fourth- and sixth-order systems.

3.1. Preliminaries. In this section we shall apply Theorems 2.1 and 2.2 to find
bifurcating branches of periodic solutions of (1.1) which have the zero-Hamiltonian
property. To do so, we shall presume that a periodic solution of (1.1) has period T ,
where

T =
2π

µ

and µ is a priori unknown. Upon setting

t = µx,

a simple rescaling of (1.1) and (1.2) leads us to consider the two-parameter problem

M(u, p, µ) ≡ µ4u′′′′ + pµ2u′′ + Fu(u) = 0,(3.1)

ψ(g(u, p, µ)) ≡ δ

(
µ4u′u′′′ − 1

2
µ4u′′2 +

1

2
pµ2u′2 + F (u)

)
= 0,(3.2)

where primes now denote differentiation with respect to t. With regard to (2.1), ψ
corresponds to δ, and g is the Hamiltonian which appears in (3.2); again we shall
write H = M × ψ(g) so that (3.1)–(3.2) corresponds to the equation H = 0.

A natural setting for the application of these Theorems 2.1 and 2.2 is in the space
of even functions of period 2π. Accordingly, let Xe =

{
u ∈ C4

2π : u(t) = u(−t)
}

and
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Ye =
{
u ∈ C0

2π : u(t) = u(−t)
}
, both endowed with their usual norms. We also define

the even-odd subspaces

Xeo =

{
u ∈ Xe : u

(π
2
− t

)
= −u

(π
2

+ t
)}

and

Yeo =

{
u ∈ Ye : u

(π
2
− t

)
= −u

(π
2

+ t
)}

.

For a given subspace S ⊂ Z ⊂ L2(0, π) we define its orthogonal complement by

S⊥ = {u ∈ Z :
∫ 2π

0
u(t)s(t)dt = 0 ∀s ∈ S}. In this way we obtain a map H ∈ Cω(Xe×

R
2, Ye×R), and if F is even, then H also provides a map H ∈ Cω(Xeo×R

2, Yeo×R).

3.2. Simple bifurcation from p = 2. The following theorem shows that the
zero-Hamiltonian problem associated with (1.1) has a simple bifurcation point to a
locally unique and smooth branch of solutions from the point p = 2.

Theorem 3.1. Suppose that assumption (F) holds. Then there is an interval
I ⊂ R and a unique analytic branch β �→ (u(β), p(β)) ∈ Xe × R defined on I of
nontrivial even periodic solutions of (1.1) with zero Hamiltonian and period T (β).
Moreover, u(β) 
= 0 if β 
= 0,

T (0) = 2π, u(0) = 0, p(0) = 2, and ‖u(β)(t) − β cos(t)‖C4 = O(β2)

as β → 0. If F is even, then the function t �→ u(β)(t) is an element of Xeo for all
β ∈ I.

Proof. To prove this result we apply Theorem 2.2 to H(u, p, µ) = 0 with X = Xe

and Y = Ye. Let L(p, µ)[a] ≡ duM(0, p, µ)[a] = µ4a′′′′ + pµ2a′′ + a, and note that the
bilinear form ψ(d2

uug(0, p, µ)[a, b]) from Theorem 2.2 is given by

B(p, µ)[a, b] = δ
(
µ4(a′b′′′ + a′b′′′ − a′′b′′) + pµ2a′b′ + ab

)
.

In order to verify the hypotheses of Theorem 2.2 let us seek a nonzero solution
a ∈ Xe to L(p, µ)a = 0, that is,

µ4a′′′′ + pµ2a′′ + a = 0, δ
(
µ4(2a′a′′′ − (a′′)2) + pµ2(a′)2 + a2

)
= 0.

Since a is even and of period 2π, we seek solutions of the form a(t) = cos(mt), where
m is an integer. This provides the equations α4 − pα2 + 1 = 0,−α4 + 1 = 0, where
α = µm, whence α2 = 1, so that p = 2 and µ = 1/m. Seeking the solution of minimal
period, we may set m = 1 and thus define k(t) ≡ cos(t) and record the fact that
ker(L(2, 1)) = 〈k〉. Let us also define K ≡ k for the purposes of Theorem 2.2 and
note for the moment that k is an even-odd function.

We now form the decompositions Xe = 〈k〉 ⊕ 〈k〉⊥ and Ye = 〈k〉 ⊕ 〈k〉⊥, so that

U = 〈k〉⊥ ⊂ Xe and V = 〈k〉⊥ ⊂ Ye in accordance with Theorem 2.2, and define the
projection Q : L2(0, 2π) → R by

(Qu)(t) =
1

π

∫ 2π

0

u(t)k(t)dx, u ∈ L2(0, 2π),

and let P = I − k · Q. Now, ψ(d3
uupg(0, p, µ)[a, b, 1]) = Bp(p, µ)[a, b] = δ(µ2a′b′),

d3
uuµg(0, p, µ)[a, b] = δ(4µ3(a′b′′′ + a′b′′′ − a′′b′′) + 2pµa′b′), and d2

uµM(0, p, µ)[a] =
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Lµ(p, µ)[a] = 4µ3a′′′′+2pµa′′. Finally, d2
upM(0, p, µ)[a, 1] = µ2a′′. Thus the remaining

hypothesis of Theorem 2.2 is satisfied if the operator matrix D is nonsingular. On
inspection of the relevant derivatives we find

D =

⎛
⎝ P ◦ L(2, 1) 0 0

0 −1 0
∗ 0 −4

⎞
⎠ ∈ BL(U × R

2, V × R
2),

where P ◦L(2, 1) : U → V is an isomorphism and ∗ is irrelevant to the calculation at
hand. It follows that D is an isomorphism, and the result follows.

The second part of the theorem is proven in exactly the same way, simply observ-
ing the change of space, using Xeo rather than Xe. The uniqueness of the bifurcating
branch in both Xe and Xeo, and the fact that Xeo ⊂ Xe, implies that u(β) ∈ Xeo if
F is even.

Remark 1. In order to demonstrate that the application of Theorem 2.2 is not
limited to fourth-order problems, we present the following example. In [33] the au-
thors study the problem of finding periodic solutions for sixth-order problems using
a variational approach, of which

uvi + 5uiv + pu′′ + u− u3 = 0(3.3)

is an example (see also [10]). Equation (3.3) has Hamiltonian

H ≡ 1

2
(u′′′)2 + uvu′ − uivu′′ + 5

(
u′u′′′ − 1

2
(u′′)2

)
+

p

2
(u′)2 +

1

2
u2 − 1

4
u4.(3.4)

Theorem 3.2. The points (u, p) = (0, 4 1
4 ) and (0, 1+4

√
2) are simple bifurcation

points to even periodic solutions of (3.3) with zero Hamiltonian and with period near

2π
√

2 and 2π/
√

1 +
√

2, respectively.
The proof of Theorem 3.2 is very similar to that of Theorem 3.1, and so we omit it;

note that the existence of a locally two-dimensional manifold of positive and negative
Hamiltonian solutions also follows from Theorem 2.3.

3.3. Double bifurcations from p > 2. The following result shows that the
interval [2,∞) contains a dense set of bifurcation points for (3.1)–(3.2).

Theorem 3.3. Suppose that assumption (F) holds. Then to each n,m ∈ N such
that n ≥ m+ 1 and gcd(n,m) = 1 there is an interval I ⊂ R and exactly two analytic
branches β �→ (u±(β), p±(β)) ∈ Xe×R defined on I of even periodic solutions of (1.1)
with zero Hamiltonian and period T±(β). Moreover, u±(β) 
= 0 for β 
= 0,

T±(0) = 2π
√
nm, u±(0) = 0, p±(0) =

n

m
+

m

n
,

and

‖u±(β)(t) − β (m cos(nt) ± n cos(mt)) ‖C4 = O(β2)

as β → 0.
Proof. Let us apply Theorem 2.4 to H(u, p, µ) = 0; to identify the functions k1

and k2 from Theorem 2.4, we consider the linearized problem

L(p, µ)[a] ≡ µ4a′′′′ + pµ2a′′ + a = 0
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of (3.1) with a ∈ Xe. This linear equation admits an even 2π-periodic solution of the
form a(t) = λ1 cos(mt) + λ2 cos(nt) with integer m and n, provided that α1 = (µm)2

and α2 = (µn)2 both satisfy the equation α2 − pα + 1 = 0. From this we obtain
α1α2 = 1, so that µ = µn,m ≡ 1√

nm
and p = α1 + α2, whence p = pn,m ≡ n

m + m
n .

Hence we define k1(t) ≡ cos(nt), k2(t) ≡ cos(mt), and u1 ≡ k1, u2 ≡ k2. More-
over, using ψ(d2

uug(0, pn,m, µn,m)[a, b]) = δ(−µ4
n,ma′′b′′ + ab), we have

A =
(n2 −m2)

n2
, B = 0, and C = −A,

so that α± = ± n
m in the notation of Theorem 2.4. With Qi(v) = 1

π

∫ 2π

0
v(t)ui(t)dt for

i = 1, 2, we find d2
upM(0, pn,m, µn,m)[a, 1] = µ2

n,ma′′ and d2
uµM(0, pn,m, µn,m)[a, 1] =

4µ3
n,ma′′′′+2pn,mµn,ma′′. We then evaluate the determinant from Theorem 2.4, which

is −4µ5
n,mα±n

2m2(m2 − n2), and the result now follows since this is nonzero.
If F is even, then all the bifurcations which occur for p ≥ 2 are pitchforks because

u is then a solution of (3.1)–(3.2) if and only if −u is. The uniqueness properties
of Theorems 2.2 and 2.4 and symmetry then imply that the parameterization of the
solution branch satisfies −u(β) = u(−β). From this we infer that the bifurcation
diagram of ‖u(β)‖ (with any suitable norm) plotted against p(β) has a tongue-like
appearance because of the density of the union of pn,m in [2,∞).

Remark 2. Theorem 3.3 was essentially known some time ago and can be found
in an unpublished letter by J. F. Toland (1992), as referred to in [9, equation (5.1),
p. 2486] for the case Fu(u) = u − u2. This letter was communicated to the present
authors by A. R. Champneys, and we express our gratitude for his help in this matter.
A singularly perturbed version of (1.1) for this choice of nonlinearity was studied in
[15] and more recently in [16], where the authors consider both homoclinic and periodic
solutions, although the latter are not of zero Hamiltonian; see also [23].

As an aside, consider the equation

1

12
viv + v′′ + pv + v3 +

3

4
v(vv′′ + (v′)2),(3.5)

taken from [21], with first integral

H ≡ 1

12

(
v′′′v′ − 1

2
(v′′)2

)
+

1

2
(v′)2 +

p

2
v2 +

v4

4
+

3

8
(v′)2v2.(3.6)

Note that a parameter λ2 appearing in [21] has been replaced here by p. This is not
in the class of Hamiltonian systems given by (1.1), but Theorems 2.2 and 2.4 are still
applicable.

Theorem 3.4. The point p = 3 is a simple bifurcation point to even periodic
solutions of (3.5) with zero first integral and with period near π

√
2/3. For each n,m ∈

N such that n > m and gcd(n,m) = 1, the point pn,m = 12( n
m + m

n )−2 is a double

bifurcation point to such solutions with period near π
√

(n2 + m2)/3.
The proof of Theorem 3.4 is an application of Theorem 2.4, which is entirely

analogous to the proof of Theorem 3.3, so we omit the details.

3.4. Odd solutions for even F . Now let us suppose that F is an even function.
If we define the spaces of odd functions, Xo =

{
u ∈ C4

2π : u(t) = −u(−t)
}

and Yo ={
u ∈ C0

2π : u(t) = −u(−t)
}
, then H provides a map H ∈ Cω(Xo × R

2, Yo × R). This
means that one can obtain odd zero-Hamiltonian solutions of (1.1) in a manner entirely
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analogous to the way we found the even solutions. For this reason we give the following
theorem without proof.

Theorem 3.5. If assumption (F) holds and F is even, then to each n,m ∈ N

such that n ≥ m + 1 and gcd(n,m) = 1 there is an interval I ⊂ R and exactly two
analytic branches β �→ (u±(β), p±(β)) ∈ Xe×R defined on I of odd periodic solutions
of (1.1) with zero Hamiltonian and period T±(β) = 2π/µ±(β). Moreover, upm(β) 
= 0
for β 
= 0,

T±(0) = 2π
√
nm, u±(0) = 0, p±(0) =

n

m
+

m

n
,

and

‖u±(β)(t) − β (m sin(nt) ± n sin(mt)) ‖C4 = O(β2)

as β → 0.
Of course, there is little point in formulating a version of Theorem 3.1 in this

context, since that theorem already tells us that a branch of odd solutions of (1.1)
can be found by shifting time.

It is possible to formulate an extension of the results proven in this section by
considering a smooth one-parameter family of reversible vector fields on R

n which
possesses a trivial branch of equilibrium solutions and a first integral. One could use
Theorems 2.2 and 2.4 to formulate sufficient conditions for the bifurcation of zero-
energy symmetric periodic solutions. However, for brevity we have not done this, and
we restrict our attention to the properties of fourth-order systems.

3.5. Disjointness properties of solution sets. Motivated by Theorems 3.1
and 3.3, we define the following nonempty sets, assuming (F) to be true. Let

Σ ≡ {(u, p, µ) ∈ Xe × R × R : H(u, p, µ) = 0, u 
= 0, µ > 0} ,(3.7)

and let Σ denote the closure of Σ in Xe × R
2. For any pair (n,m) ∈ N × N such that

gcd(n,m) = 1, let C(n,m) be the maximal connected subset of Σ which contains the
point (u, p, µ) = (0, pn,m, µn,m), and define the functional ν : Σ → (2,∞) by

ν(u, p, µ) = ‖u‖C4 + |p| + |µ| + 1

|µ| .(3.8)

Also, let

Σ+ = {(u, p, µ) ∈ Σ : p > 0},(3.9)

Σ+ be the closure of Σ+, and C+(n,m) be the maximal connected subset of C(n,m)∩
Σ+ which contains the point (u, p, µ) = (0, pn,m, µn,m).

We continue with a simple lemma which is used in the subsequent analysis.
Throughout this section, # is used to represent the cardinality of a set, and we
introduce a potential V (u, u′′) by writing (3.2) as

−µ2u′
(
µ2u′′′ +

p

2
u′
)

= V (u, u′′) ≡ −1

2
µ4u′′2 + F (u).

Lemma 3.1. Suppose that n,m ≥ 1 are distinct integers; then #{t ∈ [0, π] :
n cos(nt) ±m cos(mt) = 0} = max(n,m) and #{t ∈ [0, π] : m cos(nt) ± n cos(mt) =
0} = min(n,m).
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The following two theorems provide bifurcation invariants that are invaluable to
the study of the global nature of Σ.

Theorem 3.6. If assumption (F) holds and F (u) > 0 for u 
= 0, then the
mapping

ι1 : Σ → N; (u, p, µ) �→ #{t ∈ [0, π] : u(t) = 0}

is continuous and satisfies ι1(C(n,m)\{(0, pn,m, µn,m)}) ≡ min(n,m).
We postpone the proof of this theorem until after the following preliminary lemma.
Lemma 3.2. Let (uk, pk, µk) ⊂ Σ be a sequence with (uk, pk, µk) → (u, p, µ) ∈ Σ,

and suppose that there is a pair of sequences (t1k), (t
2
k) ⊂ [0, 2π] such that |t1k− t2k| → 0

and u′
k(t

1,2
k ) = 0. Then uk(t

1
k)uk(t

2
k) > 0 for sufficiently large k.

Proof. For definiteness we assume that t1k < t2k and, seeking a contradiction, we
also assume that uk(t

1
k)uk(t

2
k) ≤ 0; we initially also assume that uk(t

1
k) < 0 < uk(t

2
k).

By the mean-value theorem there is a Tk ∈ (t1k, t
2
k) such that u′′

k(Tk) = 0, and taking
the limit k → ∞ gives the existence of a T such that u′(T ) = u′′(T ) = 0. Using (3.2)
yields F (u(T )) = 0 and therefore u(T ) = 0, and since u is not identically zero, it
follows that u′′′(T ) 
= 0.

We now assume without the loss of any generality that ‖uk‖C4 ≤ ‖u‖C4 + 1 ≡ B
and that 1

2µ ≤ µk ≤ 3
2µ. By the smoothness of F and since F (0) = Fu(0) = 0, we

may assume that there is a C such that

|F (w)| ≤ C2

2
|w|2 if |w| ≤ B.

Since u′
k(t

1,2
k ) = 0, we have V (uk, u

′′
k) = − 1

2µ
4
k(u

′′
k)2 + F (uk) = 0 at t1,2k , and

therefore

|u′′
k | ≤

C

µ2
k

|uk| ≤
4C

µ2
|uk| at t1,2k .(3.10)

If we define the function v(t) = V (uk(t), u
′′
k(t)), then the mean-value theorem gives

the existence of a τk ∈ (t1k, t
2
k) with v′(τk) = 0. From (3.10), the orbit of uk is a

smooth curve in the u, u′′-plane that connects (uk, u
′′
k)(t1k) (in the left half-plane) to

(uk, u
′′
k)(t2) (in the right half-plane) with end-points in the region {(u, u′′) : |u′′| ≤

4C
µ2 |u|}. By considering the tangent vector (u′, u′′′) of this planar curve, it follows that

there is a τ̂k ∈ (t1k, t
2
k) such that

|u′′′
k (τ̂k)| ≤

4C

µ2
|u′

k(τ̂k)| .(3.11)

When we take the limit k → ∞, it follows from the estimate

sup
(t1

k
,t2

k
)

|u′
k| ≤ |t2k − t1k| sup

(t1
k
,t2

k
)

|u′′
k |

that u′′′
k (τ̂k) → 0. We therefore find that the limiting solution u satisfies u′′′(T ) = 0,

which is a contradiction.
If the signs of uk at t1,2k are inverted, so that uk(t

2
k) < 0 < uk(t

1
k), then the

argument given above holds unchanged. If exactly one of the two values uk(t
1,2
k ) is

zero for all k, then the argument holds in a similar way: in this case the curve in the
u, u′′-plane connects the origin to the other point. The existence of τ̂k satisfying (3.11)
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follows as before. If both of the values of uk are zero, then the curve is closed, and
again a value of τ̂k can be found satisfying (3.11). This concludes the proof of the
lemma.

Proof of Theorem 3.6. Suppose that (u, p, µ) ∈ Σ and that (uk, pk, µk) ⊂ Σ
satisfies (uk, pk, µk) → (u, p, µ) in C4 × R

2.
We first note that if four or more zeros of uk collide (counted according to algebraic

multiplicity), say 0 ≤ t1k ≤ t2k ≤ t3k ≤ t4k ≤ 2π are all zeros of uk that converge to
T , then from the mean-value theorem we have u(T ) = u′(T ) = u′′(T ) = u′′′(T ) = 0,
contradicting the assumption that u 
= 0.

On the other hand, if two or more zeros collide, then from the mean-value theorem
again there is a T such that u′(T ) = 0 and therefore u′′(T ) = 0 by (3.2). In order to
avoid the same contradiction as above, necessarily u′′′(T ) 
= 0. This implies that the
zero of u at t = T is topologically transverse, which rules out the possibility that two
transverse zeros coalesce.

We therefore are left with two cases: either three simple zeros collide or two zeros
collide of which one is a double zero. In the first case, three simple zeros, there exist
t1,2k such that u′

k(t
1,2
k ) = 0 and t1,2k → T as k → ∞, and since the zeros are transverse,

we can assume that uk has opposite signs at t1k and t2k. The conclusions of Lemma 3.2
show that this situation leads to a contradiction. In the second case we choose t1k to be
the nonsimple zero, and τk ∈ (t1k, t

2
k) to be an intermediate point such that u′(τk) = 0.

Again an application of Lemma 3.2 leads to a contradiction, and therefore the number
of zeros of uk eventually equals that of u. This shows that ι1 is continuous on Σ and
therefore constant on connected components of Σ.

In order to evaluate ι1(u, p, µ) for (u, p, µ) ∈ C(n,m) with u 
= 0 we use the
representation of C(n,m) at bifurcation given in Theorem 3.3. From Lemma 3.1
there results

‖u±(β)(t) − β (m cos(nt) ± n cos(mt)) ‖C4 = O(β2),

and hence #{t ∈ [0, π] : u±(β)(t) = 0} = min(n,m) follows for sufficiently small and
nonzero β, and the theorem is proven.

Theorem 3.7. If assumption (F) holds and F (u) > 0 for u 
= 0, then the
mapping

ι2 : Σ+ → N; (u, p, µ) �→ #{t ∈ [0, π] : u′′(t) = 0}

is continuous.
Proof. Let (u, p, µ) ∈ Σ+, and suppose that there is a T ∈ [0, 2π] such that

u′′(T ) = u′′′(T ) = 0.

The zero-Hamiltonian condition (3.2) then gives

1

2
pµ2u′(T )2 + F (u(T )) = 0,

and the hypotheses on F ensure that u′(T ) = 0 and u(T ) = 0. It follows that u = 0,
which contradicts the definition of Σ+, and this contradiction implies that the zeros
of u′′ are transverse. Consequently, if (un, pn, µn) ⊂ Σ+ is a sequence such that
(un, pn, µn) → (u, p, µ) in Σ+, then u′′

n → u′′ in the C1 topology. Hence u′′
n has

the same number of zeros as u′′ for all sufficiently large n, which shows that ι2 is
continuous as claimed.
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Theorem 3.7 immediately implies that ι2 is constant on connected components of
Σ+, and from this observation we deduce the following.

Corollary 3.1. Suppose that (F) holds and uFu(u) ≥ 0 for all u ∈ R; then
Σ+ = Σ, and as a consequence, C+(n,m) = C(n,m). Moreover,

ι2(C(n,m)\{(0, pn,m, µn,m)}) = max(n,m),

so that C(n,m) ∩ C(n′,m′) is empty unless (n,m) = (n′,m′).
Proof. Multiplying (3.1) by u and integrating gives

pµ2

∫ 2π

0

(u′)2dt =

∫ 2π

0

µ4(u′′)2 + uFu(u)dt ≥
∫ 2π

0

µ4(u′′)2dt ≥ 0.

Hence if there is a solution of (3.1)–(3.2) with p = 0 and µ > 0, it follows that
u′′ ≡ 0, so u(t) = At + B for constants A and B. As u is periodic, A = 0, and as
u must have zero Hamiltonian, F (B) = 0 is also true. The hypotheses ensure that
F (u) = 0 only when u = 0 so that B = 0; hence u(t) ≡ 0 and so Σ = Σ+, from which
C(n,m) = C+(n,m) by definition.

Since ι2 : Σ → N is continuous by Theorem 3.7, the set C defined by C ≡
C(n,m)\{(0, pn,m, µn,m)} is a connected subset of Σ, because the intersection of
C(n,m) with some small ball, C(n,m) ∩ Bδ(0, pn,m, µn,m), is path-connected for all
sufficiently small δ > 0. Hence ι2 is constant on C. In order to evaluate ι2(u, p, µ)
with (u, p, µ) ∈ C we use the representation of C+(n,m) at bifurcation from the trivial
solution described in Theorem 3.3 and then apply Lemma 3.1. From Theorem 3.3 we
have

‖u′′
±(β)(t) + βmn (n cos(nt) ±m cos(mt)) ‖C2 = O(β2),

whence #{t ∈ [0, π] : u′′
±(β)(t) = 0} = max(n,m) follows for sufficiently small and

nonzero β.
Finally, as (F) ensures that F is positive in a punctured neighborhood of zero, the

condition uFu(u) ≥ 0 then ensures that F (u) > 0 if u 
= 0. Applying Theorem 3.6,
we obtain ιj(C(n,m)) = ιj(C(n′,m′)) for j = 1, 2, and the last part of the corollary
follows.

Finally, we have the following theorem, which applies to path-connected subsets
of Σ, although it provides no information regarding the behavior of connected subsets
of Σ which are not path-connected.

Theorem 3.8. Suppose that F (u) > 0 for u 
= 0, and let (us, ps) be a continuous
path of solutions of (1.1), where each us is defined on a sufficiently large subset of R

and the path does not contain the equilibrium solution. If two zeros of u′
s collide, then

multiplicity is preserved in and through the collision.
Proof. We may assume that all collisions occur at s = 0 and t = 0. Note that if

all us are defined on a common interval I ⊂ R, then by standard elliptic estimates the
solution curve is bounded in Ck(I ′) for any k ∈ N and any compact interval I ′ ⊂ I.
Since F is smooth, we can bound F by

|F (w)| ≤ C2w2

2
(3.12)

for, say, |w| ≤ 1.
Note that u′(0) = u′′(0) = 0 at s = 0, and therefore by (1.2), F (u(0)) = 0, which

implies u(0) = 0. The nonconstancy hypothesis on each us implies that u′′′(0) 
= 0.
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Fig. 3.1. The configuration space u, u′′ is partitioned according to the sign of V .

This proves that multiplicity is conserved in the collision. Note that the zero at
(t, s) = (0, 0) is necessarily transverse.

To show that any subsequent perturbation preserves the multiplicity, we use some
ideas from the analysis of the configuration space (u, u′′) from [34, 17]; [29] contains a
simplified description that is sufficient for our purposes. The structure of the configu-
ration space and the set {V = 0} is shown in Figure 3.1. Near the origin in this plane
the set {V = 0} consists of two curves that intersect in the origin. Near the origin
the direction of these curves is bounded from above by 2C, where C is the constant
in (3.12).

At s = 0, we have u(0) = u′(0) = u′′(0), u′′′(0) 
= 0, and therefore the orbit near
t = 0 is represented in the u, u′′-plane by a curve that remains inside the set {V ≤ 0}
and intersects {V = 0}. We can choose appropriate translations of us, and small
t, s > 0, such that we have the following:

1. us(t) is defined for (t, s) ∈ Q ≡ (−t, t) × (−s, s).
2. us depends smoothly on s in C4(−t, t).
3. u′′′

s (t) ≥ 0 on Q (if not, then reverse time).
4. For each s ∈ (−s, s) we have ±u′′

s (±t) < 0, and V (us(±t), u′′
s (±t)) < 0.

This implies that no intersections of the solutions with {V = 0} appear or
disappear through the boundary ±t.

5. u′′′
s /u′

s ≥ 4C on Q, where C is the constant in (3.12).

We write γs ≡ {(us(t), u
′′
s (t)) : −t < t < t}.

We now consider the alternatives for perturbation away from s = 0. First assume
that s can be chosen such that γs∩{V = 0} has only one intersection for 0 < s < s; let
this intersection be at 0 < ts < s. The lower bound on the angle of the curve γs, given
by condition 5 above, implies that γs intersects {V = 0} only at the origin in the u, u′′-
plane. Since u′

0(0) = 0 and u′′′
0 (0) 
= 0, the smooth dependence of us on s implies that

u′′′
s (ts) 
= 0 for s close to zero; therefore the requirement u′(ts)(u

′′′
s (ts)+pu′

s(ts)/2) = 0
forces u′

s(ts) = 0. Combining this with us(ts) = 0 and taking the limit yields that the
zero of u′ at s = 0 is a double zero.

To cover the alternative case we assume that γs ∩ {V = 0} has at least two
intersections for a sequence 0 < sn < s, sn ↓ 0, at the points 0 < tn < τn < t. We
have limn→∞ tn = limn→∞ τn = 0. With an argument similar to the one above, it
follows that u′

sn(tn) = u′
sn(τn) = 0, and therefore the zero at s = 0 is of second order.

At any point where the orbit intersects {V = 0}, either u′ = 0 or u′′′ = −pu′/2.
Since at s = 0 we have u′ = 0 and u′′′ 
= 0, under perturbation of s we have u′ = 0
on the intersection of the orbit with {V = 0}. If we assume that under perturbation
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Fig. 3.2. Two forms of perturbation: (a) if the curve continues to intersect {V = 0} in the
origin, then the tangent remains vertical; (b) a translation, on the other hand, creates new zeros of
u′ and therefore also conserves multiplicity.

there is only one zero of u′ (locally), then the intersection with {V = 0} necessarily
occurs at the origin in the u, u′′-plane. Therefore the zero remains of multiplicity two.

Note that the only possible scenario is the reduction of multiplicity two to mul-
tiplicity zero. Multiplicity zero implies that while u′(0) = 0 at s = 0, this zero of u′

disappears under perturbation. An inspection of the u, u′′-plane (Figure 3.2) shows
that such a perturbation is possible only if u′′′ + pu′/2, which is nonzero at s = 0,
jumps to zero for s 
= 0. This contradicts the assumption of continuous dependence
of the curve of solutions in Ck on the parameter s.

4. Global bifurcations. Let us now briefly state some results from global real-
analytic bifurcation theory for one-parameter problems as developed in [6]. The utility
of this theory with respect to (2.1) is the fact that Lemma 2.1 identifies either p or µ
which can be used as the bifurcation parameter. So, supposing that U ⊂ R ×X is a
given set and that F : R ×X → Y is a real analytic map, define the set

S = {(λ, x) ∈ U : F (λ, x) = 0, dxF (λ, x) ∈ Iso(X,Y )}.

Throughout this section the space R ×X is endowed with the norm |λ| + ‖x‖X , and
a pair (λ, x) ∈ S is said to be a regular solution of F (λ, x) = 0. While the theory
developed in [6] is more powerful than we require, we shall use the following result,
which is the statement of Theorem 7.4(iii) of this reference.

Theorem 4.1. Let ν : R ×X → [0,∞) be a given function, and suppose that
(i) S is nonempty and U ∩S is open in S, where S ≡ {(λ, x) ∈ R×X : F (λ, x) =

0},
(ii) dxF (λ, x) is Fredholm of index zero for all (λ, x) ∈ U ,
(iii) subsets of S on which ν is bounded have compact closure,
(iv) there are δ > 0, λ0 ∈ R, and an analytic function h : Nδ(λ0)\{λ0} → S,

where Nδ(λ0) is a half-neighborhood of λ0, such that limλ→λ0 h(λ) = 0 but
(λ0, 0) 
∈ U ,

(v) if A0 is the maximal path-connected subset of S which contains the graph of
h and if (ξn) ⊂ S ∩ U is any convergent sequence with ξn → ξ 
∈ U and
supn ν(ξn) < ∞, then ξ = (λ0, 0) and ξn ∈ A0 for all n sufficiently large.

Under conditions (i)–(v) the maximal connected component of S ∩U that contains A0

contains a path-connected subset P on which ν is unbounded.
If we recall the definition of the sets Σ and Σ+ in (3.7) and (3.9), respectively,

then the reasoning in Corollary 3.1 ensures that Σ+ = Σ if uFu(u) ≥ 0 for all u ∈ R.
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From this observation we can obtain the following lemma.
Lemma 4.1. Suppose that (F) holds and uFu(u) ≥ 0 for u ∈ R; then ν(u, p, µ)

(defined in (3.8)) is unbounded on a path-connected subset of C(1, 1).
Proof. Let us verify the hypotheses of Theorem 4.1 in turn, where ω = µ− 1, x =

(u, ω) and we write λ in place of p. To keep the notation consistent with Theorem 4.1,
let F ≡ M × ψ(g) (the symbol H was used for this previously) and

U ≡ {(λ, x) = (p, u, ω) ∈ R ×Xe × R : ω > −1, u 
= 0, ι1(u) = ι2(u) = 1}.

We remark that S ⊂ Σ ⊂ S, S ∩ U ⊂ Σ and the space X referred to in Theorem 4.1
is Xe × R and Y is Ye × R.

(i) It follows from Lemma 2.1 that S is nonempty. (The argument assumes that
du,p(M ×ψ(g)) is an isomorphism from Lemma 2.1, for if this is not the case, then we
can repeat the argument of this proof using µ for λ rather than p.) One can see that
the set U ∩ S is open in S as follows. Suppose, seeking a contradiction, that U ∩ S is
not open in S, so there is a (λ0, x0) = (p0, u0, ω0) ∈ S ∩ U and a sequence (λn, xn) =
(pn, un, ωn) ∈ S\U such that (λn, xn) = (pn, un, ωn) → (λ0, x0) = (p0, u0, ω0).

Since u0 
= 0 and un
C4

→ u0, it follows that un 
= 0, and as ω0 > −1, then ωn > −1,
both for all sufficiently large n. Since ι1 and ι2 are continuous functions on Σ and
Σ+, respectively, and Σ = Σ+ by the hypothesis on F , then ι1(un) → ι1(u0) = 1 as
n → ∞; but since ι1 is integer-valued, this means that ι1(un) ≡ 1 for all n sufficiently
large. Similar reasoning applies to ι2. Consequently, (λn, xn) ∈ U for all n sufficiently
large, which is the required contradiction.

(ii) The operator dxF (λ, x) has the form(
duM(u, p, µ) 0

0 0

)
+ K ∈ BL(Xe × R, Ye × R),

where K is a continuous operator that has rank at most two and duM(u, p, µ)[h] =
µ4h′′′′+pµ2h′′+Fu(u)h ∈ BL(Xe, Ye). However, the latter is a compact perturbation
of the operator

E : h �→ µ4hiv + θh, E ∈ BL(Xe, Ye).

Since µ > 0, using a Fourier series argument, one can easily show that there is a θ such
that E is an isomorphism of the given spaces. Consequently dxF (λ, x) is a compact
perturbation of a Fredholm mapping of index zero, and therefore is itself Fredholm of
index zero.

(iii) If (un, pn, ωn) ⊂ S is a sequence such that ωn = µn − 1 > −1 and

ν(un, pn, µn) = ‖un‖C4 + |pn| + |ωn + 1| + 1

|ωn + 1|

is bounded, then there are p0 and ω0 such that ωn → ω0 ≥ −1 and pn → p0 ≥ 0.
Now ω0 
= −1 by the boundedness of ν, and therefore uv

n = −(ωn + 1)−4(pn(ωn +
1)−2u′′′

n + Fu(un)u′
n) is also bounded, whence (un) converges to some u0 ∈ C4 as the

embedding C5 ↪→ C4 is compact, and therefore (pn, un, ωn) converges in R×Xe ×R.
(iv) This part of the theorem follows from Theorem 2.2 and Lemma 2.1, where

the bifurcating branch is represented by an analytic curve of regular solutions.
(v) If a ν-bounded sequence (ξn) = (pn, un, ωn) ⊂ S ∩ U satisfies ξn → ξ =

(p0, u0, ω0) 
∈ U , then the only viable possibility is that u0 = 0, so that (p, µ) =
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(p0, ω0 +1) is a bifurcation point from the trivial solution of (3.1)–(3.2). However, the
only point at which such a bifurcation occurs in the set S is at the point (u, p, µ) =
(0, 2, 1), so that (u, ω) = (0, 0). Hence property (v) is satisfied if A0 is defined to be
the maximal path-connected subset of S which contains the graph of the bifurcating
branch from Theorem 3.1. In this case let us note that λ0 = 2.

This concludes the proof.
Now define the functional on Xe × R

2 by

ν(u, p, µ) = ‖u‖C4 + |p| + 1

|µ| .

In order to obtain a result analogous to the global Hopf bifurcation theorem of [1], we
show that ν can actually become unbounded on C(1, 1) if and only if ν is unbounded
on C(1, 1).

Theorem 4.2. If (F) is satisfied and uFu(u) ≥ 0, then C(1, 1) contains a path-
connected ν-unbounded subset.

Proof. Suppose that ν is unbounded on C(1, 1) but that ν is bounded on this set;
it follows that there is a sequence (un, pn, µn) ∈ C(1, 1) such that ‖un‖C4 + |pn| is
bounded, un 
= 0 for each n, and |µn| → ∞. However, since∫ 2π

0

pµ2(u′′)2dt ≥ 1

2π

∫ 2π

0

pµ2(u′)2 =
1

2π

(∫ 2π

0

µ4(u′′)2 + uFu(u)dt

)

≥ 1

2π

∫ 2π

0

µ4(u′′)2dt

holds for any nontrivial solution in C(1, 1) by the Poincaré inequality, it follows that
µ2
n ≤ 2πpn, which is a contradiction. Therefore, by Lemma 4.1, ν is unbounded on

a path-connected subset of C(1, 1), and the above contradiction implies that ν must
also be unbounded on this set.

This theorem represents a partial global trichotomy for bifurcations of periodic
orbits of (1.1), which says that the solution continuum C(1, 1) either has an unbounded
sequence of orbits in phase-space or is unbounded with respect to either the parameter
(p) or with the period (as occurs in the blue-sky bifurcation [13]). Unfortunately, due to
assumption (v) of Theorem 4.1, it has not proven possible to use the same techniques
to study the global existence properties of the branches C(n,m) for n > 1.

5. Local secondary fold bifurcations. Another advantage of the approach
taken in this paper as opposed to the shooting methods previously used in [35, 36] is
that we can investigate the geometry of each bifurcating continuum by introducing
an unfolding parameter, ε, into (3.1)–(3.2). We will now show that degeneracies
present in (3.1)–(3.2) at ε = 0 can unfold to give secondary fold bifurcations along
the bifurcation branch when ε 
= 0.

To illustrate this we shall consider (1.1) for the particular case given in (1.3).
This has been studied in [19] (see also [12] for an asymptotic analysis of this problem
using multiple scale techniques) as a model for an elastic rock layer on a restiffening
foundation, with corresponding Z2-symmetric ODE

Mε(u, p, µ) ≡ µ4u′′′′ + pµ2u′′ + u− ε(u3 − u5)(5.1)

and even Hamiltonian

Hε(u, p, µ) ≡ µ4u′u′′′ − 1

2
µ4u′′2 +

1

2
pµ2u′2 +

1

2
u2 − ε

(
1

4
u4 − 1

6
u6

)
.(5.2)
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As in the proof of Theorem 2.2, and therefore also in Theorem 3.1, we can obtain
a local representation of the bifurcating branch of the zero-Hamiltonian problem as-
sociated with (5.1) from the bifurcation point p = 2 in the form uε(β) = β(k+ρε(β)),
where ρε(β) = O(β) for fixed ε and is an analytic function of both β and ε near
(β, ε) = (0, 0); here k(t) = cos(t). We now proceed with a calculation to find the Tay-
lor expansion of ρε(β) in order to determine the local geometry of the set of branches
Cε(1, 1). Throughout this section we shall write

rε(β) = βρε(β).

It is important to note that the existence of bifurcating solutions for this problem
close to p = 2, as determined by Theorem 3.1, does not depend upon the value of ε.
Indeed, using the implicit function theorem we simply find that for each ε sufficiently
small and for suitable m,n, there is a bifurcating branch from (p, µ) = (pn,m, µn,m)
and this branch (that is, the local parametric representation of this branch) varies
analytically with ε. This property also holds at ε = 0, where the branches are pairs
of lines. We also note that since Fε(u) is an even function of u for each ε, rε(·) is odd
and pε(·) and µε(·) are even functions, forming a pitchfork bifurcation at p = 2.

We start our analysis by listing the Fréchet derivatives of the operator Mε:
D1. duMε(u, p, µ)[h] = µ4h′′′′ + pµ2h′′ + h− ε(3u2 − 5u4)h,
D2. d2

uMε(u, p, µ)[h1, h2] = −εh1h2(6u− 20u3),
D3. d3

uMε(u, p, µ)[h1, h2, h3] = −εh1h2h3(6 − 60u2),
D4. d4

uMε(u, p, µ)[h1, h2, h3, h4] = 120εvh1h2h3h4,
D5. d5

uMε(u, p, µ)[h1, h2, h3, h4, h5] = 120εh1h2h3h4h5,
where hi ∈ Xe for each i = 1, . . . , 5.

We denote the first derivative of Mε(u, p, µ) evaluated on the trivial solution
branch u = 0 by L ≡ duMε(0, 2, 1); this operator is independent of ε. Suppose further

that P is the projection of Ye onto ran(L) = 〈k〉⊥ along 〈k〉; now define

L(p, µ) ≡ duMε(0, p, µ).

We can solve the projected differential equation P ◦ Nε(βk + r, p, µ) = 0 for
some function r = rε(β, p, µ) near (β, p, µ, ε) = (0, 2, 1; 0) using the implicit function
theorem (we refer to the proof of Theorem 2.2 for details). From the uniqueness
properties of the implicit function theorem if follows that rε(0, p, µ) ≡ 0, and if we
repeatedly differentiate the identity PMε(βk + rε(β, p, µ), p, µ) = 0 with respect to
β, then we shall obtain the Taylor coefficients of rε. This is a tedious exercise, so we
omit the details, but one eventually obtains

R1. P (duMε[k + dβr]) ≡ 0,
R2. P (d2

uMε[k + dβr, k + dβr] + duMε[d
2
βr]) ≡ 0,

R3. P (d3
uMε[k+dβr]

3+2d2
uMε[d

2
βr, k+dβr]+d2

uMε[d
2
βr, k+dβr]+duMε[d

3
βr]) ≡ 0,

R4. P (d4
uMε[k + dβr]

4 + 6d3
uMε[d

2
βr, k + dβr, k + dβr] + 3d2

uMε[d
3
βr, k + dβr] +

3d2
uMε[d

2
βr, d

2
βr] + duMε[d

4
βr] + d2

uMε[k + dβr, d
3
βr]) ≡ 0,

R5. P (d5
uMε[k+dβr]

5 +10d4
uMε[d

2
βr, [k+d3

βr]
3]+10d3

uMε[d
3
βr, k+dβr, k+dβr]+

3d2
uMε[d

4
βr, dβr] + 10d2

uMε[d
3
βr, d

2
βr] + 2d2

uMε[d
4
βr, dβr] + duMε[d

5
βr]) ≡ 0.

Evaluating these expressions at β = 0, that is, u = rε(0, p, µ) = 0, yields the
following information. From R1 we have PL(p, µ)[k + dβr(0, p, µ; ε)] = 0, and be-
cause L(p, µ)k = (µ4 − pµ2 + 1)k ∈ 〈k〉 we have dβrε(0, p, µ) ≡ 0. The expression
d2
βrε(0, p, µ) = 0 then follows from R2. Also, R3 gives

PL(p, µ)d3
βrε(0, p, µ) = 6εP (k3),(5.3)
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so that the third derivative of rε is not zero in general at (u, p, µ; ε) = (0, 2, 1; ε),
but d3

βrε(0, p, µ) is seen to provide an O(ε) contribution to the Taylor expansion of
rε. Using Taylor’s theorem to expand rε(β, p, µ) with respect to β and using the
symmetry properties of rε (it is odd with respect to β), we may write rε(β, p, µ) =
β3

6 R1
ε (p, µ) + O(β5) for some operator R1

ε (p, µ) with range in 〈k〉⊥.
We can determine R1

ε as follows. In (5.3) seek an even Fourier series solution
which is also orthogonal to k in Xe of the form R1

ε (p, µ) =
∑∞

j=2 aj cos(jt), where the

coefficients aj remain to be determined. Since k3(t) = 1
4 (cos(3t) + 3 cos(t)), it follows

that the only nonzero coefficient is a3 and

R1
ε (p, µ) =

3ε

2

cos(3·)
81µ4 − 9pµ2 + 1

.

Using R4 and setting β = 0, we find d4
βrε(0, p, µ) ≡ 0, which of course also follows

from symmetry. We may evaluate d5
βrε(0, p, µ) from R5, which simplifies to give

P (d5
uMε[k]5 + 10d3

uMε[k, k, d
3
βrε] + duMε[d

5
βrε]) ≡ 0.

To find d5
βrε(0, p, µ) we solve the following linear equation for w ∈ Xe ∩ 〈k〉⊥,

µ4w′′′′ + pµ2w′′ + w + P

[
60k2 3ε2

2

cos(3·)
81µ4 − 9pµ2 + 1

+ 120εk5

]
= 0,(5.4)

and then d5
βre(0, p, µ) = w. Since k(t)5 = 1

16 (cos(5t) + 5 cos(3t) + 10 cos(t)), k(t)2 =
1
2 (1 + cos(2t)), and cos(3t) cos(2t) = 1

2 (cos(5t) + cos(t)), we also solve (5.4) using a
Fourier series expansion. Accordingly, taking w(t) =

∑∞
j=2 wj cos(jt), we find that

all the coefficients wj are zero, except when j = 3 or j = 5. In these cases

(81µ4 − 9pµ2 + 1)w3 + 150ε− 45ε2

81µ4 − 9pµ2 + 1
= 0

and

(625µ4 − 25pµ2 + 1)w5 + 30ε− 90ε2

2(81µ4 − 9pµ2 + 1)
= 0.

It follows that rε(β, p, µ) = β3

6 R1
ε (p, µ) + β5

120R
2
ε (p, µ) + β7

720d
7
βrε(0, p, µ) + O(ε2β3),

where

R2
ε (p, µ) = −ε

(
150

4(81µ4 − 9pµ2 + 1)
cos(3·) +

30

4(625µ4 − 25pµ2 + 1)
cos(5·)

)
+O(ε2).

One can show by further differentiating that d6
βrε(0, p, µ) ≡ 0, as we expect from

symmetry, and the equation which determines d7
βrε(0, p, µ) shows this term to be of

order O(ε2). Higher derivatives of rε will also be of order O(ε2).
Now pε(β) and µε(β) are even functions of β, and applying the zero-Hamiltonian

constraint gives

µ4δ((k + ρε)
′′2) = δ

(
(k + ρε)

2 − 1

2
εβ2(k + ρε)

4 +
1

3
εβ4(k + ρε)

6

)
,(5.5)
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using a prime to denote d
dt . Seeking an expansion of the bifurcation branch about

(ε, β) = (0, 0), we write

pε(β) = 2 + ε
(
P1β

2 + P2β
4
)

+ O(ε2)(5.6)

and

µε(β) = 1 + ε
(
ω1β

2 + ω2β
4
)

+ O(ε2),(5.7)

where P1, P2, ω1, and ω2 are real numbers to be determined. The highest power of β
which exists in these expansions at O(ε) is the quartic because of the Taylor series we
have found for rε(β). This is clear from (5.5), which contains terms of order εβ2 and
εβ4 but not εβ6 or higher.

To determine ω1 and ω2 we substitute the expressions for ρε = re
β and µε into (5.5).

Using δ(ρ) =
(

1
256β

2 − 23
4608β

4
)
ε + O(ε2) and δ(ρ′′) =

(
− 9

256β
2 + 215

4608β
4
)
ε + O(ε2),

we then find 1
(81µ4−9pµ2+1) = 1

64 + O(ε) and 1
(625µ4−25pµ2+1) = 1

576 + O(ε). Setting

v = β(k + ρ) ∈ 〈k〉 ⊕ 〈k〉⊥ in (5.1) and projecting the result onto the span of k(t) =
cos(t), we obtain

µ4 − pµ2 + 1 − εβ2 1

π

∫ 2π

0

k((k + ρ)3 − β2(k + ρ)5)dt = 0.(5.8)

We now use this information to equate coefficients at the appropriate orders to find

P1 = −3

4
, P2 =

5

8
, ω1 =

−9

64
, and ω2 =

5

48
.(5.9)

5.1. Conditions for a fold bifurcation. The solution branch Cε(1, 1) deter-
mined above, which branches from p = 2, can be continued from bifurcation in p for
p < 2, or in µ for µ < 1. When considered as a function of p, the branch has a fold
bifurcation at some point, which we label pF , and the same behavior is observed when
the branch is continued in µ. The numerical calculations presented in the next section
also indicate that the solution branch is restricted to the parameter range p > pF and
µ > µF , although we have no proof of this claim.

We can now prove the following theorem.
Theorem 5.1. There is a neighborhood I ⊂ R of zero such that if ε ∈ I, the

zero-Hamiltonian branch Cε(1, 1) associated with (5.1), which bifurcates from p = 2
at µ = 1, has a fold which occurs with respect to p at

pF (ε) = 2 − 9

40
ε + O(ε2).(5.10)

There is also a fold in Cε(1, 1) with respect to µ which occurs at

µF (ε) = 1 − 243

5120
ε + O(ε2).(5.11)

Proof. Using (5.6), (5.7), and (5.9), a fold bifurcation with respect to p occurs
on the Cε(1, 1) branch when the conditions dβpε(β) = 0 and d2

ββpε(β) 
= 0 are met.
Applying the implicit function theorem when ε 
= 0, these conditions are satisfied
when β2 = β2

F ≡ 3/5 + O(ε), giving (5.10).
Similarly, a fold bifurcation with respect to µ occurs on the branch Cε(1, 1) when

dβµε(β) = 0 and d2
ββµε(β) 
= 0, and, provided ε 
= 0, these conditions are satisfied

when β2 = 27/40 + O(ε), giving (5.11).
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Fig. 6.1. Bifurcations of zero-Hamiltonian periodic solutions from p = 2, p = 2 1
2
, and p = 3 1

3
,

with p plotted horizontally against ‖u′‖L∞ vertically; e are even solutions, o are odd solutions, and
b are solutions with broken symmetry.

6. Numerical computations.

6.1. Preliminaries. We now describe a series of numerical calculations to de-
termine solutions of the unscaled differential equation (1.1) with the restiffening foun-
dation whose primary solution branch was studied in the previous section:

u′′′′ + pu′′ + u− ε(u3 − u5) = 0.(6.1)

We augment this with the periodic boundary conditions u(0) = u(T ), u′(0) = u′(T ),
and u′′′(0) = u′′′(T ) and specify the phase by requiring u′(0) = 0. Finally, we impose
the constraint that the Hamiltonian is zero, so that

u′′(0) = ±
√

2(u(0)2/2 − ε(u(0)4/4 − u(0)6/6),(6.2)

and we set ε = 1/2 for the purposes of computation.
In (6.2) the positive root corresponds to the solution which is tangential to the

rescaled eigensolution e−(x) ≡ n cos(x
√

m/n) − m cos(x
√
n/m) at the bifurcation

point (u, p, µ) = (0, pn,m, µn,m), whereas the negative root corresponds to the solution

which is tangential to the eigensolution e+(x) ≡ n cos(x
√

m/n) + m cos(x
√
n/m).

In order to follow the solution branches in p and to detect fold bifurcations, the
collocation-based code AUTO [14] was used.

6.2. Calculation of the solution branches. We now illustrate three cases
regarding the bifurcation of solutions of (6.1): the case (n,m) = (1, 1), for which
there is a unique bifurcating branch; the case (n,m) = (2, 1), with p2,1 = 2 1

2 and
µ2,1 = 1√

2
; and (n,m) = (3, 1), for which p3,1 = 3 1

3 and µ1,3 = 1√
3
. Broadly speaking,

higher values of n and m lead to similar solution branches.
Figure 6.1 shows the bifurcation branches which are proven to exist in Theo-

rems 3.1 and 3.3, with p plotted against ‖u′‖L∞ . The (1, 1) branch has the form
described in Theorem 5.1, and for the p = 2 1

2 and p = 3 1
3 cases one sees a similar

geometry in that the branches initially bifurcate to the left, have fold bifurcations,
and then persist for all values of p to the right of the fold point.

The following comments are in order regarding Figure 6.1 and the three points
p = 2, 2 1

2 , and 31
3 . Due to the Z2-symmetry of (6.1) and of the symmetry properties

of the eigenfunctions when (n,m) = (2, 1), if u(t) is one even solution on the (2, 1)
branch, then so too is −u(t + T/2). Therefore, in order to obtain a second distinct
periodic solution, we apply Theorem 3.5 to give the existence of two branches of odd
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Fig. 6.2. Solutions (u(s) for 0 ≤ s ≤ 1) bifurcating from p = 2, away from the bifurcation
point. In accordance with Theorem 2.2 these are even about zero and odd about one-quarter.

Fig. 6.3. (left) Even solutions (u(s) for 0 ≤ s ≤ 1) bifurcating from p = 2 1
2
, away from the

bifurcation point. (right) Odd solutions bifurcating from p = 2 1
2
.

Fig. 6.4. Solutions (u(s) for 0 ≤ s ≤ 1) bifurcating from p = 3 1
3
, away from the bifurcation point.

solutions. Again, one of these branches of odd solutions can be obtained from the
other by symmetry, and we therefore have plotted one of each even and odd branch
in Figure 6.1. The solutions on this branch are shown in Figure 6.3.

Figures 6.2, 6.3, and 6.4 each show several solutions chosen from Figure 6.1 on
the branches which connect to p = 2, p = 2 1

2 , and p = 3 1
3 , respectively, although the

domain of each solution has been normalized to unity. (The information regarding the
period of the solutions is given in Figure 6.5.) If we examine Figure 6.4, we notice that
each of the solutions is even about zero and odd about one quarter. Consequently, the
two branches of the solutions shown are in fact identical, up to a shift and a reflection,
to the odd solutions which are obtained using Theorem 3.5.

Since F (u) and uFu(u) are both positive for nonzero u when ε = 1/2, the global
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Fig. 6.5. Period of solutions from Figure 6.1 ((1, 1) branch is top-left, (2, 1) top-right, (3, 1)
bottom) with µ = 2π/period plotted horizontally and ‖u′‖L∞ vertically.

bifurcation theorem (Theorem 4.2) applies to the (1, 1) branch, and the nodal proper-
ties are preserved along the resulting global branch in accordance with Theorems 3.6,
3.7, and 3.8. This is illustrated in each of Figures 6.2, 6.3, and 6.4.

Finally, note that the (1, 1) branch in Figure 6.1 appears to have no further
bifurcations, whereas the (2, 1) and (3, 1) branches both have symmetry-breaking
secondary bifurcation points. What is interesting about the resulting branches of
unsymmetric solutions is that they form connections between the (2, 1) and (3, 1)
branches. This indicates that it would be futile to seek generalizations of the results
of section 3.5 to include the space of all periodic zero-Hamiltonian solutions of (1.1)
and that the disjointness properties of the solution branches obtained in this paper
are peculiar to spaces of symmetric solutions.
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Abstract. We propose and analyze a model for sharp fronts in porous media, aiming at an
investigation of the capillary pressure. Using the notion of microlocal patterns we analyze the local
behavior of the system. Depending on the structure of the local patterns we can derive upscaled
equations that characterize the capillary pressure and include the hysteresis effect that is known from
the physical system.
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1. Introduction. The investigation of fluid motion in porous media has at-
tracted much interest in the fields of engineering, physics, and mathematics. A par-
ticular interest concerns the case when two immiscible fluids are contained in the
porous material, e.g., water and oil in rock. Different suggestions were made for av-
eraged equations for this two-fluid motion; most are variants of the very successful
Muskat–Leverett equations. In these equations the motion of the two fluids is coupled
via an equation

pa − pb = pc(s),(1.1)

where pa and pb are the pressure functions in the two fluids, s is the saturation of,
say, fluid a, and pc is the capillary pressure. Our aim is to derive (1.1) for a model
system.

We refer the reader to [2, 5, 7, 9] for other approaches towards the justification
of the Muskat–Leverett equations. Concerning modifications of the system see [3, 4];
note that the result of this work and of [10] suggests another modification. For an
analysis of the upscaled system see [8].

The far aim would be the homogenization of the geometry of Figure 1(a). This
goal seems to be out of reach due to the topological changes of the free boundary dur-
ing its propagation. A simpler geometry is the filter geometry of Figure 1(b). Here
in every single tube the free boundary has essentially only one degree of freedom,
its average height. By the laws for surface tension and contact angles, the geome-
try implies for every tube k a relation between average height and typical pressure,
p = P0(h, k). We will study this simplified model. For a homogenization result for
the filter geometry with the same methods see [11].

We observe the creation of local structures: when the pressure in tube k reaches
its maximal value and the height exceeds the critical point, an instability occurs. The
pressure lowers; therefore, locally, the flow goes toward tube k, the height increases
further, and the process accelerates. Such an event has the temporal and spatial scale
of the tube distance ε and we call it an explosion. We will verify the appearance of
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Fig. 1. (Left) Front in porous media. (Right) Filter geometry.

these explosions and determine their form. The distribution of the explosions can be
captured using the Young measure on patterns introduced by Alberti and Müller in [1].
We will derive a conditional result for the upscaled equations, i.e., the limit ε → 0: if
the patterns of the limit measure all have finite length, then upscaled equations with
a prescribed capillary pressure along the front are satisfied in the limit.

1.1. A model for propagating fronts.

Geometry. The fluid occupies the domain Ω := (−1, 1)×(−1, 0) and is described
by a Darcy law. The front is located along the upper boundary

Γ := (−1, 1) × {0}.

Γ consists of two parts. On Γε
2 ⊂ Γ the fluid is in contact with the matrix; with

γ ∈ (0, 1/2) we write

Γε
2 := ε · (Z + (γ, 1 − γ)) ∩ Γ,

where we used the obvious identification Γ ⊂ R. The small parameter ε describes the
pore size in the medium; we will for simplicity always assume ε = 1/N with N ∈ N.
A fluid-gas interphase is present along

Γε
1 := ε · (Z + (−γ, γ)) ∩ Γ.

The free boundary is modeled with a height function

hε : Γε
1 → R.

Having in mind that the free boundary in the single tube has only one degree of
freedom, we reinterpret hε as the average height and assume that hε is piecewise
constant. We use the space Vε = QεL

2(R) of functions that are constant on the
intervals ε · ((−γ, γ) + k), k ∈ Z. Here Qε is the L2-projection to this subspace; it is
obtained by replacing a function on Γε

1 with its averages on the disjoint intervals of
length 2γε.

Equations. We write the Darcy law in the scaling vε = −ε∇pε. This scaling
is obtained by rescaling time and is appropriate to observe microscopic processes.
Note that we assumed the permeability matrix to be the identity in order to simplify
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notations. We study the problem

∂th
ε(x1, t) = −εQε∂2p

ε(x1, 0, t) ∀(x1, 0) ∈ Γε
1, ∀t,(1.2)

pε(x1, 0, t) = P0

(
x1

ε
,
hε(x1, t)

ε

)
∀(x1, 0) ∈ Γε

1, ∀t,(1.3)

∂2p
ε(x1, 0, t) = 0 ∀(x1, 0) ∈ Γε

2, ∀t,(1.4)

−∆xp
ε = 0 in Ω × (0, T ).(1.5)

Initial values for the height function are given and we always set hε(x1) = 0 for
(x1, 0) ∈ Γε

2. The equations are complemented with the ε-independent boundary
conditions. We impose periodicity on the lateral boundaries Σ± := {(x1, x2) ∈ Ω̄ |
x1 = ±1}. The presented methods apply also in the case of an impermeability con-
dition. As a driving mechanism we choose a prescribed inflow on the lower boundary
Γ0 := (−1, 1) × {−1},

−∂2p
ε(x1,−1, t) = V0(x1) ∀(x1,−1) ∈ Γ0, ∀t.(1.6)

It is also possible to prescribe the pressure at the lower boundary. In either case and
throughout our investigations we demand pε|Γ0(t) > 0 for all t. This assumption is
made to simplify notations; upscaled equations in the general case follow by symmetry.

It is left to specify the material law P0 which prescribes the pressure-height de-
pendence in each cell (we will always assume that P0(·, s) is constant on (k−γ, k+γ)
for every k ∈ Z). A reasonable choice is the following. The material law of the cells
is the same in every cell and a sawtooth function in s = h

ε ,

P0(k, s) ≡ P0(s) = a0 · s mod a0s0.(1.7)

Here s0 represents the volume of the single cell. The maximal pressure that is needed
to advance the free boundary is

pmax = a0 · s0.

A possible modification of this model is to allow the physical parameters a0 =
a0(k) and s0 = s0(k) to depend on the position index k. If (a0, s0) is periodic in k, all
results remain valid. We collect some first observations on the ε-problem. The proofs
are straightforward and can be found in [11].

Remark 1.1. The ε-problem has a unique solution with pε(t) ∈ H1(Ω) for all
t ∈ [0, T ]. The solution sequence pε satisfies uniform bounds in L∞((0, T ), L∞(Ω))
and in L2((0, T ), H1(Ω)).

The uniform bound of pε ∈ L∞(Ω) allows us to choose a subsequence ε → 0 such
that pε has a limit p0 ∈ L∞(Ω) in the sense of the weak-� convergence in L∞,

pε → p0 in L∞
w .

1.2. Main result. Our aim is to find equations for p0 in order to describe the
averaged behavior of the solutions pε. It turns out that, in general, p0 is not uniquely
determined. We will have to study the microscopic behavior of the family pε in order
to find equations for p0.

In the model equations with relation (1.7) the pressure pε has discontinuities.
There are points (x1, 0, t) ∈ εZ × (0, T ) in which the pressure drops from pmax to 0;
we call them explosion points. We have already seen that we can expect a nontrivial
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behavior in an ε-space-time neighborhood of explosion points. Generically, we expect
that the explosion points do not cluster and that the limit patterns of explosions
are finite (see Definition 2.8 for a precise statement). In fact, in [10] we analyze a
stochastic system and find that explosion points cluster only with probability 0.

If all realized explosion patterns are finite, then the limit pressure p0 satisfies the
following upscaled system in the distributional sense (see Theorem 4.6 for details):

∆p0 = 0 in Ω,(1.8)

−∂2p
0 = V0 on Γ0,(1.9)

and p0 is periodic across Σ±. On the boundary Γ it satisfies

p0 ≤ pmax,(1.10)

∂t(Θ ◦ p0) ≤ −∂2p
0,(1.11)

∂t(Θ ◦ p0) = −∂2p
0 on {(x1, 0) ∈ Γ | p0(x1, 0) < pmax}.(1.12)

The function Θ is defined in the stochastic case as an expected value. Since we
consider the deterministic equation (1.7), its definition reduces to

Θ′(ρ) =

〈
2γ

P ′
0(k, sk(ρ))

〉
=

2γ

a0
,(1.13)

where sk(ρ) is defined by P0(k, sk(ρ)) = ρ. The microlocal patterns of the functions pε

can be described.
Remarks on Theorem 4.6. (1) An assumption on the distribution of explosions is

indeed necessary. Consider a family of solutions to the ε-problems that is ε-periodic
in x1-direction. In this case, the limiting pressure p0 is constant along Γ, but has
jumps from pmax to 0 at discrete times. The function p0 does not solve the upscaled
equation (1.12).

(2) We study a sawtooth function as a material law in (1.7). This law is not
satisfactory for all applications. Unfortunately, in our proofs we need a condition
on positivity of P ′

0 away from discontinuities, and this restricts our choices for P0.
We conjecture that the overall picture about solution sequences and the upscaled
equations remain valid for continuous functions P0.

(3) One can formally relate the upscaled equation (1.12) to well-known effective
conductivity formulae. Differentiating (1.3) with respect to time and inserting (1.3),
we find that ∂tp

ε essentially equals −a0∂2p
ε. Dividing (1.12) by Θ′, we find that ∂tp

0

essentially equals −ā∂2p
ε, where ā is the harmonic mean of the a0.

2. Microlocal patterns and possible patterns for fronts. We study so-
lutions (pε, hε) of (1.2)–(1.6) and are interested in the averaged behavior as it is
expressed by the weak limit p0. The goal is to derive averaged equations that char-
acterize p0.

We already observed that the equations have a nontrivial behavior on an ε-scale
in time and in space. In this scaling we expect to see the filling procedure of the single
pore: fluid enters the cell ε(k− γ, k + γ) until the pressure reaches its maximal value
pmax. Now the pressure is set to zero and a pressure gradient of order 1/ε drives a
refill procedure in which mass is transported from neighboring cells to cell k. It takes
a time span of order ε and a spatial area with diameter of order ε to essentially reach
again the pressure pmax.
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We want to find descriptions of this microscopic process. An adequate tool is that
of microlocal patterns, introduced by Alberti and Müller in [1]. We outline aspects of
this tool in this section.

Notation for measures. Let E be a locally compact Hausdorff space. We denote
by M(E) the space of all finite real Borel measures on E. Let C(E) be the space of
continuous functions on E with compact support. Then M(E) can be identified with
the dual of C(E). Therefore bounded sequences in M(E) are precompact.

2.1. Construction of microlocal patterns. Let uε : S → R be a sequence
of functions on a compact set S ⊂ R

m. We assume that for C ∈ R there holds
‖uε‖L∞ ≤ C for all ε > 0. Our aim is now to study the behavior of uε on the length
scale ε. We therefore consider the blowup of uε, just as in asymptotic expansions or in
the theory of two-scale convergence. Together with uε we consider the local pattern
around s ∈ S, that is, the function

R
m � t �→ Rε

su
ε(t) := uε(s + εt)

(we assume that we extended trivially the original function uε outside S). The pattern
Rε

su
ε is bounded in L∞(Rm) by C. As the space of patterns we use the closed ball

K := B̄C(0) ⊂ L∞
w (Rm),

where L∞
w indicates that we use the weak-� topology on K. This makes K compact.

Since the pattern depends in an oscillatory fashion on s, one proceeds as in the
construction of Young measures and considers instead of the values Rε

su
ε ∈ K the

measure νεs , the Dirac measure on K in the point Rε
su

ε.

Definition 2.1 (measure of microlocal patterns). Given a sequence uε ∈ B̄C(0)
⊂ L∞(S) and the corresponding Dirac measures νεs , we define the measure νε on
S ×K by

S ×K ⊃ S̄ × K̄ �→ νε(S̄, K̄) :=

∫
S̄

νεs(K̄) deε(s)

for all Borel sets S̄ ⊂ S and K̄ ⊂ K. The energy density eε(s) still has to be specified;
we always assume

∫
S
deε(s) ≤ C ′. Then we can choose a subsequence ε → 0 such that

for a finite limit measure ν there holds in the sense of weak-� convergence

ν = lim
ε→0

νε ∈ M(S ×K).

We call ν the measure of microlocal patterns of the (sub)sequence.

We will also use the following two projections of ν. The projection µ of ν to S,
which coincides with the energy density of ν,

S ⊃ S̄ �→ µ(S̄) := ν(S̄ ×K) = lim
ε→0

∫
S̄

deε(s),

and the projection νK of ν to K,

K̄ �→ νK(K̄) := ν(S × K̄).

The elements in the support of νK are the realized patterns.
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Possible micropatterns. Our aim is to characterize the realized patterns of
solution sequences in our model problem. The method is to successively exclude
possibilities. A first concept is that of possible micropatterns. In the subsequent
definition we assume that the sequence uε is a sequence of solutions to a given family
of equations.

Definition 2.2 (possible micropattern). For a point s ∈ S we say that Us :
R

m → R is a possible micropattern in s if there exist a sequence ε → 0, boundary and
initial conditions with a solution sequence uε, and a sequence of points sε → s, such
that

Uε
sε := Rε

sεu
ε → Us in K.

U is a possible micropattern, if it is a possible micropattern in some point s.

The concept of possible micropatterns does not allow us to study the distribution
of patterns, but it gives a necessary condition for a pattern to be contained in the
support of νK . In fact, an elementary proof yields the following result.

Remark 2.3. Every measure on patterns νK of a solution sequence uε has its
support contained in the set of possible micropatterns.

The fundamental property of possible patterns is that they satisfy the rescaled
equations (note that we loose boundary and initial conditions). This fact will lead to
a characterization of possible micropatterns.

2.2. Possible patterns for the motion of fronts. As described, we expect
ε-scale phenomena in the neighborhood of points (x, t) where pε has a jump, i.e., in
explosion points. In order to study the local behavior, we define for a given (x, t) =
(x1, 0, t) the blowup of solutions

P ε(y, τ) = P ε
(x,t)(y, τ) := (Rε

(x,t)p
ε)(y, τ) = pε(x + εy, t + ετ),

Hε(y1, τ) = Hε
(x1,t)

(y1, τ) :=
1

ε
(Rε

(x1,t)
hε)(y1, τ)

=
1

ε
hε(x1 + εy1, t + ετ).

For explosion points (x, t) we expect nontrivial limits of (P ε, Hε) and our next aim is
to determine the possible limits. We will call such limits explosion patterns.

The equations for (P ε, Hε) are identical to (1.2)–(1.5), except that the factors ε
are replaced by the factor 1 in (1.2) and (1.3). We have to substitute the boundary
condition (1.6) by a condition on the asymptotic behavior at infinity.

The solutions P ε are physically meaningful on space-time domains of size 1
ε × 1

ε .
After the trivial extension of the functions, their domains are

Ω̄ := R × R−, Γ̄ := R × {0} ≡ R,

Γ̄1 := Z + (−γ, γ), Γ̄2 := Z + (γ, 1 − γ).

In order to define the microlocal patterns we consider the functions pε|Γ : [−1, 1] ×
[0, T ] → R and set S := [−1, 1]×[0, T ]. A limit measure is found as ν ∈ M(S×K) with
K = B̄C(0) ⊂ L∞

w (R2). Note that pε|Γ determines uniquely its harmonic extension pε

and the height function hε up to multiples of s0. With this identification we can
consider limit patterns also as functions P : Ω̄ × R → R and H : Γ̄ × R → [0, s0)per.
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We use the projection Q1 defined as

(Q1f)(y) =

⎧⎪⎨
⎪⎩

1

2γ

∫ k+γ

k−γ

f(ζ) dζ for y ∈ (k − γ, k + γ), k ∈ Z,

f(y) for y ∈ (k + γ, k + 1 − γ), k ∈ Z.

Using Q1 we can write the rescaled equations as (2.1)–(2.4). The next lemma states
that every possible pattern is in fact a solution of these rescaled equations.

Lemma 2.4. Every possible micropattern (P,H) in a point (x1, 0, t) satisfies the
rescaled equations

∂τH(y1, τ) = −Q1∂2P (y1, 0, τ) ∀(y1, 0) ∈ Γ̄1,(2.1)

P (y1, 0, τ) ∈ P̂0(y1, Q1H(y1, τ)) ∀(y1, 0) ∈ Γ̄1,(2.2)

∂2P (y1, 0, τ) = 0 ∀(y1, 0) ∈ Γ̄2,(2.3)

−∆yP (·, τ) = 0 in Ω̄,(2.4)

for almost every τ ∈ R; P̂0 is the multivalued function

P̂0(k, s) =

{
P0(k, s) for s /∈ s0Z,

{0, pmax(k)} for s ∈ s0Z.

Additionally there holds

‖P‖L∞(Ω̄) ≤ C ∀t ∈ R.(2.5)

Remarks. (a) Inequality (2.5) must be interpreted as a boundary condition.
(b) The well-posedness of the system can be shown by a limiting procedure with
the help of Remark 1.1. (c) Remark A.1 suggests that the decay for t → +∞ is
like t−1 (see also the appendix of [10]).

Proof. Let (P,H) be a possible micropattern. By definition there exist a solution
sequence (pε, hε) and points sε = (xε, tε) ∈ Γ× [0, T ], such that the rescaled solutions
(P ε

sε , H
ε
sε) converge in L∞

w to (P,H). For H �= 0 one verifies ε−1dist(xε, εZ) → 0; it is
therefore no loss of generality to assume xε ∈ εZ. The sequence of rescaled solutions
satisfies on increasing domains the rescaled equations (2.1)–(2.4).

We use the following weak form of the rescaled equations:∫
R

∫
Ω̄

∆yΦ · P ε
sε = −

∫
R

∫
Γ̄1

Hε
sε · ∂τΦ +

∫
R

∫
Γ̄

P ε
sε(y1, 0, τ) · ∂2Φ,(2.6) ∫

R

Q1P
ε
sε(k, 0, τ) · ϕ(τ) dτ =

∫
R

P0(k,Q1H
ε
sε(k, τ)) · ϕ(τ) dτ,(2.7)

Hε
sε −Q1H

ε
sε = 0, P ε

sε(·, 0, ·) −Q1P
ε
sε(·, 0, ·) = 0,(2.8)

satisfied for all Φ ∈ C2
0 (Ω̄ ∪ Γ̄ × R) with ∂2Φ = 0 on Γ̄2 and Q1Φ|Γ̄ = Φ|Γ̄, and all

ϕ ∈ C0
0 (R), k ∈ Z. The equations are satisfied for all ε < ε0, a threshold that depends

on the support of the test functions and on k.
We can take the limit ε → 0 along the subsequence in the weak equations. We

find that (P,H) again solves the weak equations (2.6) and (2.8). In particular, P is
harmonic, satisfies a homogeneous Neumann condition on Γ̄2, and is piecewise con-
stant on Γ̄1 for a.e. τ . Together with the L∞-estimate this implies spatial continuity
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of P , and an L∞-bound for Q1∂τH. Therefore (2.1), (2.3), and (2.4) are satisfied in
the strong sense.

It remains to take the limit in the nonlinear material law in (2.7). We exploit the
fact that Q1H

ε converges uniformly on compact sets to Q1H, and conclude (2.2).
Remark 2.5. If the maximal pressure pmax = pmax(k) is independent of k, then

every solution of (2.1)–(2.5) satisfies

P (x, t) ≤ pmax ∀x ∈ Ω̄, t ∈ R.

Proof. By the comparison principle for harmonic functions, P (·, t) is bounded on
the finite domain (−M,M) × (−M, 0) by the periodic harmonic functions qM with

qM = pmax on Γ̄1, ∂2qM = 0 on Γ̄2,

qM = C on (−M,M) × {−M}.

For M → ∞ the sequence of functions qM tends to pmax on every bounded set. This
implies the result.

Proposition 2.6. We consider a solution (P,H) of system (2.1)–(2.5). On the
material law we assume ∂sP0 > 0 on (0, s0). If pmax is independent of k, then (P,H)
can only be

(a) a constant solution, P (·) ≡ p∗ ∈ [0, pmax] in Ω̄ × R,
(b) a solution with simultaneous explosions at an explosion time T0 and with an

outlet pattern α ∈ {0, 1}Z,

P (·, T0 + τ) = pmax ∀τ < 0,

P (·, T0 + τ) = Pα(·, τ) ∀τ > 0.

Here Pα is the explosion solution to the opening pattern α: Pα is the unique solution
of (2.1)–(2.5) to the initial values

Pα(y1, 0, t = 0) =

{
pmax for y1 ∈ (k − γ, k + γ), α(k) = 1,

0 for y1 ∈ (k − γ, k + γ), α(k) = 0.

Proof. Let (P,H) be given. We claim that if the solution satisfies P (·, T0) �≡ pmax

for some T0 ∈ R, then no explosion can happen at a later time.
We compare P in the neighborhood of a single cell, say

(y1, y2) ∈ R := (−1/2, 1/2) × (−1, 0),

with the solution q of

∆yq(t) = 0 in R, ∀t ∈ (T0,∞),

q(·, 0, t) = q0(t) on (−γ, γ), ∀t ∈ (T0,∞),

∂2q = 0 on (−1/2,−γ) ∪ (γ, 1/2),

q = pmax on ∂R\Γ̄,

∂tq0 = −cq
1

2γ

∫ γ

−γ

∂2q.

The initial value for q0 and the constant cq remain to be chosen.
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We claim that for q0(t = 0) < pmax the function q0 remains below pmax for all
times. Since the minimum of q is on Γ1, there holds −∂2q ≥ 0 on Γ1. For some
positive c̄ we have the estimate

1

2γ

∫ γ

−γ

(−∂2q) ≤ c̄(pmax − q0).

This holds since the left-hand side is finite for fixed q0 and a linear function of the
difference pmax − q0. The estimate implies that q0 grows with a speed at most pro-
portional to pmax − q0. This implies that a convergence of q0 to pmax has at most
exponential rate.

We now use q as a comparison function for P . In a cell with P (y1, 0, T0) < pmax

we choose cq > sups ∂sP0 and pmax > q0(t = T0) > P (y1, 0, T0). Then P ≤ q holds
for t = T0 on R. If P = q for the first time at some point in R, coincidence holds also
on a point of the boundary Γ1, and we have P = q along Γ1, since both functions are
constant. Then −∂2q ≥ −∂2P along Γ1 and we find

∂tP = ∂sP0 · ∂tH = −∂sP0 ·
1

2γ

∫ γ

−γ

∂2P

≤ −∂sP0 ·
1

2γ

∫ γ

−γ

∂2q < −cq
1

2γ

∫ γ

−γ

∂2q = ∂tq0.

Therefore P ≤ q holds for all times and also P does not reach the value pmax in finite
time. In cells with P (y1, t) = pmax the Hopf lemma implies ∂tP (y1, 0, t) < 0, and we
can apply the above argument for |t− T0| small.

We claim that solutions without explosions are constants. In (A.4) of Propo-
sition A.3, we demonstrate that a solution without explosions on the time interval
(0,∞) converges to a constant function for t → ∞, independent of the initial val-
ues. Since the solution (P,H) is defined for all negative times we conclude that P (t)
is constant for all t. The uniqueness of the solution Pα follows from the linearized
stability.

By the above proposition we know that there exist only a few possible micropat-
terns. Next we want to use this as information about microlocal patterns. To this
end we have to choose an energy density.

Definition 2.7. The measure of microlocal patterns ν of the sequence pε is
defined via the energy density eε, which we construct as a sum of Dirac measures.
We define the finite set of explosion points by

Mε := {s = (x1, 0, t) ∈ Γ × (0, T ) | pε(s) = 0, x1 ∈ εZ},

and set

eε(S̄) := ε
∑

(x1,0,t)∈Mε∩S̄

s0(x1ε
−1).

The set Mε is finite, since ∂tp
ε > 0 holds in points of Mε. The sequence of

measures eε is bounded. Since Hε never passes a value in s0Z in the negative direction,
every explosion corresponds to a loss ε2γs0 of fluid mass. Therefore in the space-time
volume S̄ = Γ × (t1, t2) there holds by conservation of mass

|Mε| ≤ 2

ε
+

‖V0‖L1 |t2 − t1|
2γε inf{s0(·)}

,
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which implies

eε(S̄) ≤
(

2 +
‖V0‖L1 |t2 − t1|
2γ inf{s0(·)}

)
sup{s0(·)}.

Remark. The disadvantage of the above energy density eε is that it can be de-
fined only in the case that explosions can be localized to a point; for a continuous
P0-function we cannot define an analogue of it.

In the continuous case one could introduce an energy density by setting

ẽε(x, t) :=
1

2γ
(vε2(x, 0, t))+.

The two energy densities have many similarities; note the disadvantage of ẽε that it
can become positive also because of oscillations without explosions.

We saw that the qualitative behavior of the limit p0 is different in the periodic
situation and in the (expected) physical situation of explosions that are far from each
other. The limit measure ν allows us to distinguish the two situations in terms of the
explosion patterns. In the periodic case, the patterns will also be periodic; i.e., ν is
supported on periodic and therefore infinite patterns. With the subsequent definition
we distinguish the two cases.

Definition 2.8. We say that ν is of finite type, if for some constant Cf ∈ N

there holds the following: every observable explosion pattern has at most Cf explosion
points, i.e.,

Pα ∈ supp(νK) ⇒ |α| := |{k ∈ Z : α(k) = 1}| ≤ Cf .

Consider the energy density eε and assume that ν is of finite type. Then

supp(νK) ⊂
⋃
α∈A

{Pα} with A ⊂ {α ∈ {0, 1}Z : |α| ≤ Cf}.

The limit measure ν can then be written as

ν(S̄ × K̄) =
∑
α∈A

∫
S̄

ηα(K̄)dµα(s),(2.9)

where µα are measures on Γ×[0, T ] and ηα is the Dirac measure on K on the explosion
solution Pα.

We exploited that the constant pressure solutions do not contribute to the energy
and in (2.9) that A is countable.

3. Limit measures of finite type and regions without explosions. We
continue our study of a sequence of solutions (pε, hε) and their L∞

w -limit p0. In order
to derive and even to formulate upscaled equations for p0 we need some regularity
result for pε and p0. In the case that the limit measure ν is of finite type, a fundamental
regularity statement holds: loosely speaking, spatial averages of the pressure p0 cannot
have jumps in time. This, in turn, helps us to find regions without explosions: points
with p0 < pmax have neighborhoods in which the ε-system is without explosions for
all small ε. Note that the pointwise statement p0 < pmax has to be interpreted in
an appropriate way for the L∞-function p0. Regularity properties of pε in regions
without explosions will be exploited in section 4.



FRONTS IN POROUS MEDIA AND THE CAPILLARY PRESSURE 1499

We start with a crucial observation: if the average pressure of the ε-system is
below pmax in a small area, then there cannot be explosions.

Lemma 3.1 (quantitative Hopf lemma/near field effect). Let q : [−1, 1]×[−1, 0] →
R be a harmonic function, periodic in the first variable, and continuous up to the
boundary, with 0 ≤ q ≤ pmax. Let x ∈ [−1, 1] × {0} ≡ [−1, 1]per be a point with
q(x) = pmax and

1

2δ

∫ x+δ

x−δ

q(ξ) dξ = ρ < pmax.

Then the Neumann derivative in x has a lower bound

∂2q(x) ≥ cH(δ, ρ)

with cH(δ, ρ) → +∞ for fixed ρ < pmax and δ → 0.
Corollary 3.2. There exists δ0 > 0 depending only on ‖V0‖L∞ , pmax, and ρ,

such that for small ε every solution pε of (1.2)–(1.6) with

pεδ(x, t) :=
1

2δ

∫ x+δ

x−δ

pε(ξ, t) dξ ≤ ρ ∀t ∈ (t1, t2)

satisfies the following for δ < δ0: pε has no explosion in (x− δ, x + δ) × (t1, t2).
Proof. In order to have an explosion in (x, t) we must have limτ↗t p

ε(x, τ) = pmax

and limτ↗t(−∂2p
ε(x, t)) ≥ 0. If we assume that pε ≤ pmax holds in the whole domain,

Lemma 3.1 yields that −∂2p
ε is negative for small δ, and no explosion is possible. In

the general case we decompose pε into one part pA with the boundary values pε on Γε
1

and ∂2pA = 0 on Γ0, and a remainder pB with vanishing values on Γε
1 and −∂2pB = V0

on Γ0, both with ∂2pA,B = 0 on Γε
2. Then |∂2pB | is uniformly bounded and pA is

bounded by pmax, so Lemma 3.1 applies to pA. We conclude that ∂2pA(x, t) is large
and that no explosion is possible.

Proof of Lemma 3.1. We can assume (x, t) = (0, 0). The lemma follows from
an argument that is related to rearrangement. For given ρ and δ, the Neumann
derivative is minimal if q = pmax in a neighborhood (−s, s) of x and q = 0 in the

region s < |x| < δ, where s is chosen such that 2spmax =
∫ δ

−δ
q = 2δρ. This can be seen

as follows. The quantity ∂2q(0, 0) is decreased if we modify the Dirichlet boundary
values on (−δ, δ) by adding a nonnegative multiple of the function v : (−1, 1) → R,

v(x) :=

⎧⎪⎨
⎪⎩

+1 for |x| ∈ (x1, x1 + r),

−1 for |x| ∈ (x2, x2 + r),

0 else

for 0 < x1 < x1 + r < x2 or 0 > x1 > x1 − r > x2. The harmonic extension v̄ of v
satisfies ∂2v̄(0) ≤ 0, since v̄ is nonnegative in a neighborhood of 0 by the monotonicity
of the Green’s function.

The above modifications allow a redistribution of the boundary values of q. It
allows us to compare ∂2q(0) with ∂2qδ(0), where qδ is the solution of the periodic
problem

∆q = 0 in (−1, 1) × (−1, 0),

q = w on (−1, 1) × {0},
q = pmax on (−1, 1) × {−1},
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with the boundary values

w(x) :=

{
0 for s < |x| < δ,

pmax else.

The number s := σδ := ρ
pmax

δ is determined by the integral condition
∫ δ

−δ
w = 2δρ.

From the Hopf lemma we know that cH(δ, ρ) := ∂2qδ(0) > 0.
In order to show cH(δ, ρ) → +∞ for δ → 0 it remains to consider the family of

harmonic functions qδ for s = σδ and σ fixed. On the domain R × R− we find the
general solution qδ by rescaling q1: qδ(x) = q1(x/δ). We calculate

∂2qδ(0) =
1

δ
∂2q1(0) → ∞

for δ → 0. On the bounded domain the asymptotic behavior remains unchanged and
we find the result.

Lemma 3.3. Assume that the measure ν is of finite type. Let 0 < c < 1 be an ar-
bitrary number that we interpret as an explosion density. Then there is no subsequence
εk → 0 such that in the εk-systems there happen c

εk
explosions simultaneously.

Proof. We present here the proof in the case that νK is supported only on the pat-
tern P0 of the single explosion. The proof in the general case requires only additional
notational effort.

Step 1. We consider a sequence βN ∈ {0, 1}{−N,...,N} (patterns) with |βN | :=∣∣{x ∈ {−N, . . . , N} | βN (x) = 1}
∣∣ ≥ c · 2N .

Claim. There exist a number ρ > 0, a distance d ∈ N, and a subsequence N → ∞
such that all βN realize the distance d at least with density ρ, i.e.,∣∣{x ∈ {−N, . . . , N} | βN (x) = 1, βN (x + d) = 1}

∣∣ ≥ ρ · 2N ∀N.

We argue by contradiction and assume that the claim is not true. With d0 ap-
plications we find that for every ρ > 0 and d0 ∈ N, there exists N0 > 0 such that for
all N ≥ N0 the distances d = 1, 2, . . . , d0 are realized with density less than ρ. We
calculate for large N the density of βN . On d0ρ · 2N points we have no restriction,
on the remaining places we have at most 2N/(d0 + 1) values 1. We calculate for the
density

c ≤ |βN |
2N

≤ d0ρ · 2N + 2N/(d0 + 1)

2N
= d0ρ +

1

d0 + 1
.

Since ρ and d0 were arbitrary we arrive at a contradiction.
Step 2. We assume that for a subsequence εk → 0 there are c

εk
simultaneous

explosions. We claim that this contradicts the fact that no pattern of length 2 is
contained in the limit measure ν.

We set N = 1/ε and denote by tε the time instance of the simultaneous explosions.
For x ∈ Z we set βN (x) = 1 if at position (εx, tε) the ε-problem has an explosion,
i.e., pε(εx, tε) = 0, βN (x) = 0 otherwise. By the above claim, for some ρ > 0, d ∈ N,
and a subsequence N → ∞, βN realizes the distance d of values 1 at least ρN times,
say at positions {xi}. Let K̄ be a neighborhood of the single explosion P0 in K, such
that all patterns k ∈ K with an explosion in x1 = d are not contained in K̄. Then
there are ρ/ε points si = (εxi, t

ε) at which Rε
sp

ε is not contained in K̄. Therefore

νε(S × K̄) ≤ νε(S ×K) − ρ inf{s0}.
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On the other hand, by assumption, we have

νε → µ⊗ δP0 ∈ M(S ×K),

which implies

µ(S) = lim
ε→0

νε(S × K̄) ≤ lim
ε→0

νε(S ×K) − ρ inf{s0}

= µ(S) − ρ inf{s0},

a contradiction.
Note that the result of the above lemma could be improved: not only can we not

have O(N) explosions at the same time instance, but it is also impossible to realize
O(N) explosions in a time span of length O(ε). Even if in Proposition 2.6 we showed
that in the limit patterns explosions happen simultaneously, this need not be true for
the ε-problem. Nevertheless, the statement of Lemma 3.3 will be sufficient for our
purposes.

We next prove an auxiliary result on the maximal gain of fluid-mass in a test
volume in a short time.

Lemma 3.4. In every domain W = Bδ(x) × (−1, 0), the maximal total inward
flow through the lateral boundaries Σ± = {x ± δ} × (−1, 0) can be estimated with
arbitrary δ0 > δ by∫ t2

t1

∫
Σ

∂np
ε ≤ 2pmax

t2 − t1
δ0 − δ

+ 4γ(δ0 − δ) sup{s0} + 2(t2 − t1)(δ0 − δ)‖V0‖∞.

(3.1)

In particular, the bound can be chosen arbitrarily small for t2 − t1 small.
Proof. We do the calculations for the right boundary Σx+δ := {x + δ} × (−1, 0).

The average total flow to the left between x + δ and x + δ0 is

∫ t2

t1

1

δ0 − δ

∫ x+δ0

x+δ

∫ 0

−1

∂1p
ε ≤ 1

δ0 − δ

∫ t2

t1

(∫
Σx+δ0

pε −
∫

Σx+δ

pε

)

≤ pmax
t2 − t1
δ0 − δ

.

Then there is an intermediate value z ∈ (x+ δ, x+ δ0) where the average total flow is
realized, ∫

Σz

∫ t2

t1

∂1p
ε ≤ pmax

t2 − t1
δ0 − δ

.

By incompressibility, the maximal total flow through Σx+δ is the sum of two contri-
butions: (1) the flow through Σz in the time interval (t1, t2), (2) the total inward flow
through the upper boundary (x+δ, z)×{0} and the lower boundary (x+δ, z)×{−1}.
The total volume that can be released on Γ between x + δ and z is bounded by
2γ(δ0 − δ) · sup{s0}. Formula (3.1) follows, with the factor 2 we include the left
boundary.

If the limit measure ν is of finite type we expect that the typical distance between
explosions is large compared to ε. The following proposition verifies and sharpens
this statement. Let us imagine that at temporal distances O(

√
ε) there happen 1/

√
ε
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explosions. Then the spatio-temporal distance between two explosions is always large
compared to ε. Nevertheless, 1/ε explosions happen in a given spatio-temporal region.
With such a construction it is also possible to have 1/ε explosions in an arbitrarily
short time span ∆t. The next proposition excludes this possibility for our evolution
equations.

Proposition 3.5. If the measure ν is of finite type, then the marginal µ(Γ, ·) ∈
M([0, T ]) of the measure ν, µ(Γ, (t1, t2)) := ν(Γ × (t1, t2) ×K), contains no atoms,

µ(Γ × {t}) = 0 ∀t ∈ (0, T ].(3.2)

Proof. We assume that the limit measure µ(Γ, ·) contains an atom. Then for
some t̄,

e := lim inf
∆t→0

µ(Γ × (t̄− ∆t, t̄ + ∆t)) > 0.(3.3)

The interpretation is that along the subsequence ε → 0 we find O(e/ε) explosions in
the time span (t̄− ∆t, t̄ + ∆t).

To arrive at a contradiction we first choose ∆ρ small compared to e. The smallness
will be specified towards the end of our calculations. We now fix δ > 0. The required
smallness for δ depends only on the numbers e and ∆ρ, and on the boundary data V0.
Note that choosing δ > 0 small we find, by Corollary 3.2,

pεδ(x, t) < pmax − ∆ρ ∀t ∈ (t1, t2)

⇒ no explosions happen in Bδ(x) × (t1, t2).
(3.4)

Given δ, we find a position x ∈ [−1, 1] such that

lim sup
∆t→0

µ(Bδ(x) × (t̄− ∆t, t̄ + ∆t)) ≥ e · δ.

Using periodicity of the domain we can assume x ∈ (−1 + δ, 1 − δ). We now fix ∆t
small, such that µ(Bδ(x) × (t̄ − ∆t, t̄ + ∆t)) ≥ eδ

2 , and such that additionally for a
given constant cg > 0 (depending on δ) there holds

eδ

16
≥ ‖V0‖∞ · 4δ|∆t| + cg

√
∆t.

We next choose ε small enough to have

µε(Bδ(x) × (t̄− ∆t, t̄ + ∆t)) ≥ 1

2
µ(Bδ(x) × (t̄− ∆t, t̄ + ∆t)),

and that there are no c/ε explosions at the same time instance (a small c is chosen in
dependence of e and δ). The latter property is insured for small ε by Lemma 3.3. For
this ε, we set t1 ∈ [t̄ − ∆t, t̄ + ∆t] to be the moment of the first explosion in Bδ(x),
and set t2 = t̄+∆t. We introduce the time instance tε at which half of the explosions
in Bδ(x) × [t1, t2] have happened. At this point Lemma 3.3 guarantees that some
explosions must happen after this time instance.

We can estimate the number of explosions of the ε-system in the test volume by

µε(Bδ(x) × (t1, t
ε]) ≥ 1

2
µε(Bδ(x) × (t̄− ∆t, t̄ + ∆t))

≥ 1

4
µ(Bδ(x) × (t̄− ∆t, t̄ + ∆t)) ≥ eδ

8
.
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This means that in the ε-system at least (eδ)/(8ε sup{s0}) explosions happen in
Bδ(x) × [t1, t

ε]. We will show that this implies that the average pressure is below
pmax in tε and will conclude with Corollary 3.2. It remains to verify the implication

loss of mass in explosions ⇒ loss of pressure.

In what follows we will use the estimate for the lateral inflow

∫ t2

t1

∫
Σ

∂np
ε ≤ cg

√
∆t(3.5)

for small ∆t, which follows from Lemma 3.4 if we choose δ0 = δ +
√
t2 − t1. We

calculate the gain of fluid mass in the ε-system by adding the inflow into the box
from below and the loss due to explosions; in the following we consider only values
of hε in [0, s0]; i.e., in an explosion we set hε to zero. For all t ∈ (tε, t̄ + ∆t),

∫
Bδ(x)∩Γε

1

ε−1hε(ξ, τ) dξ

∣∣∣∣
t

τ=t1

≤ ‖V0‖∞ · 2δ2|∆t| + cg
√

∆t− µε(Bδ(x) × (t1, t
ε))

≤ ‖V0‖∞ · 4δ|∆t| + cg
√

∆t− eδ

8
≤ − eδ

16
.

We see that a decrease of fluid mass of order O(1) took place in the test volume. We
want to conclude from this that the average pressure also decreased by the order O(1).
We have to compare the effect of loss of mass with an effect that has the potential to
increase the average pressure: redistribution of mass.

This effect is controlled in the following. We know that the average pressure at
time t1 satisfies pεδ(x) ≥ pmax −∆ρ, since an explosion happens at this time instance.
Until time t the values of hε change, but although some of them might increase, we
verify that this is not a large contribution. We sum over xi ∈ εZ with xi ∈ Bδ(x),

1

2δ

∑
i

(hε(xi, t) − hε(xi, t1))+ ≤ 1

2δ

∑
i

(
ε
pmax

a0(i)
− hε(xi, t1)

)

=
ε

2δ

∑
i

1

a0(i)
(pmax − pε(xi, t1))

≤ 1

inf{a0}
1

2δ

1

2γ

∫
Bδ(x)∩Γε

1

(pmax − pε(·, t1))

≤ 1

inf{a0}
· ∆ρ + o(1).

In the last line we used that in the limit ε → 0 the two averages 1
2δ·2γ

∫
Bδ(x)∩Γε

1
p and

1
2δ

∫
Bδ(x)

p coincide. Except for boundary effects, both expressions define linear and

translation invariant averages of the values p(xi). The boundary effects vanish for
ε → 0 and the two expressions asymptotically coincide with the arithmetic mean of
the values p(xi).

We can now calculate an upper bound for the average pressure at an arbitrary
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time instance t ∈ (tε, t2],∫
Bδ(x)

pε(ξ, t) dξ ≤
∫
Bδ(x)

pε(ξ, t1) dξ

+
∑
i

(hε(xi, t) − hε(xi, t1))− · inf{a0}

+
∑
i

(hε(xi, t) − hε(xi, t1))+ · sup{a0} + o(1)

≤ 2δpmax +
∑
i

(hε(xi, t) − hε(xi, t1)) · inf{a0}

+
∑
i

(hε(xi, t) − hε(xi, t1))+ · (sup{a0} − inf{a0}) + o(1)

≤ 2δpmax − 1

2γ

eδ

16
· inf{a0} + 2δ · C∆ρ + o(1)

for ε → 0. The corrector o(1) takes into account that the p-average over Bδ(x)
coincides only asymptotically with the p-average over Bδ(x) ∩ Γε

1. Dividing by 2δ we
find for small ε

1

2δ

∫
Bδ(x)

pε(ξ, t) dξ ≤ pmax − ∆ρ ∀t ∈ (tε, t2),

if ∆ρ was chosen small compared to e. We know that in the ball Bδ(x) there happen
explosions in the time interval (tε, t2). This is in contradiction with the fact that for
our choice of δ, below the average pressure pmax −∆ρ, there can be no explosions by
Corollary 3.2.

In case that ν is of finite type, the measure µ has a direct physical interpretation.
For every set S̄ = Γ × (t1, t2) the number µ(S̄) is the weighted number of explosions
in S̄. If s0(k) = 1 for all k, then

µ(S̄) = ν(S̄ ×K) = lim
ε→0

(
ε · #{explosions in S̄}

)
,

the limit taken along the chosen subsequence. In the general case µ measures the
total mass of fluid that is lost in explosions.

Our next aim is to show the following relation between the measure of limit
patterns and spatial averages of the limit pressure p0

δ(x, t). Loosely speaking, we
show

ν of finite type ⇒ p0
δ has no jumps.

In order to show this statement, by Proposition 3.5, it remains to verify that if µ(Γ, ·)
contains no atoms, then p0

δ has no jumps. By definition, the functions p0
δ are Lipschitz

continuous in x for every t. In order to state regularity properties in time, we choose
as a representative of p0

δ the temporal maximal function,

p0
δ(x, t) = lim sup

r↘0

1

2r

∫ t+r

t−r

p0
δ(x, τ) dτ.

In the following we work with this representative of p0
δ .
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Proposition 3.6. Assume that the measure µ(Γ, ·) contains no atoms. If in a
point (x, t̄ ) the average pressure is not maximal,

p0
δ(x, t̄ ) = ρ < pmax,(3.6)

then there exist ρ0 < pmax, ε0 > 0, and t1 < t̄ < t2 with

pεδ(x, t) ≤ ρ0 ∀t ∈ (t1, t2), ε < ε0,(3.7)

p0
δ(x, t) ≤ ρ0 ∀t ∈ (t1, t2).(3.8)

The number ρ0 does not depend on δ.
Proof. Our emphasis in this proposition lies on finding t1 < t̄; in this part the

assumption on µ is used. The proof has similarity with the proof of Proposition 3.5,
but this time we use the converse implication

loss of pressure ⇒ loss of mass in explosions.

We choose ∆ρ small compared to pmax −ρ. Let us assume that for a subsequence
ε → 0 and a sequence tε1 ↗ t̄ there holds

pεδ(x, t
ε
1) ≥ pmax − ∆ρ.

From (3.6) we conclude that there exists tε > tε1 arbitrarily close to t̄ with

pεδ(x, t
ε) ≤ ρ + ∆ρ.

This follows from the fact that spatio-temporal averages of pε converge to the corre-
sponding averages of p0. Exploiting that the pressure in tε1 is large, we verify that
redistribution of mass between the cells is a small effect,

1

2δ

∑
i

(hε(xi, t
ε) − hε(xi, t

ε
1))+ ≤ 1

2δ

∑
i

(
ε
pmax

a0(i)
− hε(xi, t

ε
1)

)

=
ε

2δ

∑
i

1

a0(i)
(pmax − pε(xi, t

ε
1)) ≤ ch.

For small ε the constant ch can be chosen as ch = C∆ρ with C independent of δ. Our
next aim is to conclude that the average height is decreased. We calculate

ρ− pmax + 2∆ρ ≥ 1

2δ

∫
Bδ(x)

pε(ξ, τ) dξ

∣∣∣∣
tε

tε1

≥ 1

2δ2γ

∫
Bδ(x)∩Γε

1

pε(ξ, τ) dξ

∣∣∣∣
tε

tε1

+ o(1)

≥ 1

2δ

∑
i

(hε(xi, t
ε) − hε(xi, t

ε
1))+ · inf{a0}

+
1

2δ

∑
i

(hε(xi, t
ε) − hε(xi, t

ε
1))− · sup{a0} + o(1)

≥ ch · (inf{a0} − sup{a0}) + o(1)

+
1

2δ

∑
i

(hε(xi, t
ε) − hε(xi, t

ε
1)) · sup{a0}.
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For small ε and small ∆ρ we conclude for the change in the average height

1

2δ

∑
i

(hε(xi, t
ε) − hε(xi, t

ε
1)) · sup{a0} ≤ ρ− pmax + (3 + C)∆ρ < 0,

an order O(1) loss of volume. As in the preceding proposition, for tε − tε1 small
enough, this cannot be induced by outflow on lateral or lower sides. Therefore, there
are O(1/ε) explosions and we have µε(Γ × (t1, t2)) ≥ c > 0 for all t2 > t̄ and for
a subsequence ε → 0. In the limit we find µ(Γ × (t1, t2)) ≥ c; since t1 and t2 are
arbitrary we found an atom of µ(Γ, ·) and thus a contradiction.

The construction of t2 follows the same pattern. We calculate that an increase in
pressure requires an increase in volume of order O(1). This cannot be compensated
by lateral inflow, inflow from below, or redistribution effects. Then there must be a
gain of volume through the upper boundary Γ—a contradiction since no “negative
explosions” are possible.

Property (3.8) follows from (3.7). Note that at first we find

p0
δ(x, t) ≤ ρ0 a.e. t ∈ (t1, t2).

By the choice of the representative p0
δ we conclude that the inequality holds for

all t.
Corollary 3.7. Assume that ν is of finite type. Let s = (x, t̄ ) ∈ Γ × (0, T ) be

a point with

lim sup
δ→0

p0
δ(s) = ρ < pmax.

Then there exist δ0 > 0, ε0 > 0, and ∆t > 0 such that for all ε < ε0 there are no
explosions in Bδ0(x) × (t̄− ∆t, t̄ + ∆t), i.e.,

µε((x− δ0, x + δ0) × (t̄− ∆t, t̄ + ∆t)) = 0.

Proof. The result follows from inequality (3.7) using Corollary 3.2. Note that we
have to pick a small δ in dependence of ρ0 < pmax; here we use that ρ0 in Proposi-
tion 3.6 does not depend on δ. The conclusion remains valid if lim sup is replaced by
lim inf in the assumption.

4. Upscaled equations. Our aim is to derive the physical laws for the averaged
pressure. On the boundary we expect a law relating the increase of pressure with the
parameters pressure and normal velocity, and we write

p0 < pmax ⇒ ∂tp
0 = α(p0,−∂2p

0),

p0 = pmax ⇒ ∂tp
0 = α(p0,−∂2p

0)−

for some function α. The first implication expresses that, as long as the maximally
sustained pressure is not yet achieved, there is an increase of the pressure according
to the local rules of filling pores. A flow towards the boundary increases the filling
height of the single pore and, due to the monotonicity of the law P0, the pressure will
increase. The second implication describes the situation once the maximally sustained
pressure is achieved. A backward flow lowers the pressure according to the averaged
law. A further flow towards the boundary results in explosions and cannot increase
the pressure.
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For the mathematical interpretation of the above equations some care must be
applied. For p0 ∈ L∞ we will interpret the condition p0 < pmax as

lim sup
δ→0

p0
δ(x, t) < pmax.

On the right-hand side of the equations ∂2p
0|Γ has a meaning as a distribution. But,

for the second implication, it is not clear how to take the negative part of this distri-
bution in some parts of the boundary, the full expression in others. We should show
the following relations along Γ:

p0 ≤ pmax a.e. on Γ,(4.1)

p0(x, t) < pmax ⇒ ∂tp
0 = α(p0,−∂2p

0),(4.2)

∂tp
0 ≤ α(p0,−∂2p

0) as distributions on Γ.(4.3)

The first inequality is immediate, since every pε satisfies the inequality. The evolution
equation is (4.2) and it is interpreted in the sense of distributions in a neighborhood
of (x, t). Inequality (4.3) is a lift-off condition. In the case of linear laws it can be
shown just as (4.2). In the nonlinear case the proof is more involved, since in the
situation of (4.3) the solution has less regularity properties than in the situation of
(4.2).

Our aim is to homogenize the law pε(εi) = P0(i, ε
−1hε(εi)). The function P0

depends in an oscillatory fashion on x, and the function hε will in general also have
an oscillatory behavior. Therefore a homogenization limit has to be performed. The
key in the proofs is to assure regularity properties of pε. We want to analyze not only
linear laws as in (1.7), but also more general nonlinear models.

Definition 4.1. We speak of a nonlinear model if the laws P0(i, ·) are nonlin-
ear s0(i)-periodic functions with maxP0(i, ·) = P0(i, s0(i)) = pmax and 0 < a1 ≤
P ′

0(i, ·) ≤ a2 < ∞ for all i, s ∈ (0, s0(i)). We say that the nonlinear model satisfies
the linear regularity properties if the statement of Lemma 4.2 for the linear law holds
also for the laws P0(i, ·).

An example of a nonlinear model that satisfies the linear regularity is given by
the choice P0(i, ·) = P0(s) with some strictly monotonically increasing function P0 :
[0, s0) → R.

We modify the function p0 on a set of vanishing measure such that

p0(x, t) = lim sup
δ→0

p0
δ(x, t).

Lemma 4.2. We consider linear laws P0(i, ·) and we assume that the box (x−δ0,
x + δ0) × (t − ∆t, t + ∆t) contains no explosions. Then there is a neighborhood
U ⊂ Γ × R of (x, t) in which the pressure pε(·, t) is continuous with modulus of
continuity independent of ε and t.

For every ∆ρ > 0 there exist δ, ε0 > 0 such that for all (x1, τ), (x2, τ) ∈ U ,

|pε(x1, τ) − pε(x2, τ)| ≤ ∆ρ ∀|x1 − x2| < δ, ε < ε0,(4.4)

|p0(x1, τ) − p0(x2, τ)| ≤ ∆ρ ∀|x1 − x2| < δ,(4.5)

|pε(ξ, τ) − pεδ′(x1, τ)| ≤ ∆ρ ∀ξ ∈ Bδ′(x1), ε < ε0, 0 < δ′ < δ.(4.6)

In the nonlinear case, (4.4) and (4.6) hold for all τ except for an exceptional set of
arbitrary small measure which can be prescribed together with ∆ρ.
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Proof. In Proposition A.3 we show (4.4). It implies that local averages of p0

satisfy the same inequality and we can conclude (4.5) by the theorem of Lebesgue.
Inequality (4.6) is a direct consequence of (4.4).

In the nonlinear case, given ∆ρ, we choose first κ and ε0 such that the errors
introduced by pB and pA,2 are small compared to ∆ρ. By the uniform continuity of
pA,1 for most of the time we can choose δ small in order to satisfy (4.4).

Remark 4.3 (partial continuity of p0
). Assume finiteness of ν and linearity of

the laws P0. Let s0 = (x0, t0) be a boundary point with p0(s0) < pmax. Then in a
neighborhood U of s0 the function p0 is continuous in (x, t). Everywhere holds the
equality

p0(x, t) = lim
δ→0

p0
δ(x, t).(4.7)

Proof. By definition of the representative p0 there holds

lim sup
δ→0

p0
δ(s0) < pmax.

Then Corollary 3.7 yields the existence of a neighborhood without explosions. Note
that this holds also in points with lim infδ→0 p

0
δ(s0) < pmax. Lemma 4.2 yields the

existence of a smaller neighborhood U of (x0, t0) such that p0 is uniformly continuous
in x for a.e. t, with modulus of continuity independent of t. Furthermore Proposi-
tion A.3 yields uniform estimates for ∂tp

0
A|Γ ∈ L2 in a space-time neighborhood of

(x0, t0). They imply that

p0
δ(x, t) is continuous in t.

We conclude that p0 is continuous in (x, t).
We can now conclude (4.7). In points s with lim infδ→0 p

0
δ(s) < pmax it is a

consequence of the continuity of p0. In the other case we have

pmax = lim inf
δ→0

p0
δ(s) ≤ lim sup

δ→0
p0
δ(s) ≤ pmax.

This implies again (4.7).
With the above regularity properties of pε and p0 we can now homogenize the

law P0. As a model we have chosen a uniform law with s0(i) = s0 and a0(i) = a0

independent of the position i. In this case the expression (4.8) can be trivially cal-
culated and equals 1/a0. We use the general expressions below in order to include
stochastic and nonlinear models.

Assumption 4.4 (ergodicity). Consider for ρ ∈ (0, pmax) the expression

lim
ε→0

ε

2δ

∑
i

1

P ′
0(i, si)

,(4.8)

where si are the unique solutions of P0(i, si) = ρ. The sum is taken over all indices i
with εi ∈ Bδ(x).

We assume on the function P0 that the above limit exists for all x and δ and that
it is independent of x and δ.

An example of an ergodic material is a k0-periodic function P0.
Proposition 4.5 (a law for p0 in regions without explosions). Let the ergodicity

assumption, Assumption 4.4, be satisfied and R = (x− δ0, x + δ0) × (t − ∆t, t + ∆t)
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be a region without explosions. Then in R there holds in the sense of distributions in
(x, t)

∂t
[
Θ(p0(x, t))

]
= −∂2p

0(x, t),(4.9)

where the function Θ satisfies

Θ′(ρ) = lim
ε→0

2γ
ε

2δ

∑
i

1

P ′
0(i, si)

∀ρ ∈ (0, pmax).(4.10)

On the right-hand side appears the expression of Assumption 4.4.
We emphasize that the above proposition holds also in the case of a nonlinear

model without additional regularity assumptions.
Proof. We start the proof from the differentiated version of the microscopic pres-

sure law pε = P0(ε
−1hε) in a point xi = εi,

∂tp
ε(xi, t) = P ′

0(i, ε
−1hε(xi, t)) · ε−1∂th

ε(xi, t).(4.11)

We have a one-to-one correspondence between pressure pε and height hε in every
point xi,

pε(xi) = P0(i, ε
−1hε(xi)) or hε(xi) = εH0(i, p

ε(xi)).

We introduce the functions Φi satisfying Φi(0) = 0 and

Φ′
i(ρ) =

1

P ′
0(i,H0(i, ρ))

.

We now divide (4.11) by P ′
0 and, using (1.2), write the equation as

d

dt
Φi(p

ε(xi, t)) = ε−1∂th
ε(xi, t) =

1

ε2γ

∫ xi+γε

xi−γε

(−∂2p
ε(ξ, t)) dξ.

Since we do not have knowledge on limits of time derivatives, we use the time in-
tegrated form. We additionally have to average over the spatial variable and use
therefore the following time and space integrated equation:

1

∆t

ε

2δ

∑
i

[Φi(p
ε(xi, t + ∆t)) − Φi(p

ε(xi, t))]

=
1

∆t

1

2γ

∫ t+∆t

t

(−∂2p
ε
δ(x, τ)) dτ.

(4.12)

We used here that taking x1-spatial averages and the operator ∂2 can be interchanged.
The right-hand side converges for ε → 0 as a distribution,

1

∆t

∫ t+∆t

t

(−∂2p
ε
δ) dτ → 1

∆t

∫ t+∆t

t

(−∂2p
0
δ) dτ.

Here the convergence of the integrand is interpreted as∫
Γ

(−∂2p
ε
δ(x, τ)) · ϕ(x) dx

:= −
∫

Γ

pεδ(x, τ) · ∂2ϕ(x) dx +

∫
Ω

pεδ(x, y, τ) · ∆ϕ(x, y) dx dy

→ −
∫

Γ

p0
δ(x, τ) · ∂2ϕ(x) dx +

∫
Ω

p0
δ(x, y, τ) · ∆ϕ(x, y) dx dy

=:

∫
Γ

(−∂2p
0
δ(x, τ)) · ϕ(x) dx
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for all periodic ϕ ∈ C2(Ω) with compact support in Ω ∪ Γ. In the convergence we
used that pε|Γ → p0|Γ in L∞

w , and accordingly the convergence of pεδ|Γ.
We next consider the left-hand side of (4.12) and its limit as ε → 0. We choose

the function Θ(ρ) of (4.10) as the average

Θ(ρ) := lim
ε→0

2γ
ε

2δ

∑
i

Φi(ρ).

Since averages of Φ′
i exist, averages of Φi also exist. We now have to use the fact that

pε has no oscillations in x for most values of t. We pick a small ∆ρ > 0 and choose
δ0 > 0 small to satisfy

|pε(xi, t) − pεδ(x, t)| ≤ ∆ρ ∀xi = εi ∈ Bδ(x), δ < δ0, t ∈ Tδ0 .

Here we use Lemma 4.2. In the linear case we can choose Tδ0 = (t1, t2); in the
nonlinear case Tδ0 is an (ε-dependent) subset of (t1, t2). For small δ0 > 0 the measure
|Tδ0 | is arbitrarily close to |t2 − t1|.

We next exploit that the averages pεδ are uniformly continuous (Proposition A.3),
and that we can choose a subsequence ε → 0 such that pεδ → p0

δ uniformly in R. We
use this to write

|pε(xi, t) − p0
δ(x, t)| ≤ ∆ρ + o(1) ∀i, ∀t ∈ Tδ0 .

With our knowledge on oscillations of pε we can now use

|Φi(p
ε(xi, t)) − Φi(p

0
δ(x, t))| ≤ sup

i
‖Φ′

i‖∞ · |pε(xi, t) − p0
δ(x, t)|

≤ 1

a1
(∆ρ + o(1)) ∀i, ∀t ∈ Tδ0

to perform the replacement

ε

2δ

∑
i

Φi(p
ε(xi, t)) =

ε

2δ

∑
i

Φi(p
0
δ(x, t)) + O(∆ρ) + o(1) ∀t ∈ Tδ0 .

In what follows we have to consider the expressions as distributions in time and use
a test function φ(t) with compact support in (t1, t2). We conclude∫ t2

t1

ε

2δ

∑
i

Φi(p
ε(xi, t))φ(t) dt

=

∫ t2

t1

ε

2δ

∑
i

Φi(p
0
δ(x, t))φ(t) dt + O(∆ρ) + o(1) + oδ(1)

→ 1

2γ

∫ t2

t1

Θ(p0
δ(x, t))φ(t) dt + O(∆ρ) + oδ(1),

with oδ(1) → 0 for δ0 → 0, since averages of Φi are bounded and Tδ0 has large
measure. In taking the limit ε → 0 we used the ergodicity assumption.

We write (4.12) now with a discrete integration by parts,

−
∫ t2

t1

Θ(p0
δ(x, t))

φ(t) − φ(t− ∆t)

∆t
dt

= −
∫ t2

t1

∂2p
0
δ(x, t)

1

∆t

∫ t+∆t

t

φ(τ) dτ dt +
2

∆t
O(∆ρ) + oδ(1).
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We take the limit δ → 0 using that along a subsequence δ → 0 the functions p0
δ

converge to p0 pointwise a.e. Since now δ0 can also be chosen small, we find in the
sense of distributions in x

−
∫ t2

t1

Θ(p0(·, t))φ(t) − φ(t− ∆t)

∆t
dt

= −
∫ t2

t1

∂2p
0(·, t) 1

∆t

∫ t+∆t

t

φ(τ) dτ dt +
2

∆t
O(∆ρ).

Since ∆ρ was arbitrary, the equation holds also without the error term. Since ∆t also
was arbitrary, we find the result.

In the following theorem we collect all the upscaled equations. The principal
assumption of the theorem is that ν is of finite type. Thinking of periodic solutions
of period kε in x1, we know that such an assumption is necessary. The assumption
can be replaced by “with probability 1” in the case of stochastic equations.

Theorem 4.6. We consider a subsequence pε of solutions to (1.2)–(1.6) with a
limit measure ν of finite type. Let p0 be the limit of pε in L∞

w and in the weak topology
of L2((0, T ), H1(Ω)). Then there exists a representative p0 that is harmonic for all t
and which satisfies

0 ≤ p0(x, t) ≤ pmax ∀x ∈ Γ, ∀t.(4.13)

Every point (x, t) ∈ Γ × (0, T ) with

p0(x, t) < pmax

has a neighborhood in Γ × (0, T ) on which

∂tΘ(p0) = −∂2p
0(4.14)

holds in the sense of distributions. Everywhere on Γ × (0, T ) holds the corresponding
inequality

∂tΘ(p0) ≤ −∂2p
0.(4.15)

In the nonlinear case the same properties hold. To conclude (4.15) we have to assume
that the nonlinear equations satisfy the linear regularity property of Definition 4.1.
Without this assumption we only have the weak lift-off condition (4.22).

We make some remarks on this theorem.
Boundary values on Γ. The formal definition of the limit function is as follows. We

choose a subsequence ε → 0 such that pε|Γ converge in L∞
w to some limit p0

Γ ∈ L∞(Γ).
The weak limit p0 ∈ L2((0, T ), H1(Ω)) satisfies∫

Γ

p0
Γ · ∂2ϕ =

∫
Ω

p0 · ∆ϕ a.e. t ∈ (0, T )

for all ϕ ∈ C2
0 (Ω ∪ Γ) with ϕ = 0 on Γ. This shows that p0 is a harmonic function

with boundary values p0
Γ.

Initial values. If pε(t = 0) = P0 is continuous and satisfies P0|Γ < pmax, then by
the regularity results all functions p0

δ are continuous in a neighborhood and have the
initial values (P0)δ. Therefore p0(t = 0) = P0.
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The lift-off condition (4.15). In all points p0 < pmax, (4.14) describes the evolu-
tion. Without a lift-off condition p0 could remain on the level pmax even if the fluid
flows backward into the domain. Therefore a condition of lift-off is necessary in order
to close the system. We emphasize that weaker conditions may be sufficient; relevant
is that the left-hand side in (4.15) is negative in regions where the right-hand side is
negative.

In the derivation of (4.15) we face the problem that a pointwise analysis is nec-
essary. Loosely speaking, in some points we have to argue with the help of regularity
of pε in order to find the law, in other points we use pε ≥ pmax − ∆ρ in order to find
the law. Such pointwise analysis is in conflict with the use of distributional limits as
in the proof of Proposition 4.5.

The analysis proceeds in three steps. In section 2.2 we characterized the possible
patterns of the system. In section 3 we showed that, if all limit patterns are finite,
averages of the pressure cannot have jumps (Proposition 3.6) and that every point with
nonmaximal limit pressure has a neighborhood without explosions (Corollary 3.7).
Based on these observations we derive the upscaled equations.

Proof. All assertions of the theorem are already shown except for (4.15). In
the case of linear laws it can easily be derived following the lines of Proposition 4.5,
starting from the inequality in (4.12). The point is that for linear laws the information
that pε is close to pεδ is not needed.

In the general case the subsequent proposition establishes with (4.16) a pointwise
inequality for the pressure decay. It describes on a microscopic scale the condition of
lift-off and is the key for the proof.

Using (4.16) in the first inequality and the Lebesgue convergence theorem in
the second (the boundedness from below of the integrand is verified in Proposition
4.7), we calculate for nonnegative smooth test functions φ with compact support in
(Ω ∪ Γ) × (0, T )

∫ T

0

∫
Γ

Θ(p0(x, 0, t + ∆t)) − Θ(p0(x, 0, t))

∆t
φ(x, t) dx dt

≤
∫ T

0

∫
Γ

lim inf
δ→0

lim inf
y↗0

1

∆t

∫ t+∆t

t

(−∂2p
0
δ(x, y, τ)) dτφ(x, t) dx dt

≤ lim inf
δ→0

lim inf
y↗0

∫ T

0

∫
Γ

1

∆t

∫ t+∆t

t

(−∂2p
0
δ(x, y, τ)) dτφ(x, t) dx dt

= lim inf
δ→0

lim inf
y↗0

∫ T

0

{∫
Ω∩{x2<y}

1

∆t

∫ t+∆t

t

p0
δ(τ) dτ · ∆φdx1 dx2

−
∫

Ω∩{x2=y}

1

∆t

∫ t+∆t

t

p0
δ(τ) dτ · ∂2φdx1

}
dt

= lim inf
δ→0

∫ T

0

{∫
Ω

1

∆t

∫ t+∆t

t

p0
δ(τ) dτ · ∆φdx1 dx2

−
∫

Γ

1

∆t

∫ t+∆t

t

p0
δ(τ) dτ · ∂2φdx1

}
dt
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=

∫ T

0

{∫
Ω

1

∆t

∫ t+∆t

t

p0(τ) dτ · ∆φdx1 dx2

−
∫

Γ

1

∆t

∫ t+∆t

t

p0(τ) dτ · ∂2φdx1

}
dt

=

∫ T

0

〈
1

∆t

∫ t+∆t

t

(−∂2p
0(τ)) dτ, φ

〉
dt.

Since ∆t was arbitrary, this proves the claim in the case of linear regularity. The
general case is treated in Corollary 4.8.

Proposition 4.7 (pointwise lift-off condition). Let ∆t > 0 be given. We assume
that the equations satisfy the linear regularity. Then for a.e. point (x, 0, t0) there holds
with

V := lim inf
δ→0

lim inf
y↗0

1

∆t

∫ t0+∆t

t0

(
−∂2p

0
δ(x, y, t)

)
dt

the inequality

Θ(p0(x, 0, t0 + ∆t)) − Θ(p0(x, 0, t0))

∆t
≤ V.(4.16)

The expression lim infy↗0
1

∆t

∫ t0+∆t

t0
(−∂2p

0
δ(x, y, t)) dt is bounded from below indepen-

dent of δ and (x, t0), and 1
∆t

∫ t0+∆t

t0
(−∂2p

0
δ(x, y, t)) dt is bounded from below for every

fixed δ by a constant independent of y.
Proof. An inspection of the subsequent proof and in particular inequality (4.19)

shows the bounds

Θ(0) − Θ(pmax)

∆t
≤ lim inf

y↗0

1

∆t

∫ t0+∆t

t0

(−∂2p
0
δ(x, y, t)) dt,

Θ(0) − Θ(pmax)

∆t
− sup

−1<y<0
gδ(y) ≤

1

∆t

∫ t0+∆t

t0

(−∂2p
0
δ(x, y, t)) dt.

These imply the uniform estimates that are necessary in order to apply the Lebesgue
convergence theorem. In particular V is bounded from below and we can use in the
following V > −∞.

We will consider here the most interesting case of maximal pressure in (x, t0),
lim infδ→0 p

0
δ(x, 0, t0) = pmax. In the other case we find a region without explosions

and can base the proof on the regularity of p0 in (x, 0, t0). The claimed inequality is
immediate in the case V ≥ 0, since Θ is monotonically increasing. We can therefore
assume from now on that V < 0.

To show (4.16) we first fix ∆V small compared to |V |, and ∆ρ small compared
to |V | · ∆t. Next we choose δ > 0 small enough to have

lim inf
y↗0

1

∆t

∫ t0+∆t

t0

(−∂2p
0
δ(x, y, t)) dt ≤ V + ∆V,

p0
δ(x, 0, t0) ≥ pmax −∆ρ, and a third smallness condition which depends on V and ∆t

and is made explicit later. Now we choose y < 0 close to 0 to have gδ(y) small
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y

x − δ
x − δ − 2d

x + δ
x + δ + 2d

R− R+ R− R+

� � � � �

Fig. 2. For the proof of Proposition 4.7.

compared to |V | (gδ(y) is introduced later), and

1

∆t

∫ t0+∆t

t0

(−∂2p
0
δ(x, y, t)) dt ≤ V + 2∆V.(4.17)

We finally choose ε0 small in order to have pεδ(x, 0, t
ε
0) ≥ pmax − 2∆ρ for all ε < ε0

along the subsequence and in points tε0 → t0. Furthermore, ε0 is chosen small enough
to have

1

∆t

∫ t0+∆t

tε0

(−∂2p
ε
δ(x, y, t)) dt ≤ V + 3∆V(4.18)

for all ε < ε0. At this point we exploited to have y < 0 fixed; in the interior of Ω
spatial derivatives of time averages of the pressure pε converge.

By calculating the total flow into the box Rδ,y(x) := {(x1, x2) : x−δ < x1 < x+δ,
y < x2 < 0} as illustrated in Figure 2, we verify the inequality

2γ
1

∆t

[
ε

2δ

∑
i

Φi(p
ε(xi, τ))

]t0+∆t

τ=tε0

≤ V + 3∆V + gδ(y) + o(1)(4.19)

for ε → 0. The left-hand side measures the increase of volume on the upper boundary.
On the right-hand side V + 3∆V measures the maximal inflow into Rδ,y through the
lower boundary as it was calculated in (4.18). gδ(y) shall be a bound for ε-limits of
the inflow through the lateral boundaries, multiplied by γ/δ. Then (4.19) follows as
(4.12), since explosions only lower the left-hand side. The crucial point is now to find
a bound gδ(y) with limy↗0 gδ(y) = 0.

Construction of the bound gδ(y). In the case of C0 flows, that is, C1 pressure
fields, one concludes immediately that the flow through a slice of length |y| is of
order |y|. Here we only have some kind of continuity of the pressure field. Therefore,
the estimate will be only of lower order, and the proof becomes more involved.

The basis for the proof is the following observation. For every (x, t) we consider
the rectangles R− := R−

d,y(x) := {(x1, x2) : x < x1 < x + d, y < x2 < 0} and

R+ := R+
d,y(x) := {(x1, x2) : x+ d < x1 < x+2d, y < x2 < 0}. Then for every aspect

ratio r := d/y the following limits coincide:

lim
y→0, d=ry

1

|R−|

∫
R−

∫ t0+∆t

t0

p0 = lim
y→0, d=ry

1

|R+|

∫
R+

∫ t0+∆t

t0

p0.(4.20)
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This follows from p0 ∈ L2(0, T ;H1(Ω)). Time integrals of p0 are in H1(Ω), and for
q ∈ H1(Ω) holds (we use R−+ te1 to denote the box R−, translated to the right by t),

1

d · y

(∫
R+

q −
∫
R−

q

)
=

1

d · y

∫ d

0

dt

∫
R−+te1

(∂1q)

≤ 1

y

(∫
R−∪R+

|∂1q|2
)1/2

|2d · y|1/2 → 0

for y → 0 and fixed aspect ratio. We used that |∂1q|2 is in L1(Ω) and therefore
integrals over vanishing domains vanish.

We now conclude from (4.20) the estimate on gδ(y). A weighted average of the
horizontal flow in the box R := {(x1, x2) : x + δ < x1 < x + δ + 2d, y < x2 < 0} is
(with x0 := x + δ + d)

1

d

∫
R

∂1p
ε(x1, x2) ·

d− |x1 − x0|
d

dx1 dx2 =
1

d2

[∫
R+

pε −
∫
R−

pε
]

→ 1

r

[
1

|R+|

∫
R+

p0 − 1

|R−|

∫
R−

p0

]
.

By (4.20) time integrals over this term become arbitrarily small for small y. For
every small |y| we find a corresponding d′ such that the flow through the lateral side
{(x1, x2) | x1 = x + δ + d′, y < x2 < 0} is small.

We are not allowed to change the parameter δ, but we must show that the inflow
through the lateral side x1 = x + δ is small. To this end we use the aspect ratio r
that can be chosen freely. The pressure along Γ is bounded and therefore the vertical
velocity satisfies in the interior an estimate |∂2p

ε(x, y)| ≤ C1|y|−1 by the represen-
tation formula (see, e.g., [6, p. 22]). We find that the total vertical inflow through
{(x1, x2) | x + δ < x1 < x + δ + 2d, x2 = y} can be bounded by d · C1/|y| = C1 · r.
Choosing a small aspect ratio r we have a bound for the vertical inflow from below.

The vertical inflow from above is bounded by C2 · d since no negative explosions
can occur. This contribution to gδ(y) is therefore also small for small d (independent
of the aspect ratio). Putting the results together we find that choosing r and then |y|
small, the total inflow through x + δ is bounded by a small number gδ(y).

Conclusions from (4.19). As a first step we write (4.19) as

ε

2δ

∑
i

Φi(p
ε(xi, t0 + ∆t)) ≤ ε

2δ

∑
i

Φi(p
ε(xi, t

ε
0))

+
∆t

2γ
(V + 3∆V + gδ(y)) + o(1).

Since the derivatives of Φi are bounded, we conclude

pεδ(x, 0, t0 + ∆t) ≤ ρ < pmax,

where ρ depends only on V < 0 and ∆t, and not on δ. As in the proof of Proposi-
tion 3.6 we conclude that there is some ρ0 < pmax independent of δ and t1 < t0 + ∆t
such that

pεδ(x, 0, t) ≤ ρ0 ∀t ∈ [t1, t0 + ∆t].
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We said that a third smallness condition on δ should be satisfied. We demand that
δ is small compared to δH(ρ0) with δH from Lemma 3.1. With this choice we know
that there are no explosions in the region (x− δ, x + δ) × (t1, t0 + ∆t).

We now fix a new small parameter σ > 0. Given σ we pick a new, smaller δ > 0,
repeat the above steps of the proof and find new y < 0 and ε0 > 0. For the new δ we
can assume by Lemma 4.2 that

|pε(ξ, 0, t0 + ∆t) − pεδ(x, 0, t0 + ∆t)| ≤ σ ∀ξ ∈ (x− δ, x + δ).

Here we used the linear regularity property.
The functions pεδ are uniformly continuous in a neighborhood of (x, 0, t0 + ∆t) by

Proposition A.3 and therefore pεδ → p0
δ is a uniform convergence for a subsequence.

Along this subsequence we now take limits in (4.19),

lim sup
ε→0

2γ
ε

2δ

∑
i

Φi(p
ε(xi, t0 + ∆t))

≤ lim sup
ε→0

2γ
ε

2δ

∑
i

Φi(p
ε
δ(x, 0, t0 + ∆t)) + Cσ

= lim sup
ε→0

2γ
ε

2δ

∑
i

Φi(p
0
δ(x, 0, t0 + ∆t)) + Cσ

= Θ(p0
δ(x, 0, t0 + ∆t)) + Cσ.

For the second term we have, by pεδ(x, t
ε
0) ≥ pmax − 2∆ρ,

lim inf
ε→0

2γ
ε

2δ

∑
i

Φi(p
ε(xi, t

ε
0)) ≥ Θ(pmax) − C∆ρ.

We take lim supε→0 in (4.19) and find

Θ(p0
δ(x, 0, t0 + ∆t)) − Θ(p0

δ(x, 0, t0))

∆t
≤ V + 3∆V + gδ(y) + Cσ + C∆ρ.

(4.21)

We take the limit y ↗ 0 and then δ → 0 using that p0
δ → p0 for a.e. (x, 0, t). We find

inequality (4.16) up to the error terms. Since ∆V , σ, and ∆ρ were arbitrary, we find
the result.

The assumption of linear regularity was used in the above proof only towards the
end in order to replace pε by pεδ in the evaluation of the laws Φi. We can also restrict
ourselves with the conclusion that

ε

2δ

∑
i

Φi(p
ε(xi, t0 + ∆t)) ≤ Θ(pmax) − C1

for all small ε implies for some c > 0

p0
δ(x, t0 + ∆t) ≤ pmax − cC1,

since the derivatives of Φi are bounded. We find the following corollary to the above
proof.

Corollary 4.8 (weak lift-off condition). We consider the nonlinear case and
do not assume linear regularity. There exists c > 0 such that in every point (x, t0)
and for every ∆t > 0,

lim inf
δ→0

p0
δ(x, t0 + ∆t) ≤ pmax + c V ∆t(4.22)

with V as in Proposition 4.7.
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With Theorem 4.6 we have derived a system of upscaled equations that is satisfied
by every weak limit p0 of the pressure functions pε. We have to verify that we
have found all necessary information on the limit system. To this end we showed
in [11] that solutions of the upscaled system of Theorem 4.6 are unique, at least for
a linear function Θ. The uniqueness also implies the weak convergence of the initial
sequence pε to the solution p0 of the limit system.

5. Conclusions and outlook. We performed an analysis of a deterministic
model for the motion of fronts in porous media. Upscaled equations were found
under the hypothesis that limit patterns are finite. The limit equations include a
hysteresis effect of the system: during imbibition, i.e., under inflow conditions and
after a transition time, the pressure along the boundary coincides everywhere with
pmax; this value can therefore be interpreted as the capillary pressure of imbibition.
When changing the boundary conditions to drainage, i.e., an outflow condition along
the bottom, the system undergoes again a transitional regime before the capillary
pressure of drainage (zero in our case) is reached.

An open question concerns the uniqueness of solutions of the upscaled system
in the nonlinear case, that is, with the weak lift-off condition. It is desirable to
extend the results to more general geometries and to more general equations for the
fluid. We expect that in such systems the principle feature, the appearance of isolated
explosions, remains the same.

We emphasize that the upscaled equations derived in this work form a mesoscopic
model of a two-phase flow since the position of the front is still resolved. Desirable is
the derivation of macroscopic laws from our mesoscopic results.

Appendix A. Regularity properties away from explosions. In this ap-
pendix we consider only regions without explosions. We expect that in this case
the solution is regular. In order to get a feeling for the smoothing properties of the
equations, we first consider the above equations omitting the projection Qε.

Remark A.1. The unique classical solution u0 of

∆u0(t) = 0 in R × R−,(A.1)

∂tu
0 = −λ∂2u

0 on R,(A.2)

with initial condition u0(x1, 0, 0) = sgn(x1) and satisfying the uniform bounds 0 ≤
u0 ≤ 1 is given by

u0(t, x) =
2

π
arctan

(x1

λt

)
.(A.3)

Proof. We demonstrate how to find u0 in the self-similar form u0(x, t) = U(xt ).
The function U is harmonic in the lower half-plane and on {(x1, x2) | x2 = 0} it
satisfies

x1 · ∂1U = ∂2U.

We use a complex differentiable function f : C
− → C to find U = Re f . The condition

on the real line translates into

Re(z · f ′ − if ′) = 0.

We set z · f ′ − if ′ = ci for a real number c and find

f ′ = c
i

z − i
= c

−1

1 + iz
= c

1 − iz̄

|1 + iz|2 .
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This implies

∂1U = Re f ′ =
c

1 + |x1|2

on the real line. Using U(x1) → ±1 for x1 → ±∞ determines the constant c to be
2/π and yields the result. The x1-derivative of U inside the domain is calculated as
∂1U(x1, x2) = 1−x2

(1−x2)2+x2
1
; this yields the complete form of U ,

U(x1, x2) =
2

π
arctan

(
x1

1 − x2

)
.

The explicit solution above gives us an idea of how solutions to the original
equations (1.2)–(1.5) behave qualitatively. Unfortunately, the picture may change
in many respects once the coefficients in ∂tp

ε(·, 0, t) = −a(·)Qε∂2p
ε(·, 0, t) depend

on x1. But one useful property remains valid as one can see by using the exact
solution as a comparison function.

Remark A.2. Consider the original equations (1.2)–(1.5) with initial values

pε(x1, 0, 0) =

{
0 for x1 < 0,

1 for x1 > 0.

Then for every δ > 0 there exists a constant C such that

pε(−δ, 0, t) ≤ Ct ∀t.

Proposition A.3. We study solutions pε : (−1, 1) × (−1, 0) × (0, t) → R of the
original equations (1.2)–(1.5) for V0 ∈ C1 and with (piecewise) linear laws P0. If no
explosions happen on (−δ0, δ0)×(0, t), then, for every 0 < δ < δ0, the family pε(·, 0, t)
is uniformly continuous in (−δ, δ).

In the case of nonlinear laws, for every δ < δ0, 0 < t1 < t, and arbitrary κ > 0
we can write pε|Γ as pε|Γ = pA + pB = pA,1 + pA,2 + pB with

∂tpA ∈ L2((t1, t) × (−δ, δ)), ‖pA‖ ≤ C(κ),

pA,1 ∈ L2((t1, t), H
1(−δ, δ)), ‖pA,1‖ ≤ C(κ),

pA,2 ∈ L2((t1, t), L
∞(−δ, δ)), ‖pA,2‖ ≤ Cεα,

pB ∈ L∞((t1, t) × (−δ, δ)), ‖pB‖ ≤ κ.

In particular, all spatial averages pεδ′ of pε are uniformly continuous on (t1, t)×(−δ, δ).
The constant α > 0 is independent of ε, pε, δ, and κ.

A solution for ε = 1 on the extended domain R × (−∞, 0) × (0,∞) without
explosions satisfies

|pε(x1, 0, t) − pε(0, 0, t)| → 0 for t → ∞,(A.4)

independent of the initial values.
Proof. Idea: Assume that there are no explosions at all. Then we write the linear

laws as

∂tp
ε(·, 0, τ) = −aε(·)Qε∂2p

ε(·, 0, τ) on Γε
1, ∀τ ∈ (0, t).
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In this case we can show uniform estimates for ∂tp
ε|Γ ∈ L∞((3t/4, t), L2(Γ)). These

are at the same time bounds for Qε∂2p
ε|Γ = − 1

aε(·)∂tp
ε|Γ. We can decompose pε into

the “macroscopic” part, the harmonic, periodic function pm satisfying ∂2pm = Qε∂2p
ε

on Γ, and a remainder uε = pε − pm. In Lemma A.4 we show that uε is small in L∞.
The elliptic regularity theory yields uniform estimates for pm ∈ L∞((t/2, t), Cα(Γ))
for α < 1/2. This yields the claim.

We now show the estimate for ∂tp
ε in the case of δ0 = 1 (no explosions along Γ).

By the energy estimate for pε ∈ L2((0, t), H1(Ω)) we find a time instance t1 < t/2
such that pε(t1) ∈ H1(Ω) satisfies an ε-independent bound. We multiply ∆pε = 0 by
∂tp

ε and find ∫
Γ0

V0∂tp
ε =

∫
Ω

∇pε · ∂t∇pε −
∫

Γε
1

∂2p
ε · ∂tpε

=

∫
Ω

∂t
1

2
|∇pε|2 +

∫
Γε

1

1

aε(·) |∂tp
ε|2.

This yields an estimate for ∂tp
ε|Γε

1
∈ L2((t1, T ) × Γε

1). We find a time instance t2,
t1 < t2 < 3t/4, with bounded (by an ε-independent constant) ∂tp

ε(t2)|Γε
1
∈ L2. We

multiply the differentiated equation ∂t∆pε = 0 by ∂tp
ε and find∫

Γ0

∂tV0∂tp
ε =

∫
Ω

|∂t∇pε|2 −
∫

Γε
1

∂t∂2p
ε · ∂tpε

=

∫
Ω

|∂t∇pε|2 + ∂t

∫
Γε

1

1

2

1

aε(·) |∂tp
ε|2 −

∫
Γε

1

1

2

∂t(a
ε(pε))

(aε)2
|∂tpε|2.

In the case of a linear law aε is independent of pε and therefore the last term vanishes.
An integration yields the claimed estimate for ∂tp

ε|Γ ∈ L∞((t2, t), L
2(Γ)).

In the case of a nonlinear law the coefficient a(x1, t) depends on pε(x1, 0, t), and
the term containing ∂ta

ε|∂tpε|2 cannot be controlled by the other two terms. Never-
theless, the argument leading to the estimate for

∂tp
ε|Γε

1
∈ L2((t1, T ) × Γε

1)

remains valid. With pA = pε and pB = 0 we found the claimed decomposition. The
estimates for the x1-derivative of pA,1 := pm follow for harmonic functions from the
estimates for the Neumann boundary values.

We now study the general case δ0 < 1. We choose ∆t < t small (depending on
δ0 and ρ), and consider from now on the solution only on the time interval (t−∆t, t),
the coefficients aε are always given by the original solution. We now decompose the
solution into a part pA with the initial values of pε and without explosions on Γ,
and a second part pB that captures the evolution of the explosions. Then on pA the
above arguments for δ0 = 1 can be applied. The function pB is small on (t−∆t, t)×
(−δ0/2, δ0/2) for ∆t small by the maximum principle of Remark A.2.

Formula (A.4) follows from a scaling argument,

|pε(x1, 0, t) − pε(0, 0, t)| = |pε/t(x1/t, 0, 1) − pε/t(0, 0, 1)|,

where the scaled solution pε/t has initial values pε/t(x1/t, 0, 0) = pε(x1, 0, 0). The
result follows from the uniform continuity of pε/t at time 1, since x1/t is arbitrarily
close to 0. Note that we have to modify the solutions pε/t|(−1,1)×(−1,0) on the boundary
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in order to guarantee their periodicity. Applying the above argument with an initial
time close to 1, this change introduces only a small error term in the expression
pε/t(x1/t, 0, 1) − pε/t(0, 0, 1).

Lemma A.4. Let uε be a sequence of periodic harmonic functions on Ω =
(−1, 1) × (−1, 0) satisfying a harmonic Neumann condition on the lower boundary
and with the following properties on the upper boundary Γ = (−1, 1) × {0}:

Qε∂2u
ε = 0,

gε := uε −Qεu
ε satisfies ‖∂x1

gε|Γε
1
‖L2 ≤ C.

Then uε|Γ → 0 in L∞(Γ) for ε → 0 independent of the sequence gε.
Proof. Note that we have the technical difficulty of gε /∈ H1 in general. We

therefore introduce a new projection Q̃ε such that Q̃εv = Qεv on Γε
1 with Q̃ε bounded

in L(H1(Γ), H1(Γ)). For v ∈ L2(Γ) we can use ṽ, the harmonic function on Ω that
satisfies ṽ|Γε

1
= Qεv|Γε

1
and ∂2ṽ = 0 on Γε

2, together with periodicity and a harmonic

Neumann condition on the lower boundary. We set Q̃εv := ṽ.
With this modified projection we can consider the bounded sequence wε :=

uε|Γ − Q̃εu
ε|Γ ∈ H1(Γ). We multiply ∆uε = 0 by uε to find∫

Ω

|∇uε|2 =

∫
Γ

∂2u
ε uε =

∫
Γε

1

∂2u
ε uε

=

∫
Γε

1

∂2u
ε (uε − Q̃εu

ε) =

∫
Γ

∂2u
ε wε.

Since the family wε is bounded in H1(Γ) and ∂2u
ε|Γ ∈ H−1(Γ) is bounded by uε|Γ ∈

L2(Γ), we find an a priori bound for uε ∈ H1(Ω).
In order to show the L∞-convergence of uε we use again the above calculation and

the fact that the family of functions ∂2u
ε|Γ ∈ H−1/2(Γ) is bounded. We claim that

the functions wε vanish in H1/2(Γ) at the rate ε1/4. The functions wε are bounded in
C1/2(Γ) and have vanishing averages on all intervals ε(k − γ, k + γ). Therefore they
satisfy an L∞-estimate ‖wε‖L∞ ≤ C

√
ε. Additionally wε ∈ H1(Γ) is bounded. By an

interpolation between L2(Γ) and H1(Γ) we conclude that ‖wε‖H1/2(Γ) ≤ Cε1/4. We

conclude that uε ∈ H1(Ω) vanishes at the rate ε1/8. We use an inverse estimate of an
L∞-norm in terms of an Lq-norm (exploiting that uε is constant on ε-intervals up to
the error wε of order O(

√
ε)), and a trace theorem with q > 8 to find

‖uε‖L∞(Γ) ≤ C
[√

ε + ε−1/q‖uε‖Lq(Γ)

]
≤ C(q)

[√
ε + ε−1/q‖uε‖H1(Ω)

]
≤ Cε1/8−1/q.

This shows the assertion.
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Abstract. Assume that zero is a stable equilibrium of an ODE ẋ = f(x, λ) for parameter values
λ < λ0 and becomes unstable for λ > λ0. If we suppose that λ(t) varies slowly with t, then, under
some conditions, the trajectories of the nonautonomous ODE ẋ = f(x, λ(t)) stay close to zero even
long after λ(t) has crossed the value λ0. This phenomenon is called “delayed loss of stability” and is
well known for ODEs. In this paper, we describe an analogous phenomenon for delay equations of
the form ẋ(t) = f(t, x(t− 1)). We study an example which requires combining linearization at zero
with estimates on the nonlinear behavior away from zero, and where we obtain an explicit estimate
on the time until the growth of |x(t)| becomes “visible.”
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stability, decay and growth of oscillations
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1. Introduction. Dynamical systems as mathematical models of real life pro-
cesses depend on several parameters which are assumed to be fixed within some time
period (see, e.g., [4], [12], [1]). The influence of a parameter λ on the behavior of
a dynamical system is studied within the framework of bifurcation theory. Suppose
now that a relevant system parameter λ changes very slowly in time, for example,
because of an aging process. In the model equation, one can then replace the param-
eter λ by λ(εt), where ε > 0 is a small. (The new equation is then nonautonomous.)
The so-called dynamic bifurcation theory is concerned with the investigation of the
corresponding changes of the system behavior [1]. A special phenomenon, known as
delayed loss of stability, can lead to dramatic consequences (e.g., thermal explosion
[7]). For ordinary differential equations (ODEs), this effect is well known and has
been studied from different points of view [3], [13], [2], [14].

Let us illustrate the phenomenon by considering the simple linear equation

ẏ(t) = k(εt)y(t),(1.1)

where ε > 0 is small, such that the coefficient k(εt) in (1.1) changes slowly in time.
Setting εt = τ , y(t) = y(τ/ε) = x(τ), we get from (1.1)

ε
dx

dτ
= k(τ)x.(1.2)

Concerning the function k, we suppose the following.
(A) k : R −→ R is continuous, strictly increasing, and there exist numbers τ− <

τ0 < τ+ such that

k(τ) < 0 for τ < τ0, k(τ) > 0 for τ > τ0,

∫ τ+

τ−

k(τ)dτ = 0.(1.3)
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The so-called associated system to (1.2) reads

dx

dσ
= k(τ)x(σ),(1.4)

where τ in the right-hand side has to be considered as a parameter and σ is the
independent variable. From hypothesis (A) it follows that the equilibrium x = 0 of
the associated equation (1.4) is stable for τ < τ0 and unstable for τ > τ0; that is, it
changes its stability at τ = τ0.

The solution x(·, τ−, x−) of (1.1) satisfying x(τ−, τ−, x−) = x− is explicitly given
by

x(τ, τ−, x−) = x− exp

{
1

ε

∫ τ

τ−

k(s)ds

}
.

We see that if k satisfies assumption (A), then x(τ, τ−, x−) is exponentially decaying
for τ− < τ < τ0 and stays near x = 0 also for some time interval τ0 < τ < τ̂
with τ̂ < τ+, during which x = 0 is an unstable equilibrium of (1.4). Obviously,
analyticity of the equation is inessential for this simple phenomenon (but plays a role
in connection with more refined results as, e.g., [13]).

The main goal of this paper is to describe a similar effect for differential-delay
equations, where we restrict ourselves to simplest cases.

As a preparation, we consider in section 2 the constant coefficient equation

ẋ(t) = cx(t− 1),(1.5)

with c ∈ [−3π/4,−π/4]. It is well known that the zero solution of (1.5) is stable for
c ∈ (−π/2, 0), and unstable if c < −π/2. Contrary to the ODE case, the exponential
rate of growth or decay is not directly given by c but has to be estimated. We provide
such estimates. As further preparatory background material, section 2 contains a
simple version of the variation-of-constants formula for the case of inhomogeneous
equations with nonconstant coefficient.

In section 3 we compare solutions of

ẋ(t) = g(t, x(t− 1))

(with nonlinear g) on successive time intervals Ii to solutions of the equation

dx

dt
= cix(t− 1),

with constants ci which are values of ∂2g(·, 0) on Ii. In Theorem 3.2, we obtain
estimates that express the phenomenon of delayed loss of stability for differential-
delay equations. In section 4 we treat the example equation

ẋ(t) = (−π/4 − εt) arctan(x(t− 1)).

Here, we study the initial value problem with the initial segment identically 1, and
estimate the time until the solution is close enough to zero by a method that is not
based on linearization. Theorem 3.2 is then applicable to the motion close to zero,
and we obtain a lower bound for the time t1 until the solution reaches absolute value
1 again. (This is to be understood in the sense that certainly |x(t)| ≤ 1 for t ≤ t1.)
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We do not rigorously prove the (essentially obvious) fact that the solution grows again
after the coefficient has crossed the stability border, but give a heuristic argument for
this in section 4.

Notation. For bounded functions ϕ on [−1, 0], the sup-norm is denoted by |ϕ|.
Generally, we use the symbol ‖ ‖∞ for the sup-norm of bounded functions on some
domain.

Let C denote the space of continuous functions on [−1, 0] with the max-norm.
Assume that G : R×C → R is continuous, is locally Lipschitz continuous with respect
to the second argument, and satisfies a linear growth condition

|G(t, ϕ)| ≤ L(t)(1 + |ϕ|) (t ∈ R, ϕ ∈ C)

with L : R −→ R
+
0 continuous. Then, for ϕ ∈ C and τ ∈ R, there is a unique

continuous function xG,ϕ,τ : [τ − 1,∞] −→ R such that

xG,ϕ,τ
τ = ϕ, ẋG,ϕ,τ (t) = G(t, xG,ϕ,τ

t ) for t ≥ τ.

(At t = τ , the derivative is to be read as right-side derivative.) The symbol xt, as
usual, denotes the segment of the function x at time t, that is, xt(θ) = x(t + θ),
−1 ≤ θ ≤ 0.

We shall need solutions of linear equations also for discontinuous initial values;
let J denote the space of functions ϕ : [−1, 0] −→ R which are continuous on [−1, 0)
but possibly have a jump discontinuity at 0 (i.e., limt−→0,t<0 ϕ(t) exists). We use the
sup-norm | | also on this space, and we introduce the weaker norm | |∗ on J defined
by

|ψ|∗ := |ψ(0)| +
∫ 0

−1

|ψ(s)| ds.

Using the space J is a simple approach to variation of constants which suffices for
our purposes.

2. Linear equations. First we consider linear equations of the type

ẋ(t) = a(t)x(t− 1).(a)

The proof of Proposition 2.1 below uses mainly simple standard arguments, in com-
bination with known results for initial segments in C. With a view to the paper’s
length, it is omitted. A detailed proof is available from the authors.

Proposition 2.1. Let τ, T ∈ R, τ < T , and let a : [τ, T ] −→ R be continuous.
(a) For ψ ∈ J and s ∈ [τ, T ] there exists a unique solution xa,ψ,s : [s−1, T ] −→ R

of the initial value problem ẋ(t) = a(t)x(t− 1), xs = ψ.
(b) The map

F : (J, | |∗) × {(s, t) ∈ [τ, T ]2 | s ≤ t} � (ψ, s, t) �→ xa,ψ,s(t) ∈ R

is continuous.
(c) If a ∈ C1 and T ≥ τ + 3, then for t ≥ τ + 3, t ≤ T the segment xa,ψ,τ

t is C2.
Our aim is to express solutions of (a) with a slowly varying coefficient by solutions

of the constant coefficient equation

ẋ(t) = c · x(t− 1) (c ∈ R).(c)
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First, we provide more detailed information on (c) for values of c around the stability
border −π/2. For c ∈ R, let Σc ⊂ C denote the set of zeroes of the characteristic
function λ �→ λ− c · exp(−λ) associated with (c).

Proposition 2.2. For c ∈ (−∞,−e−1), the set Σc has the form

Σc = {λk(c) | k ∈ N0} ∪ {λk(c) | k ∈ N0},

where λk(c) = ρk(c)+iωk(c), λk(c) = ρk(c)−iωk(c) (k ∈ N0), and ωk(c) ∈ (2kπ, (2k+
1)π). The following properties hold:

(a) ρk(c) > ρk+1(c) (k ∈ N0), so that ρ0(c) = max Re Σc.
(b) ρ0(−π/2) = 0.
(c) For c ∈ [−3π/4,−π/4], ρ′0(c) exists and ρ′0(−π/2) = −2π

4+π2 . Further, ω0(c) ∈
(π/4, π), and

−4(π + 2)

π2
≤ ρ′0(c) ≤ −4(π − 2)

3π2
, and

ρ0(c) ≤

⎧⎪⎪⎨
⎪⎪⎩
−|c + π/2|4(π − 2)

3π2
if c > −π/2,

|c + π/2|4(π + 2)

π2
if c ≤ −π/2.

(d) |ρ0(c)| ≤ (π + 2)/π ≤ 2 for c ∈ [−3π/4,−π/4].
Proof. The assertions on Σc and property (a) follow from Theorem 5 in [15].

Writing λ = ρ + iω, the characteristic equation λ = c exp(−λ) is equivalent to the
equations

ρ = ce−ρ cosω, ω = −ce−ρ sinω.

Note that sinω = 0 would imply ω = 0, but we know already that for c < −e−1

there exist no real roots of the characteristic equation. Hence, we can restrict our-
selves to the case sinω �= 0, and we obtain from the above two equations ω =
−c exp(ω cotω) sinω. Setting

χ(ω) :=
ω

sinω
exp(−ω cotω) for ω ∈ R \ {kπ | k ∈ Z},

the last equation is equivalent to

χ(ω) = −c.(2.1)

The function χ is discussed in [15]. One has

χ′(ω) =
χ(ω)

ω
[(1 − ω cotω)2 + ω2];(2.2)

χ and χ′ are positive on (0, π), with χ(ω) −→ e−1 as ω −→ 0, and χ(ω) −→ ∞ as
ω −→ π, ω < π. For c ∈ (−∞,−e−1), the number ω0(c) is the unique solution of (2.1)

in (0, π) and ρ0(c) = −ω0(c) cotω0(c) = log −c sinω0(c)
ω0(c)

, so we have

ρ0(c) = log(−c) + log sinω0(c) − logω0(c).(2.3)

Obviously χ(π/2) = π/2, so ω0(−π/2) = π/2 and ρ0(−π/2) = 0. Properties (a) and
(b) are proved.
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(c) It follows from the inverse function theorem and from (2.3) that ω0 and ρ0 are
differentiable functions on (−∞,−e−1), in particular, on [−3π/4,−π/4]. Using (2.2)
we obtain, for c ∈ (−∞,−e−1),

ω′
0(c) = − 1

χ′(ω0(c))
= − ω0(c)

χ(ω0(c))[(1 − ω0(c) cotω0(c))2 + ω0(c)2]

=
ω0(c)

c[(1 − ω0(c) cotω0(c))2 + ω0(c)2]
,

and from (2.3) we get

ρ′0(c) =
1

c
+ ω′

0(c)

(
cotω0(c) −

1

ω0(c)

)
=

1

c
+

ω0(c) cotω0(c) − 1

c[(1 − ω0(c) cotω0(c))2 + ω0(c)2]

=
1

c

(
1 +

ω0(c) cotω0(c) − 1

[(1 − ω0(c) cotω0(c))2 + ω0(c)2]

)
.

In particular, we see that ρ′0(−π/2) = −2
π (1+ −1

1+π2/4 ) = −2π
4+π2 , which is the first asser-

tion of (c). Note now that χ(π/4) = π/4√
2/2

exp(−π/4) = π
√

2
4 exp(−π/4) < π

4

√
2

1+π/4 <

π/4, so ω0(−π/4) > π/4. It follows that

ω0([−3π/4,−π/4]) ⊂ (π/4, π).(2.4)

Further, for all ω > 0 and u ∈ R, one has | u
u2+ω2 | ≤ 1

2ω . With (2.4) we conclude that

∣∣∣∣ ω0(c) cotω0(c) − 1

[(1 − ω0(c) cotω0(c))2 + ω0(c)2]

∣∣∣∣ ≤ 1

2ω0(c)
≤ 2

π
.

With the above expression for ρ′0(c), we now obtain that ρ′0(c) ∈ 1
c [1−2/π, 1+2/π] for

c ∈ [−3π/4,−π/4], so for these c one has (1+2/π)(−4/π) ≤ ρ′0(c) ≤ (1−2/π)(−4/3π),
or

−4(π + 2)

π2
≤ ρ′0(c) ≤ −4(π − 2)

3π2
.

The estimates on ρ0(c) in part (c) follow by integration.
(d) It follows from (b) and (c) that for c ∈ [−3π/4,−π/4] one has

|ρ0(c)| ≤
π

4

4(π + 2)

π2
=

π + 2

π
≤ 2.

It is known that for c < −e−1 and ρ > ρ0(c), there exists K > 0 such that all
solutions xc,ϕ,τ of (c) satisfy an estimate of the form |xc,ϕ,τ (t)| ≤ K exp(ρ(t−τ))|ϕ| for
t ≥ τ . (Compare, e.g., Corollary 6.1, page 215 of [9], and the definition of the constant
K given in the proof of Lemma 6.2, page 213 of the same reference.) Analogous results
hold for much more general linear equations. We now derive a similar estimate with
an explicit value for K, and with ρ = ρ0(c), for the special case of (c).

Proposition 2.3. Set K := [4 + 15(3π/4) + 24(3π/4)2]e4, and let c ∈ [−3π/4,
−π/4] and t, s ∈ R, t ≥ s.

(a) For ψ ∈ C2([−1, 0],R), one has |xc,ψ,s(t)| ≤ (4|ψ|+7|ψ′|+13|ψ′′|)eρ0(c)(t−s).
(b) For ϕ ∈ J, one has |xc,ϕ,s(t)| ≤ |ϕ|K exp[ρ0(c)(t− s)].
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Proof. Since (c) is autonomous, it suffices to prove the assertions for the case
s = 0. For t > 0, we have for ϕ ∈ C the series expansion

xc,ϕ,0(t) =
∑
µ∈Σc

(prµ ϕ) exp(µt),

where prµ ϕ = 1
1+µ [ϕ(0)+µ

∫ 0

−1
e−µsϕ(s)ds] (see [15, Theorem 6], or [10, Lemma 6.8],

or [5, Theorem 6.3, and Corollary 6.4 of Chapter V and formula (3.3) on p. 106]).
Claim: For ψ ∈ C2([−1, 0],R) and for all µ ∈ Σc, one has

|prµ ψ| ≤
(3π/4)|ψ| + 4|ψ′| + e2|ψ′′|

|µ(1 + µ)| .

Proof. If µ ∈ Σc, then µ = ce−µ, so eµ = c/µ. Using partial integration twice, we
calculate

µ

∫ 0

−1

e−µsψ(s)ds = −ψ(0) +
c

µ
ψ(−1) +

1

µ

[
c

µ
ψ′(−1) − ψ′(0)

]
+

1

µ

∫ 0

−1

e−µsψ′′(s) ds.

It follows that

|prµ ψ| ≤
1

|1 + µ|

[
|c|
|µ| |ψ| +

1

|µ|

(
|c|
|µ| + 1

)
|ψ′| + 1

|µ|

∫ 0

−1

|e−µs| ds · |ψ′′|
]
.

Since c ∈ [−3π/4, π/4], we know from Proposition 2.2 that

Σc = {ρk(c) ± iωk(c) | k ∈ N0},

that ωk(c) ≥ 2kπ for k ≥ 1, and that ω0(c) ≥ π/4. In particular, |c|/|µ| ≤
(3π/4)/(π/4) = 3 for µ ∈ Σc. Further, it follows from Proposition 2.2(d) that for
s ∈ [−1, 0] we have |e−µs| ≤ e|ρ0(c)| ≤ e2. Thus we obtain

|prµ ψ| ≤
1

|1 + µ|

[
3π/4

µ
|ψ| + 1

|µ|4|ψ
′| + e2

|µ| |ψ
′′|
]
.

The claim is proved. For ψ ∈ C2([−1, 0],R), we have

∑
µ∈Σc

|prµ ψ| ≤ 2 ·
∑

µ∈Σc,
Im µ>0

|prµ ψ|

≤ 2

∞∑
k=0

[(3π/4)|ψ| + 4|ψ′| + e2|ψ′′|] 1

|ωk(c)|(|ωk(c)| + 1)

≤ 2

(
3π

4
|ψ| + 4|ψ′| + e2|ψ′′|

){
1

π/4(1 + π/4)
+

∞∑
k=1

1

(2kπ)2

}

≤ 2

(
3π

4
|ψ| + 4|ψ′| + e2|ψ′′|

){
1

(3/4) · (7/4)
+

1

4π2

π2

6

}

≤ 2

(
3π

4
|ψ| + 4|ψ′| + e2|ψ′′|

)
17

21
≤ 19/2

2

17

21
|ψ| + 8 · 17

21
|ψ′| + 15 · 17

21
|ψ′′|

≤ 4|ψ| + 7|ψ′| + 13|ψ′′|.
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Now we obtain from the series expansion, and from |eµt| ≤ eρ0(c)t for µ ∈ Σc, that

|xc,ψ,0(t)| ≤
∑
µ∈Σc

|prµ ψ|eρ0(c)t ≤ (4|ψ| + 7|ψ′| + 13|ψ′′|)eρ0(c)t.

Assertion (a) is proved.
(b) We know from Proposition 2.2(d) that |ρ0(c)| ≤ 2, and hence we have

e|ρ0(c)| ≤ e2.(2.5)

Let ϕ ∈ J. For t ∈ [0, 1], we have (using (2.1))

|xc,ϕ,0(t)| ≤ |ϕ|(1 + |c|t) ≤ |ϕ|(1 + |c|)e−ρ0(c)teρ0(c)t

(2.6)
≤ |ϕ|(1 + |c|)e2eρ0(c)t.

Moreover, one has xc,ϕ,0
1 ∈ C1, although ẋc,ϕ,0 may have a jump discontinuity at 1.

Similarly, we have for t ∈ [1, 2]

|xc,ϕ,0(t)| ≤ |ϕ|(1 + |c|)2e−ρ0(c)teρ0(c)t ≤ |ϕ|(1 + |c|)2e4eρ0(c)t.(2.7)

Set ψ := xc,ϕ,0
2 ; then ψ ∈ C2, since xc,ϕ,0

1 ∈ C1, and we have

|ψ| ≤ (1 + |c|)2|ϕ|, |ψ′| ≤ |c| · |xc,ϕ,0
1 | ≤ |c|(1 + |c|)|ϕ|, |ψ′′| ≤ c2|ϕ|.(2.8)

Using part (a), and inequality (2.5) for the last step, we obtain for t ≥ 2

|xc,ϕ,0(t)| = |xc,ψ,2(t)| = |xc,ψ,0(t− 2)|
≤ (4|ψ| + 7|ψ′| + 13|ψ′′|)eρ0(c)(t−2)

≤ [4(1 + |c|)2|ϕ| + 7|c|(1 + |c|)|ϕ| + 13|c|2|ϕ|]eρ0(c)(t−2)

≤ [4 + 15|c| + 24|c|2]e4eρ0(c)t|ϕ|.

We see from (2.6) and (2.7) that this estimate also holds for t ∈ [0, 2]. The assertion
of (b) now follows from |c| ≤ 3π/4.

Next, we need some preparations concerning the inhomogeneous linear equation

ẋ(t) = a(t)x(t− 1) + h(t).(a, h)

We assume that a and h are continuous on an interval [τ, T ]. For t ∈ [τ, T ] we define

a segment ĥ(t) ∈ J by setting

ĥ(t)(θ) :=

{
h(t), θ = 0,

0, θ ∈ [−1, 0).

Note that |ĥ(t) − ĥ(s)| = |h(t) − h(s)| for s, t ∈ [τ, T ], so that the map ĥ : [τ, T ] −→
(J, | |), t �→ ĥ(t) is continuous.

Recall the notation xa,ψ,s for the solution of ẏ(t) = a(t)y(t − 1) starting with

ψ at time s. We now see from continuity of ĥ and from Proposition 2.1(b) that,

for t ∈ [τ, T ], the function [τ, T ] � s �→ xa,ĥ(s),s(t) is continuous. In particular, the

integral
∫ t

τ
xa,ĥ(s),s(t)ds exists, simply as a Riemann integral of a continuous function.

The following result is known but stated in somewhat different notation in the
literature (see, e.g., [8, Theorem 16.3 and formula (16.17)] or [9, formula (2.2), p. 173]).
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Lemma 2.4 (variation of constants). For ψ ∈ C, the solution xa,h,ψ,τ of (a, h)
with xa,h,ψ,τ

τ = ψ satisfies

xa,h,ψ,τ (t) = xa,ψ,τ (t) +

∫ t

τ

xa,ĥ(s),s(t)ds for t ≥ τ.

In the next section we use Lemma 2.4 to compare solutions of nonautonomous
and nonlinear equations of the type

ẋ(t) = g(t, x(t− 1)),(g)

to solutions of constant coefficient equations. This is done on successive intervals,
where we “adapt” the constant coefficient to the coefficient a(t) := ∂2g(t, 0) of the
linearization of (g) on each interval. Thus we obtain Theorem 3.2, which provides
upper estimates on the values of solutions close to zero in terms of exponential func-
tions. Here the real part ρ0(a(r)) of the leading eigenvalue for the “frozen” coefficient
equation ẏ(t) = a(r)y(t − 1) enters in a formula which resembles the expression for
the solution of a scalar linear ODE with varying coefficient.

Theorem 3.2 is applied to the example equation ẋ(t) = (−π/4−εt) arctan(x(t−1))
in section 4, where it serves to control the motion near zero.

3. Nonlinear nonautonomous equations. We consider (g) from above, where
we assume that g : R×R → R is continuous, and has two continuous derivatives w.r.
to the second argument. Further, we assume that for all t one has g(t, 0) = 0 and
that |∂2

2g| has a finite supremum which we denote by ‖∂2
2g‖. For a bounded function

a on an interval [s, t], we use the notation

Va(s, t) := sup
τ∈[s,t]

a(τ) − inf
τ∈[s,t]

a(τ).

Using Lemma 2.4, we can now obtain an estimate on solutions of nonautonomous and
nonlinear equations.

Lemma 3.1. Let ϕ ∈ C, T ≥ 1, s ∈ R, and let g : R × R → R be as above.
Set a(t) := ∂2g(t, 0) for t ∈ R. Assume that c ∈ a([s, s + T ]) ∩ [−3π/4,−π/4]. Set
V := Va(s, s + T ), and with K from Proposition 2.3 set

KV := max{K, 1 + 3π/4 + V }, LV := KV e
2.

Let x : [s−1,∞) → R be the solution of (g) with xs = ϕ, and assume that τ ∈ [s, s+T ]
and ξ ≥ 0 are such that |xt| ≤ ξ for all t ∈ [s, τ ]. Then, for all t ∈ [s, τ ], one has

|xt| ≤ LV |ϕ| exp[(ρ0(c) + LV V + LV ‖∂2
2g‖ξ/2) · (t− s)].

Proof. For t ∈ [s, s + T ], there exists rt ∈ (0, 1) such that

g(t, x(t− 1)) = ∂2g(t, 0)x(t− 1) + [∂2
2g(t, rtx(t− 1))/2]x(t− 1)2

= cx(t− 1) + (∂2g(t, 0) − c)x(t− 1) + [∂2
2g(t, rtx(t− 1))/2]x(t− 1)2

= cx(t− 1) + (a(t) − c)x(t− 1) + [∂2
2g(t, rtx(t− 1))/2]x(t− 1)2.

Thus, with h(t) := (a(t)− c)x(t− 1) + [∂2
2g(t, rtx(t− 1))/2]x(t− 1)2 for t ∈ [s, s+ T ],

one has for these t

ẋ(t) = cx(t− 1) + h(t).
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Further, for t ∈ [s, τ ] one has

|ĥ(t)| ≤ V |x(t− 1)| + (‖∂2
2g‖/2)x(t− 1)2 ≤ [V + ‖∂2

2g‖ξ/2] · |x(t− 1)|.

It follows from Lemma 2.4 and from Proposition 2.3(b) that, for t ∈ [s, τ ],

|x(t)| =

∣∣∣∣xc,ϕ,s(t) +

∫ t

s

xc,ĥ(σ),σ(t) dσ

∣∣∣∣
≤ K|ϕ| exp[ρ0(c)(t− s)] + K

∫ t

s

exp[ρ0(c)(t− σ)]|ĥ(σ)| dσ

≤ K

{
|ϕ| exp[ρ0(c)(t− s)] + [V + ‖∂2

2g‖ξ/2]

∫ t

s

exp[ρ0(c)(t− σ)]|x(σ − 1)| dσ
}
.

Set W := [V + (‖∂2
2g‖ξ/2)]. If now t ∈ [s + 1, τ ] (in case s + 1 ≤ τ) and θ ∈ [−1, 0],

then

|x(t + θ)|≤K

{
|ϕ| exp[ρ0(c)(t + θ− s)] + W

∫ t+θ

s

exp[ρ0(c)(t+ θ− σ)]|x(σ − 1)| dσ
}

≤K exp(|ρ0(c)|)
{
|ϕ| exp[ρ0(c)(t− s)] + W

∫ t+θ

s

exp[ρ0(c)(t− σ)]|xσ| dσ
}

≤K exp(|ρ0(c)|)
{
|ϕ| exp[ρ0(c)(t− s)] + W

∫ t

s

exp[ρ0(c)(t− σ)]|xσ| dσ
}
.

Hence, for t ∈ [s + 1, τ ], it follows trivially that with KV := max{K, 1 + 3π/4 + V }
we have

|xt| ≤ KV exp(|ρ0(c)|)
{
|ϕ| exp[ρ0(c)(t−s)] + W

∫ t

s

exp[ρ0(c)(t− σ)]|xσ| dσ
}
.

(3.1)

For t ∈ [s, s + 1] ∩ [s, τ ], we obtain (using the differential equation and the definition
of KV ) that

|xt| ≤ |ϕ| +
∫ 0

−1

(|c| + V )|ϕ| ds = |ϕ|(1 + |c| + V )

≤ |ϕ|(1 + 3π/4 + V ) ≤ KV |ϕ|.

The right-hand side of (3.1) is, for t ∈ [s, s + 1], obviously bounded below by KV |ϕ|.
Hence, (3.1) holds also for t ∈ [s, s + 1].

Now, setting y(t) := exp[−ρ0(c)t]|xt| for t ∈ [s, τ ], we obtain from (3.1) and (2.5)
that

y(t) ≤ KV exp(|ρ0(c)|)
{
|ϕ| exp[−ρ0(c)s] + W

∫ t

s

y(σ) dσ

}

≤ KV e
2

{
|ϕ| exp[−ρ0(c)s] + W

∫ t

s

y(σ) dσ

}

= LV

{
|ϕ| exp[−ρ0(c)s] + W

∫ t

s

y(σ) dσ

}
.
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It follows from Gronwall’s lemma that for t ∈ [s, τ ] one has

y(t) ≤ LV |ϕ| exp[−ρ0(c)s] exp[LV W (t− s)].

Hence we conclude

|xt| ≤ LV |ϕ| exp[ρ0(c)(t− s)] exp[LV W (t− s)]

= LV |ϕ| exp[(ρ0(c) + LV V + LV ‖∂2
2g‖ξ/2) · (t− s)].

We are now prepared for the proof of a delayed loss of stability estimate for
nonlinear nonautonomous equations of type (g). Again, we restrict attention to the
case where ∂2g(·, 0) takes values in [−3π/4,−π/4]. Recall the definition of Va(s, t) for
s ≤ t.

Theorem 3.2. Let t− ∈ R, let g be as above, and assume that the function
defined by a(t) := ∂2g(t, 0) takes values in [−3π/4,−π/4]. Assume that there exists
T ≥ 1 and V ≥ 0 such that one has for all s ≥ t−

Va(s, s + T ) ≤ V.(3.2)

Let ϕ ∈ J, and let x : [t− − 1,∞) → R be the solution of (g) with xt− = ϕ. Assume
that t+ ≥ t− and ξ ≥ 0 are such that

∀t ∈ [t−, t+] : |xt| ≤ ξ.

Define LV as in Lemma 3.1, and set

C := C(V, T, ξ) := LV V + LV ‖∂2
2g‖ξ/2 + log(LV )/T.

Finally, for t, s ∈ R, t ≥ s ≥ t−, set

u(t, s) := exp

[∫ t

s

(ρ0(a(r)) + C) dr

]
.

(a) Then one has for all t ∈ [t−, t+]

|xt| ≤ |ϕ|LV u(t, t−).

(b) With c− := 4(π−2)
3π2 , c+ := 4(π+2)

π2 , the following estimates hold:

If t, s ∈ [t−, t+], s ≤ t, and a(·) ≥ −π/2 on [s, t], then

u(t, s) ≤ exp

[∫ t

s

(−c−|a(s) + π/2| + C) ds

]
.

If t, s ∈ [t−, t+], s ≤ t, and a(·) ≤ −π/2 on [s, t], then

u(t, s) ≤ exp

[∫ t

s

(c+|a(s) + π/2| + C) ds

]
.

Remarks. 1. The first estimate in (b) implies (not necessarily monotonous) decay
of |xt|, as long as a(s) ≥ −π/2 and c−|a(s) + π/2| ≥ C. One can expect the second
inequality to hold only if the term ‖∂2

2g‖ξ/2 is small enough, i.e., if the solution x
takes sufficiently small values. This is natural since the decay is an effect of the
linearization at zero.
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If one wants to obtain decay for “large” initial values ϕ, it is necessary to combine
the estimate of Theorem 3.2(a) with different methods, as we do in the example in
section 4. While the method of linearization close to zero is “universal,” the possibil-
ities to obtain a decay estimate far from zero depend both on the initial value and on
the specific nonlinearity. We explain the basic idea for doing this in our example at
the beginning of section 4.

2. If one obtains |xt0 | < |ϕ| for some t0 ∈ [t−, t+], then the second inequality in
b) can be used to give a lower estimate for the length of the time interval on which
|xt| ≤ |ϕ|. Note that, as soon as ρ0(a(t)) > 0 (in fact, as soon as ρ0(a(t)) + C > 0),
the function t �→ u(t, t−) starts to increase exponentially with t, and typically one
has to expect that the solution x does the same. We do not prove this rigorously,
but give a heuristic argument: For the constant coefficient equation with an unstable
(complex) leading eigenvalue, all solutions, except the ones starting in a subspace
S of codimension 2, exhibit the growth associated with that unstable eigenvalue.
The functions in S are rapidly oscillating (have two or more zeroes per time unit).
The same behavior is to be expected from equations with slowly varying coefficient.
This could be proved by comparison to the constant coefficient case on successive
“long” intervals, which is also our method of proving Theorem 3.2. In the example
of section 4, the solution under consideration is slowly oscillating (has zeroes further
apart than 1) and hence will certainly exhibit growth behavior corresponding to the
leading eigenvalue of the constant coefficient approximation.

Proof of Theorem 3.2. Set C̃ := C̃(V, ξ) := LV V + LV ‖∂2
2g‖ξ/2. For t ≥ t−, set

η(t) := exp[
∫ t

t−
(ρ0(a(s)) + C̃) ds] = exp[

∫ t

t−
(ρ0(a(s)) ds] exp[C̃(t − t−)]. Consider ϕ

and x as in the theorem.
Claim. If t ∈ [t− + (j − 1)T, t− + jT ] for some j ∈ N, and t ≤ t+, then

|xt| ≤ |ϕ|Lj
V η(t).

Proof. (induction on j.) The case j = 1: Assume t ∈ [t−, t− +T ]. From the mean
value theorem, there exists τ = τ(t) ∈ [t−, t] such that

∫ t

t−

ρ0(a(s))ds = (t− t−)ρ0(a(τ)).

Applying Lemma 3.1 with s := t−, τ := T , c := a(τ), one obtains

|xt| ≤ LV |ϕ| exp[(ρ0(c) + LV V + LV ‖∂2
2g‖ξ/2)(t− t−)]

= LV |ϕ| exp

[ ∫ t

t−

(ρ0(a(s)) + C̃) ds

]
= |ϕ|LV η(t),

which is the assertion for j = 1.
Assume now that the assertion holds for some j ∈ N and that t ∈ [t− + jT, t− +

(j + 1)T ], t ≤ t+. Set ψ := xt−+jT . Then the induction hypotheses gives |ψ| ≤
|ϕ|Lj

V η(t− + jT ). From the case j = 1, applied with t− + jT in place of t−, one
obtains for the solution y : [t− + jT − 1,∞) → R of (g) with yt−+jT = ψ that

|yt| ≤ |ψ|LV exp

[ ∫ t

t−+jT

(ρ0(a(s)) + C̃) ds

]
.
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Together with the estimate on |ψ|, we conclude

|xt| = |yt| ≤ |ϕ|Lj
V η(t− + jT )LV exp

[ ∫ t

t−+jT

(ρ0(a(s)) + C̃) ds

]

= |ϕ|Lj+1
V η(t).

The claim is proved.
Now let t ∈ [t−, t+], and set j := min{n ∈ N | t−+nT > t}. Then t−+(j−1)T ≤

t < t− + jT , and from the above claim we get |xt| ≤ |ϕ|Lj
V η(t). Note that

Lj−1
V = exp

[
(j − 1)T log(LV )

T

]
≤ exp

[
(t− t−)

log(LV )

T

]
= exp

[∫ t

t−

log(LV )

T
ds

]
.

Recalling the definition of η, and noting that C̃ + log(LV )/T = C, we obtain

|xt| ≤ |ϕ|LV exp

[∫ t

t−

(ρ0(a(s)) + C̃ + log(LV )/T ) ds

]
= |ϕ|LV u(t, t−),

that is, assertion (a). Assertion (b) follows from the estimates on ρ0 from Proposi-
tion 2.2(c).

4. An example. For ε ∈ (0, 0.01], we set

g(t, x) := (−π/4 − εt) arctan(x),

and we consider the solution x : [−1,∞) −→ R of (g) with the constant function equal
to 1 as initial segment. (The dependence of all objects on ε is not denoted.) Note
that a(t) := ∂2g(t, 0) satisfies a(t) ∈ [−3π/4,−π/4] as long as t ∈ [0, π/2ε]. Further,
for these t and for y ∈ R, one has

|∂2
2g(t, y)| ≤ | − 3π/4| sup

z∈R

|2z/(1 + z2)2| ≤ 2 · 3π/4 ≤ 5.

(It is not essential that these properties do not hold for t outside the interval [0, π/2ε],
in which we will be interested.)

As already remarked, we need to prove decay of our solution x from the constant
value 1 to values near zero first, before Theorem 3.2 becomes applicable to the motion
near zero. We briefly explain our basic approach in achieving this: The solution x is
oscillating about zero, with zeroes zi, i = 1, 2, . . . , and extremal values mi occurring
at the times zi + 1. It is easy to obtain an estimate of the form |g(t, y)| ≤ q|y| for
our g, where q ∈ (0, 1). We conclude that the mi form a geometrically decreasing
sequence: mi+1 ≤ qmi. This implies exponential decay of |x(t)|, if the zi are not too
far apart. However, since it would be difficult to obtain an upper bound on zi+1 − zi,
we also consider the theoretically possible (although practically not occurring) case of
“long” distances between zi and zi+1 (in Proposition 4.3 below). On such intervals,
the negative feedback forces the solution to decay monotonously, and we prove an
exponential estimate also in this case. While the first argument is based on the
estimate | arctan(y)| ≤ |y| (the feedback is “weak” enough), this second argument
uses the estimate | arctan(y)| ≥ (π/4)|y| if |y| ≤ 1 (the negative feedback is “strong”
enough).

We carry out the details now.
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Proposition 4.1. The solution x is slowly oscillating; that is, there exists a
sequence (z1, z2, . . . ) in R such that 0 < z1 < z2 < · · · and such that the zi are
precisely the zeroes of x, and zi+1 − zi > 1 for all i ∈ N. The extrema of x on (0,∞)
occur at the times µi := zi + 1 ∈ (zi, zi+1), so we have

z1 < µ1 = z1 + 1 < z2 < µ2 = z2 + 1 < · · · .

Further, one has z1 ≤ 2.
Proof. Assume that x has no zero on some interval of the form [t0,∞). Then the

negative feedback property g(t, y)y < 0 (t > 0, y ∈ R \ {0}) implies that x(t) −→ 0
(t −→ ∞), so there exists t1 ≥ t0 with |x(·)| ≤ 0.1 on [t1,∞). Now setting α(t) :=∫ 1

0
∂2g(t, sx(t − 1)) ds, the function x satisfies ẋ(t) = α(t)x(t − 1) for t ≥ t1, and for

these t one has

α(t) ≤ −(π/4) min
|y|≤0.1

arctan′(y) = −(π/4) · 100/101 < − exp(−1).

We can now apply Theorem 8 in [6] (with n := 1, r := 1, η(t,−1) := 0, η(t, θ) := α(t)
for θ ∈ (−1, 0], and with q(t, θ) := −η(t, θ)); in particular, the last inequality shows
that condition (A4) of that theorem is satisfied. It follows that x has infinitely many
zeroes on [t1,∞), in contradiction to our assumption.

We know now that x must have infinitely many zeroes. It follows from the fact
that the segment x0 has no zero, and from the fact that the zero-counting Liapunov
functional used in [11] does not increase in time, that x is slowly oscillating (see [11],
Theorem 2.1). The assertion about extrema is now clear, in view of the differential
equation.

We now prove z1 ≤ 2: On [0, 1], we have

ẋ(t) = (−π/4 − εt) arctan(1) ≤ (−π/4)(π/4) = −π2/16,

and hence x(1) ≤ 1 − π2/16. On the other hand, for t ∈ [0, 1], one obtains (using
ε ≤ 0.01) that ẋ(t) ≥ (−π/4 − ε)(π/4) ≥ −10/16 = −5/8, so x(t) ≥ 1 − (5/8)t for
these t. It follows from | arctan(y)| ≥ |(π/4)y| if |y| ≤ 1 that for t ∈ [1, 2] one has

ẋ(t) ≤ −(π/4)(π/4)[1 − (5/8)(t− 1)].

Hence, integrating, we obtain

x(2) ≤ 1 − (π2/16) − (π2/16)[1 − (5/8)(1/2)] = 1 − (π2/16) − (π2/16) · (11/16)

= 1 − (27π2/256) ≤ 1 − 27 · 9.5/256 = 1 − 256.5/256 < 0,

and consequently x has a first zero z1 in [1, 2].
Set mi := |x(µi)| for i ∈ N; then mi = maxt∈[zi,zi+1] |x(t)|. We first focus

attention on the time interval (0, π/16ε]. Let J ∈ N be such that the extrema of x in
this interval occur at the times µ1, . . . , µJ . The following estimate exploits the fact
that for t in [0, π/16ε] one has |g(t, y)| ≤ q|y| (y ∈ R) with some q ∈ (0, 1).

Proposition 4.2. For t ∈ [0, zJ+1] one has |x(t)| ≤ 1. Further, with q := 5π/16,
one has

mi+1 ≤ qmi if i ∈ {1, . . . , J − 1}.

Proof. Note that | arctan(y)| ≤ |y| for y ∈ R. As long as t ≤ π/16ε, we thus have

|g(t, y)| ≤ (π/4 + π/16)|y| = 5π/16|y| = q|y|.
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Since |x(·)| ≤ 1 on [0, z1], we have m1 ≤ q < 1. Further, if i ∈ {1, . . . , J − 1}, we
obtain (using zi+1 − zi > 1) that

mi+1 =

∣∣∣∣∣
∫ zi+1+1

zi+1

g(s, x(s− 1)) ds

∣∣∣∣∣ ≤
∫ zi+1

zi+1−1

q|x(s)|ds ≤ qmi.

Together with |x(·)| ≤ 1 on [0, µ1] and the fact that |x(·)| decreases on [µJ , zJ+1], it
follows that |x(·)| ≤ 1 on [0, zJ+1].

Next, we give a decay estimate for the case that µi − µi−1 is “large.”
Proposition 4.3. Assume i ∈ {2, . . . , J + 1} and µi−1 + 1 ≤ zi. Then for all

j ∈ N0 with µi−1 + j ≤ zi one has

|x(µi−1 + j)| ≤ qj−1mi−1.

Proof. The estimate is trivial for j = 0. Since |x(·)| decreases on [µi−1, zi] and
mi−1 ≤ 1, we have |x(·)| ≤ 1 on [µi−1, zi], and |x(µi−1 + 1)| ≤ mi−1. Hence the
assertion holds for j = 1. Now if j ∈ N and [µi−1 + j, µi−1 + j + 1] ⊂ [µi−1, zi],
we obtain (using | arctan(y)| ≥ (π/4)|y| if |y| ≤ 1, and the monotonicity of |x(·)| on
[µi−1 + j − 1, µi−1 + j]) that

|x(µi−1 + j + 1)| =

∣∣∣∣∣x(µi−1 + j) +

∫ µi−1+j+1

µi−1+j

g(s, x(s− 1)) ds

∣∣∣∣∣
≤ |x(µi−1 + j)| − min

s∈[µi−1+j−1,µi−1+j]
|g(s + 1, x(s))|

≤ |x(µi−1 + j)| − (π/4)| arctan(x(µi−1 + j))|
≤ |x(µi−1 + j)| − (π2/16)|x(µi−1 + j)|
= [(16 − π2)/16]|x(µi−1 + j)| ≤ q|x(µi−1 + j)|.

For j ∈ N with µi−1 + j ≤ zi, it follows inductively that

|x(µi−1 + j)| ≤ qj−1|x(µi−1 + 1)| ≤ qj−1mi−1.

Proposition 4.2 above relates the value mi to the index i, but not to the time µi

at which it occurs. This is achieved in the next result.
Proposition 4.4. With the negative number λ := log(q)/4, one has

mj ≤ q−1 exp(λµj) (j = 1, . . . , J).

Proof. Let i ∈ {2, . . . , J}. If zi − µi−1 ≤ 2, then µi − µi−1 ≤ 3 < 4 and

mi/mi−1 ≤ q = exp(4λ) ≤ exp(λ(µi − µi−1)).(4.1)

Consider now the case zi − µi−1 > 2. Then, setting

j1 := max{j ∈ N | µi−1 + j + 1 ≤ zi},

we obtain from Proposition 4.3 that

|x(µi−1 + j1)| ≤ qj1−1mi−1.

Note that [zi−1, zi] ⊂ [µi−1+j1, zi], and hence |x(t)| ≤ |x(µi−1+j1)| for t ∈ [zi−1, zi].
We infer from the differential equation that

mi ≤ q|x(µi−1 + j1)| ≤ qqj1−1mi−1 = qj1mi−1.
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Now, from the definition of j1,

µi − µi−1 = zi + 1 − µi−1 ≤ µi−1 + j1 + 3 − µi−1 = j1 + 3 ≤ 4j1,

and thus

mi/mi−1 ≤ qj1 = exp(λ · 4j1) ≤ exp(λ(µi − µi−1)),

and we see that (4.1) also holds in the second case.
We conclude that for j ∈ {1, . . . , J} one has

mj = m1

j∏
i=2

(mi/mi−1) ≤ m1

j∏
i=2

exp(λ(µi − µi−1))

= m1 exp[λ(µj − µ1)] = m1 exp(−λµ1) exp(λµj),

where the product is to be read as 1 if j = 1. Since m1 ≤ 1 (Proposition 4.2) and
µ1 = z1 + 1 ≤ 3 < 4 (Proposition 4.1), it follows that mj ≤ exp(−4λ) exp(λµj) =
q−1 exp(λµj).

We can now obtain an exponential decay estimate for x (which is not based on
linearization at zero) for the time interval [0, π/16ε].

Corollary 4.5. For t ∈ [0, π/16ε], one has |xt| ≤ 2q−3 exp(λt).
Proof. 1. For t ∈ [0, µ1], one has |xt| ≤ 1, and µ1 ≤ 3 < 4 implies

2q−3 exp(λt) ≥ 2q−3 exp(4λ) = 2q−2 > 1,

so the assertion is true for these t.
2. Let t ∈ [µ1, π/16ε]. There exists i ∈ {2, . . . , J + 1} with t ∈ [µi−1, µi].
Case 1: t ≤ µi−1 + 2. We have |x(s)| ≤ mi−1 for s ∈ [zi−1, zi], and

|ẋ(s)| ≤ |(−π/4 − π/16)|mi−1 = qmi−1 ≤ mi−1

for s ∈ [zi, t] if t ≥ zi. In this case, t− zi ≤ µi−1 + 2 − zi ≤ 2, so |x(s)| ≤ 2mi−1 for
s ∈ [zi, t]. With Proposition 4.4, it follows that

|xt| ≤ 2mi−1 ≤ 2q−1 exp(λµi−1) = 2q−1 exp(λ(µi−1 − t)) exp(λt)

≤ 2q−1 exp(−2λ) exp(λt) ≤ 2q−2 exp(λt).

Case 2: t > µi−1 +2. Then zi = µi−1 ≥ t−1 ≥ µi−1 +1. Setting j1 := max{j ∈
N | µi−1 + j ≤ min{t, zi}}, we obtain from Proposition 4.3 that

|x(µi−1 + j1)| ≤ qj1−1mi−1.

Subcase 2a: t ≤ zi. Then j1 ≥ 2, and t − (µi−1 + j1) ≤ 1, and it follows from
Propositions 4.3 and 4.4 that

|xt| ≤ |xµi−1+j1 | = |x(µi−1 + j1 − 1)| ≤ qj1−2mi−1

≤ qj1−2q−1 exp(λµi−1) = q−1 exp[4λ(j1 − 2)] exp(λµi−1)

≤ q−1 exp[λ(j1 − 2)] exp(λµi−1) = q−1 exp(λt) exp[λ(j1 − 2 + µi−1 − t)]

≤ q−1 exp(−3λ) exp(λt) ≤ q−2 exp(λt).

Subcase 2b: t > zi. Then t ∈ [zi, µi] = [zi, zi +1]. From Subcase 2a, applied to zi,
we obtain |xzi | ≤ q−2 exp(λzi). For s ∈ [zi, t], one has ẋ(s) ≤ |(−π/4 − π/16)| |xzi | ≤
qq−2 exp(λzi). It follows that

|xt| ≤ q−2 exp(λzi) = q−2 exp(λt) exp(λ(zi − t))

≤ q−2 exp(−λ) exp(λt) ≤ q−3 exp(λt).

From part 1 and the different cases of part 2, the asserted estimate is obtained.
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Combining the above estimate with the ones which were obtained from lineariza-
tion at zero in Theorem 3.2, we can now provide a lower estimate on the length of
the time interval on which |x(t)| ≤ 1. Since our solution x is slowly oscillating, ex-
ponential growth is to be expected (and certainly seen in numerical simulation) after
the coefficient crosses −π/2, and the solution will also reach the amplitude 1 of the
starting segment again (at some time bounded below by our estimate). We do not
pursue a formal proof of this; compare the second remark following Theorem 3.2.

With c− and c+ from Theorem 3.2, we set c1 := λπ/16 − c+π
2/16 − 5c−π

2/512
and c2 := c+π/4 + c−π/32. Note that c1 < 0 < c2.

Theorem 4.6. There exists ε0 ∈ (0, 0.01] such that for ε ∈ (0, ε0] the function
t �→ |xt| decreases to values below ε on the interval [0, π/4ε], and then reaches the
value

√
ε again not before the time |c1/2c2ε|. (In particular, |xt| ≤ 1 on the interval

[0, c1/2c2ε].)
Proof. With K from Proposition 2.3, we set L := Ke2. There exists ε0 ∈ (0, 0.01]

such that for ε ∈ (0, ε0] the following estimates hold:

2q−3 exp(λπ/16ε) ≤ ε,(4.2)

5L
√
ε ≤ c−π/32,(4.3)

L2q−3 exp[(λπ/16 − c−π
2/512)/ε)] ≤ ε,(4.4)

| log(q3
√
ε/2L)| ≤ |c1|/2ε.(4.5)

Let now ε ∈ (0, ε0]. We set T := T (ε) := 1/
√
ε. We then have for all s ∈ R

Va(s, s + T ) = εT =
√
ε ≤ 1.

It follows that with V :=
√
ε and with KV , LV as in Lemma 3.1, one has KV = K

and LV = Ke2 = L. Further, we have log(LV )/T =
√
ε log(L).

We set ξ :=
√
ε; then the constant C = C(V, T, ξ) from Theorem 3.2 satisfies

C ≤ L
√
ε + 5L

√
ε/2 + log(L)

√
ε ≤ 5L

√
ε.

From Corollary 4.5 and (4.2), we obtain that

|xπ/16ε| ≤ 2q−3 exp(λπ/16ε) ≤ ε < ξ.

Now we set t− := π/16ε, and t+ := min{inf{t > t− | |xt| > ξ}, π/2ε}, and we apply
Theorem 3.2. It follows that with u(t, t−) defined as in that theorem, one has

∀t ∈ [t−, t+] : |xt| ≤ L2q−3 exp(λπ/16ε)u(t, t−).

Next, we estimate u(t, s) for t, s in different time intervals. Note that for t ∈ R, one
has |a(t) + π/2| = | − π/4 + π/2 − εt| = |π/4 − εt|. Thus, for t ∈ [π/16ε, 3π/16ε], we
have |a(t) + π/2| ≥ π/16. It follows from Theorem 3.2(b) and (4.3) that, for these t,

u(t, π/16ε) ≤ exp

[∫ t

π/16ε

(−c−π/16 + C) ds

]

≤ exp

[∫ t

π/16ε

(−c−π/16 + 5L
√
ε) ds

]
(4.6)

≤ exp

[∫ t

π/16ε

(−c−π/32) ds

]
= exp[(−c−π/32)(t− π/16ε)].
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With t0 := π/4ε, we have a(t0) = −π/2. For t ∈ [3π/16ε, t0], one has

ρ0(a(t)) + C ≤ C ≤ 5L
√
ε,

and for these t one has from the definition of u(·, ·) and from (4.3) that

u(t, 3π/16ε) ≤ exp[5L
√
ε(t− 3π/16ε)] ≤ exp[5L

√
επ/16ε]

(4.7)
≤ exp[c−π

2/512ε].

Combining (4.6) and (4.7), we see that

|xt0 | ≤ L2q−3 exp[λπ/16ε]u(t0, 3π/16ε)u(3π/16ε, π/16ε)

≤ L2q−3 exp[λπ/16ε + c−π
2/512ε− c−(π/32)(π/8ε)]

= L2q−3 exp[(λπ/16 − c−π
2/512)/ε].

Now (4.4) shows that |xt0 | ≤ ε < ξ, in particular, t+ > t0.
Finally, for t ∈ [t0, t+] we have |a(t)+π/2| ≤ π/4. Using part (b) of Theorem 3.2,

together with the inequalities C ≤ 5L
√
ε and (4.3), one sees that

u(t, t0) ≤ exp[(c+π/4 + C)(t− t0)] ≤ exp[(c+π/4 + c−π/32)(t− π/4ε)].(4.8)

Combining the estimates (4.6), (4.7), and (4.8), we conclude that for t ∈ [t0, t+]
one has

|xt| ≤ L2q−3 exp[(λπ/16 − c−π
2/512)/ε

− (c+π/4 + c−π/32)(π/4ε) + (c+π/4 + c−π/32)t]

= L2q−3 exp[(λπ/16 − c+π
2/16 − 5c−π

2/512)/ε + (c+π/4 + c−π/32)t]

= L2q−3 exp[c1/ε + c2t].

First case: t+ < π/2ε. Then

L2q−3 exp[c1/ε + c2t+] ≥ ξ =
√
ε, so t+ ≥ [log(q3

√
ε/2L) − c1/ε]/c2.

Using (4.5), we infer t+ ≥ −c1/2c2ε. Thus, |xt| reaches the value ξ =
√
ε again not

earlier than this time.
Second case: t+ = π/2ε. Then the function t �→ |xt| is bounded by

√
ε on the

interval [t0, π/2ε]. From the expressions for c1 and c2, it is not difficult to see that
|c1/2c2| < π/2. Hence, the assertion also holds in the second case.

Remark. The estimate in Theorem 4.6 is, of course, quantitatively correct only
in the sense that it predicts a “growth” time of order 1/ε. Further, the upper bound
0.01 for ε, which we used above, is only of a technical nature.
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INTEGRAL FUNCTIONALS AND THE GAP PROBLEM: SHARP
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Abstract. We consider integral functionals of the type F (u) :=
∫
Ω
f(x, u,Du) dx exhibiting a

gap between the coercivity and the growth exponent

L−1|Du|p ≤ f(x, u,Du) ≤ L(1 + |Du|q), 1 < p < q, 1 ≤ L < +∞ .

We give lower semicontinuity results and conditions ensuring that the relaxed functional F is equal
to
∫
Ω
Qf(x, u,Du) dx, where Qf denotes the usual quasi-convex envelope; our conditions are sharp.

Indeed, we also provide counterexamples where such an integral representation fails, showing that
energy concentrations appear in the relaxation procedure leading to a measure representation of F
with a nonzero singular part, which is explicitly computed. The main point in our analysis is that
such relaxation results depend in a subtle way on the interaction between the ratio q/p and the
degree of regularity of the integrand f with respect to the variable x. Our results extend theorems
for nonconvex integrals due to Fonseca and Malý and Kristensen; the energies we treat are related
to strongly anisotropic settings.

Key words. relaxation, gap phenomenon, quasi-convexity, nonstandard growth conditions

AMS subject classifications. 49J45, 49Q10
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1. Introduction. In recent years there has been increasing interest in variational
integrals defined on Sobolev spaces and exhibiting a gap between the growth and
coercivity exponents∫

Ω

f(x, u,Du) dx ; L−1|Du|p ≤ f(x, u,Du) ≤ L(1 + |Du|q), L ≥ 1,(1.1)

where 1 < p < q < +∞, u : Ω → R
N and Ω is a domain in R

n. The main issues treated
in this setting are concerned with the lower semicontinuity, relaxation, and regularity
of minimizers of such functionals. Therefore a great many analytical techniques have
been developed; examples of papers devoted to such an issue are [1], [8], [24], [25], [33],
[34], and [40]. In particular, in the paper [24] Fonseca and Malý addressed the issue
of the relaxation and the lower semicontinuity of quasi-convex functionals satisfying
(1.1) with f ≡ f(Du). They succeeded in proving that∫

Ω

f(Du) dx ≤ lim inf
k

∫
Ω

f(Duk) dx(1.2)

for any sequence of functions uk ∈ W 1,q(Ω; RN ) weakly converging to u, uk ⇀ u,
in W 1,p(Ω; RN ); moreover they proved that the relaxed functional (when considered
with respect to the weak topology of W 1,p(Ω; RN )) is a Radon measure, say μu. Also
see the work of Kristensen [33], [34], and [36] concerning this type of result. The
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previous theorems are valid, provided the gap between p and q, measured in terms of
the ratio q/p, is not too large, depending on the dimension n, i.e.,

q

p
<

n

n− 1
;(1.3)

see [24] and [37] for discussion on the optimality of (1.3); see also [40], [30]. Sub-
sequently, in [8], Bouchitté, Fonseca, and Malý also proved that the density of the
absolutely continuous part (with respect to the Lebesgue measure) of μu coincides
with the quantity Qf(Du), where Qf(·) denotes the quasi-convex envelope of f (see
[14]). A main problem of the issue is, at this stage, saying something about the
singular part of μu. In a more recent paper [1], Acerbi, Bouchitté, and Fonseca ex-
amined the nonautonomous case f ≡ f(x,Du), analyzing the relaxed functional and
proving, under the main assumption of convexity of the function z �→ f(x, z), that
the existence of the singular part of the measure μu is related to the presence of the
Lavrentiev phenomenon that such functionals typically present, i.e., the impossibility
to approximate in energy a given function u ∈ W 1,p with W 1.q-functions. In partic-
ular, they prove that, if there is no Lavrentiev phenomenon at u, then there is no
singular part of the measure μu. Note that the significance of the situation of the
paper [1] (even if f is considered to be convex with respect to the gradient variable)
lies in the combination of the facts that f both depends on x and exhibits a gap.
Needless to say there is no Lavrentiev gap when one of the two previous conditions
fails (by a well-known convolution argument based on the convexity of f and Jensen
inequality). This suggests that, when dealing with functionals as in (1.1), the presence
of the x and, even worse, of both x and u determines a critical situation. In any case
not much is known about the relaxed functional and the singular part of μu in the
general case (1.1); compare [9, Chap. 21] for a partial result. It is important to note
that all the analysis in [1] is based on the convexity of f . Let us explicitly remark that
the techniques of the previous works do not apply to quasi-convex energy densities
of the type f(x,Du) without imposing severe restrictions on the way the function f
depends on x.

The aim of this paper is to investigate such an issue, concentrating on some
classes of nonconvex functionals as in (1.1) that will have to satisfy certain structure
assumptions but that, nevertheless, will allow the consideration of a large class of
functionals not covered in the available literature. For ease of exposition we assume
that

F (u) ≡ F (u,Ω) :=

∫
Ω

f(x,Du) dx(1.4)

and consider the relaxed functional (see also Remark 2.1 below)

F (u,Ω) := inf

{
lim inf
k→+∞

F (uk,Ω) | {uk} ⊂ W 1,q
loc (Ω; RN ),

uk ⇀ u in W 1,p (Ω; RN )

}
.

(1.5)

The problem we address is: proving measure representation properties of the relaxed
functional, representing its absolute continuous part and finally discovering whether
or not in the relaxation procedure a singular part emerges. Moreover, the problem of
finding explicit examples of singular parts of μu, when the Lavrentiev phenomenon
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does occur is also relevant. In this direction very few results are available in the
literature; see [12], [25], [26], [40], [42].

Due to the lack of a general theory, our analysis starts, and largely proceeds, by
considering some model examples. Let us consider the following relevant ones:

F1(u) :=

∫
Ω

|Du|p(x) dx F2(u) :=

∫
Ω

(|Du|p + a(x)|Du|q) dx,(1.6)

where p ≤ p(x) ≤ q and 0 ≤ a(x) ≤ L < +∞ are continuous functions.
What we are going to discover in the following is that, in such a situation, the

form of the relaxed functional is linked to a subtle interplay between the gap of
the functional and the regularity of the energy density f(x,Du) with respect to the
variable x. Roughly speaking, and, for the sake of clarity, referring to F2, we are going
to show that the larger the gap between p and q, the higher the regularity required on
the function f(x, ·). Indeed, we shall see that for any functional of the type in (1.1)
controlled by F2 in the sense

L−1(|z|p + a(x)|z|q) ≤ f(x, z) ≤ L(|z|p + a(x)|z|q + 1), L ≥ 1,

the relaxed functional described in (1.5) is exactly∫
Ω

Qf(x,Du) dx,

provided the function a(x) is α-Hölder continuous and the following bound is satisfied:

q

p
≤ n + α

n
.(1.7)

Therefore, no energy concentration appears in the relaxation procedure. This condi-
tion must clearly be compared to the one appearing in (1.3): the difference is that
the regularity of f with respect to the variable x comes into play via the exponent
α. Now, though this bound may appear of a technical nature (at least looking at
the proof) the interesting thing is that it actually turns out to be sharp: indeed, we
build a functional, which is exactly F2 for a particular choice of the function a(x), for
which the relaxation process does not lead to Radon measure, but rather to a Borel
measure, in the form of an infinite Dirac mass concentrated in one point. This can
be done as soon as the bound in (1.7) is violated; note that this counterexample can
be obtained already in the scalar case N = 1 and in the case of convex integrals. A
similar situation occurs when considering the relaxation problem for functional F1,
where another condition, in some sense similar to (1.7), involving the oscillations and
the regularity of the exponent function p(x) must be considered; see (5.6) below and
section 8.

But let us give an outlook on the content of this paper. To be general, we shall
treat functionals like the one in (1.1) and satisfying the following additional structure
assumption:

L−1ψ(x, |z|) ≤ f(x, z) ≤ L(ψ(x, |z|) + 1),(1.8)

where ψ(x, |z|) is a suitable convex function with (p, q) growth (with respect to z),
typical examples being the energy densities of the functionals F1 and F2; see Remark
3.1 below. Therefore, we shall not deal with typical examples of quasi-convex energy
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densities such as |z|p+ |det z| as considered, for example, in [40], [25], [24]. In order to
prove the integral representation, a key point will be certain continuity estimates on
the maximal function with respect to the function ψ(x, |z|) and the density of smooth
maps in energy; see sections 4 and 5. This is the point where bounds as in (1.7)
come into the play. Then we proceed building in sections 7 and 8 the counterexam-
ples proving the sharpness of our assumptions. It is worth pointing out that all the
counterexamples we work out are developed in the scalar case (N = 1).

Finally, let us say that for the sake of brevity we confine our analysis to integral
functionals of the type in (1.1), which already incorporate all the technical and ap-
plicative significance of the present issues; the same results can be extended without
serious additional efforts to integrands of the type f ≡ f(x, u,Du).

2. Notation and preliminary results. In what follows, Ω is always a fixed
open subset of R

n and A is the family of its open subsets; if A,B ∈ A, by A ⊂⊂ B we
mean that the closure A of A is a compact set contained in B, and by A0 we denote
the class of all A ∈ A such that A ⊂⊂ Ω. Also, Br(x) denotes the ball of radius r > 0
centered at x ∈ R

n and Br := Br(0). We will denote Lp(Ω; RN ) and W 1,p(Ω; RN ),
p ≥ 1, the standard Lebesgue and Sobolev spaces of functions u : Ω → R

N ; for
the sake of brevity these spaces will be also denoted omitting the dependence on the
target space, e.g., W 1,p(Ω), Lp(Ω), and so on. As customary, in the rest of the paper
c will denote an unspecified positive constant, possibly varying from line to line; the
relevant connections will be emphasized when needed while more peculiar occurrences
will be stressed by c1, c2, c̃, etc. We will consider nonnegative variational functionals
F : L1 (Ω; RN ) → [0,+∞] of the type

F (u) =

⎧⎨
⎩

∫
Ω

f(x,Du(x)) dx if u ∈ C1 (Ω; RN ),

+∞ elsewhere on L1 (Ω; RN ),

where f : Ω × R
N×n → [0,+∞) is a Borel measurable function satisfying a non-

standard growth condition, see (3.1) and (3.2). We are interested in the study of the
relaxed functional of F with respect to the strong L1 (Ω; RN ) convergence, i.e., the
lower semicontinuous envelope of F with respect to the L1 (Ω; RN ) topology. To show
measure property and integral representation of the relaxed functional we make use
of the localization method, which considers at the same time the dependence on the
function and on the open set. To this aim, we will work with nonnegative variational
functionals F : L1 (Ω; RN )×A → [0,+∞] of the form

F (u,A) :=

⎧⎨
⎩

∫
A

f(x,Du(x)) dx if u ∈ C1 (A; RN ),

+∞ elsewhere on L1 (Ω; RN )
(2.1)

for any open set A ∈ A. Also, for every A ∈ A, we denote by F (·, A) the relaxed
functional of F (·, A) with respect to the strong L1 (Ω; RN ) convergence, given for all
u ∈ L1 (Ω; RN ) by

F (u,A) := inf
{

lim inf
k→+∞

F (uk, A) | {uk} ⊂ L1 (Ω; RN ),

uk → u in L1 (Ω; RN )
}
.

(2.2)

Remark 2.1. Since each sequence {uk} ⊂ L1 (A; RN ) converging to u strongly in
L1 (A; RN ) can be extended to a sequence L1 (Ω; RN )-converging to u, if F (u,A) <
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+∞ by (2.1) we have

F (u,A) = inf
{

lim inf
k→+∞

∫
A
f(x,Duk(x)) dx | {uk} ⊂ C1 (A; RN ),

uk → u in L1 (A; RN )
}
.

We explicitly remark that whenever the function f satisfies the following (p, q)-growth
condition:

L−1|z|p ≤ f(x, z) ≤ L(1 + |z|q), 1 < p < q < +∞, 1 ≤ L,

then the previous relaxed functional coincides with the one following, analyzed in [1]
[8] [24]:

F (u,A) = inf
{

lim inf
k→+∞

∫
A
f(x,Duk(x)) dx | {uk} ⊂ W 1,q

loc (A; RN ),

uk ⇀ u in W 1,p (A; RN )
}
.

To show the measure property we recall some well-known facts about set functions.
Definition 2.2. A function α : A → [0,+∞] is called an increasing set function

if α(∅) = 0 and α(A) ≤ α(B) if A ⊆ B. An increasing set function α is said to be
subadditive if

α(A ∪B) ≤ α(A) + α(B)

for all A,B ∈ A, and it is said to be superadditive if

α(A ∪B) ≥ α(A) + α(B)

for all A,B ∈ A with A∩B = ∅; finally α is said to be inner regular if for all A ∈ A

α(A) = sup{α(B) | B ∈ A , B ⊂⊂ A}.

Remark 2.3. Since f ≥ 0, then F (u, ·) is an increasing set function for every
u ∈ L1 (Ω; RN ). Moreover, by definition of relaxation one directly obtains that F (u, ·)
is superadditive. Finally, we denote by F−(u, ·) the inner regular envelope of F (u, ·),
given by

F−(u,C) := sup{F (u,B) | B ∈ A , B ⊂⊂ C}(2.3)

for every C ∈ A, so that F (u, ·) is inner regular if F (u, ·) ≡ F−(u, ·) on A. We will
apply the following criterion due to De Giorgi–Letta [18]; compare also [9, sect. 10.2].

Theorem 2.4 (measure property criterion). Let α : A → [0,+∞] be an increas-
ing set function. Then the following statements are equivalent:

(i) α is the trace on A of a Borel measure on Ω;
(ii) α is subadditive, superadditive, and inner regular;
(iii) the set function α̃(E) := inf{α(A) | A ∈ A, E ⊂ A} defines a Borel measure

on Ω.
We recall a celebrated lower semicontinuity result first obtained by De Giorgi [17]

and due to Ioffe [32] in the following general form.
Theorem 2.5 (L1-semicontinuity). Let A be a bounded open set of R

n and let
g : A × R

N × R
N×n → [0,+∞) be a Carathéodory function such that g(x, u, ·) is

convex for every u ∈ R
N and for a.e. x ∈ A. Then the functional

G(u) :=

∫
A

g(x, u(x), Du(x)) dx
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is lower semicontinuous on W 1,1 (A; RN ) with respect to the weak convergence in
W 1,1 (A; RN ).

We end this section by stating an elementary lemma which is a version of De
Giorgi’s slicing argument.

Lemma 2.6 (slicing lemma revisited). Let {fk} be a sequence of nonnegative
functions in L1(B1) with

sup
k

∫
B1

fk dx ≤ M < +∞.

Then, fixed 0 < s < t < 1, for every ε > 0 there exist N ≡ N(ε,M), an integer
1 ≤ h ≤ N , and a (not relabelled) subsequence {fk} such that

sup
k

∫
Ah

fk dx ≤ ε,

where, for i ∈ {0, 1, 2, . . . , N − 1},

Ai := Bsi+1 \Bsi and si := s +
t− s

N
i.

Proof. Choose N in such a way that Nε > M . It follows that for each k ∈ N

there exists i ≡ i(k) such that ∫
Ai(k)

fk dx ≤ M

N
,

and the assertion follows via a standard compactness argument.

3. Measure property of the relaxed functional. In this section we consider
nonnegative variational functionals F : L1 (Ω; RN )×A → [0,+∞] of the form (2.1)
for any open set A ∈ A, where f : Ω × R

N×n → [0,+∞) is a Borel measurable
function satisfying a nonstandard growth condition of the form

αψ(x, |z|) ≤ f(x, z) ≤ b(x) + β ψ(x, |z|)(3.1)

for a.e. x ∈ Ω and all z ∈ R
N×n. Also, for every A ∈ A, we denote by F (·, A) the

relaxed functional of F (·, A) with respect to the strong L1 (Ω; RN ) convergence, given
for all u ∈ L1 (Ω; RN ) by (2.2).

Here 0 < α ≤ β < +∞, b(x) is a nonnegative function in L1(Ω), and ψ :
Ω×[0,+∞) → [0,+∞) is a suitable Borel function satisfying the following properties:

(i) t �→ ψ(x, t) is nondecreasing and convex for a.e. x ∈ Ω, with ψ(x, 0) ≡ 0 ;
(ii) for every open set A ∈ A0 there exist 1 < c = c (A) < +∞ and 1 < p =

p(A) ≤ q = q(A) < +∞ such that for a.e. x ∈ A we have

c−1 tp ≤ ψ(x, t) ≤ c (tq + 1) ∀ t ≥ 0,
ψ(x, λ t) ≤ c max{λq, λp}ψ(x, t) ∀ t ≥ 0 , λ ≥ 0 ,

ψ(x, t1 + t2) ≤ c 2q−1 (ψ(x, t1) + ψ(x, t2)) ∀ t1 , t2 ≥ 0.
(3.2)

Remark 3.1. Note that the third property in (3.2) follows from the second one
and from the convexity of ψ(x, ·). Moreover, by monotonicity and convexity of ψ(x, ·),
it follows that z �→ ψ(x, |z|) is convex for a.e. x ∈ Ω. Therefore our analysis of
functionals with a gap in the sense of (1.1) is confined to those special functionals
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with an energy density satisfying (3.1); these also satisfy (1.1) in view of (i), for a
suitable choice of (p, q). Observe that the second property in (3.2) is a sort of �2

condition for the function t �→ ψ(x, t), uniform with respect to x.
We introduce the following classes of measurable functions in L1 (A; RN ) and

W 1,1 (A; RN ), for every A ∈ A:

Lψ (A; RN ) := {u ∈ L1 (A; RN ) | ψ(x, |u(x)|) ∈ L1(A)},
Wψ (A; RN ) := {u ∈ W 1,1 (A; RN ) | u ∈ Lψ (A; RN ) , Du ∈ Lψ(A; RN×n)},
Wψ

loc (A; RN ) := {u ∈ L1 (A; RN ) | u|B ∈ Wψ(B; RN ) ∀B ∈ A, B ⊂⊂ A}.

Note that, by definition of ψ, these are all convex sets; by (3.2) one infers that

Wψ
loc (A; RN ) is a vector space. We remark that if A ∈ A0 , these spaces, when

equipped with a suitable norm via a suitable Jague function and under certain assump-
tions, become Banach spaces known as Orlicz–Musielak spaces; these are currently
the object of intensive investigation (see, for instance, [43], [22], [19], [20], [31]).

Definition 3.2. We say that Wψ (Ω; RN ) satisfies a Sobolev type property if,
for any function u ∈ L1 (Ω; RN ) and every open set A ∈ A0 with Lipschitz boundary
such that

∫
A
ψ(x, |Du|) dx < +∞ , we have

∫
B

ψ(x, |u(x)|) dx ≤ C

(∫
B

ψ(x, |Du(x)|) dx +

∫
B

|u(x)| dx
)β

∀B ∈ A0 , B ⊂⊂ A,

where C, β ∈ [1,+∞) are constants, possibly depending on A. Moreover, we say that
Wψ (Ω; RN ) satisfies a Rellich’s-type property if, for every function u ∈ L1

loc (Ω; RN ),
every open set A ∈ A0 with Lipschitz boundary, and every {uj} ⊂ W 1,1 (A; RN ) with
uj → u strongly in L1 (A; RN ) and supj

∫
A
ψ(x, |Duj |) dx < +∞, we have

lim
j→+∞

∫
A

ψ(x, |uj − u|) dx = 0.

In particular, if Wψ (Ω; RN ) satisfies a Sobolev-type property, we easily obtain
for every A ∈ A

Wψ
loc (A; RN ) = {u ∈ L1 (A; RN ) | Du ∈ Lψ(B; RN×n) ∀B ∈ A, B ⊂⊂ A} .(3.3)

In this section we prove the following.
Theorem 3.3 (measure property). Let F : L1 (Ω; RN )×A → [0,+∞] be as in

(2.1), with f as in (3.1), and ψ : Ω× [0,+∞) → [0,+∞) satisfying (i) and (ii) above.
Suppose that Wψ (Ω; RN ) satisfies a Sobolev and a Rellich-type property. Then, for
every function u ∈ L1 (Ω; RN ), the functional F (u, ·) is the trace on A of a Borel
measure on Ω.

Example 3.4. Of course, ψ(x, |z|) := |z|p, p > 1, verifies Theorem 3.3. Here
we outline two important classes of convex functions satisfying the hypotheses of
Theorem 3.3. The first one is the case of dependence on x on the growth exponent,
i.e.,

ψ(x, |z|) := |z|p(x),(3.4)

where p : Ω → (1,+∞) is any fixed continuous function with p(x) > 1 for every
x ∈ Ω. It is easy to show that |z|p(x) satisfies (3.2), since for every A ∈ A0 we have



INTEGRAL FUNCTIONALS AND THE GAP PROBLEM 1547

1 < p(A) ≡ infA p(x) ≤ supA p(x) ≡ q(A) < +∞. Moreover, in [13] it is shown that
|z|p(x) satisfies both a Sobolev and a Rellich-type property. The second example is

ψ(x, |z|) := |z|p + a(x) |z|q,(3.5)

where 1 < p ≤ q < +∞ and a(x) ∈ L∞(Ω), with a(x) ≥ 0. Of course, the Sobolev
and Rellich-type property hold if q < p∗, where p∗ is the Sobolev conjugate of p, i.e.,
p∗ = np/(n− p) if p < n, p∗ = +∞ if p ≥ n.

Before proving Theorem 3.3, we give some preliminary results. The following
lemma is a straightforward consequence of the previous definitions and Theorem 2.5.

Lemma 3.5. Under the hypotheses of Theorem 3.3, let A ∈ A0 and u be a function
in L1 (Ω; RN ) such that F (u,A) < +∞. Then u ∈ Wψ

loc (A; RN ) and∫
A

ψ(x, |Du|) dx ≤ 1

α
F (u,A) < +∞.

Let us now recall that if A′, A are open sets in A , with A′ ⊂⊂ A , a cut-off function
between A′ and A is a smooth function φ ∈ C∞

0 (Ω) with sptφ ⊂ A , 0 ≤ φ ≤ 1 and
φ ≡ 1 on A′.

Due to growth condition (3.1), we now obtain the following fundamental Lψ

estimate. The proof is a readaptation of [9, sect. 12.2], taking into account the new
growth conditions dictated by (3.2). We omit it for the sake of brevity.

Lemma 3.6 (fundamental estimate). Under the hypotheses of Theorem 3.3, for
all open sets A,A′, B ∈ A, with A′ ⊂⊂ A, and for every σ > 0, there exists a constant
Mσ > 0 such that for every u, v ∈ L1 (Ω; RN ) there exists a cut-off function φ between
A′ and A such that

F (φu + (1 − φ)v,A′ ∪B) ≤ (1 + σ)(F (u,A) + F (v,B))

+Mσ

∫
A∩B

ψ(x, |u− v|) dx + σ.
(3.6)

By using the Rellich-type property and the fundamental estimate above, and
following arguments from [42], it is possible to prove a weak subadditivity property
for the set function F (w, ·).

Lemma 3.7 (weak subadditivity). Under the hypotheses of Theorem 3.3, for
every w ∈ L1 (Ω; RN ) we have

F (w,A′ ∪B) ≤ F (w,A) + F (w,B)(3.7)

for every A′, A ∈ A, with A′ ⊂⊂ A, and every B ∈ A such that B has a Lipschitz
boundary.

We are now going to give the following proof.
Proof of Theorem 3.3. Step 1: the case f(x,Du) := ψ(x, |Du|). Define Ψ :

L1 (Ω; RN )×A → [0,+∞] by

Ψ(u,A) :=

⎧⎨
⎩

∫
A

ψ(x, |Du(x)|) dx if u ∈ C1 (A; RN ),

+∞ elsewhere on L1 (Ω; RN ),
(3.8)

and let Ψ(·, A) be the L1(Ω)-lower semicontinuous envelope of Ψ(·, A) for every
A ∈ A. Finally, let Ψ−(u, ·) be the inner regular envelope of Ψ(u, ·) (see (2.3)), i.e.,
for every u ∈ L1 (Ω; RN ),

Ψ−(u,C) := sup{Ψ(u,B) | B ∈ A , B ⊂⊂ C}, C ∈ A.(3.9)
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Making use of a convexity argument, we are able to prove inner regularity. We omit
the details of the proof of (3.17) and (3.18) and refer to [42, Prop. 3.1] for a similar
computation (see also Remark 2.3).

Proposition 3.8 (inner regularity). Let f(x, z) := ψ(x, |z|) and Ψ : L1 (Ω; RN )
×A→ [0,+∞] be given by (3.8). Then for every u ∈ L1 (Ω; RN ) the increasing set
function Ψ(u, ·) is inner regular, i.e., for every C ∈ A

Ψ(u,C) = Ψ−(u,C),(3.10)

where Ψ−(u,C) is given by (3.9).
Proof. By the monotonicity of Ψ(u, ·), it suffices to show that “≤” holds in (3.10),

in case Ψ−(u,C) < +∞. To this aim, for every ε > 0 and j ∈ N0 := N ∪ {0}, let
Aj ∈ A0 be such that Aj ⊂⊂ Aj+1 ⊂⊂ C, Aj has a Lipschitz boundary so that
|∂Aj | = 0 , C = ∪jAj and

Ψ−(u,C) − ε 2−j ≤ Ψ(u,Aj) ≤ Ψ−(u,C) ∀ j ∈ N0.(3.11)

For every j ∈ N0, let {uj
h}h ⊂ L1(Ω), obviously depending also on ε, be such that

lim
h→+∞

‖uj
h − u‖L1(Ω) = 0 and Ψ(u,Aj) = lim inf

h→+∞
Ψ(uj

h, A
j) < +∞ .(3.12)

Possibly passing to a subsequence, we can suppose that uj
h → u a.e. on Ω,

sup
h

∫
Aj

ψ(x, |Duj
h|) dx < +∞,

{uj
h|Aj}h ⊂ C1(Aj), and that the lower limit in (3.12) is a limit. Then, by the

Rellich-type property (Definition 3.2) and (3.12)

lim
h→+∞

∫
Aj

ψ(x, |uj
h − u|) dx = 0 ∀ j ∈ N0.(3.13)

Set A−1 := ∅ and let us consider a partition of unity {φj}j∈N0 relative to the open

covering of C given by {Aj+1 \ Aj−1}j∈N0
. More precisely, for every j ∈ N0 we have

that φj ∈ C1
0 (Aj+1 \Aj−1

) and

0 ≤ φj(x) ≤ 1 ,

+∞∑
j=0

φj(x) = 1 ∀x ∈ C .(3.14)

For every j ∈ N, let h(j) ∈ N be chosen later, set vj := uj
h(j), and

wε(x) :=

+∞∑
j=1

φj−1(x) vj(x), x ∈ C.(3.15)

Note that, since vj|Aj ∈ C1(Aj), we have that φj−1(x) vj(x) ∈ C1
0 (C) for every

j ∈ N. Moreover, since every x in C has a neighborhood contained at most in the

union of three sets of the type Aj+1 \ Aj−1
, for every x ∈ C the infinite sum in the

right-hand side of (3.15) reduces to a finite one, hence wε ∈ C1(C) for every ε > 0.
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Taking wε ≡ u in Ω \ C, for every t ∈]0, 1[ the function twε belongs to L1(Ω) and
by (3.14)

‖twε − u‖L1(Ω) ≤ t

+∞∑
j=1

∫
Aj

|uj
h(j) − u| dx + (1 − t) ‖u‖L1(Ω).(3.16)

Now, it is possible to choose the sequence {h(j)} so that by (3.16)

twε → u in L1(Ω) as ε → 0+ and t → 1−.(3.17)

Moreover, taking account of the convexity of z → ψ(x, |z|), since 0 ≤ φj−1 ≤ 1 and
the sum in (3.15) is locally finite, arguing as in [42, Prop. 3.1], by (3.11), (3.12), and
(3.13) we can choose {h(j)} so that for any t ∈]0, 1[ we also have∫

C

ψ(x, |tDwε|) dx ≤ Ψ−(u,C) + 5ε + (1 − t) ε < +∞.(3.18)

In particular, since twε ∈ C1(C), by (3.8) we have Ψ(twε, C) =
∫
C
ψ(x, t|Dwε|) dx .

Finally, as ε → 0+ and t → 1−, by (3.18) and (3.17) we obtain that Ψ(u,C) ≤
Ψ−(u,C) and hence the assertion.

Now, since the increasing set function Ψ(u, ·) is inner regular, and Ψ(u, ·) is su-
peradditive, thanks to Theorem 2.4 we obtain measure property of Ψ(u, ·), for every
u ∈ L1 (Ω; RN ), if we show that Ψ(u, ·) is subadditive.

Proposition 3.9 (subadditivity). For every w ∈ L1 (Ω; RN ) we have

Ψ(w,A ∪B) ≤ Ψ(w,A) + Ψ(w,B) ∀A,B ∈ A.(3.19)

Proof. By inner regularity (Proposition 3.8), it is well known that weak sub-
additivity (Lemma 3.7 with F = Ψ ) yields (3.19) for any A,B ∈ A, provided B
has a Lipschitz boundary. In fact, for any C ∈ A with C ⊂⊂ A ∪ B, by enlarging
the subset C \ B a bit, we can find A′ ⊂⊂ A such that C ⊂ A′ ∪ B, which yields,
by (3.7), Ψ(w,C) ≤ Ψ(w,A′ ∪ B) ≤ Ψ(w,A) + Ψ(w,B), and hence (3.19), by in-
ner regularity, letting C ↗ A ∪ B. Finally, to prove (3.19) for any B ∈ A, in case
Ψ(w,A∪B) < +∞, for each small ε > 0 take C ⊂⊂ A∪B such that by inner regularity

Ψ(w,C) ≥ Ψ(w,A ∪ B) − ε. We can find an open set B̃ ∈ A with C \ A ⊂⊂ B̃ ⊂ B

and such that B̃ has a Lipschitz boundary. Then since C ⊂ A ∪ B̃,

Ψ(w,A ∪B) ≤ Ψ(w,C) + ε

≤ Ψ(w,A ∪ B̃) + ε

≤ Ψ(w,A) + Ψ(w, B̃) + ε
≤ Ψ(w,A) + Ψ(w,B) + ε,

and hence we obtain (3.19), letting ε → 0+. In case Ψ(w,A ∪ B) = +∞, take
C ⊂⊂ A ∪B with Ψ(w,C) > 1/ε, so that arguing as before

ε−1 ≤ Ψ(w,C) ≤ Ψ(w,A ∪ B̃) ≤ Ψ(w,A) + Ψ(w, B̃) ≤ Ψ(w,A) + Ψ(w,B)

and hence (3.19) follows by again letting ε → 0+.
Step 2: Measure property of F (u, ·). Consider now any Borel function f as in

Theorem 3.3. We first prove the following.
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Proposition 3.10 (inner regularity). For every w ∈ L1 (Ω; RN ), F (w, ·) is an
inner regular set function.

Proof. Since F (w, ·) is an increasing set function, if F−(w, ·) is defined by (2.3),
it suffices to prove that

F (w,C) ≤ F−(w,C)(3.20)

for every fixed open set C ∈ A and every function w ∈ L1(Ω) such that F−(w,C) <
+∞. To this aim note that growth condition (3.1) yields the estimate

αΨ(w,A) ≤ F (w,A) ≤
∫
A

b(x) dx + β Ψ(w,A)(3.21)

for every w ∈ L1(Ω) and A ∈ A, where Ψ is given by (3.8), and the same estimate
with Ψ− and F−, respectively, instead of Ψ and F in (3.21). In particular, by the
monotonicity and the inner regularity of Ψ(w, ·) (see Proposition 3.8)

Ψ(w,A) ≤ Ψ(w,C) = Ψ−(w,C) ≤ 1

α
F−(w,C) < +∞(3.22)

for every A ∈ A with A ⊂ C. For every ε > 0, we can choose an open set Aε ∈ A
with a Lipschitz boundary and such that Aε ⊂⊂ C so that, by inner regularity of
Ψ(w, ·) and absolute continuity of b(x) ∈ L1(Ω),

Ψ(w,C) ≤ Ψ(w,Aε) + ε and 0 ≤
∫
C\Aε

b(x) dx ≤ ε.(3.23)

Also, let Bε := C \ Aε ∈ A, so that if Ψ̃(w, ·) is the Borel measure given by the
extension of Ψ(w, ·) to Ω (see (iii) in Theorem 2.4), by (3.23) we have

Ψ(w,Bε) = Ψ(w,C) − Ψ̃(w,Aε) ≤ Ψ(w,C) − Ψ(w,Aε) ≤ ε.(3.24)

Moreover, there exists a sequence {vj} ⊂ L1(Ω), converging to w in L1(Ω), such that
vj|Bε

∈ C1(Bε) for every j and

Ψ(w,Bε) = lim
j→+∞

∫
Bε

ψ(x, |Dvj |) dx < +∞.(3.25)

In particular, by (3.1), (3.23), and (3.25)

lim inf
j→+∞

F (vj , Bε) ≤
∫
C\Aε

b(x) dx + β lim
j→+∞

Ψ(vj , Bε) ≤ ε + β Ψ(w,Bε).(3.26)

Choose now A′, A ∈ A0 such that A has a Lipschitz boundary and Aε ⊂⊂ A′ ⊂⊂ A ⊂
⊂ C. Since F (w,A) < +∞, there exists a sequence {uj} ⊂ L1(Ω), converging to w
in L1(Ω), such that uj|A ∈ C1(A) for every j and

F (w,A) = lim
j→+∞

∫
A

f(x,Duj) dx < +∞.(3.27)

By the fundamental estimate (Lemma 3.6) applied with uj on A and vj on Bε, for any
σ > 0, we can find Mσ > 0 and a sequence {φj} of smooth cut-off functions between
A′ and A such that

F (wj , A
′ ∪Bε) ≤ (1 + σ)(F (uj , A) + F (vj , Bε))

+Mσ

∫
A∩Bε

ψ(x, |uj − vj |) dx + σ,
(3.28)
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where wj := φjuj + (1 − φj)vj . By (3.25), (3.27), and (3.1) we have

sup
j

∫
A∩Bε

(ψ(x, |Duj |) + ψ(x, |Dvj |)) dx < +∞.

Moreover, A∩Bε = A \Aε ∈ A0, whereas Aε ⊂⊂ A, and hence A∩Bε has a Lipschitz
boundary given by the disjoint union ∂A ∪ ∂Aε. Then, by the Rellich-type property
(Definition 3.2) and (3.2), we conclude that

lim
j→+∞

∫
A∩Bε

ψ(x, |uj − vj |) dx = 0.

Then, since wj = φjuj + (1 − φj)vj → w in L1(Ω), by (3.28), (3.27), and (3.26) we
obtain

F (w,A′ ∪Bε) ≤ lim inf
j→+∞

F (wj , A
′ ∪Bε)

≤ (1 + σ)(F (w,A) + ε + β Ψ(w,Bε)) + σ.
(3.29)

Finally, since Bε = C\Aε yields A′∪Bε = C, taking ε > 0 small so that ε(1+β) ≤ σ,
by (3.24) and (3.29)

F (w,C) ≤ (1 + σ)(F (w,A) + σ) + σ ≤ (1 + σ)(F−(w,C) + σ) + σ

and hence (3.20) holds by the arbitrariness of σ > 0.

Since we have just proved that F (w, ·) is inner regular for every w ∈ L1 (Ω; RN ),
arguing as in Proposition 3.9, by weak subadditivity (3.7) we obtain that F (w, ·) is
subadditive. Since F (w, ·) is trivially superadditive, by Theorem 2.4 the proof of
Theorem 3.3 is complete.

4. Integral representation of the relaxed functional. In this section we
show that, under suitable hypotheses on the function ψ(x, t) defined in the previous
section, the relaxed functional F (u,A) obtained in Theorem 3.3 is of variational type.

Definition 4.1. We say that a sequence {uj} ⊂ Wψ
loc(Ω; RN ) converges to

u ∈ Wψ
loc(Ω; RN ) strongly in Wψ

loc (Ω; RN ) if for every A ∈ A0

lim
j→+∞

∫
A

(ψ(x, |uj − u|) + ψ(x, |Duj −Du|)) dx = 0.(4.1)

Remark 4.2. If uj → u in Wψ
loc (Ω; RN ), then by (3.2), uj → u in L1

loc (Ω; RN ).
Moreover, ψ(x, |Duj |) → ψ(x, |Du|) in L1

loc(Ω) too. In fact, by the monotonicity of
ψ(x, ·), for every A ∈ A0 we estimate

ψ(x, |Duj |) ≤ c 2q−1(ψ(x, |Duj −Du|) + ψ(x, |Du|))

for a.e. x ∈ A, where c = c (A) and q = q(A) are given by (3.2); hence it suffices to
apply the dominated convergence theorem.

Definition 4.3. If f ∈ L1
loc(Ω), define the maximal function M(f) by

(Mf)(x) := sup
r>0

(M(r)f)(x), where (M(r)f)(x) :=
1

|Br(x)|

∫
Br(x)∩Ω

|f(y)| dy.



1552 GIUSEPPE MINGIONE AND DOMENICO MUCCI

Definition 4.4. We say that the function ψ enjoys the maximal property if, for
every bounded open set A ∈ A0 and every function f ∈ L1(A) with ψ(x, |f(x)|) ∈
L1(A), we have

∫
A

ψ(x, |(Mf)(x)|) dx ≤ C

(∫
A

ψ(x, |f(x)|) dx + 1

)β

,(4.2)

where C, β ∈ (1,+∞) are positive constants possibly depending on n, A, and ψ.
Definition 4.5. We say that the function ψ(x, |z|) satisfies the density property

if for every u ∈ Wψ
loc(Ω; RN ) there exists a sequence of smooth functions {uj} ⊂

C∞
0 (Ω; RN ) such that uj → u in Wψ

loc (Ω; RN ). If in addition u ∈ Wψ (Ω; RN ), then
we also require that uj → u in L1 (Ω; RN ).

Let us observe the following relation between the definitions given above.
Proposition 4.6. The maximal property implies the density property.
Proof. It is a consequence of the Lebesgue dominated convergence theorem; we

shall keep the notation introduced for Definition 4.3. Let {ϕε}ε∈(0,1), be a family

of standard mollifiers and let w ∈ Wψ
loc (Ω; RN ) with wε(x) := w ∗ ϕε(x) for every

x ∈ Ω such that dist(x, ∂Ω) ≥ 2ε. Observe that by the very definition of convolution
and maximal function it follows that |wε(x)| ≤ (Mw)(x) for every x ∈ A such that
dist(x, ∂A) ≥ 2ε. Now take an increasing sequence of open subsets Aj ↗ Ω such that
Aj ⊂⊂ Aj+1 ⊂ Ω and define a related sequence of cut-off functions ηj ∈ C∞

0 (Aj+1)
such that ηj ≡ 1 on Aj , and finally we define wj := ηjw1/j ; clearly w1/j ∈ C∞

0 (Ω).
Now let A ⊂⊂ Ω, being an open subset; there exists j0 ∈ N such that A ⊂ Aj whenever
j ≥ j0. For such values of j we observe that by the fact that ψ is nondecreasing with
respect to the last variable, we find∫

A

ψ(x, |w1/j(x)|) dx ≤
∫
A

ψ(x, |(Mw)(x)|) dx ≤ C

∫
A

(ψ(x, |w(x)|) + 1) dx,

∫
A

ψ(x, |Dw1/j(x)|) dx ≤
∫
A

ψ(x, |(MDw)(x)|) dx ≤ C

∫
A

(ψ(x, |Dw(x)|) + 1) dx,

where C depends also on
∫
A
ψ(x, |w(x)|) dx and

∫
A
ψ(x, |Dw(x)|) dx; see Definition

4.4. Therefore, since

ψ(x, |w1/j(x)|) → ψ(x, |w(x)|) and ψ(x, |Dw1/j(x)|) → ψ(x, |Dw(x)|)

a.e., by Remark 4.2 such a convergence also holds in L1(A). Now we conclude, using
the third property in (3.2), as follows:∫

A

ψ(x, |w1/j(x) − w(x)|) dx ≤ c

∫
A

ψ(x, |w1/j(x)|) dx + c

∫
A

ψ(x, |w(x)|) dx,

∫
A

ψ(x, |Dw1/j(x) −Dw(x)|) dx ≤ c

∫
A

ψ(x, |Dw1/j(x)|) dx + c

∫
A

ψ(x, |Dw(x)|) dx,

and the conclusion follows from a well-known variant of Lebesgue’s dominated con-
vergence theorem. Finally, it easy to see that if w ∈ L1 (Ω; RN ), then w1/j → w in
L1 (Ω; RN ).
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Before stating the representation results, we recall that a Borel function ϕ :
Ω × R

n × R
N×n → R is called quasi-convex in the sense of Morrey [41] if, for a.e.

x0 ∈ Ω, every u0 ∈ R
n, z0 ∈ R

N×n, every bounded open set A of R
n, and every

function φ ∈ C1
0 (A; RN ), we have

|A|ϕ(x0, u0, z0) ≤
∫
A

ϕ(x0, u0, z0 + Dφ(x)) dx.

Moreover, the quasi-convex envelope Qf of a function f(x, u, z) is the greatest func-
tion ϕ(x, u, z), which is quasi-convex, being less than or equal to f (see [14], [15]).

Theorem 4.7. Under the hypotheses of Theorem 3.3, suppose, in particular, that
ψ(x, t) satisfies the density property; see Definition 4.5. Then for every A ∈ A we
have

F (u,A) =

⎧⎪⎨
⎪⎩

∫
A

ϕ(x,Du(x)) dx if u ∈ Wψ
loc(A; RN ),

+∞ elsewhere on L1 (Ω; RN ),
(4.3)

where ϕ : Ω×R
N×n → [0,+∞) is a quasi-convex function satisfying growth condition

(3.1) for a.e. x ∈ Ω and all z ∈ R
N .

Example 4.8. In case ψ(x, |z|) := |z|p(x), let p : Ω →]1,+∞) be a continuous
function satisfying the following local estimate about the modulus of continuity: for
allA ∈ A0,

∃ γA > 0 : |p(x) − p(y)| ≤ γA
| log |x− y|| ∀x, y ∈ A , 0 < |x− y| < 1

2
.(4.4)

Then in Proposition 5.2 we show that ψ(x, |z|) satisfies the maximal property and
therefore the density property (this result is actually contained in [19] and extended
here to a more general class of functions). As a consequence, Theorem 4.7 holds.
Similarly, in case ψ(x, |z|) := |z|p + a(x) |z|q, suppose in particular that a(x) is a
bounded nonnegative Hölder continuous function in C0,α(Ω), for some 0 < α ≤ 1,
and

1 < p ≤ q ≤ n + α

n
p.(4.5)

Then from Proposition 5.1 it follows that the function |z|p + a(x) |z|q satisfies the
maximal property and Theorem 4.7 holds also in this case.

In order to prove Theorem 4.7, we make use of the following readaptation of the
classical integral representation theorem [11, Thm. 1.1] in the setting of Wψ-spaces.

Proposition 4.9. Suppose ψ(x, t) is as in Theorem 4.7. Let F : L1(Ω; RN ) ×
A → [0,+∞] satisfy the following conditions:

(i) (locality) F is local, i.e., F(u,A) = F(v,A) for every A ∈ A and u, v ∈
L1 (Ω; RN ) with u = v a.e. on A;

(ii) (measure property) for all u ∈ L1(Ω; RN ) the set function F(u, ·) is increas-
ing, and is the trace on A of a Borel measure;

(iii) (growth conditions) there exist β > 0 and b(x) ∈ L1
loc(Ω) such that

0 ≤ F(u,A) ≤
∫
A

(b(x) + β ψ(x, |Du(x)|)) dx

for all u ∈ Wψ (Ω; RN ) and A ∈ A;
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(iv) (translation invariance in u) F(u + c, A) = F(u,A) for all u ∈ L1(Ω; RN ),
A ∈ A, c ∈ R

N ;
(v) (lower semicontinuity) F(·, A) is sequentially lower semicontinuous with re-

spect to the strong convergence in L1 (Ω; RN ) for all A ∈ A.
Then there exists a Carathéodory function ϕ : Ω × R

N×n → [0,+∞) such that

F(u,A) =

∫
A

ϕ(x,Du(x)) dx(4.6)

for every A ∈ A and for every u ∈ L1 (Ω; RN ) such that u|A ∈ Wψ
loc(A; RN ); in

addition, the function ϕ(x, ·) is quasi-convex in R
N×n for a.e. x ∈ Ω and satisfies

the growth condition

0 ≤ ϕ(x, z) ≤ b(x) + β ψ(x, |z|)(4.7)

for a.e. x ∈ Ω and all z ∈ R
N×n.

Proof. We recall that a function u ∈ L1 (Ω; RN ) is piecewise affine in Ω if there
exists a countable family {Ωi}i∈I of disjoint open subsets of Ω and a Borel subset N
of Ω with |N | = 0 such that Ω = (

⋃
i∈I Ωi)

⋃
N and u|Ωi

is affine on each Ωi.
Step 1: Following [16, Thm. 20.1] or [9, Thm. 9.1], we find a Carathéodory func-

tion ϕ satisfying (4.7), such that (4.6) holds for all A ∈ A and all piecewise affine on
u ∈ Wψ(Ω).

Step 2: F(u,A) ≤
∫
A
ϕ(x,Du(x)) dx for u ∈ Wψ (Ω; RN ) and A ∈ A. By Step 1

and in particular by (4.7), we have that for every A′ ∈ A0 the functional

u �→
∫
A′

ϕ(x,Du(x)) dx(4.8)

is continuous with respect to the Wψ
loc(Ω) convergence (Definition 4.1). Moreover,

by the density property of ψ, the following density result can be achieved via the
approximation argument in [21, Chap. X, Prop. 2.1].

Lemma 4.10. If ψ satisfies the hypotheses of Theorem 4.7, then for every function
u in Wψ (Ω; RN ) there exists a sequence {uj} ⊂ Wψ (Ω; RN ) of functions that are

piecewise affine on Ω and such that uj → u both in L1 (Ω; RN ) and in Wψ
loc (Ω; RN ).

Now, let u ∈ Wψ(Ω) and A ∈ A. By Lemma 4.10 there exists a sequence {uj}
of functions in Wψ(Ω) that are piecewise affine on Ω and such that uj → u in L1(Ω)

and in Wψ
loc(Ω). Then by lower semicontinuity v) of F , Step 1 and the continuity of

the functional (4.8) in Wψ
loc(Ω), we obtain for every A′ ∈ A0, A

′ ⊂⊂ A,

F(u,A′) ≤ lim inf
j→+∞

F(uj , A
′) = lim

j→+∞

∫
A′

ϕ(x,Duj(x)) dx =

∫
A′

ϕ(x,Du(x)) dx.

Since F(u, ·) is a measure, taking the limit as A′ ↗ A we get by the monotone
convergence theorem

F(u,A) ≤
∫
A

ϕ(x,Du(x)) dx(4.9)

for every u ∈ Wψ(Ω) and A ∈ A.
Step 3: F(u,A) =

∫
A
ϕ(x,Du(x)) dx for u ∈ Wψ (Ω; RN ) and A ∈ A. Fix

u ∈ Wψ(Ω) and let A,A′ ∈ A with A′ ⊂⊂ A. We modify the function u in the



INTEGRAL FUNCTIONALS AND THE GAP PROBLEM 1555

following way: take A′′ ∈ A0 such that A′ ⊂⊂ A′′ ⊂⊂ Ω, let φ be a cut-off function
between A′ and A′′, and set ũ := φu. Since ũ has compact support, by (3.2) we
obtain that ũ ∈ Wψ(Ω) and that ũ+ v ∈ Wψ(Ω) for every v ∈ Wψ(Ω). Consider the
functional G : L1(Ω) ×A → [0,+∞] defined by

G(v,B) := F(v + ũ, B).

Then G satisfies all hypotheses of Proposition 4.9. Indeed, (i), (ii), (iv), and (v) are
trivially satisfied, whereas for all v ∈ Wψ(Ω) and all B ∈ A we have

0 ≤ G(v,B) = F(v + ũ, B) ≤
∫
B

(b(x) + β ψ(x, |Dũ + Dv|)) dx

≤
∫
B

(g(x) + γ ψ(x, |Dv|)) dx,

where γ = 2q−1c β and g(x) = b(x) + 2q−1 c ψ(x, |Dũ(x)|) ∈ L1
loc(Ω), with c = c (A′′)

and q = q(A′′) given by (3.2). Therefore, from Steps 1 and 2 above, it follows that
there exists a Carathéodory function g : Ω × R

N×n → [0,+∞), satisfying (4.7) with
γ and g(x) instead of β and b(x), such that

G(v,B) ≤
∫
B

g(x,Dv(x)) dx ∀ v ∈ Wψ(Ω) , ∀B ∈ A ,(4.10)

with equality for v piecewise affine in Ω. In addition, arguing as for (4.8), we can
prove that for every B′ ∈ A0 the functional

v �→
∫
B′

g(x,Dv(x)) dx(4.11)

is continuous in Wψ
loc(Ω). We now prove that

F(u,A′) =

∫
A′

ϕ(x,Du(x)) dx ;(4.12)

since F(u, ·) is a measure, taking A′ ↗ A we will obtain (4.6) for all A ∈ A and
u ∈ Wψ(Ω). By Lemma 4.10 there exists a sequence {uj} of functions in Wψ(Ω),

piecewise affine in Ω, such that uj → ũ in L1(Ω) and in Wψ
loc(Ω). Then, using the

locality (i) of F , Steps 1 and 2, (4.10), and the continuity of the functionals (4.8) and
(4.11), we obtain∫

A′
g(x, 0) dx = G(0, A′) = F(ũ, A′) = F(u,A′) ≤

∫
A′

ϕ(x,Du) dx

=

∫
A′

ϕ(x,Dũ) dx = lim
j→+∞

∫
A′

ϕ(x,Duj) dx = lim
j→+∞

F(uj , A
′)

= lim
j→+∞

G(uj − ũ, A′) ≤ lim
j→+∞

∫
A′

g(x,D(uj − ũ)) dx

=

∫
A′

g(x, 0) dx

and (4.12) is proved.

Step 4: F(u,A) =
∫
A
ϕ(x,Du(x)) dx for u|A ∈ Wψ

loc(A; RN ) and A ∈ A. If

u ∈ L1(Ω), A ∈ A, and u|A ∈ Wψ
loc(A), then for every A′ ∈ A0, A

′ ⊂⊂ A, we can
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find a function v ∈ Wψ(Ω) such that v|A′ = u|A′ (it suffices to take v = φu, where
φ ∈ C∞

0 (Ω) is a cut-off function between A′ and A′′, with A′ ⊂⊂ A′′ ⊂⊂ A). Then,
by the locality of F and Step 3, we have

F(u,A′) = F(v,A′) =

∫
A′

ϕ(x,Dv(x)) dx =

∫
A′

ϕ(x,Du(x)) dx,

and we obtain the assertion as A′ ↗ A, by the measure property of F .
Step 5: Quasi-convexity of ϕ. It is enough to prove that, for every A ∈ A0 with

a Lipschitz boundary, ϕ(x, ·) is quasi-convex on R
N×n for a.e. x ∈ A. If A ∈ A0 is

fixed and c = c (A), q = q(A), by (3.2) the restriction ϕ : A × R
N×n → [0,+∞) is a

Carathéodory integrand with

0 ≤ ϕ(x, z) ≤ b(x) + β ψ(x, |z|) ≤ b(x) + β (c |z|q + 1),

where b(x) ∈ L1(A). In addition, by lower semicontinuity (v), the functional (4.8) is
sequentially weakly lower semicontinuous on W 1,q(A); hence by [10, Thm. 4.1.5] we
obtain that f(x, ·) is quasi-convex in R

N×n for a.e. x ∈ A.
Proof of Theorem 4.7. We apply Proposition 4.9 to the relaxed functional F (u,A).

Indeed, the locality property (i) is well known (see e.g., [16, Prop. 16.15]), the measure
property (ii) is proved in Theorem 3.3, and growth condition (iii) follows from (3.21),
whereas (iv) and (v) are trivially satisfied. Therefore, Proposition 4.9 implies that

(4.6) holds for all u ∈ Wψ
loc(A) and A ∈ A, with ϕ quasi-convex in z. Finally (3.21)

and (3.8) yield the growth estimate (3.1) for ϕ and the integral representation (4.3)
on all of L1(Ω).

We are now able to state the following theorem.
Theorem 4.11. Under the hypotheses of Theorem 4.7, suppose that ψ enjoys the

maximal property. Then, if f is a Carathéodory integrand, the function ϕ in (4.3) is
equal to the quasi-convex envelope of z �→ f(x, z).

This is an easy consequence of Theorem 4.7 and of the following lower semicon-
tinuity result, which we state in full generality.

Theorem 4.12 (lower semicontinuity). Under the hypotheses of Theorem 4.7,
suppose that ψ enjoys the maximal property. Let ϕ : Ω × R

N × R
N×n → [0,+∞) be

a quasi-convex Carathéodory function satisfying

0 ≤ ϕ(x, u, z) ≤ b(x) + C (ψ(x, |u|) + ψ(x, |z|)),(4.13)

where C > 1 and b(x) ∈ L1
loc(Ω) with b(x) ≥ 0. Then for every sequence {uk} ⊂

W 1,1 (Ω; RN ) with uk → u in L1 (Ω; RN ) and

sup
k

∫
Ω

ψ(x, |Duk(x)|) dx < +∞(4.14)

we have that u ∈ Wψ
loc (Ω; RN ), ψ(x, |Du|) ∈ L1(Ω), and∫

Ω

ϕ(x, u(x), Du(x)) dx ≤ lim inf
k→+∞

∫
Ω

ϕ(x, uk(x), Duk(x)) dx.(4.15)

Proof. Our starting point is the classical lower semicontinuity proof of Acerbi
and Fusco for quasi-convex integrals with p-growth. Hence we refer to the proof of
[2, Thm. II.4], where we will point out the differences. The main ingredients are the
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density property in Wψ (Ω; RN ) and the fact that ψ enjoys the maximal property; see
Definitions 4.5 and 4.4. Set now for every Borel set A ⊂ Ω

F(u,A) :=

∫
A

ϕ(x, u(x), Du(x)) dx.

We divide the rest of the proof into four steps.
Step 1: u ∈ Wψ

loc (Ω; RN ) and
∫
Ω
ψ(x, |Du|) dx < +∞. Setting Ωj := {x ∈ Ω |

|x| < j and dist(x, ∂Ω) > 1/j} ∈ A0, if p = p(Ωj) > 1 is given by (3.2), passing
to a subsequence we have that uk ⇀ u weakly in W 1,p(Ωj), and hence weakly in
W 1,1(Ωj). Then we can apply Theorem 2.5 with A = Ωj and g(x, u, z) = ψ(x, |z|) to
obtain ∫

Ωj

ψ(x, |Du|) dx ≤ lim inf
k→+∞

∫
Ωj

ψ(x, |Duk|) dx

for every j. Hence (4.14) gives ψ(x, |Du|) ∈ L1(Ω) and finally (3.3) yields u ∈
Wψ

loc(Ω).
Step 2: Preliminary reductions. Since the supremum of lower semicontinuous

functions is lower semicontinuous, we can restrict to prove (4.15) on a ball (or a
hypercube) compactly contained in Ω. Hence, relabelling by Ω such ball, which we
shall take for the sake of simplicity as B1, and possibly passing to a subsequence,
which we relabel {uk}, we can suppose that the lower limit in (4.15) is a finite limit.
Moreover, we can suppose that (3.2) holds on the whole of Ω. Then, setting zk :=
uk − u, by (3.2) and Step 1 we have that (4.14) holds for {zk}. Hence, the Sobolev-
type property (Definition 3.2) yields that {zk} ⊂ Wψ(Ω) and there exists M < +∞
such that

sup
k

∫
Ω

(ψ(x, |zk|) + ψ(x, |Dzk|)) dx < M.(4.16)

By applying the density property (Definition 4.5) to zk, since ϕ is a Carathéodory
function satisfying (4.13), by the Dominated convergence theorem, we can find for
each k a sequence {wj} ⊂ C∞(Ω) such that wj → zk in L1(Ω) as j → +∞ and

lim
j→+∞

F(u + wj , A) = F(u + zk, A) ∀A ⊂⊂ Ω.

Again, using the fact that the supremum of a family of lower semicontinuous integrals
is semicontinuous, taking a smaller ball Ω, we can finally assume the sequence {zk}
to be in C∞(Ω).

Step 3: The case supp zk ⊂ Ω. First, we extend each zk to the whole R
n by

letting zk ≡ 0 outside Ω. We define (according to [2])

(M∗zk)(x) := (Mzk)(x) +

n∑
i=1

(MDizk)(x).(4.17)

We observe that if the support of u is contained in Ω, then (Mv)(x) as defined in
Definition 4.4 coincides with the standard maximal function as employed in [2].

By (3.2), (4.16), (4.17), and the fact that ψ enjoys the maximal property (Defi-
nition 4.4), we have

sup
k

∫
Ω

ψ(x, (M∗z
(i)
k )(x)) dx < +∞ ∀ i = 1, . . . , N,
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where zk = (z
(1)
k , . . . , z

(N)
k ), hence we can apply the Biting lemma [2, Lemma I.7]

to obtain for each ε > 0 a (not relabelled) subsequence {zk}, a set Aε ⊂ Ω, with
|Aε| < ε, and a real number δ > 0 such that

sup
k

∫
B

ψ(x, (M∗z
(i)
k )(x)) dx < ε ∀ i = 1, . . . , N(4.18)

for every Borel set B ⊂ Ω \Aε with |B| < δ. Also, let η : R
+ → R

+ be a continuous
increasing function, with η(0) = 0, such that for every measurable set B ⊂ Ω∫

B

[b(x) + C(ψ(x, |u(x)|) + ψ(x, |Du(x)|))] dx < η(|B|).(4.19)

From this point on we shall closely follow the proof of Theorem II.4 from [2]. Once λ,

Hλ
i,k, H

λ
k , g

(i)
k , v(i), gk, and v are defined as in [2, Thm. II.4], by (4.19), (4.18), and

growth condition (4.13), since |(Ω \Aε) \Hλ
i,k| < δ , if q and c are given by (3.2) with

A = Ω, we obtain

F(u + gk, (Ω \Aε) \Hλ
k )

≤ c 2q−1

⎧⎪⎨
⎪⎩η(Nε) + c (n,Ω)

∫
(Ω\Aε)\Hλ

k

ψ(x, λ) dx

⎫⎪⎬
⎪⎭

≤ c 2q−1

⎧⎪⎨
⎪⎩η(Nε) + c (n,Ω)

N∑
i=1

∫
(Ω\Aε)\Hλ

i,k

ψ(x, (M∗z
(i)
k )(x)) dx

⎫⎪⎬
⎪⎭

≤ c 2q−1{η(Nε) + N · c (n,Ω) ε} = oε,

where oε → 0 when ε → 0; this last estimate replaces the one at the top of p. 131 in
[2]. The rest of the proof in this case follows [2, Thm. II.4].

Step 4: The general case {zk} ⊂ C∞(Ω). In the following we adopt the notation
of Lemma 2.6. We fix 0 < s < t < 1 and take ε ∈ (0, 1); according to Lemma 2.6
(applied to fk := ψ(x, |Dzk|)) we select N ≡ N(ε,M) and M is from (4.16) (recall
that we already reduced to the case Ω ≡ B1). Therefore we find a thin layer Ah and
a not-relabelled subsequence {zk} such that

sup
k

∫
Ah

ψ(x, |Dzk|) + ψ(x, |Du|)) dx ≤ ε.(4.20)

Now we take a cut-off function η between Bsh and Bsh+1
such that ‖Dη‖ ≤ 2N/(t−s)

and define z̃k := ηzk. Since Dz̃k = Dη ⊗ zk + η Dzk and by (3.2)∫
B1

ψ(x, |Dz̃k|) dx ≤ c

∫
B1

(ψ(x, |Dzk|) dx + ψ(x, |zk|)) dx

for some absolute constant c > 0 possibly depending on B1 and η, by (4.16) we obtain
that (4.14) holds for {z̃k}. Therefore, by Step 3 and condition supp z̃k ⊂ Bsh+1

,

∫
Bs

f(x,Du) dx ≤ lim inf
k→+∞

∫
Bsh+1

f(x,Du + Dz̃k) dx.(4.21)



INTEGRAL FUNCTIONALS AND THE GAP PROBLEM 1559

As a consequence, again by (3.2)∫
Bsh+1

f(x,Du + Dz̃k) dx =

∫
Bsh

f(x,Du + Dzk) dx +

∫
Ah

f(x,Du + Dz̃k) dx

≤
∫
B1

f(x,Du + Dzk) dx

+c

∫
Ah

(ψ(x, |Du|) + ψ(x, |Dzk|)) dx

+c(‖Dη‖∞)

∫
B1

ψ(x, |zk|) dx.

Therefore, using (4.20) and combining with (4.21), since by the Rellich-type property∫
B1

ψ(x, |zk|) dx → 0 as k → +∞, we obtain∫
Bs

f(x,Du) dx ≤ lim
k→+∞

∫
B1

f(x,Du + Dzk) dx + oε,

with oε → 0+ as ε → 0+. Finally the full statement follows by first letting ε → 0
and then s → 1−.

5. Continuity estimates for the maximal function. Throughout this sec-
tion we always assume that Ω is a bounded open set. We will prove that in case
ψ(x, t) is equal to tp(x)A(t) or to tp + a(x) tq, under suitable hypotheses in both cases
ψ enjoys the maximal property, as described in Definition 4.4.

Proposition 5.1. Let 0 ≤ a(x) ≤ L be such that a(x) ∈ C0,α(Ω), where
0 < α ≤ 1 and (4.5) holds. Then for every function f ∈ L1(Ω) with∫

Ω

(|f(x)|p + a(x) |f(x)|q) dx < +∞

we have ∫
Ω

(|(Mf)(x)|p + a(x) |(Mf)(x)|q) dx

≤ C̃

(∫
Ω

(|f(x)|p + a(x) |f(x)|q) dx + 1

)q/p

,

(5.1)

where C̃ is a positive constant depending on n, Ω, p, q, L, [a]0,α.
Proof. Let us first prove that for every x ∈ Ω and r > 0,

a(x) |(M(r)f)(x)|q ≤ |(M(r)(a(·)1/qf))(x)|q + C |(M(r)f)(x)|p · ‖f‖q−p
Lp(Ω) .(5.2)

Denoting B = Br(x) for simplicity and

ar(x) := inf{a(y) | y ∈ Ω, |y − x| < r} ,

trivially if |B ∩ Ω| > 0, then

ar(x) |(M(r)f)(x)|q ≤
∣∣∣∣ 1

|B|

∫
B∩Ω

a(y)1/q|f(y)| dy
∣∣∣∣
q

= |(M(r)(a(·)1/qf))(x)|q.(5.3)

Moreover

(a(x) − ar(x)) |(M(r)f)(x)|q ≤ (a(x) − ar(x)) |(M(r)f)(x)|q−p · |(M(r)f)(x)|p,(5.4)
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whereas by (4.5) we have α/(q − p) ≥ n/p, and hence, for 0 < r ≤ 1, we estimate
rα/(q−p) ≤ rn/p. Then, by Hölder inequality, since f ∈ Lp(Ω),

(a(x) − ar(x)) |(M(r)f)(x)|q−p ≤ [a]0,α · |rn/p · |Br|−1/p ‖f‖Lp(Ω)|q−p

≤ C ‖f‖q−p
Lp(Ω).

(5.5)

Also, (5.5) trivially holds if r > 1, since a(x) is bounded. Now, (5.3), (5.4), and
(5.5) yield (5.2) so that, taking the supremum on r and passing to the integrals on Ω,
since f ∈ Lp(Ω) and a(·)1/q f ∈ Lq(Ω), by the standard Hardy–Littlewood maximal
theorem [45, Thm. 1, Sec. I.1] we obtain

∫
Ω

(|(Mf)(x)|p + a(x) |(Mf)(x)|q) dx ≤ C

(∫
Ω

|f(x)|p dx
)q/p

+ C

∫
Ω

a(x) |f(x)|q dx

and finally (5.1).
The next proposition extends a result due to Diening [19].
Proposition 5.2. Let A : R

+ → R
+ be a continuous function with 1 < s1 ≤

A(t) ≤ s2 < +∞ and such that t → tpA(t) is nondecreasing and convex in R
+ for

every p > 1. Moreover, let p : Ω → (1,+∞) be a uniformly continuous function such
that infΩ p(x) > 1 and for some C0 > 1

|p(x) − p(y)| ≤ C0

| log |x− y|| ∀x, y ∈ Ω , 0 < |x− y| < 1

2
.(5.6)

Set 1 < p := s1 infΩ p(x) ≤ s2 supΩ p(x) =: q < +∞. Then, for every function
f ∈ L1(Ω) such that

∫
Ω
|f(x)|p(x)A(|f(x)|) dx < +∞, we have

∫
Ω

|(Mf)(x)|p(x)A(|(Mf)(x)|) dx ≤ C̃

(∫
Ω

|f(x)|p(x)A(|f(x)|) dx + 1

)q/p

,(5.7)

where C̃ is a positive constant depending on n, Ω, p, q, s1, s2.
Remark 5.3. With a slightly different proof it is possible to obtain the following

inequality:∫
Ω

A(|(Mf)(x)|) · |(Mf)(x)|p(x) dx ≤ C̃

(∫
Ω

A(|f(x)|) · |f(x)|p(x) dx + 1

)q/p

in the case t → tp̄ A(t) is convex for any p̄ > 1 and ts1 ≤ A(t) ≤ L(1 + ts2) where,
this time, s2 ≥ s1 > 1, q := sup p(x) + s2 and p := inf p(x) + s1.

Proof. First of all we can assume f is defined on the whole R
n by letting f ≡ 0

outside Ω so that

(M(r)f)(x) =
1

|Br(x)|

∫
Br(x)

|f(y)| dy

in any case; this will allow us to apply the Jensen inequality in the second inequality
from (5.10). Let us first prove that for every x ∈ Ω and r > 0

|(M(r)f)(x)|p(x)A(|(M(r)f)(x)|) ≤ γ [(M(r)|f(·)|p(·)A(|f(·)|))(x) + 1],(5.8)

where

γ := c

(∫
Ω

|f(x)| dx + 1

)q−p

(5.9)
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and c depends on n, p, and q. Set, for every ball B ⊂ R
n with |B ∩ Ω| > 0,

p−B := inf
x∈B∩Ω

p(x), p+
B := sup

x∈B∩Ω
p(x),

and we have

|B|p
−
B
−p+

B ≤ c(n, p, q).

Indeed, the previous inequality is trivial when r > 1/4 and is a consequence of (5.6)

in the other case. Since z �→ |z|p−
B
A(|z|) is convex, and f(·)p−

B
A(|f(·)|) ∈ L1(B), by

Jensen inequality, denoting B = Br(x) for simplicity, we have

|(M(r)f)(x)|p(x)A(|(M(r)f)(x)|) = |(M(r)f)(x)|(p(x)−p−
B

)A(|(M(r)f)(x)|)

× |(M(r)f)(x)|(p−
B

)A(|(M(r)f)(x)|)

≤ γ |B|(p−
B
−p(x))s2 |(M(r)f)(x)|(p−

B
)A(|(M(r)f)(x)|)

≤ c γ M(r)[f(·)p−
B
A(|f(·)|)]

≤ c γ M(r)[f(·)p(·)A(|f(·)|)] + c.

(5.10)

Now setting q(x) := p(x) s1/p > 1, since infΩ p(x) > 1, then

p/s1 > 1 and

∫
Ω

(
|f(x)|q(x)A(|f(x)|)

)p/s1
dx < +∞,

and we can use the boundedness of the maximal operator as follows:∫
Ω

|(M |f(·)|q(·)A(|f(·)|))(x)|p/s1 dx ≤ c

∫
Ω

(|f(x)|q(x)A(|f(x)|))p/s1 dx

= c

∫
Ω

|f(x)|p(x)A(|f(x)|) dx,

(5.11)

where the above constant c depends on n, Ω, and p/s1. Applying (5.8) (which is a
pointwise inequality) with q(x) instead of p(x), we finally obtain, also using (5.9),
(5.11), and Hölder inequality,∫

Ω

|(Mf)(x)|p(x)A(|(Mf)(x)|) dx

=

∫
Ω

(|(Mf)(x)|q(x)A(|(Mf)(x)|))p/s1 dx

≤ c

(∫
Ω

|f(x)|p dx + 1

)(q−p)/p ∫
Ω

( [(M |f(·)|q(·)A(|f(·)|))(x) + 1])p/s1 dx

≤ c

(∫
Ω

|f(x)|p dx + 1

)(q−p)/p

·
∫

Ω

(|f(x)|p(x)A(|f(x)|) + 1) dx.

Therefore (5.7) immediately follows as p ≤ infΩ p(x)A(|f(x)|).
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Remark 5.4. It is interesting to note that conditions (4.5) and (5.6) are sharp
in order to guarantee the validity of the maximal property, that is, (5.1) and (5.7),
respectively. This is again a consequence of the counterexamples in sections 7 and 8
below. Indeed, suppose (4.5) and (5.6) fail to hold but (5.1) and (5.7) are satisfied;
then by Proposition 4.6 the density property also holds true and in turn Theorem 4.7
would imply that F (u,A) is an absolutely continuous Radon measure as soon as
Du ∈ Lψ (A; RN ), in the case F ≡ F2 and F ≡ F1, respectively (see (1.6)). This is in
contrast to the counterexamples presented in sections 7 and 8, where it is shown that,
in general, the failure of (4.5) and (5.6) causes the rising of a singular Borel measure
in the relaxation procedure (see, in particular, Theorem 7.4 for (4.5) and Theorem 8.3
for (5.6)). This observation, together with the forthcoming examples in sections 7 and
8, clarifies the unifying role of the continuity assumptions of the type (4.5) and (5.6).

6. Models and applications. In this section we want to outline how to apply
the previous results to general classes of functionals, including many model examples
available in the literature to which standard relaxation techniques do not apply. If
{ψi}i is a finite collection of functions satisfying (i) and (ii) from section 3 together
with the maximal property (and hence also satisfying the density property by Propo-
sition 4.6), then the new function defined by

ψ(x, t) :=
∑
i

ai(x)ψi(x, t), L−1 ≤ ai(x) ≤ L < +∞,

also enjoys the same properties. Using this simple observation it immediately follows
that the maximal estimates of the previous section allow the use of the model examples
introduced there as building blocks to construct new functionals to which our theory
applies. The main point we would like to stress here is that the model functionals
presented in section 5 describe the way the presence of the variable x in the energy
density f modifies the growth with respect to the gradient variable z. Using the
previous observation, Theorem 4.12 may be applied, via the maximal estimates of
section 5 and Proposition 4.6, in the cases when

ψ1(x, |z|) := a(x) |z|p(x) log(1 + |z|) , L−1 ≤ a(x) ≤ L,

ψ2(x, |z|) := A(|z|)p(x) , |z| ≤ A(|z|) ≤ L(1 + |z|),

ψ3(x, |z|) := (e + |z|2)p(x)(θ1+θ2 sin log log(e+|z|2)) for suitable θ1, θ2,

ψ4(x, |z|) := fp(x, |z|) + a(x)fq(x, |z|) ,

|z|s ≤ fs(x, |z|) ≤ L(1 + |z|s), s = p, q, 0 ≤ a(x) ≤ L.

In turn, any finite combination of ψi works, and so on. Let us observe that energies
related to ψ1 appear in the context of Prandtl–Eyring fluids (see [27]), while ψ2 is
related to electrorheological fluids (see [44] and [4]). The function ψ3 has been studied
in the setting of functionals with nonstandard growth conditions in [29] while |z|p(x)

and ψ4 have been introduced, in the context of homogenization theory, by Zhikov [46].
Finally we want to briefly mention that the results of the previous sections could be
extended to the case of the so-called anisotropic functionals, i.e., functionals in which
each direction is penalized with a different exponent. Functionals of this type come
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up when studying reinforced materials. In this case (3.1) is replaced by

L−1
n∑

i=1

ai(x)|Diu|pi(x) ≤ f(x,Du) ≤ L

(
1 +

n∑
i=1

ai(x)|Diu|pi(x)

)
, 1 ≤ L < +∞,

where, in the models for reinforced materials, the exponents are constants: pi(x) ≡
pi ≡ constant.

7. A sharp example with energy concentration. Let Ω = B1, the unit
ball of R

n, and f(x, z) := |z|p + a(x) |z|q; see Example 3.4, where a(x) is a suitable
bounded nonnegative function in C0,α(B1) for some 0 < α ≤ 1.

In this section we will first show (Theorem 7.4) that energy concentration does
occur in the process of relaxation in the case (4.5) is violated, more precisely, when

1 < p < n < n + α < q < p∗,(7.1)

where, as usual, p∗ := np/(n− p). Second, if in particular

q > n (1 + α) and n
1 + α

2 + α
< p < n,(7.2)

we are then able to give a complete representation of the relaxed functional (Theo-
rem 7.6). We emphasize here that it is a significant feature of our analysis that the
examples proposed in this section and the next already work in the scalar case N = 1,
in which we specialize henceforth. For every 0 < α ≤ 1, we define

a(x) := max

{(
x2
n −

n−1∑
i=1

x2
i

)
, 0

}α

|x|−α , x = (x1, . . . , xn) ∈ R
n,(7.3)

so that a(x) ∈ C0,α(Rn) and a(x) > 0 in the open cone

C+ :=

{
x ∈ R

n | x2
n −

n−1∑
i=1

x2
i > 0

}
.

By (7.1) the assumptions of Theorem 3.3 are satisfied (see Example 3.4). Then in
this section we denote by F (u,A) and F (u,A) the functionals given by (2.1) and
(2.2), respectively, with Ω = B1 and, when not specified differently, f(x, z) := |z|p +
a(x) |z|q, where a(x) is given by (7.3) and (7.1) holds, so that F (u,A) satisfies the
measure property.

Remark 7.1. For every u ∈ L1(B1) and A ∈ A, it is possible to find a sequence
{uk} ∈ L1(B1) with uk → u in L1(B1) and uk|A ∈ W 1,q(A) for every k ∈ N.
Moreover, since

f(x, z) ≤ |z|p + ‖a‖L∞(B1) |z|q ≤ c(1 + |z|q),

by Remark 2.1, for every A ∈ A and u ∈ L1(B1),

F (u,A) = inf

{
lim inf
k→+∞

∫
A

(|Duk|p + a(x) |Duk|q) dx | {uk} ⊂ W 1,q
loc (A),

uk → u in L1(A)

}
.

(7.4)
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Let us now introduce some notation. If n = 2, we are going to use the following
polar coordinates:

x1 = ρ sinφ , x2 = ρ cosφ , ρ ≥ 0 , 0 ≤ φ ≤ 2π.

If n ≥ 3, we use the spherical coordinate transformation x = F (ρ, φ,Θ), Θ :=

(θ1, . . . , θn−2), where (φ,Θ) ∈ I(φ,Θ) := [0, π] ×
(∏n−3

i=1 [0, π]
)
× [0, 2π] and

x1 = ρ sinφ ·
n−2∏
j=1

cos θj , xn−1 = ρ sinφ sin θ1 , xn = ρ cosφ,

xi = ρ sinφ ·
n−1−i∏
j=1

cos θj · sin θn−i , i = 2, . . . , n− 2.

Moreover, for any function u on R
n, in what follows we will always denote

ũ(ρ, φ,Θ) := u(F (ρ, φ,Θ))

the corresponding function written in spherical coordinates. For example, if a(x) is
given by (7.3), we have

ã(ρ, φ,Θ) = (ρ (cos(2φ))+)α, C+ = {x = F (ρ, φ,Θ) | cos(2φ) > 0},

where y+ denotes the positive part of real number y, i.e., y+ := max{y, 0}. Finally,

∂C+ :=

{
x ∈ R

n | x2
n =

n−1∑
i=1

x2
i

}
= {x = F (ρ, φ,Θ) | cos(2φ) = 0}

is the boundary of C+, for every 0 < β < π/4

Cβ := {x = F (ρ, φ,Θ) | cos(2φ) > cβ}, cβ := cos

(
π

2
− 2β

)

is the subset of C+ given by a cone of smaller angle and, for 0 < r < 1,

C+
r := C+ ∩Br , Cβ

r := Cβ ∩Br

is the intersection with the open ball Br of radius r; moreover, we introduce the
following “half cones”:

+Cβ
r := {x ≡ F (ρ, φ,Θ) ∈ Cβ

r | 0 ≤ φ < π/4 − β},
−Cβ

r := {x ≡ F (ρ, φ,Θ) ∈ Cβ
r | 3π/4 + β < φ ≤ π},

being the upper and the lower part, respectively, of Cβ
r ; accordingly, we define

+C+
r := {x ≡ F (ρ, φ,Θ) ∈ C+

r | 0 ≤ φ < π/4},
−C+

r := {x ≡ F (ρ, φ,Θ) ∈ C+
r | 3π/4 < φ ≤ π}.

The following result will allow us to consider the traces in the origin of a function
with finite energy in the cone Cβ

r (see (7.8)) in the case (7.1) holds.
Lemma 7.2. Let u ∈ L1(Br), 0 < r < 1, be such that

∫
Br

a(x) |Du|q dx < +∞,

where a(x) is given by (7.3) and q > n + α. Then for every n < s < q, with
q/s > (n + α)/n, we have

∫
Cβ

r
|Du|s dx < +∞ for every 0 < β < π/4. In particular,
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u ∈ C0,1−n/s(+C
β

r ) and u ∈ C0,1−n/s(−C
β

r ), i.e., there exists a constant c, depending
only on

∫
Br

a(x) |Du|q dx such that

|u(x1) − u(x2)| ≤ c|x1 − x2|1−n/s ∀x1, x2 ∈ +C
β

r ,

|u(y1) − u(y2)| ≤ c|y1 − y2|1−n/s ∀ y1, y2 ∈ −C
β

r .
(7.5)

Proof. First note that a(x)s/(s−q) ∈ L1(Cβ
r ). In fact, by the area formula [23,

3.2.3] we have∫
Cβ

r

a(x)s/(s−q) dx

≤ c(n)

∫
[0,π/4−β]∪[3π/4+β,π]

(sinφ)n−2

(cos(2φ))αs/(q−s)
dφ

∫
Cβ

r

|x|αs/(s−q) dx

≤ c(n) c
αs/(s−q)
β

∫ r

0

ρn−1+αs/(s−q) dρ,

which is finite since n+αs/(s−q) > 0 if q/s > (n+α)/n. Then by Hölder inequality
we have∫

Cβ
r

|Du|s dx ≤
(∫

Cβ
r

a(x)|Du|q dx
)s/q

·
(∫

Cβ
r

a(x)s/(s−q) dx

)(q−s)/q

< +∞.(7.6)

The assertions concerning Hölder continuity follow via Sobolev embedding theorem
and Morrey’s theorem, since s > n.

With a stronger assumption on the exponent q—that is, replacing (7.1) by (7.2)—
we can similarly prove the following lemma.

Lemma 7.3. Under the hypotheses of Lemma 7.2, suppose, in particular, that
q > n (1 + α). Then for every n < s < q/(1 + α) with q/s > 1 + α, we have∫
C+

r
|Du|s dx < +∞ and hence u ∈ C0,1−n/s(+C

+

r ) and u ∈ C0,1−n/s(−C
+

r ), with

estimates analogous to (7.5) with β = 0.
Proof. Now we have a(x)s/(s−q) ∈ L1(C+

r ). In fact, for n ≥ 3 (n = 2 is similar)∫
C+

r

a(x)s/(s−q) dx

= c(n)

∫
[0,π/4]∪[3π/4,π]

(sinφ)n−2

(cos(2φ))αs/(q−s)
dφ

∫ r

0

ρn−1+αs/(s−q) dρ,
(7.7)

which is finite since 1/(cos(2φ))+ ∈ Lαs/(q−s)(0, 2π) as q/s > 1+α. Then (7.6) holds
again, with C+

r instead of Cβ
r . The rest follows as for Lemma 7.2.

Traces at 0Rn . Let u ∈ L1(B1) be such that a(x) |Du|q ∈ L1
loc(A) for some

open set A ∈ A = A(B1) with 0Rn ∈ A. Since Br ⊂⊂ A for r sufficiently small, if
q > n + α by Lemma 7.2, we can therefore define for every 0 < β < π/4

λ1 := lim
ρ → 0+

φ ∈ [0, π/4 − β]

ũ(ρ, φ,Θ) , λ2 := lim
ρ → 0+

φ ∈ [3π/4 + β, π]

ũ(ρ, φ,Θ)(7.8)

(φ ∈ [0, π/4−β]∪ [7π/4+β, 2π) and φ ∈ [3π/4+β, 5π/4−β], respectively, if n = 2),
where the finite limits exist uniformly in Θ since u is Hölder continuous up to the
closure of both +Cβ

r and −Cβ
r . Moreover, if q > n (1 + α) by Lemma 7.3, we obtain
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(7.8) with β = 0, i.e., the traces in the origin do exist in both the upper and lower
half cones of C+.

We will now prove the following result, which actually shows that (4.5) is a sharp
condition to prevent energy concentration in the process of relaxation.

Theorem 7.4. Let F (u,A) and F (u,A) be given by (2.1) and (2.2) with Ω = B1

and f(x, z) := |z|p + a(x) |z|q, where a(x) is given by (7.3) and (7.1) holds. Let
0Rn ∈ A ∈ A and |Du|p+a(·) |Du|q ∈ L1

loc(A), so that (7.8) holds. Then, if λ1 �= λ2,
we have F (u,A) = +∞; hence an infinite singular measure is concentrated in the
origin.

Example 7.5. In particular, for n ≥ 3, if u0 : B1 → R is given in spherical
coordinates by

ũ0(ρ, φ,Θ) :=

⎧⎨
⎩

1 if 0 ≤ φ ≤ π/4,
sin(2φ) if π/4 ≤ φ ≤ 3π/4,
−1 if 3π/4 ≤ φ ≤ π,

(7.9)

and similarly for n = 2, then, since λ1 = 1 and λ2 = −1, there is energy concentration
in the origin, i.e.,

F (u0, A) = +∞ ∀A ∈ A such that 0Rn ∈ A.(7.10)

Proof of Theorem 7.4. We argue by contradiction supposing that F (u,A) < +∞.
Then we pick a radius r > 0 such that Br ⊂ A and a sequence {uk} ⊂ C1(Br) such
that uk → u in L1(Br) and a.e. and

lim
k→+∞

∫
Br

(|Duk|p + a(x) |Duk|q) dx = F (u,Br) < +∞.

By the Hölder estimates in Lemma 7.2 we obtain that the sequence {uk} ⊂ C1(Br)

is equi-uniformly continuous, on both +C
β

r and −C
β

r ; since each uk is continuous,
this yields that the sequence {uk} ⊂ C1(Br) is equi-uniformly continuous on the

whole C
β

r . Then by the Ascoli–Arzelà theorem, up to a not-relabelled subsequence,

uk → u uniformly on C
β

r , which, in turn, yields to the continuity of u at 0Rn . This is
a contradiction since λ1 �= λ2 makes the function u discontinuous at 0Rn .

With a bit more effort, if (7.2) holds we are able to prove the following complete
representation result.

Theorem 7.6. Let F (u,A) and F (u,A) be given by (2.1) and (2.2) with Ω = B1

and let f(x, z) be a Carathéodory function such that

c1 (|z|p + a(x) |z|q) ≤ f(x, z) ≤ c2 (|z|p + a(x) |z|q + 1)(7.11)

for a.e. x ∈ Ω and all z ∈ R
n, where c2 > c1 > 0. If a(x) is given by (7.3) and (7.2)

holds, then we have

F (u,A) =

⎧⎨
⎩

∫
A

(Cf)(x,Du) dx + μ(u,A) if |Du|p + a(·) |Du|q ∈ L1(A),

+∞ elsewhere on L1(Ω),
(7.12)

where Cf denotes the usual convexification of f and μ(u, ·) is an infinite singular
measure concentrated in the origin. More precisely, we have

μ(u,A) =

{
0 if 0Rn /∈ A,

χλ1

λ2
if 0Rn ∈ A,

(7.13)
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where λ1 and λ2 are defined by (7.8) and

χλ1

λ2
:=

{
0 if λ1 = λ2,
+∞ if λ1 �= λ2.

Proof. We will first give the proof in the case

f(x, z) := |z|p + a(x) |z|q.

The first part of the statement is trivial. In fact, following Lemma 3.5, Theorem 2.5
yields that if F (u,A) < +∞ for some A ∈ A, then |Du|p + a(·) |Du|q ∈ L1(A).
Moreover, we note that for every A ∈ A with A ⊂⊂ (B1 \ ∂C+) we have that
L−1 ≤ a(x) ≤ L on A+ := A ∩ C+, for some positive constant L depending on A,
whereas a(x) = 0 on A \ A+. Hence, by convexity of z �→ |z|p + L |z|q and by the
dominated convergence theorem, if F (u,A) < +∞, we can easily find a sequence of
smooth maps {uk} ∈ C1(A) with uk → u in L1(A) and

lim
k→+∞

∫
A

(|Duk(x)|p + a(x) |Duk(x)|q) dx =

∫
A

(|Du(x)|p + a(x) |Du(x)|q) dx.

Then, by (7.4) and by inner regularity of F (u, ·), for every A ∈ A with A ∩ ∂C+ = ∅
we have that

F (u,A) =

∫
A

(|Du(x)|p + a(x) |Du(x)|q) dx(7.14)

if u ∈ L1(B1) is such that |Du|p + a(·) |Du|q ∈ L1(A). As a consequence, we infer
that the absolute continuous part of the measure F (u, ·) is the integral given in (7.12),
and that its singular part μ(u, ·) is concentrated in the (n−1)-dimensional cone ∂C+.

We now show that there is no energy concentration on open sets which do not
contain the origin.

Proposition 7.7. Under the hypotheses of Theorem 7.6, if A ∈ A, 0Rn /∈ A,
and |Du|p + a(·) |Du|q ∈ L1(A), then μ(u,A) = 0 in (7.12) and hence

F (u,A) =

∫
A

(|Du|p + a(x) |Du|q) dx.

Proof. We adapt the approximation and reflection arguments of Lemmas 3.4
and 3.5 in [22]. Indeed, following this paper it is possible to show that for every
A′ ∈ A0, with A′ ⊂⊂ A, there exists a sequence of functions {uk} ⊂ W 1,q(A′) such
that uk → u in L1(A′) and

lim
k→+∞

∫
A′

(|Duk|p + a(x) |Duk|q) dx =

∫
A′

(|Du|p + a(x) |Du|q) dx.

Then, by (7.4), this yields

F (u,A′) ≤
∫
A′

(|Du|p + a(x) |Du|q) dx,

and hence, by inner regularity, letting A′ ↗ A one obtains the assertion by the fact
that μ(u,A) ≥ 0. We explicitly remark that in [22] the proof is given for the case in
which the function a(x) is replaced (in polar coordinates) by

ã(ρ, φ,Θ) = ρα cos(2φ)+.
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Then the proof is achieved, taking advantage of the fact that the function cos(2φ)
satisfies the so-called Muckenhoupt condition Aq; this gives the possibility to build
an approximation procedure based on a reflection argument (where the Muckenhoupt
property enters). It is easy to see that the same argumentation works here for the
function (cos(2φ))α, which comes from the study of our case.

Now let 0Rn ∈ A ∈ A and |Du|p + a(·) |Du|q ∈ L1
loc(A). By Theorem 7.4, it

follows that μ(u,A) = +∞ if λ1 �= λ2 in (7.8). To conclude with (7.13), it then
remains to show that μ(u,A) = 0 if λ1 = λ2. To this aim, by (7.4) it suffices to prove
the following proposition.

Proposition 7.8. Let 0Rn ∈ A ∈ A and u ∈ L1(B1) be such that |Du|p +
a(·) |Du|q ∈ L1

loc(A), with λ1 = λ2 in (7.8). Then for each ε > 0 there exists a
sequence {wk} ⊂ W 1,q(A) such that wk → u in L1(A) and

lim inf
k→+∞

∫
A

(|Dwk|p + a(x) |Dwk|q) dx ≤
∫
A

(|Du|p + a(x) |Du|q) dx + ε.(7.15)

Proof. Observe that we may and do assume that the right-hand side of (7.15) is fi-
nite. We will denote by ν the outward unit normal to ∂BR and by τ := (τ1, . . . , τn−1)
an orthonormal basis to the tangent (n − 1)-space to ∂BR. Then, setting Dτu :=
(Dτ1u, . . . ,Dτn−1u), we have that |Du|2 = |Dνu|2 + |Dτu|2. Also, if u ∈ W 1,p(B1)
and 0 < R < 1, we will denote by TRu := T[∂BR]u the usual trace operator: that

is, TRu ∈ W 1− 1
p ,p(∂BR) is the trace of u on ∂BR.

Now fix 0 < δ < dist(0Rn , ∂A) and let r ∈ (0, δ/2). Then, by Remark 7.1 and
Proposition 7.7, we select a sequence {uk} ⊂ W 1,q(A \ Br) such that uk → u in
L1(A \Br) and

lim
k→+∞

∫
A\Br

(|Duk|p + a(x) |Duk|q) dx

= F (u,A \Br)

=

∫
A\Br

(|Du|p + a(x) |Du|q) dx < +∞.

(7.16)

Up to passing to a not-relabelled subsequence, by uniform convexity, (7.16) yields

lim
k→+∞

∫
A\Br

(|Duk −Du|p + a(x) |Duk −Du|q) dx = 0.

In particular, by an estimate similar to (7.6), with β = 0, which is allowed since now
(7.2) is in force (see also (7.7)), we have

lim
k→+∞

∫
(B2r\Br)∩C+

|Duk −Du|s dx = 0

for some s > n. As a consequence, by Sobolev, Morrey, and Rellich’s theorems,
passing again to a not-relabelled subsequence, we can select R ∈ (r, 2r) such that
TRu ∈ W 1,p(∂BR) ∩W 1,q(∂BR ∩ C+), TRuk ∈ W 1,q(∂BR) for every k,∫

∂BR

(|Dτuk|p + a(x) |Dτuk|q) dHn−1

≤
∫
∂BR

(|Dτu|p + a(x) |Dτu|q) dHn−1 +
ε

3
R,

(7.17)
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∂BR

|uk − λ|p dHn−1 ≤
∫
∂BR

|u− λ|p dHn−1 +
ε

3
Rp−1,(7.18)

∫
∂BR∩C+

|uk − λ|q dHn−1 ≤
∫
∂BR∩C+

|u− λ|q dHn−1 +
ε

3
Rq−α−1,(7.19)

where λ := λ1 = λ2 is given by (7.8). Now define

vk(x) :=

⎧⎪⎨
⎪⎩

uk(x) if x ∈ A \BR,

|x|
R

(
uk

(
R

x

|x|

)
− λ

)
+ λ if x ∈ BR.

(7.20)

Trivially {vk} ⊂ Lq(A) and vk → u in L1(A \BR), whereas, since for a.e. x ∈ BR

|Dvk(x)|2 = R−2

∣∣∣∣uk

(
R

x

|x|

)
− λ

∣∣∣∣
2

+

∣∣∣∣Dτuk

(
R

x

|x|

)∣∣∣∣
2

,

we infer ∫
BR

|Dvk|q dx ≤ c(q)

∫
∂BR

(R1−q · |uk − λ|q + R · |Dτuk|q) dHn−1

and hence {vk} ⊂ W 1,q(A). We now show that, using the aforementioned information,
for any r ∈ (0, δ/2) we can find R ∈ (r/2, r) such that

lim inf
k→+∞

∫
A

(|Dvk|p + a(x) |Dvk|q) dx

≤
∫
A\BR

(|Du|p + a(x) |Du|q) dx + O(R) + ε,
(7.21)

where O(R) → 0+ as R → 0+. To this end, since |a(x)| ≤ Rα for x ∈ BR, we first
estimate ∫

BR

(|Dvk|p + a(x) |Dvk|q) dx

≤ c (p, q)

{
R1−p

∫
∂BR

|uk − λ|p dHn−1

+R1+α−q

∫
∂BR∩C+

|uk − λ|q dHn−1

+R

∫
∂BR

(|Dτuk|p + a(x) |Dτuk|q) dHn−1

}
.

(7.22)

We now make use of the following embedding result (see [42, Lem. 5.8] for a proof).
Lemma 7.9. If u ∈ W 1,p(Bδ) with 1 ≤ p < n, Bδ ⊂ R

n being the n-ball of radius
δ, and λ ∈ R, then for a.e. 0 < R < δ we have

R1−p

∫
∂BR

|u− λ|p dHn−1

≤ c (n, p)

{∫
BR

|Du|p dx +

(∫
BR

|u− λ|p∗
dx

)p/p∗}
,

(7.23)
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where p∗ := np/(n− p) is the Sobolev conjugate of p.
Now, condition Bδ ⊂⊂ A yields that u(·) − λ ∈ W 1,p(Bδ). Then, by (7.18),

(7.23), the Sobolev embedding theorem, and absolute continuity, we obtain

R1−p

∫
∂BR

|uk − λ|p dHn−1 ≤ O(R) +
ε

3
.(7.24)

Recall now that since a(·)|Du|q ∈ L1(A), by Lemma 7.3 and Morrey’s theorem [5,
Thm. 5.4], since both ±C+

R have Lipschitz boundaries, we have

|u(x) − u(y)| ≤ c ‖Du‖Ls(±C+
R

) |x− y|1−n/s ∀x, y ∈ ±C+
R ,

where c > 0 is an absolute constant and s > n. In particular, by (7.8), with λ = λ1 =
λ2, for every x ∈ ∂BR ∩ C+ we then infer

|u(x) − λ| ≤ c0 ‖Du‖Ls(C+
R

) R
1−n/s.(7.25)

Now, since by (7.7) (with r = 1)

c2 := ‖a(·)−1‖Ls/(q−s)(C+
1 ) =

(∫
C+

1

a(x)s/(s−q) dx

)(q−s)/s

< +∞,

by homogeneity of a(x) we compute

‖a(·)−1‖Ls/(q−s)(C+
R

) = c2 R
(n(q−s)−αs)/s.(7.26)

Moreover, by (7.6) (with β = 0) and (7.26) we estimate

‖Du‖q
Ls(C+

R
)

≤ ‖a(·) |Du|q‖L1(C+
R

) · ‖a(·)−1‖Ls/(q−s)(C+
R

)

= ‖a(·) |Du|q‖L1(C+
R

) · c2 R(n(q−s)−αs)/s.

As a consequence, by (7.25) we have

|u(x) − λ|q ≤ c0
q Rq−nq/s ‖a(·) |Du|q‖L1(C+

R
) · c2 R

(n(q−s)−αs)/s

for every x ∈ ∂BR ∩ C+ and hence

R1+α−q

∫
∂BR∩C+

|u− λ|q dHn−1

≤ c(n)Rn+α−q c0
q c2 R

q−nq/s R(n(q−s)−αs)/s ‖a(·) |Du|q‖L1(C+
R

)

= C ‖a(·) |Du|q‖L1(C+
R

).

Then, by absolute continuity and (7.19) we obtain

R1+α−q

∫
∂BR∩C+

|uk − λ|q dHn−1 ≤ C ‖a(·) |Du|q‖L1(C+
R

) +
ε

3

≤ O(R) +
ε

3
.

(7.27)

Finally, since |Du|p + a(·) |Du|q ∈ L1(Bδ), setting

f(ρ) :=

∫
∂Bρ

(|Dτu|p + a(x) |Dτu|q) dHn−1, 0 < ρ < δ,
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by the coarea formula, one has f(ρ) ∈ L1(0, δ). Therefore, since f(ρ) ≥ 0, we have
lim infρ→0+ ρ · f(ρ) = 0. As a consequence, without loss of generality we can choose
R so that R · f(R) = O(R) and hence, by (7.17),

R

∫
∂BR

(|Dτuk|p + a(x) |Dτuk|q) dHn−1 ≤ O(R) +
ε

3
.(7.28)

Then, by (7.24), (7.27), and (7.28), the right-hand side of (7.22) is smaller than
O(R) + ε and, finally, by lower semicontinuity and (7.16), we obtain (7.21).

We finally make use of a diagonal argument, as follows. We first select rj ↘ 0 and

Rj ∈ (rj , 2rj) as above; then for any fixed j via (7.20) we define {u(j)
k } ⊂ W 1,q(A\Brj )

so that u
(j)
k → u in L1(A \ Brj ) and (7.16) holds with r = rj ; we then construct

{v(j)
k } ⊂ W 1,q(A) such that v

(j)
k → u in L1(A \BRj

) and (7.21) holds with R = Rj .

Finally, we set wk := w
(k)
k , so that {wk} ⊂ W 1,q(A), wk → u in L1(A), and by

(7.21)

lim inf
k→+∞

∫
A

(|Dwk|p + a(x) |Dwk|q) dx

≤ lim inf
k→+∞

{∫
A\BRk

(|Du|p + a(x) |Du|q) dx + O(Rk) + ε

}

so that (7.15) holds, as required.
End of the Proof of Theorem 7.6. In order to prove Theorem 7.6 for general

integrands f , since we have shown that the density property (Definition 4.5) holds out
of the origin, arguing as in Proposition 4.9, and taking into account that Qf ≡ Cf
in the scalar case N = 1, we obtain (7.12) where the singular measure μ(u, ·) is
concentrated in the origin. Finally, (7.13) follows from growth condition (7.11).

8. Another sharp example with energy concentration. In this section
we describe another counterexample, involving probably the finest analysis of the
paper; we show that if Ω = B1, the unit ball of R

2, and f(x, z) := |z|p(x), where
p : Ω → (1,+∞) is a suitable continuous exponent, energy concentration does occur
in the process of relaxation in case (4.4) is violated: more precisely, following Zhikov
[46] we set

p(x) := 2 +
x1x2

|x|

(
log

(
2

|x|

))−t

, x = (x1, x2) ∈ B1,(8.1)

where 0 < t < 1 is fixed. In this case the assumptions of Theorem 3.3 (see Example
3.4) hold, while those of Theorems 4.11 and 4.12 are not satisfied (see Example 4.8).
Zhikov considered in [46] the homogeneous extension u(x) := ϕ(x/|x|) on B1 of the
function ϕ defined in standard polar coordinates x = (cos θ, sin θ) on ∂B1 by

ϕ(θ) :=

⎧⎪⎪⎨
⎪⎪⎩

1 if − α ≤ θ ≤ π/2 + α,
2(θ + α− π)/(4α− π) if π/2 + α ≤ θ ≤ π − α,
0 if π − α ≤ θ ≤ 3π/2 + α,
2(θ − α− 3π/2)(π − 4α) if 3π/2 + α ≤ θ ≤ 2π − α,

(8.2)

where 0 < α � π/4 is a fixed small angle. Of course |Du|p(x) ∈ L1(Ω) , but Zhikov
showed that the Dirichlet problem for the p(x)-energy with boundary condition u
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on ∂B1 is not regular, i.e., the infimum over W 1,p(x)-maps is strictly less that the
infimum over smooth maps. For future purposes, we remark that the key point in
Zhikov’s argument is the summability near 0 of the function ρ �→ ρ−1+c(log(2ρ−1))−t

for any 0 < t < 1 and c > 0, since for some c1, c2 ≡ c1, c2(c) > 0 we have

∫ 1

0

ρ−1+c(log(2ρ−1))−t

dρ ≤ ec(log 2)1−t

∫ 1

0

ρ−1 e−c (log(2ρ−1))1−t

dρ

= c1

∫ +∞

log 2

e−c2 x1−t

dx < +∞.
(8.3)

Moreover, for convenience, we also note that∫ +∞

log 2

xte−c2 x1−t

dx < +∞ ∀ t ∈]0, 1[ , c2 > 0.(8.4)

In this section we denote by F (u,A) and F (u,A) the functionals given by (2.1)
and (2.2), respectively, where Ω = B1 and f : B1 ×R

2 → [0,+∞) is a Carathéodory
function satisfying (8.7), where p(x) is given by (8.1), so that F (u,A) satisfies the
measure property (see Example 3.4). Since p(x) satisfies (4.4) out of the origin (it is
actually Lipschitz continuous far from the origin), we infer that energy concentration
can occur only in x = 0R2 . More precisely, by Theorems 4.7 and 4.11 (see Example
4.8) we immediately obtain the following proposition.

Proposition 8.1. Let u ∈ L1(B1) be such that |Du|p(x) ∈ L1
loc(A) for some

open set A ⊂ B1 with 0R2 /∈ A, where p(x) is given by (8.1). Then

F (u,A) =

∫
A

|Du(x)|p(x) dx.(8.5)

Now we define, for every 0 < β < π/4, the open cones

Cβ ≡ +Cβ := {x = ρ eiθ | β < θ < π/2 − β},
−Cβ := {−x | x ∈ Cβ} , ±Cβ

r := ±Cβ ∩Br.

Since inside ±Cβ we have p(x) > 2 and p(x) → 2+ very rapidly as x → 0R2 , we
are able to define the traces in the origin of a function with finite energy in the cones
±Cβ

r , see (8.6). Of course we do not have at our disposal a standard estimate of
the type in Lemma 7.2, since in our case p(x) → 2 (the borderline case of Sobolev
embedding) as x → 0; anyway, we are able to prove the following theorem.

Theorem 8.2 (trace theorem). Let u ∈ L1(B1) be such that |Du|p(x) ∈ L1
loc(A)

for some open set A ⊂ B1 with 0R2 ∈ A, where p(x) is given by (8.1). Then for every
0 < β < π/4 the following finite limits exist:

λ1 := lim
x → 0

R2

x ∈ C
β

r

u(x) and λ2 := lim
x → 0

R2

x ∈ −C
β

r

u(x).(8.6)

In particular, if r > 0 is such that Br ⊂⊂ A, we have that u is a continuous
function up to the boundary of both the cones ±Cβ

r .
Thanks to Theorem 8.2, as in Theorem 7.4 we show that there is energy concen-

tration in the origin if the traces in (8.6) take different values, for example, when

u(x) ≡ u(x) := ϕ(x/|x|),
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with ϕ given by (8.2).
Theorem 8.3. Let F (u,A) and F (u,A) be given by (2.1) and (2.2), with Ω = B1

and f(x, z) being a Carathéodory function such that

c1 |z|p(x) ≤ f(x, z) ≤ c2 (|z|p(x) + 1),(8.7)

where p(x) is given by (8.1) and c2 > c1 > 0. Moreover, let u ∈ L1(B1) be such that
|Du|p(x) ∈ L1

loc(A) for some open set A ⊂ B1 with 0R2 ∈ A. Then, if λ1 �= λ2 in
(8.6), it follows that F (u,A) = +∞.

Remark 8.4. In contrast to the previous section, this time we do not give the com-
plete representation of the relaxed functional (that is, an analogue of Theorem 7.6),
confining ourselves to emphasizing the main concentration phenomenon in the origin.
This, for the sake of brevity: indeed, severe technical complications intervene in the
upper bound estimate for the energy in the case λ1 = λ2. Regardless, it should be
possible to obtain the same complete representation of the type in Theorem 7.6 also
in this case.

Proof of Theorem 8.2. It is not restrictive to suppose

A = B1 and

∫
B1

|Du|p(x) dx < +∞.

Moreover, we will show the existence of the first limit in (8.6), the second limit being
treated the same way. We remind the reader that in the following c > 1 continues to
denote a constant possibly varying from line to line; we shall emphasize the relevant
connections.

Step 1: Dyadic type sequences. We consider a sequence {yk} ⊂ C
β

r of the type

yk := rk(cos θk, sin θk),(8.8)

where θk ∈ [β, π/2 − β] and rk → 0+ is a decreasing sequence such that

L−1/2k ≤ rk ≤ L/2k(8.9)

with L ∈ [1,+∞). We have

|yk − yk+1| ≤ |yk| · |θk − θk+1| + |rk − rk+1| ≤ (π + 1) rk.(8.10)

By applying Morrey’s theorem to the closure of the smooth set

Sk := Cβ ∩BL2−k

L−12−(k+1) ,

where BR
r := BR \Br, we have

|u(yk) − u(yk+1)| ≤ c bk |yk − yk+1|1−2/pk ,(8.11)

where

pk = 2 + cβ
(
log(L2k+2)

)−t
, cβ :=

sin(2β)

2
> 0, bk :=

3

pk − 2
,(8.12)

and c is an absolute constant depending on L and
∫
Sk

(|Du|p(x) + 1) dx, and hence

on
∫
B1

|Du|p(x) dx. Note that we used the fact that u ∈ W 1,pk(Sk) since p(x) ≥ pk
whenever x ∈ Sk. For comments on the validity of the previous inequality, and, in
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particular, the determination of the constant bk, see Remark 8.5. Then for k large so
that (π + 1) rk < 1, by (8.9) and (8.10) we have

|u(yk) − u(yk+1)| ≤ c bk |yk − yk+1|1−2/pk

≤ c bk (2−k)(cβ/3) (log(L2k+2))−t

≤ c bk e
ĉ (log(2k+2))−t log(2−k)

≤ c (log(2k+2))t e−ĉ (log(2k+2))1−t

,

where c and ĉ are positive constants depending on β, L, and
∫
B1

(|Du|p(x) + 1) dx.
Therefore,

+∞∑
k=1

|u(yk) − u(yk+1)| ≤ c

+∞∑
k=1

(k + 2)te−ĉ (log 2)1−t (k+2)1−t

< +∞,

the last series being convergent by (8.4). Observe that the constant c depends on
L and

∫
B1

(|Du|p(x) + 1) dx and ĉ depends on β, L; moreover ĉ → 0 as β → 0 or
when L → +∞ whereas, by the definition of bk, it follows that c → +∞ as β → 0.
Therefore we have that the sequence u(yk) converges to a certain limit value l < +∞.

Step 2: Comparing dyadic type sequences. Now take {y1
k} and {y2

k}, two se-
quences as in (8.8) satisfying (8.9) with different constants L1, L2, and define L =
max{L1, L2}. Arguing as in the previous step, there exist l1, l2 such that u(y1

k) → l1
and u(y2

k) → l2. As in (8.10) we also deduce that

|y1
k − y2

k| ≤ c3(L)/2k.

With the same notation as in (8.12) (with everything adapted to the new value of the
constant L), we find

|u(y1
k) − u(y2

k)| ≤ c
|y1

k − y2
k|1−2/pk

pk − 2

≤ c (k + 2)te(−ĉ) (log 2)1−t (k+2)1−t → 0,

where ĉ ≡ ĉ(β, L) > 0 and c depends both on L and
∫
B1

(|Du|p(x) + 1) dx, as in the
previous step. Therefore we infer l1 = l2.

Step 3: Conclusion. It suffices to show that if {xk} ⊂ C
β

r \ {0R2} converges to
0R2 , then u(xk) → l, where l is defined as the limit of any sequence of Step 1. Note
that by Step 2 we have that l does not depend on such a choice. Therefore we pick
λ1 := l in (8.6). In turn, it suffices to show that from {xk} it is possible to select a
subsequence {zk} such that u(zk) → l. To this aim we let xk := ρ̃k(cos ϕ̃k, sin ϕ̃k) and
we pass to a subsequence zk := ρk(cosϕk, sinϕk) such that ρk+1 ≤ 4−1ρk. Next we
consider the new sequence {yk}, built as follows. First we define {r̃k} as the decreasing
rearrangement of the set {ρk | k ∈ N} ∪ {2−k | k ∈ N} ≡ A ∪ B. Then, from this
sequence we build yet another sequence by dropping certain terms: we delete r̃h if
and only if r̃h ∈ B \A and moreover r̃h+1 ∈ A. (Roughly speaking, after rearranging
the pieces of the original sequence A with those from the dyadic type sequence B, we
delete all the terms from B \A which come immediately before a term of the sequence
A. Observe that since we have chosen {ρk} such that ρk+1 ≤ ρk/4, then between any
two terms of the type 2−k and 2−k−1 it falls at most one term of A \ B; moreover,
in the new sequence all the terms of the original A do appear and, in the case in
which they go to zero faster than 2−k, they are interpolated by the dyadic numbers.)
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Relabelling, we finally get {rk}; then we set yk := rk(cos θk, sin θk), where θk = ϕj if
rk ∈ A and rk = ρj for some j ∈ N, while θk = π/4 otherwise. The sequence {yk}
is now of the type in (8.8), for a suitable constant L. Therefore by Steps 1 and 2
it follows that u(yk) → l and so does {u(zk)}, being a subsequence of {u(yk)}. The
proof is now complete.

Remark 8.5. Here we briefly justify the validity of the inequality (8.11). It is well
known that if we let

R := (0, 1) × (β, π/2 − β),

then for any function v ∈ W 1,s(R), with s > 2, Morrey’s imbedding inequality takes
the form

|v(x) − v(y)| ≤ c

1 − 2/s
|x− y|1−2/s

(∫
R

|Dv(z)|s dz

)1/s

,(8.13)

where c is an absolute constant. This can be inferred from [5, p. 110]; similar inequal-
ities are valid for general parallelepipeds in higher dimensions. Then we infer (8.11)
from the previous inequality, letting of course s := pk, via a simple change of variable
argument and the use of polar coordinates. The details follow. Using the nonsingular
map

φk : (ρ, θ) ∈ R → gk(ρ)(cos θ, sin θ) ∈ Sk,

gk(ρ) := (L2−k − L−12−(k+1))ρ + L−12−(k+1),

it turns out that

Φk ≡ φ−1
k : (x1, x2) ∈ Sk → (fk(|x|), arctan(x2/x1)) ∈ R,

where

fk(ρ) := (L2−k − L−12−(k+1))−1(t− L−12−(k+1)),

and the following relations hold:

||Dφk||∞ ≤ c 2−k, ||DΦk||∞ ≤ c 2k,

detDφk = gk(ρ)(L2−k − L−12−(k+1)) > 0, |detDφk|−1 ≤ c4k,

where c ≡ c(L) denotes an absolute constant independent of k ∈ N. Finally, if
u ∈ W 1,s(Sk), then v := u ◦ φk ∈ W 1,s(R); therefore, using (8.13), the change of
variable formula, and the previous relations, we get, with x, y ∈ Sk and φk(x̃) = x
and φk(ỹ) = y,

|u(x) − u(y)| = |v(x̃) − v(ỹ)|
≤ c s

s− 2
|x̃− ỹ|1−2/s||Dv||Ls(R)

≤ c s

s− 2
||DΦk||1−2/s

∞ ||Dφk||∞|||det Dφk|−1||1/s∞ |x− y|1−2/s

×
(∫

R

|Du(φk(ρ, θ))|sdet Dφk dρ dθ

)1/s

≤ c s

s− 2
|x− y|1−2/s

(∫
Sk

|Du(x)|s dx

)1/s

,
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and (8.11) follows by taking s := pk, observing that max p(x) ≤ 3; also, from the
previous estimates, the constant c clearly depends on L and blows up when so L does.
Regardless, c is independent of k ∈ N.

Proof of Theorem 8.3. As for the proof of Theorem 7.6 we shall restrict ourselves,
without loss of generality, to the case f(x, z) := |z|p(x). Arguing as for Theorem 7.4,
it then suffices to prove the following proposition.

Proposition 8.6. Let {uj} ⊂ C1(Br) be such that uj → u in L1(Br) and a.e.
in Br and

sup
j

∫
Cβ

r

|Duj |p(x) dx + sup
j

∫
−Cβ

r

|Duj |p(x) dx < +∞.

Then, possibly passing to subsequences, uj → u uniformly on the closure of Cβ
r ∪−Cβ

r .
Therefore, λ1 = λ2 in (8.6).

Proof. Due to a.e. convergence uj → u, by the Ascoli–Arzelà theorem it suffices
to show that {uj} is equi-uniformly continuous on the closure of Cβ

r and of −Cβ
r . We

make use of the following lemma.
Lemma 8.7. Let v ∈ C1(Br) be such that

∫
Cβ

r
|Dv|p(x) dx < +∞; there exist a

nondecreasing nonnegative function g : R
+ → R

+, depending on p(x) and β, with
g(R) → 0+ as R → 0+ and constants ĉ1, depending only on

∫
Cβ

r
|Dv|p(x) dx, and β,

ĉ2 depending only on β, both independent of the function v, such that

|v(x) − v(y)| ≤ ĉ1 min
{
B(R)dĉ2(log(2/R))−t

, g(S)
}

(8.14)

for every x, y ∈ C
β

r \{0}. Here d := |x−y| ≤ 1, S := max{|x|, |y|}, R := min{|x|, |y|},
and B(R) is a function depending only on R and such that it is bounded on every

interval of the type [R0, 1], R0 > 0. The same result holds replacing C
β

r by −C
β

r .

Proof. We treat only the case of C
β

r , the proof for −C
β

r being similar. By applying

Morrey’s theorem to the set Cβ
1 \ Cβ

R/2 we infer

|v(x) − v(y)| ≤ cB(R)|x− y|cβ (log(4/R))−t

,

where cβ := sin(2β)/2 > 0, B(R) depends only on R and the constant c depends
on

∫
Cβ

r
|Du|p(x) dx; observe that B(R) is given by Morrey’s imbedding inequality,

and it turns out that B(R) → +∞ when R → 0; this gives the first estimate for
(8.14). In order to get the second estimate we argue as follows: if k ∈ N is such that
2−k ≤ |x| < 2−k+1, and xi := 2−i(cos(π/4), sin(π/4)), arguing as in Theorem 8.2
(compare Remark 8.5) and setting p(ρ) := 2 + cβ (log(2/ρ))−t, we also infer

|v(x) − v(0R2)| ≤ |v(x) − v(xk)| +
+∞∑
i=k

|v(xi) − v(xi+1)|

≤ c
|x− xk|1−2/p(2−k)

p(2−k) − 2
+ c

+∞∑
i=k

|xi − xi+1|1−2/p(2−(i+1))

p(2−(i+1)) − 2

≤ c
+∞∑
i=k

log(2i+1)
t
(2−(i+1))

(cβ/3)log(2i+1)
−t

≤ c

+∞∑
i=k

(i + 1)te−ĉ (log 2)1−t (i+1)1−t

=: cAk.
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Observe that, as for Theorem 8.2, the constant c > 0 depends only on
∫
Cβ

r
|Dv|p(x) dx

and β, while ĉ > 0 depends only on β, and moreover c → +∞ when β → 0 while

ĉ → 0 when β → 0; this follows by Remark 8.5 replacing Sk by S̃k := Cβ ∩ B2−k+1

2−k

(thereby taking L = 1). As before, it has been used that u ∈ W 1,p(2−k)(S̃k).

In the same way, if 2−h ≤ |y| < 2−h+1 for some h ∈ N, then

|v(y) − v(0R2)| ≤ Ah

and by the triangle inequality

|v(x) − v(y)| ≤ 2 max{Ak, Ah} = 2Amin{k,h}.

Then, since Ak → 0 as k → +∞ (see (8.4)), we conclude by setting

g(S) :=

{
Ak if 2−k ≤ S < 2−k+1,
A1 if S ≥ 1/2;

clearly, g(S) → 0 if and only if S → 0.

End of Proofs of Proposition 8.6 and Theorem 8.3. Let {uj} ⊂ C1(Br) be the
sequence as in the statement; as explained at the beginning of the proof of Proposi-
tion 8.6, it suffices to prove that {uj} is equi-uniformly continuous on the closure of

Cβ
r , and in turn this is equivalent to proving the equi-uniform continuity on C

β

r \ {0}.
We have to prove that for any ε > 0 there exists δ ≡ δ(ε) > 0 such that whenever

x, y ∈ C
β

r \ {0} satisfy |x− y| ≤ δ, then |uj(x)− uj(y)| ≤ ε for every j ∈ N. We argue
by contradiction; if it were not so, there would exist ε0 > 0 such that for any positive

integer h there exist j(h) ∈ N, xh, yh ∈ C
β

r \ {0} and a function vh := uj(h) such that

dh := |xh − yh| ≤ 1/h(8.15)

but

|vh(xh) − vh(yh)| > ε0.(8.16)

By the estimate (8.14), if we set Sh := max{|xh|, |yh|} > 0, then (8.16) implies that
g(Sh) ≥ ε0/c1 > 0 (where c1 is independent of h ∈ N, as observed in Lemma 8.7),
and so there exists S0 > 0 such that Sh ≥ S0 for every h ∈ N. In turn, if we let
Rh := min{|xh|, |yh|} > 0, by (8.15) we get that Rh ≥ R0 := S0/2 > 0 for every index
h > 2/S0. Hence, by (8.14) we get

B(Rh)dh
ĉ2(log(2/Rh))−t

< B̃dh
ĉ2(log(2/R0))

−t

→ 0, B̃ = max
[R0,1]

B(R),

and applying again (8.14) and (8.16) yields

0 < ε0 ≤ lim sup
h→+∞

|vh(xh) − vh(yh)| ≤ lim
h→+∞

ĉ1B(Rh)dh
ĉ2(log(2/Rh))−t

= 0,

which is impossible. Therefore, {uj} is equi-uniformly continuous and the proofs are
complete.
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[44] M. Ružička, Electrorheological Fluids: Modeling and Mathematical Theory, Lecture Notes in

Math. 1748, Springer-Verlag, Berlin, 2000.
[45] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Uni-

versity Press, Princeton, NJ, 1970.
[46] V. V. Zhikov, On Lavrentiev’s phenomenon, Russian J. Math. Phys., 3 (1995), pp. 249–269.
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Abstract. We study suspensions of rigid particles (inclusions) in a viscous incompressible fluid.
The particles are close to touching one another, so that the suspension is near the packing limit,
and the flow at small Reynolds number is modeled by the Stokes equations. The objective is to
determine the dependence of the effective viscosity 〈μ〉 on the geometric properties of the particle
array. We study spatially irregular arrays, for which the volume fraction alone is not sufficient to
estimate the effective viscosity. We use the notion of the interparticle distance parameter δ, based
on the Voronoi tessellation, and we obtain a discrete network approximation of 〈μ〉, as δ → 0. The
asymptotic formulas for 〈μ〉, derived in dimensions two and three, take into account translational
and rotational motions of the particles. The leading term in the asymptotics is rigorously justified
in two dimensions by constructing matching upper and lower variational bounds on 〈μ〉. While
the upper bound is obtained by patching together local approximate solutions, the construction of
the lower bound cannot be obtained by a similar local analysis because the boundary conditions at
fluid-solid interfaces must be resolved for all particles simultaneously. We observe that satisfying
these boundary conditions, as well as the incompressibility condition, amounts to solving a certain
algebraic system. The matrix of this system is determined by the total number of particles and their
coordination numbers (number of neighbors of each particle). We show that the solvability of this
system is determined by the properties of the network graph (which is uniquely defined by the array
of particles) as well as by the conditions imposed at the external boundary.

Key words. effective viscosity, discrete network, variational bounds, concentrated suspension

AMS subject classifications. 74Q, 35Q72, 74F10, 76T20

DOI. 10.1137/S0036141003424708

1. Introduction. In this paper, we obtain and justify approximate formulas for
the effective viscosity 〈μ〉 of a highly concentrated suspension of solid particles in
a viscous incompressible fluid. We study generic, nonperiodic spatial distributions
of particles and focus on a particular type of highly concentrated suspension, which
can be approximately modeled on the macroscale by a single phase fluid, called the
effective fluid. The effective viscosity is determined from the equality of the viscous
dissipation rates in the suspension and the effective fluid. This is a classical approach
that goes back to Einstein [14], who approximated the effective viscosity in the limit
of an infinitely small particle concentration (the so-called dilute limit). Further results
for dilute suspensions can be found in [3] and the references therein.

While in the dilute limit the interactions between the particles are negligible,
the case of finite (nonsmall) concentrations is much harder to analyze because these
interactions must be taken into account. In [25], an asymptotic expansion of the
effective viscosity was constructed assuming a periodic distribution of particles. In
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[25], the formal two-scale homogenization was carried out under the assumption that
the number of particles tends to infinity while their total volume remains constant.
In this case, the distances between the particles are of the order of their sizes, which
is the key feature of the so-called finite (moderate) concentration regime.

By contrast, our interest lies in the high concentration regime, where the particles
are close to touching one another, so the typical interparticle distances are much
smaller than their sizes. In this case, the hydrodynamic interactions lead to the blow-
up of the dissipation rate in the thin gaps between the closely spaced particles. Note
that the effective fluid can be either Newtonian [15] or non-Newtonian [1, 2, 4, 24].
We consider only the former case, following [15, 16, 27] (see also [19] for a review
of physical data). Also, we consider only noncolloidal suspensions, which means that
hydrodynamic interactions are much stronger than Brownian interactions, so the latter
can be neglected. For effective rheology of colloidal suspensions, one may consult [12].

For periodic arrays of particles [15, 16, 27], the estimation of the effective viscosity
reduces to solving the flow problem locally, in a thin gap between two neighboring
particles. In [15], this is done by a formal asymptotic method, similar to the well-
known lubrication approximation, which takes into account only the translational
motions of particles along the lines of their centers. The contributions of rotations
and shear-type translations are neglected in [15]. In [16], a more general formula
for the effective viscosity is obtained, which combines the results in [15] and [14]
for dilute and high concentration regimes, respectively. In [27], the definition of
the effective viscosity involves the traction exerted by the fluid on a single sphere.
This traction satisfies an integral equation derived and solved (for a cubic periodic
lattice) in [27]. Note in particular that the periodicity assumption in [27] reduces the
boundary conditions on the surface of the particles to just a rigid body rotation (no
translations).

In this paper, we consider generic, nonperiodic arrays, where different particles
have different translational and rotational body motions. Since the rigid motions of
the particles are not known a priori, the effective viscosity cannot be obtained simply
by solving a local problem in the gap between adjacent particles. The motion of
one particle influences the motion of all the particles in the array and, to find the
effective viscosity, we must solve the global problem. A key ingredient in our method
of solution is the so-called discrete network approximation.

Discrete network models have been used in the engineering and physics literature
[21, 17, 28, 29], although the relation between the continuum problem and the discrete
network has not been established. The first rigorous mathematical characterization of
high-contrast media, in terms of discrete networks, was obtained for electromagnetic
transport problems in [8, 9, 10, 11], where the electrical conductivity (and permittiv-
ity) were modeled as exponentials of the form eS(x)/ε. This continuum high-contrast
model is due to Kozlov [22], where S is a smooth, Morse function and where ε � 1,
such that small variations of S are highly amplified by the exponential, thus giving
the high contrast. Kozlov’s model is especially useful in the context of imaging [10],
where the medium is not known and it is approximated by a generic, high-contrast
continuum. The high-contrast continuum model leads to an explicit characterization
of two-dimensional flow of DC (AC) electric current in the material, in terms of a
network of resistors (and capacitors), which is uniquely defined by the distribution of
critical points of S. Explicitly, in the DC case, the nodes of the network are the local
maxima of the electrical conductivity function (i.e., of S) and the branches of the net-
work connect adjacent nodes through the saddle points of S. The resistor associated
with each branch is determined by the conductivity and by the curvatures of S at
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the saddle point, respectively. The boundary currents and voltages of the asymptotic
network are also uniquely defined by S and by the boundary conditions specified for
the continuum problem, so the asymptotic results in [9, 10, 11] give more than the
homogenized electrical properties of the high contrast continuum. They give that the
Neumann-to-Dirichlet map of the continuum problem is asymptotically equivalent to
the discrete Neumann-to-Dirichlet map of the asymptotic network, in the limit ε → 0
[9, 11]. All the results in [8, 9, 10, 11] apply to the two-dimensional case for all smooth
functions S with isolated, nondegenerate critical points. Extensions to three dimen-
sions are straightforward for a special class of functions S, but for a general S, the
network approximation may not apply.

In [5], another network approximation has been developed for a scalar, DC con-
ductivity problem which models dispersive high contrast composites. In this case,
S(x) is the characteristic function of the particles, the high-contrast parameter is
ε = 0 (perfectly conducting particles), and the asymptotic analysis is carried out in
the limit of the interparticle distance parameter δ tending to zero. The particle radii
are not treated as small parameters, and the number of the particles is sufficiently
large but bounded from above by Nmax, where Nmax is the maximal close packing
number. In [5], the connectivity patterns and the interparticle distance parameter for
irregular spatial arrays of particles are rigorously defined using Voronoi tessellation. It
is demonstrated that the network approximation is an efficient numerical tool, capa-
ble of capturing various percolation effects as well as effects due to the polydispersity
of particles. This approach also allows for analytical error estimates, subsequently
obtained in [6].

In [6, 8, 9, 10, 11, 5], the network approximation was rigorously justified by em-
ploying variational duality. The key point is the construction of trial functions, the
electric potential and current density for the direct and dual variational problems,
respectively. The choice of trial functions depends on both the mathematical and the
physical features of the problem. For example, the construction of trial functions in
[5] is essentially different from those in [8, 9, 10, 11], and it requires the development
of new mathematical tools. While the upper bound can be obtained by patching
together the appropriate test functions based on the local analysis of [20], such a
straightforward approach does not work for the lower bound. The difficulty in ob-
taining the latter lies in the construction of trial functions for the dual problem, when
the boundary conditions on the surfaces of the particles cannot be satisfied indepen-
dently for each particle, and one must deal with all inclusions simultaneously. The
dual (lower) bound was obtained in [5] by constructing an approximate, divergence-
free trial electric current density in the gap between adjacent particles and extending
it to zero elsewhere in the domain. Then, the network equations are used to choose
the unknown parameters in the dual trial field, so that the boundary conditions on
the surface of the particles are satisfied exactly. Note, however, that this construction
is specialized to the scalar, electrical conductivity problem, and does not admit a
generalization to vectorial problems.

In this work, we study the vectorial problem described by Stokes’s flow in a closely
packed suspension with rigid particles. Since the array of particles is irregular, our
construction uses the interparticle distance parameter introduced in [5], based on the
Voronoi tessellation. Due to the high concentration of particles of finite size, in a
fixed volume, the particles are close to touching. Thus, we assume that distances δij

between adjacent particles D(i) and D(j) become infinitesimally small, but positive.
More precisely, we say that cδ ≤ δij ≤ δ for all pairs D(i), D(j) of neighboring
particles, where 0 < c < 1 is fixed and where δ is the small parameter of the problem.



EFFECTIVE VISCOSITY OF CONCENTRATED SUSPENSIONS 1583

We are interested in the asymptotics of the effective viscosity as δ → 0, while the
particle radii ai are kept fixed and the number of particles N approaches Nmax, from
below.

The goal of this paper is twofold. The first objective is to obtain a method for
estimating the effective viscosity which captures explicitly the effects of the com-
plex geometry (the irregular distribution of the location and size of the particles).
This is done in both two and three dimensions, and our derivation is based on the
generalization of the lubrication approximation technique. We take into account all
possible translations and rotations of the rigid particles in the suspension, which we
quantify by constant vectors T(p) and ω(p), respectively, for 1 ≤ p ≤ N . Using the
linearity of the problem, we approximate first the velocity, pressure, and stress in
the gaps (necks) between the particles for translational and rotational motions, sep-
arately, and then we superpose the results. The lubrication analysis is local for each
gap, and by summing the contribution of all the gaps, we obtain the discrete approx-
imation of 〈μ〉, parameterized in terms of the rigid body translational and rotational
velocities T(p) and ω(p), respectively, for 1 ≤ p ≤ N . These rigid body motions
are not arbitrary, but they are calculated by solving a system of linear equations,
which corresponds to the conditions of mechanical equilibrium for all particles in the
suspension.

For the reader interested mainly in numerical estimation of the effective viscosity,
we describe our approach in Remark 3.1. (See also the forthcoming paper [7], where
the effective viscosity was computed for several boundary conditions and various par-
ticle arrays by adapting the approach developed in this paper.)

The second objective of the paper is to provide a rigorous mathematical jus-
tification of the asymptotic approximation of the effective viscosity. The rigorous
justification of the leading order term in the asymptotic approximation is done here
in two dimensions. The most subtle part of this justification is the construction of the
dual trial function for the lower bound on the effective viscosity. None of the tech-
niques developed previously in [5, 6, 8, 9, 10, 11] for constructing trial functions for
the dual problem work here. There are two main difficulties in the construction of the
bounds on the effective viscosity. The first difficulty is that the trial functions must
be divergence free in the fluid domain. The second difficulty is raised by the boundary
conditions on fluid-solid interfaces. While these issues can be handled in the upper
bound construction with an approach inspired by the work in [5, 6, 8, 9, 10, 11], the
dual problem is significantly more challenging because the trial fields are tensors. In
the dual problem, neither of the above two difficulties can be resolved by doing local
analysis, that is, by choosing approximate solutions in each gap followed by patching
these solution together. First, we must consider the global problem to ensure that the
boundary conditions are satisfied for all inclusions at once. Second, we show that
the divergence-free requirement on the stress trial fields is also global, analogous to
the interface conditions. Then, we observe that the solvability of a certain algebraic
system is sufficient to ensure that these two global requirements are satisfied. The size
of the matrix of the linear system is determined by N , the total number of particles,
and by their coordination number (number of neighbors). The solvability of the sys-
tem, in turn, is determined by the connectivity and the coordination numbers of the
network graph corresponding to the particle array, as well as by the conditions at the
external boundary. We present geometric conditions for the network graph (topology)
so that this linear system is solvable. In particular, we point out that these conditions
are satisfied by network graphs which model typical close packing configurations.

The paper deals with irregular spatial arrays of particles. In this case, the total
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volume fraction of particles (the only parameter in the formulas from [14, 15]) is
not sufficient for estimating the effective viscosity. Instead of a formula, we give an
algorithm, which essentially reduces computation of the effective viscosity to solving a
linear algebraic system for translational and angular velocities of particles. The gain
here is that we obtain an accurate yet computationally inexpensive approximation
for the effective viscosity, which, unlike the above mentioned formulas, takes into
account variable distances between neighboring particles. Note that variability in
these distances for a fixed total volume fraction of particles may result in significant
changes in the effective properties due to percolation effects (see [6]).

The focus of this paper is on derivation and, particularly, analytical justification
of this algorithm, while its implementation will be investigated elsewhere. (See, for
example, the forthcoming [7], where both shear and compression boundary conditions
for various arrays of particles are investigated.) This paper, however, contains results
of immediate practical interest, such as determination of the order of magnitude
of the effective viscosity in the interparticle distance parameter δ. An interesting
feature of the vectorial problem that distinguishes it from the scalar case considered
in [5, 6, 8, 9, 10, 11] is that the order of magnitude of the effective viscosity depends
crucially on the geometry of the particle array and on the boundary conditions. For the
scalar problem, the order of magnitude is the same for all networks satisfying a natural
connectedness assumption [5], which is not the case in our vectorial problem. In
section 6.2.6 we give a sufficient condition on the particle array such that the effective
viscosity blows up at the rate δ−3/2, in two dimensions, and the leading term in the
asymptotics of 〈μ〉 is given by the so-called spring network approximation, in which
only the translational motions of adjacent particles, along the axis of their centers, are
taken into account. In this case, the rotations of the particles do not contribute to the
leading term of the asymptotics of 〈μ〉. If an array does not satisfy this condition, the
blow up rate may be a weaker (δ−1/2), in which case rotational contributions cannot
be ignored. A detailed study of this phenomenon is presented in the forthcoming
[7], where we also use network approximation to explain the discrepancy, observed in
[31], between the effective shear viscosity formulas for periodic arrays and estimates
obtained from experimental results and numerical simulations.

In this paper, we give the rigorous justification of the spring network approx-
imation. An important physical problem is to calculate the second order term in
〈μ〉, which depends on the rotational motions of particles. The two-term (formal)
asymptotics obtained here provide physical insight and the quantitative estimate of
the contributions of rotations, as well as the effects of variable size distribution. Rig-
orous justification of these formulas requires a more careful lower bound construction
than we attempt here, and it remains an interesting and challenging open problem.

Our study is motivated by the problem of transport of highly concentrated slur-
ries, which arises in numerous industrial applications ranging from construction engi-
neering to combustion processes [30, 32]. It is often necessary to use slurries with high
solid content (highly packed). The transport of such slurries is impeded by the fact
that their effective viscosity is very high. Thus the goal is to find an optimal balance
between the effective viscosity and the concentration of the solid phase. The first
step in achieving this goal is to obtain relatively simple formulas which show how the
effective viscosity depends on the control parameters (e.g., geometrical parameters,
such as the particle size distributions, particle locations, and shapes). The network
approximation we propose here can be used in the prediction of optimal properties of
such slurries.

The paper is organized as follows. In section 2, we give the mathematical formu-
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lation of the problem. Section 3 deals with the discrete network approximation of the
effective viscosity. We also give here, and in section 4, the lubrication approximation
of 〈μ〉, in two and three dimensions. In section 5, we construct the upper bound on
the effective viscosity, which accounts for both translational and rotational motions
of the inclusions. In section 6, we give the rigorous justification of the spring net-
work approximation of the effective viscosity. This accounts just for the leading order
term in the asymptotics of the effective viscosity of the high contrast, closely packed
suspension of particles. Finally, in section 7, we give a summary and conclusions.

2. Formulation of the problem.

2.1. The Stokes flow problem. Consider a cube

Ω =

{
x =

n∑
j=1

xj ej , − L ≤ xj ≤ L, 1 ≤ j ≤ n

}
(2.1)

of volume |Ω |= (2L)
n
, where n = 2 or 3 and where {e1, . . . , en} is an orthonormal

basis. We suppose that Ω is filled with N , nonoverlapping, rigid balls (particles) D(j)

of radius aj , suspended in an incompressible fluid of viscosity μ. We study the Stokes
flow of this suspension, where the fluid occupies the perforated, connected domain

ΩF = Ω \
N⋃
j=1

D(j).(2.2)

We are particularly interested in concentrated suspensions with volume fraction

α = 1 − | ΩF |
| Ω | ,(2.3)

close to maximal packing (neighboring particles are close to touching).
Let u(x) be the velocity field at point x ∈ ΩF and let E(x) be the rate of strain

tensor

E(x) =
1

2
[∇u(x) + (∇u(x))T ],(2.4)

which satisfies

trace E(x) = divu(x) = 0(2.5)

by incompressibility. The stress in the fluid is

S(x) = −P (x)I + 2μE(x),(2.6)

where μ is the viscosity, P is the hydrostatic pressure, and I denotes the unit tensor.
In the rigid balls, E = 0. In the absence of external forces, the velocity field u(x) in
the fluid satisfies Stokes’s equation

divS(x) = μΔu(x) −∇P (x) = 0(2.7)

and the incompressibility constraint (2.5).
Let us denote by ∂Ω+ and ∂Ω− the top and bottom parts of the external boundary

∂Ω, respectively,

∂Ω+ = {x ∈ ∂Ω : xn = L} and ∂Ω− = {x ∈ ∂Ω : xn = −L}.(2.8)
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In this paper, we work with the model boundary conditions prescribed as follows. On
∂Ω+ ∪ ∂Ω−, the velocity satisfies

u(x) = g(x), where g(x) =

⎧⎨
⎩
− en

2L
on ∂Ω−,

en

2L
on ∂Ω+,

(2.9)

and the remaining part of ∂Ω is traction free,

S(x) n(x) = 0 for x ∈ ∂Ω \
{
∂Ω+ ∪ ∂Ω−} .(2.10)

At the surface of each rigid ball D(j), the velocity satisfies

u(x) = ω(j) × (ajn
(j))(x) + T(j) on ∂D(j), j = 1, 2, . . . , N,(2.11)

where ω(j), T(j) are constant but unknown rotational and translational velocities of
D(j) and where n(j)(x) is the outer normal at ∂D(j). Finally, since each rigid ball is
in equilibrium, the total force and torque exerted on D(j) by the fluid must be zero,∫

∂D(j)

Sn(j) ds = 0 and

∫
∂D(j)

n(j) × Sn(j) ds = 0 for j = 1, 2, . . . , N.(2.12)

It is known that (2.7) and (2.5), with boundary conditions (2.9), (2.11), and
(2.12), have a unique solution u(x), at least in the weak sense, with components in
H1(ΩF ).

2.2. The effective viscosity. The rate of viscous dissipation of the energy is
given by [23]

E =
1

2

∫
ΩF

(S(x), E(x)) dx,(2.13)

where (·, ·) denotes the Frobenius tensor inner product

(S(x), E(x)) =
n∑

i,j=1

Sij(x) Eij(x).(2.14)

Integrating by parts and using (2.5), (2.6), (2.9), (2.10), (2.11), and the identity

(S, E) = −P trace E + 2μ(E , E) =
μ

2
(∇u + (∇u)T ,∇u + (∇u)T ),(2.15)

we obtain

E =
1

2

∫
∂Ω+∪∂Ω−

en
2L

· S(x)en ds−
1

2

N∑
j=1

∫
∂D(j)

(ω(j) × n(j)(x) + T(j)) · S(x)n(j) ds.

(2.16)

Furthermore, due to the balance equations (2.12), the integrals at the surface of the
particles vanish and (2.13) can be rewritten as

E =
1

4L

∫
∂Ω+∪∂Ω−

en · S(x) en ds.(2.17)
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The effective viscosity 〈μ〉 is defined by the equation

〈μ〉
μ

=
E

E0
=

∫
∂Ω+∪∂Ω−

en · S(x) en ds∫
∂Ω+∪∂Ω−

en · S0(x) en ds

,(2.18)

where S0(x) is the stress tensor that would occur in Ω, in the absence of all the parti-
cles, under the same external boundary conditions (2.9), (2.10), and where E0 is the
corresponding rate of dissipation (see, for example, [15]). An equivalent definition of
〈μ〉 can be obtained directly from (2.13) and (2.15) by equating the viscous dissipation
rates

〈μ〉
∫

Ω

(
E0, E0

)
dx = μ

∫
ΩF

(E , E) dx.(2.19)

We note that the definition of the effective viscosity, via the dissipation rate, is in-
troduced in [3] for dilute suspensions, where the energy of the particulate phase is
negligible. However, since the particles are rigid and condition (2.12) holds, the total
mechanical energy of the particles is conserved. Thus, definitions (2.18) and (2.19)
can be used as well for the suspensions considered in this paper.

2.3. The variational principles. The dissipation rate (2.13) or, equivalently,
the effective viscosity (2.18), have a primal and dual variational formulation. The
primal variational principle is widely known (see, for example, [13]),

E = min
u∈U

WΩF
(u), where WΩF

(u) =
μ

4

n∑
i,j=1

∫
ΩF

(
∂ui(x)

∂xj
+

∂uj(x)

∂xi

)2

dx,(2.20)

and where the function space U of admissible velocity fields is

U =

{
u =

n∑
j=1

uj ej , uj ∈ H1(ΩF ), j = 1 . . . n, divu = 0, (2.9) and (2.11) hold

}
.

(2.21)

Note that the minimizer in (2.20) is the solution of the Stokes flow equation (2.7),
where P (x) is the Lagrange multiplier for the incompressibility constraint divu(x)=0.

The dual variational principle1 is

E = max
S∈F

{
1

2L

∫
∂Ω+∪∂Ω−

en · S(x) en ds−
1

4μ

∫
ΩF

[
(S(x),S(x)) − (trace S(x))2

n

]
dx

}
,

(2.22)

where we maximize over the space F of admissible stress fields

F = {S ∈ R
n×n, S = ST , divS = 0, Sij ∈ L2(ΩF ),

i, j = 1, . . . , n, (2.10) and (2.12) hold}.(2.23)

The maximizer in (2.22) is the stress field S(x), which determines the minimizing
velocity field u(x) in (2.20) by Newton’s law (2.6), where

P (x) = − trace S(x)

n
.(2.24)

1For the derivation, see Appendix A in the preprint version of this article, available at http://
www.math.wsu.edu/math/faculty/panchenko/welcome.html.
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3. The discrete approximation of the effective viscosity. Intuitively, in
highly packed suspensions, we expect that most energy is dissipated in the thin gaps
between the rigid particles. Let us then define the local dissipation rate in a gap Π,
between two adjacent particles in ΩF , by

WΠ(u) = μ

∫
Π

(E(u), E(u)) dx.(3.1)

In this paper, we show that, in the asymptotic limit of infinitesimally small gap
thickness

δ

a
= max

j,k

δjk

a
→ 0,(3.2)

the effective viscosity is determined by the sum of local dissipation rates (3.1) over all
the gaps in ΩF . In a highly packed suspension, the rate of dissipation of the energy
can be written as an asymptotic series, in the limit (3.2), with the first and second
terms blowing up at different rates (as powers or at least logarithmically in a/δ). The
remainder of the series is O(1).

3.1. Connectivity patterns for densely packed suspensions. In the case
of regular (cubic, hexagonal, etc.) arrays of particles in Ω, the volume fraction is
sufficient to describe the distance between the particles and therefore the effective
behavior of the suspension. However, for general distributions of particles in highly
packed suspensions, one has to consider irregular connectivity patterns.

Let us consider an arbitrary distribution of particles D(i), centered at x(i) ∈ Ω,
for i = 1, 2, . . . , N . We suppose that N is close to Nmax such that particles can get
close to touching one another. The concept of adjacent particles is essential to the
analysis, and, to make it rigorous, we use Voronoi tessellations.

Definition 3.1. The Voronoi cell Vi, corresponding to x(i), is the polyhedron

Vi = {x ∈ Ω such that | x − x(i) |≤| x − x(j) | for all j = 1, 2, . . . , N, j 
= i}.

The plane faces of Vi can lie either on ∂Ω or in the interior of Ω. On each face of Vi

that lies inside Ω,

| x − x(i) |=| x − x(j) | for some i 
= j.

In Figure 1, we illustrate a Voronoi tessellation in two dimensions.
Definition 3.2. Given the Voronoi tessellation and an arbitrary D(i), for i =

1, 2, . . . , N , we define the set of indices of its neighbors as Ni = {j ∈ N, j 
= i , such
that Vi and Vj have a common face} . The coordination number of D(i) is equal to the
cardinal number of Ni.

Neighboring particles D(i) and D(j) are separated by a gap (neck) Πij (see Figure
3) of minimum thickness,

δij =| x(i) − x(j) | −(ai + aj),(3.3)

and width Rij = O(aij), where

aij =
2aiaj
ai + aj

.(3.4)
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Fig. 1. Two dimensional Voronoi tessellation. Fig. 2. The Delaunay graph.

Then the topology of network Γ, needed in the asymptotic approximation of 〈μ〉, in
the limit δij/aij → 0, for i = 1, . . . , N and j ∈ Ni, is uniquely defined, as follows.

Definition 3.3. The interior vertices of the network (graph) Γ are given by x(i),
the locations of the centers of particles D(i) in Ω for i = 1, 2, . . . , N . The interior
branches (edges) bij of the network connect vertices x(i) and x(j) (j ∈ Ni) through
the gaps (necks) Πij. For Voronoi cells Vi with faces belonging to ∂Ω+

⋃
∂Ω−, we

join x(i) with ∂Ω± through a normal segment b̃i (exterior branch or edge) and we
call the intersection x̃(i) an exterior vertex. Finally, we let B be the set of indices
i corresponding to the boundary Voronoi cells, that is, the cells at least one face of
which belongs to ∂Ω+ ∪ ∂Ω−.

Assumption 3.1. We assume that the distances between the neighboring balls
are bounded below by cδ, where c > 0 is fixed and δ is the small parameter of the
problem. Thus the length of each edge in the graph is larger than 2A+ cδ, where A is
the smallest ball radius.

Note that Γ is the Delaunay graph, which is dual to the Voronoi tessellation. The
Delaunay graph for the two-dimensional tessellation of Figure 1 is shown in Figure 2.
Note also the following properties of Γ,2 which we use in the analysis.

Property 3.1. Γ is connected in the sense that each pair of interior vertices can
be connected by a path consisting entirely of interior edges.

Property 3.2. Suppose there exists a Voronoi cell contained strictly inside Ω.
Then there exists a closed path consisting entirely of interior edges.

Property 3.3. At least two edges originate at each interior vertex of Γ.

3.2. The two-term discrete asymptotic approximation. The asymptotic
approximation of the viscous dissipation rate in the high-contrast suspension is ob-
tained by summing the local dissipation rates WΠij in the gaps Πij between D(i) and
D(j) for i = 1, . . . , N and j ∈ Ni. Then, focusing attention on one such gap (see
Figure 3), we introduce a local system of coordinates (x1, . . . , xn) in Πij , with the
origin at (x(i) + x(j))/2 and coordinate xn measured along the axis of the centers,
pointing from x(j) toward x(i). The width of the gap is Rij = O(aij) and the height
(thickness) is

h(r) = δij + ai

(
1 −

√
1 − r2

a2
i

)
+ aj

(
1 −

√
1 − r2

a2
j

)
, r =

√√√√n−1∑
k=1

x2
k ≤ Rij .(3.5)

2For the proof, see Appendix B in the preprint version of this article, available at http://
www.math.wsu.edu/math/faculty/panchenko/welcome.html.
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Π

(i)

ij ij

(j)

δ

a

aj

i
D

D

Fig. 3. Two nearby particles D(i) and D(j) of radii ai and aj , respectively, separated by a gap
δij .

The dissipation rate density μ(E , E) is expected to be highest at radial distances
r � min(ai, aj), so, in the calculation of WΠij = μ

∫
Πij (E , E)dx, we can approximate

the spherical surfaces by paraboloids and the thickness of the gap by

h(r) ≈ δij +
r2

aij
.(3.6)

3.2.1. The two-dimensional discrete approximation of 〈μ〉. Clearly, WΠij

depends on the velocity at the top and bottom surfaces of the gap, where x2 =
±h(x1)/2, in two dimensions. Using boundary conditions (2.11) at ∂D(i) and ∂D(j),
and approximating the outer normals as n(i) ≈ x1

ai
e1 − e2 and n(j) ≈ x1

aj
e1 + e2, by

the normal vectors to the parabolas touching the disks (see (3.6)), we have

u

(
x1,±

h(x1)

2

)
≈ ± (T

(i)
2 − T

(j)
2 )

e2

2
± (T

(i)
1 − T

(j)
1 + aiω

(i) + ajω
(j))

e1

2
± (ω(i) − ω(j))x1e2 + R,

(3.7)

where

R = [T
(i)
2 + T

(j)
2 + (ω(i) + ω(j))x1]

e2

2
+ (T

(i)
1 + T

(j)
1 + aiω

(i) − ajω
(j))

e1

2
.(3.8)

Equation (3.7) can be viewed as a decomposition of u in the following elementary
velocity fields:

1. The first elementary velocity field in (3.7) is usp, and it solves the Stokes
equations in Πij with boundary conditions

usp

(
x1,±

h(x1)

2

)
= ±(T

(i)
2 − T

(j)
2 )

e2

2
.(3.9)

We can associate usp with the oscillatory motion, along e2, of two particles joined by
a spring, with elastic constant Cij

sp = O((aij/δij)3/2) (see sections 4, 5, and 6). The

velocity (T
(i)
2 − T

(j)
2 )/2 of the particles is constant and unknown, so far. It is to be

determined later from the global conditions of mechanical equilibrium of all inclusions
in the suspension.

2. The second term in (3.7), denoted by ush, satisfies the Stokes equations in Πij

with boundary conditions

ush

(
x1,±

h(x1)

2

)
= ±(T

(i)
1 − T

(j)
1 + aiω

(i) + ajω
(j))

e1

2
.(3.10)
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This accounts for a shear strain in the gap, where the fluid moves to the right and left,
at the top and bottom surfaces of Πij , respectively, at the constant, unknown velocity

(T
(i)
1 −T

(j)
1 + aiω

(i) + ajω
(j))/2. The contribution of this term to the dissipation rate

is Cij
sh = O(

√
aij/δij) (see sections 4, 5).

3. The third term in (3.7) corresponds to a shear strain in the gap due to rotations.
The boundary conditions are given by

urot

(
x1,±

h(x1)

2

)
= ±(ω(i) − ω(j))x1e2,(3.11)

as if the fluid were pushed and pulled, in direction e2, on the left and right sides of
Πij , respectively (see Figure 6). The contribution of this term to the dissipation rate
is Cij

rot = O(
√
aij/δij) (see sections 4, 5).

4. Finally, the remainder R corresponds to a constant, O(1) shear strain in the
gap and, as such, it gives an O(1) contribution to WΠij (see sections 4, 5).

In section 4, we obtain the formal asymptotic approximation

WΠij ≈ Cij
sp (T

(i)
2 − T

(j)
2 )2 + Cij

sh (T
(i)
1 − T

(j)
1 + aiω

(i) + ajω
(j))2 + Cij

rot(ω
(i) − ω(j))2 + O(1),

(3.12)

where

Cij
sp =

3πμ

4

(
aij

δij

) 3
2

+
12πμ

5

√
aij

δij
, Cij

sh =
πμ

2

√
aij

δij
, and Cij

rot =
9πμ

16

√
aij

δij
.(3.13)

The approximation (3.12) applies to interior inclusions D(i). For i ∈ B, we have
D(i) joined to a fictitious disk of infinite radius (i.e., ∂Ω+ or ∂Ω−) and the harmonic
average of the radii is ai = 2ai. Given boundary conditions (2.9) at ∂Ω±, we have,
similar to (3.12),

WΠi ≈ Ci
sp(T

(i)
2 − g · e2)

2 + Ci
sh(T

(i)
1 − g · e1 + aiω

(i))2 + Ci
rot(2ω

(i))2 + O(1),

(3.14)

where Ci
sp, Ci

sh, and Ci
rot are given by (3.13), with aij replaced by ai = 2ai and δij

replaced by δi, the distance between ∂D(i) and the upper or lower boundary ∂Ω±.
Next, we approximate E by summing the local dissipation rates in all gaps Πij

for i = 1, . . . , N, i /∈ B, j ∈ Ni, and Πi for i ∈ B. For this purpose, let us rename the
orthonormal basis vectors in each gap Πij as

qij =
x(i) − x(j)

|x(i) − x(j)|
and pij = the rotated qij , clockwise, by π/2, in the two-dimensional plane. In the
boundary gaps Πi, joining a particle D(i) with ∂Ω±, these vectors are called qi and pi,
respectively. The discrete approximation of 〈μ〉 is given by (2.19), with the right-hand
side

E ≈ min
T,ω

N∑
i=1

∑
j ∈ Ni
j < i

{Cij
sp [(T(i)−T(j)) · qij ]2 + Cij

sh [(T(i)−T(j)) · pij + aiω
(i) + ajω

j ]2

+Cij
rot(ω

(i) − ω(j))2} +
∑
i∈B

{Ci
sp[(T

(i) − g) · qi]2 + Ci
rot(2ω

(i))2

+Ci
sh[(T

(i) − g) · pi + aiω
(i)]2}.

(3.15)
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Note that in (3.15) we minimize a quadratic functional, over translational and rota-
tional velocities T(i) and ω(i), for i = 1, . . . , N , respectively. This is equivalent to
solving the Euler–Lagrange equations∑

j∈Ni

{Cij
sp [(T(i) − T(j)) · qij ]qij + Cij

sh [(T(i) − T(j)) · pij + aiω
(i) + ajω

(j)]pij}

+FB(T(i), ω(i)) = 0,(3.16)

∑
j∈Ni

{Cij
sh [(T(i) − T(j)) · pij + ω(i) + ω(j)] + Cij

rot(ω
(i) − ω(j))}

+MB(T(i), ω(i)) = 0(3.17)

for all i = 1, . . . , N , where

FB(T(i), ω(i)) =

{
Ci

sp[(T
(i) − g) · qi]qi + Ci

sh[(T
(i) − g) · pi + aiω

(i)]pi if i ∈ B,
0 otherwise,

(3.18)

MB(T(i), ω(i)) =

{
Ci

sh[(T
(i) − g) · pi + aiω

(i)] + 4Ci
rotω

(i) if i ∈ B,
0 otherwise.

(3.19)

These are the equations of force and torque balance of the inclusions, and the mini-
mization in (3.15) ensures that the rigid body translational and rotational velocities
are chosen in such a way that the suspension is in mechanical equilibrium.

3.2.2. The three-dimensional discrete approximation of 〈μ〉. Consider
the local system of coordinates described at the beginning of section 3.2 in three
dimensions. Similar to our two-dimensional calculation, we write

u

(
x1, x2,±

h(x1, x2)

2

)
≈ ± (T

(i)
3 − T

(j)
3 )

e3

2
± (T

(i)
1 − T

(j)
1 − aiω

(i)
2 − ajω

(j)
2 )

e1

2

± (T
(i)
2 − T

(j)
2 + aiω

(i)
1 + ajω

(j)
1 )

e2

2
± (ω

(i)
1 − ω

(j)
1 )

x2e3

2

∓ (ω
(i)
2 − ω

(j)
2 )

x1e3

2
+ R,

(3.20)

where the remainder is

R = (T
(i)
3 + T

(j)
3 )

e3

2
+ (T

(i)
1 + T

(j)
1 − aiω

(i)
2 + ajω

(j)
2 )

e1

2

+(T
(i)
2 + T

(j)
2 + aiω

(i)
1 − ajω

(j)
1 )

e2

2
+ (ω

(i)
1 + ω

(j)
1 )

x2e3

2

−(ω
(i)
2 − ω

(j)
2 )

x1e3

2
.

(3.21)

As in two dimensions, we associate the first term in (3.20), due to the motion of the
inclusions along the axis of their centers, with the oscillatory motion of two particles
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joined by a spring of elastic constant Cij
sp = O(aij/δij). The next two terms in (3.20)

correspond to shear strains in the gap, where the fluid is pulled in the positive and
negative directions of e1 and e2 at the top and bottom surfaces of Πij , respectively.
The contribution of these terms to the dissipation rate is Cij

sh = O(ln aij/δij). The
fourth and fifth terms in (3.20) correspond to a shear strain in the gap as well,
but now the fluid is pushed and pulled, in direction e3, on opposite sides of the
axis of Πij , respectively. The contribution of these terms to the dissipation rate is
Cij

rot = O(ln aij/δij). Finally, the remainder R gives an O(1) contribution to WΠij .
A formal asymptotic analysis, which is very similar to the two-dimensional one

in section 4 and, as such, is not detailed here, gives

WΠij ≈ Cij
sp (T

(i)
3 − T

(j)
3 )2 + Cij

rot[(ω
(i)
1 − ω

(j)
1 )2 + (ω

(i)
2 − ω

(j)
2 )2]

+Cij
sh [(T

(i)
1 − T

(j)
1 − aiω

(i)
2 − ajω

(j)
2 )2

+ (T
(i)
2 − T

(j)
2 + aiω

(i)
1 + ajω

(j)
1 )2] + O(1),

(3.22)

where

Cij
sp =

3πμaij

4

(
aij

δij

)
+

9πμaij

5
ln

aij

δij
, Cij

sh =
πμaij

2
ln

aij

δij
, and Cij

rot =
9πμaij

16
ln

aij

δij
(aij)2.

(3.23)

If i ∈ B, D(i) is joined to ∂Ω± through gap Πi and we obtain (see section 3.2.1)

WΠi ≈ Ci
sp(T

(i)
3 − g · e3)

2 + Ci
rot[(2ω

(i)
1 )2 + (2ω

(i)
2 )2]

+Ci
sh[(T

(i)
1 − g · e1 − aiω

(i)
2 )2 + (T

(i)
2 − g · e2 + aiω

(i)
1 )2] + O(1)

(3.24)

with constants Ci
sp, C

i
sh, and Ci

rot given by (3.23), where aij is replaced by ai = 2ai
and δij is replaced by δi, the distance between x(i) and the upper or lower boundary.

The discrete approximation of the viscous dissipation rate E in the suspension is
given by the sum of the local dissipation rates in all gaps Πij for i = 1, . . . , N, i /∈ B,
j ∈ Ni, and Πi, for i ∈ B. Let us then introduce, in gap Πij , the orthonormal vectors

qij =
x(i) − x(j)

|x(i) − x(j)| , rij = the rotated qij ,

in the plane Pij , clockwise, by
π

2
, and pij = rij × qij ,

where pij , rij , and qij play the role of e1, e2, and e3, respectively, in the above
calculation of WΠij . Since plane Pij is not uniquely defined by qij , there are infinitely
many choices of rij , although they give the same dissipation rate WΠij . Let us then
pick Pij arbitrarily but ensure, at the same time, that when indices i and j are
interchanged, we have

Pij = span{qij , rij} = span{qji, rji} = Pji

or, equivalently,

qij = −qji, rij = −rji, and pij = pji for all i = 1, . . . , N, i 
= B, j ∈ Ni.
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For i ∈ B, D(i) is joined with ∂Ω± by gap Πi, and the unit vectors are denoted by pi,
ri, and qi, respectively. Then, the discrete approximation of the effective viscosity is
given by (2.19), with the right-hand side

E ≈ min
T,ω

N∑
i=1

∑
j ∈ Ni
j < i

{Cij
sp [(T(i) − T(j)) · qij ]2 + Cij

rot[(ω
(i) − ω(j)) · pij ]2

+Cij
rot[(ω

(i) − ω(j)) · rij ]2 + Cij
sh [(T(i) − T(j)) · pij

− (aiω
(i) + ajω

(j)) · rij ]2

+Cij
sh [(T(i) − T(j)) · rij + (aiω

(i) + ajω
(j)) · pij ]2}

+
∑
i∈B

{Ci
sp[(T

(i) − g) · qi]2

+Ci
rot[(2ω(i) · pi)2 + (2ω(i) · ri)2]

+Ci
sh[(T

(i) − g) · pi − aiω
(i) · ri]2

+Ci
sh[(T

(i) − g) · ri + aiω
(i) · pi]2} + O(1).

(3.25)

Finally, as in section 3.2.1, the minimization in (3.25), over translational and rota-
tional velocities T(i) and ω(i) for i = 1, . . . , N , ensures that all the inclusions in the
suspension are in mechanical equilibrium.

Remark 3.1 (computation of the effective viscosity). We now summarize the steps
necessary to compute the effective viscosity in problem (2.7)–(2.12). First, compute
the approximate dissipation rate E by minimizing the quadratic functional (3.15) (in
two dimensions) or (3.25) (in three dimensions). Next, solve the Stokes equations in
the domain Ω (see (2.1)) with viscosity equal to one and boundary conditions given
by (2.9), (2.10). Then compute the corresponding strain rate E0 = 1/2(∇u0 +∇Tu0)
and the normalized dissipation rate

∫
Ω
E0
ijE0

ijdx. Finally, compute the approximate
value of the effective viscosity by the formula

〈μ〉 =
E∫

Ω
E0
ijE0

ijdx
.(3.26)

When the contributions of rotations can be neglected, the leading term in (3.26) is
given by the leading term in the formula (6.85). Note that this term corresponds to
the spring network approximation, which takes into account only motions of particles
along the line of their centers. Detailed analysis of computational formulas for 〈μ〉,
based on the approach developed in this paper, for various boundary conditions and
different arrays of particles, is presented in [7].

4. The local dissipation rate in a gap between two adjacent particles.
Formal asymptotics in two dimensions. We begin our estimation of E with a
formal asymptotic analysis which extends the lubrication approximations in [15, 16,
27] beyond the leading term by accounting for all possible rigid body motions of the
inclusions in the suspension. To find E, we construct a velocity field in ΩF which
satisfies boundary conditions (2.11) but solves the Stokes equations approximately in
the following sense: Since the density μ (E , E) of the viscous dissipation rate is very
high near the axis of the centers of adjacent inclusions D(i) and D(j), we approximate
u in each gap Πij by the solution of the Stokes problem between two parallel plates, at
distance h (which we pretend is a constant) apart, and we calculate the corresponding
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rate of strain E . Then we integrate over the gap to obtain the local dissipation rate

WΠij ≈
∫ aij

−aij

dx1

∫ h(x1)

2

−h(x1)

2

dx2 μ (E , E) .

Since most energy is dissipated in the gaps, we expect that the contribution to E from
the region outside the gaps remains uniformly bounded in the limit δ → 0.

Let us denote by Ea the approximation of the dissipation rate, obtained with the
formal asymptotic, lubrication type, approach. Since Ea is a heuristic estimate, it
requires rigorous justification, which we give in sections 5 and 6, where we calculate
upper and lower variational bounds on E that match Ea to leading order. Neverthe-
less, both bounds are inspired to some extent by the calculation of Ea, so we describe
next, in detail, our formal asymptotic analysis.

We begin by recalling the local system of coordinates (x1, x2) in gap Πij , as
defined in section 3.2. At the surface of D(i), the velocity is given by

u |∂D(i)= (T
(i)
1 + aiω

(i))e1 + (T
(i)
2 + aiω

(i)n
(i)
1 )e2 − aiω

(i)(n
(i)
2 + 1)e1,

and the two components of the outer normal at ∂D(i) are n
(i)
1 = x1

ai
and n

(i)
2 =

−
√

1 − x2
1

a2
i

. Similarly,

u |∂D(j)= (T
(j)
1 − ajω

(j))e1 + (T
(j)
2 + ajω

(j)n
(j)
1 )e2 − ajω

(j)(n
(j)
2 − 1)e1,

where n
(j)
1 = x1

aj
and n

(j)
2 =

√
1 − x2

1

a2
j

. Equivalently, we rewrite the boundary condi-

tions on u as

u

(
x1,±

h

2

)
= ±

(
T

(i)
1 − T

(j)
1 + ω(i)

√
a2
i − x2

1 + ω(j)
√
a2
j − x2

1

)e1

2
± (T

(i)
2 − T

(j)
2 )

e2

2

± (ω(i) − ω(j))
x1e2

2
+
(
T

(i)
1 + T

(j)
1 +ω(i)

√
a2
i − x2

1 − ω(j)
√
a2
j − x2

1

)e1

2

+ (T
(i)
2 + T

(j)
2 )

e2

2
+ (ω(i) + ω(j))

x1e2

2
≈ ua

(
x1,±

h

2

)
,

(4.1)

where ua is an approximation of the velocity field near the axis of the gap (i.e., for
x1/a

ij � 1, where the density of the dissipation rate is highest). The boundary
conditions on ua are

ua
(
x1,±

h

2

)
= ± (T

(i)
1 − T

(j)
1 + aiω

(i) + ajω
(j))

e1

2

± (T
(i)
2 − T

(j)
2 )

e2

2
± (ω(i) − ω(j))

x1e2

2

+(T
(i)
1 + T

(j)
1 + aiω

(i) − ajω
(j))

e1

2

+(T
(i)
2 + T

(j)
2 )

e2

2
+ (ω(i) + ω(j))

x1e2

2
,
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e1
2

χ
1

h x

x2

1

= 

-

e1
2

= 

χ
1

Fig. 4. The setup for the calculation of χ
1
.

and, using the linearity of the problem, we decompose ua as

ua = (T
(i)
1 − T

(j)
1 + aiω

(i) + ajω
(j))χ

1
+ (T

(i)
2 − T

(j)
2 )χ

2
+ (ω(i) − ω(j))λ + R,

(4.2)

where χ1,χ2,λ, and R are elementary velocity fields satisfying

χ
k

(
x1,

h

2

)
= −χ

k

(
x1,−

h

2

)
=

1

2
ek, k = 1, 2,(4.3)

λ

(
x1,

h

2

)
= −λ

(
x1,−

h

2

)
=

x1

2
e2,(4.4)

R
(
x1,±

h

2

)
= [T

(i)
2 + T

(j)
2 + (ω(i) + ω(j))x1]

e2

2

+(T
(i)
1 + T

(j)
1 + aiω

(i) − ajω
(j))

e1

2
.(4.5)

We approximate all elementary velocity fields in the decomposition (4.2) by solving
the simplified Stokes flow problem between two parallel plates at distance h (treated
as constant) apart.

Clearly, velocity field

R(x1, x2) = [T
(i)
2 + T

(j)
2 + (ω(i) + ω(j))x1]

e2

2
+ (T

(i)
1 + T

(j)
1 + aiω

(i) − ajω
(j))

e1

2

(4.6)

is divergence free and satisfies (2.7) for a constant pressure field. Moreover, its rate of
strain is uniformly bounded in the asymptotic limit δij/aij → 0 and the contribution
of R to the local dissipation rate in Πij is negligible.

Velocity field χ
1
. As we zoom in near the axis of the centers x(i) and x(j),

the top and bottom boundaries of Πij which belong to ∂Di and ∂D(j), respectively,
are approximated by parallel planes which move in opposite directions, as shown in
Figure 4. Using separation of variables, we find

χ1(x1, x2) =

[
x2

h
+

C

2μ

(
x2

2 −
h2

4

)]
e1.(4.7)

Integrating,3 we obtain

W
χ1

Πij =
μ

4

∫ aij

−aij

dx1

∫ h(x1)

2

−h(x1)

2

dx2

(
∇χ

1
+ ∇χT

1
,∇χ

1
+ ∇χT

1

)
≈ πμ

2

√
aij

δij
+ O(1).

(4.8)
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χ
2

e
2
2χ

2

h x

x2

1

= 
e
2
2

-= 

Fig. 5. The setup for the calculation of χ
2
.

x1
2 ai,j

e2

x1
2 ai,j

e2

x

x2

1
h

λ = 

=-λ

Fig. 6. The setup for the calculation of λ.

Velocity field χ
2
. We approximate χ

2
by the velocity of an incompressible fluid

between two parallel plates which move at constant speed away from each other along
the axis e2 (see Figure 5). Separating variables, we obtain

χ
2
(x1, x2) ≈

6x1

h

(
x2

2

h2
− 1

4

)
e1 +

[
3x2

2h
− 2

(x2

h

)3
]
e2,(4.9)

p(x1, x2) ≈
6μx2

1

h3
− 6μ

h

(
x2

2

h2
− 1

4

)
+ C.(4.10)

Then,

W
χ2

Πij =
μ

4

∫ aij

−aij

dx1

∫ h(x1)

2

−h(x1)

2

dx2

(
∇χ

2
+ ∇χT

2
,∇χ

2
+ ∇χT

2

)

≈ 3πμ

4

(
aij

δij

) 3
2

+
12πμ

5

√
aij

δij
+ O(1).

(4.11)

Velocity field λ. The setup for the calculation of λ is shown in Figure 6. In
this case, the approximate solution is

λ(x1, x2) ≈
3x2

1

h

(
x2

2

h2
− 1

4

)
e1 +

(
3x1

2

x2

h
− 2

x1x
3
2

h3

)
e2,(4.12)

p(x1, x2) ≈
2μx3

1

h3
− 6μx1

h

(
x2

2

h2
− 1

4

)
,(4.13)

and

Wλ
Πij =

μ

4

∫ aij

x1=−aij

dx1

∫ h(x1)

2

x2=−h(x1)

2

dx2(∇λ + ∇λT ,∇λ + ∇λT ) ≈ 9πμ

16

√
aij

δ
(aij)2 + O(1).

(4.14)

3The integration is done in MAPLE.
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Finally, using straightforward MAPLE calculations, we find that the contributions
to WΠij of all the cross terms such as (∇χ

1
+∇χT

1
,∇χ

2
+∇χT

2
) is O(1). Gathering

all the results, we have

WΠij ≈
[

3πμ

4

(
aij

δij

) 3
2

+
12πμ

5

√
aij

δij

]
(T

(i)
2 − T

(j)
2 )2

+
πμ

2

√
aij

δij
(T

(i)
1 − T

(j)
1 + aiω

(i) + ajω
(j))2

+
9πμ

16

√
aij

δij
(aij)2(ω(i) − ω(j))2 + O(1).

(4.15)

This is precisely the result (3.12), and the approximation Ea of the viscous dissipation
rate in the suspension is obtained by summing contributions (4.15) of all the gaps, as
explained in section 3.2.

5. The upper bound. Any test velocity field u ∈ U gives an upper bound on
the viscous dissipation rate E when used in variational principle (2.20). However, of
all choices of u, we are interested in those that give tight, correct-to-leading-orders
bounds on E. In this section, we give the construction of such a velocity field in two
dimensions. We begin with the construction of u in the gap Πij between two adjacent
particles D(i) and D(j) (see section 5.1), and, to capture the important features of the
flow, we use the formal asymptotic analysis of section 4 as a guide. Then in section
5.2, we extend u to the remainder of the domain, where the flow is diffuse and, as
such, contributes to O(1) terms in E.

5.1. Definition of the trial velocity field u in a gap Πij. The local con-
struction of section 4 captures the important features of the flow in the gap Πij

between adjacent particles D(i) and D(j). However, since the gap thickness h(x1) is
not a constant (as it is treated in section 4), ua derived in section 4 is not divergence
free and, therefore, it is not an admissible trial field in variational principle (2.20). In
this section, we modify the velocity field calculated in section 4 in such a way that
the incompressibility condition is satisfied and yet the effect of the corrections on E
is minimal.

Using (4.1), (4.2), and the linearity of the problem, we decompose trial velocity
field u as

u(x) = (T
(i)
1 − T

(j)
1 + aiω

(i) + ajω
(j))χ

1
(x) + (T

(i)
2 − T

(j)
2 )χ

2
(x)

+ (ω(i) − ω(j))λ(2) + R(x) + C(x),
(5.1)

where R is given by (4.6), χ
1
,χ

2
, and λ satisfy boundary conditions (4.3) and (4.4),

and

C
(
x1,±

h(x1)

2

)
=

(√
1 − x2

1

a2
i

+

√
1 − x2

1

a2
j

− 2

)(
±ω(i) + ω(j)

2
+

ω(i) − ω(j)

2

)
e1

2

+

(√
1 − x2

1

a2
i

−
√

1 − x2
1

a2
j

)(
±ω(i) − ω(j)

2
+

ω(i) + ω(j)

2

)
e1

2
.

(5.2)



EFFECTIVE VISCOSITY OF CONCENTRATED SUSPENSIONS 1599

Elementary velocity fields χ
1
,χ

2
, and λ have been approximated in section 4. Here,

we modify their expression to ensure that they are divergence free in the gap of
variable thickness h(x1). Velocity field C accounts for the curvature of the gap and it
has been omitted in section 4. In this section, we calculate an admissible field C and
we show that its influence on E is O(1).

Velocity field χ
1
. Using the formal asymptotic analysis of section 4, we have

that

χ
1
(x1, x2) ∼

x2

h(x1)
e1.(5.3)

However, the right-hand side in (5.3) is not divergence free, so we correct (5.3) as

χ
1
(x1, x2) = ∇⊥F (x1, x2), where F (x1, x2) = − x2

2

2h(x1)
− h(x1)

8
(5.4)

and ∇⊥ = (−∂/∂x2, ∂/∂x1) . Then,

χ
1
(x1, x2) =

x2

h(x1)
e1 +

1

2

dh(x1)

dx1

(
x2

2

h2(x1)
− 1

4

)
e2, divχ1(x1, x2) = 0(5.5)

and, on the top/bottom parts of boundary ∂Πij , χ
1
(x1, x2 = ±h(x1)/2) = ±e1/2.

The calculation of local rate of dissipation Wχ1

Πij is now straightforward and the result
coincides with (4.8).

Velocity field χ
2
. The formal asymptotic analysis of section 4 gives

χ
2
(x1, x2) ∼

6x1

h(x1)

(
x2

2

h2(x1)
− 1

4

)
e1 +

[
3x2

2h(x1)
− 2

(
x2

h(x1)

)3
]
e2,(5.6)

but, since h is, in truth, a function of x1, (5.6) is not divergence free and cannot be
used as such in the upper bound calculation. Instead, we define the trial field

χ
2
(x1, x2) = ∇⊥F (x1, x2), where F (x1, x2) = − 2x1x

3
2

h3(x1)
+

3x1x2

2h(x1)
.(5.7)

The corresponding local dissipation rate W
χ

2

Πij is

W
χ

2

Πij =
3πμ

4

(
aij

δij

) 3
2

+
27πμ

10

√
aij

δij
+ O(1)(5.8)

and we note that it coincides, with leading order, with (4.11).
Velocity field λ. We define a divergence free trial field λ, which is approximately

equal to (4.12), as

λ(x1, x2) = ∇⊥F (x1, x2), where F (x1, x2) =

(
3x2

1x2

4h(x1)
− x2

1x
3
2

h3(x1)

)
,(5.9)

Then λ(x1, x2 = ±h(x1)/2) = ±x1

2 e2, and the corresponding local rate of dissipation
Wλ

Πij is given by (4.14).
Velocity field C(x). We define trial field C(x) as

C(x1, x2) = (ω(i) + ω(j))∇⊥F (x1, x2) + (ω(i) − ω(j))∇⊥G(x1, x2),(5.10)



1600 L. BERLYAND, L. BORCEA, AND A. PANCHENKO

where

F (x1, x2) =

(
1 − 1

2

√
1 − x2

a2
i

− 1

2

√
1 − x2

a2
j

)(
x2

2

2h(x1)
+

h(x1)

8

)

+

∫ x1

0

h(s)

8

d

ds

(√
1 − s2

a2
i

+

√
1 − s2

a2
i

)
ds

+

(
1

2

√
1 − x2

1

a2
i

− 1

2

√
1 − x2

1

a2
j

)(
−x2

2
+

3h(x1)x2

2
− 2x3

2

h(x1)

)

−
∫ x1

0

(
3h(s)x2

2h(x1)
− 2h(s)x3

2

h3(x1)

)
×
[(

1

4
− h(s)

2

)(
s/a2

i√
1 − s2/a2

i

−
s/a2

j√
1 − s2/a2

j

)

+
dh(s)

ds

(√
1 − s2/a2

i −
√

1 − s2/a2
j

)]
ds

and

G(x1, x2) = −
(

1

2

√
1 − x2

1

a2
i

− 1

2

√
1 − x2

1

a2
j

)(
x2

2

2h(x1)
− h(x1)

4

)

− 1

4

∫ x1

0

dh(s)

ds

√
1 − s2/a2

i −
√

1 − s2/a2
j

2
ds

+
x2

2
+

√
1 − x2

1/a
2
i +

√
1 − x2

1/a
2
j

2

(
−x2

2
+

3h(x1)x2

2
− 2x3

2

h(x1)

)

−
∫ x1

0

(
3h(s)x2

2h(x1)
− 2h(s)x3

2

h3(x1)

)
×
[(

1

4
− h(s)

2

)(
s/a2

i√
1 − s2/a2

i

+
s/a2

j√
1 − s2/a2

j

)

+
dh(s)

ds

(√
1 − s2/a2

i +
√

1 − s2/a2
j

)]
ds.

Although the expression (5.10) is rather complicated, it can be checked with straight-
forward calculations (which we have done in MAPLE) that it satisfies boundary con-
ditions (5.2) and, as such, it is an admissible trial field, which gives a local rate of
dissipation W C

Πij = O(1).
Finally, we find through MAPLE calculations that the contribution of the cross

terms to WΠij is O(1).
We have now defined a trial velocity field that satisfies the exact boundary con-

ditions on the top and bottom boundaries of the gap Πij , is divergence free, and,
most important, gives an upper bound on the gap dissipation rate which agrees, with
leading order, with the formal asymptotic result of section 4.
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5.2. Extension of the trial velocity field u outside the gaps between the
particles in suspension. Let us denote the union of all gaps by UΠ and define the
complement in ΩF of the union of all gaps

UE = ΩF \ UΠ.(5.11)

We wish to extend the trial velocity field u from the gaps Πij to UE , so that the lead-
ing order terms of the dissipation rate are not affected. Clearly, when there are many
particles in the suspension, the set UE is the union of many disjoint, connected com-
ponents, which we denote by Cj . Let us then focus attention on one such component
and drop the subscript j. To avoid boundary corners in the connected component
C, we take a slightly larger domain C̃ ⊂ ΩF such that C ⊂ C̃ and ∂C̃ is smooth.4

Note that the construction of section 5.1 gives a trial velocity of the form u = ∇⊥F
and, since the gap thickness is h = O(a) � δij at ∂Πij ∩ ∂C̃, the first and second
derivatives of F are uniformly bounded on ∂C̃, as δ → 0. We now wish to extend u
to the interior of C̃.

Let us take a γ > 0, independent of δ, and define the boundary layer

Cγ = {x ∈ C̃ such that dist(x, ∂C̃) < γ}.(5.12)

Since the arcs in ∂C̃ are independent of δ, we can choose a cover Pj , j = 1, 2, . . . , J

independent of δ, and a subordinate partition of unity φj with supportφj = P̃j ⊂ Pj

such that P̃j ∩ C̃ ⊂ Cγ . Then let us extend u in P̃j and, for simplicity of notation,
drop the index j.

In P̃, define local coordinates y = (y1, y2), such that y2 = 0 at ∂P̃ ∩ ∂C̃, and
P̃ ∩ C̃ is mapped into a tensor product of intervals I1(y1) × I2(y2), for y2 > 0. Take
then a smooth function g(y2), which vanishes outside interval I2(y2) and, at y2 = 0,
g(0) = 1, and define the extension of F , from P̃ ∩ ∂C̃ to P̃ ∩ C̃, as5

F (y1, y2) = g(y2)

[
F (y1, 0) + y2

∂F (y1, 0)

∂y2

]
.(5.13)

Clearly, the extended F is smooth and its first derivatives are equal to the previously
specified values on P̃ ∩ ∂C̃. We also have

‖F (y1, y2)‖H2(I1×I2) ≤ A(5.14)

with A, independent of δ. Repeating the same procedure, we extend F to all P̃j ∩ C̃,

j = 1, . . . , J , or, equivalently, to C̃. Then, taking u = ∇⊥F , we have div u = 0,
and the strain tensor E(u) with components in L2(C̃) and a corresponding viscous
dissipation rate ∫

C̃

μ (E(u), E(u)) dx ≤ A|C̃|.(5.15)

We end this section with the remark that it is not necessary that C̃ lie inside ΩF

for estimate (5.15) to hold (see Figure 7). Indeed, even if the connected component C

4∂C̃ is the union of arcs which lie either inside a gap Πij or on the boundary of a surrounding
particle.

5Note that (5.13) is a simplified version of the classic Borel construction in [18, Theorem 1.2.6].
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intersects the exterior boundary ∂Ω, we can always extend F to a smooth H2 function
supported away from the corners of ∂Ω, and (5.15) follows.

Gathering all the results in this section, we have, in the notation of section 3.2.1,
the upper bound

E ≤ min
T,ω

N∑
i=1

∑
j ∈ Ni
j < i

{[
3πμ

4

(
aij

δij

) 3
2

+
27πμ

10

√
aij

δij

]
[(T(i) − T(j)) · qij ]2

+
πμ

2

√
aij

δij
[(T(i) − T(j)) · pij + aiω

(i) + ajω
j ]2

+
9πμ

16

√
aij

δij

(
ω(i)aij − ω(j)aij

)2
}

+
∑
i∈B

{[
3πμ

4

(
2ai
δi

) 3
2

+
27πμ

10

√
2ai
δi

]
[(T(i) − g) · qi]2

+
9πμ

16

√
2ai
δi

(2ω(i))2(aij)2

+
πμ

2

√
2ai
δi

[(T(i) − g) · pi + aiω
(i)]2

}
+ O(1),

(5.16)

where, for the boundary nodes i ∈ B, δi is the distance between ∂D(i) and the upper
or lower boundary ∂Ω±.

6. Rigorous justification of the leading-order spring network approxi-
mation. In this section, we derive and justify rigorously the spring network approx-
imation in two dimensions (recall section 3.2.1) by constructing a lower bound on E,

which agrees with (5.16), to O
((

a
δ

) 3
2
)
.

6.1. A simplified upper bound. Since the leading order term is not affected
by the rotations of the particles, we set in (5.16) ω(i) = 0 for all i = 1, . . . , N , and we
obtain a less precise but simplified upper bound

E ≤ WΩF
(u) = min

T

N∑
i=1

∑
j ∈ Ni
j < i

{[
3πμ

4

(
aij

δij

) 3
2

+
27πμ

10

√
aij

δij

]
[(T(i) − T(j)) · qij ]2

+
πμ

2

√
aij

δij
[(T(i) − T(j)) · pij ]2

}
+
∑
i∈B

{[
3πμ

4

(
2ai
δi

) 3
2

+
27πμ

10

√
2ai
δi

]
[(T(i)−g) · qi]2

+
πμ

2

√
2ai
δi

[(T(i) − g) · pi]2
}

+ O(1).

(6.1)

Except for the O(1) term, the right-hand side of (6.1) involves the minimization of a
quadratic form in the translation velocities T(i) for i = 1, . . . , N , and the minimum
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is achieved by the solution of the linear system of equations,

∑
j∈Ni

{[
3πμ

4

(
aij

δij

) 3
2

+
27πμ

10

√
aij

δij

]
[(T(i) − T(j)) · qij ]qij

+
πμ

2

√
aij

δij
[(T(i) − T(j)) · pij ]pij

}
+ FB(T(i)) = 0 for 1 ≤ i ≤ N,

(6.2)

where

FB(T(i))

=

⎧⎪⎨
⎪⎩
[
3πμ

4

(
2ai
δi

)3
2

+
27πμ

10

√
2ai
δi

]
[(T(i) − g) ·qi]qi+

πμ

2

√
2ai
δi

[(T(i)−g) ·pi]pi if i∈B,

0 otherwise.

(6.3)

Next, we prove the unique solvability of these equations.
Proposition 6.1. The linear system of (6.2) has a unique solution,

τ = (T
(1)
1 , T

(1)
2 , . . . , T

(N)
1 , . . . , T

(N)
2 )T ∈ R

2N ,

where superscript T stands for transpose.
Proof. Let us write the upper bound (6.1) in compact form as

E ≤ min
τ

(τ ·Aτ − 2τ · f) + r + O(1),(6.4)

where matrix A ∈ R
2N×2N is symmetric, f ∈ R

2N , and r ∈ R. We prove the unique
solvability of (6.2) (i.e., of Aτ = f) by showing that A is positive definite. Since we
take the limit δ → 0, we have from (6.1) and (6.4) that

τ ·Aτ =

N∑
i=1

∑
j ∈ Ni
j < i

{[
3πμ

4

(
aij

δij

) 3
2

+
27πμ

10

√
aij

δij

]
[(T(i) − T(j)) · qij ]2

+
πμ

2

√
aij

δij
[(T(i) − T(j)) · pij ]2

}

+
∑
i∈B

{[
3πμ

4

(
2ai
δi

) 3
2

+
27πμ

10

√
2ai
δi

]
(T(i) · qi)2 +

πμ

2

√
2ai
δi

(T(i) · pi)2
}

≥ Cδ−
1
2

N∑
i=1

∑
j ∈ Ni
j < i

[(T(i) − T(j)) · qij ]2 + [(T(i) − T(j)) · pij ]2

+Cδ−
1
2

∑
i∈B

[(T(i) · qi)2 + (T(i) · pi)2]

= Cδ−
1
2

(
N∑
i=1

∑
j ∈ Ni
j < i

| T(i) − T(j) |2 +
∑
i∈B

| T(i) |2
)

= τ · Ãτ ,

(6.5)
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where C is independent of δ and matrix Ã is clearly symmetric, nonnegative definite.
To show that Ã is, in fact, positive definite, let us suppose that there exists a nontrivial
τ in the null space of Ã. Then, by (6.5), we have T(i) − T(j) = 0 for i = 1, . . . , N ,
j ∈ Ni, and T(i) = 0 for i ∈ B. Since the graph Γ is connected (Property 3.1), this
implies T(i) = 0 for all i = 1, . . . , N or, equivalently, τ = 0. However, this contradicts
our initial assumption on τ , so the null space of Ã must be trivial. This implies,
in turn, that A is positive definite and that the linear system of (6.2) is uniquely
solvable.

Remark 6.1. In the remainder of this paper, we denote by u the trial velocity field
constructed in section 5, where all rotational velocities ω(i) are set to zero and where
translational velocities T(i) solve linear system of equations (6.2) for 1 ≤ i ≤ N . In
particular, in gap Πij , connecting adjacent disks D(i) and D(j), the trial field is

u(x) = [(T(i) − T(j)) · e1]χ1(x) + [(T(i) − T(j)) · e2]χ2(x) +
1

2
(T(i) + T(j)),(6.6)

where χ1 and χ2 are given by (5.5) and (5.7), respectively. Note that this trial field
yields upper bound (see (6.1))

E ≤ WΩF
(u)(6.7)

when used in variational principle (2.20).

6.2. Lower Bound.

6.2.1. Outline of the construction. Given a subdomain M of ΩF , define a
functional

W ∗
M (S) =

∫
∂Ω∩M̄

g · Snds−
∫
M

F (S)dx,(6.8)

where M̄ is the closure of M , g is defined by (2.9),

F (S) =
1

4μ

[
(S,S) − 1

2
(trace S)2

]
,(6.9)

and S is a symmetric (stress) tensor in F . In the context of this paper, subdomain
M stands for either a gap Πij between adjacent particles or a connected component
C in UE , where the flow is diffuse (see section 5.2). Then W ∗

ΩF
is given by the sum

of W ∗
M (S) for all such disjoint subdomains in ΩF . For any S ∈ F , we have by dual

variational principle (2.22)

W 	
ΩF

(S) ≤ E ≤ WΩF
(u).(6.10)

Our goal in this section is to construct a trial tensor S ∈ F such that W 	
ΩF

(S) matches
leading order upper bound WΩF

(u).
The construction of the trial tensor S proceeds as follows.
Step 1. In an ideal case, where û and Ŝ, the minimizer and maximizer of

the direct and dual problems (2.20) and (2.22), respectively, would be known, the
constitutive equations for the incompressible fluid would give∫

M

F (Ŝ)dx = WM (û) = μ

∫
M

(E(u), E(u)) dx,(6.11)
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and, by integration by parts,∫
∂Ω∩M̄

g · Ŝn ds = 2WM (û).(6.12)

However, we don’t know û, so we use instead trial velocity field u described in Remark
6.1. With this u, we find, as a first step in our construction, an approximate pressure
P and the corresponding approximate stress tensor S0 = 2μE(u) − PI.

For this purpose, let us focus on a gap Πij , where S0 satisfies

∫
Πij

F (S0)dx = WΠij (u) = O

((
aij

δij

) 3
2

)
.(6.13)

Note, however, that S0 /∈ F because divS0 
= 0, so we define the trial tensor in Πij as

S = S0 −K,

where K is a compensating tensor chosen such that div (S0 −K) = 0 in Π, and

∫
Πij

F (S)dx = WΠij (u) + O

(√
aij

δij

)
.(6.14)

Step 2. This is the crucial step in the construction of the lower bound. In Step
1, we obtained tensor S(x) in Πij and, in particular, on the portion of ∂D(j) which
belongs to the neck Πij . In the second step, we extend S to the remaining parts of
∂D(j), so that the net force and torque conditions (2.12) hold. Such an extension
cannot be constructed for each ∂D(j) individually. Recall that UΠ is the union of all
gaps. For each connected component C of the set UE = ΩF \UΠ, where the flow is
diffuse, we must have ∫

∂C
Sn ds = 0(6.15)

for any divergence free extension of S, from Π to C. But, since each ∂C contains parts
of the boundaries of several neighboring disks, the extensions of S to the boundaries of
these disks must be coupled. An attempt to satisfy the balance of forces and torques
(2.12) for an individual disk D(j) influences the balance on all neighboring disks. Since
these disks have other neighbors as well (recall that the graph Γ is connected), the
extension of S from the necks Πij to the remaining parts of ∂D(j), for 1 ≤ j ≤ N , is
a global problem.

Note that a similar difficulty arises in the scalar problem of electrical conduction
[5], where a simple construction of the dual trial field (which is a vector flux) is given
as follows. In a gap Πij , the dual trial field is taken as the vector j = (0, ζ(x1)),
where ζ is a smooth function of x1, the local coordinate in the direction orthogonal
to the axis of symmetry of the gap. Outside the union of all gaps, the dual trial field
is extended to 0. While this choice satisfies the divergence-free condition locally in
each subdomain of ΩF , one must ensure that the total flux through ∂D(j) intersected
with the union of all the gaps connected with D(j) is zero for all 1 ≤ j ≤ N as well.
The latter condition is satisfied in [5] by setting∫

∂D(i)∩Πij

j · n(i) ds = JΠij ,
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where JΠ is the net current flowing through the corresponding branch of the asymp-
totic network (graph Γ). More explicitly, the condition of flux balance at ∂D(j) is
formulated as Kirchhoff’s current law at the node x(j) in the asymptotic network.

While in the scalar problem, the two conditions (divergence free and flux balance)
on the dual trial field can be dealt with separately in the vectorial problem that
we consider here, they appear to be coupled, and one cannot simply generalize the
construction in [5] to find an admissible S ∈ F . We introduce in section 6.2.3 our
novel construction of the extension of S, which is divergence free and satisfies the
momentum balance equations for all disks.

Step 3. Extend the tensor S, defined so far in the gaps and at ∂D(j) for 1 ≤
j ≤ N , to the whole ΩF . The main point of this step is to control the energy of the
extension in such a way that

W ∗
ΩF \UΠ

(S) � O(δ−
3
2 ).(6.16)

Step 4. In this step we gather all the results of the previous steps and show that
WΩF

(u) and W 	
ΩF

(S) are the same leading order.

6.2.2. The trial field S in a gap. We begin our construction of S in a gap
Πij , with the help of velocity field (6.6). Recall from sections 4 and 5 that (6.6) is
divergence free and, furthermore, it is an approximate solution of Stokes’s equations in
the following sense: if the gap thickness h were a constant, we would have curl �u = 0,
the pressure would be well defined by μ�u = ∇P , and the stress

S0 = 2μE(u) − PI

would be divergence free. However, in truth, gap Πij is not flat and the condition
divS = 0 that any dual trial field S must satisfy needs to be ensured for the variable
thickness h(x1). In that case, Δu is not a gradient of a scalar function, so we introduce
an approximate pressure P and a compensating symmetric tensor K such that

S = S0 −K(6.17)

is divergence free. Because divu = 0, we have

F (S0) =
1

4μ

[
(S0,S0) −

1

2
(trace S0)

2

]

=
1

4μ

[
(2μE(u) − PI, 2μE(u) − PI) − 2P 2

]
= μ (E(u), E(u))

and ∫
Πij

F (S0)dx = WΠij (u) = O

(
aij

δij

3
2
)
,(6.18)

so to get a lower bound that matches the upper one to leading order, we wish that∫
Πij

[F (S) − F (S0)] dx = O

(√
aij

δij

)
.(6.19)

This can be accomplished, for example, by choosing P and K to satisfy∫
Πij

(S0,K) dx = O

(√
aij

δij

)
and

∫
Πij

(K,K) dx = O

(√
aij

δij

)
(6.20)
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since

F (S) − F (S0) = −2 (S0,K) + (K,K) + trace S0 trace K − 1

2
(trace K)2.

Let us then begin our search for K by rewriting equation divS = 0, in terms of
the components of K, as

∂x1K11 + ∂x2K12 = R1,

∂x1
K12 + ∂x2K22 = R2,

(6.21)

where the discrepancy vector

R = div S0 = μ�u −∇P(6.22)

depends on the choice of P . We define the approximate pressure by

P (x) = μ

∫ x2

−h/2

�u2(s1, s2)ds2 + μ

∫ x1

−Rij

r1(s1)ds1,(6.23)

where r1(x1) is given in terms of the Laplacian of the first component of u as

Δu1(x1, x2) = r1(x1) + r2(x1, x2).(6.24)

Then we set the first entry K11 in the compensating tensor to zero, and we find
from (6.21) that

K12(x) =

∫ x2

−h/2

R1(s1, s2)ds2, K22(x) = −
∫ x1

−Rij

R1(s1, s2)ds2(6.25)

for discrepancy vector

R(x) = μ�u(x) −∇P (x) =

(
μ�u1(x) − ∂x1P (x)

0

)
.(6.26)

Now, to verify that estimates (6.20) hold, we note that the components of Δu are
sums of terms of the form

const
xk

1x
l
2

h(x1)m
(6.27)

for some nonnegative integers k, l,m, and that we have the following estimate.
Lemma 6.1. For k even, there exists a positive constant c such that

∫
Πij

xk
1x

l
2

hm
dx ≤ c

∫ Rij

−Rij

h
k
2 +l+1−mdx1.(6.28)

If k is odd, then ∫
Πij

xk
1x

l
2

hm
dx = 0.(6.29)

Moreover, for any positive integer p, we have

∫ Rij

−Rij

dx1

(δij + x2
1/a

ij)p
= O

((
aij

δij

)p− 1
2

)
.(6.30)
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Proof. To prove (6.30), we write
∫ Rij

−Rij (δ
ij + x2

1/a
ij)−pdx1 = I1 + I2, where

I1 =

∫ √
δij

−
√
δij

dx1

(δij + x2
1/a

ij)p
.

Scaling x1 by
√
δij , we get

I1 = (δij)1/2−p

∫ 1

−1

dt

(1 + t2/aij)p
= c1(p, a

ij)(δij)1/2−p,

where c1 is independent of δij . For I2, we have

I2 = 2

∫ Rij

√
δij

dx1

(δij + x2
1/a

ij)p
≤ 2

∫ Rij

√
δij

(
aij

x2
1

)p

dx1

=
2

2p− 1
[(δij)

1
2−p − (Rij)1−2p] ≤ c2(p)(δ

ij)1/2−p

and the proof of (6.30) is complete. Identity (6.29) follows immediately because
the integrand is an odd function of x1. Finally, (6.29) and x2

1/a
ij < h(x1) im-

ply (6.28).
In light of Lemma 6.1, we obtain with explicit calculations that (6.20) holds and,

therefore, ∫
Πij

F (S)dx = WΠij (u) + O

(√
aij

δij

)
.(6.31)

In the next section, we extend S from Πij to ∂D(i) and ∂D(j) in such a way
that the net force and torque on D(i) and D(j) vanish. For that purpose, we need
to examine the integrals of Sn over various parts of ∂Πij . We show that, roughly
speaking, the integrals of Sn over opposite sides of ∂Πij cancel each other. To make
this precise, let us denote the lateral parts of ∂Πij by

L± =

{
(x1, x2) : x1 = ±Rij ,−1

2
h(Rij)) < x2 <

1

2
h(Rij)

}
.

Proposition 6.2. ∫
L+

Sn ds +

∫
L−

Sn ds = 0.

Proof. Since Sn = (S11(±Rij , x2),S12(±Rij , x2))
T on L±, we must show that

∫ h(Rij)
2

−h(Rij)
2

S1k(−Rij , x2)dx2 =

∫ h(Rij)
2

−h(Rij)
2

S1k(R
ij , x2)dx2 for k = 1, 2.(6.32)

This, in turn, follows by direct calculation from the expression of trial stress field S
constructed above.

Remark 6.2. Since div S = 0 in Πij ,
∫
∂Πij Sn ds = 0 and, by Proposition 6.2, we

have for the top and bottom parts of ∂Πij ,∫
∂D(i)∩Πij

Sn(i) ds = −
∫
∂D(j)∩Πij

Sn(j) ds.(6.33)
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Fig. 7. Three-disk network. Connected components.
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Fig. 8. Three-disk network. Designation of the vector integrals βj .

6.2.3. Extension of S to the boundaries of the disks. In section 6.2.2, we
defined S in Πij and, in particular, on ∂D(j) ∩Πij . Here, we wish to extend S to the
whole boundary ∂D(j) in such a way that∫

∂D(j)

Sn(j) ds = 0 and

∫
∂C
Sn ds = 0(6.34)

for any connected component C of diffuse flow in UE = ΩF \ UΠ and for all j =
1, . . . , N . We note that ∂D(j)∩UE is a union of circular, complementary arcs, and we
let vectors βk denote the unknown integrals of Sn(j) over various parts of ∂D(j)∩UE

for 1 ≤ j ≤ N . We begin by showing that there exist vectors βk consistent with
(6.34). This is done first for a simple, three-disk network and is generalized later to
N disks. Then we construct S on ∂D(j) ∩ UE for 1 ≤ j ≤ N so the integral of Sn(j)

over the kth complementary arc is equal to βk for all k.

Part I: A simple, three-disk network. To simplify the presentation, let us
begin by considering a simple three-disk network, as shown in Figure 7, where there
are three connected regions C1, C2, and C3 of diffuse flow.

The unknown integrals of Sn over the complementary arcs in ∂D(j) ∩ UE for
j = 1, 2, 3 are denoted by βk, 1 ≤ k ≤ 8 (see Figure 8). We also let Fk, and Bk for
1 ≤ k ≤ 5 be the known integrals of Sn over the parts of ∂D(j) ∩ ŪΠ and the lateral
segments of the gaps, respectively (see Figure 9 and recall Proposition 6.2). Finally,
for connected components C1 and C3, we need Sn on the exterior boundaries ∂Ω \UΠ

of the domain. On the vertical segments of the external boundary, we set S = 0,
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Fig. 9. Three-disk network. Right-hand sides.

and on the horizontal segments, we let S be constant. Letting D1 and D2 be the net
traction over ∂C3 ∩ ∂Ω and ∂C1 ∩ ∂Ω, respectively, we can now write (6.34) as

F1 + D1 + F5 + D2 = 0,(6.35)

β1+ β2+ β3 = Q1, Q1 = −F2 −F4 +F1,

β4+ β5 = Q2, where Q2 = −F3 +F2,

β6+ β7+ β8 = Q3, Q3 = F3 +F4 +F5,

(6.36)

and

β2+ β4+ β6 = Q4, Q4 = −B1 −B2 −B3 −B5 −D1,

β3+ β5+ β8 = Q5, where Q5 = −B4 +B2 +B3,

β1+ β7 = Q6, Q6 = B1 +B4 +B5 −D2.

(6.37)

We now have an undetermined system of six vectorial equations (6.36), (6.37),
with eight unknown vectors βk for 1 ≤ k ≤ 8 with right-hand sides satisfying con-
straint (6.35).

Proposition 6.3. There exist solutions of the linear system of (6.36), (6.37).
Proof. Note that the vector system (6.36), (6.37) is equivalent to two scalar

systems with the same matrix for the components of βj . It is therefore sufficient to
prove the proposition for any one of the two scalar systems. The matrix A is

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 1 0 0 0 0 0
0 0 0 1 1 0 0 0
0 0 0 0 0 1 1 1
0 1 0 1 0 1 0 0
0 0 1 0 1 0 0 1
1 0 0 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

,(6.38)

and we denote its rows by aj for 1 ≤ j ≤ 6. We call the first three rows in A disk-
rows or simply d-rows, and the last three rows c-rows (in reference to the connected
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components Cj). We observe that each arc in ∂D(j) ∩UE belongs to exactly one disk
and one connected component and thus exactly two entries in each column are equal
to 1. Moreover, matrix A possesses the following two-ones property: one of these unit
entries appears in a d-row and another appears in a c-row.

Next, we show that each equation in (6.36), (6.37) is a linear combination of the
other five. Indeed, summing up first the equations in (6.36) and then those in (6.37),
we obtain

8∑
j=1

βj = F1 + F5 and

8∑
j=1

βj = −(D1 + D2),

respectively. These equations are consistent by (6.35), which gives F1 +F5 = −(D1 +
D2), and the rows of A are clearly linearly dependent.

Let us then eliminate from the original system of equations one equation, say,
the first one, and show that the reduced system is solvable. Let AR be the matrix of
the reduced system. The rows of AR are aj with 2 ≤ j ≤ 6. We show next that the
rows of AR are linearly independent (i.e., rankAR = 5), and then that the existence
of solutions follows from standard linear algebra.

Arguing by contradiction, suppose that there exists a k, between 2 and 6, such
that ak is a linear combination of ap for 2 ≤ p ≤ 6, p 
= k. Explicitly, we have

ak =

6∑
m=2,m 	=k

λmam,(6.39)

where not all λm are zero. By the two-ones property, three rows a4,a5,a6 have a
unit entry at a column where all other rows of AR have zeros. Take, for example,
row a4. It has a unit entry in column 2, whereas the other four remaining rows
aj , 2 ≤ j ≤ 6, j 
= 4, have zeros in this column. Hence, (6.39) implies that k 
= 4.
The same argument shows that k 
= 5, k 
= 6. When k = 2 or 3, direct inspection
of the first column of AR shows that λ6 from (6.39) is zero. Similarly we obtain
λ4 = λ5 = 0. Then (6.39) reduces to a2 = λa3, which is impossible since a2 and a3

are linearly independent.

Part II: A general, N disk network with M connected components.
Analogous to (6.36), we write the momentum balance equations on the boundary of
each disk D(j) for 1 ≤ j ≤ N . We call these equations d-equations. Furthermore,
analogous to (6.37), we write the equations for each connected component Cp, 1 ≤
p ≤ M , where M ≥ N . These are referred to as c-equations. As above, we consider
the scalar system of N + M equations for the components of unknown vectors βp,
1 ≤ p ≤ P (P = 8 in the example with three disks). This linear system is referred to
as the d-c-system. Similar to the case of three disks, the right-hand side of the system
involves integrals of Sn over parts of ∂Ω which do not belong to gaps. We assume that
S is extended to the external boundary ∂Ω so that condition

∫
∂Ω

Sn ds = 0 holds.
The solvability of the d-c-system is determined by matrix A, which has M + N

rows ai, i = 1, . . . ,M + N , and P columns. The rows of A that correspond to d-
equations are called d-rows, and those remaining are called c-rows. The entries of
A are again either 0 or 1. Since each complementary arc in ∂D(j) ∩ UE belongs to
exactly one disk and one connected component, we observe that in each column of A,
exactly two entries are equal to 1. One of these entries appears in a d-row and the
other in a c-row. (A has the two-ones property.)
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In what follows, we recall from section 3.1 that network Γ is a Delaunay graph
corresponding to a Voronoi tessellation of Ω. We restrict our attention to the case of
large N (for technical reasons it is sufficient to have N ≥ 3) and consider only Voronoi
tessellations with at least one Voronoi cell being strictly inside Ω. We also make use
of Properties 3.1 to 3.3 of Γ.

Theorem 6.1. The d-c-system has a solution.
Proof. First, we show that the d-c-system is underdetermined (i.e., P > M +N).

Indeed, by Property 3.2, at least two edges of Γ originate from each interior vertex
(which is the center of some disk D(i)). Then P ≥ 2N . Next, by Property 3.3,
there exists a closed path which consists of interior edges. Therefore, there exists a
connected component Cj with its closure disjoint from ∂Ω and, as such, there are at
least three edges and three arcs in ∂Cj . If the connected component would contain
parts of ∂Ω, there would be at least two arcs in its boundary. Thus6 2M < P and,
since P ≥ 2N , P > M + N .

Next, we show that matrix A of the d-c-system has linearly dependent rows.
Indeed, similar to the case of three disks, we have that the sum of the d-equations
is equal to the sum of k-equations. Then we eliminate the first equation in the d-c-
system and we denote by AR the reduced (M + N − 1) × P matrix. To finish the
proof of the theorem, we now show that the reduced system is full rank.

Lemma 6.2. The rank of AR is M + N − 1.
Proof. We argue by contradiction. Assume that the rows of AR are linearly

dependent, that is, for some k > 1,

ak =

M+N∑
m	=k,m=2

λmam,(6.40)

where at least one λm is nonzero. The strategy of the proof is as follows. We introduce
a multistep procedure where on each consecutive step l we have a set Xl of d-rows and
a set Yl of c-rows. We show that the rows from Xl∪Yl cannot appear on the left-hand
side of (6.40). Furthermore, we show that if either of these rows are present in the
right-hand side of (6.40), then the coefficients λm in front of these rows in (6.40) must
be zero. The process is stopped after L steps, when either all d-rows are included in
∪L
l=1Xl or all c-rows belong to ∪L

l=1Yl. At that point, (6.40) contains only d-rows (or
only c-rows). Then the lemma follows from the linear independence of the d-rows and
(c-rows), respectively.

Before giving the multistep procedure, let us introduce some notation. Given a
collection of disks S = {D(i1), D(i2), . . . , D(ik)}, denote by C(S) the set of all con-
nected components of ΩF \ UΠ adjacent to a disk in S. Also, given a collection Q
of connected components Cj , denote by D(Q) the set of all disks having an arc in
common with the boundary of an element of Q. Moreover, since there is a one-to-one
correspondence between a disk and a d-row, use Xl to denote both the sets of disks
and the corresponding sets of d-rows. Similarly, use the same notation for the set Yl

of connected components and the corresponding set of c-rows.
The multistep procedure is as follows.
Step 1. Set X1 = D(1) and Y1 = C(X1). The set Y1 consists of all connected

components adjacent to D(1). We also identify X1 with the d-row a1. Recall that
X1 is eliminated in the above reduction. The two-ones property implies that for each
aj ∈ Y1, there is a column of AR with the only nonzero entry belonging to row aj .

6Note that, in fact, for large N and M , we have P > 3M −O(1) as M → ∞.
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This is the single-one property and it follows from the two-ones property after the
elimination of X1. This shows that if ak ∈ Y1, it cannot appear in the left-hand side
of (6.40) and so it appears in the right-hand side of (6.40) with coefficient λk = 0.

Step 2. Let X2 = D(Y1)\X1 and observe that X2 consists of all disks except D(1),
which have a part of the boundary in common with one of the connected components
in Y1. Then define Y2 = C(X2) \ Y1. The elements of Y2 are connected components
which do not belong to Y1 and whose boundary intersects the boundary of some disk
from X2. Again, none of the vectors in X2 ∪ Y2 can be in the left-hand side of (6.40)
and so they must be in the right-hand side of (6.40), with corresponding coefficients
λm equal to zero.

Step 3. Define Yl, Xl recursively by

Xl = D(Yl−1) \Xl−1, Yl = C(Xl) \ Yl−1.

The elements of Xl are disks that do not belong to Xl−1 and whose boundary inter-
sects the boundary of some connected component in Yl−1. The set Yl consists of the
connected components which do not belong to Yl−1 and whose boundary intersects
the boundary of some disk in Xl. Repeating the argument used in the previous step,
we show that all corresponding λm must be zero.

By Property 3.2 of graph Γ, sets Yl and Xl are nonempty, unless for some L,
YL−1 = YL = ΩF \UΠ, or XL = XL−1 = {D(1), . . . , D(N)}. Then we stop the process
and note that the rows remaining in (6.40) are either all d-rows or all c-rows. By the
two-ones property, we obtain that if a d-row has a unit entry in some column, the other
d-rows have zeros in the same column. Hence all d-rows are linearly independent. The
same reasoning yields linear independence of all c-rows. This means that by the time
we stop the process, all vectors possibly remaining in (6.40) are linearly independent
and that the coefficients λm in front of these rows must be zero. This finishes the
proof of Lemma 6.2 and of Theorem 6.1.

Remark 6.3. The above iterative procedure can be illustrated as follows. Remove
a disk D(1) from Ω. This disk has adjacent connected components, say, three of them,
if there are three edges originating from x(1). Remove these connected components.
Now, the just-removed connected components were adjacent to three disks (second
generation of disks) which are neighbors of D(1). Remove the second generation of
disks and consider the remaining connected components (second generation of con-
nected components) adjacent to them. Remove the second generation of connected
components. The remaining neighbors of second generation disks are called third
generation disks. Remove them and consider the remaining connected components
adjacent to third-generation disks. Continue removing objects from Ω until there is
nothing left. Due to the connectedness of the graph, the process does not stop until
all the disks and all the connected components are removed.

Part III. Extending S to ∂D(j) ∩ UE. We wish to define a trial tensor S
along the pth complementary arc in ∂D(j) ∩ UE such that its integral is equal to βp

for some 1 ≤ j ≤ N and for 1 ≤ p ≤ P . This ensures that conditions (6.34) hold and
the existence of vectors βp has been proved in Parts I and II. However, the trial stress
tensor must also satisfy the balance of angular momentum

∫
∂D(j)

n(j) × Sn(j) ds = 0(6.41)
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for all 1 ≤ j ≤ N . Let us then focus attention on one disk, say, D(j), of radius aj
centered at x(j). At ∂D(j), x = x(j) + ajn

(j), so we rewrite (6.41) as

x0 ×
∫
∂D(j)

S n(j) ds + aj

∫
∂D(j)

n(j) × Sn(j) ds = 0.

Due to (6.34), the first integral is zero, and (6.41) reduces to∫
∂D

n(j) × Sn(j) ds = 0.

Let τ be the tangent unit vector at ∂D(j), pointing in the clockwise direction. Since
Sn(j) = (Sn(j) · τ )τ + (Sn(j) · n(j))n(j) and τ · n(j) = 0, we have

0 =

∫
∂D(j)

n(j) × Sn(j) ds = k

∫
∂D(j)

Sn(j) · τ ds,

where k = n(j)(x)× τ (x) is a constant (independent of x) unit vector, orthogonal to
the two-dimensional plane and pointing into it. Therefore, any tensor S obeying the
balance of angular momentum (6.41) satisfies∫

∂D(j)∩UE

Sn(j) · τ ds = −
∫
∂D(j)∩UΠ

Sn(j) · τ ds.(6.42)

Now, since S is already defined in UΠ, we estimate the integral in the right-hand
side of (6.42). In the local coordinates of gap Πij , a complementary arc in ∂D(j)∩Πij

is given by equation f(x1, x2) = x2 − δij/2 − aj +
√
a2
j − x2

1 = 0. Then

n(j) =
1

aj

(
x1

−(a2
j − x2

1)
1/2

)
, τ =

1

aj

(
(a2

j − x2
1)

1/2

x1

)
.(6.43)

Using the explicit expression of S from section 6.2.2 and Lemma 6.1, we obtain∫
∂D(j)∩Πij

μE(u)n(j) · τ ds = O

(√
aij

δij

)
(6.44)

and ∫
∂D(j)∩Πij

Kn(j) · τ ds = O(1).(6.45)

Let AΠij be a complementary arc from ∂D(j) ∩ UE adjacent to gap Πij and
oriented in the clockwise direction. We wish to construct tensor S on AΠij so that∫

AΠij

Sn(j) ds = β(6.46)

and ∫
AΠij

Sn(j) · τds = −ρ.(6.47)

Here, β is found by solving the d-c-system, and ρ stands for the sum of the integrals
in (6.44), (6.45). Parameterize AΠij as follows:

AΠij = {(x1, x2) ∈ ∂D(j) : x1 = aj cos t, x2 = aj sin t, t ∈ [0, α]}.(6.48)
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Then we rewrite (6.46), (6.47) as

a

∫ α

0

(S11(t) cos t− S12 sin t)dt = β1,(6.49)

aj

∫ α

0

(S12(t) cos t− S22 sin t)dt = β2,

aj

∫ α

0

(S11(t) cos t sin t− S22 sin t cos t)dt = −ρ.

To accomplish the task of this section, we now set the components Skl of our trial
tensor on AΠij to constant values satisfying (6.49). This implies that

M

⎛
⎝S11

S12

S13

⎞
⎠ =

⎛
⎝ β1/aj

β2/aj
−ρ/aj

⎞
⎠,(6.50)

where

M =

⎛
⎝ sinα cosα− 1 0

0 sinα cosα− 1
1/2 sin2 α 0 −1/2 sin2 α

⎞
⎠

and det(M) = sin2 α cosα (1 − cosα). Thus, unless α = 0, π/2 or π, (6.50) is uniquely
solvable, and our extension of S to the complementary arc AΠij is complete. Finally,
all cases of α that make M singular can be eliminated. Indeed, α = 0 is discarded by
the observation that it implies an empty AΠij . The other cases, α = π/2 or π, can
also be avoided by modifying the length of AΠij , i.e., by changing slightly the widths
of gaps Πij adjacent to AΠij .

6.2.4. Extension of S in the set UE of connected components. The goal
of this section is to extend S outside the gaps in such a way that the dual dissipation
rate in UE is much smaller than O(δ−3/2). First, we show that the components of the
extended S at complementary arcs AΠij ∈ ∂D(j) (see section 6.2.3) for 1 ≤ j ≤ N
and i ∈ Nj are bounded, pointwise by Cklδ

−1/2. Then we consider the extension of
S from A+ = UΠ ∩ ∂Ω+ and A− = UΠ ∩ ∂Ω− (the parts of ∂Ω± included in gaps)
to the whole ∂Ω and we prove the pointwise estimate |Skl| ≤ Cklδ

−1/2 for k, l = 1, 2.
Finally, we extend S in the interior of UE and show that the dissipation rate there is
at most O(δ−1). Once this is done, the first three steps in the outline of section 6.2.1
would be completed. The fourth step in section 6.2.1 is accomplished in section 6.2.6,
where we give the main theorem of the paper.

Part I: Estimates on the boundaries of the disks. To prove the desired
pointwise estimates of the components of S at ∂D(i) for 1 ≤ i ≤ N , we need the
following proposition.

Proposition 6.4. For each disk D(i), we have

∑
j∈Ni

∫
∂D(i)∩Πij

Sn(i) ds = O(δ−1/2) for i = 1, . . . , N.

This proposition states that if we fix a disk D(i) and consider the forces that act
on each arc in ∂D(i) ∩ UΠ, then the sum of these forces over all the arcs is O(δ−1/2),
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whereas the force on each disk may be of order δ−3/2. Thus, we have a cancellation
of terms due to the fact that the forces depend on translation velocities T(i), the
solutions of network equations (6.2). This is yet another manifestation of the global
nature of the lower bound construction, which cannot be obtained by simply patching
together trial functions obtained in each gaps Πij .

Proof of Proposition 6.4. Fix a gap Πij which joins disks D(i) and D(j) and use
(6.22) to calculate∫

Πij

(μ�u −∇P ) · udx =

∫
Πij

div (2μE(u) − PI) · udx,

where u is defined by (6.6). The approximate pressure P is defined by (6.23). Inte-
grating by parts, using the symmetry of E and the incompressibility of u, we have∫

Πij

(μ�u −∇P ) · udx = −2μ

∫
Πij

E(u) · E(u)dx +

∫
∂Πij

S0n · u ds.(6.51)

Recall that μ�u−∇P = div S0 = div K, where K is the compensating tensor defined
in (6.25). Write S0 = S + K and integrate by parts to obtain

2μ

∫
Πij

E(u) · E(u)dx =

∫
∂Πij

Sn · udΓ +

∫
Πij

K · E(u)dx.(6.52)

In section 6.2.2 we showed that
∫
Π
K · E(u)dx = O(δ−1/2). Then rewrite the first

integral in the right-hand side of (6.52) as∫
∂Πij

Sn · uds =

∫
∂D(i)∩∂Πij

Sn(i) · u ds +

∫
∂D(j)∩∂Πij

Sn(j) · u ds +

∫
∂UE∩∂Πij

Sn · u ds

=

∫
∂D(i)∩∂Πij

Sn(i) · T(i) ds +

∫
∂D(j)∩∂Π(ij)

Sn(j) · T(j) ds +

∫
∂UE∩∂Πij

Sn · u ds

+

∫
∂D(i)∩∂Πij

Sn(i) · (u − T(i))ds +

∫
∂D(j)∩∂Πij

Sn(i) · (u − T(j))ds.

However, by Proposition 6.2, we have∫
∂D(i)∩∂Πij

Sn(i) · uds = −
∫
∂D(j)∩∂Πij

Sn(j) · uds,

and using the constructed S and u (see sections 6.1 and 6.2.2) and Lemma 6.1 gives∫
∂Πij

Sn · uds = (T(i) − T(j)) ·
∫
∂D(i)∩∂Πij

Sn(i)ds + O(δ−1/2).

Finally, combining this with (6.52) yields

WΠij (u) =
1

2
(T(i) − T(j)) ·

∫
∂D(i)∩∂Πij

Sn(i)ds + O(δ−1/2).(6.53)

Next, recall that WΠij (u) in the left-hand side of (6.53) is a quadratic form in
T(i) − T(j) for i = 1, . . . , N and j ∈ Ni (see section 6.1). Denote the matrix of this
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quadratic form by A(δ). From the definition (6.6) of u, it follows that S is a linear
function of Ti − Tj , so we write

1

2

∫
∂D(i)∩∂Πij

Sn(i)ds = B(δ)(T(i) − T(j)),(6.54)

where the matrix B(δ) is independent of Ti,Tj . Then the first term in the right-hand
side of (6.53) is a quadratic form in T(i) − T(j). Replacing the terms in (6.53) with
the corresponding quadratic forms, we obtain

(T(i) − T(j)) ·A(δ)(T(i) − T(j)) = (T(i) − T(j)) ·B(δ)(T(i) − T(j)) + O(δ−1/2).

(6.55)

Summing up over all disks D(i), i = 1, . . . , N, and then differentiating with respect to
the components of a fixed vector T(i), we have∑

j∈Ni

A(δ)(T(i) − T(j)) =
∑
j∈Ni

B(δ)(T(i) − T(j)) + O(δ−1/2)(6.56)

for each disk D(i), i = 1, . . . , N . However, by the network equations (6.2), the left-
hand side in (6.56) is zero and so

0 =

Ji∑
j=1

B(δ)(Ti − Tj) + O(δ−1/2).

This completes the proof of Proposition 6.4.

Part II: Controlled extension of S to ∂Ω. In this step, we deal with the
extension of S from A± to ∂Ω.

Proposition 6.5. ∫
A+

Sn ds +

∫
A−

Sn ds = O(δ−1/2).

Proof. Since S is divergence free in each gap Πij , we have∑
ij

∫
∂Πij

Sn ds = 0,(6.57)

where the sum is taken over all gaps. If a gap is connected to ∂Ω, its boundary
consists of a segment from A+ or A−, an arc which belongs to one of the disks, and
two lateral segments. The boundary of an interior gap contains two disk arcs and two
lateral segments. By Proposition 6.2, the sum of the integrals over the lateral parts
of ∂Πij is zero. Thus (6.57) reduces to

∫
A+∪A−

Sn ds +

N∑
j=1

∫
∂D(j)∩UΠ

Sn ds = 0,

where the sum is taken over all disks. By Proposition 6.4,

N∑
j=1

∫
∂D(j)∩UΠ

Sn ds = O(δ−1/2),

and Proposition 6.5 follows.
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To obtain pointwise estimates on the complementary arcs, we restrict our atten-
tion to the example of a three-disk network from Figure 7 and to the corresponding
algebraic system (6.36), (6.37). Generalizing our arguments to the general case of N
disks is straightforward.

Let us denote the vector F1 + F5 by −P. By Proposition 6.5, P = O(δ−1/2).
Define S = 0 on the lateral part of ∂Ω. On ∂Ω+ \ A+ (or ∂Ω− \ A−), we choose the
constant components S11 = 0,

S12 = ±1

2

P1

|∂Ω+ \ A+| , S22 = ±1

2

P2

|∂Ω+ \ A+| ,

where | · | denotes the length of a curve. Then∫
∂Ω+\A+

Sn ds =

∫
∂Ω−\A−

Sn ds =
1

2
P,

∫
∂Ω

Sn ds = 0,

and

sup
∂Ω\(A+∪A−)

|Skl| ≤ cklδ
−1/2, k, l = 1, 2,(6.58)

with ckl independent of δ. Thus, we can define S on ∂Ω \ (A+ ∪ A−) so that (6.35)
is satisfied and

D1 = O(δ−1/2), D1 = O(δ−1/2).(6.59)

From the definitions of u, P, and S, it follows that |Skl| are pointwise bounded inde-
pendent of δ on the lateral parts of the gap boundaries. Hence,

Bj = O(1) for 1 ≤ j ≤ 4.(6.60)

Moreover, by Proposition 6.4,

−F1 + F3 + F4 = O(δ−1/2), −F2 + F3 = O(δ−1/2), −F4 − F3 − F5 = O(δ−1/2),

(6.61)

and, combining (6.59)–(6.61), we see that the components of the right-hand side of
the algebraic system (6.36), (6.37) are bounded by cδ−1/2 with c independent of δ.
Since the matrix of this algebraic system is independent of δ as well, we can choose
a solution of (6.36), (6.37) so that all its components are bounded by cδ−1/2 with
c independent of δ. This means that for each complementary arc in ∂D(j) ∩ ∂UE ,
1 ≤ j ≤ 8,

∫
∂D(j)∩∂UE

Snds = O(δ−1/2). The latter implies that the right-hand side

of algebraic system (6.50) is bounded by cδ−1/2 and, since matrix M is independent
of δ and invertible, we can find a stress field S at the boundaries of the disks which
is bounded by cδ−1/2 with c independent of δ. Then for each complementary arc, we
have

sup
∂D(j)∩∂UE

|Skl| ≤ cijδ
−1/2 for 1 ≤ j ≤ N(6.62)

with cij independent of δ.
The boundary of each connected component Cj of UE consists of complementary

arcs, pieces of the external boundary ∂Ω, and lateral parts of gap boundaries. Thus
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the estimates (6.58), (6.62) and the uniform estimates on the lateral segments yield
the following.

Proposition 6.6. For each connected component Cj of UE, we have

sup
∂Cj

|Skl| ≤ cjδ
−1/2, k, l = 1, 2,

with cj independent of δ.

Part III: Extension from the boundary, to the connected components.
Now, S is defined on the boundary of each connected component Cj of UE = ΩF \UΠ.
Moreover, we have ∫

∂Cj

Sn ds = 0(6.63)

and

sup
∂Cj

|S(x)| ≤ cδ−1/2(6.64)

with c independent of δ. Next, we construct a divergence-free extension of S from
∂UE to UE .

Proposition 6.7. Let Cj ⊂ UE be a connected component, and let S be the
trial tensor defined on ∂Cj satisfying (6.63), (6.64). Then there exists an extension

Ŝ ∈ L2(Cj) in Cj such that div Ŝ = 0 in Cj, Ŝ = S on ∂Cj and∫
Cj

Ŝ · Ŝ ds ≤ cδ−1

with c independent of δ.
This proposition is proved using the same techniques as those in section 5.2.7

6.2.5. Estimates of the dual dissipation functional in the gaps. In our
proof of the main theorem of the paper (see section 6.2.6), we use the following
estimate.

Proposition 6.8. Let u be defined by (6.6) and let S be the trial tensor defined
by (6.17) and (6.23)–(6.25). Then

W ∗
UΠ

(S) = WUΠ(u) + O(δ−1/2).(6.65)

Proof. By (6.8), we have W ∗
UΠ

=
∫
∂Ω∩UΠ

g · Snds−
∫
UΠ

F (S)dx. Let us then esti-

mate first the boundary integral. Fix a gap Π and consider
∫
∂Π

Sn ·u ds. Integrating
by parts using the definition of S, the incompressibility of u, and (6.18), we get∫

∂Π

Sn · u ds = 2WΠ(u) −
∫

Π

K · E(u)dx.(6.66)

The integral
∫
Π
K · E(u)dx is estimated using the explicit expressions of K and E(u)

and then by applying Lemma 6.1. These calculations, already carried out in section

7See also Appendix C in the preprint version of this article, available at http://www.math.wsu.
edu/math/faculty/panchenko/welcome.html.
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6.2.2 show that the integral in the right-hand side of (6.66) is O(δ−1/2). Summing up
over all gaps, we have ∫

∂UΠ

Sn · uds = 2WUΠ(u) + O(δ−1/2).(6.67)

Since ∂UΠ is a union of circular arcs, lateral segments that belong to the gap bound-
aries, and a set (∂Ω ∩ ŪΠ) ⊂ ∂Ω, we write∫

∂Ω∩UΠ

g · Sn ds =

∫
∂UΠ

u · Sn ds

−
N∑
j=1

T(j) ·
∫
∂D(j)∩UΠ

Sn ds

−
∫
∂UΠ\(∪j∂D(j))

u · Sn ds + O(δ−1/2).

(6.68)

Here, we use the same technique that gave (6.53) from (6.52). By Proposition 6.4,
the sum of the second and third terms in the right-hand side of (6.68) is O(δ−1/2).
Hence, ∫

∂Ω∩UΠ

g · Sn ds =

∫
∂UΠ

u · Sn ds + O(δ−1/2).(6.69)

Combining (6.67) and (6.69), we obtain∫
∂Ω∩UΠ

g · Sn ds = 2WUΠ(u) + O(δ−1/2).(6.70)

Finally, to estimate the second integral in the definition of W ∗
UΠ

, we apply section
6.14 and sum up over all gaps:∫

UΠ

F (S)dx = WUΠ
(u) + O(δ−1/2).(6.71)

The estimate (6.65) follows from (6.70) and (6.71).
We remark here that construction of the lower bound which accounts for rotations

(with the error term O(1)) requires developing more sophisticated techniques even for
periodic densely packed arrays, and this will be addressed elsewhere.

6.2.6. The main theorems. The trial field for the upper bound (6.7) is con-
structed by patching up the local approximate solutions (6.6), which depend on the
translational particle velocities T(i), i = 1, . . . , N, minimizing the quadratic functional

Q =

N∑
i=1

∑
j ∈ Ni
j < i

{[
3πμ

4

( a

δij

) 3
2

+
27πμ

10

√
a

δij

]
[(T(i) − T(j)) · qij ]2

+
πμ

2

√
a

δij
[(T(i) − T(j)) · pij ]2

}

+
∑
i∈B

{[
3πμ

4

(
2a

δi

) 3
2

+
27πμ

10

√
2a

δi

]
[(T(i) − g) · qi]2

+
πμ

2

√
2a

δi
[(T(i) − g) · pi]2

}
.

(6.72)
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In this section we introduce the corresponding dissipation rate

E2 = min
T(i)

i = 1, . . . , N

Q = Q(T
(i)
min, i = 1, . . . , N).(6.73)

By Proposition 6.1, the minimizing collection of vectors T
(i)
min (solving the system

(6.2)) is unique.
Since the error terms appearing in the construction of the lower bound are of

order δ−1 (recall Proposition 6.7), we need to make sure that E2 ≥ cδ−3/2 with
c independent of δ. So far, we know from the upper bound in section 6.1 that if
(T(i) − T(j))2 
= 0, the local dissipation rate in each gap Πij blows up as δ−3/2.

Otherwise, the rate of growth is at most δ−1/2. The vectors T
(i)
min are solutions of a

(large) system of network equations (6.2) and, until these are solved, we cannot say

whether the quantities ((T
(i)
min − T

(j)
min) · qij)2 vanish as δ → 0. That is, we cannot

determine the global rate of blow up of E2 as δ → 0. In the scalar case of electrical
conduction, it has been shown in [5] that for all connected graphs, the total energy
blows up at the same rate as the energy in each gap. In the vectorial case considered
here, connectivity is not sufficient to ensure the analogous property. The global rate
of blow up depends on other geometrical characteristics of a connected graph (e.g.,
the coordination number; see [7] for details).

The functional Q depends on the interparticle distances δij = δdij , where the
rescaled distances dij do not depend on δ, and 0 < c ≤ dij ≤ 1 for all pairs of
neighboring disks. To study asymptotic behavior of Q as δ → 0, we factor out the
powers of δ and write

Q(T(1), . . . ,T(N)) = δ−3/2Q̂(T(1), . . . ,T(N)) + δ−1/2Q′(T(1), . . . ,T(N)),(6.74)

where the coefficients of Q and Q′ do not depend on δ, and

Q̂ =

N∑
i=1

∑
j ∈ Ni
j < i

Aij [(T(i) − T(j)) · qij ]2 +
∑
i∈B

Ai[(T(i) − g) · qi]2(6.75)

with

Aij =
3πμ

4

(
a

dij

) 3
2

, Ai =
3πμ

4

(
2a

di

) 3
2

.(6.76)

Note that our boundary conditions (2.9) correspond to g = ±e2 on ∂Ω± and by
Definition 3.3, qi = ±e2 on ∂Ω±. We keep the general notation in (6.75) because
it may be applied to more general boundary conditions. In this section we use the
rescaled dissipation rate

Ê = min
T(i)

i = 1, . . . , N

Q̂,(6.77)

which does not depend on δ, and the corresponding minimizers T̂(i), i = 1, . . . , N .
From (6.72) and (6.74),

δ−3/2Ê ≤ δ−3/2Q̂(T
(i)
min) ≤ E2 = Q(T

(i)
min) ≤ Q(T̂(i)) = δ−3/2Ê + δ−1/2Q′(T̂(i)).

(6.78)
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Since Q′ and T̂(i) are independent of δ, (6.78) and (6.73) yield δ−3/2Ê ≤ E2 ≤
δ−3/2Ê + O(δ−1/2) and thus

E2 = δ−3/2Ê + O(δ−1/2).(6.79)

Therefore, the inequality

Ê > 0(6.80)

would imply E2 = O(δ−3/2) as δ → 0, and the leading term of the asymptotics of E2

would be determined by minimizing the δ-independent functional Q̂.
In this paper, we consider a mathematical model for uniformly closely packed

suspensions. For geometrical arrays of particles which correspond to such suspensions,
the inequality (6.80) does hold. The detailed investigation of geometric properties
of arrays for which (6.80) does or does not hold under various external boundary
conditions is a subject of a separate investigation carried out in [7]. Here, we describe
only one sufficient condition for validity of (6.80), discuss its physical relevance, and
present an example which illustrates this condition.

Uniform, closely packed geometries can be modeled by the so-called densely
packed quasi-triangular graphs. Roughly speaking, these are graphs such that each
particle in the corresponding array has six neighbors, and the interparticle distances
are uniformly small. More precisely, a quasi-triangular graph Γ is defined as follows.
We start with a graph Γ′ in Ω such that the interior vertices of Γ′ are points of the tri-
angular periodic lattice. Then Γ is obtained by perturbing the locations of the vertices
of Γ′ in such a way that if two vertices were neighbors, they would remain neighbors.
Moreover, a vertex of Γ′ is connected to ∂Ω if and only if the corresponding vertex
of Γ is connected to ∂Ω. More precisely, let Γ denote a network graph, and let Γ′ be
a graph corresponding to a periodic triangular lattice restricted to Ω. We also define
K and K ′ to be (topological) complexes associated with Γ and Γ′, respectively. We
say that the graph Γ is quasi-triangular if K and K ′ are combinatorially equivalent.
(The definition of combinatorial equivalence can be found, for instance, in [26, p. 4].)

To define the close packing condition for such graphs, recall that the interior
vertices of Γ′ are the centers of disks of radius a and that the corresponding periodic
lattice is closely packed if the interparticle distance δ = l − 2a � 1, where l denotes
the length of an interior edge. For a densely packed quasi-triangular graph, we require
that

max
ij

δij = max
ij

(lij − 2a) � 1,(6.81)

where the maximum is taken over all pairs of neighbors and lij is the length of the
corresponding interior edge of Γ.

In [7], we prove that (6.80) holds for a quasi-triangular graph under the close
packing condition. An example of a network satisfying (6.80) is presented in the
appendix.

We now formulate the main theorems.
Theorem 6.2. Let E be the dissipation rate (2.20) equal to the effective viscosity

〈μ〉 up to a constant normalizing factor (see (2.19)). Then as δ → 0,

E ≤ E2 + O(1)(6.82)

and

E2 + O(δ−1) ≤ E,(6.83)
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where E2 is the minimum of the quadratic form (6.72).
Theorem 6.3. For uniform, closely packed geometries such that condition (6.80)

holds, the rescaled effective viscosity (dissipation rate) E defined by (2.20) has the
asymptotic representation

E = δ−3/2Ê + O(δ−1) as δ → 0,(6.84)

where Ê is a minimum of the quadratic form Q̂ defined by (6.75).
Corollary 6.1. Let 〈μ〉 be the effective viscosity defined by (2.19), and let the

conditions of Theorem 6.3 hold. Then

〈μ〉 =
Ê∫

Ω
(E(u0), E(u0))dx

δ−3/2 + O(δ−1) as δ → 0,(6.85)

where u0 solves the Stokes equation Δu0−∇P 0 = 0 in Ω with the boundary conditions
(2.9) and (2.10).

Proof of the Theorem 6.2. Let us define the trial tensor S in ΩF as follows. In each
gap Πij , we use formula (6.17), and in each connected component Cl of UE = ΩF \UΠ,
we let S be an extension from ∂Cl, as given in Proposition 6.7. Note that, through
our construction, we have ensured that S ∈ F and, as such, it is an admissible trial
field for the dual variational problem (2.22). Furthermore, let u ∈ U , defined by (6.6),
be the trial function for primal variational problem (2.20).

Let us evaluate the dual functional W ∗
ΩF

(S) defined in (6.8) and (6.9). Since
Sn = 0 on ∂Ω \ (∂Ω+ ∪ ∂Ω−),

W ∗
ΩF

(S) =

∫
∂Ω+∪∂Ω−

g · Snds−
∫

ΩF

F (S)dx.

First, we estimate the boundary integral. By Proposition 6.6, |S| ≤ cδ−1/2 on (∂Ω+∪
∂Ω−) \ ∂UΠ, and g is independent of δ. Hence,∫

∂Ω+∪∂Ω−
g · Snds =

∫
(∂Ω+∪∂Ω−)∩∂UΠ

g · Snds + O(δ−1/2).(6.86)

Next, we use the notation from (5.11) to write∫
ΩF

F (S)dx =

∫
UΠ

F (S)dx +

∫
UE

F (S)dx.(6.87)

The second integral in the right-hand side of (6.87) is O(δ−1) by Proposition 6.7.
Using (6.8) with M = UΠ and taking into account the boundary conditions (2.10),
we write ∫

(∂Ω+∪∂Ω−)∩∂UΠ

g · Snds−
∫
UΠ

F (S)dx = W ∗
UΠ

(S),(6.88)

and, combining (6.88) with (6.86) and (6.87), we obtain

W ∗
ΩF

(S) = W ∗
UΠ

(S) + O(δ−1).(6.89)

Now Proposition 6.8 and (6.1), (6.72), and (6.73) imply

W ∗
ΩF

(S) = WUΠ(u) + O(δ−1) = E2 + O(δ−1).(6.90)
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Applying the direct and dual variational principles (2.20)–(2.21), (2.22)–(2.23) with
the trial fields u defined in (6.6) and S defined in the beginning of the proof, we obtain

W ∗
ΩF

(S) ≤ E ≤ WΩF
(u),(6.91)

and the estimates (6.82) and (6.83) follow.
Proof of Theorem 6.3. The inequalities (6.82) and (6.83) imply E = E2 +O(δ−1).

Together with (6.79), this yields E = Êδ−3/2+O(δ−1), which gives the representation
(6.84) provided (6.80) holds.

7. Summary. In this paper we obtain and rigorously justify an asymtotic for-
mula for the effective viscosity of a suspension of closely packed solid particles in a
viscous Newtonian fluid. This formula accounts for variable distances between parti-
cles which form a nonperiodic (e.g., random) array.

The rigorous justification is presented in two dimensions. It is based on a con-
struction of matching to the leading order lower and upper bounds by means of two,
dual to each other, variational principles for the effective viscosity. The key point here
is the construction of the lower bound, which accounts for all pairwise interactions
between neighboring particles as well as for the incompressibility condition in the fluid
domain. These interactions influence each other over the entire domain, leading to
considerable difficulties in the construction of the corresponding trial function.

In both three and two dimensions, we obtain formal asymptotics formulas for the
effective viscosity for nonperiodic arrays of particles of different sizes. For a particular
case of a periodic array when identical particles move toward each other (along the
line which joins their centers), the leading term in our formulas recovers the formal
asymptotics previously obtained by [15, 16]. Our formulas also contain lower order
terms which take into account the rotations and movements of adjacent particles in
directions orthogonal to the axis of their centers. In our formal asymptotic analysis,
we develop the corresponding generalization of the lubrication approximation.

While the previously obtained asymptotic formulas [15, 16, 27] capture the de-
pendence of the effective viscosity on the volume fraction in a periodic array of closely
packed particles, the network approximation proposed in this work also accounts for
other geometrical characteristics such as variable distances between particles and the
coordination number (the number of neighboring particles).

Appendix. Proof of estimate (6.80). Here we prove that (6.80) holds for the
spring network corresponding to the graph in Figure 10.

Proposition 7.1. Let Q̂ be the rescaled dissipation rate (6.75) corresponding to

the network in Figure 10. Then min Q̂ > 0.
Proof. The functional Q̂ is of the form

Q̂ = A12((T(1) − T(2)) · q12)2 + A13((T(1) − T(3)) · q13)2 + A23((T(2) − T(3)) · q23)2

+A24((T(2) − T(4)) · q24)2 + A1((T(1) − 1
2e2) · e2)

2 + A2((T(2) − 1
2e2) · e2)

2

+A3((T(3) + 1
2e2) · e2)

2 + A4((T(4) + 1
2e2) · e2)

2,

(7.1)

where Aij , Ai, i, j = 1, 2, . . . , 4, are given by (6.76). We show that minT(i),i=1,2... ,4 Q̂ >

0. Arguing by contradiction, assume that min Q̂ = 0. This is possible only if the min-
imizing set of vectors T(i) satisfies the system of equations

(T(1) − T(2)) · q12 = 0, (T(1) − T(3)) · q13 = 0, (T(2) − T(3)) · q23 = 0,(7.2)



EFFECTIVE VISCOSITY OF CONCENTRATED SUSPENSIONS 1625

Fig. 10. A four-disk network.

(T(2) − T(4)) · q24 = 0, (T(3) − T(4)) · q34 = 0,(7.3)

T(1) · e2 =
1

2
, T(2) · e2 =

1

2
, T(3) · e2 = −1

2
, T(4) · e2 = −1

2
.(7.4)

To write this system of nine equations in a more compact form Az = b, introduce a
1 × 8 vector of unknowns,

z = (T(1),T(2),T(3),T(4))T .

The right-hand side of (7.2)–(7.4) is a 1 × 9 vector b that has the entries bi = 0, i =
1, 2, . . . , 5, b6 = b7 = 1

2 , b8 = b9 = − 1
2 . Performing (partial) Gaussian elimination

on the transpose of the augmented matrix (A | b)T , we find that it is similar to the
matrix

C =

⎛
⎜⎜⎜⎜⎜⎜⎝

q̂12 q̂13 ô ô ô ê2 ô ô ô
ô q̂13 q̂23 q̂24 ô ê2 ê2 ô ô
ô ô ô q̂24 q̂34 ê2 ê2 ê2 ô
0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 −1 −1

⎞
⎟⎟⎟⎟⎟⎟⎠

.(7.5)

Here

(
q̂12 q̂13 ô ô ô ê2 ô ô ô

)
is a shorthand notation for two rows:

c1 =
(
q12
1 q13

1 0 0 0 0 0 0 0
)

and

c2 =
(
q12
2 q13

2 0 0 0 0 0 1 0
)
,

and, similarly, the other two boldfaced rows in (7.5) are the shorthand notation for
the four rows c3, . . . , c6. The last two rows of C in (7.5) are denoted by c7, c8.
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To show that cj , j = 1, 2, . . . , 8, are linearly independent, argue by contradiction.
When cj are linearly dependent, there exist λj , j = 1, 2, . . . , 8, not all zero, such that

8∑
j=1

λjcj = 0.(7.6)

Let us take the sixth and seventh columns in the vector equation (7.6). Then (7.6)
yields the equations

λ2 + λ4 + λ6 + λ7 = 0 and λ4 + λ6 + λ7 = 0.(7.7)

Thus λ2 = 0. Next, consider the first column in (7.6) to obtain λ1q
12
1 + λ2q

12
2 = 0.

Note that q12
1 cannot be zero since the edge e12 connects the boundary vertices 1, 2,

and thus cannot be vertical. Hence λ1 = 0. Next, consider columns 2 and 3 in (7.6).
Since λ1 = λ2 = 0, from (7.6) we obtain two equations for λ3, λ4:

λ3q
13
1 + λ4q

13
2 = 0,

λ3q
23
1 + λ4q

23
2 = 0.

(7.8)

Since q13,q23 are linearly independent, λ3 = λ4 = 0.
Consider columns four and five in (7.6). Since λ3, λ4 are zero, we obtain two

equations for λ5, λ6:

λ5q
24
1 + λ4q

24
2 = 0,

λ3q
34
1 + λ4q

34
2 = 0.

(7.9)

Linear independence of q24,q34 implies λ5 = λ6 = 0. Returning to (7.7), we see that
λ7 = 0. Finally, considering column 9, we obtain the equation for λ8,

λ7 − λ8 = 0,(7.10)

which yields λ8 = 0. Thus, all λj must be zero, and we arrive at a contradiction,
which yields rank(A | b) = 8. Applying the same Gaussian elimination to AT , we
see that rank(A) = 7 and thus rank(A | b) > rank(A). This means that the system

(7.2)–(7.4) has no solutions, and the minimum of Q̂ must be positive.
Remark 7.1. A quasi-triangular structure of the graph is sufficient for positivity

of Q̂. The proof of the Proposition 7.1 shows that if a graph contains a triangulated
path (see Figure 10), then Q̂ > 0 for the external boundary conditions (2.9), (2.10).

We now explain heuristically why triangulization ensures positivity of Q̂. Start from
vertices 1, 2 in Figure 10. They are connected by the nonvertical edge e12, which
implies λ1 = 0. We next add vertex 3 and observe that it is connected to vertices
1, 2 by noncollinear edges e12, e23, which are adjacent sides of a triangle 123. The
noncollinearity of these edges implies λ3 = λ4 = 0. Next, add vertex 4 to obtain
triangle 234 and, as before, noncollinearity of the edges e34, e42 implies λ5 = λ6 =
0. Finally, since e34 is nonvertical, λ7 = λ8 = 0. This argument also admits a
straightforward generalization to a triangulated path of n vertices.
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Abstract. We consider the approach to self-similarity (or dynamical scaling) in Smoluchowski’s
coagulation equations for the solvable kernels K(x, y) = 2, x + y and xy. We prove the uniform
convergence of densities to the self-similar solution with exponential tails under the regularity hy-
pothesis that a suitable moment have an integrable Fourier transform. For the discrete equations we
prove uniform convergence under optimal moment hypotheses. Our results are completely analogous
to classical local convergence theorems for the normal law in probability theory. The proofs rely
on the Fourier inversion formula and the solution by the method of characteristics for the Laplace
transform.
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1. Introduction. Smoluchowski’s coagulation equation

∂tn(t, x) =
1

2

∫ x

0

K(x− y, y)n(t, x− y)n(t, y)dy−
∫ ∞

0

K(x, y)n(t, x)n(t, y)dy(1.1)

is a widely studied mean-field model for cluster growth [4, 8, 17]. We study the
evolution of n(t, x), the number of clusters of mass x per unit volume at time t, which
coalesce by binary collisions with a symmetric rate kernel K(x, y). Equation (1.1) has
been used as a model of cluster growth in a surprisingly diverse range of fields such
as physical chemistry, astrophysics, and population dynamics (see [4] for a review of
applications). In addition, over the past few years a rich mathematical theory has
been developed for these equations. Aldous [1] provides an excellent introduction.

Many kernels in applications are homogeneous; that is, K(αx, αy) = αγK(x, y),
x, y, α > 0, for some exponent γ [4]. A mathematical problem of scientific interest is
to study self-similar or dynamical scaling behavior for homogeneous kernels. There
are no general mathematical results for this problem despite an extensive scientific
literature (especially formal asymptotics and numerics [12, 13, 18]). It is known that
γ plays a crucial role. On physical grounds, we expect solutions to (1.1) to conserve
the total mass

∫∞
0

xn(t, x)dx. When K(x, y) ≤ 1+x+y (corresponding to 0 ≤ γ ≤ 1),
mass-conserving solutions exist globally in time under suitable moment hypotheses on
initial data [5]. It is then typical in applications to assert that the solutions approach
“scaling form” [13, 18], but there is no rigorous mathematical justification for this in
general.
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For a large class of kernels satisfying (xy)γ/2 ≤ K(x, y) with 1 < γ < 2, it is
known that there is no solution that preserves mass for all time. This breakdown
phenomenon is known as gelation. It was first demonstrated by McLeod [14] with an
explicit solution for the kernel K = xy. A general result using only the growth of
the kernel was proved probabilistically by Jeon [9] (see also [6] for a simple analytical
proof). It is natural to ask whether the blow-up is self-similar, but there are no general
results on this problem yet.

There are a number of results, however, for the “solvable” kernels K = 2, x + y,
and xy (see [15] and references therein; also see [13]). A remarkable feature of these
kernels is that the problem of dynamical scaling can be understood quite deeply by
analogy with classical limit theorems in probability theory. For example, an analogue
to the classical Lévy–Khintchine representation for infinitely divisible laws was proved
by Bertoin [2] for eternal solutions to Smoluchowski’s equation with kernel K =
x + y. Eternal solutions are defined for all t ∈ (−∞,∞), meaning that they model
coagulation processes “infinitely divisible” under Smoluchowski dynamics. Later, we
proved [15] that the domains of attraction of self-similar solutions (in the sense of
weak convergence of measures) can be characterized by almost power-law behavior of
the tails of the initial size distribution. This is analogous to the characterization of
the weak domains of attraction of the Lévy stable laws [7]. An essential component in
both proofs is a simple solution formula for the Laplace transform of n that is widely
known [4]. These results may be used as a basis for refined convergence theorems, as
we now explain.

A general theme in probabilistic limit theorems is the interplay between moment
and regularity hypotheses and the topology of convergence. In this article, we develop
one aspect of this idea. Under stronger regularity hypotheses, the weak convergence
results of [15] will be strengthened to obtain uniform convergence of densities using the
Fourier transform. This method is classical in probability theory and is used to prove
uniform convergence of densities in the central limit theorem [7, Theorem XV.5.2].
Feller’s argument in [7] is simple and robust, and our main contribution is to show
that it extends naturally to Smoluchowski’s equation. The key new idea is to use the
method of characteristics in the right half of the complex plane to obtain strong decay
estimates on the Laplace transform. A broader contribution of this work and [15] is
to show that the analytical methods used to prove classical limit theorems in proba-
bility apply to a wider range of problems involving scaling phenomenon for integral
equations of convolution type.

Let us briefly connect our results to previous work: the only uniform convergence
theorems in the literature are that of Kreer and Penrose for the kernel K = 2 [11]
and closely connected work of da Costa [3]. In this article, for K = 2 and x + y we
present theorems on uniform convergence to the self-similar solutions with exponential
tails for the continuous and discrete Smoluchowski equations. For K = xy, we prove
uniform convergence of densities to self-similar form as t approaches the gelation time
Tgel. For K = 2, we strengthen the result of Kreer and Penrose and simplify the
proof. Their decay hypothesis on the initial data (n0(x) ≤ Ce−ax) is weakened to
an (almost) optimal moment hypothesis, and their regularity hypothesis (n0 ∈ C2) is
weakened to a little bit more than continuity. For K = x+y the convergence theorem
is new. Study of the kernel K = xy is reduced to K = x+y by a well-known change of
variables [4]. Uniform convergence to the self-similar solutions with “fat” or “heavy”
tails is a more delicate issue, which will not be considered here.

Our uniform convergence theorems may be stated in a unified manner as follows
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for the continuous Smoluchowski equations with kernels K(x, y) = 2, x + y, and
xy, corresponding to γ = 0, 1, 2, respectively. Presuming the γth and (γ + 1)st
moments are finite, we may scale x and n so both moments are initially 1. For the
multiplicative kernel this ensures that the gelation time Tgel = 1. Let Tγ = ∞ for
γ = 0, 1 and Tγ = Tgel = 1 for γ = 2. The self-similar solutions with exponential tails
are explicitly given by [15]

n(t, x) =
mγ(t)

λγ(t)γ+1
n̂∗,γ

(
x

λγ(t)

)
,(1.2)

where, for x̂ ≥ 0,

n̂∗,0(x̂) = e−x̂, x̂n̂∗,1(x̂) = x̂2n̂∗,2(x̂) =
1√
2π

x̂−1/2e−x̂/2,(1.3)

and

m0(t) = t−1, m1(t) = 1, m2(t) = (1 − t)−1,(1.4)

λ0(t) = t, λ1(t) = e2t, λ2(t) = (1 − t)−2.(1.5)

Our sufficient conditions for uniform convergence to these self-similar solutions for
the continuous Smoluchowski equations are summarized by the following result.

Theorem 1.1. Let n0 ≥ 0,
∫∞
0

xγn0(x)dx =
∫∞
0

x1+γn0(x)dx = 1. Assume
that the Fourier transform of x1+γn0 is integrable, and let n(t, x) be the solution to
Smoluchowski’s equation with initial data n0(x) and K = 2, x+ y or xy, for γ = 0, 1,
or 2. Then the rescaled solution

n̂(t, x̂) =
λγ(t)1+γ

mγ(t)
n(t, x̂λγ(t))

satisfies

lim
t→Tγ

sup
x̂>0

x̂1+γ |n̂(t, x̂) − n̂∗,γ(x̂)| = 0.

It has been traditional to treat the discrete Smoluchowski equations separately
from the continuous equations. Yet, within the framework of measure valued solu-
tions [15, 16], the discrete Smoluchowski equations simply correspond to the special
case of a lattice distribution, a measure valued solution supported on the lattice hN

and taking the form νt =
∑∞

l=1 nl(t)δhl(x), where δhl(x) is a Dirac delta at hl. If h
is maximal we call νt a lattice measure with span h. The coefficients nl satisfy the
discrete Smoluchowski equations

∂tnl(t) =
1

2

l−1∑
j=1

κl−j,jnl−j(t)nj(t) −
∞∑
j=1

κl,jnl(t)nj(t),(1.6)

where κl,j = K(lh, jh). Physically, this case is of importance, since some mass
aggregation processes (e.g., polymerization) have a fundamental unit of mass (e.g.,
a monomer). The uniform convergence theorems for the continuous Smoluchowski
equations have a natural extension to this case.

Theorem 1.2. Let ν0 ≥ 0 be a lattice measure with span h such that
∫∞
0

xγν0(dx) =∫∞
0

x1+γν0(dx) = 1. Then with

l̂ =
lh

λγ(t)
, n̂l(t) =

1

h

λγ(t)1+γ

mγ(t)
nl(t),
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we have

lim
t→Tγ

sup
l∈N

l̂1+γ
∣∣∣n̂l(t) − n̂∗,γ(l̂)

∣∣∣ = 0.

Let us comment on the hypotheses in Theorems 1.1 and 1.2. The moment hy-
potheses in both theorems are essentially the same.

∫∞
0

xγν0(dx) = 1 is the natural
hypothesis for existence and uniqueness of solutions [15]. The other moment condi-
tion

∫∞
0

x1+γν0(dx) = 1 is of a different character. It implies that n0 or ν0 is in the
weak domain of attraction of the self-similar solution with exponential tail, under a
rescaling n(t, x) −→ n̂(t̂, x̂) that fixes both moments

∫ ∞

0

x̂γ n̂(t̂, x̂)dx̂ =

∫ ∞

0

x̂γ+1n̂(t̂, x̂)dx̂ = 1 for all t̂ ≥ 0.

The hypothesis that the (γ + 1)st moment is finite is almost optimal. The weak
domain of attraction under a broader class of rescalings is a bit bigger, as it allows
for a weak divergence

∫ y

0
x1+γν0(dx) ∼ L(y) as y → ∞ for a slowly varying function

L(y) [15]. Thus, Theorem 1.2 shows that within the class of lattice measures, the
weak convergence of measures almost implies uniform convergence of the coefficients.

Theorem 1.1 requires an additional hypothesis on integrability of a suitable Fourier
transform. This is a regularity hypothesis that is the analogue of the hypothesis for
uniform convergence to the normal law used by Feller [7]. One may heuristically
understand the role of regularity as follows. Equation (1.1) is hyperbolic and dis-
continuities in the initial data persist for all finite times. On the other hand, the
self-similar solutions in (1.3) are analytic. Thus, one expects that some regularity on
the initial data is necessary to obtain uniform convergence to a self-similar solution.
Loosely speaking, regularity of the initial data n0(x) translates into a decay hypothesis
on its Fourier transform. We need only the weak decay implied by integrability.

We do not know if this assumption is optimal, or if it may be weakened further.
We briefly comment on this issue here; it will not be considered in the rest of the
paper. The space of functions with integrable Fourier transforms is of great interest
in harmonic analysis. Precisely, for f ∈ L1(R), let F be its Fourier transform. Then
the space

A(R) = {f ∈ L1(R)|F ∈ L1(R)}

is a closed subalgebra of L1(R) known as the Wiener algebra [10]. Integrability of F
implies that f is continuous. But it also implies more. It is known that functions in
A(R) possess some delicate regularity properties. For example, a function in A(R)
has a logarithmic modulus of continuity in a neighborhood where it is monotonic. It
is definitely not obvious whether this regularity is truly necessary to obtain uniform
convergence. If v0(ik) =

∫∞
0

e−ikxx1+γn0(x)dx is integrable, it also follows that
v0 ∈ H1(R)∩A(R), since v0 is the boundary limit of an analytic function (the Laplace
transform of x1+γn0). Here H1 denotes the classical Hardy space. This is turn means
that v0 has some hidden regularity and integrability properties. It is worth remarking
that the precise characterization of A(R) remains an outstanding open problem in
harmonic analysis (though several sufficient conditions are known; see [10]).

2. Uniform convergence of densities for the constant kernel K = 2.
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2.1. Evolution of the Laplace transform. Let C+ = {z ∈ C | Re z > 0} and
C̄+ = {z ∈ C | Re z ≥ 0}. We let

N(t, z) =

∫ ∞

0

e−zxn(t, x) dx, z ∈ C̄+,

denote the Laplace transform of the number density n. We take the Laplace transform
of (1.1) with K = 2, and its limit as z → 0, to see that N(t, z) solves

∂tN = N2 − 2N(t, 0)N, ∂tN(t, 0) = −N(t, 0)2.(2.1)

Without loss of generality, we may suppose that the initial time t = 1. We will always
assume that the initial data is normalized such that∫ ∞

0

n(1, x) dx =

∫ ∞

0

xn(1, x) dx = 1.(2.2)

If the initial number of clusters,
∫∞
0

n(1, x)dx, and the mass,
∫∞
0

xn(1, x)dx, are finite,
we may always assume that (2.2) holds after rescaling x and n. We solve the second
equation in (2.1) to see that the total number of clusters decreases according to∫ ∞

0

n(t, x) dx = N(t, 0) = t−1, t ≥ 1.(2.3)

We hold z fixed and integrate (2.1) in t to obtain the solution

N(t, z) =
1

t

N(1, z)

t(1 −N(1, z)) + N(1, z)
.(2.4)

The evolution preserves mass. Indeed, if we differentiate (2.4) with respect to z, we
find ∫ ∞

0

xn(t, x) dx = −∂zN(t, 0) = −∂zN(1, 0) =

∫ ∞

0

xn(1, x) dx = 1.(2.5)

2.2. Approach to self-similarity. A special case of the weak convergence re-
sult of [15], also given by Leyvraz [13], is obtained as follows: Observe that for each
fixed s ∈ C̄+, equations (2.3), (2.4), and (2.5) imply

tN(t, st−1) =
N(1, st−1)

t(1 −N(1, st−1)) + N(1, st−1)
−→
t→∞

1

1 + s
.(2.6)

It is classical that the pointwise convergence of Laplace transforms is equivalent
to weak convergence of measures [7, Theorem XIII.1.2a]. Thus, (2.6) implies that
rescaled solutions to Smoluchowski’s equations converge weakly. Let us be more pre-
cise about the rescaling. We define the similarity variables

τ = log t, x̂ =
x

t
= e−τx, s = tz = eτz(2.7)

and the rescaled number distribution

n̂(τ, x̂) = e2τn(eτ , eτ x̂) = t2n(t, x).(2.8)
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Observe that this rescaling preserves both total number and mass, that is,∫ ∞

0

n̂(τ, x̂)dx̂ =

∫ ∞

0

x̂n̂(τ, x̂)dx̂ = 1, τ ≥ 0.(2.9)

We denote the Laplace transform of n̂(τ, x̂) by

u(τ, s) =

∫ ∞

0

e−sx̂n̂(τ, x̂) dx̂ = eτN(eτ , se−τ ) = tN(t, z).(2.10)

In these variables, the pointwise convergence of (2.6) takes the simple form

lim
τ→∞

u(τ, s) =
1

1 + s
=: u∗,0(s), s ∈ C̄+,(2.11)

where u∗,0(s) denotes the Laplace transform of

n̂∗,0(x̂) = e−x̂, x̂ ≥ 0,(2.12)

the profile for the self-similar solution in (1.2). Now, (2.11) is equivalent to

n̂(τ, x̂) dx̂ → n̂∗,0(x̂) dx̂

as τ → ∞, in the sense of weak convergence of measures.
Our goal is to strengthen this to uniform convergence in both continuous and dis-

crete cases, under appropriate hypotheses on initial data. For the continuous Smoluw-
chowski equation (1.1) we prove the following theorem.

Theorem 2.1. Let n(1, x) ≥ 0,
∫∞
0

n(1, x) dx =
∫∞
0

xn(1, x) dx = 1. Assume
that the Fourier transform of xn(1, x) is integrable. Then in terms of the rescaling in
(2.7)–(2.8) we have

lim
τ→∞

sup
x̂>0

x̂|n̂(τ, x̂) − n̂∗,0(x̂)| = 0,(2.13)

where n̂∗,0(x̂) = e−x̂ is the similarity profile in (2.12).
The proof of this theorem extends to treat uniform convergence of coefficients for

solutions of the discrete equations (1.6) under only the hypothesis that the zeroth and
first moments are finite; see Theorem 2.2 below.

Observe that we prove uniform convergence of the weighted densities x̂n̂(τ, x̂).
The reason can be ascribed to use of the Fourier–Laplace inversion formula. We cannot
apply the inversion formula directly to u∗,0 as it is not integrable on the imaginary
axis (|u∗,0(ik)| ∼ |k|−1 as |k| → ∞). The slow decay of the Fourier transform is
caused by the jump discontinuity at x = 0, since n̂∗,0(x) = 0 for x < 0. In order
to gain a uniform convergence result, we smooth this discontinuity and consider the
mass density x̂n̂. Its Laplace transform we denote by

v(τ, s) = −∂su(τ, s) =

∫ ∞

0

e−sx̂x̂n̂(τ, x̂) dx̂.(2.14)

Differentiating (2.11), we obtain a corresponding self-similar profile, with

v∗,0(s) :=
1

(1 + s)2
, |v∗,0(ik)| =

1

1 + k2
, k ∈ R.(2.15)
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2.3. Evolution on characteristics. The explicit solution for u(τ, s) and v(τ, s)
can be obtained directly by substituting (2.10) into (2.4). But we rederive the solution
to make explicit the geometric idea underlying the proof of Theorem 2.1. The same
ideas underlie the proof of Theorem 3.1 for the additive kernel and are more easily
understood here. We use the change of variables (2.7) and (2.10) in (2.1), and the
conservation of moments in (2.9), to obtain the equation of evolution for u:

∂τu + s∂su = −u(1 − u).(2.16)

The solution of (2.16) may be described by the method of characteristics. A charac-
teristic curve s(τ ; τ0, s0) is the solution to

ds

dτ
= s, s(τ ; τ0, s0) = s0 ∈ C̄+.(2.17)

Explicitly,

s(τ ; τ0, s0) = eτ−τ0s0.(2.18)

Equation (2.17) is an autonomous differential equation in C̄+ and may be thought of
geometrically. For fixed s0 ∈ C̄+ the trajectory of the characteristic curve s(τ ; τ0, s0), τ ∈
R, is a ray in C̄+ emanating from the origin. In particular, the imaginary axis is invari-
ant under the flow of (2.17). Equation (2.18) shows that the characteristics expand
uniformly outward at the rate eτ . Along characteristics we have

du

dτ
= −u(1 − u),(2.19)

which may be integrated to obtain the solution

u(τ, s) =
u(τ0, s0)e

−(τ−τ0)

1 − u(τ0, s0)(1 − e−(τ−τ0))
.(2.20)

We need to estimate the decay of the derivative v = −∂su. Differentiating (2.16), we
see that on characteristics the derivative solves

dv

dτ
= −2(1 − u)v.(2.21)

We integrate (2.21) using (2.20) to find

v(τ, s) =
v(τ0, s0)e

−2(τ−τ0)(
1 − u(τ0, s0)(1 − e−(τ−τ0))

)2 .(2.22)

For τ ≥ τ0 we may take absolute values in (2.20) and (2.22) to obtain the decay
estimates

|u(τ, s)| ≤ |u(τ0, s0)|e−(τ−τ0)

1 − |u(τ0, s0)|(1 − e−(τ−τ0))
(2.23)

and

|v(τ, s)| ≤ |v(τ0, s0)|e−2(τ−τ0)(
1 − |u(τ0, s0)|(1 − e−(τ−τ0))

)2 ≤ |v(τ0, s0)|e−2(τ−τ0)

(1 − |u(τ0, s0)|)2
.(2.24)
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2.4. Proof of Theorem 2.1. 1. We use the Fourier–Laplace inversion formula

x̂(n̂(τ, x̂) − n̂∗,0(x̂)) =
1

2π

∫
R

eikx̂ (v(τ, ik) − v∗,0(ik)) dk.(2.25)

Thus, in order to prove (2.13) it suffices to show

lim
τ→∞

∫
R

|v(τ, ik) − v∗,0(ik)| dk = 0.(2.26)

2. Let ε ∈ (0, 1
2 ) and put R = ε−1. We will prove (2.26) by estimating the integral

separately in three regions: |k| ≤ R, R ≤ |k| ≤ Reτ−T , and Reτ−T ≤ |k| for τ ≥ T ,
where T > 0 will be chosen sufficiently large, depending on ε and the initial data v0.
This is essentially the same decomposition used in the proof of uniform convergence
in the central limit theorem by Feller [7, Theorem XV.5.2]. The main new idea here is
the use of the decay estimates (2.24) and the method of characteristics in the regions
where R ≤ |k|.

3. |k| ≤ R: Recall that the pointwise convergence of Laplace transforms (2.11) is
equivalent to n̂(τ, x̂) dx̂ → n̂∗,0(x̂) dx̂ in the sense of weak convergence of measures.
Combined with (2.9) this also implies that the mass measures x̂n̂(τ, x̂) dx̂ converge
weakly to x̂n̂∗,0(x̂) dx̂ as τ → ∞. But this implies v(τ, ik) converges to v∗,0(ik)
uniformly for |k| ≤ R [7, Theorem XV.3.2]. Therefore,

lim
τ→∞

∫ R

−R

|v(τ, ik) − v∗,0(ik)| dk = 0.(2.27)

4. It remains to consider |k| ≥ R. It is sufficient to consider only k ≥ R, since
|v(τ, ik)| = |v(τ,−ik)|. We will control v(τ, ik) and v∗,0 separately:∫ ∞

R

|v(τ, ik) − v∗,0(ik)| dk ≤
∫ ∞

R

|v(τ, ik)| dk +

∫ ∞

R

|v∗,0(ik)| dk.

But |v∗,0(ik)| = (1 + |k|2)−1 by (2.15), so that∫ ∞

R

|v∗,0(ik)| dk ≤ R−1 = ε.

In the rest of the proof we estimate
∫∞
R

|v(τ, ik)|dk.
5. Since u(τ, ik) → u∗,0(ik) and v(τ, ik) → v∗,0 as τ → ∞ for each real k, using

(2.11) and (2.15) we may choose T > 0 such that

sup
τ≥T

|u(τ, iR)| ≤ R−1 = ε, sup
τ≥T

|v(τ, iR)| ≤ R−2.(2.28)

6. R ≤ k ≤ Reτ−T : The control obtained from (2.28) propagates outward along
characteristics as τ increases. Precisely, whenever τ ≥ T , for any k such that R ≤
k ≤ Reτ−T we have ik = eτ−τ0iR, where τ0 ≥ T . By (2.18) this means that ik =
s(τ ; τ0, s0), with s0 = iR. Then the decay estimate (2.24) and the boundary control
(2.28) imply

|v(τ, ik)| ≤ |v(τ0, iR)|e−2(τ−τ0)

(1 − |u(τ0, iR)|)2
≤ 1

(1 − ε)2
R−2

(
R

k

)2

≤ 4k−2.(2.29)
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Integrating this estimate we obtain∫ Reτ−T

R

|v(τ, ik)| dk ≤
∫ ∞

R

4k−2 dk = 4R−1 = 4ε.

7. Reτ−T ≤ k: For brevity, let R̃ = Re−T . With u0(s) := u(0, s), v0(s) := v(0, s),
we use (2.24) and (2.18) with τ0 = 0 to obtain∫ ∞

R̃eτ
|v(τ, ik)| dk ≤ e−2τ

∫ ∞

R̃eτ

|v0(ike
−τ )|

(1 − |u0(ike−τ )|)2
dk

= e−τ

∫ ∞

R̃

|v0(ik
′)|

(1 − |u0(ik′)|)2
dk′ ≤

(
sup

|k′|≥R̃

1

(1 − |u0(ik′)|)2

)
e−τ‖v0‖L1 ,

where k′ = ke−τ . Since |u0(ik
′)| < 1 for k′ �= 0 and u0(ik

′) → 0 as k → ∞ by the
Riemann–Lebesgue lemma, we have sup|k′|≥R̃(1 − |u0(ik

′)|)−2 < ∞.
8. Putting together the estimates we have obtained, it follows that for τ suffi-

ciently large, the integral in (2.26) is less than 12ε. This completes the proof.

2.5. The discrete Smoluchowski equations. We consider measure solutions
of the form νt =

∑∞
l=1 nl(t)δhl(x), where δhl(x) denotes a Dirac mass at hl. To avoid

redundancy, we always assume that h is the span of the lattice, that is, the maximal
h > 0 so that all initial clusters, and thus clusters at any time t > 0, are concentrated
on hN. We will call νt a lattice measure with span h. Notice that if the initial
number of clusters and the mass are finite, by rescaling nl and h we may assume that∫∞
0

ν1(dx) =
∫∞
0

xν1(dx) = 1. Under these conditions, the weak convergence theorem
of [15] asserts that limt→∞ tN(t, s/t) = u∗,0(s). We show that this theorem may be
strengthened by use of Fourier series. The Fourier transform of νt is the Fourier series

N(t, ik) =
∑
l∈N

nl(t)e
−ilhk, k ∈ R,

which has minimal period 2π/h. Thus nl(t) = (h/2π)
∫ π/h

−π/h
eilhkN(t, ik) dk, or

t2nl(t) =
h

2π

∫ πeτ/h

−πeτ/h

exp(ilhke−τ )u(τ, ik) dk,(2.30)

in similarity variables from (2.10). We integrate by parts and let

l̂ = lhe−τ = lht−1, n̂l(t) = h−1t2nl(t)(2.31)

to obtain

l̂n̂l(t) = tlnl(t) =
1

2π

∫ πeτ/h

−πeτ/h

eil̂kv(τ, ik) dk.(2.32)

As in Theorem 2.1, we expect the right-hand side to converge to l̂n̂∗,0(l̂) as τ → ∞,

indeed uniformly for l̂ ∈ ht−1
N.

Theorem 2.2. Let ν1 ≥ 0 be a lattice measure with span h such that
∫∞
0

ν1(dx) =∫∞
0

xν1(dx) = 1. Then with the scaling (2.31) we have

lim
t→∞

sup
l∈N

l̂
∣∣∣n̂l(t) − n̂∗,0(l̂)

∣∣∣ = 0.(2.33)
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Proof. By (2.32) and the continuous Fourier inversion formulas, it suffices to show
that

lim
τ→∞

sup
l̂≥0

∣∣∣∣∣
∫ πeτ/h

−πeτ/h

eil̂kv(τ, ik) dk −
∫

R

eil̂kv∗,0(ik) dk

∣∣∣∣∣ = 0.

As earlier, it suffices to consider k > 0. The integrals

∫ R

−R

|v(τ, ik) − v∗,0(ik)| dk,
∫ R̃eτ

R

|v(τ, ik)| dk,
∫ ∞

R

|v∗,0(ik)| dk,

with R̃ = Re−T , are controlled exactly as in the proof of Theorem 2.1. It only remains
to estimate the integral of |v(τ, ik)| over the region R̃eτ < k < πeτ/h. We assume
that π/h > R̃, for otherwise there is nothing to prove. But then by the formula (2.18),
the uniform decay estimate (2.24), and the change of variables k′ = ke−τ , we have

∫ πeτ/h

R̃eτ
|v(τ, ik)| dk ≤ e−τ

∫ π/h

R̃

|v0(ik
′)|

|1 − u0(ik′)(1 − e−τ )|2
dk′.

Since the domain of integration is finite, it suffices to show that the integrand is
uniformly bounded in time. Since |v0(ik)| ≤ 1, it is only necessary to control the
denominator. But u0(ik) =

∑
l∈N

nl(0)e−ilkh with nl(0) ≥ 0. Therefore, |u0(ik)| ≤ 1,
and [7, Lemma XV.1.4] yields that

u0(ik) = 1 if and only if k =
2πm

h
, m ∈ Z.

In particular, we have the strict inequality

min
k∈[R̃,πh ]

|1 − u0(ik)| ≥ δ > 0.

Therefore,

∣∣1 − u0(ik)(1 − e−τ )
∣∣ ≥ |1 − u0(ik)| − |u0(ik)|e−τ ≥ δ − e−τ ≥ δ

2

for sufficiently large τ . Thus,

∫ πeτ/h

R̃eτ
|v(τ, ik)| dk ≤ 2π

δh
e−τ .

3. Uniform convergence of densities for the additive kernel.

3.1. Rescaling and approach to self-similarity. In this section we prove the
analogues of Theorems 2.1 and 2.2 for the additive kernel. The essential geometric
ideas of the proof are similar to the previous section. However, the trajectories of
the characteristic curves s(t; t0, s0) in the complex plane are no longer rays, and the
proofs require more careful analysis. As earlier, we will work with the explicit solution
formula for an appropriate Laplace transform. For z ∈ C̄+ we define

Φ(t, z) =

∫ ∞

0

(
1 − e−zx

)
n(t, x)dx.(3.1)
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We observe that 1−e−zx = zx+O(z2x2) as x → 0. We use Φ instead of the standard
Laplace transform of n because the latter may not be well defined: for example, the
similarity profile n̂∗,1 in (1.3) satisfies n̂∗,1(x) ∼ Cx−3/2 as x → 0. More generally, one
needs the initial data to have only a finite first moment for existence and uniqueness
of a solution to (1.1) in the case of the additive kernel [15]. A deeper reason for
this choice of variables (and notation) is probabilistic: (3.1) is the Lévy–Khintchine
formula for the Laplace exponent of a subordinator with no drift [2]. We will always
assume that the initial data n0 satisfies the moment conditions∫ ∞

0

xn0(x)dx = 1,

∫ ∞

0

x2n0(x)dx = 1.(3.2)

We substitute (3.1) in (1.1) and use (3.2) to see that Φ(t, z) solves the equation

∂tΦ − Φ∂zΦ = −Φ, Φ(0, z) =

∫ ∞

0

(1 − e−zx)n0(x)dx.(3.3)

As shown in [15] by the method of characteristics, (3.3) has a unique solution
for z > 0, t > 0 which is analytic with derivative ∂zΦ completely monotone in z
and satisfying ∂zΦ(t, 0) = 1 for all t. For each t > 0 then, ∂zΦ(t, ·) is the Laplace
transform of a probability measure, so its domain contains C̄+ and (3.3) holds by
analytic continuation for z ∈ C+, t > 0.

In contrast with (2.4), it is not obvious that a suitable rescaling will lead to
convergence to self-similar form. This point is discussed in [15, sect.7], and we refer
the reader to that article for motivation for the following change of variables. We
define the similarity variables

x̂ = xe−2t, s = ze2t(3.4)

and the rescaled number density

n̂(t, x̂) = e4tn(t, x̂e2t) = e4tn(t, x).(3.5)

We also define the rescaled Laplace transforms

ϕ(t, s) = e2tΦ(t, e−2ts) =

∫ ∞

0

(1 − e−sx̂)n̂(t, x̂)dx̂.(3.6)

Part of the motivation for the rescaling (3.4) and (3.5) is that this choice preserves
both moment conditions in (3.2). That is, we have∫ ∞

0

x̂n̂(t, x̂)dx̂ =

∫ ∞

0

x̂2n̂(t, x̂)dx̂ = 1, t ≥ 0.(3.7)

This should be compared with (2.9) for the constant kernel. The mass measure plays
the same role here as the number measure did for K = 2. Thus, we denote its Laplace
transform by the same letter, and let

u(t, s) = ∂sϕ(t, s) =

∫ ∞

0

e−sx̂x̂n̂(t, x̂)dx̂.(3.8)

By Theorem 7.1 in [15] (also see [13, Appendix G]), the assumptions in (3.2) imply
that the rescaled mass measures converge to the similarity profile, with

x̂n̂(t, x̂)dx̂ → x̂n̂∗,1(x̂)dx̂ =
1√
2π

x̂−1/2e−x̂/2dx̂, t → ∞,(3.9)
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in the sense of weak convergence of measures. It then follows from [7, Theorem
XIII.1.2] that (3.9) is equivalent to

lim
t→∞

u(t, s) =
1√

1 + 2s
=: u∗,1(s), s ∈ C̄+.(3.10)

Our goal is to strengthen (3.9) to uniform convergence of densities for (1.1) and
uniform convergence of coefficients for (1.6). For the continuous Smoluchowski equa-
tions we prove the following theorem.

Theorem 3.1. Suppose n0(x) ≥ 0,
∫∞
0

xn0(x)dx =
∫∞
0

x2n0(x)dx = 1. Suppose
also that the Fourier transform of x2n0 is integrable. Then in terms of the rescaling
(3.4)–(3.5) we have

lim
t→∞

sup
x̂>0

x̂2|n̂(t, x̂) − n̂∗,1(x̂)| = 0,(3.11)

where n̂∗,1(x̂) is the similarity profile defined in (1.3).
Once Theorem 3.1 is established, it is relatively straightforward to obtain the

analogous result for the discrete Smoluchowski equations; see Theorem 3.6 below.
Thus, most of our effort is devoted to Theorem 3.1.

Observe that we prove uniform convergence of the weighted density x̂2n̂(t, x̂).
As in the previous section, this is because Theorem 3.1 is proved using the Fourier–
Laplace inversion formula. Since |u∗,1(ik)| ∼ |k|−1/2 as |k| → ∞, u∗,1 is not integrable
on the imaginary axis. This divergence is due to the fact that n̂∗,1(x̂) = 0 for x̂ < 0
and x̂n̂∗,1(x̂) ∼ Cx̂−1/2 as x̂ → 0+. As earlier, we resolve the situation by considering
the transform of the next moment. Let

v(t, s) = −∂su(t, s) =

∫ ∞

0

e−sx̂x̂2n̂(t, x̂)dx̂, s ∈ C̄+.(3.12)

We integrate and differentiate (3.10) to obtain

ϕ∗,1(s) =
√

1 + 2s− 1, v∗,1(s) = (1 + 2s)−3/2, s ∈ C̄+.(3.13)

3.2. Characteristics and estimates. The equations of evolution for ϕ and u
are

∂tϕ + (2s− ϕ)∂sϕ = ϕ,(3.14)

∂tu + (2s− ϕ)∂su = −u(1 − u).(3.15)

In what follows, we first derive solution formulas to (3.14) by the method of
characteristics. We then show that the solution map for the characteristic equation
is never degenerate and that characteristics flow out of the right half into the left half
of the complex plane as t increases. For most parts of our analysis, it will suffice to
study characteristics in the right half plane only. But for one part, we need to study
characteristics that start in the right half plane but move into the left half plane.

We use the notation s(t; t0, s0) to denote the solution to

ds

dt
= 2s− ϕ, s(t0; t0, s0) = s0.(3.16)

Along the characteristic curve s(t; t0, s0), we have

dϕ

dt
= ϕ and

du

dt
= −u(1 − u).(3.17)



DYNAMICAL SCALING IN COAGULATION EQUATIONS 1641

We integrate (3.17) to obtain

ϕ(t, s) = et−t0ϕ(t0, s0), u(t, s) =
u(t0, s0)e

−(t−t0)

1 − u(t0, s0)(1 − e−(t−t0))
.(3.18)

We now substitute for ϕ(t, s) from (3.18) in (3.16) and integrate to obtain the explicit
solution

e−2(t−t0)s(t; t0, s0) = s0 − ϕ(t0, s0)(1 − e−(t−t0)).(3.19)

This equation can also be rewritten in two other useful forms, namely

e−2(t−t0) (s− ϕ(t, s)) = (s0 − ϕ(t0, s0))(3.20)

and

ϕ(t, s)

s
=

(ϕ(t0, s0)/s0)e
−(t−t0)

1 − (ϕ(t0, s0)/s0)(1 − e−(t−t0))
.(3.21)

The method of characteristics also yields an explicit solution for v(t, s). We differen-
tiate (3.15) to obtain

dv

dt
= −3(1 − u)v.(3.22)

We substitute for u from (3.18) and integrate (3.22) to obtain

v(t, s) =
v(t0, s0)e

−3(t−t0)(
1 − u(t0, s0)(1 − e−(t−t0))

)3 .(3.23)

Let ϕ0(s) := ϕ(0, s), and similarly u0(s) := u(0, s), v0(s) := v(0, s). Since u = ∂sϕ

and ϕ(t, 0) = 0, the moment conditions (3.2) and the identity ϕ0(s)/s =
∫ 1

0
u0(τs) dτ

imply

|u0(s)| ≤ 1, |v0(s)| ≤ 1, |ϕ0(s)| ≤ |s|, s ∈ C̄+.(3.24)

These inequalities are strict for s �= 0 because xn0(x) dx is not a lattice measure [7,
Lemma XV.1.4]. Taking t0 = 0 at first, for t ≥ t0 we take absolute values in (3.18)
and (3.23) to see that |u| and |v| decay along characteristics according to

|u(t, s)| ≤ |u(t0, s0)|e−(t−t0)

1 − |u(t0, s0)|(1 − e−(t−t0))
,(3.25)

|v(t, s)| ≤ |v(t0, s0)|e−3(t−t0)

(1 − |u(t0, s0)|)3
.(3.26)

From (3.25) and the fact that |u0(s0)| < 1 for s0 �= 0, and a similar estimate using
(3.21) and |ϕ0(s0)/s0| < 1, it follows that

|u(t, s)| < 1, |ϕ(t, s)/s| < 1, t ≥ 0, s �= 0.(3.27)

Then (3.25) and (3.26) hold also for any t0 ≥ 0 if t ≥ t0.
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Let us also note the uniform outward growth of characteristics implied by (3.27).
Using (3.27) together with (3.16) we obtain

|s| ≤ d|s|
dt

≤ 3|s|.(3.28)

Thus, |s0|e(t−t0) ≤ |s| ≤ e3(t−t0)|s0|. We will refine this crude estimate in the proof of
Theorem 3.1, but we note here that |s(t; t0, s0)| is a strictly increasing function of t.

In addition to the decay along characteristics, we will need the following uniform
Riemann–Lebesgue lemma. Let CR = {s ∈ C̄+ | |s| = R} denote the semicircle of
radius R in the right half plane.

Lemma 3.2. Let g(x) ∈ L1(0,∞) and G(s) =
∫∞
0

e−sxg(x)dx. Then

lim
R→∞

sup
s∈CR

|G(s)| = 0.(3.29)

Proof. Let ε > 0. We choose a step function gε =
∑K

k=1 ck1[ak,bk] so that
‖g − gε‖L1 < ε. But then, ‖e−sx(g − gε)‖L1 < ε. Therefore, for s ∈ C̄+,

|G(s)| ≤ ε +

∣∣∣∣
∫ ∞

0

e−sxgε(x)dx

∣∣∣∣ = ε +

∣∣∣∣∣
K∑

k=1

ck

∫ bk

ak

e−sxdx

∣∣∣∣∣ ≤ ε +
Cε

|s| .

We apply this lemma and (3.7) to g(x̂) = x̂j n̂(t, x̂) for j = 1, 2 to infer that for
every t ≥ 0, as |s| → ∞ with Re s ≥ 0, we have

|u(t, s)| → 0, |v(t, s)| → 0,

∣∣∣∣ϕ(t, s)

s

∣∣∣∣ → 0.(3.30)

3.3. Geometry of the characteristic map in the complex plane. In this
subsection, we study the solution formula (3.19). Our goal is to delineate some key
properties of the map s0 �→ s(t; t0, s0) for t, t0 ≥ 0.

Let C+ denote the open right half plane. We let Ωt denote the image of C+ under
the map s0 �→ s(t; 0, s0), and let Γt denote the image of the imaginary axis under the
same map. We aim to prove the following.

Lemma 3.3.

(i) For any t > 0, Γt is a C2 curve that passes through the origin but otherwise
lies in the open left half plane. On Γt, Re s is a C2 function of Im s.

(ii) Ωt is the component of the complex plane to the right of Γt. Consequently
Γt = ∂Ωt and Ωt ⊃ C̄+ \ {0}.

(iii) Whenever t1 ≥ t0 ≥ 0, the map s0 �→ s1 = s(t1; t0, s0) is one to one from Ω̄t0

onto Ω̄t1 . It is C2 on Ω̄t0 and analytic in Ωt0 . The inverse map is given by
s1 �→ s0 = s(t0; t1, s1) and is C2 on Ω̄t1 and analytic in Ωt1 .

(iv) Whenever t1 ≥ 0 and s1 ∈ C̄+, the backward characteristic curve s(t0; t1, s1),
t0 ∈ [0, t1], lies in C̄+.

Proof. We first establish part (iii), taking t0 = 0 at first. Since x2n0 is integrable,
v0(s) is continuous in C̄+ and analytic for Re s > 0. It follows by a standard dominated
convergence argument that u0 is C1 and ϕ0 is C2 in C̄+, and these functions are
analytic in C+. From (3.19) we see that the map s0 �→ s(t; 0, s0) is analytic in C+

and C2 on C̄+ (meaning derivatives up to second order extend continuously to C̄+).
We next claim that this map is one to one. The proof relies on the fact that ϕ0

is contractive, with

|ϕ0(s̃0) − ϕ0(s0)| ≤ |s̃0 − s0|, s̃0, s0,∈ C̄+.(3.31)



DYNAMICAL SCALING IN COAGULATION EQUATIONS 1643

This holds because |∂sϕ0(s)| ≤ 1 for s ∈ C̄+ as an immediate consequence of (3.7) and
(3.8). Now suppose s(t; 0, s̃0) = s(t; 0, s0), where s̃0, s0 ∈ C̄+. Then (3.19) implies

s̃0 − s0 =
(
1 − e−t

)
(ϕ0(s̃0) − ϕ0(s0)) .

From this and (3.31) we infer |s̃0 − s0| ≤ (1 − e−t)|s̃0 − s0|, whence s̃0 = s0. So
s0 �→ s(t; 0, s0) is one to one.

We observe that the derivative of this map is uniformly bounded away from zero.
Indeed, (3.19) and (3.24) yield∣∣∣∣ dsds0

∣∣∣∣ ≥ e2t
(
1 − |u0(s0)|(1 − e−t)

)
≥ et.

It follows by the inverse function theorem that Ωt is an open set, and by continuity
the image of C̄+ is Ω̄t. The inverse map from Ω̄t to C̄+ is analytic in Ωt, and C2 on
Ω̄t.

For t1 > 0, the inverse of the map s0 �→ s1 = s(t1; 0, s0) may be obtained by
solving the characteristic equation in (3.16) backward from time t1 to t0 = 0, so
that we have s0 = s(0; t1, s1). Now whenever t1 ≥ t0 ≥ 0 in general, we may follow
any characteristic curve back from a point in Ω̄t1 at time t1 to a point in C̄+ at
time 0 and then forward to a point in Ω̄t0 at time t0. This means that s(t1; t0, s0) =
s(t1; 0, s(0; t0, s0)). Part (iii) of the lemma now follows from the properties established
in the case t0 = 0.

Next we prove part (i). For t > 0, Γt is the image of the map k �→ s(t; 0, ik) =
e2t(ik−ϕ0(ik)(1−e−t)), k ∈ R, and this is a C2 function of k. We have s(t; 0, 0) = 0,
but Re s < 0 for k �= 0. This is so because Re s and Reϕ0(ik) have opposite signs,
and

Reϕ0(ik) =

∫ ∞

0

(1 − cos kx)n0(x)dx > 0, k �= 0,

since n0 is continuous. Finally, we find that

Im
d

dk
s(t; 0, ik) ≥ e2t(1 − |u0(ik)|(1 − e−t)) > 0

using (3.24). Hence Re s is a function of Im s on Γt.
Now we establish part (ii). By (3.30) we have that as |s0| → ∞ with s0 ∈ C̄+,

|ϕ0(s0)/s0| → 0, so s = s0e
2t(1 + o(1)) by (3.19). Let s1 ∈ C lie to the right of

Γt, and put f(s0) = s(t; 0, s0) − s1. It follows by applying the argument principle to
large semicircles that the analytic function f has a single zero at some point s0 ∈ C+.
Indeed, arg f(reiθ) → θ as r → ∞ for −π

2 ≤ θ ≤ π
2 , and as k goes from ∞ to −∞,

f(ik) does not cross the positive real axis, so arg f(ik) changes from π
2 to 3π

2 . Thus,
f maps a large semicircle to a curve that winds exactly once about 0. Hence s1 ∈ Ωt.

Finally, part (iv) follows by a change of variables, replacing t − t0 by t, and
applying parts (i)–(iii).

3.4. Proof of Theorem 3.1. 1. By the Fourier–Laplace inversion formula, it
suffices to prove

lim
t→∞

sup
x>0

∣∣∣∣
∫

R

eikx [v(t, ik) − v∗,1(ik)] dk

∣∣∣∣ = 0.(3.32)
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2. Let ε ∈ (0, 1
8 ), and put R = 1

2ε
−2. We will prove (3.32) by estimating

the integral for t ≥ T separately in three regions: |k| ≤ R, R ≤ |k| ≤ R̃e2t, and
R̃e2t ≤ |k|, where R̃ = Re−2T and T depends only on ε and the initial data v0. This
is the same decomposition used in the proof of Theorem 2.1, and convergence in the
region |k| ≤ R will follow as before. However, estimates for |k| ≥ R are more subtle
and use the analyticity and geometry of the characteristic map.

3. |k| ≤ R: Theorem 7.1 in [15] implies that x̂n̂(τ, x̂) dx̂ → x̂n̂∗,0(x̂) dx̂ in the
sense of weak convergence of measures. Combined with (3.7) this also implies that
the measures x̂2n̂(τ, x̂) dx̂ converge weakly to x̂2n̂∗,1(x̂) dx̂ as t → ∞. But this implies
v(t, ik) converges to v∗,1(ik) uniformly on compact subsets of C̄+, and in particular
on compact subsets of the imaginary axis [7, Theorem XV.3.2]. Thus,

lim
t→∞

∫ R

−R

|v(t, ik) − v∗,1(ik)| dk = 0.(3.33)

4. |k| ≥ R: It is sufficient to consider only k ≥ R, since |v(t, ik)| = |v(t,−ik)|.
We will control v(t, ik) and v∗,1 separately:∫ ∞

R

|v(t, ik) − v∗,1(ik)| dk ≤
∫ ∞

R

|v(t, ik)| dk +

∫ ∞

R

|v∗,1(ik)| dk.

But |v∗,1(ik)| ≤ (2k)−3/2 by (3.13). Thus,∫ ∞

R

|v∗,1(ik)| dk ≤
∫ ∞

R

(2k)−3/2 dk = (2R)−1/2 = ε.

5. In the rest of the proof we estimate
∫∞
R

|v(t, ik)|dk. In order to aid the reader,
we state the main estimates as two distinct lemmas.

Lemma 3.4. Let ε ∈ (0, 1
8 ). There exists T > 0 depending on ε and the initial

data, and a universal constant C, such that if t ≥ T then∫ Re2(t−T )

R

|v(t, ik)| dk ≤ Cε.(3.34)

Lemma 3.5. Let R̃ > 0. There exists C̃ depending on R̃ and the initial data such
that for all t ≥ 0 we have ∫ ∞

R̃e2t
|v(t, ik)| dk ≤ C̃e−t.(3.35)

6. We now prove (3.32). We choose T as in Lemma 3.4, and then R̃ = Re−2T in
Lemma 3.5. Choose T∗ ≥ T such that for t ≥ T∗∫ R

−R

|v(t, ik) − v∗,1(ik)| dk < ε, C̃e−t ≤ C̃e−T∗ < ε.

Thus, for t ≥ T∗ we have∫
R

|v(t, ik) − v∗,1(ik)| dk ≤
∫ R

−R

|v(t, ik) − v∗,1(ik)| dk

+2

(∫ ∞

R

|v∗,1(ik)| dk +

∫ R̃e2t

R

|v(t, ik)| dk +

∫ ∞

R̃e2t
|v(t, ik)| dk

)

≤ ε + 2 (ε + Cε + ε) .

Since ε ∈ (0, 1
8 ) may be chosen arbitrarily small, this completes the proof.
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3.5. Proof of Lemma 3.4. In this subsection we will always suppose s ∈ C̄+.
In a manner similar to step 6 of the proof of Theorem 2.1, the idea is to get estimates
on the semicircle CR := {s ∈ C̄+ | |s| = R} valid for large time and propagate these
estimates outward along characteristics. We first use (3.10) and (3.13) to obtain the
following estimates for s ∈ C̄+:

|ϕ∗,1(s)| < |2s|1/2, |u∗,1(s)| < |2s|−1/2, |v∗,1(s)| < |2s|−3/2.(3.36)

Next, we use the uniform convergence on compact sets and (3.36) to see that there
exists T0 (depending on ε and the initial data) such that for all s0 ∈ CR and t0 ≥ T0

we have

|ϕ(t0, s0)/s0| ≤ 2(2R)−1/2 = 2ε ≤ 1/4,(3.37)

|u(t0, s0)| ≤ (2R)−1/2 = ε,(3.38)

|v(t0, s0)| ≤ (2R)−3/2 = ε3.(3.39)

We first extend (3.37) to a larger domain in s.
Claim 1. There exists T1 ≥ T0 such that∣∣∣∣ϕ(t, s)

s

∣∣∣∣ ≤ 1/3, t ≥ T1, s ∈ C̄+, |s| ≥ R.(3.40)

Proof of Claim 1. Observe that by using (3.27) and (3.30) in (3.21), we have

a := sup{|ϕ(T0, s)/s| | s ∈ C̄+, |s| ≥ R} < 1.

Fix t1 ≥ T0, s1 ∈ C̄+ with |s1| ≥ R. Either the characteristic curve s(t; t1, s1) that
passes through s1 at time t1 intersects CR at some time t0 ∈ [T0, t1], or not. If so,
then s1 = s(t1; t0, s0) for some s0 ∈ CR, and (3.21) and (3.37) directly yield∣∣∣∣ϕ(t1, s1)

s1

∣∣∣∣ ≤ 1/4

1 − 1/4
=

1

3
.

If not, then |s(t; t1, s1)| > R for all t ∈ [T0, t1], by continuity and the fact that
s(t; t1, s1) ∈ C̄+ for all t ∈ [0, t1] by part (iv) of Lemma 3.3. Then taking t0 = T0,
s0 = s(T0; t1, s1) in (3.21) yields∣∣∣∣ϕ(t1, s1)

s1

∣∣∣∣ ≤ ae−(t1−T0)

1 − a
≤ 1

3
,

provided t1 ≥ T1 with T1 sufficiently large. This proves the claim.
Claim 2. Let T = T1 + 1

2 ln 2. Suppose t1 ≥ T and R ≤ |s1| ≤ Re2(t1−T ). Then
the characteristic curve s(t; t1, s1) that passes through s1 at time t1 intersects CR at
some time t0 ∈ [T1, t1].

Proof of Claim 2. Suppose the claim were false. Then the continuity of |s(t; t1, s1)|
and part (iv) of Lemma 3.3 imply R < |s(t0; t1, s1)| for all t0 ∈ [T1, t1]. But now, by
(3.20) with s0 = s(t0; t1, s1) we have

s0

(
1 − ϕ(t0, s0)

s0

)
= e−2(t1−t0)s1

(
1 − ϕ(t1, s1)

s1

)
.(3.41)

We take t0 = T1 and apply (3.40) and the hypothesis |s1| ≤ Re2(t1−T ) = 1
2Re2(t1−T1)

to deduce

R < |s0| ≤ |s1|e−2(t1−T1)
1 + 1/3

1 − 1/3
≤ R,

a contradiction. This proves the claim.
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We now apply these claims to propagate the decay estimate (3.39). From Claim
2, for any t = t1 ≥ T , R ≤ k ≤ Re2(t−T ), with s1 = ik, we obtain t0 ∈ [T1, t] and
s0 ∈ CR and substitute (3.20), (3.39), and (3.40) in the decay estimate (3.26) to
obtain

|v(t, ik)| ≤ |v(t0, s0)|
(1 − |u(t0, s0)|)3

∣∣∣∣s0 − ϕ(t0, s0)

ik − ϕ(t, ik)

∣∣∣∣
3/2

≤ (1 − ε)−3 |v(t0, s0)|
∣∣∣∣2s0

k

∣∣∣∣
3/2

≤ (1 − ε)−3(2R)−3/2

(
2R

k

)3/2

= (1 − ε)−3k−3/2.

Therefore,

∫ Re2(t−T )

R

|v(t, ik)| dk ≤ (1 − ε)−3

∫ ∞

R

k−3/2 dk =
2R−1/2

(1 − ε)3
≤ Cε,(3.42)

with C = 2(8/7)321/2. This completes the proof of Lemma 3.4.

3.6. Proof of Lemma 3.5. We consider the initial time t0 = 0 and the following
special case of (3.19):

s = s(t; 0, s0) = e2t
[
s0 − ϕ0(s0)(1 − e−t)

]
.(3.43)

For any t ≥ 0, the map s0 �→ s(t; 0, s0) is analytic for Re(s0) > 0, and

ds

ds0
= e2t

(
1 − u0(s0)(1 − e−t)

)
, u0(s0) = u(0, s0).(3.44)

Recall that Ωt denotes the image of C+ under s0 �→ s(t; 0, s0), and Γt denotes the
image of the imaginary axis; we let Γ−t denote its preimage. As was observed in
Lemma 3.3, Γt is a graph over the imaginary axis, contained in the left half plane.

We will use the analyticity of v(t, s) in Ωt and contour deformation. For large
finite R2 < ∞, consider the domain ABCD shown in Figure 3.1. The path AB is
chosen so that A′B′ is a straight line. CD is parallel to the real axis and lies in Ωt

since Γt is a graph over the imaginary axis. Then by Cauchy’s theorem,∫ R2

R̃e2t
eikxv(t, ik) dk =

∫
BC

eikxv(t, ik) dk

=

∫
DA

esxv(t, s) ds +

∫
AB

esxv(t, s) ds +

∫
CD

esxv(t, s) ds.

Let σ denote Re s. Since σ < 0 in Ωt for s ∈ CD we see that the last integral is
estimated by∣∣∣∣

∫
CD

esxv(t, s) ds

∣∣∣∣ ≤ sup
s∈CD

|v(t, s)|
∫ 0

−∞
eσxdσ =

sups∈CD |v(t, s)|
x

.

By the decay estimate (3.26) we have

sup
s∈CD

|v(t, s)| ≤ sup
s1∈CD

|v0(s0)|e−3t

(1 − |u0(s0)|)3
, s0 = s(0; t, s1).
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Fig. 3.1. The s-plane is on the left, the s0-plane on the right. Ωt is the region to the right of
Γt. A = s(t; 0, iR̃), B = iR̃e2t, C = iR2, Im(D) = R2, A′ = iR̃, B′ = s(0; t, iR̃e2t).

It follows from (3.30) and the fact that |s0| = |s1|e−2t(1 + o(1)) → ∞ as R2 → ∞
that sups1∈CD |v0(s0)| → 0. We thus let R2 → ∞ to conclude that∫ ∞

R̃e2t
eikxv(t, ik) dk =

∫
Γt,A

esxv(t, s) ds +

∫
AB

esxv(t, s) ds,(3.45)

where Γt,A denotes the path from ∞ to A on Γt. Notice that (3.45) holds independent
of x.

The virtue of deforming the contour is that the integrals may now be estimated
by changing variables from s to s0. We use the solution formula (3.23) together with
the change of variables s = s(t; 0, ik) and (3.44) to obtain∫

Γt,A

esxv(t, s) ds = ie−t

∫ ∞

R̃

es(t;0,ik)x v0(ik)

(1 − u0(ik)(1 − e−t))
2 dk.

Since Re s(t; 0, ik) ≤ 0 and sup|k|≥R̃ |u0(ik)| < 1, this yields the estimate∣∣∣∣∣
∫

Γt,A

esxv(t, s) ds

∣∣∣∣∣ ≤ C1e
−t‖v0‖L1 .(3.46)

Similarly, we have by (3.23) and (3.44)

∣∣∣∣
∫
AB

esxv(t, s) ds

∣∣∣∣ = e−t

∣∣∣∣∣
∫
A′B′

es(t;0,s0)x
v0(s0)

(1 − u0(s0)(1 − e−t))
2 ds0

∣∣∣∣∣
≤ e−t|A′B′| sup

s0∈A′B′

∣∣1 − u0(s0)(1 − e−t)
∣∣−2

.

The point A′ = iR̃ is independent of t. It also follows from (3.43) that B′ =
s(0; t, iR̃e2t) converges to the point s0 ∈ C̄+ that solves iR̃ = s0 − ϕ0(s0). Thus,
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we have the exponential decay estimate∣∣∣∣
∫
AB

esxv(t, s) ds

∣∣∣∣ ≤ C2e
−t.(3.47)

The constants Ci in (3.46) and (3.47) depend only on R̃ and the initial data u0. To
be explicit, we set C̃ = C1‖v0‖L1 + C2. This completes the proof.

3.7. The discrete Smoluchowski equations. We now use the proof of The-
orem 3.1 to obtain a uniform convergence theorem for the discrete Smoluchowski
equations with additive kernel. The proof is simpler and we do not need the contour
deformation argument.

Let νt =
∑∞

l=1 nl(t)δhl(x) denote a measure-valued solution to (1.1). We first
adapt the rescaling (3.4) and (3.5) to similarity variables. Let

l̂ = lhe−2t, n̂l(t) = h−1e4tnl(t).(3.48)

Then the discrete Fourier inversion formula analogous to (2.32) is

l̂2n̂l(t) =
1

2π

∫ πe2t/h

−πe2t/h

eil̂kv(t, ik) dk.(3.49)

Theorem 3.6. Let ν0 ≥ 0 be a lattice measure with span h such that
∫∞
0

xν0(dx) =∫∞
0

x2ν0(dx) = 1. Then with the scaling (3.48) we have

lim
t→∞

sup
l∈N

l̂2
∣∣∣n̂l(t) − n̂∗,1(l̂)

∣∣∣ = 0.

Proof. By (3.49) and the continuous Fourier inversion formulas it suffices to show
that

lim
t→∞

sup
l̂≥0

∣∣∣∣∣
∫ πe2t/h

−πe2t/h

eil̂hkv(t, ik) dk −
∫

R

eil̂hkv∗,1(ik) dk

∣∣∣∣∣ = 0.(3.50)

Let ε ∈ (0, 1
8 ) and choose R = 1

2ε
−2. The integrals over [−R,R] and R < |k| < R̃e2t

with R̃ = e−2T are controlled as in the proof of Theorem 3.1, and it only remains to
control the integral of |v(t, ik)| over R̃e2t < k < πe2t/h. This is considerably simpler
than in the previous proof. We use the solution formula (3.23) and change variables
via ik = s(t; 0, s0), then use (3.44) to obtain

∫ πe2t/h

R̃e2t
eikxv(t, ik) dk = ie−t

∫
Γ−t(R̃,π/h)

exs(t;0,s0)v0(s0)

(1 − u0(s0)(1 − e−t))
2 ds0.

Here Γ−t(R̃, π/h) denotes the segment along the curve Γ−t from s(0; t, iR̃e2t) to
s(0; t, iπe2t/h). The formula (3.19) shows that Γ−t(R̃, π/h) converges to a compact
C2 curve defined implicitly by ik = s0 − ϕ0(s0), R̃ ≤ k ≤ π/h. Thus, for t ≥ T we
have

e−t

∣∣∣∣∣
∫

Γ−t(R̃,π/h)

exs(t;0,s0)v0(s0)

(1 − u0(s0)(1 − e−t))
2 ds0

∣∣∣∣∣ ≤ C(T, R̃, u0, v0)e
−t.

Thus, this term is less than ε for all t large enough.
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4. Self-similar gelation for the multiplicative kernel. For K = xy, McLeod
solved the coagulation equation explicitly for monodisperse initial data and showed
that a mass-conserving solution failed to exist for t > 1. The second moment satisfies
m2(t) = (1 − t)−1. The divergence of the second moment indicates that breakdown
is associated with an explosive flux of mass toward large clusters. A rescaled limit of
McLeod’s solution is the following self-similar solution for K = xy [1]:

n(t, x) =
1√
2π

x−5/2e−(1−t)2x/2, x > 0, t < 1.(4.1)

Evidently this solution has infinite mass (first moment). This should not be thought
unnatural, however, since it was shown in [15] that (1.1) has a unique weak solution
for any initial distribution with finite second moment.

The problem of solving Smoluchowski’s equation with multiplicative kernel can
be reduced to that for the additive kernel by a change of variables [4]. Let us briefly
review this. In unscaled variables we define

Ψ(t, z) =

∫ ∞

0

(1 − e−zx)xn(t, x) dx.(4.2)

Then Ψ solves the inviscid Burgers equation:

∂tΨ − Ψ∂zΨ = 0,(4.3)

with initial data

Ψ0(z) =

∫ ∞

0

(1 − e−zx)xn0(x) dx.(4.4)

The gelation time for initial data with finite second moment is Tgel = (
∫∞
0

x2ν0(dx))−1,
and this is exactly the time for the first intersection of characteristics [15]. We presume
that the initial data is scaled to ensure∫ ∞

0

x2n0(x) dx =

∫ ∞

0

x3n0(x) dx = 1.(4.5)

Then the gelation time is Tgel = 1. The connection between the additive and multi-
plicative kernels is that Ψ solves (4.3) with initial data Ψ0 if and only if Φ(τ, z) is a
solution to (3.3) with the same initial data, where

Ψ(t, z) = eτΦ(τ, z), with τ = log(1 − t)−1.(4.6)

For solutions nmul(t, x) and nadd(τ, x) to Smoluchowski’s equation with multiplicative
and additive kernels, respectively, this means that

xnmul(t, x) = (1 − t)−1nadd(τ, x)(4.7)

for all t ∈ (0, 1) if and only if the same holds at t = 0. We thus obtain a scaling limit
as t → Tgel directly from Theorem 3.1. The similarity variables for the multiplicative
kernel are

x̂ = (1 − t)2x, n̂(t, x̂) =
n(t, x̂(1 − t)−2)

(1 − t)5
=

n(t, x)

(1 − t)5
,(4.8)
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and the self-similar profile is

n̂∗,2(x̂) =
1√

2πx̂5
e−x̂/2.(4.9)

Theorem 4.1. Suppose n0(x) ≥ 0,
∫∞
0

x2n0(x) dx =
∫∞
0

x3n0(x) dx = 1. Sup-
pose also that the Fourier transform of x3n0 is integrable. Then in terms of the
rescaling (4.8) we have

lim
t→1

sup
x̂>0

x̂3|n̂(t, x̂) − n̂∗,2(x̂)| = 0,(4.10)

where n̂∗,2(x̂) is the self-similar density in (4.9).
Notice that (4.8) is not a mass-preserving rescaling; indeed, the rescaled mass

diverges: ∫ ∞

0

x̂n̂(t, x̂)dx̂ =
1

1 − t

∫ ∞

0

xn(t, x) dx =
1

1 − t
→ ∞.

Instead, (4.8) preserves the second moment:∫ ∞

0

x̂2n̂(t, x̂)dx̂ = (1 − t)

∫ ∞

0

x2n(t, x) dx = 1, t ∈ [0, 1).

The explanation is that the scaling in (4.8) is designed to capture the behavior of the
distribution of large clusters as t approaches Tgel—the average cluster size is (1−t)−1.
Correspondingly, the mass of the self-similar solution is infinite.

Theorem 3.6 may be similarly adapted to K = xy. In the discrete case, the cor-
respondence (4.7) between solutions of Smoluchowski’s equations with multiplicative
and additive kernels becomes

hlnmul
l (t) = (1 − t)−1nadd

l (log(1 − t)−1)(4.11)

We introduce similarity variables via

l̂ = lh(1 − t)2, n̂l(t) = h−1(1 − t)−5nl(t).(4.12)

Then directly from Theorem 3.6 we obtain the following.
Theorem 4.2. Let ν0 ≥ 0 be a lattice measure with span h such that

∫∞
0

x2ν0(dx) =∫∞
0

x3ν0(dx) = 1. Then with the rescaling (4.12) we have

lim
t→1

sup
l∈N

l̂3
∣∣∣n̂l(t) − n̂∗,2(l̂)

∣∣∣ = 0.(4.13)
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Abstract. We study the long-time asymptotics of a kinetic model for fermions in a box with
periodic boundary conditions. An entropy dissipation approach is used to prove decay to the global
equilibrium for this nonlinear equation, that lacks dissipation in the position variable. We prove
convergence at an algebraic rate depending on the smoothness of the solution. The result relies on
some initial bounds and a uniform boundedness assumption for spatial derivatives of the solution.
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1. Introduction. We investigate the initial value problem

∂tf + v · ∇xf = Q(f), f(0, x, v) = f0(x, v),(1)

where f = f(t, x, v) ≥ 0 denotes a particle distribution function, depending on time
t ≥ 0, position x ∈ T

d (where T
d is a d-dimensional torus, i.e., a rectangular box with

periodic boundary conditions), and velocity v ∈ R
d.

The particles are fermions and the scattering operator Q (acting only in the v-
direction) is a simple model for the interaction of the particles with a nonmoving
background medium with constant temperature

Q(f) =

∫
Rd

[M(1 − f)f ′ −M ′(1 − f ′)f ]dv′.(2)

Here f ′ = f(t, x, v′), and M(v) = (2π)−d/2e−|v|2/2 is the normalized Maxwellian. The
factors (1−f) and (1−f ′) take into account the Pauli exclusion principle. The values
of the distribution function have to respect the bounds 0 ≤ f ≤ 1.

A kinetic equation with the same scattering operator, but also including acceler-
ation of the particles by a given electric field, has been considered in [12]. Existence
and uniqueness for initial value problems with x ∈ R

d (nonperiodic) have been proven
and the macroscopic (diffusion) limit has been carried out.

A fermion Boltzmann equation modeling elastic particle-particle collisions has
been studied by Dolbeault [8]. More elaborate models than (2) for the scattering of
fermions due to a background medium or a different species of particles have been
considered in the modeling of charge transport in semiconductors (see [10], [11], [4]).
Existence and uniqueness and/or macroscopic limits are the subject of these studies.
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Here we are interested in the long-time behavior of solutions of (1). It is char-
acterized by two properties: conservation of total mass and entropy dissipation. The
first is a consequence of the conservation property

∫
Rd Q(f)dv = 0 of the scattering

operator and of the periodic boundary conditions in position space:∫
Td

∫
Rd

f(t, x, v)dvdx =

∫
Td

∫
Rd

f0(x, v)dvdx.

Before stating the entropy dissipation property, we write the collision operator in the
form

Q(f) =

∫
Rd

MM ′(1 − f)(1 − f ′)(F ′ − F )dv′

with

F =
f

M(1 − f)
.

Then, by the antisymmetry of the integrand with respect to v and v′, it is easily
shown that∫

Rd

Q(f)χ(F )dv

= −1

2

∫
Rd

∫
Rd

MM ′(1 − f)(1 − f ′)(F − F ′)(χ(F ) − χ(F ′))dv′dv ≤ 0(3)

for arbitrary increasing functions χ. As a consequence, if an entropy is defined by
H∞ =

∫
Td

∫
Rd S∞(f, v)dvdx with

∂S∞
∂f

= χ

(
f

M(v)(1 − f)

)
,

then the entropy dissipation equality

dH∞
dt

=

∫
Td

∫
Rd

Q(f)χ(F )dvdx(4)

follows. If χ is chosen strictly increasing, then (by (3)) the entropy dissipation rate on
the right-hand side of (4) vanishes only if the (local) equilibrium condition F = κ(t, x)
is satisfied and the distribution function is the Fermi–Dirac distribution:

f(t, x, v) = fl(t, x, v) =
κ(t, x)M(v)

1 + κ(t, x)M(v)
.(5)

Note that in this statement, κ(t, x) can be chosen arbitrarily. In the following, how-
ever, we shall denote by fl defined by (5) the local equilibrium distribution associated
with an arbitrary (nonequilibrium) distribution f , where κ is chosen by fixing the
position density ∫

Rd

fl(t, x, v)dv = ρ(t, x) :=

∫
Rd

f(t, x, v)dv.(6)
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Continuing our argument, we expect (because of the entropy dissipation equation)
that for large times f approaches an equilibrium distribution, thus making the right-
hand side of the transport equation (1) vanish. The left-hand side then vanishes only
for constant κ. Thus, we expect f to converge to the global equilibrium

f∞(v) =
κ∞M(v)

1 + κ∞M(v)
,

where κ∞ is determined by mass conservation

|Td|
∫

Rd

f∞(v)dv =

∫
Td

∫
Rd

f0(x, v)dvdx.

From (4) a weak version of this statement can be proven (see, e.g., [5], [1]).
Recently, Desvillettes and Villani have developed a strategy for proving strong

convergence to equilibrium for nonhomogeneous (in position) kinetic equations. It
includes quantitative estimates on convergence rates. They have applied their ap-
proach to linear equations with a Fokker–Planck scattering operator and a confining
potential [6] as well as, in a monumental work [7], to the Boltzmann equation of gas
dynamics. Linear models have also been considered in [9] and [2].

In this work, the method of Desvillettes and Villani is applied to (1) and (2). Its
main point is to overcome the following difficulty: the right-hand side of the entropy
dissipation equation vanishes when the distribution is in local equilibrium. Thus, the
entropy might stop decaying without f having reached the global equilibrium f∞. As
an input, the method requires certain bounds (uniform in time) on the distribution
function and on its derivatives with respect to position. Whereas these could be proved
for the linear problems in [6], [9], and [2], they have to be assumed for the Boltzmann
equation. For the nonlinear problem (1), methods from [12] can be used to prove the
propagation of bounds for the initial conditions in terms of Fermi–Dirac distributions.
The boundedness of x-derivatives—at least in the perturbative setting—has recently
been proved in [3] for a class of problems including (1) and (2).

In the following section, the boundedness result is proved, the method is out-
lined, and the main result is stated. The detailed (rather involved) computations and
estimates are collected in section 3.

2. Preliminaries and main result.
Theorem 2.1. Assume there exist constants κ−, κ+ > 0 such that

f−(v) ≤ f0(x, v) ≤ f+(v) with f±(v) =
κ±M(v)

1 + κ±M(v)

for all x ∈ T
d and v ∈ R

d. Then there is a unique solution f(t, x, v) of (1) and (2)
satisfying the same bounds

f−(v) ≤ f(t, x, v) ≤ f+(v)(7)

for all t > 0, x ∈ T
d and v ∈ R

d.
Proof. For details we refer the reader to [12]. We only outline the proof of the

bounds (7). The existence proof is based on a fixed point iteration on the set V of
distribution functions satisfying (7). For f ∈ V, we define the next iterate g by solving

∂tg + v · ∇xg = M

∫
Rd

f ′dv′ − g

∫
Rd

(Mf ′ + M ′(1 − f ′)) dv′,
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g(0, x, v) = f0(x, v).

The difference r = g − f− satisfies

r(0, x, v) = f0(x, v) − f−(v) ≥ 0

and

∂tr + v · ∇xr + r

∫
Rd

(Mf ′ + M ′(1 − f ′))dv′

= (1 − f−)M

∫
Rd

f ′dv′ − f−

∫
Rd

M ′(1 − f ′)dv′ ≥ Q(f−) = 0.

Nonnegativity of r and, thus, the lower bound g ≥ f− follows. Analogously, g ≤ f+

and, therefore, g ∈ V is shown.
Note that this ensures that (1 − f) is bounded away from zero, which we will

make use of frequently.
In the following, relative entropies will be used for measuring the distance between

distributions. Some arbitrariness comes from the freedom to choose the function χ in
(4). We define the relative entropy of f with respect to g by

H(f |g) :=

∫
Td

∫
Rd

S(f, g)dvdx

with

S(f, g) =

∫ f

g

ln
z(1 − g)

g(1 − z)
dz = f ln

f(1 − g)

g(1 − f)
+ ln

1 − f

1 − g
.(8)

With this choice the relative entropy H(f |f∞) coincides with the total entropy H∞
defined in the introduction for χ(z) = ln(z/κ∞). Until now this choice seems some-
what artificial, but we will further comment on it after explaining the strategy to
derive the convergence result. We shall need the derivatives

∂S

∂f
= ln

f(1 − g)

g(1 − f)
,

∂2S

∂f2
=

1

f(1 − f)
.(9)

By S(f, f) = ∂S
∂f (f, f) = 0 and ∂2S

∂f2 > 0, the relative entropy has the desired property
to measure the distance between f and g. Actually, the following stronger statement
is true.

Lemma 2.2. Let f and g satisfy (7). Then there exist constants c1, c2 > 0 such
that

c1‖f − g‖2
M ≤ H(f |g) ≤ c2‖f − g‖2

M

with the weighted L2-norm

‖f‖2
M :=

∫
Td

∫
Rd

f2

M
dvdx.

Proof. By (9) and the mean value theorem,

S(f, g) =
(f − g)2

2φ(1 − φ)
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with φ lying between f and g. In particular, φ also satisfies (7). As a consequence

M

c2
≤ 2φ(1 − φ) ≤ M

c1

holds with appropriate constants c1, c2, completing the proof.
A second important property is what we would call a nonlinear version of the

Pythagorean theorem.
Lemma 2.3. The relative entropy is additive with respect to the local equilibrium,

H(f |fl) + H(fl|f∞) = H(f |f∞) .

Proof. A straightforward computation gives

H(f |fl) + H(fl|f∞) = H(f |f∞) +

∫
Td

∫
Rd

(f − fl)dv ln
κ∞
κ

dx.

The integral with respect to velocity vanishes because of (6).
Also since

∂S

∂f
(f, f∞) = ln

f

κ∞M(1 − f)
,

we can use (4) and (3) with χ(z) = ln(z/κ∞) to obtain

d

dt
H(f |f∞) = −1

2

∫
Td

∫
Rd

∫
Rd

MM ′(1 − f)(1 − f ′)(F − F ′) ln
F

F ′ dv′dvdx.(10)

As mentioned above, the right-hand side vanishes when f is a Fermi–Dirac distribution
(such that F is independent of v). The basic idea of the Desvillettes–Villani approach
is to show that in such a situation the entropy dissipation cannot remain zero as long
as f �= f∞. This is done by estimating the entropy dissipation in terms of the relative
entropy of f with respect to the local equilibrium fl and by deriving a second-order
differential inequality for H(f |fl):

d

dt
H(f |f∞) ≤ −c3H(f |fl),

d2

dt2
H(f |fl) ≥ c4H(f |f∞) − c5H(f |fl)1−1/n.(11)

It is the main contribution of this work to prove that these inequalities hold for
appropriate c3, c4, c5 > 0 and a positive integer n. This will be done in the following
section. The proof requires the estimates from Theorem 2.1 and additional smoothness
assumptions on the solution.

A result from [6] for systems of differential inequalities of the form (11) can then
be used to get the following convergence theorem.

Theorem 2.4. Let the assumptions of Theorem 2.1 hold and let the solution f
of (1) satisfy∥∥∥∥∥ ∂k1+···+kdf

∂xk1
1 · · · ∂xkd

d

(t, ·, ·)
∥∥∥∥∥
M

≤ c6, ∀ k1 + · · · + kd ≤ n and ∀ t > 0,(12)
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for a constant c6 and a positive integer n. Then there exists a constant c7 > 0 such
that

H(f |f∞) ≤ c7t
1−n.

Remark 1. For the Fokker–Planck collision operator, a smoothness result like (12)
was proven in [6] even for nonsmooth initial conditions by exploiting a hypoellipticity
property. Here, one can hope only for propagation of regularity as in [9], assuming
smoothness of the initial data. This question is dealt with in [3], where (12) is derived
from the corresponding bound for the initial data if the initial data is close to the
equilibrium in a suitable sense.

Remark 2. In principle we have the freedom to choose in (8) any entropy of the
type

Sχ(f, g) =

∫ f

g

χ

(
z(1 − g)

g(1 − z)

)
dz

with an arbitrary monotone increasing function χ. Since the biggest difficulty is to
deduce the second inequality in the system (11), we choose the relative entropy such
that the expression for the derivative d

dtH(f |fl) becomes as simple as possible (see
(14) below), leading to the choice χ = ln(·/κ∞), which corresponds to (8).

Corollary 2.5. With the assumptions of Theorem 2.4 there exists c8 > 0, such
that

‖f(t, ·, ·) − f∞‖L1(Td×Rd) ≤ c8t
(1−n)/2.

Proof. The Cauchy–Schwarz inequality implies

‖g‖L1(Td×Rd) =

∫
Td

∫
Rd

|g|√
M

√
M dvdx ≤

√
|Td| ‖g‖M .

The result now follows from Lemma 2.2 and Theorem 2.4.

3. Derivation of differential inequalities. Throughout this section c will be
a positive real constant that may change from line to line.

Lemma 3.1. Let the assumptions of Theorem 2.4 hold. Then there is a constant
c3 > 0 such that

d

dt
H(f |f∞) ≤ −c3H(f |fl).

Proof. We have to estimate the entropy production (10). Note that by the mean
value theorem,

ln
F

F ′ =
F − F ′

Φ

holds, with Φ between F and F ′. Also, by (7), we have κ− ≤ Φ ≤ κ+. This gives

d

dt
H(f |f∞) ≤ − 1

2κ+

∫
Td

∫
Rd

∫
Rd

MM ′(1 − f)(1 − f ′)(F − F ′)2dv′dvdx

≤ − 1

2κ+

∫
Td

∫
Rd

∫
Rd

MM ′(1 − f)(1 − f ′)(1 − fl)(1 − f ′
l )

×(F − Fl − (F ′ − F ′
l ))

2dv′dvdx,
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where we have used Fl = fl
M(1−fl)

= κ = F ′
l . Expanding the square and using

F − Fl =
f − fl

M(1 − f)(1 − fl)
,(13)

gives

d

dt
H(f |f∞) ≤ − 1

κ+

∫
Td

∫
Rd

M(1 − f)(1 − fl)dv

∫
Rd

(f − fl)
2

M(1 − f)(1 − fl)
dvdx

+
1

κ+

∫
Td

(∫
Rd

(f − fl)dv

)2

dx.

The last term vanishes by the requirement (6) on the local equilibrium. From (7),

0 < 1 − f+(0) ≤ 1 − f, 1 − fl ≤ 1

follows and, therefore,

d

dt
H(f |f∞) ≤ −c‖f − fl‖2

M .

An application of Lemma 2.2 completes the proof.
Now we shall prove the second inequality in (11). A straightforward computation

gives

d

dt
H(f |fl) =

∫
Td

∫
Rd

(
∂tf ln

F

Fl
− ∂tfl

f − fl
fl(1 − fl)

)
dvdx

=

∫
Td

∫
Rd

(
−v · ∇xf lnF + v · ∇xf lnκ + Q(f) lnF − ∂tκ

κ
(f − fl)

)
dvdx.

The first term on the right-hand side vanishes by the divergence theorem (with respect
to the x-variable) and the last one by (6), leaving

d

dt
H(f |fl) =

∫
Td

∇x · J lnκdx +

∫
Td

∫
Rd

Q(f) lnF dvdx = A + B(14)

with the flux density J =
∫

Rd vf dv (which vanishes for f = fl).
For the computation of the time derivative of A we need the momentum balance

equation

∂tJ + ∇x · P =

∫
Rd

vQ(f)dv,

where we shall split the pressure tensor into a local equilibrium part and a remainder:

P =

∫
Rd

v ⊗ vf dv =

∫
Rd

v ⊗ vfl dv +

∫
Rd

v ⊗ v(f − fl) dv = Pl + P̃ .

Differentiating (6) with respect to time, and the continuity equation ∂tρ+∇x · J = 0
lead to

∂tκ

κ
=

−∇x · J∫
Rd fl(1 − fl)dv

.
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With these preparations we obtain

dA

dt
=

∫
Td

∇xκ

κ
· (∇x · Pl)dx +

∫
Td

∇xκ

κ
· (∇x · P̃ )dx

−
∫

Td

∇xκ

κ
·
∫

Rd

vQ(f)dv dx−
∫

Td

(∇x · J)2∫
Rd fl(1 − fl)dv

dx.(15)

Note that for f = fl all terms on the right-hand side except the first vanish. This
term is responsible for moving f out of local equilibrium as long as it is not in global
equilibrium. For estimating it we need

∇x · Pl =

∫
Rd

v ⊗ v fl(1 − fl)dv
∇xκ

κ
.(16)

The integral is an isotropic tensor which is positive definite since fl satisfies (7):∫
Rd

v ⊗ v fl(1 − fl)dv ≥ Id

∫
Rd

v2
i f−(1 − f+)dv.(17)

The first term on the right-hand side of (15) can, thus, be estimated by∫
Td

∇xκ

κ
· (∇x · Pl)dx ≥ c‖∇xκ‖2

L2(Td).

Now we estimate the remaining three terms in (15) one by one. First,∣∣∣∣
∫

Td

∇xκ

κ
· (∇x · P̃ )dx

∣∣∣∣ ≤ c

∫
Td

|∇xκ|
∫

Rd

|v|2|∇x(f − fl)|dv dx

≤ c

∫
Td

|∇xκ|

√∫
Rd

|v|4M dv

∫
Rd

|∇x(f − fl)|2
M

dv dx

≤ c‖∇xκ‖L2(Td)‖∇x(f − fl)‖M .

Second (similarly),∣∣∣∣
∫

Td

∇xκ

κ
·
∫

Rd

vQ(f)dv dx

∣∣∣∣ ≤ c‖∇xκ‖L2(Td)‖Q(f)‖M .

Now we need to quantify the behavior of Q(f) near fl.
Lemma 3.2. Q is a bounded operator and moreover

‖Q(f)‖M ≤ c‖f − fl‖M .

Proof.

‖Q(f)‖2
M ≤ c

∫
Td

∫
Rd

M

(∫
Rd

M ′|F − F ′|dv′
)2

dv dx.

The integral in parentheses can be estimated by∫
Rd

M ′|F − F ′|dv′ ≤ |F − Fl| +
∫

Rd

M ′|F ′ − F ′
l |dv′

≤ |F − Fl| +
√∫

Rd

M(F − Fl)2dv.
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Estimating the square of the sum by the sum of the squares we get

‖Q(f)‖2
M ≤ c

∫
Td

∫
Rd

M(F − Fl)
2dv dx.

Now the result of the lemma follows from (13) and the boundedness of (1 − f) away
from zero.

Second, continued,∣∣∣∣
∫

Td

∇xκ

κ
·
∫

Rd

vQ(f)dv dx

∣∣∣∣ ≤ c‖∇xκ‖L2(Td)‖f − fl‖M .

Third (last term in (15)),

∫
Td

(∇x · J)2∫
Rd fl(1 − fl)dv

dx ≤ c

∫
Td

(∫
Rd

v · ∇x(f − fl)dv

)2

dx

≤ c

∫
Td

∫
Rd

|v|2Mdv

∫
Rd

|∇x(f − fl)|2
M

dv dx = c‖∇x(f − fl)‖2.

Collecting our results so far, we have proved

dA

dt
≥ c‖∇xκ‖2

L2(Td) − c̃
(
‖∇xκ‖L2(Td)‖∇x(f − fl)‖M

+‖∇xκ‖L2(Td)‖f − fl‖M + ‖∇x(f − fl)‖2
M

)
,

implying

dA

dt
≥ c‖∇xκ‖2

L2(Td) − c̃
(
‖f − fl‖2

M + ‖∇x(f − fl)‖2
M

)
.(18)

The ∇xκ term drives the solution out of local equilibria because it remains nonzero
as long as κ is different from the constant κ∞. A Poincaré-type estimate will help us
to describe this by means of relative entropy.

Lemma 3.3. ‖∇xκ‖2
L2(Td) ≥ cH(fl|f∞) with c > 0.

Proof. Since dρ
dκ = 1

κ

∫
Rd fl(1 − fl)dv is bounded from above and away from zero

(by (7)),

‖∇xκ‖2
L2(Td) ≥ c‖∇xρ‖2

L2(Td)

with c > 0. Introducing ρ∞ =
∫

Rd f∞dv and noting that
∫

Td(ρ − ρ∞)dx = 0, a
Poincaré estimate gives

‖∇xκ‖2
L2(Td) ≥ c‖ρ− ρ∞‖2

L2(Td)dx

with a possibly different, but still positive constant c. On the other hand,

|ρ− ρ∞| ≥ c|κ− κ∞| = c
|fl − f∞|

M(1 − fl)(1 − f∞)
≥ c

|fl − f∞|
M

,

where the first inequality follows again from the boundedness of dρ
dκ and the last from

(7). This implies

‖∇xκ‖2
L2(Td) ≥ c

∫
Td

∫
Rd

M(κ− κ∞)2dvdx ≥ c‖fl − f∞‖2
M .
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An application of Lemma 2.2 completes the proof.
It remains to estimate the time derivative of the second term in (14). Using (3),

this term can be written as

B = −1

2

∫
Td

∫
Rd

∫
Rd

MM ′(1 − f)(1 − f ′)(F − F ′) ln
F

F ′ dv′dvdx.

The computation of the time derivative is facilitated by the fact that the integrand is
symmetric with respect to f and f ′:

dB

dt
=

∫
Td

∫
Rd

∫
Rd

M ′ 1 − f ′

1 − f

[
M(1 − f)(F − F ′) ln

F

F ′

− ln
F

F ′ − (F − F ′)
1

F

]
∂tf dv′dvdx.

The term multiplying ∂tf in the integrand can by estimated (using (7)) by cM ′|F−F ′|.
As a consequence,∣∣∣∣dBdt

∣∣∣∣ ≤ c

∫
Td

∫
Rd

∫
Rd

M ′|F − F ′|(|v| |∇xf | + |Q(f)|)dv′dvdx

holds. With |F − F ′| ≤ |f − fl|/M + |f ′ − f ′
l |/M ′, the right-hand side is bounded by

the sum of four terms, which we estimate one by one. First,∫
Td

∫
Rd

∫
Rd

M ′ |f − fl| |Q(f)|
M

dv′dvdx ≤ ‖f − fl‖M‖Q(f)‖M .

Second, ∫
Td

∫
Rd

∫
Rd

|f ′ − f ′
l | |Q(f)|dv′dvdx ≤ ‖f − fl‖M‖Q(f)‖M .

Third,∫
Td

∫
Rd

∫
Rd

|f ′ − f ′
l | |v| |∇xf |dv′dvdx ≤

∫
Rd

|v|2M dv ‖f − fl‖M‖∇x(f − f∞)‖M .

The fourth term is the most difficult to estimate. Here we have to make a small
concession on the exponent. We use |f − fl| ≤ cM :

∫
Td

∫
Rd

∫
Rd

M ′|v| |f − fl| |∇xf |
M

dv′dvdx ≤ c

∫
Td

∫
Rd

∣∣∣∣f − fl√
M

∣∣∣∣
1−ε |∇xf |√

M
|v|Mε/2dvdx

≤ c

(∫
Rd

|v|2/εM dv

)ε/2

‖f − fl‖1−ε
M ‖∇x(f − f∞)‖M .

Since the Maxwellian has finite moments of arbitrary order, ε can be made arbitrarily
small. Collecting the four estimates, using Lemma 3.2 and the fact that ‖f − fl‖M is
bounded, we have∣∣∣∣dBdt

∣∣∣∣ ≤ c
(
‖f − fl‖2

M + ‖∇x(f − f∞)‖M‖f − fl‖1−ε
M

)
.
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This implies together with (14), (18), and Lemma 3.3 that

d2

dt2
H(f |fl) ≥ cH(fl|f∞) − c̃

(
‖∇x(f − fl)‖2

M + ‖f − fl‖2
M

+‖∇x(f − f∞)‖M‖f − fl‖1−ε
M

)
.(19)

The next step is the derivation of bounds for the norms of the gradients. The inter-
polation inequality

‖∇xu‖L2(Td) ≤ c‖u‖1−1/n

L2(Td)
‖u‖1/n

Hn(Td)

and the Hölder inequality imply

‖∇xg‖2
M =

∫
Rd

1

M
‖∇xg‖2

L2(Td)dv ≤ c

∫
Rd

(
1

M
‖g‖2

L2(Td)

)1−1/n (
1

M
‖g‖2

Hn(Td)

)1/n

dv

≤ c‖g‖2(1−1/n)
M

(∫
Rd

1

M
‖g‖2

Hn(Td)dv

)1/n

.

By assumption (12) of Theorem 2.4 the last factor is bounded uniformly in time for
g = f − fl and g = f − f∞. This gives

‖∇x(f − fl)‖2
M ≤ c‖f − fl‖2(1−1/n)

M

and, with the Young inequality,

‖∇x(f − f∞)‖M‖f − fl‖1−ε
M ≤ c‖f − f∞‖1−1/n

M ‖f − fl‖1−ε
M

≤ δ‖f − f∞‖2
M + cδ‖f − fl‖2(1−ε)n/(n+1)

M .

Now we choose ε = n−2 (such that (1− ε)n/(n+ 1) = 1− 1/n) and we use the above
inequalities and Lemmas 2.2 and 2.3 in (19) to obtain the desired results

d2

dt2
H(f |fl) ≥ c4H(f |f∞) − c5H(f |fl)1−1/n.

This completes the derivation of the differential inequalities (11) and, thus, the proof
of Theorem 2.4.
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[2] M. J. Cáceres, J. A. Carrillo, and T. Goudon, Equilibration rate for the linear inhomoge-
neous relaxation-time Boltzmann equation for charged particles, Comm. Partial Differential
Equations, 28 (2003), pp. 969–989.

[3] C. Mouhot and L. Neumann, Quantitative study of convergence to equilibrium for collisional
kinetic models in the torus and application to the Boltzmann, Landau and Fokker–Planck
equation, in preparation.

[4] I. Choquet, P. Degond, and C. Schmeiser, Energy-transport models for charge carriers
involving impact ionization in semiconductors, Transport Theory Statist. Phys., 32 (2003),
pp. 99–132.

[5] L. Desvillettes, Convergence to equilibrium in large time for Boltzmann and B.G.K. equa-
tions, Arch. Ration. Mech. Anal., 110 (1990), pp. 73–91.

[6] L. Desvillettes and C. Villani, On the trend to global equilibrium in spatially inhomogeneous
entropy-dissipating systems: The linear Fokker-Planck equation, Comm. Pure Appl. Math.,
54 (2001), pp. 1–42.



CONVERGENCE TO EQUILIBRIUM FOR A FERMION MODEL 1663

[7] L. Desvillettes and C. Villani, On the trend to global equilibrium for spatially inhomoge-
neous kinetic systems: The Boltzmann equation, Invent. Math., 159 (2005), pp. 245–316.

[8] J. Dolbeault, Kinetic models and quantum effects: A modified Boltzmann equation for Fermi-
Dirac particles, Arch. Ration. Mech. Anal., 127 (1994), pp. 101–131.

[9] K. Fellner, L. Neumann, and C. Schmeiser, Convergence to global equilibrium for spa-
tially inhomogeneous kinetic models of non-micro-reversible processes, Monatsh. Math.,
141 (2004), pp. 289–299.

[10] F. Golse and F. Poupaud, Limite fluide des eq́uations de Boltzmann des semi-conducteurs
pour une statistique de Fermi-Dirac, Asymptot. Anal., 6 (1992), pp. 135–160.

[11] P. Markowich, F. Poupaud, and C. Schmeiser, Diffusion approximation of nonlinear
electron-phonon collision mechanisms, M2AN Math. Model Numer. Anal., 29 (1995), pp.
857–869.

[12] F. Poupaud and C. Schmeiser, Charge transport in semiconductors with degeneracy effects,
Math. Methods Appl. Sci., 14 (1991), pp. 301–318.



SIAM J. MATH. ANAL. c© 2005 Society for Industrial and Applied Mathematics
Vol. 36, No. 5, pp. 1664–1688

INTERMEDIATE MODELS IN NONLINEAR OPTICS∗
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Abstract. In this paper, new models are derived for laser propagation in a nonlinear medium.
These models are intermediate between nonlinear Maxwell systems and nonlinear Schrödinger equa-
tions and are exact in linear cases. We prove rigorous error estimates for a generic class of systems.
In the last section, we perform numerical tests in order to investigate the numerical effectivity of
the bounds given by the theorem. We compare for a particular nonlinear system the exact solutions
and the approximate solutions given by our new model. It is shown that the new models behave as
predicted by the theorem but are even better in some cases.

Key words. nonlinear optics, WKB expansions, nonlinear hyperbolic systems, Schrödinger
equations
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1. Introduction.

1.1. Motivations. The aim of this paper is to propose new models for the
simulation of the propagation of laser pulses in a nonlinear medium. The wavelength
associated with a pulse is usually near the micrometer (10−6 m) while the length of
the pulse can be of order 100 micrometers for ultrashort pulses (10−4 m) or of the
order of the meter. We are concerned with propagation on distances of order of
the millimeter (for crystals) or of hundred of meters (for propagation in gas). From
the temporal point of view, the frequency of a pulse is 1015 s−1, its duration can be
of the order of the picoseconds (10−12 s) or of 10 nanoseconds (10−8 s). The duration
of propagation can be 10−11 s for crystals or 10−6 s for gas. The width of the beam
can be of order of a fraction of millimeter to a few centimeters. Therefore, one has
to handle three-dimensional processes involving several orders of magnitude. It is not
possible to propose direct simulations for all these situations. Usually, the so-called
paraxial approximation or envelope approximation are used. This approximation
relies on the fact that the electric field has the form of a plane wave multiplied by an
envelope, namely ei(kz−ωt)E(t, x, y, z) where t ≥ 0 is the time, (x, y, z) ∈ R

3 are the
spatial variables, k is the wave number, and ω is the frequency. With this notation,
the slowly varying envelope approximation can be expressed by the following set of
inequalities:

|∂tE| � ω|E|, |∂xE| � k|E|, |∂yE| � k|E|, |∂zE| � k|E|.

Using these inequalities, one obtains approximate equations satisfied by E . These
equations can be nonlinear transport equations at the group velocity (for frequency
doubling in the phase-matching case in a crystal) or nonlinear Schrödinger equations
(in a Kerr medium) or Schrödinger–Bloch equations (in a gas) etc. We refer the
reader to general textbook of physics (see [8], [18], for instance) for a precise physical
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2004; published electronically April 29, 2005.
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description. Here, we will address cases where the validity of the paraxial approx-
imation is not so clear. Physically, this can occur when the pulse goes through a
diffraction web or when the pulse is “chirped” in order to have a large spectral width.
We want to propose alternative intermediate models that are more precise than the
usual Schrödinger-like equation but less expensive to compute numerically than the
full Maxwell equations. These intermediate models are obtained in the same spirit as
the long wave systems for water waves of [6] or [7]. For direct simulations on non-
linear Maxwell systems, see [5] and the references therein. See also [3] for cases with
nonplanar phases. In order to introduce our notations, let us recall that a standard
model for propagation of a beam in a Kerr medium is the Maxwell–Lorentz system
which has the nondimensional form⎧⎪⎪⎨

⎪⎪⎩
∂tB + curl E = 0,

∂tE − curl B = −∂tP,

∂2
t P − 1

ε2
(E − P ) =

1

ε
|P |2P,

(1.1)

where (E,B) is the electromagnetic field and P is the polarization. Introducing
Q = ε∂tP , this system becomes⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tB + curl E = 0,

∂tE − curl B = −Q

ε
,

∂tQ− 1

ε
(E − P ) = |P |2P,

∂tP − 1

ε
Q = 0.

(1.2)

For propagation in gas, one can use the two-level Maxwell–Bloch system⎧⎪⎨
⎪⎩

∂tE − curl B + ∂tP = 0,

∂tB + curl E = 0,

P = Re(c1c
∗
2)u,

(1.3)

where c1 and c2 are the complex representations of the populations in each level (c∗2
denotes the complex conjugate of c2) and u is a fixed vector corresponding to the
direction of propagation. Level 1 corresponds to the fundamental state, while level 2
corresponds to the excited state. The evolution of c1 and c2 is given by the following
set of ordinary differential equations which is derived from the Schrödinger equation
of quantum mechanics [18]: ⎧⎪⎨

⎪⎩
i∂tc1 = −E · uc2

ε
,

i∂tc2 =
1

ε
c2 −

E · uc1
ε

.

(1.4)

Introducing Λ = c1c
∗
2 and Ñ = |c1|2 − |c2|2 yields⎧⎪⎪⎨

⎪⎪⎩
∂tΛ =

iΛ

ε
− iE · uÑ

ε
,

∂tÑ = −2iE · u(Λ − Λ∗)

ε
.

(1.5)
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Let P = Re(Λ), Q = Im(Λ), and Ñ = 1 −N , we obtain⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂tP = −1

ε
Q,

∂tQ =
1

ε
P − E · u(1 −N)

ε
,

∂tN = −4E · uQ
ε

.

(1.6)

Now we change all the unknowns by a scaling factor
√
ε and we consider a vectorial

form of (1.6) without assuming that the electric filed is polarized along the unit
vector u: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tB + curl E = 0,

∂tE − curl B =
Q

ε
,

∂tQ +
1

ε
(E − P ) = EN,

∂tP +
1

ε
Q = 0,

∂tN = −4E ·Q.

(1.7)

See [11] for a precise description of these models and the derivation of the nondi-
mensional forms. See also [10] for the use of Maxwell–Bloch system in a gas. Since
the solutions are expected under the form of a plane wave multiplied by an envelope,
usually the initial data is taken as being equal to

(E,B, P,Q)(t = 0, X) = ei
k·X
ε (E0, B0, P0, Q0)(X) + c.c.

with X = (x, y, z) and k ∈ R
3. The notation c.c. means “complex conjugate.” For

(1.7), one has, moreover, to take N(t = 0, X) = 0 since at the state of rest, all atoms
are at level 1 and c1 = 1 and c2 = 0 which implies N = 0. Therefore the difficulties
concerning the presence of different length scales for the propagation of the beam
appears in (1.2) and (1.7) through the presence of terms of size 1

ε in the equations

and also in the ei
k·X
ε in the initial data. These terms will create high frequencies

(of order 1
ε ) in time. Moreover, we will need to characterize the solution on short-

time scale (O(1)) or on long-time scale (O( 1
ε )), that is, on long or short distance. In

order to give a synthetic presentation of these phenomena, we introduce the following
general class of systems (including (1.1) and (1.3)) that has been used in several works
(see [16], [15], [14], [9], . . .):⎛

⎝∂t +

n∑
j=1

Aj∂xj +
L0

ε

⎞
⎠u = f(u),(1.8)

where matrices Aj are real symmetric, L0 is skew-symmetric, f is a smooth nonlinear
mapping, and

u(t,X) : [0, T ] × R
n → R

p, X = (x1, . . . , xn).

For the sake of simplicity, in this paper we will restrict ourselves to the case where
f(u) is a homogeneous polynomial of degree q. Of course all of the results can be
extended to more general cases.
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1.2. Some classical results of nonlinear geometrical optics. We recall
some tools of geometrical optics (see [14] for a more complete description). First we
seek for plane wave solutions to the linear part of (3.1), that is,

u = Fe
i(k·X−ωt)

ε ,(1.9)

where F ∈ C
p is a constant and k = (k1, . . . , kn) ∈ R

n. Such a plane wave is a
solution to ⎛

⎝∂t +

n∑
j=1

Aj∂xj +
L0

ε

⎞
⎠u = 0(1.10)

if and only if ⎛
⎝−iωId + i

n∑
j=1

Ajkj + L0

⎞
⎠F = 0,(1.11)

where Id denotes the identity matrix.
System (1.11) has a nontrivial solution if and only if

det

⎛
⎝−iωId + i

n∑
j=1

Ajkj + L0

⎞
⎠ = 0,(1.12)

which is the dispersion relation. Note that the matrix i
∑n

j=1 Ajkj + L0 is skew-
adjoint; therefore, the solutions ω are real and the solutions iω are the eigenvalues of
i
∑n

j=1 Ajkj+L0. Moreover the eigenspaces are orthogonal. We denote by Π(ω, k) (or
simply by Π(k) if no confusion is possible) the orthogonal projector onto Ker(−iωId+
i
∑n

j=1 Ajkj + L0). We also give the following definition.
Definition 1.1. The characteristic variety CL of the operator L(∂t, ∂X) = ∂t +

A(∂X) + L0 := ∂t +
∑n

j=1 Aj∂xj + L0 is the set

CL = {(τ, ξ) ∈ R × R
n such that det(−iτId + iA(ξ) + L0) = 0}.

Now, coming back to the nonlinear system (1.8), one tries to solve⎛
⎝∂t +

n∑
j=1

Aj∂xj +
L0

ε

⎞
⎠u = f(u).

For a given k ∈ R
n, we select a frequency ω. The way we solve this problem is the

following one. We look for u in the form

u(t,X) = U
(
k ·X − ωt

ε
, t,X

)
,

where θ �→ U(θ, t,X) is 2π-periodic. Of course this is not enough in order to define
completely function U . We see that U satisfies the following singular equation:(

∂t + A(∂X) +
1

ε
(−ω∂θ + A(k)∂θ + L0)

)
U = f(U) for all t ∈ [0, T ],(1.13)
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for all X ∈ R
n, and for θ = k·X−ωt

ε . At this stage, the function U is not well defined

since it satisfies (1.13) only for θ = k·X−ωt
ε . In order to give a correct definition,

we impose that U satisfies (1.13) for all t ∈ [0, T ], X ∈ R
N , and for θ ∈ T where T

denotes the usual one-dimensional torus. We make the following generic hypothesis.
Hypothesis 1. (k, ω) is a regular point of CL (that is, the multiplicity of the

eigenvalue λj(ξ) such that λj(k) = ω is constant in a neighborhood of ξ = k).
Hypothesis 2. (pk, pω) /∈ CL for all integer p ≤ q, where q is the degree of the

nonlinearity f .
Note that Hypothesis 2 is not necessary; we could replace it by the strong finite-

ness hypothesis as in [12]. One then can construct an approximate solution for u as
follows. Let U0 be the solution to{

∂tU0 + ω′(k) · ∂XU0 = Π(k)C1(f(Π(k)U0e
iθ + c.c.)),

U0(t = 0, X) = U0(X),
(1.14)

where Cq(F (θ)) denotes the qth Fourier coefficient of θ �→ F (θ):

Cq(F (θ)) =
1

2π

∫ 2π

0

F (θ)eiqθdθ.

One then shows the following theorem.
Theorem 1.2. Let u0 ∈ Hs(Rn) (for s large enough) such that Π(k)u0 = u0.

There exists a unique Uε(θ, t,X) solution to the singular equation (1.13) such that
Uε(θ, 0, X) = (eiθu0 + c.c.) is defined on [0, T ] and

|Uε(θ, t,X) − (U0(t,X)eiθ + c.c.)|L∞
t (0,T ;Hs

θ,X
) ≤ C0ε.

It follows that there exists a solution uε(t,X) to (1.8) such that uε(0, X) =

(e
ik·X

ε u0(X) + c.c.) and∣∣∣uε(t,X) −
(
U0(t,X)ei

k·X−ωt
ε + c.c.

)∣∣∣
L∞([0,T ]×Rn)

≤ C0ε.

This regime is called geometrical optics. For solutions on long-time scale of size O( 1
ε ),

diffractive effects are important and we have to give another expansion. We look for
a solution of (1.8) satisfying

u(t = 0, X) = ε1/(q−1)
(
e

ik·X
ε u0(X) + c.c.

)
.

Let us recall that q is the order of the nonlinearity. In order to explain briefly why
this scaling, ε1/(q−1), is relevant, let us consider the ordinary differential equation
y′ = yq. An initial data of size ε1/(q−1) will lead to a solution of the same size
y(t) = ε1/(q−1)z(t). Then the function z(t) satisfies

z′(t) = εq/(q−1)ε−1/(q−1)zq = εz(t)q,

and z(t) is therefore defined on a time interval of size O( 1
ε ).

The solution u is sought in the form

u(t,X) = U
(
k ·X − ωt

ε
,X − ω′(k)t, εt

)
,
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where θ �→ U(θ,X, τ) is defined on T × R
n × [0, T ]. This will lead to a solution to

(1.8) defined on [0, T
ε ]. U then satisfies

(
ε∂τ + (−ω′(k)∂X + A(∂X)) +

1

ε
(−ω∂θ + A(k)∂θ + L0)

)
U = f(U)(1.15)

with

U(θ, t = 0, X) = ε1/(q−1)(eiθu0(x) + c.c.).

Let V0 be the solution to the following nonlinear Schrödinger equation:

∂τV0 + i
ω′′(k)

2
(∂X , ∂X)V0 = Π(k)C1(f(Π(k)V0e

iθ + c.c.))(1.16)

with V0(τ = 0, X) = u0(X).

Theorem 1.3. Let u0 ∈ Hs(Rn) (for s large enough) such that Π(k)u0 = u0.
There exists a unique Vε(θ,X, τ) solution to the singular equation (1.15) such that
Vε(θ,X, 0) = ε1/(q−1)(eiθu0 + c.c.) defined on [0, T ] and∣∣∣∣ 1

ε1/(q−1)
Vε(θ,X, τ) − (V0(τ,X)eiθ + c.c.)

∣∣∣∣
L∞

τ (0,T ;Hs
θ,X

)

≤ C1ε.

As before, it follows that∣∣∣∣ 1

ε1/(q−1)
uε(t,X) −

(
V0(εt,X − ω′(k)t)ei

k·X−ωt
ε + c.c.

)∣∣∣∣
L∞([0,T ]×Rn)

≤ Cε.

Of course, from the computational point of view, it is much easier to find low-frequency
solutions to (1.14) or (1.16) on [0, T ]×R

n than oscillatory solutions of (1.8) on [0, T
ε ]×

R
n. Indeed the frequencies in time and space that are relevant for the solution of (1.8)

are of size O( 1
ε ). Therefore, the time and space steps used in any numerical method

have to be small compared to ε. This gives a number of points (in space) that has to
be large compared to O( 1

ε ) and a number of time steps large compared to O( 1
ε ). For

(1.14) or (1.16), the frequencies are O(1) and the time or space steps have only to
be small with respect to 1. Moreover, while (1.8) has to be solved in the diffractive
regime on long-time intervals [0, T

ε ], (1.16) has to be solved on [0, T ] only, which
decreases the number of time steps. This is why (1.14) or (1.16) are used in practical
applications [17].

1.3. Limitations of the models. In some applications (ultrashort pulses), one
can have to handle cases where ε is small, but not very small (ε ∼ 10−2). The error
estimates given by the above results are not very precise especially when the constants
C0 and C1 (depending at least on the Hs-norm of the initial data) are large. These
constants can be large when the initial data has rapid variations and this is the case
for short pulses or pulses with a quite large spectrum. This configuration arises when
the laser beam propagates through a diffraction web. We give a numerical example
below. Let us consider the simplified system

∂t

(
u
v

)
+ ∂x

(
v
u

)
+

1

ε

(
−v
u

)
=

(
−(u2 + v2)v
(u2 + v2)u

)
(1.17)
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Fig. 1. Real part of the first component of the solution of system (1.17) with ε = 0.01 at time
T = 50, with chirped initial data, Case 6.

with (
u0

v0

)
= ε1/2ei

kx
ε

(
1

−ik+1
iω

)
a(x) + c.c., x ∈ [0, 1],

where ω =
√

1 + k2. The function a(x) is given by

a(x) = e−75(x−1/2)2ei15 cos(15x).

We make a simulation as described in the last section with ε = 10−2 on t ∈ [0, 50].
The solution to (1.17) at time t = 50 is given on Figure 1 and the solution given
by the nonlinear Schrödinger equation (1.16) is given on Figure 2. They have noth-
ing in common and the relative error in L2-norm is 1.4 as indicated in section 3.3.2.
For practical use, Morice [17] has already introduced some modification of the linear
Schrödinger equation in order to take into account higher-order diffraction effects.
Other tentative modifications have been made by Alterman and Rauch [1], Schäfer
and Wayne [19], and Barrailh and Lannes [2] for ultrashort pulses. In all these contri-
butions, the authors obtain linear equation, because in a context of pulses with large
spectrum it can be shown that the nonlinear effects are less important than usually
(see [1] and [2]). Nevertheless, from the physical point of view, it is impossible to
neglect nonlinear effects. We therefore need to construct new models that will be
exact in the linear case, but that take into account the nonlinear effects and that are
not numerically stiff.

This paper is organized as follows. In section 2, we introduce our new models
and prove the main result. In section 3, we present some numerical results in order
to illustrate our error bounds and also to investigate the numerical effectivity of our
model.
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Fig. 2. Real part of the approximate solution of the first component of system (1.17) with
ε = 0.01 given by the nonlinear Schrödinger equation (3.5) at time T = 50, with chirped initial data,
Case 6.

2. New intermediate models.

2.1. Formal obtaining of the models. We restrict ourselves to geometrical
optics regime. We go back to the singular equation (1.13). For ξ ∈ R

n, let us introduce
the following spectral decomposition of the matrix iA(ξ) + L0:

iA(ξ) + L0 =

m∑
j=1

iλj(ξ)Πj(ξ),(2.1)

where m denotes the number of distinct eigenvalues of iA(ξ)+L0. We have implicitly
used the following assumption.

Hypothesis 3. There exist m continuous functions ξ �→ λj(ξ) defining a global
parametrization of the characteristic variety CL.

Of course the functions ξ �→ Πj(ξ) are not necessary continuous at the points ξ0
where there exist j1 and j2 such that λj1(ξ0) = λj2(ξ0). However, since the projector
Πj(ξ) are orthogonal projectors, the functions ξ �→ Πj(ξ) are bounded. Let us now
fix a vector k ∈ R

n and take ω = λl0(k) one eigenvalue of iA(ξ) + L0 for some
l0 ∈ {1, . . . ,m}. In order to simplify the notations, we take l0 = 1. (k, ω) will be the
main frequencies of the solution described in the introduction.

Hypothesis 4. There exists a neighborhood V of k such that for all ξ ∈ V and for
all integers j ≥ 2,

λj(ξ) 
= λ1(ξ).

From now on, we use the usual notations Dθ = ∂θ

i and DX = ∂X

i . Then, (1.13)
reads (

∂t +
1

ε
(−iωDθ + iA(kDθ + εDX) + L0)

)
Uε = f(Uε).
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Using (2.1), we get(
∂t +

1

ε
(−iωDθ + iλj(kDθ + εDX))

)
Πj(kDθ + εDX)Uε

= Πj(kDθ + εDX)f(Uε), j = 1, . . . ,m.

(2.2)

The first model that we introduce relies on the following idea: we want to obtain
a model that is exact for the linear regime (f ≡ 0) and the best possible for the
nonlinear one. Moreover, one starts with initial data that are polarized on the first
eigenspace, that is,

Π1(kDθ + εDX)Uε(t = 0) = Uε(t = 0).

We now make the following hypothesis.
Hypothesis 5. If m ∈ Z, j = 1, . . . ,m, then

λj(mk) = mω ⇒ j = 1 and m = ±1.

One can modify the model obtained below if this assumption is not satisfied. In
fact a generalized assumption is the following strong finiteness hypothesis introduced
in [12].

Hypothesis 5
′
. The set {m ∈ Z such that there exists j satisfying λj(mk) = mω}

is finite.
However, for the sake of simplicity, we will restrict ourselves in this work to

Hypothesis 5. Under Hypothesis 5, the spectrum of the solution will be mainly sup-
ported by the first sheet of the characteristic variety. That is, for all time, we will
have Π1(kDθ + εDX)Uε(t) ≈ Uε(t). We therefore introduce Vε the solution to(

∂t +
1

ε
(−iωDθ + iλ1(kDθ + εDX))

)
Π1(kDθ + εDX)Vε

= Π1(kDθ + εDX)f(Vε),

(2.3)

and

Πj(kDθ + εDX)Vε = 0 for j ≥ 2.(2.4)

We expect Vε to be a good approximation of Uε. For s ∈ R and T > 0 we denote
XT = L∞(0, T ;Hs(Rn

X × Tθ)). Our first result reads as follows.
Theorem 2.1. Let us assume Hypotheses 3, 4, and 5, and let s > n+1

2 , α > 0.
Let u0(X) ∈ Hσ(Rn) (for σ large enough) satisfy

Π1(k + εDX)u0(X) = u0(X).

Then there exists T > 0 (independent of ε) and there exist solution Uε and Vε,
respectively, to (2.2), (2.3), and (2.4) such that

Uε(t = 0) = Vε(t = 0) = εα(eiθu0 + c.c.).

Moreover,

1

εα
|Π1(kDθ + εDX)(Uε − Vε)|XT

= O(ε2α(q−1)+1)



INTERMEDIATE MODELS IN OPTICS 1673

and

1

εα
|Πj(kDθ + εDX)Uε|XT

= O(εα(q−1)+1) for j ≥ 2.

Remark 2.2. The scaling εα allows us to see how the error estimate evolves when
the nonlinear effects decrease. Indeed, for large α, the nonlinear estimate is better
than for small α. The case α = ∞ corresponds to the linear regime and the solution
is then exact.

Remark 2.3. As usual for the proofs using WKB-type method, we need a lot of
regularity on the approximate solution Vε. Therefore, we will impose the initial data
u0 to be more regular than the space in which we want the error estimates [14].

Now, we can introduce a second model as follows. Thanks to Hypothesis 5,
we expect the Fourier coefficients of order different from ±1 of Vε to be small. We
therefore expect Vε ≈ Vε

1(t,X)eiθ+c.c.. We therefore introduce the function Hε(t,X)
solution to (

∂t +
1

ε
(−iω + iλ1(k + εDX))

)
Π1(k + εDX)Hε

= Π1(k + εDX)C1(f(Hεeiθ + c.c.))

(2.5)

and we expect Hεeiθ + c.c. to be a good approximation of Vε and hence of Uε. Our
second result reads as follows.

Theorem 2.4. Under the same hypothesis for Theorem 2.1, there exist T0 inde-
pendent of ε such that T ≥ T0 > 0, a unique solution Hε(t,X) ∈ L∞(0, T0;H

s
X(Rn))

to (2.5) satisfying Hε(0, X) = εαu0(x), and moreover

1

εα
|C1(Vε) −Hε(t,X)|L∞(0,T0;Hs

X
(Rn)) = O(ε2α(q−1)+1)

and

1

εα
|Vε − (Hεeiθ + c.c.)|XT

= O(εα(q−1)+1).

Remark 2.5. • The error estimate between Vε and Hεeiθ + c.c. is of the same
type as that between Vε and Uε.

• The equation satisfied by Hε is not stiff anymore since λ1(k) = ω.

2.2. Proofs of the theorems. We begin with the proof of Theorem 2.1. One
first has an obvious existence result for (2.2) and (2.3).

Proposition 2.6. Let u0(X) ∈ Hσ(Rn) (for σ large enough) and s > n+1
2 .

There exists T > 0 (independent of ε) such that there exists a unique solution Uε to
(2.2) and there exists a unique solution Vε to (2.3) satisfying

Uε ∈ C([0, T ];Hs(Rn
X × Tθ)), Vε ∈ C([0, T ];Hs(Rn

X × Tθ)),

and

Uε(t = 0, θ,X) = Vε(t = 0, θ,X) = εα(eiθu0(X) + c.c.).

Moreover, there exists C independent of ε such that

1

εα
|Uε|XT

+
1

εα
|Vε|XT

≤ C.
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This proposition is obtained by usual energy estimates. It is of course not sufficient
in order to prove Theorem 2.1. Let us introduce

Wε =
1

εα
(Uε − Vε),(2.6)

and we consider the following decomposition of Wε:

Wε := Π1(kDθ + εDX)Wε +

m∑
j=2

Πj(kDθ + εDX)Wε

:= ε2α(q−1)+1a +

m∑
j=2

εα(q−1)+1bj .

(2.7)

In order to prove Theorem 2.1, it is enough to show that the functions a and bj are
bounded in XT = L∞([0, T ];Hs(Rn

X × Tθ)). Let us now write the equations satisfied
respectively by a and bj . Let us form the difference of (2.3) from (2.2) and then
apply the projector Πj . Decomposition of (2.1) yields (using the fact that f is a
homogeneous polynomial of degree q)

(
∂t +

1

ε
(−iωDθ + iλ1(kDθ + εDX))

)
a =

1

εα(q−1)+1
Π1(kDθ + εDX)

·

⎡
⎣f

⎛
⎝ε2α(q−1)+1a +

m∑
j=2

εα(q−1)+1bj +
1

εα
Vε

⎞
⎠− f

(
1

εα
Vε

)⎤
⎦

(2.8)

and (
∂t +

1

ε
(−iωDθ + iλj(kDθ + εDX))

)
bj

=
1

ε
Πj(kDθ + εDX)

⎡
⎣f

⎛
⎝ε2α(q−1)+1a +

m∑
j=2

εα(q−1)+1bj +
1

εα
Vε

⎞
⎠

⎤
⎦

(2.9)

for j = 2, . . . ,m. We start with (2.8). We first use Taylor’s formula in the right-hand
side of (2.8):

f

⎛
⎝ε2α(q−1)+1a +

m∑
j=2

εα(q−1)+1bj +
1

εα
Vε

⎞
⎠− f

(
1

εα
Vε

)

=

∫ 1

0

f ′

⎛
⎝ 1

εα
Vε + ν

⎛
⎝ε2α(q−1)+1a +

m∑
j=2

εα(q−1)+1bj

⎞
⎠

⎞
⎠

·

⎛
⎝ε2α(q−1)+1a +

m∑
j=2

εα(q−1)+1bj

⎞
⎠ dν.
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f is a homogeneous polynomial of degree q since Hs is an algebra for s large enough,
hence this quantity can be estimated in Hs

θ,X -norm by

Δ1(t)=

∣∣∣∣∣∣f
⎛
⎝ε2α(q−1)+1a +

m∑
j=2

εα(q−1)+1bj +
1

εα
Vε

⎞
⎠− f

(
1

εα
Vε

)∣∣∣∣∣∣
Hs

≤ Cεα(q−1)+1

⎛
⎝∣∣∣∣Vε

εα

∣∣∣∣
q−1

Hs

+ |a|q−1
Hs +

m∑
j=2

|bj |q−1
Hs

⎞
⎠ ·

⎛
⎝|a|Hs +

m∑
j=2

|bj |Hs

⎞
⎠ .(2.10)

We now use an integral formulation of (2.8)

a = e−
1
ε (−iωDθ+iλ1(kDθ+εDX))ta(t = 0)

+

∫ t

0

1

εα(q−1)+1
e−

1
ε (−iωDθ+iλ1(kDθ+εDX))(t−τ)Π1(kDθ + εDX)

·

⎡
⎣f

⎛
⎝ε2α(q−1)+1a(τ) +

m∑
j=2

εα(q−1)+1bj(τ) +
1

εα
Vε(τ)

⎞
⎠−f

(
1

εα
Vε(τ)

)⎤
⎦dτ,

and using (2.10),

|a|Hs(t) ≤ |a(0)|Hs+C

∫ t

0

⎛
⎝∣∣∣∣Vε

εα

∣∣∣∣
q−1

Hs

+ |a|q−1
Hs +

m∑
j=2

|bj |q−1
Hs

⎞
⎠·

⎛
⎝|a|Hs +

m∑
j=2

|bj |Hs

⎞
⎠dτ.

Using the fact that 1
εα |Vε|Hs is bounded, thanks to Proposition 2.6, and that a(t =

0) = 0, one gets

|a|Hs(t) ≤ C

∫ t

0

⎛
⎝1 + |a|Hs +

m∑
j=2

|bj |Hs

⎞
⎠

q

(τ)dτ.(2.11)

We now deal with (2.9). The main point is to recover one power of ε with respect
to the right-hand side using the “elliptic inversion” corresponding to the operator
−iωDθ + iλj(kDθ + εDX). We first rewrite (2.9) as follows:

(
∂t +

1

ε
(−iωDθ + iλj(kDθ + εDX))

)
bj

=
1

ε
Πj(kDθ + εDX)

⎡
⎣f

⎛
⎝ε2α(q−1)+1a +

m∑
j=2

εα(q−1)+1bj +
1

εα
Vε

⎞
⎠

⎤
⎦ ,

(2.12)

we write the nonlinear term in the form

f

⎛
⎝ε2α(q−1)+1a +

m∑
j=2

εα(q−1)+1bj +
1

εα
Vε

⎞
⎠− f

(
Vε

εα

)
+ f

(
Vε

εα

)
.
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An integral formula for (2.12) gives

bj =
1

ε

∫ t

0

e−
1
ε (−iωDθ+iλj(kDθ+εDX))(t−τ)Πj(kDθ + εDX)

·

⎡
⎣f

⎛
⎝ε2α(q−1)+1a +

m∑
j=2

εα(q−1)+1bj +
Vε

εα

⎞
⎠− f

(
Vε

εα

)⎤
⎦ (τ)dτ

+
1

ε

∫ t

0

e−
1
ε (−iωDθ+iλj(kDθ+εDX))(t−τ)Πj(kDθ + εDX)f

(
Vε

εα

)
(τ)dτ

:= cj + dj .

(2.13)

Obviously, one has in the same way that for the estimate of a

|cj |Hs(t) ≤ C

∫ t

0

⎛
⎝1 + |a|Hs +

m∑
j=2

|bj |Hs

⎞
⎠

q

(τ)dτ.(2.14)

We still have to estimate the term dj . The idea is to perform the elliptic inversion on
the nonlinear term associated with Vε (that is, f(Vε) which is relatively well known
(at least asymptotically)). We introduce βj(D) = −ωDθ + λj(kDθ + εDX) and the
term dj can be therefore written as

dj =
1

ε

∫ t

0

Πj(kDθ + εDX)e−
i
εβj(D)(t−τ)f

(
Vε

εα

)
(τ)dτ.(2.15)

In order to use the oscillatory behavior of the exponential, we split the function Vε

into low-frequency and high-frequency parts

Vε = 1{|DX |≤ 1√
ε
}Vε + 1{|DX |> 1√

ε
}Vε

:= Vε
1 + Vε

2 .

Again, we write dj as follows:

dj =
1

ε

∫ t

0

Πj(kDθ + εDX)e−
i
εβj(D)(t−τ)

[
f

(
Vε(τ)

εα

)
− f

(
Vε

1(τ)

εα

)]
dτ

+
1

ε

∫ t

0

Πj(kDθ + εDX)e−
i
εβj(D)(t−τ)f

(
Vε

1(τ)

εα

)
dτ

:= ej + fj .

(2.16)

We begin by estimating ej

ej =
1

ε

∫ t

0

Πj(kDθ + εDX)e−
i
εβj(D)(t−τ)

∫ 1

0

f ′
(
Vε

1 + αVε
2

εα

)
· V

ε
2

εα
dαdτ

and

|ej |Hs ≤ 1

ε

∫ t

0

(∣∣∣∣Vε
1

εα

∣∣∣∣
q−1

Hs

+

∣∣∣∣Vε
2

εα

∣∣∣∣
q−1

Hs

)
|Vε

2 |Hs

εα
dτ.
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Now since

|Vε
i |Hs

εα
≤ |Vε|Hs

εα

for i = 1, 2 and thanks to Proposition 2.6,
|Vε|Hs

εα is bounded, one has

∣∣∣∣Vε
1

εα

∣∣∣∣
q−1

Hs

+

∣∣∣∣Vε
2

εα

∣∣∣∣
q−1

Hs

≤ C

and gets

|ej |Hs ≤ C

ε

∫ t

0

|Vε
2(τ)|Hs

εα
dτ.

Moreover, for all N ∈ N and for all s ∈ R∣∣∣Vε1{|DX |> 1√
ε
}

∣∣∣
Hs

≤ CεN |Vε|Hs+2N

and therefore

|ej |Hs(t) ≤ Ct.(2.17)

We now deal with the term fj :

fj =
1

ε

∫ t

0

Πj(kDθ + εDX)e−
i
εβj(D)(t−σ)f

(
Vε

1(σ)

εα

)
.

Now thanks to Hypothesis 4, one can apply the following result of nonlinear geomet-
rical optics (see [14]): there exists a regular function F (t,X) (independent of ε) such
that

Vε

εα
= F (t,X)eiθ + c.c. + O(ε),

the O(ε) being for example in L∞(0, T ;Hs
θ,X(Rn×T))-norm. Plugging this expression

into the expression of fj yields

fj =
1

ε

∫ t

0

Πj(kDθ + εDX)e−
i
εβj(D)(t−σ)f

(
1{|DX |≤ 1√

ε
}(F (t,X)eiθ + c.c.)

)
dσ

+ tO(1) := hj + O(t).

Now, since f is a homogeneous polynomial of degree q,

f
(
1{|DX |≤ 1√

ε
}(F (t,X)eiθ + c.c.)

)
has the form

f
(
1{|DX |≤ 1√

ε
}(F (t,X)eiθ + c.c.)

)
=

q∑
β=−q

aεβ(t,X)eiβθ,

where aεβ(t,X) are regular functions, bounded independently of ε in spaces like

W k,∞(0, T ;Hs
X(Rn)) for k large enough. Moreover, since the aεβ are products of



1678 THIERRY COLIN, GÉRARD GALLICE, AND KAREN LAURIOUX

components of 1{|DX |≤ 1√
ε
}F and 1{|DX |≤ 1√

ε
}F̄ , the support of the Fourier transform

of aεβ is included in {ξ||ξ| ≤ q√
ε
}. Taking the Fourier transform of hj with respect to

θ and X (denoting by l ∈ Z and ξ ∈ R
n the dual variables of θ and X) gives

ĥj(l, ξ, t) =
1

ε

∫ t

0

Πj(kl + εξ)e−
i
ε [−lω+λj(kl+εξ)](t−τ)âεl (τ, ξ)dτ(2.18)

for l = −q, . . . , q. Now thanks to Hypothesis 5, for all l, lω 
= λj(kl) since j > 1.
Moreover, since the support of ξ �→ âεl (s, ξ) is included in {ξ/ ξ| ≤ q√

ε
}, it follows

that there exist ε0 > 0 and δ > 0 such that for all ε ≤ ε0, for all l = −q to q, and for
all ξ ∈ {ξ/ |ξ| ≤ q√

ε
},

|−lω + λj(kl + εξ)| ≥ δ.(2.19)

We perform an integration by parts in time on (2.18) and get

ĥj(l, ξ, t) =
1

ε

[
−iε

−lω + λj(kl + εξ)
e−

i
ε [−lω+λj(kl+εξ)](t−τ)Πj(kj + εξ)âεl (τ, ξ)

]t
0

+
1

ε

∫ t

0

iε

−lω + λj(kl + εξ)
e−

i
ε [−lω+λj(kl+εξ)](t−τ)Πj(kj + εξ)∂sâ

ε
l (τ, ξ)dτ.

Therefore using (2.19),

|ĥj(l, ξ, t)| ≤
1

δ
(|âεl (t, ξ)| + |âεl (0, ξ)|) +

1

δ

∫ t

0

|∂τ âεl (τ, ξ)|dτ

for all l = −q, . . . , q. It follows that

|hj |Hs (t) ≤ C(1 + t).(2.20)

One deduces that

|fj |Hs(t) ≤ C(1 + t),

and with (2.16) and (2.17) we get

|dj |Hs(t) ≤ C(1 + t).

Equality (2.13) and estimate (2.14) give together with the above control of dj

|bj |Hs ≤ C

∫ t

0

⎛
⎝1 + |a|Hs +

m∑
j=2

|bj |Hs

⎞
⎠

q

(τ)dτ + C(1 + t).(2.21)

Now we recall the estimate (2.11) of a:

|a|Hs(t) ≤ C

∫ t

0

⎛
⎝1 + |a|Hs +

m∑
j=2

|bj |Hs

⎞
⎠

q

(τ)dτ.

Introducing y = 1 + |a|Hs +
∑m

j=2 |bj |Hs , one gets using (2.21)

y ≤ c

∫ t

0

yq(σ)dσ + C(1 + t)

which implies that there exist T0 > 0 and C0 > 0 such that y is defined on [0, T0] and
|y|L∞(0,T0) ≤ C0. This ends the proof of Theorem 2.1.
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2.3. Proof of Theorem 2.4. We will now compare the solution Vε given by
(2.3) and (2.4) and Hε given by (2.5). The proof is mainly the same as that for the
previous result, we only sketch it. Introduce

Vε =
∑
β∈Z

Vε
β(t,X)eiβθ.

The equation satisfied by Vε
β is

(
∂t +

1

ε
(−iωβ + iλ1(kβ + εDX))

)
Π1(kβ + εDX)Vε

β = Π1(kβ + εDX)Cβ (f(Vε)) .

Introduce Xε = 1
εα [Vε

1 −Hε] where Hε is the solution to (2.5). The equation satisfied

by
Vε

β

εα for β 
= ±1 is

(
∂t +

1

ε
(−iωβ + iλ1(kβ + εDX))

)
Π1(kβ + εDX)

Vε
β

εα

= Π1(kβ + εDX)εα(q−1)Cβf

(Vε
β

εα

)
.

An elliptic inversion on
Vε

β

εα gives an estimate of
Vε

β

εα of size εα(q−1)+1 for β 
= ±1. Now
the equation satisfied by Xε is(

∂t +
1

ε
(−iω + iλ1(k + εDX))

)
Π1(k + εDX)Xε

= Π1(k + εDX)εα(q−1)

[
C1

(
f

(Vε
β

εα

))
− C1

(
f

(
Hεeiθ + c.c.

εα

))]
.

(2.22)

Now write Vε = Vε
1e

iθ + c.c. + Ṽε. Then the right-hand side of (2.22) reads

C1

(
f

(Vε
β

εα

))
− C1

(
f

(
Hεeiθ + c.c.

εα

))

= C1

(
f

(
Hεeiθ + c.c.

εα
+ Xεeiθ + c.c. +

Ṽε

εα

)
− f

(
Hεeiθ + c.c.

εα

))

≈ C1

(
f ′

(
Hεeiθ + c.c.

εα

)[
Xεeiθ + c.c. +

Ṽε

εα

])
.

Integrating (2.22) in time gives

|Xε|Hs (t) ≤
∫ t

0

εα(q−1)C|Xε|Hs(σ)dσ +

∫ t

0

Cεα(q−1)

∣∣∣∣∣ Ṽ
ε

εα

∣∣∣∣∣
Hs

dσ.

But Ṽε

εα = O(εα(q−1)+1). It follows that

|X|L∞(0,T ;Hs) = O(ε2α(q−1)+1)

which is the desired result.
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2.4. Some extensions. Note that if α = 0, that is, for O(1) solutions the error
estimate is the same as that for usual geometrical optics. The estimate is in fact better
for α > 0. Recall that εα is the size of the initial data and hence of the solution. But
if α > 0, then standard techniques on (1.13) ensures existence of time of size 1

εα(q−1) .
The natural question is then to know if our estimates are valid on such time interval.
The answer is affirmative and one has the following theorem.

Theorem 2.7. Under the same hypothesis as that for Theorem 2.1, there exist
T1 > 0 and C1 > 0 (independent of ε) such that

1

εα
|Π1(kDθ + εDX) (Uε − Vε)|L∞(0,t;Hs

θ,X
(T×Rn)) ≤ C1ε

α(q−1)+1
(
eC1ε

α(q−1)t − 1
)

and

1

εα
|Π1(kDθ + εDX)Uε|L∞(0,t;Hs

θ,X
(T×Rn)) ≤ C1ε

α(q−1)+1t

as long as t ≤ T1

εα(q−1) . Moreover,

1

εα
|C1(Vε(t,X, θ)) −Hε(t,X)|L∞(0,t;Hs

X
(Rn)) ≤ C1ε

α(q−1)+1
(
eC1ε

α(q−1)

1 − 1
)

and

1

εα
|Vε(t,X, θ) − (Hε(t,X)eiθ + c.c.)|L∞(0,t;Hs

θ,X
(T×Rn)) ≤ C1ε

α(q−1)+1t

as long t ≤ T1

εα(q−1) .
That means that our asymptotics are uniform on long-time interval. See the next

section for numerical illustrations of these results.
Remark 2.8. Suppose that for all X ∈ R

n, f(X) ·X = 0, then for any solution
Vε to (2.3) one has ∫

|Vε|2(t) dXdθ =

∫
|Vε|2(0) dXdθ

and for any solution Hε to (2.5),∫
|Hε|(t) dX =

∫
|Hε|(0) dX.

That means that if the initial model is conservative, then the asymptotic one is con-
servative as well.

3. Some numerical results.

3.1. An example. In this section, we want to compare numerically the solutions
of the different asymptotic regimes and we want to see to which extent the error
estimates that we have proved in the previous section are effective. We choose to
make the computations on a simplified system which is dispersive, nonlinear, and
preserves the L2-norm. This system is⎧⎪⎨

⎪⎩
∂tu + ∂xv −

v

ε
= −(u2 + v2)v,

∂tv + ∂xu +
u

ε
= (u2 + v2)u.

(3.1)
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The characteristic variety of this system is the set

{(ω, k) ∈ R
2|ω2 = 1 + k2}.

Hypotheses 3 and 4 are therefore satisfied. For Hypothesis 5, suppose that ω2 = 1+k2

and that for m ∈ Z one has m2ω2 = 1 + m2k2. It then follows that m = ±1 and
Hypothesis 5 is satisfied.

We now derive the asymptotic models corresponding to (3.1) in the geometrical
and diffractive regimes. We refer the reader, for example, to [13] for the case of
diffractive optics.

3.1.1. The geometrical optics regime. One searches an approximate solution
in the form (

u0(t, x)
v0(t, x)

)
ei

kx−ωt
ε + c.c.

Then one obtains

u0 =
ik − 1

iω
v0(3.2)

and

∂tu0 +
k

ω
∂xu0 =

4i

ω
|u0|2u0 for t ∈ [0, T0].(3.3)

3.1.2. Diffractive optics. One search an approximate solution in the form(
u1(t, x)
v1(t, x)

)
ei

kx−ωt
ε + c.c.,

but on long time-scale with u1(0, x) = O(
√
ε) and v1(0, x) = O(

√
ε). One gets

u1 =
ik − 1

iω
v1(3.4)

and

∂tu1 +
k

ω
∂xu1 −

iε

ω3
∂2
xu1 =

4i

ω
|u1|2u1 for t ∈

[
0,

T1

ε

]
.(3.5)

3.1.3. The new model. One searches for a solution in the form(
u2(t, x)
v2(t, x)

)
ei

kx−ωt
ε + c.c.

and one gets

u2 =
i(k + εDx) − 1

i
√

1 + (k + εDx)2
v2(3.6)

and

∂t

(
u2

v2

)
+

i

ε

(√
1 + (k + εDx)2 −

√
1 + k2

)(
u2

v2

)

=

⎛
⎜⎜⎜⎜⎝

1

2

i(k + εDx) − 1

2i
√

1 + (k + εDx)2

i(k + εDx) + 1

2i
√

1 + (k + εDx)2
1

2

⎞
⎟⎟⎟⎟⎠
⎛
⎝−2(|u2|2 + |v2|2)v2 − (u2

2 + v2
2)v̄2

−2(|u2|2 + |v2|2)u2 − (u2
2 + v2

2)ū2

⎞
⎠.

(3.7)



1682 THIERRY COLIN, GÉRARD GALLICE, AND KAREN LAURIOUX

Of course, thanks to (3.6), we can restrict ourselves to the first equation of (3.7)
and setting

με(Dx) =
i(k + εDx) − 1

i
√

1 + (k + εDx)2
,

one obtains

∂tu2 +
k∂x − iε∂2

x√
1 + (k + εDx)2 +

√
1 + k2

u2 = −(|u2|2 + |v2|2)v2 − 2(u2
2 + v2

2)v̄2

+με(Dx)
[
(|u2|2 + |v2|2)u2 + 2(u2

2 + v2
2)ū2

]
(3.8)

with

v2 =
1

με(Dx)
u2,(3.9)

which is the complete system.
Finally, the same system with the Kerr nonlinearity is used in practical applica-

tions in [17] and reads

∂tu3 +
k∂x − iε∂2

x√
1 + (k + εDx)2 +

√
1 + k2

u3 =
4i

ω
|u3|2u3.(3.10)

We will also compare our system with that one.

3.2. The numerical method. We restrict ourselves to the case x ∈ [0, 1] with
periodic boundary conditions and we use a spectral method in the space variable x.
For time discretization, we adopt a splitting technique.

• For system (3.1), suppose we have built an approximate solution (u(nδt), v(nδt))
at time nδt; one first integrates the linear part explicitly in Fourier variables with
initial data (u(nδt), v(nδt)) over one time step. This gives an indermediate value
(ui, vi). Then one integrates the nonlinear part

∂t

(
u
v

)
=

(
−
(
|u|2 + |v|2

)
v(

|u|2 + |v|2
)
u

)

with initial value (ui, vi) explicitly over one time step. This gives (u((n+1)δt), v((n+
1)δt).

• For the geometrical optics (3.3) one has the exact solution

u0(t, x) = A

(
x− k

ω
t

)
e

4i
ω |A(x− k

ω t)|2t,(3.11)

where A(x) = u0(0, x).
• For the diffractive regime (3.5) we use the same strategy as that for (3.1). We

omit the details since it is a standard procedure for the nonlinear Schrödinger equation
(see [4] and the references therein for a more detailed study).

For the new model (3.8), suppose that one has the Fourier transform of u2(nδt):
û2(nδt). One solves the linear part of (3.8):

∂tû2 +
ikξ + εξ2√

1 + (k + εξ)2 +
√

1 + k2
û2 = 0
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with initial value û2(nδt, ξ) on one time step. One gets an intermediate value û2i.
One then obtains an intermediate value of v̂2 called v̂2i using (3.9). We then perform
an inverse Fourier transform of û2i and v̂2i in order to obtain u2i and v2i and then
one constructs the nonlinear terms

NL1 := −(|u2i|2 + |v2i|2)v2i − 2(u2
2i + v2

2i)v̄2i

and

NL2 := (|u2i|2 + |v2i|2)u2i + 2(u2
2i + v2

2i)ū2i.

Next we perform a Fourier transform of NL1 and NL2 and compute N̂L1+με(ξ)N̂L2.
The value of û2((n + 1)δt) is obtained by the explicit Euler scheme

û2((n + 1)δt) = û2i + δt[N̂L1 + με(ξ)N̂L2].

• For the modified system (3.10) the nonlinear step is explicit just like for (3.5)
or (3.1).

All these schemes are of order 1 in time.

3.3. Numerical results. We have performed simulations with ε = 10−2 or
ε = 10−3. All the results are given in the case where the numerical solution has
converged, that is, a division of the time step by 2 and a multiplication by 2 of the
number of points for the spatial discretization do not change the result. We use
L2-norms in order to compare the solutions. We take an initial value for u in the form

u(t = 0, x) = εα
(
ei

kx
ε ϕ(x) + c.c.

)
for α ≥ 0. All the simulations are done with k = 2π and ω =

√
1 + (2π)2. The initial

value for v is obtained by using (3.9). That means that one takes ψ(x) = 1
με(Dx)ϕ(x)

and

v(t = 0, x) = εα
(
ei

kx
ε ψ(x) + c.c.

)
.

The initial data for u0, u1, u2, and u3 is of course ϕ(x). We call

egeo = max
t∈[0,T ]

|u(t, ·) − εα(u0(t, ·)ei
kx−ωt

ε + c.c.)|2
|u(t, ·)|2

,

that is the maximum of the error between the exact solution of (3.1) and the ap-
proximate solution given by the geometrical optics approximation (3.3) on the time
interval [0, T ]. Here |f |2 denotes the L2-norm on [0, 1] of the function f . We also
introduce

ediff = max
t∈[0,T ]

|u(t, ·) − εα(u1(t, ·)ei
kx−ωt

ε + c.c.)|2
|u(t, ·)|2

,

that is the maximum of the error between the exact solution of (3.1) and the approxi-
mate solution given by the diffractive optics approximation (3.5) on the time interval
[0, T ],

enew = max
t∈[0,T ]

|u(t, ·) − εα(u2(t, ·)ei
kx−ωt

ε + c.c.)|2
|u(t, ·)|2

,
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that is the maximum of the error between the exact solution of (3.1) and the approx-
imate solution given by the new model on the time interval [0, T ], and

enewkerr = max
t∈[0,T ]

|u(t, ·) − εα(u3(t, ·)ei
kx−ωt

ε + c.c.)|2
|u(t, ·)|2

,

that is the maximum of th error between the exact solution of (3.1) and the approxi-
mate solution given by the new model with Kerr nonlinearity given by (3.10) on the
time interval [0, T ]. We denote by N the number of Fourier modes in space and Nt

the number of time steps.

3.3.1. Time of order 1.
Case 1. We begin with ϕ(x) = e−75(x− 1

2 )2ei10 cos(x) with α = 0 and we compute
for x ∈ [0, 1] and t ∈ [0, 1]. The errors at T = 1 are as follows.

ε = 10−2 ε = 10−3

egeo 2 × 10−2 2.3 × 10−3

ediff 2 × 10−2 2.3 × 10−3

enew 1.9 × 10−2 2 × 10−3

enewkerr 2 × 10−2 2.3 × 10−3

For ε = 10−2, the convergence on the errors is reached with N = 1024 and Nt = 1600.
For ε = 10−3 the convergence is reached with N = 16384 and Nt = 12800. For
all cases, the error is of order ε as predicted by the theory. The simplest model
(geometrical optics) is precise enough.

Case 2. We made a test for smaller solutions, namelly α = 1
2 . The error at T = 1

are as follows.

ε = 10−2 ε = 10−3

egeo 3.3 × 10−3 3.2 × 10−4

ediff 1.7 × 10−4 1.8 × 10−6

enew 1.6 × 10−4 1.9 × 10−6

enewker 1.9 × 10−4 2 × 10−6

For ε = 10−2, the convergence on the errors is reached with N = 1024 and Nt = 1600.
For ε = 10−3, the convergence is reached with N = 16384 and Nt = 12800. Basically,
the error for geometrical optics is the worst (of order ε), however, it remains very
satisfactory. The others are of order ε2 as predicted by the theory.

Case 3. For chirped initial data,

u(t = 0, x) =
(
e−75(x−1/2)2ei15 cos(15x)ei

kx
ε + c.c.

)
,

x ∈ [0, 1]. Such kind of solution can occur after diffraction webs for example or for
laser with large spectrum. The errors at T = 1 are as follows.

ε = 10−2 ε = 10−3

egeo 0.8 5.7 × 10−2

ediff 0.17 1.2 × 10−2

enew 0.023 1.9 × 10−3

enewkerr 0.21 1.4 × 10−2
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Fig. 3. Amplitude of the first component of the approximate solution of (3.1) at the final
time with chirped initial data, α = 0, given by the geometrical optics, diffractive optics, and new
approximations, Case 3.

For ε = 10−2, the convergence on the errors is reached with N = 1024 and Nt = 1600.
For ε = 10−3, the convergence is reached with N = 16384 and Nt = 12800. For
ε = 10−2, the error for the complete new model is 2.3%, the other errors are above
15%. Such errors are not acceptable in practical applications. As an illustration,
one can find on Figure 3 the modulus of the amplitude (that is, without the phase

factor ei
(kx−ωt)

ε ) of the first component for the three models: the new model, the
geometrical optics, and the diffractive optics at the final time. As seen on the figure,
the amplitude as well as the positions are false for the diffractive and geometrical optics
regimes.

For ε = 10−3, the result given by Shrödinger equation and the new model with
the Kerr nonlinearity are correct. The geometrical optics give the worst error and the
complete new model the smallest one.

Case 4. For smaller solutions, we made the same test but with α = 1
2 . The errors

are as follows.

ε = 10−2 ε = 10−3

egeo 0.91 6.9 × 10−2

ediff 0.32 2.3 × 10−3

enew 1.7 × 10−4 1.7 × 10−6

enewkerr 2.1 × 10−3 1.5 × 10−5

For ε = 10−2, the convergence on the errors is reached with N = 1024 and Nt = 1600.
For ε = 10−3, the convergence is reached with N = 16384 and Nt = 12800. As in
the previous case, geometrical optics and the Schrödinger models give high errors for
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Fig. 4. Real part of the first component of the solution of system (3.1) with ε = 0.01 at time
t = n 50

8
for n = 0, . . . , 8 with chirped initial data and α = 1/2. First line, from left to right,

n = 0, 1, 2, second line, from left to right, n = 3, 4, 5, third line, from left to right, n = 6, 7, 8,
Case 6.

ε = 0.01. Both new models are correct however. For ε = 10−3, the conclusions are
the same as in the previous cases.

3.3.2. Diffractive time. We now consider long-time behavior: T = 50.

Case 5. We begin by a regular initial data and we take ϕ(x) = e−75(x− 1
2 )2ei cos(x)

and α = 1
2 . One gets the following errors.

ε = 10−2 ε = 10−3

egeo 0.13 1.3 × 10−2

ediff 2.4 × 10−3 2 × 10−5

enew 1.7 × 10−4 3 × 10−6

enewkerr 5.6 × 10−3 5 × 10−5

For ε = 10−2, the convergence on the errors is reached with N = 2048 and Nt = 80000.
For ε = 10−3, the convergence is reached with N = 8192 and Nt = 320000. The
geometrical optics gives of course a false result since diffractive effects are important.
The result given by the new models are better than that of diffractive optics that
is, however, perfectly correct. Any of the three models can be used in practical
applications.

Case 6. For chirped initial data, we take

ϕ(x) =
(
e−75(x−1/2)2ei15 cos(15x) + c.c.

)
,

x ∈ [0, 1] and α = 1
2 for T = 50. One gets the following errors.
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Fig. 5. Real part of the approximate solution of system (3.1) with ε = 0.01 at time t = n 50
8

for
n = 0, . . . , 8 with chirped initial data and α = 1/2 given by diffractive optics approximation. First
line, from left to right, n = 0, 1, 2, second line, from left to right, n = 3, 4, 5, third line, from left to
right, n = 6, 7, 8, Case 6.

ε = 10−2 ε = 10−3

egeo 1.5 1.6

ediff 1.4 0.11

enew 5 × 10−4 3 × 10−6

enewkerr 0.08 8 × 10−4

For ε = 10−2, the convergence on the errors is reached with N = 2048 and Nt = 80000.
For ε = 10−3, the convergence is reached with N = 8192 and Nt = 320000. Only the
complete new model gives an acceptable error. All the others give bad result. The
new model with Kerr nonlinearity gives a satisfactory result for small ε but not for
ε = 0.01. One can see the evolution of the solution at time n 50

8 on Figure 4, and on
Figure 5 the same but with the solution given by the Schrödinger equation which is
far away from the reality.

3.3.3. Conclusion. For small times, chirped initial data or not, the diffractive
model is satisfactory. For diffractive times and not chirped initial data, the diffractive
model is satisfactory. The geometrical optics regime (that is the explicit solution) is
valid on short times.

For diffractive times with chirped initial data, the new model is very useful. The
new model with Kerr nonlinearity is intermediate in terms of quality. In any case the
solution given by the new system cannot be distinguished from the exact one and will
be therefore very useful in practical applications. We postpone the application of this
theory to physical cases with more numerical tests to further work.

The main problem of our theory is the boundary conditions. Clearly, because of
the pseudodifferential nature of the new model, it is not easy to take into account
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nonperiodic boundary conditions. One of the possibility in this direction is to take
one space variable as a variable of evolution. This process is under investigation.
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INVARIANT MEASURES FOR THE STOCHASTIC VON KARMAN
PLATE EQUATION∗
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Abstract. We prove the existence of an invariant measure for the von Karman plate equation
with random noise. The nonlinear term which symbolizes the von Karman equation inhibits the
standard procedure for the existence of an invariant measure. We propose a technically different
approach to handle such intricate nonlinear equations.
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1. Introduction. In this paper, we will establish the existence of an invariant
measure for a certain class of stochastic evolution equations with application to the
stochastic von Karman plate equation. An invariant measure is an important object
in stochastic dynamics. If the initial condition has the probability distribution equal
to an invariant measure, then the probability distribution of the evolving solution is
invariant in time. Some general results on the existence of invariant measures for
stochastic evolution equations are presented in [6] and [7]. The basic method for the
existence of invariant measures is due to Krylov and Bogolyubov [12]. However, there
are some important equations which are not covered by the known theorems. Here
we still follow the Krylov–Bogolyubov method, but with technically different adap-
tation, which has been motivated by the von Karman equation. For our method, we
assume that the stochastic process associated with solutions has the Markov property
with mean energy bounded uniformly in time, and that the probability distribution
of the process is locally continuous with respect to a weaker norm. Typically, the first
assumption is satisfied by a wide class of stochastic evolution equations with suit-
able dissipation. However, we need an additional condition for tightness of a family
of probability measures which will yield an invariant measure. For parabolic equa-
tions, the regularizing property is crucially used to obtain tightness of a sequence of
probability measures whose weak limit is an invariant measure; see [2]. Hyperbolic
equations do not possess the regularizing property. But if the noise term has addi-
tional regularity in space variables and if more regular initial data can generate more
regular solutions with a higher-order norm bounded uniformly in time, tightness of
probability measures can be obtained in the same manner. There are equations which
belong to neither case. The von Karman plate equation is a typical example. The
advantage of this proposed approach lies in the second assumption, which is fairly
mild and can be satisfied by equations such as the von Karman equation. We will
highlight the utility of this procedure through the specific example of the von Karman
equation.

The initial-boundary value problem for the von Karman plate is formulated as
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follows:

utt + αut + Δ2u− [u, v] =

∞∑
j=1

gj
dBj

dt
in (0, T ) ×G,(1.1)

Δ2v + [u, u] = 0 in (0, T ) ×G,(1.2)

u =
∂u

∂ν
= 0, v =

∂v

∂ν
= 0 on [0, T ] × ∂G,(1.3)

u = u0(x), ut = u1(x) at t = 0.(1.4)

Here G is a bounded domain in R2 with smooth boundary ∂G, Δ is the Laplacian in
R2, ∂

∂ν is the normal derivative on ∂G, and the bracket [·, ·] is defined by

[u, v] =
∂2u

∂x2

∂2v

∂y2
+

∂2v

∂x2

∂2u

∂y2
− 2

∂2u

∂x∂y

∂2v

∂x∂y
.(1.5)

Viscous damping is represented by a positive constant α, and Bj ’s are mutually inde-
pendent standard Brownian motions over a given stochastic basis. When the right-
hand side of (1.1) is replaced by a deterministic term, the existence of a weak solution
to (1.1)–(1.4) was proved in [15], and more regular solutions were obtained in [4] and
[8]. In fact, the weak solution belongs to the natural function class. Nevertheless, the
uniqueness of the weak solution had been an open problem until the work of [1] and
[8]. The existence and uniqueness of a solution to the stochastic problem (1.1)–(1.4)
can be proved through a standard procedure based upon the known results from the
deterministic case. The existence of statistical solutions was established in [3] and
[10]. At present, the significant issue is the existence of an invariant measure.

Plate equations are neither hyperbolic nor parabolic while there is no regularizing
property. In [4], it was shown that for large α > 0 depending on the magnitudes of
the given data, the bound of the global solution in a stronger norm is uniform in
time. However, for small α > 0, it is not known whether such an estimate is valid.
Probably, it may not be true. This feature puts the above problem in a new category,
which necessitates a technically different approach. Here we proceed in the opposite
direction. Instead of trying to find uniform estimates in a stronger norm, we imbed
the natural energy space into a larger function class, and obtain a probability measure
on this larger space as a limit of a tight family of probability measures. We then prove
that this is in fact an invariant measure on the original smaller space. For this, we
need to show that the probability distribution of the solution depends continuously
on initial data in a weaker norm for fixed time on each closed ball in the natural
energy space. The main advantage of this procedure is that we do not need any
additional estimates uniform in time other than uniform estimates in the natural
energy space. Hence, we do not need either the assumption that α > 0 is large or
additional regularity of the noise term. We expect this procedure to be applied to
other equations which behave like (1.1). Finally, the anonymous referee has informed
the author that the idea of using a weaker topology was already used for interacting
diffusions in [14] and for stochastic parabolic equations in [16] and [17].

2. Existence of invariant measures. Let {Ω,Ft,F , P} be a given stochastic
basis and let E(·) denote the expectation with respect to P. Suppose that X(t, s; z), 0 ≤
s ≤ t < ∞ is a pathwise unique solution of a certain stochastic evolution equation
such that X(s, s; z) = z. We assume

(I) X(·, s; z) is a Ξ-valued continuous process adapted to {Ft}t≥s for each z ∈ Ξ
and s ≥ 0, where Ξ is a separable Banach space.
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We define a function

P(s, z; t,Γ) = P (X(t, s; z) ∈ Γ) for each Γ ∈ B(Ξ), 0 ≤ s ≤ t < ∞, z ∈ Ξ,(2.1)

where B(Ξ) is the Borel σ-algebra of Ξ. We assume
(II) P(·, ·; ·, ·) is a time-homogeneous transition probability function. In other

words, it satisfies the following conditions:
(i) P(s, z; t, ·) is a probability measure over {Ξ,B(Ξ)} for all z ∈ Ξ and 0 ≤

s < t < ∞;
(ii) P(s, ·; t,Γ) is B(Ξ)-measurable for all 0 ≤ s < t < ∞ and Γ ∈ B(Ξ);
(iii) for all 0 ≤ s < t < ξ < ∞ and Γ ∈ B(Ξ),

P(s, z; ξ,Γ) =

∫
Ξ

P(s, z; t, dy)P(t, y; ξ,Γ);

(iv) P(s, ·; t, ·) = P(s + h, ·; t + h, ·) for all 0 ≤ s < t < ∞ and h > 0.
(III) There is some z ∈ Ξ such that

E(‖X(t, 0; z)‖Ξ) ≤ M for all t ≥ 0(2.2)

for some positive constant M.
(IV) There is a Banach space Υ such that Ξ ⊂ Υ, the imbedding Ξ → Υ is contin-

uous, and each closed ball of finite radius in Ξ is a compact subset of Υ. Furthermore,
for each bounded continuous function ψ on Ξ, there is a sequence of continuous func-
tions {ψk}∞k=1 on Υ such that ψk is bounded uniformly in k and

lim
k→∞

ψk(y) = ψ(y) for each y ∈ Ξ.(2.3)

(V) For each fixed 0 ≤ t < ∞, and each fixed closed ball S of finite radius in Ξ,
if {zn}∞n=1 is a sequence in S such that

zn → z in Υ,(2.4)

then

E(φ(X(t, 0; zn))) → E(φ(X(t, 0; z)))(2.5)

for every bounded continuous function φ on Υ.
Remark. If Ξ has a Schauder basis, the second part of assumption (IV) is automat-

ically satisfied by using the continuous projection onto finite-dimensional subspaces.
In fact, this is the case when we consider application to the von Karman plate equa-
tion.

Theorem 2.1. Under the assumptions (I)–(V), there is an invariant measure
for the above process X(·). In other words, there is a probability measure μ on Ξ such
that ∫

Ξ

E(ψ(X(t, 0; y)))μ(dy) =

∫
Ξ

ψ(y)μ(dy)(2.6)

for all t ≥ 0 and every bounded continuous function ψ on Ξ.
Proof. Choose z ∈ Ξ in the above assumption (III), and define a probability

measure μT for each T > 0 by

μT (Γ) =
1

T

∫ T

0

P (X(t, 0; z) ∈ Γ)dt(2.7)
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for each Γ ∈ B(Ξ). This is well defined because P (X(·, 0; z) ∈ Γ) is B([0,∞))-
measurable. For this measurability, we argue as follows. For each bounded continuous
function φ on Ξ, E(φ(X(t, 0; z))) is continuous in t by assumption (I). Let Γ be a closed
subset of Ξ and χΓ(·) be the characteristic function of Γ. Then, there is a sequence
of nonnegative bounded continuous functions {φk}∞k=1 on Ξ such that φk(y) ↓ χΓ(y)
as k → ∞ for each y ∈ Ξ. Hence, E(φk(X(t, 0; z))) converges to E(χΓ(X(t, 0; z))) as
k → ∞ for each t. Hence, P (X(·, 0; z) ∈ Γ) is B([0,∞))-measurable. Let S be the
collection of all subsets Γ such that P (X(·, 0; z) ∈ Γ) is B([0,∞))-measurable. Then,
S is a Dynkin system which includes all closed subsets of Ξ. Thus, S contains B(Ξ).

We now proceed to define

μ̃T (Γ) = μT (Γ ∩ Ξ)(2.8)

for each Γ ∈ B(Υ). Since the imbedding Ξ → Υ is continuous, Γ∩Ξ is a Borel subset
of Ξ for each Γ ∈ B(Υ). Hence, μ̃T is well defined and is a probability measure over
{Υ,B(Υ)}. For any ε > 0, there is a positive number rε such that

P (‖X(t, 0; z)‖Ξ ≤ rε) > 1 − ε for all t ≥ 0(2.9)

which follows from assumption (III). Since the ball

Srε = {y ∈ Ξ | ‖y‖Ξ ≤ rε}(2.10)

is a compact subset of Υ by assumption (IV), the family of probability measures
{μ̃T }T>0 is tight. Hence, there is a sequence {μ̃Tk

}∞k=1 and a probability measure μ̃
over {Υ,B(Υ)} such that Tk ↑ ∞ as k → ∞, and∫

Υ

φ(y)μ̃Tk
(dy) →

∫
Υ

φ(y)μ̃(dy) as k → ∞(2.11)

for every bounded continuous function φ on Υ. Since Srε is a closed subset of Υ, it
follows from (2.9) that

1 − ε ≤ lim sup
k→∞

μ̃Tk
(Srε) ≤ μ̃(Srε).(2.12)

Since ε > 0 is arbitrary and each Borel subset of Ξ is also a Borel subset of Υ, μ̃(Ξ) = 1
and the restriction of μ̃ to B(Ξ), written as μ, is a probability measure over {Ξ,B(Ξ)}.
Choose any bounded continuous function φ on Υ, and fix any ε > 0. Then, there is
r > 0 such that

μ̃Tk
(Sr) = μTk

(Sr) > 1 − ε for all k ≥ 1.(2.13)

Fix t > 0, and let

f(y) = E(φ(X(t, 0; y))) =

∫
Ξ

P(0, y; t, dw)φ(w).(2.14)

Then, by assumption (V), f(y) is continuous on Sr with respect to the norm of Υ.
Since Sr is a closed subset of Υ, we can extend f to f̃ on Υ with the same bound such
that f(y) = f̃(y) for every y ∈ Sr. This follows from the Tietze extension theorem.

It is easy to see that∫
Υ

f̃(y)μ̃Tk
(dy) =

∫
Υ\Sr

f̃(y)μ̃Tk
(dy)(2.15)

+

∫
Sr

μ̃Tk
(dy)

∫
Ξ

P(0, y; t, dw)φ(w)
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and, by (2.13),∣∣∣∣
∫
Sr

μ̃Tk
(dy)

∫
Ξ

P(0, y; t, dw)φ(w) −
∫

Ξ

μ̃Tk
(dy)

∫
Ξ

P(0, y; t, dw)φ(w)

∣∣∣∣ < Mε,(2.16)

where M is a positive constant such that |φ(y)| ≤ M, for all y ∈ Υ. Here we note that
φ is also a continuous function on Ξ with respect to the norm of Ξ. It follows from
assumption (II) that∫

Ξ

μTk
(dy)

∫
Ξ

P(0, y; t, dw)φ(w)(2.17)

=
1

Tk

∫ Tk

0

(∫
Ξ

P(0, z; s, dy)

∫
Ξ

P(0, y; t, dw)φ(w)

)
ds

=
1

Tk

∫ Tk

0

(∫
Ξ

P(0, z; s + t, dy)φ(y)

)
ds

=
1

Tk

∫ Tk+t

t

(∫
Ξ

P(0, z; η, dy)φ(y)

)
dη.

But we have

lim
k→∞

∣∣∣∣ 1

Tk

∫ Tk+t

t

(∫
Ξ

P(0, z; η, dy)φ(y)

)
dη −

∫
Ξ

μTk
(dy)φ(y)

∣∣∣∣ = 0,(2.18) ∫
Ξ

μTk
(dy)φ(y) =

∫
Υ

μ̃Tk
(dy)φ(y),(2.19)

and

lim
k→∞

∫
Υ

μ̃Tk
(dy)φ(y) =

∫
Υ

μ̃(dy)φ(y) =

∫
Ξ

μ(dy)φ(y).(2.20)

In the meantime, it holds that

lim
k→∞

∫
Υ

f̃(y)μ̃Tk
(dy) =

∫
Υ

f̃(y)μ̃(dy),(2.21) ∣∣∣∣
∫

Υ

f̃(y)μ̃(dy) −
∫
Sr

f(y)μ(dy)

∣∣∣∣ < Mε,(2.22) ∫
Sr

f(y)μ(dy) =

∫
Sr

μ(dy)E(φ(X(t, 0; y))),(2.23)

and ∣∣∣∣
∫
Sr

μ(dy)E(φ(X(t, 0; y))) −
∫

Ξ

μ(dy)E(φ(X(t, 0; y)))

∣∣∣∣ < Mε.(2.24)

Thus, it follows from (2.15)–(2.24) that∣∣∣∣
∫

Ξ

μ(dy)E(φ(X(t, 0; y))) −
∫

Ξ

μ(dy)φ(y)

∣∣∣∣ < 4Mε.(2.25)

Since ε > 0 is arbitrary, we have∫
Ξ

μ(dy)E(φ(X(t, 0; y))) =

∫
Ξ

μ(dy)φ(y)(2.26)
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for all bounded continuous function φ on Υ for each t > 0. Next choose any bounded
continuous function ψ on Ξ, and let {ψk}∞k=1 be the sequence in assumption (IV).
Then, for each k ≥ 1, we have∫

Ξ

μ(dy)E(ψk(X(t, 0; y))) =

∫
Ξ

μ(dy)ψk(y).(2.27)

By passing k → ∞, we have∫
Ξ

μ(dy)E(ψ(X(t, 0; y))) =

∫
Ξ

μ(dy)ψ(y).(2.28)

This completes the proof.

3. Application to the stochastic von Karman equation. In this section,
we present technical preliminaries to apply Theorem 2.1 to (1.1)–(1.4) and formulate
the results.

Let {φk}∞k=1 be a complete orthonormal basis for L2(G) where each φk is an
eigenfunction of ⎧⎨

⎩
Δ2φk = λkφk in G,

φk =
∂φk

∂ν
= 0 on ∂G.

(3.1)

Throughout this paper, 〈·, ·〉 stands for the inner product of L2(G). It is easy to see
that

〈Δ2φj , φk〉 = 〈Δφj ,Δφk〉 = λjδjk for all j, k ≥ 1.(3.2)

Wm,p(G), Hm(G), and Hm
0 (G) denote the usual Sobolev spaces. Some of them can

be characterized in terms of {φk}∞k=1:

H2
0 (G) ∩H4(G) =

{
f =

∞∑
k=1

akφk |
∞∑
k=1

λ2
k|ak|2 < ∞

}
,(3.3)

Hs
0(G) =

{
f =

∞∑
k=1

akφk |
∞∑
k=1

λ
s/2
k |ak|2 < ∞

}
, 0 ≤ s ≤ 2, s �= 1

2
,
3

2
,(3.4)

H−s(G) =

{
f =

∞∑
k=1

akφk |
∞∑
k=1

1

λ
s/2
k

|ak|2 < ∞
}
, 0 ≤ s ≤ 2, s �= 1

2
,
3

2
.(3.5)

We define the operator G on H−2(G) by

Gh =
∞∑
k=1

1

λk
akφk(3.6)

for h =
∑∞

k=1 akφk ∈ H−2(G). Obviously, G is the inverse of Δ2 with the clamped
boundary conditions. It is easy to see that for all f, g ∈ L2(G),

|〈f,Gg〉| ≤ ‖f‖H−2(G)‖g‖H−2(G)(3.7)

and

〈f,Gf〉 = ‖f‖2
H−2(G).(3.8)
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The following estimate was proved in [5] and [9]:

‖G[f, g]‖W 2,∞(G) ≤ C‖f‖H2(G)‖g‖H2(G)(3.9)

for all f, g ∈ H2(G).
Throughout this paper, {Bj}∞j=1 is a sequence of mutually independent standard

Brownian motions over the stochastic basis {Ω,F ,Ft, P}, where P is a probability
measure over the σ-algebra F , {Ft} is a right-continuous filtration over F , and F0

contains all P -negligible sets. E(·) denotes the expectation with respect to P. When
X is a Banach space, B(X ) denotes the set of all Borel subsets of X . An X -valued
function h is said to be F-measurable if h−1(O) ∈ F for all O ∈ B(X ). This coincides
with strong measurability for Bochner integrals when the range of h is separable.
For 1 ≤ p < ∞, Lp(Ω;X ) denotes the set of all functions h which are X -valued and
strongly measurable with respect to F such that∫

Ω

‖h‖pX dP < ∞.

For general information on stochastic processes, see [11].
We assume the following condition on the noise term in (1.1). Each gj depends

only on the space variables, and

∞∑
j=1

‖gj‖2
L2(G) < ∞.(3.10)

Under this assumption, we have the following existence result.
Theorem 3.1. For each T > 0 and (u0, u1) ∈ H2

0 (G)×L2(G), there is a unique
solution u of (1.1)–(1.4) such that (u, ut) is adapted to {Ft}, and

(u, ut) ∈ L2(Ω;C([0, T ];H2
0 (G) × L2(G))).(3.11)

Here u satisfies (1.1) in the following sense. For almost all ω ∈ Ω, it holds that

〈ut(t2), ψ〉 − 〈ut(t1), ψ〉 +

∫ t2

t1

〈Δu,Δψ〉 dt(3.12)

+α

∫ t2

t1

〈ut, ψ〉 dt +

∫ t2

t1

〈[u,G[u, u]], ψ〉 dt =

∞∑
j=1

∫ t2

t1

〈gj , ψ〉 dBj

for all ψ ∈ H2
0 (G) and all 0 ≤ t1 < t2 ≤ T.

Theorem 3.2. There is an invariant measure on H2
0 (G)×L2(G) for (1.1)–(1.4).

4. Proof of Theorems 3.1 and 3.2. Let us define χN ∈ C∞
0 (R) for each N ≥ 1

by

χN (y) =

{
1 for |y| ≤ 2N,
0 for |y| ≥ 3N.

(4.1)

Then, it follows from (3.9) that

‖χN (‖u‖H2(G))[u,G[u, u]] − χN (‖w‖H2(G))[w,G[w,w]]‖L2(G)(4.2)

≤ CN‖u− w‖H2(G)



1696 JONG UHN KIM

for all u,w ∈ H2(G) and for some positive constant CN . We now fix N ≥ 1 and
consider the modified problem

utt + αut + Δ2u + χN (‖u‖H2
0 (G))[u,G[u, u]] =

∞∑
j=1

gj
dBj

dt
in (0, T ) ×G,(4.3)

u =
∂u

∂ν
= 0 on [0, T ] × ∂G,(4.4)

u = u0(x), ut = u1(x) at t = 0.(4.5)

By the general existence theorem in [6], for each T > 0 and (u0, u1) ∈ H2
0 (G)×L2(G),

there is a pathwise unique solution u of (4.3)–(4.5) such that (u, ut) is adapted to {Ft},
and

(u, ut) ∈ L2(Ω;C([0, T ];H2
0 (G) × L2(G))).(4.6)

This is still true when (u0, u1) is F0-measurable and (u0, u1) ∈ L2(Ω;H2
0 (G)×L2(G)),

which follows from Kotelenez [13].
We introduce the projection Pm of L2(G) onto the subspace that is spanned by

{φ1, . . . , φm}, and set

um = Pmu.(4.7)

By taking the nonlinear term as a given function, we use the argument in [6, pp. 121–
123] to obtain the following representation formula. For almost all ω ∈ Ω,

〈ut(t2), ψ〉 − 〈ut(t1), ψ〉 +

∫ t2

t1

〈Δu,Δψ〉 dt + α

∫ t2

t1

〈ut, ψ〉 dt(4.8)

+

∫ t2

t1

〈χN (‖u‖H2
0 (G))[u,G[u, u]], ψ〉 dt =

∞∑
j=1

∫ t2

t1

〈gj , ψ〉 dBj

for all ψ ∈ H2
0 (G) and all 0 ≤ t1 < t2 ≤ T. Thus, it follows that

d(umt) = (−Δ2um − αumt − χN (‖u‖H2
0 (G))Pm[u,G[u, u]])dt(4.9)

+

∞∑
j=1

PmgjdBj for each m ≥ 1.

By Ito’s rule, we have, for all 0 ≤ t1 < t2 ≤ T and m ≥ 1,

‖umt(t2)‖2
L2(G) + ‖Δum(t2)‖2

L2(G)(4.10)

= ‖umt(t1)‖2
L2(G) + ‖Δum(t1)‖2

L2(G) − 2α

∫ t2

t1

‖umt‖2
L2(G) dt

− 2

∫ t2

t1

〈χN (‖u‖H2
0 (G))Pm[u,G[u, u]], umt〉 dt

+ 2

∞∑
j=1

∫ t2

t1

〈Pmgj , umt〉 dBj +

∞∑
j=1

∫ t2

t1

‖Pmgj‖2
L2(G)dt.

It follows from (3.9) that

‖χN (‖u‖H2
0 (G))Pm[u,G[u, u]] − χN (‖u‖H2

0 (G))[um,G[um, um]]‖L2(G)(4.11)

≤ ‖χN (‖u‖H2
0 (G))(Pm[u,G[u, u]] − [u,G[u, u]])‖L2(G)

+CN‖u− um‖H2
0 (G)
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and ∫ t2

t1

2〈[um,G[um, um]], umt〉dt = ‖Δvm(t2)‖2
L2(G) − ‖Δvm(t1)‖2

L2(G),(4.12)

where vm = G[um, um]. We now define a stopping time

τN = inf{t > 0 | ‖u(t)‖H2
0 (G) ≥ N}.(4.13)

By combining these and passing m → ∞, we arrive at

‖ut(t2)‖2
L2(G) + ‖Δu(t2)‖2

L2(G) + ‖Δv(t2)‖2
L2(G)(4.14)

= ‖ut(t1)‖2
L2(G) + ‖Δu(t1)‖2

L2(G) + ‖Δv(t1)‖2
L2(G)

− 2α

∫ t2

t1

‖ut‖2
L2(G)dt + 2

∞∑
j=1

∫ t2

t1

〈gj , ut〉 dBj +

∞∑
j=1

∫ t2

t1

‖gj‖2
L2(G)dt

for all 0 ≤ t1 ≤ t2 ≤ τN and for almost all ω ∈ Ω, where v = G[u, u]. In the same way,
we can also derive

〈ut(t2), u(t2)〉 +
α

2
‖u(t2)‖2

L2(G)(4.15)

= 〈ut(t1), u(t1)〉 +
α

2
‖u(t1)‖2

L2(G)

−
∫ t2

t1

(‖Δu‖2
L2(G) + ‖Δv‖2

L2(G) − ‖ut‖2
L2(G))dt +

∞∑
j=1

∫ t2

t1

〈gj , u〉dBj

for all 0 ≤ t1 ≤ t2 ≤ τN and for almost all ω ∈ Ω. We now write uN = u to signify the
dependence of u on χN (·). It follows from the Burkholder–Davis–Gundy inequality
that

E

(
sup

0≤t≤τN∧T

∣∣∣∣
∞∑
j=1

∫ t

0

〈gj , uNt〉 dBj

∣∣∣∣
)

(4.16)

≤ ME

( ∞∑
j=1

∫ τN∧T

0

‖gj‖2
L2(G)‖uNt‖2

L2(G) dt

)1/2

≤ δE

(
sup

0≤t≤τN∧T
‖uNt‖2

L2(G)

)
+

M2T

4δ

∞∑
j=1

‖gj‖2
L2(G)

for all δ > 0 and for some positive constant M independent of N and T. Thus, we
can derive from (4.14)

E

(
sup

0≤t≤τN∧T
(‖uNt(t)‖2

L2(G) + ‖ΔuN (t)‖2
L2(G) + ‖ΔvN (t)‖2

L2(G))

)
(4.17)

≤ C(‖u0‖2
H2

0 (G) + ‖u1‖2
L2(G) + ‖G[u0, u0]‖2

H2
0 (G)) + CT

∞∑
j=1

‖gj‖2
L2(G)

for some constant C independent of N and T > 0. Thus, we find that

P (τN ≤ T ) ≤ CT /N
2 → 0 as N → ∞.(4.18)
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Since τN1
≤ τN2

for N1 < N2, it follows that

lim
N→∞

τN = τ∞ ≥ T for almost all ω ∈ Ω.(4.19)

Since T is arbitrary,

τN ↑ ∞ as N → ∞(4.20)

for almost all ω ∈ Ω. By the pathwise uniqueness of uN , we have uN1 = uN2 on
[0, τN1

∧ τN2 ] for almost all ω ∈ Ω, and we can define

u(t) = uN (t) for t ∈ [0, τN ].(4.21)

Then, this u is the desired solution. Now (4.8) implies (3.12). Since each (uN , uNt) is
adapted to {Ft}, (u, ut) is adapted to {Ft}. By Fatou’s lemma, we derive from (4.17)
and (4.20) that

E

(
sup

0≤t≤T
(‖ut(t)‖2

L2(G) + ‖Δu(t)‖2
L2(G) + ‖Δv(t)‖2

L2(G))

)
(4.22)

≤ C(‖u0‖2
H2

0 (G) + ‖u1‖2
L2(G) + ‖G[u0, u0]‖2

H2
0 (G)) + CT

∞∑
j=1

‖gj‖2
L2(G)

for all T > 0, where v = G[u, u].
For the proof of pathwise uniqueness, we suppose that (ũ, ũt) is another solution

of (1.1)–(1.4) in L2(Ω;C([0, T ];H2
0 (G) × L2(G))). Then, u− ũ satisfies

utt − ũtt + α(ut − ũt) + Δ2(u− ũ) + [u,G[u, u]] − [ũ,G[ũ, ũ]] = 0(4.23)

for almost all ω ∈ Ω. Since (u, ut) and (ũ, ũt) belong to C([0, T ];H2
0 (G) × L2(G))

for almost all ω, we can apply the same argument as for the deterministic case to
conclude that u ≡ ũ for almost all ω ∈ Ω. This completes the proof of Theorem 3.1.

Next we will obtain uniform estimates. Fix any λ such that

0 < λ < min(1, α, λ1),(4.24)

where λ1 is the first eigenvalue of (3.1), and define

Q(t) = ‖ut(t)‖2
L2(G) + ‖Δu(t)‖2

L2(G) + ‖Δv(t)‖2
L2(G)(4.25)

+λ〈ut(t), u(t)〉 +
α

2
λ‖u(t)‖2

L2(G).

By virtue of (4.20) and (4.21), u satisfies (4.14) and (4.15) for all 0 ≤ t1 < t2 < ∞
and for almost all ω. Since integrability is guaranteed by (4.22), it follows from (4.14)
and (4.15) that

E(Q(t2)) − E(Q(t1)) = −λ

∫ t2

t1

E(‖Δu‖2
L2(G) + ‖Δv‖2

L2(G))dt(4.26)

− (2α− λ)

∫ t2

t1

E(‖ut‖2
L2(G)) dt +

∫ t2

t1

∞∑
j=1

‖gj‖2
L2(G)dt
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for all 0 ≤ t1 < t2 < ∞. We can derive

d

dt
E(Q(t)) ≤ −cE(Q(t)) +

∞∑
j=1

‖gj‖2
L2(G)(4.27)

for all t > 0, where c is a positive constant depending on α, λ1, and λ. This yields

E(Q(t)) ≤ CM for all t ≥ 0,(4.28)

where M is a constant such that Q(0) ≤ M, and CM is a constant depending on M
and the last term of (4.27). By virtue of (4.24), this yields (2.2).

According to the above argument for the existence of solutions, we could take any
s ≥ 0 as the initial time and ζ = (ζ0, ζ1) as the initial value for the Cauchy problem
(1.1)–(1.3) if ζ is H2

0 (G)×L2(G)-valued Fs-measurable such that ζ ∈ L2(Ω;H2
0 (G)×

L2(G)), and G[ζ0, ζ0] ∈ L2(Ω;H2
0 (G)). We now write X(t, s; ζ) = (u, ut), where u is

the solution of (1.1)–(1.3) for t ≥ s satisfying (u(s), ut(s)) = ζ. Then, X(·, s; ζ) ∈
L2(Ω;C([s, T ];H2

0 (G)×L2(G))) for all T > s, and (4.28) holds for all t ≥ s. For each
0 ≤ s < t, z ∈ H2

0 (G) × L2(G), and Γ ∈ B(H2
0 (G) × L2(G)), we set as in (2.1)

P(s, z; t,Γ) = P (X(t, s; z) ∈ Γ).

Lemma 4.1. Choose any bounded continuous function ψ on H2
0 (G) × L2(G),

t > s ≥ 0. Then,

E(ψ(X(t, s; z))) =

∫
H2

0 (G)×L2(G)

P(s, z; t, dy)ψ(y)(4.29)

is continuous in z ∈ H2
0 (G) × L2(G).

Proof. Let {zn}∞n=1 be a sequence in H2
0 (G)×L2(G) such that zn → z in H2

0 (G)×
L2(G). Let us fix any t > s ≥ 0. By (4.22), we have⎧⎪⎪⎪⎨

⎪⎪⎪⎩
E

(
sup

s≤η≤t
‖X(η, s; z)‖H2

0 (G)×L2(G)

)
≤ M,

E

(
sup

s≤η≤t
‖X(η, s; zn)‖H2

0 (G)×L2(G)

)
≤ M for all n ≥ 1

(4.30)

for some positive constant M. Let us fix any ε > 0 and any bounded continuous func-
tion ψ on H2

0 (G)×L2(G). Since H2
0 (G)×L2(G) is a Polish space and P (X(t, s; z) ∈ ·)

is a probability measure over {H2
0 (G)×L2(G),B(H2

0 (G)×L2(G))}, there is a compact
subset K of H2

0 (G) × L2(G) such that

P (X(t, s; z) ∈ K) > 1 − ε.(4.31)

By virtue of (4.30), there is some R > 0 such that⎧⎪⎪⎪⎨
⎪⎪⎪⎩

P

(
sup

s≤η≤t
‖X(η, s; zn)‖H2

0 (G)×L2(G) ≤ R

)
> 1 − ε for all n ≥ 1,

P

(
sup

s≤η≤t
‖X(η, s; z)‖H2

0 (G)×L2(G) ≤ R

)
> 1 − ε.

(4.32)

By taking R larger, we also have

K ⊂ {y ∈ H2
0 (G) × L2(G) | ‖y‖H2

0 (G)×L2(G) ≤ R}.(4.33)
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Let us fix such R and write for each n

An =

{
sup

s≤η≤t
‖X(η, s; zn)‖H2

0 (G)×L2(G) ≤ R

}
(4.34)

⋂{
sup

s≤η≤t
‖X(η, s; z)‖H2

0 (G)×L2(G) ≤ R

}
⋂

{X(t, s; z) ∈ K}.

We will estimate the integral on the right-hand side of

|E(ψ(X(t, s; z))) − E(ψ(X(t, s; zn)))|

≤
∫
An

|ψ(X(t, s; z)) − ψ(X(t, s; zn))| dP + 6Mε,
(4.35)

where M is a positive constant such that |ψ(y)| ≤ M for all y. By means of (3.9), we
can derive from (4.23) that

‖X(t, s; z) −X(t, s; zn)‖2
H2

0 (G)×L2(G) ≤ CR‖zn − z‖2
H2

0 (G)×L2(G)(4.36)

for all ω ∈ Ãn, where Ãn ⊂ An and P (An\Ãn) = 0, and CR is a constant independent
of n. Since ψ is continuous on H2

0 (G) × L2(G) and K is compact, there is δ > 0 such
that

|ψ(x) − ψ(y)| < ε(4.37)

for every x ∈ K, y ∈ H2
0 (G) × L2(G) satisfying ‖x − y‖H2

0 (G)×L2(G) < δ. Hence, it

follows from (4.36) that there is N ≥ 1 such that for all n ≥ N,∫
An

|ψ(X(t, s; z)) − ψ(X(t, s; zn))| dP < ε,(4.38)

which yields

|E(ψ(X(t, s; z))) − E(ψ(X(t, s; zn)))| < ε + 6Mε(4.39)

for all n ≥ N. Thus, E(ψ(X(t, s; z))) is continuous in z.
This implies that P(s, ·; t,Γ) is B(Ξ)-measurable for all 0 ≤ s < t < ∞ and

Γ ∈ B(Ξ). This can be seen by the same argument as in the previous proof of the
measurability of P (X(·, 0; z)).

Lemma 4.2. X(·) has the Markov property, and its transition probability function
is time-homogeneous.

Proof. By the uniqueness of solution, it holds that for any 0 ≤ r < s < t and
z ∈ H2

0 (G) × L2(G),

X(t, r; z) = X(t, s;X(s, r; z))(4.40)

for almost all ω. We have to show that

E(ψ(X(t, s;X(s, r; z))) | Fs) = Ps,t(ψ)(X(s, r; z))(4.41)

for almost all ω, for each bounded continuous function ψ on H2
0 (G) × L2(G), where

Ps,tψ(y) = E(ψ(X(t, s; y))).
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According to the proof of Theorem 3.1, the solution was obtained by the truncation
method. Let XN = XN (t, s; ζ) denote the solution (uN , ∂tuN ) of (4.3)–(4.4) satisfying
(uN (s), ∂tuN (s)) = ζ, where ζ = (ζ0, ζ1) is H2

0 (G)×L2(G)-valued Fs-measurable such
that ζ ∈ L2(Ω;H2

0 (G) × L2(G)) and G[ζ0, ζ0] ∈ L2(Ω;H2
0 (G)). Then, we know that

for each T > s,

X(t, s; ζ) = lim
N→∞

XN (t, s; ζ) in C([s, T ];H2
0 (G) × L2(G))(4.42)

for almost all ω. For each N ≥ 1 and each bounded continuous function ψ on H2
0 (G)×

L2(G), it holds that

E(ψ(XN (t, s; ζ)) | Fs) = PN
s,t(ψ)(ζ)(4.43)

for almost all ω, which follows directly from the argument in [6, p. 250]. Here PN
s,t is

defined by

PN
s,tψ(y) = E(ψ(XN (t, s; y))).

Since ψ is a bounded continuous function, we pass N → ∞ to arrive at

E(ψ(X(t, s; ζ)) | Fs) = Ps,t(ψ)(ζ)(4.44)

for almost all ω. Hence X(·) has the Markov property.
Since gj ’s are independent of time, we can apply the result in [6, p. 251] to see

that the transition probability function is time-homogeneous.
Lemma 4.3. Let SL = {y ∈ H2

0 (G) × L2(G) | ‖y‖H2
0 (G)×L2(G) ≤ L}, and let

{zn}∞n=1 be a sequence in SL such that zn → z in H1
0 (G)×H−1(G). If φ is a bounded

continuous function on H1
0 (G) ×H−1(G), then for each t > 0,

E(φ(X(t, 0; zn))) → E(φ(X(t, 0; z)))(4.45)

as zn → z in H1
0 (G) ×H−1(G).

Proof. Let us fix any t∗ > 0, and write

Yn(t) = X(t, 0; zn) −X(t, 0; z).(4.46)

Suppose that

‖X(t, 0; zn)‖H2
0 (G)×L2(G) ≤ R, ‖X(t, 0; z)‖H2

0 (G)×L2(G) ≤ R(4.47)

for all 0 ≤ t ≤ t∗ for some constant R. It follows from (4.23) and the basic inequality
established in [1] that

‖Yn(t2)‖2
H1

0 (G)×H−1(G) − ‖Yn(t1)‖2
H1

0 (G)×H−1(G)(4.48)

≤ C1 log(1 + λN )

∫ t2

t1

‖Yn(s)‖2
H1

0 (G)×H−1(G) ds + C2t
∗λ−β

N+1

for all 0 ≤ t1 < t2 ≤ t∗, all N ≥ N0, for some constant 0 < β < 1, and for positive
integer N0. Here λN is the Nth eigenvalue of (3.1), and C1 and C2 are positive
constants depending only on β and R. We partition [0, t∗] such that

0 = t0 < t1 < · · · < tK = t∗, tk − tk−1 = t∗/K < β/C1, 1 ≤ k ≤ K.(4.49)
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By the Gronwall inequality, we can derive from (4.48) that

‖Yn(t)‖2
H1

0 (G)×H−1(G)(4.50)

≤ (‖Yn(tk)‖2
H1

0 (G)×H−1(G) + C2t
∗λ−β

N+1)(1 + λN )C1(t−tk)

for all t ∈ [tk, tk+1], all N ≥ N0, and for each k = 0, . . . ,K − 1. Since λN ↑ ∞ as
N → ∞, we use (4.49) to infer from (4.50) that for given ε > 0, there is εK > 0 such
that if ‖Yn(tK−1)‖H1

0 (G)×H−1(G) < εK ,

‖Yn(tK)‖H1
0 (G)×H−1(G) < ε.(4.51)

By iteration, we find that there is ε1 > 0 such that if ‖zn − z‖H1
0 (G)×H−1(G) < ε1,

(4.51) holds. By the same argument as in the proof of Lemma 4.1, we arrive
at (4.45).

Lemma 4.4. Let ψ be a bounded continuous function on H2
0 (G) × L2(G). Then,

there is a sequence {ψk}∞k=1 such that each ψk is a continuous function on H1
0 (G) ×

H−1(G) bounded uniformly in k, and

ψk(y) → ψ(y) as k → ∞(4.52)

for each y ∈ H2
0 (G) × L2(G).

Proof. It is enough to set

ψk(y) = ψ((Pky1, Pky2)) for y = (y1, y2) ∈ H1
0 (G) ×H−1(G), k = 1, 2, . . . ,(4.53)

where Pk is the projection onto the subspace spanned by {φ1, . . . , φk}.
Finally, we set

Ξ = H2
0 (G) × L2(G), Υ = H1

0 (G) ×H−1(G).

Then, assumptions (I)–(V) follow from the above lemmas, and the proof of Theo-
rem 3.2 is complete.
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ERRATUM: ON THE HÖLDER CONTINUITY OF SOLUTIONS OF A
CERTAIN SYSTEM RELATED TO MAXWELL’S EQUATIONS∗

KYUNGKEUN KANG† AND SEICK KIM‡

Abstract. The main purpose of this erratum is to correct Lemmas 2.4 and 2.5 in [K. Kang and
S. Kim, SIAM J. Math. Anal., 34 (2002), pp. 87–100] and present their proofs. We also take this
opportunity to rectify some flaws caused by those incorrectly stated lemmas.

AMS subject classifications. 35B45, 35J60, 35Q60

DOI. 10.1137/040612907

First we make a correction to the definition of D(Ω) [2, p. 88, line 25] as follows:

D(Ω) = D(Ω; R3) =
{
f ∈ C∞(Ω; R3) : f is compactly supported ,∇ · f = 0

}
.

In Theorems 2.1 and 2.2 and the other related parts of the article, f ∈ Hq
loc(Ω) should

read f ∈ Hq(Ω), and ‖f‖Lq(B) should read ‖f‖Lq(Ω).
Then, Lemmas 2.4 and 2.5 should be corrected as follows.
Lemma 2.4. Let Ω ⊂ R

3 be an open set and assume f ∈ D(Ω). Then there
exists g ∈ C∞(Ω) such that ∇ × g = f and ∇ · g = 0 in Ω. Moreover, we have
‖∇g‖Lp(Ω) ≤ C(p) ‖f‖Lp(Ω) for 1 < p < ∞.

Proof. We define g := −∇ ×N(f), where N(f) is the Newtonian potential of f
over Ω (see, e.g., [1, p. 51] for the definition). Then from the vector identity

∇× (∇× F ) = ∇(∇ · F ) − ΔF,(2.4)

we find

∇× g = −∇× (∇×N(f)) = ΔN(f) −∇(∇ ·N(f)) = f −∇(N(∇ · f)) = f.

Also, by the Calderón–Zygmund theory (see, e.g., [1, Theorem 9.9]), we find ‖∇g‖Lp(Ω)

≤ C ‖f‖Lp(Ω). Clearly, we have ∇ · g = 0.

Lemma 2.5. Suppose F ∈ C∞(B; R3) satisfies ∇ × F = 0 in B. Then there
exists ϕ ∈ C∞(B) such that ∇ϕ = F and

∫
B
ϕ = 0. Moreover, we have ‖ϕ‖L2(B) ≤

C ‖F‖L2(B).
Proof. Let ϕ be a solution to{

Δϕ = ∇ · F in B,
∂ϕ
∂n = F · n on ∂B.

By subtracting a constant, we may assume
∫
B
ϕ = 0.

Denote ω := ∇ϕ− F . We have ∇ · ω = 0, ∇× ω = 0 in B, and ω · n = 0 on ∂B.
Therefore ω ≡ 0 in B. We have thus shown that ∇ϕ = F in B. Since

∫
B
ϕ = 0, the

Poincaré inequality implies ‖ϕ‖L2(B) ≤ C ‖F‖L2(B).

∗Received by the editors August 5, 2004; accepted for publication (in revised form) August 24,
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Finally, we should make a slight change in the proof of Theorem 2.1.
On page 91, line 2, f ∈ Hq

loc(Ω) ∩ C∞(Ω) should read f ∈ D(Ω).
On page 91, lines 7–10 should be replaced as follows:
Since f ∈ D(Ω), we conclude from Lemma 2.4 that there exists a smooth vector

g such that f = ∇× g in Ω. By subtracting a constant vector, we may assume that∫
B8

g = 0. Then the Sobolev–Poincaré inequality implies

‖g‖Lq∗ (B8)
≤ C ‖∇g‖Lq(B8)

≤ C ‖f‖Lq(Ω) , q∗ = nq/(n− q) > n.(2.5)

Acknowledgment. We thank Professor Marius Mitrea for bringing these errors
to our attention.
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PERIODIC MOTIONS OF LINEAR IMPACT OSCILLATORS VIA
THE SUCCESSOR MAP∗

DINGBIAN QIAN† AND PEDRO J. TORRES‡

Abstract. We investigate the existence and multiplicity of nontrivial periodic bouncing solu-
tions for linear and asymptotically linear impact oscillators by applying a generalized version of the
Poincaré–Birkhoff theorem to an adequate Poincaré section called the successor map. The main
theorem includes a generalization of a related result by Bonheure and Fabry and provides a sufficient
condition for the existence of periodic bouncing solutions for Hill’s equation with obstacle at x �= 0.

Key words. impact oscillator, Hill’s equation, periodic solution, successor map, Poincaré–
Birkhoff twist theorem

AMS subject classifications. 34C15, 34C25, 34B30, 54H25
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1. Introduction and main results. In this paper, we study the existence of
2mπ-periodic bouncing solutions for the following linear impact oscillator:⎧⎨

⎩
x′′ + a(t)x = p(t) for x(t) > 0;
x(t) ≥ 0;
x(t0) = 0 ⇒ x′(t0+) = −x′(t0−),

(1.1)

where a(t), p(t) are 2π-periodic continuous functions and p(t) satisfies

p(t) ≤ 0 and p =
1

2π

∫ 2π

0

p(t)dt < 0.(1.2)

This system is included in a larger family of impact oscillators given by⎧⎨
⎩

x′′ + f(t, x, x′) = 0 for x(t) > q(t);
x(t) ≥ q(t);
x(t0) = q(t0) ⇒ x′(t0+) = −x′(t0−) + 2q′(t0),

(1.3)

where f is continuous and 2π-periodic with respect to t and q ∈ C2(R) is also
2π-periodic. From the viewpoint of mechanics this equation models the motion of
a particle attached to a nonlinear spring and bouncing elastically against the barrier
described by q(t). Thus (1.3) is a model of dynamical system with discontinuity [23]
that can be included in the wide family of vibro-impact systems [3]. Because of the
range of applications in physics and engineering, vibro-impact systems have attracted
the attention of a lot of researchers and in consequence the number of papers related
to this topic is huge; see [4, 8, 10, 21, 22, 14] and their bibliographies only to mention
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some of them. There are also interesting relations with Fermi accelerator [15, 35],
dual billiards [7], and celestial mechanics [9].

In spite of this, even for the simple case of a one-degree-of-freedom linear oscilla-
tor with impacts, the dynamics is far from being understood, although some results
are known [6, 24, 25, 33]. Our purpose in this paper is to investigate the existence of
nontrivial periodic bouncing solutions with prescribed number of impacts for linear
and asymptotically linear impact oscillators. As it is known, the existence of sub-
harmonics of arbitrary order is usually a hint of a complex dynamics. The following
definition clarifies the concept of bouncing solution we mean here.

Definition 1.1. A continuous function x : R → R is a bouncing solution for
problem (1.3) if the following conditions hold:

1. x(t) ≥ q(t) for all t ∈ R;
2. the set W = {t : x(t) = q(t)} is discrete and not empty;
3. x′(t0+) = −x′(t0−) + 2q′(t0) for any t0 ∈ W ;
4. given an interval I, if I ∩ W = ∅, then x ∈ C2(I,R+) and it is a classical

solution of (1.3).
Note that the change of variables y(t) = x(t)−q(t) enables to assume without loss

of generality that the barrier is fixed at zero. In this context, Lazer and McKenna [25]
proved the existence of 2π-periodic bouncing solution for a linear oscillator with small
amplitude forcing term and small viscous damping. Recently, Bonheure and Fabry
[6] proved the existence of a 2π-periodic bouncing solution for the linear oscillator

x′′ + λx = p(t),(1.4)

where λ > 0 is a constant and p(t) < 0. They also introduced the concept of admissible
solution in [6] to treat the case where p(t) changes its sign and showed some existence
results for perturbations of a linear oscillator. The main feature of an admissible
solution is that it can vanish on a whole interval. This is physically equivalent to an
attachment of the particle to the barrier x = 0 during a whole interval of time. Due
to the condition (1.2), we are able to work directly with the more specific concept of
bouncing solution, which constitutes a particular class of admissible solutions.

Obviously, our model (1.1) includes (1.4) and also the bouncing problem for the
Hill’s equation

x′′ + a(t)x = 0(1.5)

with obstacle q(t) = d > 0. Note that x(t) is a bouncing solution of the problem⎧⎨
⎩

x′′ + a(t)x = 0 for x(t) > d;
x(t) ≥ d;
x(t0) = d ⇒ x′(t0+) = −x′(t0−)

(1.6)

if and only if y(t) is a solution of (1.1) with p(t) = −a(t)d by means of the change
y(t) = x(t) − d.

The approach of this paper is different from that in [25, 6]. We apply a new
generalized version of Poincaré–Birkhoff twist theorem to the so-called successor map,
defined as follows. For a given τ ∈ R and v ∈ R

+, let us denote by x(t; τ, v) the
unique solution of the bouncing problem (1.1) with initial conditions x(τ ; τ, v) =
0, x′(τ ; τ, v) = v > 0. We assume conditions such that this solution is well defined
and vanishes at some time τ̂ > τ . Thus τ̂ is the time of the next impact. As the
bouncing is elastic, the velocity after this impact is

v̂ = −x′(τ̂ ; τ, v).
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If v̂ is finite and positive, then the map

S : R × R
+ → R × R

+,
S(τ, v) = (τ̂ , v̂)

is well defined, continuous, and one to one. Following [1, 31, 32, 33], this function is
called successor map, although in this context “impact map” would be also adequate.

Let us state some notation to be used in the rest of the paper: given a 2π-periodic

function p(t), p̄ = 1
2π

∫ 2π

0
p(t)dt is the mean value of p and ‖p‖∞ = max0≤t≤2π |p(t)|.

The projection for the component i of a given vector is denoted by Πi. All along the
paper, the iteration of the successor map is denoted by Sn(τ, v) = (τ̂n(τ, v), v̂n(τ, v))
and we will use τ̂n = τ̂n(τ, v), v̂n = v̂n(τ, v) for short. Therefore, Π1(Sn(τ, v)) =
τ̂n, Π2(Sn(τ, v)) = v̂n. Both notations are used without distinction.

Our main result is the following.
Theorem 1.2. Assume that the successor map S is well defined for all (τ, v) ∈

R × R
+ and p(t) ≤ 0 for all t, p̄ < 0. Then for any m,n ∈ N such that n >

2m(
√
‖a‖∞), there exists at least one 2mπ-periodic bouncing solution of (1.1) with ex-

actly n impacts in each period. Moreover, for any m ∈ N such that 2m(
√

‖a‖∞) < 1,
there exist at least two 2mπ-periodic solutions with one bouncing in each period.

The following corollaries present two concrete situations where the successor map
is well defined and the previous result applies.

Corollary 1.3. Assume that p(t) ≤ 0 for all t, p̄ < 0, and ā > 0. Then, the
conclusion of Theorem 1.2 holds.

Corollary 1.4. Assume that p(t) ≤ 0 for all t, p̄ < 0, and a(t) ≡ 0. Then for
any m,n ∈ N, n ≥ 2, there exists at least one 2mπ-periodic bouncing solution of (1.1)
with exactly n impacts in each period. Moreover, for any m ∈ N, there exist at least
two 2mπ-periodic solutions with one bouncing in each period.

Remark 1.5. In our opinion, the application of the Poincaré–Birkhoff twist the-
orem to the successor map instead of the Poincaré map (as it is done in [6]) is more
natural and direct. For the linear impact oscillator (1.4) we can obtain at least two
2mπ-periodic bouncing solutions for (1.4) with exactly 1 impact in each period if
2m

√
λ < 1 , whereas in [6] only one solution is found. Moreover, we can deal with a

nonconstant coefficient a(t), in contrast with [6].
In order to understand some of the new phenomena arising in vibro-impact sys-

tems, it is interesting to consider in detail the Hill’s equation with impacts (1.6) as a
particular case. Note that if the obstacle is placed at d = 0, then a classical solution
x of Hill’s equation generates a bouncing solution |x| of (1.6). Hence, in this case
(1.6) inherits the dynamics of Hill’s equation without impacts and in consequence its
resonant or nonresonant character. However, if the obstacle is d > 0, the situation
is different. Physically, this model corresponds to a kind of offset impact oscillator
[18], consisting of a linear spring-mass system with a displaced wall with respect to
the origin (see Figure 1(a)). The time-dependence of the stiffness coefficient a(t) of
the spring can be produced by periodic changes of the temperature or other physical
variables. A periodic bouncing solution corresponds to a nontrivial periodic motion
with prescribed impacts in one period. The following result holds.

Corollary 1.6. Assume that d > 0, a(t) ≥ 0 for all t, and ā > 0. Then for any
m,n ∈ N such that n > 2m(

√
‖a‖∞), there exists at least one 2mπ-periodic bouncing

solution of (1.6) with exactly n impacts in each period.
The proof follows from Corollary 1.3 by means of the change of variables y = x−d.

Thus, the Hill’s equation could be unstable (equivalently, all nontrivial solutions are
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1.a) 1.b)

q(t)

x=0{d

Fig. 1. (a) The offset oscillator. (b) The “ping-pong” model.

unbounded [26]) but nevertheless (1.6) has periodic bouncing solutions. In other
words, possible parametric resonances are killed by the presence of an obstacle. This
fact is a good example of the obstacle’s influence in the dynamics of a given system.

Another simple but physically interesting model is the “ping-pong” problem, that
is, a free ball moving in a vertical line subjected to gravity force and bouncing against
a barrier or racket describing a periodic movement q(t) (see Figure 1(b)). If G is the
acceleration of gravity, the motion of the ball is described by⎧⎨

⎩
x′′ + G = 0 for x(t) > q(t);
x(t) ≥ q(t);
x(t0) = q(t0) ⇒ x′(t0+) = −x′(t0−) + 2q′(t0).

This is a simple variation of Fermi’s model that have deserved the attention of many
researchers (see [19, 5, 13] and their references). After the change y(t) = x(t) − q(t),
the problem is transformed in (1.1) with a(t) ≡ 0 and p(t) = −G − q′′(t). Then,
if q′′(t) > −G for any t, the ball experiences a diversity of periodic motions with a
prescribed number of impacts as a consequence of Corollary 1.4.

Remark 1.7. The concept of bouncing solution could involve other new features
and strong differences with the situation when working with differential equations
without impacts. An interesting open problem is to prove or disprove the validity
of Massera’s theorem for impact oscillators. Massera’s theorem asserts that in the
framework of periodic differential equations the existence of a bounded solution implies
the existence of a periodic solution [28]. This classical result is false in the context
of equations with impacts in the sense that a bounded bouncing solution (using the
definition in this paper) does not imply a periodic bouncing solution. To prove this,
consider the Mathieu equation a(t) = γ + δ cos t with obstacle d = 0 and parameters
γ, δ placed in a stability region with irrational rotation number. Then any nontrivial
solution of (1.5) is quasi-periodic (but not periodic) and in consequence every bouncing
solution of (1.5) is bounded but there are no periodic bouncing solutions. Of course,
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Fig. 2. A spring-mass impact system.

this is just an effect of the definition chosen here, since the trivial solution is excluded.
Note that the trivial solution is not a bouncing solution but it is an admissible solution
in the sense of [6]. So the exciting question of the validity of Massera’s theorem for
impact oscillators is still open: does the existence of a bounded bouncing solution
imply the existence of a periodic admissible solution (including trivial solution)? We
do not know the answer.

Our successor map approach is also suitable for use in nonlinear impact oscillators,
as it is done in [34] for a singular equation. Here we include a result about the
asymptotically linear impact oscillator.

Theorem 1.8. Let us assume that g(t, x) is continuous, 2π-periodic with respect
to t, and satisfies

lim sup
x→0+

∣∣∣∣g(t, x)

x

∣∣∣∣ < +∞, lim
x→+∞

g(t, x)

x
= 0.(1.7)

Besides, let us suppose that the successor map S of the bouncing problem⎧⎨
⎩

x′′ + a(t)x + g(t, x) = p(t) for x(t) > 0;
x(t) ≥ 0;
x(t0) = 0 ⇒ x′(t0+) = −x′(t0−)

(1.8)

is well defined for all (τ, v) ∈ R × R
+ and p(t) ≤ 0 for all t, p̄ < 0. Then, the

conclusion of Theorem 1.2 holds.
A corollary of the previous result is the following.
Corollary 1.9. Assume that p(t) ≤ 0 for all t, p̄ < 0, g(t, x) satisfies (1.7) and

a(t)x + g(t, x) ≥ 0 for any x ≥ 0. Then, the conclusion of Theorem 1.2 holds.
This result can be illustrated by a simple physical model presented in Figure 2.

This mechanical system is a modification of the model presented in [2, 17] and consists
of a single mass moving in a straight line, attached to the wall by two linear springs
of constant k and natural length L and perturbed periodically by an external force
p(t). If it is assumed that the impacts between the mass and the wall are perfectly
elastic, then the motion of the mass is governed by⎧⎪⎪⎨

⎪⎪⎩
mx′′ + 2k

[
x− Lx

(c2 + x2)1/2

]
= p(t) for x(t) > 0;

x(t) ≥ 0;
x(t0) = 0 ⇒ x′(t0+) = −x′(t0−),
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where c > 0 is the distance between the point of impact and the attachments of the
springs (see [2, 17] for more details). If p(t) ≤ 0 for all t, p̄ < 0, it is easy to verify
that this problem is under the assumptions of Corollary 1.9 when c > L.

The rest of the paper is organized as follows. In section 2, the proof of The-
orem 1.2 is given. It relies on a generalized version of Poincaré–Birkhoff theorem.
Section 3 collects some auxiliary lemmas which are needed in the mentioned proof,
more specifically the twist property of some iteration of the successor map is proved.
Finally, section 4 is devoted to the study of the asymptotically linear impact oscillator.

2. Existence of periodic bouncing solutions. We will apply the Poincaré–
Birkhoff twist theorem to the successor map S for proving the existence of 2π-periodic
bouncing solutions for impact oscillators (1.1). The successor map was used recently
by Ortega [33] for investigation of the boundedness of all the solutions for a linear
impact oscillator by using Moser’s twist theorem and the authors [34] for investigation
of the periodic bouncing solutions for some singular impact oscillator. As a general
idea, this successor map is just a different section of the flux and it goes back at least
to Alekseev [1] and Moser [30].

The following generalized version of Poincaré–Birkhoff twist theorem is based on
the theorems of Franks [16] and Ding [11] and is slightly different from the version
used by others (see, for example, [20], [6], and [27]).

Let A and B be two annuli

A := S1 × [a1, a2], B := S1 × [b1, b2]

with 0 < b1 < a1 < a2 < b2 < +∞. A map f : A → B possesses a lift f̃ : R×[a1, a2] →
R × [b1, b2] with the form

θ′ = θ + h(θ, ρ), ρ′ = g(θ, ρ),

where h, g are continuous and 2π-periodic in θ. We say that f̃ satisfies the boundary
twist condition if

h(θ, a1) · h(θ, a2) < 0 for θ ∈ [0, 2π].

Theorem 2.1. Assume that f : A → B is an area-preserving homeomorphism
homotopic to the inclusion such that f(A) ∩ ∂B = ∅. Moreover, f possesses a lift f̃
satisfying the boundary twist condition and the area of the two connected components
of the complement of f(A) in B is the same as the area of the corresponding connected
components of the complement of A in B. Then, f has at least two geometrically
distinct fixed points (θi, ρi), (i = 1, 2) satisfying h(θi, ρi) = 0 for i = 1, 2.

Proof. The proof basically combines the proofs from Franks [16] and Ding [11]. In
[16], Franks showed that by using a result from Oxtoby and Ulam, one can extend f
to an area-preserving homeomorphism F : B → B such that F is the identity on the
boundary of B (see the proof and the remark of Theorem 4.2 in [16]). Then, we can
assume further that F is an area-preserving homeomorphism of D := {(θ, ρ) : ρ ≤ b2}
to its image such that O ∈ F (D\B). Now we meet all the assumptions of the argument
in [11]. According to the argument of [11], we can prove that F , and then f , has at
least two fixed points in A. Moreover, the fixed points (θi, ρi) satisfy h(θi, ρi) = 0
for i = 1, 2 (see [11] and [12] for more details). Figure 3 illustrates the geometrical
meaning of the hypotheses.

Now, we apply the above Poincaré–Birkhoff theorem to the successor map S.
From the discussion in the next section we know that our successor map S

S : (τ, v) → (τ̂ , v̂)
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Fig. 3. The Poincaré–Birkhoff theorem.

is well defined, one to one, and continuous in its domain R×R
+. Moreover, it satisfies

S(τ + 2π, v) = S(τ, v) + (2π, 0).

Thus, we can interpret τ and v as polar coordinates and S is an embedding home-
omorphism on S1 × R

+. It is easy to show that for any n,m ∈ N, a fixed point
of the map Sn(τ, v) − (2mπ, 0) corresponds a 2mπ-periodic bouncing solution of the
equation with n impacts in each period. We have the following lemma.

Lemma 2.2. S is an area-preserving map with the area element vdvdτ . Moreover,
S is area-preserving homotopic to the inclusion, and for any annuli A ⊂ B ⊂ S1×R

+

with S(A) ⊂ B
◦
, the area of the two connected components of the complement of S(A)

in B is the same as the area of the corresponding components of the complement of
A in B.

The proof of this lemma is similar to the proof of Lemma 1 in [20] and the proof
of Proposition 2.3 in [31]. At first we can prove, under the assumption of the C1-
smoothness of a and p which implies the C1-smoothness of S, that S is an exact
symplectic map in its domain; that is, for any C1-closed path γ in its domain∫

γ

v2

2
dτ =

∫
S◦γ

v2

2
dτ.(2.1)

Moreover, note that S is an embedding homeomorphism on S1 × R
+, then from

Jordan separation theorem (see, for instance, [29]), we know that for any annuli

A ⊂ B ⊂ S1 × R
+ with S(A) ⊂ B

◦
, there are two connected components of the

complement of S(A) in B. Such components are the images of the two components
of the complement of A in B. Hence, the geometric meaning of (2.1) is that the area
of the components of the complement of S(A) in B are the same as the area of the
corresponding components of the complement of A in B. The conclusion for the case
of continuous functions a and p follows from an approximation argument.

Moreover, Lemmas 3.4 and 3.6 (see section 3) imply that, under the assumptions

of Theorem 1.2, we can choose v
(n)
− < v

(n)
+ such that

Π1(Sn(τ, v
(n)
− )) − τ < 2mπ,

Π1(Sn(τ, v
(n)
+ )) − τ > 2mπ for τ ∈ [0, 2π].
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Hence, let A be the annulus bounded by S1 ×{v(n)
− } and S1 ×{v(n)

+ } and let B be the
annulus bounded by S1 × {v∗} and S1 × {v∗}. We can prove, as showed in section 3,

that f(A) ⊂ B
◦

for v∗ > 0 sufficiently small and v∗ sufficiently large, where f : A → B
is defined by

f(τ, v) = Sn(τ, v) − (2mπ, 0).

It is easy to see that f is an area-preserving homeomorphism homotopic to the inclu-
sion and f̃ satisfies the boundary twist condition. Thus the conclusion of Theorem 1.2
follows by a direct application of Theorem 2.1. Note that in any case we get two fixed
points of Sn(τ, v) − (2mπ, 0). However, if the number of bouncings n is greater than
or equal to 2, these two fixed points provided by Theorem 2.1 may correspond to the
same bouncing solution, so we can only assure the existence of two different 2mπ-
periodic bouncing solutions when there is only one impact in each period.

3. Twist property for the successor map. The aim of this section is to
provide the necessary properties for the application of the Poincaré–Birkhoff theorem
yet done in section 2. Basically, our goal is to prove that the rotation for some iteration
of the successor map is slow for small velocities and fast for large velocities. This will
be done through some auxiliary lemmas concerning the asymptotic dynamics of the
solutions for (1.1). Lemma 3.1 gives a second-order differential inequality to be used
later. Lemma 3.2 shows that S is well defined for v � 1, Lemma 3.3 shows that the
impact velocity v̂ is small if the initial velocity v is small enough and in consequence,
Lemma 3.4 gives the slow rotation for some iteration of S for small initial velocities.
Lemma 3.5 discusses, under the assumption that the successor map is well defined,
the fast rotation of S for large velocities by using the Sturm comparison theorem.
This fact implies (Lemma 3.6) the fast rotation for some iteration of S for large initial
velocities. At the end of this section, we discuss, in Lemmas 3.7 and 3.8, when the
successor map S is well defined by using some oscillatory properties of the solutions
of the Hill’s equation.

Lemma 3.1. Suppose that x1(t) is a solution of the equation x′′ = Mx for t ∈ I,
where M > 0, and x2(t) satisfies the differential inequality x′′ ≤ Mx for t ∈ I, with
the same initial conditions x1(τ) = x2(τ), x′

1(τ) = x′
2(τ). Then x1(t) ≥ x2(t) for

t ∈ I.
Proof. Let zn(t) = xn(t)−x2(t), where xn(t) is the solution of x′′ = Mx with the

initial condition xn(τ) = x2(τ), x′
n(τ) = x′

2(τ) + 1
n . Then zn(τ) = 0, z′n(τ) = 1

n > 0
which implies that zn(t) > 0 for t > τ and t close to τ . Moreover, z′′n(t) ≥ Mzn(t)
for t > τ . Thus z′n(t) > z′n(τ) > 0 and zn(t) increases strictly for t > τ . Hence
xn(t) > x2(t) for t > τ . Let n → ∞. Then xn(t) → x1(t) in any compact interval
by using the continuous dependence on initial values. Therefore, x1(t) ≥ x2(t) for
t ∈ I.

Lemma 3.2. If p(t) ≤ 0 and p = 1
2π

∫ 2π

0
p(t)dt < 0, then every solution x(t; τ, v)

of (1.1) starting from x(τ ; τ, v) = 0, x′(τ ; τ, v) = v > 0 does not satisfy x(t; τ, v) =
x′(t; τ, v) = 0 for any t in its domain. Moreover, S is well defined and one to one for
v � 1.

Proof. Note that every solution of (1.1) starting from x(τ ; τ, v) = 0, x′(τ ; τ, v) =
v > 0 satisfies

x′ = y, y′ = −a(t)x + p(t)

in (x, y)-plane before it meets x = 0 again. Then x′(t; τ, v) > 0 when it is in the
half-plane y > 0 which implies that x(t; τ, v) > 0 for t > τ and close to τ . Moreover,
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if there are τ1, τ2 such that

x′(τ1; τ, v) = x′(τ2; τ, v) = 0, x′(s; τ, v) > 0 for s ∈ (τ1, τ2),

then

x(τ2; τ, v) > x(τ1; τ, v).(3.1)

If x′(τ3; τ, v) = 0 and x′(s; τ, v) < 0 for s ∈ (τ3, t), then by using polar coordinates

x = r cos θ, y = r sin θ

in the half-plane y ≤ 0 we get

r′ = (1 − a(t))r cos θ sin θ + p(t) sin θ ≥ −Kr,

where K = max0≤t≤2π |1 − a(t)|. Thus

r(t) ≥ r(τ3) exp(−K(t− τ3)).(3.2)

Therefore, either x(t; τ, v) has no any impact in t > τ or x(t; τ, v) has its next impact
at t = τ̂ . In this case, (3.1), (3.2) imply that

x′(τ̂ ; τ, v) ≤ −x(τ̃ ; τ, v) exp(−K(τ̂ − τ)) < 0,

where t = τ̃ is the first time x(t; τ, v) meets y = 0 after τ . The conclusion of the first
part of the lemma is thus proved.

Next, note that when x(t; τ, v) is remaining in half-plane x > 0,

x′′(t; τ, v) = −a(t)x(t; τ, v) + p(t) ≤ Mx(t; τ, v),

where M = max0≤t≤2π |a(t)|. Then Lemma 3.1 implies that

x(t; τ, v) ≤ M0 =
v

2
√
M

(exp(2π
√
M) − exp(−2π

√
M))(3.3)

for t ∈ (τ, τ + 2π). Thus,

x′(t; τ, v) = v −
∫ t

τ

(a(s)x(s; τ, v) − p(s))ds ≤ O(v) +

∫ t

τ

p(s)ds.

Because p̄ < 0, there must be τ̃ ∈ (τ, τ + 2π) such that

x(τ̃ ; τ, v) > 0, x′(τ̃ ; τ, v) = 0, x′(s; τ, v) > 0 for s ∈ (τ, τ̃),

provided that v � 1. Moreover, for t ∈ (τ̃ , τ + 2π), we have

x(t; τ, v) = x(τ̃ ; τ, v) −
∫ t

τ̃

∫ w

τ̃

(a(s)x(s; τ, v) − p(s))dsdw = O(v) +

∫ t

τ̃

∫ w

τ̃

p(s)dsdw

from which it follows that there exists τ̂ ∈ (τ̃ , τ + 2π) such that

x(τ̂ ; τ, v) = 0, x′(τ̂ ; τ, v) < 0, x(t; τ, v) > 0 for t ∈ [τ̃ , τ̂),

provided that v � 1 and p̄ < 0. The lemma is thus proved.
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The next lemma clarifies the behavior of the next impact velocity v̂ for small v.
Lemma 3.3. If p(t) ≤ 0 and p < 0, then the next velocity v̂ of the successor map

satisfies

lim
v→0+

v̂(τ, v) = 0

uniformly for τ ∈ [0, 2π).
Proof. As it is shown in Lemma 3.2, for v > 0 small enough, we have a well-defined

τ̂ ∈ (τ, τ + 4π). Moreover,

max
τ≤t≤τ̂

x(t; τ, v) = O(v) as v → 0+.(3.4)

By contradiction, let us assume that there exist {τn} belonging to [0, 2π) and {vn}
with vn → 0+ as n → ∞, such that v̂(τn, vn) ≤ −δ < 0. Then there exist tn ∈
(τn, τ̂(τn, vn)) satisfying

x′(tn; τn, vn) = −δ

2
, x′(s; τn, vn) ≤ −δ

2
for s ∈ [tn, τ̂(τn, v)].

Denote by P = ‖p‖∞, then

−δ

2
≥ v̂(τn, vn) − x′(tn; τn, vn) = −

∫ τ̂(τn,vn)

tn

(a(s)x(s; τn, vn) − p(s))ds

≥ −(M + P )(τ̂(τn, vn) − tn),

provided that maxtn≤t≤τ̂(τn,vn) x(t; τn, vn) ≤ 1 (this is guaranteed for vn small by
(3.4)). Thus we can estimate

max
τn≤t≤τ̂n

x(t; τn, vn) ≥ x(tn; τn, vn) − x(τ̂(τn, vn); τn, vn)

= −
∫ τ̂(τn,vn)

tn

x′(s; τn, vn)ds ≥ δ

2
· (τ̂(τn, vn) − tn) ≥ δ2

4(M + P )
,

which contradicts (3.4). The result is thus proved.
Let us recall that we write Sn(τ, v) = (τ̂n(τ, v), v̂n(τ, v)) and we will use the

abbreviation τ̂n = τ̂n(τ, v), v̂n = v̂n(τ, v). Then, it is deduced from Lemma 3.3 that
for all n ∈ N and vn > 0, there exists v0 > 0, such that

|x′(t; τ, v)| ≤ vn for v ∈ (0, v0], t ∈ [τ, τ̂n].

Now, suppose that there are c > 0 and δ > 0 such that p(t) ≤ −c for t ∈ [τ0 − 2δ, τ0 +
2δ]. Then,

τ̂n − τ < δ for v � 1 and τ ∈ [τ0 − δ, τ0 + δ].(3.5)

Actually,

|v̂j+v̂j−1| = |x′(τ̂ j ; τ, v)−x′(τ̂ j−1; τ, v)| =

∫ τ̂j

τ̂j−1

(a(t)x(t; τ, v)−p(t))dt ≥ c

2
(τ̂ j−τ̂ j−1),

provided that (3.4) and [τ̂ j−1, τ̂ j ] ⊂ [τ0 − 2δ, τ0 + 2δ]. Then

τ̂n − τ ≤ 4

c

n∑
j=1

v̂j < δ(3.6)
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if we choose v � 1 and τ ∈ [τ0 − δ, τ0 + δ].
Now, we can prove the twist property of the successor map for v � 1.
Lemma 3.4. Let us suppose that p(t) ≤ 0 and p̄ < 0. Then, for all n,m ∈ N,

there exists vn > 0 such that

Π1(Sn(τ, v)) − τ < 2mπ for v ∈ (0, vn] and τ ∈ [0, 2π].

Proof. Since p(·) is continuous and p̄ < 0, there are c > 0, δ > 0, and τ0 ∈ [0, 2π]
such that p(t) ≤ −c for t ∈ [τ0 − 2δ, τ0 + 2δ]. Then, there exists v � 1 such that

τ̂n(τ, v) − τ < δ for τ ∈ [τ0 − δ, τ0 + δ].(3.7)

For τ ∈ (τ0 + δ, 2π + τ0 − δ) either τ̂n(τ, v) ≤ 2π + τ0 − δ which implies that

τ̂n − τ < 2π − 2δ,(3.8)

or there exists t ∈ (τ̂ j−1, τ̂ j) ∩ [2π + τ0 − δ, 2π + τ0] for some j ∈ {1, 2, . . . , n}. Then,
by estimating like in (3.6) it is proved that, if v small enough, τ̂ j − t ≤ δ

n . From here
it is deduced that

τ̂ j ∈
(

2π + τ0 − δ, 2π + τ0 +
δ

n

]
(3.9)

and then τ̂n − τ̂ j < n−1
n δ which implies that

τ̂n − τ = τ̂n − τ̂ j + τ̂ j − t + t− τ <
n− 1

n
δ +

δ

n
+ 2π + τ0 − (τ0 + δ) = 2π.(3.10)

Since S is continuous on R × R
+ (this is a consequence of the uniqueness of the

solution for the initial value problem for linear equation), the above estimations are
uniform for the compact interval [0, 2π]. Therefore, (3.7)–(3.10) complete the proof
of the lemma.

Under the assumption that the successor map S is well defined, our next result
proves the twist property for large velocities.

Lemma 3.5. Assume that S : (τ, v) → (τ̂ , v̂) for (τ, v) ∈ R × R
+ is well defined

and p(t) ≤ 0, p̄ < 0. Then

lim inf
v→+∞

[τ̂(τ, v) − τ ] ≥ π√
‖a‖∞

(3.11)

uniformly for τ ∈ [0, 2π). If a(t) ≡ 0, then

lim
v→+∞

[τ̂(τ, v) − τ ] = +∞(3.12)

uniformly for τ ∈ [0, 2π).
Proof. Suppose firstly that ‖a‖∞ > 0 and there are τn ∈ [0, 2π) and vn > 0 with

vn → +∞ as n → ∞ such that τ̂(τn, vn)−τn ≤ π/
√
‖a‖∞−γ with γ > 0. Then there

are τ∗ ∈ [0, 2π] and τ̂∗ ∈ (τ∗, τ∗+π/
√
‖a‖∞−γ] such that τn → τ∗ and τ̂(τn, vn) → τ̂∗

as n → ∞. Moreover, yn(t) = x(t; τn, vn)/vn is the solution of the equation

x′′ + a(t)x =
1

vn
p(t)
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with the initial conditions yn(τn) = 0, y′n(τn) = 1. By continuous dependence of the
solutions with respect to initial value and parameters we have that

lim
n→∞

yn(t) = y0(t) and lim
n→∞

y′n(t) = y′0(t)(3.13)

uniformly on compact intervals, where y0(t) is the solution of Hill’s equation (1.5) with
the initial condition y0(τ∗) = 0, y′0(τ∗) = 1. Thus y0(τ̂∗) = 0 due to the continuous
dependence of the solutions with respect to initial values and parameters. On the
other hand, by using Sturm comparison theorem, it is proved that

τ ′ − τ ≥ π√
‖a‖∞

,

where τ ′ and τ are two consecutive zeros of y0(t), so in consequence τ̂∗ − τ∗ ≥
π/

√
‖a‖∞. This is a contradiction. If a(t) ≡ 0, then any solution x(t; τ, v) of the

equation x′′ = p(t) has the derivative x′(t; τ, v) = v +
∫ t

τ
p(s)ds. Hence, for any

fixed v > 0 there exists a τ̂ > τ such that x(τ̂ ; τ, v) =
∫ τ̂

τ
(v +

∫ t

τ
p(s)ds)dt = 0 and

limv→+∞(τ̂ − τ) = +∞. Therefore, the lemma is proved.
From the above estimation we can prove the twist property of successor map for

v � 1. Recall that r(t) = (x2(t; τ, v) + (x′(t; τ, v))2)1/2 satisfies

−Kr(t) − P ≤ r′(t) ≤ Kr(t) + P for t ∈ (τ, τ̂),

where K = max0≤t≤2π |1 − a(t)| and P = max0≤t≤2π |p(t)|. Then, by using Gronwall
inequality, (

v +
P

K

)
exp(−KT ) ≤ v̂ +

P

K
≤

(
v +

P

K

)
exp(KT ),(3.14)

provided that τ̂ − τ ≤ T . Suppose that Π1(Sn(τ, v)) − τ ≤ 2mπ, then

Π1(Si+1(τ, v)) − Π1(Si(τ, v)) ≤ 2mπ for i = 0, 1, . . . , n− 1.

This implies that(
Π2(Si(τ, v)) +

P

K

)
exp(−2mπK) ≤ Π2(Si+1(τ, v)) +

P

K

≤
(

Π2(Si(τ, v)) +
P

K

)
exp(2mπK)

for i = 0, 1, . . . , n− 1. Thus for a given v+
0 > 0 we have v+

n,m > 0 such that

if v > v+
n,m and Π1(Sn(τ, v)) − τ ≤ 2mπ, then Π2(Si(τ, v)) > v+

0(3.15)

for i = 0, 1, . . . , n− 1. Hence, the following result is obtained.
Lemma 3.6. Let us suppose that p(t) ≤ 0 and p̄ < 0. Let n,m ∈ N be such that

n > 2m(
√
‖a‖∞). Then, there exists v+

n,m > 0 such that

Π1(Sn(τ, v)) − τ > 2mπ for v ≥ v+
n,m and τ ∈ [0, 2π].

Proof. From Lemma 3.5 we know that there exists v+
0 > 0 such that

Π1(S(τ, v)) − τ ≥ π√
‖a‖∞

for v ≥ v+
0 and τ ∈ [0, 2π).(3.16)
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By the periodicity of the equation, it is verified that

S(τ + 2π, v) = S(τ, v) + (2π, 0).

This means that the function f(τ) = Π1(S(τ, v))− τ is 2π-periodic. Therefore, (3.16)
holds for all τ ∈ R. Taking v+

n,m as in (3.15), if v > v+
n,m then either Π1(Sn(τ, v))−τ >

2mπ or Π1(Sn(τ, v)) − τ ≤ 2mπ. In the second case, it follows from (3.15) that
Π2(Si(τ, v)) > v+

0 for i = 0, 1, . . . , n− 1, and in consequence for every i = 1, . . . , n− 1
we have

Π1(Si+1(τ, v)) − Π1(Si(τ, v)) ≥ π√
‖a‖∞

for v ≥ v+
n,m and τ ∈ [0, 2π).

Adding the previous inequalities for i = 1, . . . , n− 1 with (3.16),

Π1(Sn(τ, v)) − τ ≥ n
π√
‖a‖∞

.

Now, taking into account that n > 2m(
√
‖a‖∞), the result is done.

The rest of this section is devoted to the discussion of the conditions implying that
the successor map is well defined. At first we can prove as in the proof of Lemma 3.2
that successor map is well defined if p(t) ≤ 0 for all t, p̄ < 0 and a(t) ≡ 0. We will
prove in the following that ā > 0 is also enough to assure that the successor map is
well defined. With this, the proofs of Corollaries 1.3 and 1.4 are completed.

Consider the solution x(t; τ, v) of the impact oscillator (1.1) starting from

x(τ ; τ, v) = 0, x′(τ ; τ, v) = v > 0.

Lemma 3.2 implies that either there exists τ̂ > τ such that x(τ̂ ; τ, v) = 0 and
x(t; τ, v) > 0 for t ∈ (τ, τ̂), or

x(t; τ, v) > 0 for all t > τ,(3.17)

and in consequence x(t; τ, v) is a (classical) solution of the equation x′′ +a(t)x = p(t),
with t > τ . If (3.17) holds, we will show that there is a constant δ > 0 such that
x(t; τ, v) ≥ δ for sufficiently large t > τ . Actually, we will show firstly that (3.17)
implies that

|x(t; τ, v)| + |x′(t; τ, v)| ≥ 2δ.(3.18)

By contradiction, let us suppose that there exists τ1 > τ such that x(τ1; τ, v) = α ≥ 0,
x′(τ1; τ, v) = β with |α| + |β| < 2δ. Then as in Lemma 3.2 it is shown that

x(t; τ, v) ≤ 1

2
√
M

((
√
Mα + β) exp(2π

√
M) + (

√
Mα− β) exp(−2π

√
M))

for t ∈ (τ1, τ1 + 2π), being M = ‖a‖∞. Thus,

x(t; τ, v) = α +

∫ t

τ1

(
β +

∫ s

τ1

(−a(ξ)x(ξ; τ1, v) + p(ξ)dξ)ds

)

= O(|α| + |β|) +

∫ t

τ1

∫ s

τ1

(p(ξ))dξds.
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This implies that, using p̄ < 0, if δ is small enough, then there must be some τ̂ ∈
(τ1, τ1 + 2π) such that x(τ̂ ; τ, v) = 0. This contradicts (3.17).

Note that (3.18) implies that v ≥ 2δ. Moreover, there exists t1 > τ such that
x(t1; τ, v) ≥ δ. We claim that

x(t; τ, v) ≥ δ for t ≥ t1.(3.19)

If (3.19) is not true, let t2 = inf{t : t ≥ t1, x(t; τ, v) < δ}. Then x′(t2; τ, v) ≤ 0. If
x′(t; τ, v) ≤ 0 for t ≥ t2, then x(t; τ, v) ≤ x(t2; τ, v) ≤ δ for t ≥ t2, and (3.18) implies
that x′(t; τ, v) < −δ for t ≥ t2. Thus

x(t; τ, v) = x(t2; τ, v) +

∫ t

t2

x′(s; τ, v)ds ≤ −δ(t− t2) + δ < 0

for t > t2 + 1 which contradicts (3.17). Hence, we can define t3 = inf{t : t ≥
t2, x′(t; τ, v) > 0}. Clearly, x′(t3; τ, v) = 0 and

x(t3; τ, v) = x(t2; τ, v) +

∫ t3

t2

x′(s; τ, v)ds ≤ x(t2; τ, v) ≤ δ

which contradicts (3.18). Therefore, we have proved the following result.
Lemma 3.7. There exists δ > 0 independent of (τ, v) such that if S is not defined

for some (τ, v) ∈ R × R
+, then x(t; τ, v) ≥ δ for t � 1.

Now we assume that Hill’s equation is oscillatory, that is, all nonzero solution
of Hill’s equation have infinitely many zeros. It is a known fact (see [26]) that these
zeros correspond to a sequence tending to +∞.

Lemma 3.8. Let us assume that Hill’s equation (1.5) is oscillatory. Then there
exist β0 > 0 and ε0 > 0 such that any solution x(t; τ, v) of (1.1) such that x(τ1; τ, v) =
α, x′(τ1; τ, v) = β with β ≥ β0 and 0 ≤ α ≤ ε0β will have a next zero τ̂ > τ1.

Proof. Let yβ(t) := 1
βx(t; τ, v). Then, yβ(t) is a solution of the equation

x′′ + a(t)x =
1

β
p(t)

for t > τ1 and yβ(s) > 0 for s ∈ (τ1, t) with initial conditions

yβ(τ1) =
α

β
, y′β(τ1) = 1.

If y0(t) is the solution of the Hill’s equation x′′ + a(t)x = 0 with initial conditions
y0(τ1) = 0, y′0(τ1) = 1, by continuous dependence of the solutions with respect to
initial value and parameters we have that

lim
β→+∞

yβ(t) = y0(t) and lim
β→+∞

y′β(t) = y′0(t)(3.20)

uniformly on compact interval. Let τ̂0(τ1) be the next zero of y0(t) after τ1 (that is,
y0(τ̂0) = 0 and y0(t) > 0 for all τ1 < t < τ̂0). Then, τ̂0(τ1) is a simple zero with
y′0(τ̂0) < 0 independent of β. Thus (3.20) implies that for β large enough and α

β small

enough there exists τ̂(τ1) such that yβ(τ̂) = 0. The lemma is thus proved.
A direct consequence of the above lemma is that the successor map S for the

impact oscillator (1.1) is well defined for v � 1. As shown in [26], the condition
ā > 0 implies that Hill’s equation (1.5) is oscillatory. This condition is also enough to
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assure that our successor map is well defined. Actually, if S is not defined for some
(τ, v) with v > 0, then by using Lemmas 3.7 and 3.8, the solution x(t; τ, v) will satisfy

x(t; τ, v) ≥ δ and |x
′(t;τ,v)
x(t;τ,v) | < max{β0

δ , 1
ε0
} for t large enough. Now, by integrating

(1.1) in [2lπ, 2kπ] for l, k ∈ N we have

∫ 2kπ

2lπ

(
x′′

x

)
dt + 2π(k − l)ā ≤ 0,

but this implies that

2π(k − l)ā +

∫ 2kπ

2lπ

(x′)2

x2
dt− 2 max

{
β0

δ
,

1

ε0

}
≤ 0.

It is clear that this is not possible if k is large enough. Therefore the successor map
S is well defined for all (τ, v) with v > 0, provided that p(t) ≤ 0 for all t, p̄ < 0 and
ā > 0.

4. Asymptotically linear impact oscillators. Finally, we discuss the case
of the asymptotically linear impact oscillator (1.8). Throughout this section, it is
understood that the assumptions of Theorem 1.8 hold. Such assumptions imply that
there exist M,P > 0 such that |a(t)x + g(t, x) − p(t)| ≤ Mx + P for x ≥ 0 and
for all t. Moreover, the successor map S of the problem (1.8) is well defined for all
(τ, v) ∈ R × R

+ and p(t) ≤ 0 for all t, p̄ < 0. Then, by using similar arguments as in
Lemmas 3.2 and 3.3, it is easy to prove that the conclusions of Lemma 3.4 are still
valid for the successor map of problem (1.8). Roughly speaking, Lemma 3.4 means
that the rotation of some iteration of the successor map is slow for small velocities.
On the other hand, it is necessary to control the behavior of the successor map for
large velocities (that is, an analogous to Lemma 3.6). To this purpose, some lemmas
are needed. For the moment, let us assume that ‖a‖∞ > 0.

Lemma 4.1. The solution x(t; τ, v) of problem (1.8) with initial conditions
x(τ ; τ, v) = 0, x′(τ ; τ, v) = v > 0 satisfies(
r(τ1) +

P

M + 1

)
exp(−(M + 1)(τ2 − τ1))≤ r(τ2) +

P

M + 1

≤
(
r(τ1) +

P

M + 1

)
exp((M + 1)(τ2 − τ1))(4.1)

for τ2 − τ1 ≥ 0, where r(t) = ((x(t; τ, v))2 + (x′(t; τ, v))2)1/2.
Proof. This inequality is proved by using the Gronwall lemma as in (3.14).
Let n,m ∈ N be such that n > 2m(

√
‖a‖∞). Then, there exists σ > 0, such that

n > 2m(
√

‖a‖∞ + 2σ). Let us fix the positive numbers T = nπ√
‖a‖∞

and

δ =
1

2

∣∣∣∣∣ π√
‖a‖∞ + 2σ

− π√
‖a‖∞ + σ

∣∣∣∣∣ .
Note that σ (and in consequence δ) can be chosen arbitrarily small. By using the
assumption (1.7), it is possible to take d > 0 (depending on σ) such that

max
0≤t≤2π

|a(t)x + g(t, x) − p(t)| ≤ (‖a‖∞ + σ)x for x ≥ d.
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The following estimation is obtained by using the previous lemma.
Lemma 4.2. Let x(t; τ, v) be the solution of (1.8) with initial conditions

x(τ ; τ, v) = 0, x′(τ ; τ, v) = v > 0.

Then for d, δ, and T > 0 as given before, there exists vδ > 0 such that if v ≥ vδ, then
there exists τ+

d > τ such that x(τ+
d ; τ, v) = d and x(t; τ, v) < d for t ∈ (τ, τ+

d ), and
moreover |τ+

d − τ | < δ. Besides, if there exists τ−d > τ+
d such that x(τ−d ; τ, v) = d,

x′(τ−d ; τ, v) < 0, and |τ−d − τ | < T , then there exists τ̂ > τ+
d such that x(τ̂ ; τ, v) = 0

and |τ̂ − τ−d | < δ. Moreover, if δ is small enough, then

v+
d

2
≤ v ≤ 2v+

d .(4.2)

Proof. Firstly, the global existence of x(t; τ, v) right to τ is assured from the
assumptions. Suppose there is no time t ∈ (τ, τ + 1) such that x(t; τ, v) = d, that is,
0 < x(t; τ, v) < d for t ∈ (τ, τ + 1). Then

x′(t; τ, v) >

(
v +

P

M + 1

)
exp(−(M + 1)) − d− P

M + 1
,

so an integration gives

x(τ + 1; τ, v) >

(
v +

P

M + 1

)
exp(−(M + 1)) − d− P

M + 1
> d

if v is large enough. Thus we have proved the existence of τ+
d . Moreover,

v+
d = x′(τ+

d ; τ, v) >

(
v +

P

M + 1

)
exp(−(M + 1)(τ+

d − τ)) − d− P

M + 1
.

Hence

d =

∫ τ+
d

τ

x′(s; τ, v)ds

≥
[(

v +
P

M + 1

)
exp(−(M + 1)(τ+

d − τ)) − d− P

M + 1

]
(τ+

d − τ)

and in consequence for a given δ we get |τ+
d − τ | < δ by taking v large enough. The

discussion for τ̂ is similar. Finally, if δ is small enough, then(
v+
d +

P

M + 1

)
exp(−(M + 1)δ) − P

M + 1
≥ v+

d

2

and (
v+
d + d +

P

M + 1

)
exp(−(M + 1)δ) − P

M + 1
≤ 2v+

d .

Now, the estimation (4.2) follows easily from (4.1).
Define now

h(t, x) =

⎧⎪⎪⎨
⎪⎪⎩

a(t)x + g(t, x) − p(t)

x
, x ≥ d;

a(t)d + g(t, d) − p(t)

d
, x < d.
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Then h(t, x) is continuous and 2π-periodic with respect to t and verifies |h(t, x)| ≤
‖a‖∞ + σ for x ≥ 0 and for all t. Let x(t; τ, v) be the solution of the equation
x′′+h(t, x)x = 0 satisfying initial conditions x(τ ; τ, v) = 0, x′(τ ; τ, v) = v > 0. On the
other hand, let y0(t; τ, v) be the solution of the equation x′′+(‖a‖∞+σ)x = 0 satisfying
the same initial conditions as x(t; τ, v). By using Sturm comparison theorem,

τ̂(h) − τ ≥ π√
‖a‖∞ + σ

,

where τ̂(h) is the next zero of x(t; τ, v) right to τ . Moreover, we have the following
lemma.

Lemma 4.3. Let x(t; τ, v) be the solution of the equation x′′ + h(t, x)x = 0
satisfying the initial conditions

x(τ ; τ, v) = 0, x′(τ ; τ, v) = v > 0.

Then, there is vδ > 0 such that if v ≥ vδ, then there exist τ+
d , τ−d such that

x(τ+
d ; τ, v) = d, x′(τ+

d ; τ, v) = v+
d > 0, x(t; τ, v) < d for t ∈ (τ, τ+

d ) and x(τ−d ; τ, v)= d,
x′(τ−d ; τ, v) = v−d < 0, x(t; τ, v) > 0 for t ∈ (τ, τ−d ), respectively. Moreover,

τ−d − τ+
d >

π√
‖a‖∞ + 2σ

.

Proof. Recall that |h(t, x)x| ≤ (‖a‖∞ + σ)x for x ≥ 0 and for all t, so the
conclusion of Lemmas 4.1 and 4.2 are valid for x(t; τ, v) if v > 0 is sufficiently large,
thus we have τ+

d − τ < δ. Note that h(t, x)x = a(t)x+ g(t, x)− p(t) for x ≥ d and for
all t. This implies, under the assumption of Theorem 1.8, that there exists τ−d > τ+

d

such that x(τ−d ; τ, v) = d, x′(τ−d ; τ, v) = v−d < 0, and x(t; τ, v) > 0 for t ∈ (τ, τ−d ). By
contradiction, if

τ−d − τ+
d ≤ π√

‖a‖∞ + 2σ
,

then τ−d − τ < τ−d − τ+
d + δ < T , and Lemma 4.2 implies that the zero τ̂(h) right to τ

exists and τ̂(h) − τ−d < δ. Hence,

τ−d − τ+
d > τ̂(h) − τ − 2δ ≥ π√

‖a‖∞ + σ
− 2δ =

π√
‖a‖∞ + 2σ

.

This contradiction completes the proof of Lemma 4.3.
Finally, let us consider x(t; τ, v) the solution of (1.8) with initial conditions

x(τ ; τ, v) = 0, x′(τ ; τ, v) = v > 0.

Let τ̂ be the first zero right to τ . If v is large enough, then there exist τ−d , τ+
d ∈

(τ, τ̂) such that x(τ±d ; τ, v) = d, v+
d = x′(τ+

d ; τ, v) > 0, v−d = x′(τ−d ; τ, v) < 0, and
x(t; τ, v) < d for t ∈ (τ, τ+

d ) ∪ (τ−d , τ̂). Moreover, |τ+
d − τ | < δ and v+

d is arbitrarily
large by using the estimation (4.2). On the other hand, let xh(t) be the solution of
the equation x′′ + h(t, x)x = 0 satisfying xh(τ+

d ) = d, x′
h(τ+

d ) = v+
d > 0. If τh is

such that xh(τh) = 0, xh(t) > 0 for t ∈ (th, τ
+
d ), then the estimation (4.2) implies

that the initial velocity vh = x′
h(τh) is arbitrarily large. Taking into account that

h(t, x)x = a(t)x + g(t, x) − p(t) for x ≥ d and for all t, Lemma 4.2 implies that the
time in which the solution x(t; τ, v) of the equation x′′ + a(t)x + g(t, x) = p(t) moves
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from (dσ, v
+
d ) to (dσ, v

−
d ) is larger than π√

‖a‖∞+2σ
. In consequence, if v large enough

(more explicitly, v ≥ vδ), then we have

τ̂ − τ ≥ π√
‖a‖∞ + 2σ

.(4.3)

Looking for the estimation of Π1(Sn(τ, v)) − τ , note that by using the argument
leading to (3.15), it results that for a given vδ > 0 there is v+

n,m(δ) > 0 such that

if v > v+
n,m(δ) and Π1(Sn(τ, v)) − τ ≤ 2mπ, then Π2(Si(τ, v)) > vδ(4.4)

for i = 0, 1, . . . , n− 1. Hence, following the arguments of section 3, we can prove that
the conclusions of Lemma 3.6 are true for the successor map of the problem (1.8) under
the assumptions of Theorem 1.8. Note that if a(t) ≡ 0, then T is not well defined, but
it is easy to prove, by using similar arguments as before, that Π1(S(τ, v))− τ ≥ 2mπ
for v sufficiently large. Now, Theorem 1.8 can be proved by mimicking the arguments
of sections 2 and 3 with minor modifications.

The property that the successor map S is well defined is not easy to check. For
example, consider the equation x′′ − x = −1. It has a singular point (1, 0) in x − x′

phase plane and the solution x(t; τ, 1) starting from x(τ ; τ, 1) = 0, x′(τ ; τ, 1) = 1 will
tend to (1, 0) in x − x′ phase plane as t → +∞. Thus we can construct an equation
by modifying the above equation such that the new equation is asymptotically linear
and the successor map S of this equation is well defined for v sufficiently small and
sufficiently large but S is not well defined for v = 1. In spite of that, in the following
we show that a(t)x + g(t, x) ≥ 0 is a sufficient condition to have S well defined.
Actually, let us note that

x′(t; τ, v) = v −
∫ t

τ

(a(s)x + g(s, x))ds +

∫ t

τ

p(s)ds

≤ v +

∫ t

τ

p(s)ds → −∞ as t → +∞.

Thus, for any fixed v > 0, there exists a τ̂ > τ such that x(τ̂ ; τ, v) = 0 which implies
that S is well defined for (τ, v). Hence Corollary 1.9 is proved.
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Abstract. Hamiltonian methods are used to obtain a necessary and sufficient condition for
the spectral stability of pulse solutions to two coupled nonlinear Klein–Gordon equations. These
equations describe the near-threshold dynamics of an elastic rod with circular cross section. The
present work completes and extends a recent analysis of the authors’ [Phys. D, 182 (2003), pp. 103–
124], in which a sufficient condition for the instability of “nonrotating” pulses was found by means
of Evans function techniques.
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1. Introduction. Coherent structures, such as fronts, pulses, defects, or soli-
tons, play an important role in the dynamics of many physical, optical, or biological
systems (see for instance [1]). When such systems are modeled in terms of partial
differential equations, a coherent structure is often described as one or a family of solu-
tions, which asymptotically connects simple plane waves or stationary states of the sys-
tem. Numerous numerical and analytical techniques have been developed to study the
stability of coherent structures. In particular, the Evans function [2, 3, 4, 5, 6, 7, 8, 9]
can be used to obtain information on the point spectrum of one-dimensional linear
operators. This approach is very general [9], but only a sufficient condition for the
instability of a solution is typically found analytically. A numerical investigation of
the number of zeros of the Evans function in the right half complex plane is therefore
often necessary to obtain complete spectral stability results (see for instance [10] and
the references therein). On the other hand, in the case of Hamiltonian systems with
symmetries, global techniques are available, which give sufficient conditions for orbital
stability (or instability) [11, 12].

In this paper, we apply and also extend such techniques to obtain a necessary and
sufficient criterion for the spectral stability of a family of pulse solutions of two cou-
pled nonlinear Klein–Gordon equations. These equations describe the near-threshold
dynamics of an elastic filament with circular cross section [13]. The family of coherent
structures we are interested in has two parameters, the speed c at which each pulse
travels, and the frequency ω at which the filament rotates about its axis. In a recent
paper [14], we used Evans function techniques to obtain a criterion that guarantees
the instability of “nonrotating” (ω = 0) pulses. Because the nonlinear Klein–Gordon
equations are Hamiltonian and invariant under space translations as well as gauge
invariant [15], we show here that one can take advantage of these properties to obtain
spectral stability results for both “rotating” (ω �= 0) as well as nonrotating pulses.
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The Hamiltonian formalism we use below is described in [12], and is a generaliza-
tion to systems whose symmetry group has a dimension larger than 1, of the technique
discussed in [11]. For the purpose of this study, the method can be simplified and
summarized as follows. Consider a Hamiltonian system of the form

∂u

∂t
= JE′(u),(1.1)

where u(x, t) ∈ X is an n-dimensional vector which depends on the space coordinate
x and on time t, X is a real Hilbert space with inner product denoted by (· , ·), J is an
invertible n× n skew-symmetric matrix, E is a functional of u, and E′ is its Fréchet
derivative. Assume that this Hamiltonian system is invariant under a one-parameter
group T of unitary transformations on X which commute with J , and that there
exists a one-parameter family of solutions u(x, t) to (1.1) which can be written as

u(x, t) = T (st) us(x),(1.2)

where us(x) only depends on space and is parametrized by the one-dimensional pa-
rameter s. In order to study the linear stability of u(x, t), one first linearizes (1.1)
about this one-parameter family of solutions. As shown in Appendix A, the linearized
system reads

∂w

∂t
= J Hs w,(1.3)

where the perturbation to u(x, t) is T (st)w(x, t), Hs is the self-adjoint operator given
by

Hs = E′′(us) − sQ′′(us),

and Q is the conserved quantity associated with the invariance T . It can be found
from T by means of an infinite-dimensional version of Noether’s theorem [11, 12, 16],
and is given by Q(u) = 1

2 〈Bu ,u〉, where 〈u∗,v〉 ≡ (u,v) for all u, v ∈ X (X∗ is the
dual of X and X is identified with X∗∗), and the linear operator B is such that J B
is an extension of T ′(0).

The method described in [11, 12] takes advantage of the fact that Hs is self-adjoint
and therefore relatively simple to analyze, to obtain information on the spectrum of
JHs, which is the linearization of (1.1) about the coherent structure (1.2). More pre-
cisely, it is shown in [11] that if Hs has exactly one negative eigenvalue, the convexity
requirement

d2

ds2
d(s) > 0,

where the scalar function d(s) is given by

d(s) = E(us) − sQ(us),

is a necessary and sufficient condition for the stability of (1.2), provided the continuous
spectrum of Hs is positive and bounded away from the origin. By stability, we mean
(nonlinear) orbital stability: by starting close enough to a solution (1.2), u0(x, t),
with say s = s0, one can guarantee that at each time the system will remain close to
the orbit of u0 under changes in the parameter s; i.e., at each time t the solution will
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be arbitrarily close to some T (st)us(x) where s may depend on t and is of course not
necessarily equal to s0.

This approach can be extended [12] to the case where the symmetry group of the
Hamiltonian system is m-dimensional (1 < m < ∞). Then, Hs and d(s) are replaced
by

Hs = E′′(us) −
m∑
i=1

si Q
′′
i (us), d(s) = E(us) −

m∑
i=1

si Qi(us),

where {Qi}i=1,...,m is the set of conserved quantities associated with the unitary rep-
resentation T of the m-dimensional symmetry group, and s is the vector with com-
ponents si. In this case, it is shown in [12] that if Hs has an appropriate spectral
decomposition, if the scalar function d(s) is nondegenerate at s, and if the number
of negative eigenvalues of Hs is equal to the number of positive eigenvalues of the
Hessian of d(s) at s, then the coherent structure is stable.

This paper is organized as follows. In section 2, we introduce the coupled nonlinear
Klein–Gordon equations as well as the family of pulses, the stability of which we want
to analyze. In section 3, we rewrite the Klein–Gordon equations in their Hamiltonian
form, define the symmetries of this system and the associated conserved quantities, as
well as Hs. We then show that the self-adjoint operator Hs has exactly one negative
eigenvalue, and that its continuous spectrum is positive but touches the origin. As a
consequence, one of the hypotheses of [12], which says that Hs has a closed positive
subspace, is not satisfied. This implies that it is difficult to prove orbital stability in
X. Indeed, the continuous spectrum of JHs is not bounded away from the origin and
in such a case one typically resorts to the introduction of weighted spaces in order
to obtain nonlinear stability results. The goal of this paper is to consider spectral
stability instead. In section 4, we point out that only nonnegativity of the bilinear
form 〈Hs u,u〉 on the closure of the positive subspace of Hs is in fact needed to
obtain spectral stability. We then show that, under this less restrictive assumption,
the results of [12] can be extended to give a necessary and sufficient condition for
the nonexistence of positive point spectrum of the linearization J Hs about the two-
parameter family of pulses. Since the continuous spectrum of J Hs is on the imaginary
axis, this is equivalent to the spectral stability of these solutions. Finally, we derive
an explicit expression for this stability condition, and we show that it is consistent
with the criterion found in [14] in the case of nonrotating pulses. In section 5, we
summarize our results and mention possible extensions of this work to more complex
models for the dynamics of elastic filaments.

2. The coupled nonlinear Klein–Gordon equations. We consider the fol-
lowing dimensionless coupled nonlinear Klein–Gordon equations, which describe the
near-threshold dynamics of an elastic rod with circular cross section, subject to con-
stant twist:

∂2A

∂t2
− c20

∂2A

∂x2
= μA−A|A|2 + A

∂B

∂x
,

∂2B

∂t2
− ∂2B

∂x2
= −∂|A|2

∂x
,

(2.1)

where A(x, t) denotes the (scaled) slowly varying complex amplitude of the helical
mode which grows above the bifurcation threshold, B(x, t) is the (scaled) real axial
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twist, c0 is the group velocity of amplitude deformations, relative to the group velocity
of twist deformations, and μ measures the distance from the threshold above which
filaments subject to increasing constant twist tend to assume a helical shape [13].
Both c0 and μ are real parameters. We are interested in pulse solutions [15, 17] of
(2.1) of the form

A = a0(ξ)e
iωt, B = b0(ξ), ξ = x− ct,(2.2)

where

a0(ξ) = α sech(βξ) exp

(
i

ωc

c2 − c20
ξ

)
, b0(ξ) =

α2

β(1 − c2)
tanh (βξ),(2.3)

and

α2 =
2β2

c2
(c2 − 1)(c2 − c20), β2 =

μ(c2 − c20) − ω2c20
(c2 − c20)

2
.(2.4)

As in [14], we only consider the case μ < 0, since the continuous spectrum of the
linearization of (2.1) about any pulse solution (2.2–2.4) would otherwise intersect the
right half complex plane. As a consequence, α2 and β2 in (2.4) are positive if and
only if

c2 < c20

(
1 +

ω2

μ

)
and c2 − 1 < 0.(2.5)

We also note for later reference that a0 and b0 in (2.3) satisfy the following ordinary
differential equations in ξ:

(c2 − c20)
d2a0

dξ2
− 2 i c ω

da0

dξ
= a0

(
ω2 + μ− |a0|2 +

db0
dξ

)
,(2.6)

(c2 − 1)
d2b0
dξ2

= − d

dξ
(|a0|2).

As indicated in [15], system (2.1) may be written in Hamiltonian form. To this
end, we first introduce the real variables P , Q, R, S, and U such that

A = P + iQ, At = R + iS, U = Bt.(2.7)

Then (2.1) reads

∂ v

∂t
= J E′(v),(2.8)

where v = [R,S, U, P,Q,B]T , the energy E is given by

E(v) =

∫ ∞

−∞
hdx,(2.9)

where

h = c20
(
P 2
x + Q2

x

)
− μ

(
P 2 + Q2

)
+

1

2

(
P 2 + Q2

)2 − (
P 2 + Q2

)
Bx(2.10)

+ R2 + S2 +
1

2
B2

x +
1

2
U2,
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and the invertible, skew-symmetric matrix J reads

J =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 −1/2 0 0
0 0 0 0 −1/2 0
0 0 0 0 0 −1

1/2 0 0 0 0 0
0 1/2 0 0 0 0
0 0 1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.(2.11)

3. Hamiltonian formalism. As indicated in the introduction, we first look for
the group of unitary transformations which leave the Hamiltonian system invariant
[18] and define the corresponding conserved quantities. Let v0 = [r0, s0, u0, p0, q0, b0]

T

be the six-dimensional vector corresponding to the solution of (2.6), with a0 and b0
given in (2.3) and

a0 = p0 + i q0, r0 = −c p′0 − ω q0, s0 = −c q′0 + ω p0, u0 = −c b′0.(3.1)

We require perturbations of v0 to be in X = L2 × L2 × L2 × H1 × H1 × H1, even
though the last component b0 of v0 is nondecaying at infinity.

3.1. Symmetries. There are two unitary transformations that preserve the
Hamiltonian structure (2.8) and which are elements of the symmetry group of (2.1)
[14]. They are

1. The translational invariance, denoted by T1 and such that

T1(x0)A(x, t) = A(x− x0, t), T1(x0)B(x, t) = B(x− x0, t),(3.2)

where x0 is a real arbitrary constant.
2. The gauge invariance, T2, such that

T2(θ)A(x, t) = A(x, t) eiθ, T2(θ)B(x, t) = B(x, t),(3.3)

where θ is a real arbitrary constant.
Using these definitions, the pulse solution given in (2.2) and (2.3) can be written as
a function of x and t whose temporal dependence is generated by the action of these
transformations. In other words, any pulse solution of (2.1) reads

[A(x, t), B(x, t)] = T1(ct) ◦ T2(ωt) [a0(x), b0(x)],(3.4)

where a0 and b0 are defined in (2.3) and depend on c and ω.
The conserved quantities corresponding to the symmetries T1 in (3.2) and T2 in

(3.3) are, respectively,

Q1(v) = −
∫ ∞

−∞
(2 (RPx + SQx) + UBx) dx,(3.5)

Q2(v) = 2

∫ ∞

−∞
(SP −QR) dx,(3.6)

and any pulse solution defined in (2.2) and (2.3) is a critical point of the functional

I(v) = E(v) − cQ1(v) − ωQ2(v).(3.7)
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Indeed, the system of equations given by

I ′(v) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2(R + cPx + ωQ)

2(S + cQx − ωP )

U + cBx

2(−c20Pxx + P (−μ + P 2 + Q2 −Bx) − cRx − ωS)

2(−c20Qxx + Q(−μ + P 2 + Q2 −Bx) − cSx + ωR)

−Bxx + (P 2 + Q2)x − cUx

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 0(3.8)

is equivalent to (2.6) with the first equation split into its real and imaginary parts.
Equation (3.8) can be rewritten as

E′(v) = Q′(v) κ,(3.9)

where κ = [c, ω]T and Q′(v) is the 6 × 2 matrix [Q′
1(v) Q′

2(v)]. By taking the
directional derivative of (3.9) in the direction σ = [c1, ω1]

T and evaluating it at v = v0,
we obtain

I ′′(v0) ∂σv0 = Q′(v0) σ,(3.10)

which is equation (3.3) of [12]. Here ∂σv0 denotes the directional derivative of v0,
which depends on κ, in the direction σ. In what follows, we denote I ′′(v0) by Hc,ω,
and the linearization of (2.1) about the pulse solution v0 reads

∂w

∂t
= J Hc,ω w,

where the perturbation to [A,B] is [(p(ξ, t)+ iq(ξ, t)) exp(iωt), b(ξ, t)] and where w =
[r, s, u, p, q, b ]T is such that

r = pt − c pξ − ω q, s = qt − c qξ + ω p, u = bt − c bξ.

Below, we show that the self-adjoint operator Hc,ω has a two-dimensional kernel, has
only one negative eigenvalue, and is such that its continuous spectrum is nonnegative.

3.2. Kernel of Hc,ω. In [14], it is shown that the kernel of J Hc,ω is two-
dimensional and generated by

−T ′
1(0)v0 = v′

0 and T ′
2(0)v0 =

⎛
⎜⎜⎜⎜⎜⎜⎝

−s0

r0
0

−q0
p0

0

⎞
⎟⎟⎟⎟⎟⎟⎠

,(3.11)

where T1 and T2 are the Hamiltonian symmetries defined in (3.2) and (3.3) and v0

is the six-dimensional pulse solution defined at the beginning of section 3. Since J is
invertible, Ker(J Hc,ω) = Ker(Hc,ω).
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3.3. Negative subspace of Hc,ω. In what follows, we show that the dimension
of the negative subspace of Hc,ω is equal to 1. To do so, we first rewrite the quadratic

form 〈Hc,ωw,w〉, where w ∈ X, as a sum of squares plus terms of the form 〈L̃i zi, zi〉,
i = 1, 2, where the L̃i are second-order differential operators. We then find the number
of negative eigenvalues of these two operators, using results from Sturm–Liouville
theory. Finally, we use this information together with the min-max principle, to find
the sign of the two lowest eigenvalues of Hc,ω.

The linear operator Hc,ω reads

Hc,ω ≡ I ′′(v0) = E′′(v0) − cQ′′
1(v0) − ωQ′′

2(v0) =

(
D2 C
C∗ L

)
,(3.12)

where

D2 =

⎛
⎝ 2 0 0

0 2 0
0 0 1

⎞
⎠ , C =

⎛
⎝ 2c∂x 2ω 0

−2ω 2c∂x 0
0 0 c∂x

⎞
⎠ ,

C∗ =

⎛
⎝ −2c∂x −2ω 0

2ω −2c∂x 0
0 0 −c∂x

⎞
⎠ = −C,(3.13)

and

L =

⎛
⎜⎜⎜⎜⎝

2
(
−c20 ∂xx − ∂x b0 − μ + q2

0 + 3p2
0

)
4p0 q0 −2p0 ∂x

4p0 q0 2
(
−c20∂xx − ∂x b0 − μ + p2

0 + 3q2
0

)
−2q0 ∂x

2 (p0 ∂x + ∂x p0) 2 (q0 ∂x + ∂x q0) −∂xx

⎞
⎟⎟⎟⎟⎠ .

(3.14)

Here ∂x and ∂xx refer to first and second partial derivatives with respect to x. We
denote a six-dimensional vector in X by w = [w1, w2]

T , where i = 1, 2 and the wi are
three-dimensional. Then,

〈Hc,ωw,w〉 = 〈D2 w1, w1〉 + 〈C w2, w1〉 + 〈C∗ w1, w2〉 + 〈Lw2, w2〉

= (Dw1, D w1) + 2〈C w2, w1〉 + 〈Lw2, w2〉

=
∣∣∣∣Dw1 + D−1C w2

∣∣∣∣2 + 〈(L + C2D−2)w2, w2〉.(3.15)

The linear operator L1 = L + C2D−2 is such that

L1 =

⎛
⎝ L2

−2p0 ∂x
−2q0 ∂x

2 (p0 ∂x + ∂x p0) 2 (q0 ∂x + ∂x q0) −(1 − c2) ∂xx

⎞
⎠ ,(3.16)

where

L2 =

⎛
⎝ 2

(
(c2 − c20)∂xx − ∂x b0 − μ− ω2 + q2

0 + 3p2
0

)
4 (p0 q0 + c ω ∂x)

4 (p0 q0 − c ω ∂x) 2
(
(c2 − c20)∂xx − ∂x b0 − μ− ω2 + p2

0 + 3q2
0

)
⎞
⎠ .

(3.17)
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With y = [y1, y2, y3]
T , we have

〈L1 y,y〉 =

〈
L2

(
y1

y2

)
,

(
y1

y2

)〉

+ (1 − c2) (∂xy3, ∂xy3) + 2
√

1 − c2
(
KT ∂xy3,

(
y1

y2

))
(3.18)

=

〈(
L2 −KTK

) (
y1

y2

)
,

(
y1

y2

)〉
+

∣∣∣∣
∣∣∣∣√1 − c2 ∂xy3 + K

(
y1

y2

)∣∣∣∣
∣∣∣∣
2

,

where

K = − 2√
1 − c2

(p0, q0) .

Finally, let

L ≡ L2 −KTK(3.19)

and introduce the change of variable

(
z1

z2

)
=

⎛
⎝ cos

(
ωcx

c2−c20

)
sin

(
ωcx

c2−c20

)
− sin

(
ωcx

c2−c20

)
cos

(
ωcx

c2−c20

)
⎞
⎠(

y1

y2

)
≡ M

(
y1

y2

)
.(3.20)

Then 〈
L
(

y1

y2

)
,

(
y1

y2

)〉
=

〈
L̃
(

z1

z2

)
,

(
z1

z2

)〉
,(3.21)

where

L̃ =

(
L̃1 0

0 L̃2

)
(3.22)

and

L̃1 = L̃2 −
4c2

1 − c2
(p2

0 + q2
0),

(3.23)

L̃2 = 2

(
(c2 − c20) ∂xx +

ω2 c20
c2 − c20

+ p2
0 + q2

0 − ∂x b0 − μ

)
.

The operator L̃2 has 0 as an eigenvalue since, from (2.6), one can show that

L̃2 |a0| = 0,(3.24)

where a0 is given in (2.3). Since the pulse has no zero, Sturm–Liouville theory (see,
for instance, [19, p. 104]) indicates that L̃2 does not have any negative eigenvalue. By
taking the derivative of (3.24) with respect to x we obtain

L̃1 |a0|′ = 0.(3.25)

Since |a0|′ has exactly one zero, L̃1 has one negative eigenvalue.
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We now use the above information together with the min-max principle (see for
instance, Theorem XIII.1, page 76 [20]; see pages 87–90 [21], for a discussion in the
finite-dimensional case), to prove that Hc,ω has exactly one negative eigenvalue. We
have shown that

〈Hc,ω w,w〉 =
∣∣∣∣Dw1 + D−1C w2

∣∣∣∣2 +

∣∣∣∣
∣∣∣∣√1 − c2 ∂xy3 + K

(
y1

y2

)∣∣∣∣
∣∣∣∣
2

+〈L̃1 z1, z1〉 + 〈L̃2 z2, z2〉,

where w = [w1, w2]
T , w2 = [y1, y2, y3], [z1, z2]

T = M [y1, y2]
T , and M is defined in

(3.20). Let w̃ = [w̃1, w̃2]
T , ||w̃|| = 1, be such that

w̃1 = −D−2C w̃2, w̃2 = [ỹ1, ỹ2, ỹ3],

∂x ỹ3 =
−1√
1 − c2

K

(
ỹ1

ỹ2

)
,

(
ỹ1

ỹ2

)
= M−1

(
z̃1

0

)
,

with z̃1 chosen to be an eigenvector of L̃1 with eigenvalue κ < 0. Note that the z̃2

variable associated with w̃ is zero. By the min-max principle, the smallest eigenvalue
μ1(Hc,ω) of Hc,ω is such that

μ1(Hc,ω) = inf
w∈X,||w||=1

〈Hc,ω w,w〉.

Thus,

μ1(Hc,ω) ≤ 〈Hc,ω w̃, w̃〉 = 〈L̃1z̃1, z̃1〉 = κ〈z̃1, z̃1〉 < 0;

i.e., Hc,ω has at least one negative eigenvalue. Similarly, the second smallest eigenvalue
μ2(Hc,ω) of Hc,ω is given by

μ2(Hc,ω) = sup
φ1∈X

inf
w∈X,||w||=1,w⊥φ1

〈Hc,ω w,w〉.

Choose φ̃1 �= 0 such that φ̃1 = [0, 0, 0, ϕ̃1, ϕ̃2, 0]T with [ϕ̃1, ϕ̃2]
T = M−1 [1, 0]T ⊥

M−1 [0, 1]T . Then, w ⊥ φ̃1 is equivalent to having the z1 variable associated with w
equal to zero, the other variables being arbitrary. Thus,

μ2(Hc,ω)

≥ inf
w∈X,||w||=1,w⊥φ̃1

〈Hc,ω w,w〉

= inf
w ∈ X,

||w|| = 1,
z1 = 0

[∣∣∣∣Dw1 + D−1C w2

∣∣∣∣2 +

∣∣∣∣
∣∣∣∣√1 − c2 ∂xy3 + K

(
y1

y2

)∣∣∣∣
∣∣∣∣
2

+ 〈L̃2 z2, z2〉
]

≥ inf
w∈X,||w||=1,z1=0

〈L̃2 z2, z2〉 = 0,

the last equality being a consequence of the fact that L̃2 has the bottom of its point
spectrum at zero. Thus, Hc,ω has at most one negative eigenvalue. Since it also has
at least one negative eigenvalue, Hc,ω has exactly one negative eigenvalue.
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3.4. Continuous spectrum of Hc,ω. To find the continuous spectrum of Hc,ω,
we define

H∞
c,ω ≡ lim

x→∞
Hc,ω =

(
D2 C
C∗ L∞

)
,(3.26)

where C and D are given in (3.13) and

L∞ =

⎛
⎜⎜⎜⎜⎝

2
(
−c20 ∂xx − μ

)
0 0

0 2
(
−c20∂xx − μ

)
0

0 0 −∂xx

⎞
⎟⎟⎟⎟⎠ .(3.27)

The continuous spectrum of Hc,ω is then given [22, Theorem A.2, p. 140] by the set

S =
{
λ ∈ C : det

(
H∞

c,ω(k) − λ I6
)

= 0 for some k ∈ R
}
,(3.28)

where H∞
c,ω(k) is obtained from H∞

c,ω by replacing ∂x with i k. The six eigenvalues of
H∞

c,ω(k) are

λ±
1 (k) =

1

2

(
1 + k2 ±

√
(1 − k2) + 4k2c2

)
,

λ±
2 (k) = −μ + c20k

2 + 1 ±
√

(μ + 1 − c20k
2)2 + 4(ω − kc)2,

λ±
3 (k) = −μ + c20k

2 + 1 ±
√

(μ + 1 − c20k
2)2 + 4(ω + kc)2.

We now show that λ±
1 (k) ≥ 0 and that λ±

2,3(k) > 0 for all k’s. First, the condition

λ±
1 (k) ≥ 0 is equivalent to 4k2(1 − c2) ≥ 0, which is always satisfied since c2 < 1,

by the second inequality of (2.5). Since λ−
1 (0) = 0, the set {λ±

1 (k), k ∈ R} is in
fact equal to [0,+∞). Second, the condition λ±

2 (k) > 0 is equivalent to P (k) ≡
ω2 − 2 k c ω + μ + (c2 − c20) k

2 < 0. To see that this condition is satisfied for all k’s,
we proceed as follows. Note that as k → ±∞, P (k) is negative since c2 < c20 by the
first inequality of (2.5). The derivative of P vanishes at k = k0 ≡ c ω/(c2 − c20), and
P reaches its maximum at that point. Substitution of the expression of k0 into the
formula for P (k) gives

P (k0) =
μ

c2 − c20

[
c2 − c20

(
1 +

ω2

μ

)]
,

which is strictly negative since μ < 0 by hypothesis and since c2 − c20(1 + ω2/μ) < 0,
whence c2 − c20 < 0, by the first inequality of (2.5). Thus, λ±

2 (k) > 0 for all k’s.
Finally, since the above argument does not depend on the sign of ω and since λ±

3 (k)
can be obtained from λ±

2 (k) by changing ω into −ω, we also have that λ±
3 (k) > 0 for

all k’s. Therefore, S is the whole nonnegative real axis.
A similar calculation shows that the continuous spectrum of J Hc,ω is the whole

imaginary axis, and therefore contains the origin. This was to be expected since the
symmetry B → B + constant of (2.1) indicates that the origin is in the continuous
spectrum of the linearization of (2.1) about any solution whose B-component con-
verges to a constant as ξ goes to infinity. Given this, it is also not surprising that the
continuous spectrum of Hc,ω touches the origin, as shown above.

An important consequence of this discussion is that the stability theorems of [12]
are not directly applicable, since the hypothesis that the positive subspace of Hc,ω
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be closed is not satisfied. As already mentioned in the introduction, the presence of
continuous spectrum of Hc,ω all the way to the origin—or, as exemplified by the above
calculations, the fact that the continuous spectrum of J Hc,ω includes the origin—
typically rules out the possibility of having nonlinear stability results for perturbations
w ∈ X. In the next section, we thus restrict ourselves to the question of the spectral
stability of pulse solutions. We show that the theorems of [12] can be adapted to
the present situation, and obtain a necessary and sufficient condition for the spectral
stability of the family of pulses.

4. Spectral stability criterion. Consider the scalar function of c and ω given
by

d(c, ω) = E(v0) − cQ1(v0) − ωQ2(v0),(4.1)

where E, Q1, and Q2 are defined in (2.9), (3.5), and (3.6) and v0 = [r0, s0, u0, p0, q0, b0]
T

is, as before, the six-dimensional solution of (3.8) defined by (3.1) with a0 and b0 given
in (2.3). Note that d defined in (4.1) depends on c and ω both explicitly and implicitly
through the dependence of v0 on c and ω.

Even though Assumption 3 of [12] is not satisfied here since the positive subspace
of Hc,ω is not closed (in other words, since the continuous spectrum of Hc,ω is not
bounded away from zero), the following theorems carry through.

Theorem 1 (from Theorem 3.1 of [12]). Let X1 = {u ∈ X|〈Q′
i(v0),u〉 = 0, i = 1, 2},

and Π1 be the orthogonal projection of X onto X1. If d is nondegenerate, the reduced
Hamiltonian H1 = Π∗

1 Hc,ω Π1 has the negative index (i.e., a negative subspace of
dimension)

n(H1) = n(Hc,ω) − p (d ′′),(4.2)

where p (d ′′) is the number of positive eigenvalues of the Hessian d ′′ of d, and n(Hc,ω)
is the dimension of the negative subspace of Hc,ω.

In our case, n(Hc,ω) = 1, and (4.2) therefore implies that

p (d ′′) ≤ 1.(4.3)

Theorem 2 (from Theorem 5.1 of [12]). Let d ′′ be nonsingular, n(Hc,ω) −
p (d ′′) be odd, and X be separable. Then J Hc,ω has at least one pair of real nonzero
eigenvalues.

Note that only nonnegativity of the bilinear form 〈Hc,ω u,u〉 on the closure of the
positive subspace of Hc,ω is needed in the proof of this theorem given in [12].

Therefore, if

det (d ′′) = dcc dωω − d 2
cω > 0,(4.4)

the number of positive eigenvalues of d ′′ is even, and by (4.3), it is equal to zero.
Equation (4.2) of Theorem 1 then implies that n(H1) = n(Hc,ω) = 1, and by Theo-
rem 2, the linearization J Hc,ω has at least one pair (λ,−λ), λ ∈ R, of real nonzero
eigenvalues. Thus, the linearization of (2.1) about a pulse solution has positive point
spectrum, and the pulse solution is dynamically unstable (section VI of [12]). Condi-
tion (4.4) reads

−12 c2c0
4
(
c20 − 1

) (
−3 c0

2 + 2 c2 + c4
)
ω4(4.5)

−18μ c0
2
(
c4 − 3 c2c0

2 + c2 + c0
2
) (

c2 − c20
)2

ω2

+3
(
c2 − 1

)
μ2

(
c4c0

2 + 2 c4 − 9 c2c0
2 + 6 c0

4
) (

c2 − c20
)2

> 0.
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In the case ω = 0, we see that pulses are thus unstable if

T ≡ 3c20
(
3c2 − 2c20

)
− c4

(
c20 + 2

)
> 0,(4.6)

since c2 − 1 < 0. This is exactly the condition found in [14] by means of Evans
function techniques. As discussed in [14], the condition T > 0 defines a nonempty set
of speeds c. There also exists values of c such that T < 0. For instance, the stable
propagation of a pulse solution with ω = 0, and for which T = −27.078, is illustrated
in the numerical simulation of Figure 11 of [15] (or equivalently Figure 1 of [14]).

We now show that if det(d ′′) < 0, J Hc,ω has no positive point spectrum. In this
case, since the continuous spectrum of the linearization J Hc,ω is on the imaginary
axis, this operator has no positive spectrum, and the corresponding pulse solution
is therefore spectrally stable. First note that if det(d ′′) < 0, then p (d ′′) = 1 and
n(H1) = 0 by Theorem 1 above. We now prove that n(H1) = 0 implies that it is not
possible for J Hc,ω to have any nonzero eigenvalue. Suppose that y is an eigenvector
of J Hc,ω with nonzero eigenvalue a. Then y ∈ X1, where X1 is defined in Theorem 1.
Indeed, for i = 1, 2, we have

〈Q′
i(v0),y〉 = 〈Bi v0,y〉 by (A.6)

= 〈J−1 T ′
i (0)v0,y〉 since J Bi is an extension of T ′

i (0)

= 〈J−1 T ′
i (0)v0, a

−1JHc,ω y〉
= −〈a−1Hc,ω y, T ′

i (0)v0〉 since J is skew

= −〈Hc,ω T ′
i (0)v0, a

−1 y〉 = 0,

since T ′
i (0)v0 is in the kernel Z of Hc,ω by (A.11) with T replaced by Ti. Note that

X1 contains Z, since (see [12, p. 316 ]) if z ∈ Z, then

∀σ = [c1, ω1]
T , 0 = 〈Hc,ω z, ∂σv0〉 = 〈Hc,ω ∂σv0, z〉 = 〈Q′(v0) σ, z〉,

where Q′(v0) is defined at the end of section 3.1, and we made use of (3.10). Then,
let (see equation (5.1) of [12])

X2 = {u ∈ X|〈Q′
i(v0),u〉 = 0 = (T ′

i (0)v0,u), i = 1, 2} .

From the definition of X2, one has the orthogonal decomposition X1 = X2 + Z, and
y ∈ X1 can therefore be written as y = x2 + z with x2 ∈ X2 and z ∈ Z. Then,

〈Hc,ω y,y〉 = 〈a J−1 y,y〉 = 0

since J−1 is skew. This implies that 〈Hc,ω x2,x2〉 = 0 since

〈Hc,ω y,y〉 = 〈Hc,ω x2,x2〉 + 〈Hc,ω x2, z〉 = 〈Hc,ω x2,x2〉.

As a consequence, 〈H1 x2,x2〉 = 0. Finally, since n(H1) = 0, H1 is a nonnegative
self-adjoint operator on X1. By the spectral decomposition theorem, 〈H1 x2,x2〉 = 0
implies x2 = 0, whence y ∈ Z = KerHc,ω. This contradicts the hypothesis that y is
an eigenvector of J Hc,ω with nonzero eigenvalue a. Therefore, we have the following
theorem.

Theorem 3. Let d ′′ be nonsingular. Then, pulse solutions of (2.1) given by (2.2)
and (2.3) are spectrally stable if and only if n(H1) = 0, i.e., if and only if det(d′′) < 0.

In other words, pulses are unstable if condition (4.5) is satisfied, and they are
spectrally stable if the left-hand side of (4.5) is negative. More generally, if n(H1) = 0,
i.e., if n(Hc,ω) = p(d′′), and if d′′ is nonsingular, then pulse solutions are spectrally
stable.
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5. Conclusion. We have obtained a necessary and sufficient condition for the
spectral stability of a family of pulse solutions to two coupled Klein–Gordon equations.
This analysis, based on Hamiltonian methods [11, 12], confirms and extends the results
of [14] obtained by means of Evans functions techniques for nonrotating pulses, and
also applies to the case of rotating pulses. As discussed in the introduction and in
sections 3 and 4, the theorems of [12] do not directly apply here because the continuous
spectrum of the linearization of the coupled Klein–Gordon equations about the family
of pulse solutions contains the origin. As a consequence, one cannot use these results
to establish orbital stability of the solutions. However, we have shown that one can
modify the results of [12] in order to obtain spectral stability. The system of partial
differential equations considered here models the near-threshold dynamics of an elastic
rod with circular cross section. More general envelope equations taking into account
other physical properties of elastic filaments, such as extensibility, the existence of
a tension mode, or the presence of a noncircular cross section, can be found in the
literature (see for example [23]). All of these equations can be written in Hamiltonian
form and it should be possible to extend the analysis presented in this paper to these
more general models.

Appendix A. Linearization about a coherent structure. This discussion
is entirely based on Section II of [11], and is presented here to make this paper self-
contained. Consider the following Hamiltonian system:

∂u

∂t
= JE′(u),(A.1)

where u ∈ X, X is a real Hilbert space with inner product denoted by (· , ·), J :
X∗ → X is invertible and skew-symmetric (X∗ is the dual of X), E is a functional
of u, and E′ : X → X∗ is its Fréchet derivative. Assume that Us(x, t) = T (st) us(x)
is a solution of this system, where T ≡ {T (s) : X → X, s ∈ R}, is a one-parameter
group of unitary transformations, which has the following properties:

1. T commutes with J , i.e.,

T (s) J = J T ∗(−s),(A.2)

where T ∗(s) is the adjoint of T (s).
2. E is invariant under T , i.e.,

E (T (s)u) = E(u)(A.3)

for all u ∈ X and for all s ∈ R.
By taking the Fréchet derivative of (A.3) with respect to u, one obtains

E′(u) = T ∗(s)E′(T (s)u).(A.4)

The conserved quantity associated with the invariance T is given by

Q(u) =
1

2
〈Bu ,u〉,(A.5)

where 〈u∗,v〉 ≡ (u,v) for all u, v ∈ X (and X is identified with X∗∗), and the linear
operator B : X → X∗ is such that J B is an extension of T ′(0) : X → X [11, 12, 16].
By differentiating (A.5), one obtains

Q′(u) = B u and B = Q′′(u), ∀ u ∈ X.(A.6)
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Since T is a representation of a one-parameter group of operators, we have T (s+
ε) = T (s)T (ε), ∀ (s, ε) ∈ R

2, which implies

T ′(s) = T ′(0)T (s).(A.7)

To see that Q is invariant under T , calculate

d

ds
[Q(T (s)u)] ≡ 〈Q′(T (s)u), T ′(s)u〉

= 〈Q′(T (s)u), T ′(0)T (s)u〉 by (A.7)

= 〈Q′(T (s)u), J B T (s)u〉 since J B extends T ′(0)

= 〈B T (s)u, J B T (s)u〉 by (A.6)

= 0 since 〈u∗, J u∗〉 = 0, ∀u∗ ∈ X∗.

Thus, Q(T (s)u) = Q(u) and by differentiation

T ∗(s) Q′(T (s)u) = Q′(u),(A.8)

which, together with the first equation of (A.6), implies

T ∗(s)B T (s) = B.(A.9)

To perform a linear stability analysis of the coherent structure, let

u(x, t) = T (st) (us(x) + w(x, t)) ,

and substitute into (A.1). We have

∂u

∂t
=

∂

∂t
[T (st) (us(x) + w(x, t))] = s T ′(st) (us(x) + w(x, t)) + T (st)

∂w

∂t

= s T ′(0)T (st) (us(x) + w(x, t)) + T (st)
∂w

∂t
by (A.7)

= s J B T (st) (us(x) + w(x, t)) + T (st)
∂w

∂t
since JB is an extension of T ′(0)

= s J T ∗(−st)B (us(x) + w(x, t)) + T (st)
∂w

∂t
by (A.9)

= s J T ∗(−st)Q′(us) + s J T ∗(−st)Q′′(us)w + T (st)
∂w

∂t
by (A.6).

On the other hand,

J E′(T (st) (us + w)) = J T ∗(−st)E′(us + w) by (A.4)

= J T ∗(−st)E′(us) + J T ∗(−st)E′′(us)w + O
(
||w||2

)
.

Since T (st)us is a solution of the Hamiltonian system, the terms which do not depend
on w on each side of (A.1) written as

∂

∂t
[T (st) (us(x) + w(x, t))] = J E′(T (st) (us + w))

balance out, which implies

E′(us) = sQ′(us).(A.10)
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The rest of the equation reads, to first order in w,

T (st)
∂w

∂t
= J T ∗(−st)E′′(us)w − s J T ∗(−st)Q′′(us)w

= T (st) J (E′′(us) − sQ′′(us))w by (A.2).

By multiplying both sides of this equation by T (−st), we obtain

∂w

∂t
= J (E′′(us) − sQ′′(us))w ≡ J Hs w,

which is (1.3).
Finally, note that

E′(T (s)us) − sQ′(T (s)us) = T ∗(−s)E′(us) − T ∗(−s) sQ′(us) = 0

by (A.4), (A.8), and (A.10). Differentiation with respect to s at s = 0 gives

[E′′(us) − sQ′′(us)] T
′(0)us = 0,

i.e.,

HsT
′(0)us = 0.(A.11)
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A REACTION DISPERSION SYSTEM
AND RAMAN INTERACTIONS∗

MICHAEL I. WEINSTEIN† AND VADIM ZHARNITSKY‡

Abstract. We consider the problem of amplification of an optical signal wave with an optical
pump wave when both are propagating in the fundamental mode of a single mode optical waveguide.
We introduce a system of Ginzburg–Landau type and study the radiation loss due to the nonlinear
interaction between the signal and the pump waves. The linear dynamics are dispersive, while
nonlinearity governs the transfer of energy from the pump wave to the signal wave. The strength
of the effect is shown to depend on a dimensionless parameter, which is given by the ratio of the
diffraction length and amplification length. If this parameter is small, then the radiation loss is small.
This result is established by (i) verifying the absence of resonant terms that can potentially drive
the growth of radiative components and (ii) then by estimating the oscillatory (nonresonant) terms
by proving the relevant PDE a priori estimates. These estimates require appropriate bounds on the
solutions of the PDE, whose only conserved integral is the L2 norm. However, the special structure
of the nonlinear term, dictated by the physics of the Raman effect, implies a weak space-time bound
involving the signal and pump intensities. This bound and L2 conservation are used together with
Strichartz (space-time) estimates for the Schrödinger equation to obtain control of stronger classical
norms of the signal and pump fields.

Key words. Landau–Ginzburg equations, Raman interaction, nonlinear optics, optical wave-
guides

AMS subject classifications. 35Q55, 35Q60, 78A60
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1. Introduction. In this paper we study a system of nonlinear and dispersive
partial differential equations, where nonlinearity is of “reaction” type, i.e., in the
absence of dispersion it induces pure energy exchange between the fields. Such systems
are reminiscent of reaction-diffusion systems; here the diffusive mechanism is replaced
by dispersion. While the latter has been widely studied, the former has received very
little attention.

Our reaction-dispersion system arises naturally in mathematical modeling of the
stimulated Raman process, but will also arise in other systems (perhaps in somewhat
modified form), where two dispersive waves interact nonlinearly, while other nonlinear
effects (such as self-phase modulation) and diffusion are negligible. This system can
be also considered as a special case of complex Ginzburg–Landau (CGL) system,
which has been studied in a different parameter regime [2]. We will often refer to the
systems (1.1) and (1.2) as the Raman model, due to their relation to the motivating
physical context.

The Raman effect is one where light of one frequency, ωs (“signal”), is amplified
by light of a down shifted frequency, ωp (“pump”). Taking the energy transfer charac-
teristics of the Raman process into account as well as diffraction leads to the system
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of nonlinear evolution equations, discussed in greater detail in Appendix A:

i∂tus = −Δus + iε|up|2us,

i∂tup = −Δup − iε|us|2up.(1.1)

More generally, we must include the Kerr effect in (1.1). This would introduce
cross-phase and self-phase modulation terms of the types αs|up|2us + βs|us|2us and
αp|us|2us+βp|up|2up with αs,p, βs,p real on the right-hand side of (1.1). We remark on
the analysis of this more complete model at the end of this section; see Remark 1.1. In
a waveguide setting, which is of importance in optical communications, the equations
take the form

i∂tus = Hus + iε|up|2us,

i∂tup = Hup − iε|us|2up,(1.2)

where

H = −Δ + V.

Here, us = us(x, t) and up = up(x, t) denote, respectively, the signal and pump
complex electric field envelopes. Systems (1.1) and (1.2) are valid, assuming the
paraxial approximation. Δ denotes the Laplace operator with respect to x (x ∈ R

1 or
x ∈ R

2). The longitudinal coordinate (z), a time-like variable with which propagation
distance is measured, is denoted by t. In the waveguide setting, the “potential”
V (x) is determined by the transverse refractive index profile of the waveguide. The
parameter ε measures the size of the nonlinear effects relative to the linear effects
(e.g., diffraction, dispersion). The particular application to optical communications
is discussed in Appendix A.

Our study of systems (1.2) and (1.1) is motivated by a fundamental issue aris-
ing in the modeling of the Raman interaction in a waveguide setting. In optical
communication applications, the weak signal field whose envelope encodes bits of in-
formation is amplified by the strong pump field. This process takes place in an optical
fiber waveguide, with one transverse localized state or “guided mode” and radiation
modes. Raman amplification of the signal is based on the intended net transfer of
energy from the pump to the signal. Physicists have found that good agreement with
experiment is achieved by an ODE model, in which one neglects the effect of nonlinear
coupling of bound states to radiation modes:

∂tIs = εgsIsIp,

∂tIp = −εgpIsIp,

Is ∼ |us|2, Ip ∼ |up|2,(1.3)

where gs,p are coefficients depending on the properties of the fundamental modes, e.g.,
on frequency and the so-called effective area.

A satisfactory explanation for the above approximation has been lacking; see,
for example, [3]. This motivated us to consider the Raman energy transfer problem
in the context of the model (1.2). We have found an explanation for the above
statement about energy transfer using ideas and methods of resonance and averaging.
In particular, in Theorem 3.1 we establish that if the initial field energy, which is not
small, is in the guided mode, then this property persists with negligible error on the
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length scale of physical interest, O(ε−1), and therefore the model (1.3) applies. Note
that on the time interval of order ε−1, the radiation of size ε can grow to become of
order O(1) (since the rate of radiation change is of order O(ε)).

The proof of Theorem 3.1 requires a good understanding of the large time dynam-
ics of the flow defined by (1.2). Thus we consider the question of global existence of
the initial value problem for such systems and we have derived results of independent
interest. The standard approach to controlling the large time dynamics is to first
prove local in time existence of the solutions to the initial value problem in a “nat-
ural” Banach space. A “natural” space is often one in which the physically relevant
conserved integrals are defined. We formulate initial value problem for system (1.2)
as a system of integral equations and prove that there are local solutions using fixed
point argument; see sections 2 and 4. Global existence in time then follows from an
appropriate a priori bound on the norm of this Banach space. If this norm remains
bounded in terms of conserved integrals of the flow, global existence holds.

The ideas we use to prove global existence apply to both systems (1.1) and (1.2).
Equations (1.1) and (1.2) have the L2 (energy) conservation law

P[us(t), up(t)] ≡
∫ +∞

−∞
(|us|2 + |up|2) dx = P[us(0), up(0)] ≡ P0.(1.4)

Unfortunately, L2 is a very weak space in which to control the nonlinear flow. Unlike
the nonlinear Schrödinger equation, a Hamiltonian system, (1.2) and (1.1) do not
have a second conserved integral (Hamiltonian), which controls ‖∇us,p‖L2 , and from
which sufficient a priori control follows for global existence to hold.

We find that the key to a global existence theory is the following space-time
integral a priori bound, which is a consequence of the form of the nonlinear Raman
interaction terms: ∫ T

0

dt

∫
|us|2|up|2 dx ≤ 1

2
P0.(1.5)

Remark 1.1. We believe our theory can be extended to system (1.1) with Kerr
effect included. An essential ingredient is the space-time estimate (1.5), which holds
for the more general system. However, a more technical analysis is required to obtain
closed space-time estimates in the presence of Kerr effect terms. This is work in
progress.

Outline of the paper. The paper is structured as follows. We first consider
system (1.2) in one space dimension and one time dimension. In section 2 we prove
global well-posedness for the solution of the initial value problem. The key to this
result are certain a priori estimates, whose point of departure is the L2 conservation
law (1.4) and the space-time a priori bound (1.5). This space-time estimate implies
that (1.2) may be viewed as an inhomogeneous system of equations for us and up,
with a source term, which is bounded in a space-time norm. Strichartz estimates [8]
are then used to bound us and up individually in space-time norms and then finally
in classical Sobolev norms. In section 3 the energy transfer from the bound mode
of a single mode waveguide to radiation modes is studied by estimating nonresonant
oscillating terms. Section 4 contains a theory of well-posedness in the case of two
transverse dimensions. Finally, there are three appendices: one with a detailed dis-
cussion of the motivating application to optical communications, the second one in
which we prove the normal form result, based on the symmetries of the system, and
the third one describing numerical simulations.
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2. Existence theory on R
1. In this section we prove that system (1.2) has a

unique global solution in an appropriate (physical) function space. In subsection 2.1
we provide the required operator estimates we shall require. In subsection 2.2 we de-
rive certain a priori bounds which are satisfied by solutions of (1.2). In subsection 2.3
existence in a “weak” space is proved. In section 2.4 it is shown how to extend these
results to Hs.

2.1. Estimates for the linear flow. We first introduce the fundamental solu-
tion of the Schrödinger equation.

(1) The solution of the initial value problem

i∂tu = −∂2
xu, u(0, x) = f(2.1)

is denoted by U0(t)f and U0(t) is called the free propagator.
(2) The solution of the initial value problem

i∂tu = (−∂2
x + V (x))u = Hu, u(0, x) = f(2.2)

is denoted by U(t)f .
The operator, H, may have spectrum consisting of continuous and discrete parts,

with associated spectral projections Pc and Pb = I − Pc. We shall assume that H
has finitely many point eigenvalues. Intuitively, on the range of Pc we expect U(t) to
behave dispersively in a manner similar to U0(t). We use dispersive estimates which
involve space-time integrals, often referred to as estimates of Strichartz type; see [8]
and [9]. The proofs of the space-time estimates for the free Schrödinger equation in
the form we use are due to Ginibre and Velo [12] and, in the inhomogeneous case, to
Yajima [10] and Cazenave and Weissler [11]. For complete proofs see, for example,
Theorems 3.3 and 3.4 of [4].

We now introduce the function spaces and the notation of an admissible pair in
terms of which the space-time estimates are expressed.

(3) For a real interval I and a Banach space X, we denote by Lp(I,X) the
Banach space of functions u : I → X for which

∫
I
‖u(t)‖pX dt is finite.

(4) A pair of real numbers (q, r) is called admissible (for dimension n = 1) if

2

q
=

1

2
− 1

r
, r ∈ [2,∞].(2.3)

We now state Strichartz-type estimates for U(t) for the initial value problem (2.2)
and the inhomogeneous problem

i∂tu = Hu + Pcg.(2.4)

Theorem 2.1. Assume that V satisfies

∫ +∞

−∞
|V (x)|(1 + |x|)5/2 dx < ∞.(2.5)

Thus, H has finitely many negative eigenvalues and continuous spectrum extending
from 0 to +∞, with associated spectral projections Pb and Pc.

1

1Finiteness of negative discrete spectrum and continuity of spectrum from [0,∞) follows from
sufficient decay of the potential.
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Let (q, r) be an admissible pair. For any f ∈ L2, U0(t)f and U(t)Pcf are of class
Lq(R, Lr) and satisfy the estimates

‖U0(·)f‖Lq([0,T ],Lr) ≤ C‖f‖L2 ,(2.6)

‖U(·)Pcf‖Lq([0,T ],Lr) ≤ C‖f‖L2 ,

where C depends only on q.
Theorem 2.2. Let V satisfy (2.5) and let (γ, ρ) be an admissible pair (2/γ =

1/2 − 1/ρ), f ∈ Lγ′
([0, T ], Lρ′

), where (γ′, ρ′) is conjugate to (γ, ρ). Then for any
admissible pair (q, r) (2/q = 1/2 − 1/r)

∥∥∥∥
∫ t

0

U0(t− τ)f(τ)dτ

∥∥∥∥
Lq([0,T ],Lr)

≤ C‖f‖Lγ′ ([0,T ],Lρ′ ),∥∥∥∥
∫ t

0

U(t− τ)Pcf(τ)dτ

∥∥∥∥
Lq([0,T ],Lr)

≤ C‖f‖Lγ′ ([0,T ],Lρ′ ),(2.7)

where C depends only on q, γ.
The proofs rely on the Lp − Lp′

estimates for the free Schrödinger equation

‖U0(t)f‖Lp ≤ (4π|t|)−
1
2+ 1

p ‖f‖Lp′ .(2.8)

In the case of a Schrödinger equation with a potential in one space dimension the
analogous estimate for U(t)Pc was established by Weder [5]. Adapting the proofs
in [4], for the free propagator U0(t), and using Weder’s estimate, one obtains the
Strichartz-type estimates for Schrödinger equation with a potential.

The following corollary, easily derived from the previous estimates by a change
of variables, concerns the dependence of space-time estimates on a parameter, which
arises when we rescale (1.2).

Corollary 2.3. Consider a one-parameter family of Schrödinger initial value
problems

i∂tu = βHu,

u(x, 0) = f(x),(2.9)

where β ∈ [β0,∞) with β0 > 0. Assume that the potential, V (x), satisfies (2.5).
Then, the conclusions of Theorems 2.1 and 2.2 hold with β-dependent constants. In
particular, if Uβ(t)f = U(βt)f denotes the solution of the initial value problem (2.9),
then

‖Uβ(·)Pcf‖Lq([0,T ],Lr) ≤ C1(β, q)‖f‖L2 ,(2.10) ∥∥∥∥
∫ t

0

Uβ(t− τ)Pcf(τ)dτ

∥∥∥∥
Lq([0,T ],Lr)

≤ C2(β, q, γ
′)‖f‖Lγ′ ([0,T ],Lρ′ ),(2.11)

where

C1(β, q) = C11(q)β
− 1

q , C2(β, q, γ
′) = C22(q, γ

′)β
−1− 1

q + 1
γ′ .(2.12)

In [6], Weder proves continuity of wave operators for (2.2). We use a special case
of the main theorem from [6].
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Proposition 2.4. Let V satisfy (2.5). Then, there exist wave operators Ω and
Ω∗ satisfying

Ω(I − Δ)Ω∗ = (I + H)Pc.(2.13)

These operators are continuous in H1:

‖Ωf‖H1 ≤ C‖f‖H1 , ‖Ω∗f‖H1 ≤ C‖f‖H1 .(2.14)

2.2. A priori space-time estimates. Essential in the proof that system (1.2)
defines the solution globally in time and that the solution does not develop singularities
are a priori estimates which we now derive. For convenience, we rescale the time
εt = tnew, so the uniform bound on the interval tnew ∈ [0, T ] will correspond to the
interval [0, T/ε] in old time. We will continue to use t as the time variable

∂tus + iβHus = |up|2us,(2.15)

∂tup + iβHup = −|us|2up,(2.16)

where β := ε−1 is a dispersion/diffraction parameter and β ∈ [β0,∞].
Multiplication of (2.15) by us, taking the real part of the resulting equation and

integrating over all gives

d

dt

∫
|us|2 dx = 2

∫
|us|2|up|2 dx.(2.17)

Similarly, multiplication of (2.16) by up yields

d

dt

∫
|up|2 dx = −2

∫
|us|2|up|2 dx.(2.18)

Equations (2.17) and (2.18) express the gain of signal energy at the expense of
pump energy and the depletion of pump energy at the expense of signal energy; see
(1.2).

Addition of (2.17) and (2.18) yields the conservation law

d

dt

∫
|us|2 + |up|2 dx = 0(2.19)

or ∫
|us|2 + |up|2 dx =

∫
|us(0)|2 + |up(0)|2 dx ≡ P0.(2.20)

An important step in our analysis is to use the energy dissipation identity (2.18).
Integration of (2.18) over time interval [0, T ] yields

2

∫ T

0

∫
|us(x, t)|2|up(x, t)|2 dx dt =

∫
|up(x, 0)|2 dx−

∫
|up(x, t)|2 dx.(2.21)

A simple consequence of (2.21) is the following space-time bound.
Proposition 2.5 (a priori space-time estimate). Let (us, up) denote a solution

of (2.15)–(2.16) in the sense of Theorem 2.9. Then,∫ T

0

∫
|us|2|up|2 dx dt ≤

1

2
P0.(2.22)
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Remark 2.6. Since in Theorem 2.9 we assume that the initial conditions are
merely L2, strictly speaking the above derivation of the bound (2.22) is not valid,
since the manipulations require that the solution is a classical solution of the PDE,
i.e., pointwise differentiable in space and time. At the end of section 2.3, we sketch a
proof of (2.22) for the case of L2 initial data.

Equations (2.16) and (2.15) can both be viewed as inhomogeneous Schrödinger
equations of the form

i∂tU = βHU + g(2.23)

with a source term g given by

g = |up|2us or g = −|us|2up.(2.24)

We next show that the a priori estimate (2.22) implies bounds on the source terms
(2.24) which are suitable for application of the inhomogeneous Strichartz estimate of
Theorem 2.2.

Proposition 2.7. Let g denote either term in (2.24). Then, for any T > 0 and
any κ ∈ [0, 2],

∫ T

0

∣∣∣∣
∫

|g| dx
∣∣∣∣
κ

dt ≤ 2−
κ
2 Pκ

0 T
2−κ

2 .(2.25)

In particular, for κ ∈ [1, 2] and g ∈ Lκ([0, T ], L1),

‖g‖Lκ([0,T ],L1) ≤ 2−
1
2P0T

2−κ
2k .(2.26)

To prove Proposition 2.7, let g = −|us|2up. The proof for g = |up|2us is analogous.
By the Cauchy–Schwarz inequality,

∣∣∣∣
∫

|us|2|up| dx
∣∣∣∣ ≤

(∫
|us|2 dx

) 1
2
(∫

|us|2|up|2 dx
) 1

2

.(2.27)

Squaring this inequality and integrating the result over the time interval [0, T ] yields,
after using that the L2 norm of us is bounded by P0, that

∫ T

0

∣∣∣∣
∫

|us|2|up| dx
∣∣∣∣
2

dt ≤ 1

2
P2

0 .(2.28)

This handles the case κ = 2. For κ = 0 the trivial bound of T holds. The result
follows by interpolation.

Using the a priori bounds of Proposition 2.7 we can now estimate the solution in
Lq([0, T ], Lr) spaces, for admissible (q, r).

Theorem 2.8 (a priori bounds in Lq([0, T ], Lr)). Let (q, r) be an admissible pair;
see (2.3). Then, any solution (us, up) of system (2.15)–(2.16) for 0 ≤ t ≤ T satisfies
the bounds

‖us‖Lq([0,T ],Lr) ≤ C
(
P0 + P

1
2
0

)
(T + 1),

‖up‖Lq([0,T ],Lr) ≤ C
(
P0 + P

1
2
0

)
(T + 1),(2.29)

where C depends only on q, γ, and β0.
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Proof of Theorem 2.8. We estimate ‖us‖Lq([0,T ],Lr). The corresponding estimate
for up is similar. Equation (2.15) can be rewritten as an equivalent integral equation:

us(t) = Uβ(t)us(0) +

∫ t

0

Uβ(t− τ)|up(τ)|2us(τ)dτ.(2.30)

To estimate the space-time norm of us, we apply Corollary 2.3 to the continuous
spectral part and estimate the finite-dimensional (bound state) part of us separately.
For ease of presentation we assume that H has only one spatial localized bound state
solution, φ(x); the proof is the same for any finite number of bound states. Estimation
of (2.30) using Corollary 2.3 gives

‖us‖Lq([0,T ],Lr)(2.31)

≤ C

∥∥∥∥Uβ(t)us(0) +

∫ t

0

Uβ(t− τ)|up(τ)|2us(τ)dτ

∥∥∥∥
Lq([0,T ],Lr)

≤ C1(‖us(0)‖L2 + 〈us(0), φ〉‖φ‖Lq([0,T ],Lr)) + C2‖u2
pus‖Lγ′ ([0,T ],Lρ′ )

+

∥∥∥∥
∫ t

0

Uβ(t− τ)〈|up(τ)|2us(τ), φ〉φdτ
∥∥∥∥
Lq([0,T ],Lr)

≤ C1(1 + T q−1‖φ‖L2‖φ‖Lr )‖us(0)‖L2 + C2‖u2
pus‖Lγ′ ([0,T ],Lρ′ )

+

∥∥∥∥
∫ t

0

e−iλ(t−τ)〈|up(τ)|2us(τ), φ〉φdτ
∥∥∥∥
Lq([0,T ],Lr)

.

The last integral is estimated as follows: using that∣∣∣∣
∫ t

0

〈|up(τ)|2us(τ), φ〉φdτ
∣∣∣∣ ≤

∣∣∣∣
∫ t

0

|φ(x)|
∫

|φ(x)| · |u2
p(x, τ)us(x, τ)| dxdτ

∣∣∣∣
≤ |φ(x)|

∫ t

0

‖φ‖Lρ · ‖u2
pus‖Lρ′dτ

≤ |φ(x)| · ‖φ‖Lγ([0,T ],Lρ) · ‖u2
pus‖Lγ′ ([0,T ],Lρ′ )

we have ∥∥∥∥
∫ t

0

e−iλ(t−τ)〈|up(τ)|2us(τ), φ〉φdτ
∥∥∥∥
Lq([0,T ],Lr)

≤ ‖φ‖Lγ([0,T ],Lρ) · ‖φ‖Lq([0,T ],Lr) · ‖u2
pus‖Lγ′ ([0,T ],Lρ′ )

= ‖φ‖Lρ · ‖φ‖Lr · ‖u2
pus‖Lγ′ ([0,T ],Lρ′ ) · T γ−1+q−1

.

Now Proposition 2.7 implies a bound on ‖u2
pus‖Lγ′ ([0,T ],Lρ′ ), where ρ′ = 1 and

γ′ ∈ [0, 2]. Note that the exponents γ and ρ, dual to γ′ and ρ′ = 1, form an admissible
pair provided γ = 4 and γ′ = 4/3.2

Setting γ′ = 4/3 and ρ′ = 1 in (2.31) and applying Proposition 2.7 with κ = γ′ =
4/3 implies

‖us‖Lq([0,T ],Lr) ≤ C1(1 + T 1/q‖φ‖L2‖φ‖Lr )‖us(0)‖L2

+C2‖u2
pus‖

L
4
3 ([0,T ],L1)

+ T 1/4+1/q‖φ‖L∞‖φ‖Lr‖u2
pus‖

L
4
3 ([0,T ],L1)

≤ C1(1 + T
1
q )P

1
2
0 + C2P0T

1
4 + C3P0T

1
2+ 1

q ≤ C(P0 + P
1
2
0 )(T + 1),(2.32)

2Indeed, since 1/ρ′ + 1/ρ = 1, 1/γ + 1/γ′ = 1, and 2/γ = 1/2 − 1/ρ, we have ρ = ∞, γ = 4, and
γ′ = 4/3.
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where C1, C2, C3 depend on the corresponding norms of φ and we used that 4 ≤ q ≤
∞. This completes the proof of Theorem 2.8.

2.3. Existence in L8(R+, L4) ∩ L∞(R+, L2). In this subsection we prove
existence of solutions in a function space X (T ) defined by

X (T ) = L8([0, T ], L4) ∩ L∞([0, T ], L2)(2.33)

with the norm

‖u‖X (T ) = ‖u‖L8([0,T ],L4) + ‖u‖L∞([0,T ],L2)(2.34)

= ‖u‖8,4 + ‖u‖∞,2,(2.35)

the latter being written when there is no ambiguity. For the two-dimensional field
(us, up), we naturally define the norm

‖us, up‖X (T ) = ‖us‖X (T )+‖up‖X (T ) = ‖us‖8,4+‖us‖∞,2+‖up‖8,4+‖up‖∞,2.(2.36)

Since Theorem 2.8 gives a priori control of solutions in Lq([0, T ], Lr) spaces for
any admissible pairs (q, r), it is natural to obtain a local existence theorem in a space,
where the maximal time of existence depends only on Lq([0, T ], Lr) bounds. Then,
global existence follows from Theorem 2.8; see the discussion below.

Define the mapping

(us, up) → Aβ(us, up) ≡
(
A

(s)
β (us, up), A

(p)
β (us, up)

)
,(2.37)

where

A
(s)
β (us, up) = Uβ(t)us(0) +

∫ t

0

Uβ(t− τ)|up(τ)|2us(τ)dτ,(2.38)

A
(p)
β (us, up) = Uβ(t)up(0) −

∫ t

0

Uβ(t− τ)|us(τ)|2up(τ)dτ.(2.39)

Then, the above evolution equation has the equivalent formulation as a fixed point
problem.

For initial data (us(0), up(0)) ∈ L2, find (us, up) ∈ X (T ) for some T > 0 such
that

(us, up) = Aβ(us, up).(2.40)

Our local existence theorem is the following.

Theorem 2.9 (local existence).

(1) Given initial data (us(0), up(0)) ∈ L2, there exist a T > 0 and a unique
solution (us, up) ∈ X (T ) of (2.40). This local solution satisfies the a priori estimate
(2.22).

(2) Let Tmax > 0 denote the maximal time of existence. Either Tmax = ∞ (global
existence in time) or

Tmax < ∞ and lim sup
T→Tmax

‖(us, up)‖X (T ) = ∞.(2.41)
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Using the local existence theory of Theorem 2.9 and the a priori bounds of The-
orem 2.8, we have Tmax = ∞. Therefore, the following result holds.

Theorem 2.10 (global existence). For any initial data (us(0), up(0)) in L2,
(2.40) has a unique global solution of class L8(R+, L

4) ∩ L∞(R+, L
2).

We need only prove the local existence Theorem 2.9. The proof follows from
the next two propositions in which we establish that for L2 initial conditions and T
sufficiently small,

(i) the transformation Aβ maps a specified ball B(T ) in X (T ) into itself and
that

(ii) Aβ is a contraction mapping on B(T ).
Proposition 2.11. Let (us(0), up(0)) be in L2. Define the ball in X (T )

B(T ) = {(us, up) ∈ X (T ) : ‖(us, up)‖X (T ) ≤ 2C(‖us(0)‖2 + ‖up(0)‖2)},(2.42)

where C is found in the proof below. There exists T0 > 0 such that for any T < T0,
the ball is mapped into itself, i.e., Aβ(B(T )) ⊂ B(T ) for any β ∈ [β0,∞], with T0

depending on β0.

Proof of Proposition 2.11. We estimate the action of A
(s)
β . The estimation for

A
(p)
β is similar.

Following the proof of Theorem 2.8, we obtain a similar inequality

‖A(s)
β (us, up)‖q,r ≤ ‖Uβ(t)us(0)‖q,r +

∥∥∥∥
∫ t

0

Uβ(t− τ)|up|2us

∥∥∥∥
q,r

≤ C1(1 + T )‖us(0)‖2 + C2(1 + T )‖u2
pus‖γ′,ρ′ ,

where C1, C2 depend on φ.
Estimation of the cubic term proceeds as follows. By the Cauchy–Schwarz in-

equality,

‖u2
pus‖γ′,ρ′ =

[∫ T

0

(∫
|u2

pus|ρ
′
dx

)γ′/ρ′

dt

]1/γ′

≤
[∫ T

0

(∫
|up|4ρ

′
dx

)γ′/ρ′

dt

]1/2γ′ [∫ T

0

(∫
|us|2ρ

′
dx

)γ′/ρ′

dt

]1/2γ′

.

Set ρ′ = 1 and therefore γ′ = 4/3. Then the last expression becomes

=

[∫ T

0

(∫
|up|4 dx

)4/3

dt

]3/8 [∫ T

0

(∫
|us|2 dx

)4/3

dt

]3/8

(2.43)

and by Hölder’s inequality, applied to each factor, we have the bound

≤

⎡
⎣[∫ T

0

(∫
|up|4 dx

)2

dt

](2/3)·(3/8) [∫ T

0

13 dt

](1/3)
⎤
⎦

3/8 [
supt‖us(t)‖2·(4/3)

2 T
]3/8

≤ ‖up‖2
8,4‖us‖∞,2T

1/2.

Adding up all the terms, we obtain∥∥∥A(s)
β (us, up)

∥∥∥
X (T )

≤ C(‖us(0)‖2 + ‖up‖2
8,4‖us‖∞,2T

1
2 )(1 + T ),∥∥∥A(p)

β (us, up)
∥∥∥
X (T )

≤ C(‖up(0)‖2 + ‖us‖2
8,4‖up‖∞,2T

1
2 )(1 + T ),
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where C = max{C1, C2}. Finally, combining the last two terms, we have

‖Aβ(us, up)‖X (T ) ≤ C(‖us(0)‖2 + ‖up(0)‖2 + ‖(us, up)‖3
X (T )T

1
2 )(1 + T ).(2.44)

Assume now that ‖(us, up)‖X (T ) ≤ 2C(‖us(0)‖2 + ‖up(0)‖2) and that T is suffi-
ciently small; then Aβ maps B(T ) into itself. This completes the proof of Propo-
sition 2.11.

Proposition 2.12. For T < T1 ≤ T0 sufficiently small, the transformation, Aβ,
is a contraction on B(T ). That is,

‖Aβ(us, up) −Aβ(vs, vp)‖X (T ) ≤ q‖(us − vs, up − vp)‖X (T ),(2.45)

where 0 < q < 1.
Proof of Proposition 2.12. Consider the first component of the map. By Corol-

lary 2.3,

‖A(s)
β (us, up) −A

(s)
β (vs, vp)‖q,r ≤ C2‖|up|2us − |vp|2vs‖ 4

3 ,1

≤ ‖u2
p(us − vs)‖ 4

3 ,1
+ ‖upvs(up − vp)‖ 4

3 ,1

+ ‖vpvs(up − vp)‖ 4
3 ,1

.

These terms are all estimated in a similar manner. We focus on the second term.
First, by the Cauchy–Schwarz inequality,

‖upvs(up−vp)‖ 4
3 ,1

≤
[∫ T

0

(∫
|up|2|vs|2 dx

)4/3

dt

]3/8[∫ T

0

(∫
|up−vp|2dx

)4/3

dt

]3/8

≤
[∫ T

0

(∫
|up|2|vs|2 dx

)4/3

dt

]3/8

T 3/8‖up−vp‖∞,2.

Another application of the Cauchy–Schwarz inequality to the spatial integral in the
first factor in the previous expression and then Hölder’s inequality to the time integral
gives

[∫ T

0

(∫
|up|4 dx

)4/3

dt

]3/16 [∫ T

0

(∫
|vs|4 dx

)4/3

dt

]3/16

T 3/8‖up − vp‖∞,2

≤ ‖up‖8,4‖vs‖8,4T
2
16T

3
8 ‖up − vp‖∞,2 = ‖up‖8,4‖vs‖8,4T

1/2‖up − vp‖∞,2

≤ ‖up‖8,4‖vs‖8,4T
1/2‖(us − vs, up − vp)‖X (T ).

Adding the estimates for∥∥∥A(s)
β (us, up) −A

(s)
β (vs, vp)

∥∥∥
X (T )

and
∥∥∥A(p)

β (us, up) −A
(p)
β (vs, vp)

∥∥∥
X (T )

(2.46)

and choosing, if necessary, T1 < T0, we obtain the contraction estimate. This com-
pletes the proof.

Remark 2.13. Finally, we give a proof of the space-time bound for solutions with
data in L2.

(1) Existence of solutions for very regular data. Using that Hs is an algebra
for s > 1

2 , it is standard to prove, by a contraction mapping argument, that for
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data in Hs with s ≥ s0 ≥ 2 there is a unique classical solution. However, this
argument requires differentiation of the original system and as a consequence V (x).
This requires imposing unnecessary smoothness assumptions on V . To avoid such
restrictions on V , we observe that the norms ‖·‖H2 = ‖(I+H)Pc ·‖L2 and ‖(I−Δ)·‖L2

are equivalent, by Proposition 2.4; see also Proposition 2.15. Therefore, applying
(I + H)Pc, which commutes with Uβ(·), to the integral equation for (us, up), we
can use standard estimates to obtain a classical solution. An argument of this type
is implemented in section 2.4. Therefore, by the computation of section 2.2, this
classical solution satisfies (2.22).

(2) Continuity of solutions with respect to variations in the initial data. Let
(us, up) denote the solution corresponding to data (us(0), up(0)) and (vs, vp) denote
the solution corresponding to data (vs(0), vp(0)). Both of these are fixed points of
the operator Aβ (see (2.37)) with the corresponding data. By the same estimate as
in the proof of Proposition 2.12 we have (2.45) plus an additional data term on the
right-hand side: ‖(us(0) − vs(0), up(0) − vp(0))‖L2 , where the Strichartz estimate for
the free propagator is applied to the difference of initial conditions. In other words,

‖(us, up) − (vs, vp)‖q,r ≤ C‖(us(0) − vs(0), up(0) − vp(0))‖L2 .(2.47)

(3) Convergence. Finally, take a sequence of initial data in Hs, s ≥ s0 ≥ 2, which
converges in L2 to a limit. For each member of this sequence, the solution satisfies the
space-time bound (2.22). The right-hand side of (2.22) converges by convergence in
L2 of the data and the left-hand side of (2.22) converges by (2.47). Therefore, (2.22)
holds on the interval of existence for any solution with L2 data.

2.4. Existence in H1(R1
+). We consider the existence theory in H1. In this

section we prove the following theorem.
Theorem 2.14. Let (us(0), up(0)) be in H1 and let the potential V satisfy (2.5).

Then there exists a unique global solution for system (1.2) in L∞(R1
+, H

1).
We first observe that our proof of local existence, via the contraction mapping

principle, extends to the space

X1(T ) ≡ C([0, T ], H1) ∩ X (T ).(2.48)

In particular, one needs only to prove that Aβ maps a ball to a ball in this smaller
space and it is a contraction mapping there, for T < T2, where T2 ≤ T1 ≤ T0. This
can be proven by applying (H+I)

1
2Pc to the equations, using equivalence of norms (in

the appropriate spaces): ‖(H + I)
1
2Pc · ‖L2 and ‖ · ‖H1 and carrying out the standard

energy estimates. We use (H+I)Pc rather than I−Δ because functions of H commute
with H and thus we avoid differentiation of the potential V (x). Otherwise, we would
require bounds on norms of ∂xV .

If T ∗
max denotes the maximal time of existence for the solution in X1(T ), then in

view of the a priori estimates in X (T ), global existence (T ∗
max = ∞) will follow from

a priori bounds on (us, up) in H1.
Let

Ac ≡ (I + H)Pc.(2.49)

Applying to system (2.15)–(2.16) operator A1/2
c , we obtain the inequality

∂

∂t

∫
(|A1/2

c us|2 + |A1/2
c us|2)dx(2.50)

≤ 2

∣∣∣∣
∫ (

A1/2
c usA1/2

c (|up|2us) −A1/2
c upA1/2

c (|us|2up)
)
dx

∣∣∣∣ .(2.51)
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Proposition 2.15. Assume that V satisfies condition (2.5). Then the operator

A1/2
c (I − Δ)−1/2 and its inverse are bounded in L2; that is, for any f ∈ L2 both

A1/2
c (I − Δ)−1/2f and (I − Δ)1/2A−1/2

c f are bounded in L2 and

‖A1/2
c (I − Δ)−1/2f‖L2 ≤ C‖f‖L2 ,(2.52)

‖(I − Δ)1/2A−1/2
c f‖L2 ≤ C‖f‖L2 .(2.53)

Proof. This proposition states that the ‖(I − Δ)
1
2 ‖L2 norm and ‖A1/2

c · ‖L2 are
equivalent. Then our strategy will be similar to the proof in the potential-free case

(as if A1/2
c were ∂x).

We prove the proposition using Weder’s result on the continuity of wave oper-
ators [6]. Under the conditions stated above, Weder proves that there exists wave
operator Ω such that

Ω(I − Δ)Ω∗ = Ac,

where Ω is a bounded continuous operator on H1. Then, taking the square root, we
obtain

Ω(I − Δ)−1/2Ω∗ = A−1/2
c .(2.54)

The square root exists since Ac = (I + H)Pc is a positive operator on the subspace
corresponding to the continuous spectrum.

Now it is easy to verify (2.52):

‖A1/2
c (I − Δ)−1/2f‖L2 = ‖Ω(I − Δ)1/2Ω∗(I − Δ)−1/2f‖L2

= ‖(I − Δ)1/2Ω∗(I − Δ)−1/2f‖L2 ≤ C‖Ω∗(I − Δ)−1/2f‖H1

≤ C‖(I − Δ)−1/2f‖H1 ≤ C‖f‖L2 ,

where we have used that Ω, Ω∗ are isometries in L2 and continuous in H1. The other
inequality (2.53) can be proved similarly.

Corollary 2.16. Let f ∈ H1 ∩ Range(Pc). Then

‖A1/2
c f‖2 ≤ C‖(I − Δ)1/2f‖2,(2.55)

‖(I − Δ)1/2f‖2 ≤ ‖A1/2
c f‖2.(2.56)

Proof. Let f = (I − Δ)1/2g in (2.52), with g ∈ H1 ∩ Range(Pc). Then we have

‖A1/2
c g‖L2 ≤ ‖(I − Δ)1/2g‖L2 .

To prove the other inequality (2.56), we write

‖(I − Δ)1/2f‖L2 = ‖(I − Δ)1/2A−1/2
c A1/2

c f‖L2 ≤ ‖A1/2
c f‖L2 .

Proof of Theorem 2.14. First, using the above proposition, we estimate∣∣∣∣
∫ (

A1/2
c usA1/2

c (|up|2us)
)
dx

∣∣∣∣ ≤ ‖A1/2
c us‖2 · ‖A1/2

c (|up|2us)‖2

= ‖A1/2
c us‖2 · ‖A1/2

c (I − Δ)−1/2(I − Δ)1/2(|up|2us)‖2

≤ ‖A1/2
c us‖2 · ‖A1/2

c (I − Δ)−1/2‖B(L2,L2) · ‖(I − Δ)1/2(|up|2us)‖2.
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Using Leibnitz formula for the fraction, see [7],

‖(I − Δ)1/2(fg)‖2 ≤ ‖f‖∞ · ‖(I − Δ)1/2g‖2 + ‖(I − Δ)1/2f‖2 · ‖g‖∞,

we obtain

‖(I − Δ)1/2(|up|2us)‖2 ≤ ‖up‖2
∞‖(I − Δ)1/2us‖2 + 2‖up‖∞‖us‖∞‖(I − Δ)1/2up‖2.

Combining the last two estimates, we obtain

∣∣∣∣
∫ (

A1/2
c usA1/2

c (|up|2us)
)
dx

∣∣∣∣
≤C‖A1/2

c us‖2 · (‖up‖2
∞ + ‖us‖2

∞)(‖(I − Δ)1/2up‖2 + ‖(I − Δ)1/2us‖2)

≤C‖A1/2
c us‖2 · (‖up‖2

∞ + ‖us‖2
∞)(‖(I − Δ)1/2Pcup‖2 + ‖(I − Δ)1/2〈up, φ〉φ‖2

+‖(I − Δ)1/2Pcus‖2 + ‖(I − Δ)1/2〈us, φ〉φ‖2)

≤C(‖A1/2
c us‖2

2 + ‖A1/2
c up‖2

2 + 1) · (‖up‖2
∞ + ‖us‖2

∞).

Finally, adding the s and p components of the differential inequalities, we obtain

∂t(‖A1/2
c us‖2

2 + ‖A1/2
c up‖2

2) ≤ C(‖up‖2
∞ + ‖us‖2

∞) · (‖A1/2
c us‖2

2 + ‖A1/2
c up‖2

2 + 1)

which implies that

‖A1/2
c us‖2

2 + ‖A1/2
c up‖2

2

≤ exp

(
C

∫ T

0

[‖us‖2
L∞ + ‖up‖2

L∞ ]

)
(‖A1/2

c us(0)‖2
2 + ‖A1/2

c up(0)‖2
2 + 1).

Applying Hölder’s inequality to the time integral in the exponent we have

∫ T

0

[‖us‖2
L∞ + ‖up‖2

L∞ ] dt ≤ C‖us‖2
L4([0,T ],L∞)T

1
2 + C‖up‖2

L4([0,T ],L∞)T
1
2

= C(‖us‖2
L4([0,T ],L∞) + ‖up‖2

L4([0,T ],L∞))T
1
2

≤ C(P0 + P
1
2
0 )(T

1
4 + T

3
4 )T

1
2 .

The last inequality follows from the a priori space-time estimate of Theorem 2.8 and
the fact that (4,∞) is an admissible pair. We, thus, establish the boundedness of
(us, up) in ‖Ac(·)‖2 norm:

‖A1/2
c us‖2

2 + ‖A1/2
c up‖2

2 ≤ K1e
K2(P0+1)(T 2+1)(‖A1/2

c us(0)‖2
2 + ‖A1/2

c up(0)‖2
2 + 1).

Therefore, using the equivalence of norms, see Corollary 2.16, we obtain

‖us(t)‖H1 + ‖up(t)‖H1 ≤ K̃1e
K2(P0+1)(T 2+1)(‖us(0)‖H1 + ‖up(0)‖H1 + 1)(2.57)

for some K1,K2 > 0. This completes the proof of global existence in H1.
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3. Energy transfer from the guided mode to radiation modes. In this
section, we prove that, over time scales of interest (t ≤ O(ε−1)), radiation terms
remain small during the amplification process and the finite-dimensional model (1.3)
is a valid approximation. In the discussion of this section we return to the time-scale,
where nonlinear terms are of order ε:

i∂tus −Hus = iε|up|2us,(3.1)

i∂tup −Hup = −iε|us|2up.(3.2)

For this system, we are going to show that radiation is indeed bounded by Cε on a
time scale of order 1/ε.

To proceed, we first orthogonally decompose a solution of (3.1)–(3.2) into its
bound state and continuous spectral (radiative) parts:

us(x, t) = as(t)φ(x) + Us(x, t),(3.3)

up(x, t) = ap(t)φ(x) + Up(x, t).(3.4)

We prove the following theorem.
Theorem 3.1. Let (us(0), up(0)) ∈ H1 and Pcus(0) = Pcup(0) = 0. Assume

that 0 < ε < ε0 < ∞ and that V satisfies (2.5). Then, for any T > 0 there exists
C(T, ε0) so that

max{‖Us(t)‖H1 , ‖Up(t)‖H1} ≤ C(T, ε0)ε(3.5)

on the interval t ∈ [0, T/ε].
We begin the proof with the following proposition, which follows from the ε-

independent bounds ‖us,p‖H1 ≤ C(T, ε0), (2.57).
Proposition 3.2. Let 0 < ε < ε0 < ∞. Then for any T > 0 there exists C(T, ε0)

such that

‖Us‖H1 , ‖Up‖H1 , |as|, |ap| ≤ C(3.6)

on the interval t ∈ [0, T/ε].
Substitution of (3.3)–(3.4) into (3.1)–(3.2) and projection onto φ and the range

of Pc gives

i∂tas − λas = iε[|ap|2as〈φ3|φ〉 + apas〈φ3|Up〉 + apas〈φ3|Up〉
+ |ap|2〈φ3|Us〉 + · · · + 〈|Up|2Us|φ〉],(3.7)

i∂tap − λap = −iε[|as|2ap〈φ3|φ〉 + asap〈φ3|Us〉 + apas〈φ3|Us〉
+ |as|2〈φ3|Up〉 + · · · + 〈|Us|2Up|φ〉],(3.8)

i∂tUs −HUs = iε[as|ap|2Pcφ
3 + apasPcφ

2Up + apasPcφ
2Up

+ |ap|2Pcφ
2Us + · · · + Pc|Up|2Us],(3.9)

i∂tUp −HUp = −iε[ap|as|2Pcφ
3 + asapPcφ

2Us + apasPcφ
2Us

+ |as|2Pcφ
2Up + · · · + Pc|Us|2Up],(3.10)

where H = −∂2
x + V (x) and Hφ = λφ.

Corollary 3.3. The fundamental modes are slowly varying with the rate ε

|∂t|as‖, |∂t|ap‖ ≤ C(T, ε0)ε.
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Proof. This follows from Proposition 3.2 and (3.7)-(3.8). Indeed,

|∂t|as‖ = |∂t|iaseitλ‖ ≤ |∂ti(aseitλ)| = |(i∂t − λ)as| ≤ C(T, ε0)ε.

The same argument leads to a similar estimate for |∂t|ap‖. This ends the proof of the
corollary.

The following estimates are used in the proof of the theorem and can be easily
verified.

Lemma 3.4.

‖Pcf‖2 ≤ ‖f‖2,

‖Pcf‖∞ ≤ ‖f‖∞(1 + ‖φ‖1 · ‖φ‖∞),

‖(H − λ)−1ei(H−λ)tPcf‖2 ≤ C‖f‖2,

‖(H − λ)−1Pc‖H1 ≤ C

dist(Hc, λ)
≤ C

|λ| .

(3.11)

Proof of Theorem 3.1. We now make transformations as = e−iλtAs and Us =
εe−iHtWs to remove rapid oscillations and explicitly show the smallness of radiation.
By hypothesis of Theorem 3.1, we have ‖Ws,p(0)‖H1 ≤ C. Note that by the bounds
of Proposition 3.2 we have ‖Ws,p‖H1 ≤ C(T, ε0)/ε and |As,p| ≤ C(T, ε0).

The slowly varying amplitudes As, Ap satisfy

∂tAs = ε|Ap|2As〈φ3|φ〉 + ε2ApAs〈φ3|e−i(H−λ)tWp〉 + ε2ApAs〈φ3|ei(H−λ)tWp〉
+ ε2|Ap|2〈φ3|e−i(H−λ)tWs|φ〉 + · · · + ε4〈|e−iHtWp|2e−i(H−λ)tWs〉,(3.12)

∂tAp = − ε|As|2Ap〈φ3|φ〉 − ε2AsAp〈φ3|e−i(H−λ)tWs〉 − ε2ApAs〈φ3|ei(H−λ)tWs〉
− ε2|As|2〈φ3|e−i(H−λ)tWp〉 − · · · − ε4〈|e−iHtWs|2e−i(H−λ)tWp|φ〉.(3.13)

Further, Ws,p satisfy

∂tWs = ei(H−λ)tAs|Ap|2Pcφ
3

+ eiHt[εApAsPcφ
2e−iHtWp + εApAsPcφ

2eiHtWp

+ ε|Ap|2Pcφ
2e−iHtWs + · · · + ε3Pc|e−iHtWp|2e−iHtWs],(3.14)

∂tWp = ei(H−λ)tAp|As|2Pcφ
3

+ eiHt[εAsApPcφ
2e−iHtWs + εApAsPcφ

2eiHtWs

+ ε|As|2Pcφ
2e−iHtWp + · · · + ε3Pc|e−iHtWs|2e−iHtWp].(3.15)

The goal is now to show that given initial data where W is O(1) (which corresponds
to radiation O(ε)) during the evolution W will remain O(1) on time interval O(1/ε).

In order to do this we integrate the above equations:

Ws(t) = Ws(0) +

∫ t

0

ei(H−λ)sAs|Ap|2Pcφ
3ds + ε

∫ t

0

Rsds,(3.16)

where εRs is the ε-order part in (3.14), i.e., the second and the third lines. Integrating
by parts

Ws(t) = Ws(0) +
ei(H−λ)t − 1

i(H − λ)
As|Ap|2Pcφ

3

−
∫ t

0

ei(H−λ)s

i(H − λ)
∂s(As|Ap|2)Pcφ

3ds + ε

∫ t

0

Rsds(3.17)
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and applying ‖A
1
2
c · ‖L2 , we obtain

‖A
1
2
c Ws(t)‖L2 ≤ ‖A

1
2
c Ws(0)‖L2 +

∥∥∥∥ei(H−λ)t − 1

i(H − λ)
As|Ap|2A

1
2
c Pcφ

3

∥∥∥∥
L2

(3.18)

+C(T, ε0)ε

∫ t

0

∥∥∥∥ei(H−λ)t − 1

i(H − λ)
A

1
2
c Pcφ

3

∥∥∥∥
L2

(3.19)

+ ε

∫ t

0

‖A
1
2
c Rs‖L2ds.

Therefore, we have

‖A
1
2
c Ws(t)‖L2 ≤ ‖A

1
2
c Ws(0)‖L2 + C‖(H − λ)−1A

1
2
c Pcφ

3‖L2(3.20)

+ ε

∫ t

0

(
‖A

1
2
c Pcφ

2Wp‖L2(3.21)

+ · · · + ε2‖A
1
2
c Pc|e−iHtWp|2e−iHtWs‖L2

)
ds.

The terms on the right-hand side in the first line are bounded by a constant. To
estimate the other terms we use the above properties of Ac, (H − λ)−1, etc. We
illustrate how one proceeds with the estimates using the last term:

ε2‖A
1
2
c Pc|e−iHtWp|2e−iHtWs‖L2(3.22)

≤ ε2‖(I − Δ)
1
2 |e−iHtWp|2e−iHtWs‖L2

≤ ε2‖(I − Δ)
1
2 e−iHtWp‖2

L2 · ‖(I − Δ)
1
2 e−iHtWs‖L2(3.23)

≤ ε2‖A
1
2
c e

−iHtWp‖2
L2 · ‖A

1
2
c e

−iHtWs‖L2

≤ ε2‖A
1
2
c Wp‖2

L2 · ‖A
1
2
c Ws‖L2(3.24)

≤ ε2‖Wp‖2
H1 · ‖A

1
2
c Ws‖L2 ≤ C‖A

1
2
c Ws‖L2 ,

where we used equivalence of norms, Leibnitz rule, and the uniform bound ‖Ws,p‖H1 ≤
C/ε. Thus, the inequality takes the form

‖A
1
2
c Ws(t)‖L2 ≤ B + εK

∫ t

0

(‖A
1
2
c Wp‖L2 + · · · + ‖A

1
2
c Ws‖L2)ds,(3.25)

where B and K do not depend on ε < ε0. Adding the last inequality with the

similar one for the p-component, and then using the notation z(t) = ‖A
1
2
c Ws(t)‖L2 +

‖A
1
2
c Wp(t)‖L2 , we obtain the inequality with modified B and K (but still independent

of ε):

z(t) ≤ B + εK

∫ t

0

z(s)ds.(3.26)

Using the standard Gronwall’s result, we find

z(t) ≤ BeεKt ⇒ z(t) ≤ BeKT ,(3.27)

which proves the bound ‖Ws‖H1 ≤ C(T, ε0).
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Remark 3.5. Using dispersive properties of eitH , it is possible to establish small-
ness of radiation in weaker spaces, namely, in ‖ · ‖L∞ norm. Taking (3.9)–(3.10) for
Us,p and rewriting them in the integral form, we are led to estimate the terms

ε

∫ t

0

eitHas|ap|2Pcφ
3ds(3.28)

and

ε

∫ t

0

eitHRsds.(3.29)

After some changes of variables with the aid of standard L∞ decay estimates for the
Schrödinger evolution, one obtains that

‖Us,p‖L∞ ≤ C
√
ε.(3.30)

This argument also extends to the two-dimensional case with even better decay in ε
(see the end of section 4.4).

4. Two-dimensional problem. We now consider the Raman system in the
case of two transverse spatial dimensions

i∂tus − βHus = i|up|2us,(4.1)

i∂tup − βHup = −i|us|2up,(4.2)

where H = −Δ+V (x, y) and we prove analogous existence results and energy transfer
estimates. Our strategy in the two-dimensional case is similar to the one-dimensional
case; therefore, we omit some calculations which can be found in the previous sections.

In the two-dimensional case we require stronger conditions on the potential.
Assumption 4.1. The potential V (x, y) is twice differentiable and

|DαV | ≤ Cα(1 + x2 + y2)−a,

where a > 6 and |α| ≤ 2.
Assumption 4.2. We assume that potential V (x, y) has no zero energy eigenvalues

or resonances.3

These assumptions are required to obtain space-time estimates in the next section.

4.1. Space-time estimates for the propagator. The definition of admissible
pair is modified: (q, r) is admissible (in dimension n = 2) if

1

q
=

1

2
− 1

r
, r ∈ [2,∞].

Theorem 4.3. Assume that the potential V satisfies both assumptions and let
(q, r) be an admissible pair. Then for any f ∈ L2 we have that U0(t)f and U(t)Pcf
are in Lq(R, Lr) and

‖U0(·)f‖Lq([0,T ],Lr) ≤ C‖f‖L2 ,(4.3)

‖U(·)Pcf‖Lq([0,T ],Lr) ≤ C‖f‖L2 ,

3Zero eigenvalues and resonances are obstructions to the optimal time-decay estimates for e−iHt.
Their absence holds generically; see, for example, [10].
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where C depends only on q.
Theorem 4.4. Assume that the potential V satisfies both assumptions, let (γ, ρ)

be an admissible pair, and let f ∈ Lγ′
([0, T ], Lρ′

), where (γ′, ρ′) is conjugate to (γ, ρ).
Then for any admissible pair (q, r)∥∥∥∥

∫ t

0

U0(t− τ)f(τ)dτ

∥∥∥∥
Lq([0,T ],Lr)

≤ C‖f‖Lγ′ ([0,T ],Lρ′ ),∥∥∥∥
∫ t

0

U(t− τ)Pcf(τ)dτ

∥∥∥∥
Lq([0,T ],Lr)

≤ C‖f‖Lγ′ ([0,T ],Lρ′ ),(4.4)

where C depends only on q, γ.
Both Theorems 4.3 and 4.4 are proven by using Yajima’s results [10] on W k,p

continuity of wave operators. The argument follows the proof of Proposition 2.15
and is omitted here. Finally, Corollary 2.3 is valid in the current setting without any
changes as the scaling is independent of the space dimension.

Remark 4.5. The application of Yajima’s results on W k,p continuity of wave
operators is the origin of the more restrictive smoothness assumptions on the potential
V (x). In one space dimension smoothness of V (x) is not required [6].

4.2. A priori space-time estimates. The same argument as in the one-
dimensional case applies here and we obtain the a priori bound of Proposition 2.5, as
well as the bound (2.28) on nonlinear terms.

Theorem 4.6 (a priori bounds in Lq([0, T ], Lr)). Let (q, r) be an admissible pair.
Then any solution (us, up) satisfies the bounds

‖us‖Lq([0,T ],Lr) ≤ C(P0 + 1)(T + 1),(4.5)

‖up‖Lq([0,T ],Lr) ≤ C(P0 + 1)(T + 1).(4.6)

Proof. As in the one-dimensional case, this estimate is proved by a straightforward
application of space-time estimate for Schrödinger equation with a potential and using
a priori estimate on nonlinear terms. Following the proof of Theorem 2.8, we obtain
the same bounds with different ρ, ρ′, γ, γ′. We must impose ρ′ = 1 with ρ = ∞, but
γ = 2 (since in 1/γ = 1/2 − 1/ρ) with γ′ = 2. This results in

‖us‖Lq([0,T ],Lr) ≤ C1‖us(0)‖L2 + C2‖u2
pus‖L2([0,T ],L1)

+‖φ‖L∞‖φ‖LrT 1/2+1/q‖u2
pus‖L2([0,T ],L1)

≤ C1P
1
2
0 + C2P0 + C3P0(T + T

1
2 ),

since q ≥ 2.

4.3. Local existence in H2(R2). We now prove local existence of solutions in
H2 and will extend it to a global solution using our space-time estimates.

Theorem 4.7 (local existence).
(1) Given initial data (us(0), up(0)) ∈ H2(R2), there exist T > 0 and a unique

solution (us, up) ∈ L∞([0, T ], H2(R2)).
(2) Let Tmax > 0 denote the maximal time of existence. Then, either Tmax = ∞

(global existence in time) or

Tmax < ∞ and lim sup
t→Tmax

‖(us, up)‖L∞([0,T ],H2(R2)) = ∞.
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To prove the local existence theorem we have to show that a ball in H2 is mapped
into itself and that the mapping is a contraction.

Consider the same mapping as in the one-dimensional case (2.38)–(2.39). We will
first show that it maps a ball into a ball:

‖A(s)
β (us, up)‖H2 ≤ ‖Uβ(t)us(0)‖H2 +

∥∥∥∥
∫ t

0

Uβ(t− τ)|up|2us

∥∥∥∥
H2

.(4.7)

The first term is estimated as follows:

‖Uβ(t)us(0)‖H2 = ‖(I − Δ)Uβ(t)us(0)‖L2 = ‖(I − Δ)(H + i)(H + i)−1Uβ(t)us(0)‖L2

≤ ‖(I − Δ)(H + i)−1‖B(L2,L2)‖(H + i)Uβ(t)us(0)‖L2 .

Note that the operator (I−Δ)(H+i)−1 is bounded in L2-operator norm. This follows
from the identity

(I − Δ)(H + i)−1 = −I + (I + i− V )(H + i)−1

and the boundedness of V in L∞ and of (H + i)−1 in L2.
Next, we have to establish the bound for

‖(H + i)Uβ(t)us(0)‖L2 = ‖(H + i)us(0)‖L2 = ‖(H + i)(I−Δ)−1(I−Δ)us(0)‖L2

≤ ‖(H + i)(I−Δ)−1‖B(L2,L2)‖(I−Δ)us(0)‖L2 ≤C‖us(0)‖H2 ,

where the operator (H + i)(I − Δ)−1 is bounded by similar calculations as for
(I − Δ)(H + i)−1.

Now, we estimate the second term in (4.7):∥∥∥∥
∫ t

0

Uβ(t− τ)|up|2usdτ

∥∥∥∥
H2

≤ C

∥∥∥∥
∫ t

0

(H + i)Uβ(t− τ)|up|2usdτ

∥∥∥∥
L2

.

To bound this term we write it in the form∫
dx

{∫ t

0

∫ t

0

(H+ i)Uβ(t−τ1)|up(τ1)|2us(τ1)(H− i)Uβ(t−τ2)|up(τ2)|2us(τ2)dτ1dτ2

}

(using Hölder inequality and isometry of Uβ in L2)

≤
∫ t

0

∫ t

0

dτ1dτ2

∣∣∣∣
∫

|(H + i)|up(τ1)|2us(τ1)|2 dx
∣∣∣∣
1
2
∣∣∣∣
∫

|(H + i)|up(τ2)|2us(τ2)|2 dx
∣∣∣∣
1
2

≤ t2 sup
τ∈[0,t]

‖(H + i)u2
p(τ)us(τ)‖2 ≤ Ct2 sup

τ∈[0,t]

‖u2
p(τ)us(τ)‖2

H2

≤ Ct2 sup
τ∈[0,t]

‖up(τ)‖4
H2‖us(τ)‖2

H2 .

Therefore, we finally obtain the bound on the s-part of the map

‖A(s)
β (us, up)‖H2 ≤ C‖us(0)‖H2 + Ct sup

τ∈[0,t]

‖up(τ)‖2
H2‖us(τ)‖H2

and the full map

‖Aβ(us, up)‖L∞([0,t],H2) ≤ C (‖us(0)‖H2 + ‖up(0)‖H2)

+Ct
(
‖up‖2

L∞([0,t],H2)‖us‖L∞([0,t],H2)

+ ‖up‖L∞([0,t],H2)‖us‖2
L∞([0,t],H2)

)
.
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With the obtained inequality it is easy to establish the following proposition.

Proposition 4.8. Let (us(0), up(0)) be in H2. Define the ball in L∞([0, T ], H2)
as

B(T ) =
{
(us, up) ∈ L∞([0, T ], H2) : ‖(us, up)‖L∞([0,T ],H2)

≤ 2C(‖us(0)‖H2 + ‖up(0)‖H2)
}
.

Then there exists T0 > 0 such that for any T < T0, the ball is mapped into itself, i.e.,
Aβ(B(T )) ⊂ B(T ) with T0 independent of β.

Next, we have to show that the mapping is a contraction in L∞([0, T ], H2). Con-
sider the first component of the map applied to two different pairs (us, up) and (vs, vp)
with the same initial data (us(0), up(0)) = (vs(0), vp(0)):

‖A(s)
β (us, up) −A

(s)
β (vs, vp)‖L∞([0,t],H2)

≤ CT sup
t∈[0,T ]

‖|up(t)|2us(t) − |vp(t)|2vs(t)‖H2

≤ CT sup
t∈[0,T ]

(‖u2
p(us − vs)‖H2 + ‖upvs(up − vp)‖H2 + ‖vpvs(up − vp)‖H2)

≤ C(‖up, us, vp, vs‖L∞([0,T ],H2))T‖(up − vp, us − vs)‖L∞([0,T ],H2).

Adding both s and p components of the map we obtain

‖Aβ(up, us) −Aβ(vp, vs)‖L∞([0,T ],H2)

≤ TC(‖up, us, vp, vs‖L∞([0,T ],H2))‖(up − vp, us − vs)‖L∞([0,T ],H2).

This inequality implies the following proposition.

Proposition 4.9. There exists T1 : 0 < T1 < T0 sufficiently small such that the
map Aβ is a contraction in the ball B(T ) for any T : 0 < T < T1:

‖Aβ(up, us) −Aβ(vp, vs)‖L∞([0,T ],H2) ≤ q‖(up − vp, us − vs)‖L∞([0,T ],H2),

where q < 1.

Remark 4.10. Whenever there exists a local solution on t ∈ [0, T ], it is bounded
in Lq([0, T ], Lr(R2)). Indeed, a solution in L∞([0, T ], H2) is also in Lq([0, T ], Lr(R2))
and the earlier obtained a priori bounds apply.

4.4. Global existence in H2(R2). In this section we will show that the local
solution obtained via the contraction mapping principle in the previous section can be
extended to a global solution using space-time estimates. We start with establishing
uniform bound in H1 space.

A priori estimates in H1. Proceeding as in the one-dimensional problem (2.4),
we obtain H1 bound. Since (∞, 2) is an admissible pair, we obtain that the solutions
are even uniformly bounded in time on the interval of existence of a local solution:

‖(us, up)‖L∞([0,T ],H1) ≤ C(P0, T )‖(us(0), up(0))‖H1 .(4.8)

Continuation to a global solution using Theorem 4.7 requires an H2 estimate, which
we now derive.
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Global existence in H2. Having established uniform bound in H1, we are ready
to obtain a bound in H2, which will rule out the first alternative in Theorem 4.7 (on
local existence) and, thus, leave the global existence as the only possibility.

Applying H+I to the s component of (4.2) and using energy estimates, we obtain

∂t

∫
|(H + I)us|2 ≤

∫
|(H + I)us| · |(H + I)(|up|2us)|

≤ ‖(H + I)us‖2‖(H + I)(|up|2us)‖2.(4.9)

To estimate the last term, we write∫
|Δ(|up|2us)|2 =

∫
|up|4|Δus|2 + 2

∫
|∇up|2|∇us|2|up|2 +

∫
|∇up|4|us|2

≤ C(‖up‖4
∞ · ‖us‖2

H2 + ‖us‖2
∞ · ‖up‖2

H2 · ‖up‖2
H1

+ ‖up‖2
∞ · ‖us‖2

H2 · ‖us‖2
H1 + ‖up‖2

∞ · ‖up‖2
H2 · ‖up‖2

H1)

and therefore we have∫
|Δ(|up|2us)|2 ≤ C

(
1 + ‖up‖4

∞ + ‖us‖4
∞
)
‖(us, up)‖2

H1 · ‖(us, up)‖2
H2 .

Now, adding the s and p components, we obtain

∂t

∫
(|(H + I)us|2 + |(H + I)us|2)

≤ C(1 + ‖up‖2
∞ + ‖us‖2

∞)(‖(H + I)us‖2
H2 + ‖(H + I)up‖2

H2),

where we have used that ‖(us, up)‖H1 is bounded (see previous paragraph on H1

estimates).
Since (2,∞) is an admissible pair, both

∫
‖up‖2

∞ dt and
∫
‖us‖2

∞ dt are bounded,
and we obtain the required bound:

‖(H + I)us‖2
2 + ‖(H + I)up‖2

2 ≤ C(P0, T )ekT (‖(H + I)us(0)‖2
2 + ‖(H + I)up(0)‖2

2)

on the interval t ∈ [0, T ]. Because of the norm equivalence, we also obtain

‖us(t)‖2
H2 + ‖up(t)‖2

H2 ≤ C(P0, T )ekT (‖us(0)‖2
H2 + ‖up(0)‖2

H2).

This bound implies the global existence of solutions in H2.
Radiation losses in two-dimensional amplification model. The analogue

of Theorem 3.1 on the boundedness of radiation in H2 holds with the proof carrying
over from the one-dimensional case. One can also obtain boundedness in L∞ as
described in Remark 3.5 with even faster decay: ε log ε rather than

√
ε.

Appendix A. Application to optical communications. In this section we
provide the details on the Raman model in optical communication systems as well as
the derivation of the reaction-dispersion system. In modern long-haul optical com-
munication systems the signal propagates in the fundamental mode of a single mode
fiber. In an “ideal” lossless optical fiber waveguide the transverse shape of the wave
envelope does not change and there is no transfer of energy from the fundamental
mode to radiation modes. However, in the real systems Rayleigh scattering causes
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attenuation of signal power, thus requiring periodic amplification [1]. A current strat-
egy for amplification of a signal is based on the stimulated Raman effect. Here, light
of a second pump wavelength is co- or counter-propagated in the medium. The stim-
ulated Raman effect is a parametric process in which light of the pump frequency
is transferred to that of the signal frequency. This amplification process is inher-
ently nonlinear and therefore is expected to cause deformation of the transverse mode
shape. There are other linear and nonlinear effects which may need to be taken into
account such as group velocity dispersion, self-phase modulation, and four wave mix-
ing. Also, refractive index depends on the frequency shift between the pump and
signal frequencies.

Regarding linear effects, like group velocity dispersion, in practice they are weaker
compared to the Raman effect assuming that pulses are not too short. However, in
our case, we consider a model problem with both pump and signal being continuous
(constant amplitude) waves. Then dispersion just vanishes.

The refractive index depends on the light frequency. As a result fundamental
modes would be slightly different for pump and signal waves. Here, we assume that
the modes are the same as it simplifies the exposition. All our results can be ob-
tained for the frequency-dependent dispersion/diffraction coefficients with minimal
modifications.

Approximate equations for the Raman interaction of signal and pump in the
waveguide have been derived in [3]. These authors derived a pair of coupled ODEs for
the signal and pump intensities, based on the assumption that all energy is contained
in the fundamental modes. This model compares well with experiment [3] (see also [1]
and the references therein). The authors [3] also discussed why the approximation
was so accurate. They suggested that radiative losses (energy transfer from bound to
radiation modes) is negligible due to the fact that “the wave-guiding action of the fiber
reforms the pump and Stokes waves so that they always have intensities distributions
which are close approximations to those which would exist in the absence of Raman
interaction.” However, this explanation has some limitations as the energy transfer
could occur adiabatically (e.g., like the ionization of an atom). In other words, a weak
process may lead to non-negligible changes after sufficiently long time. In particular,
one might expect that the modes would undergo continuous deformation while also
shedding radiation, so that after the full energy exchange a non-negligible amount of
energy would accumulate in radiative modes and would constitute a significant loss.

To understand these effects, equations which take into account the effects of
diffraction, wave-guiding and amplification should be studied. Naturally, the model
will contain a small parameter: the ratio of diffraction and amplification lengths.

Raman stimulated emission describes the amplification of signal photons (with
frequency ωs) with Stokes down shifted pump photons (with frequency ωp) and is
governed by [3]

∂ns

∂z
= g(ωp − ωs)nsnp,(A.1)

∂np

∂z
= −g(ωp − ωs)nsnp,(A.2)

where ns, np are the number densities of signal and pump photons, respectively, and
the total number of photons per unit volume is conserved ns +np = N . Since we wish
to focus on the effects due to the resonant coupling of the two wave fields (pump and
signal), we ignore other effects, such as amplified spontaneous emission [1] which is
always present, though a small effect.
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Introducing the intensities

Is = hωsns, Ip = hωpnp,(A.3)

where h denotes Planck’s constant, we obtain the corresponding equations

∂Is
∂z

=
g(ωp − ωs)

hωp
IsIp,(A.4)

∂Ip
∂z

= −g(ωp − ωs)

hωs
IsIp.(A.5)

These equations satisfy the photon number conservation relation

Is
ωs

+
Ip
ωp

= constant.(A.6)

In the case of radiative loss, this conservation law would be violated, since some
photons would be lost from the bound waveguide mode to radiation modes. Equations
(A.4)–(A.5) describe the plane wave Raman interaction.

Consider now the propagation of light in a dielectric cylinder waveguide with
longitudinal coordinate, z. Maxwell’s equations [1] imply

ΔE − 1

c2
Ett −∇(∇ · E) =

1

c2
[χ(1)(r, t) ∗ Ett]tt = 0,

where E ∈ R
3 is the electric field and χ(1)(r, t) is the linear susceptibility. Neglecting

vector effects (see, e.g., [1]), we find that the time Fourier transform of E, Ê, satisfies

ΔÊ +
ω2n2(x⊥, ω)

c2
Ê = 0.

Each component of E satisfies

Ezz + Δ⊥E +
ω2n2(x⊥, ω)

c2
E = 0.(A.7)

Next, we introduce the paraxial approximation. Let δ be a small parameter, and
assume the following structure for the refraction index dependence on x⊥:

n2(x⊥, ω) = n2
0(ω) + δ2n2

1(δx⊥/λ0, ω).(A.8)

We also seek E, in the form

E = A((δ/λ0)x⊥, (δ
2/λ0)z)e

ikz,(A.9)

where λ0 is the light wavelength and

2π

λ0
= k = ωn0(ω)/c.

Thus, E varies more rapidly in the transverse than longitudinal directions.
Substituting (A.8), (A.9) into (A.7) and multiplying by λ2

0δ
−4 we obtain

AZZ + 2ikλ0δ
−2AZ + δ−2Δ⊥A + δ−2λ2

0(ω
2/c2)n2

1(X⊥) = 0,
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where Z = (δ2/λ0)z, X⊥ = (δ/λ0)x⊥, and (∗)⊥ denotes differentiation with respect
to X⊥. For δ small, we keep the dominant terms, those of order δ−2 and obtain, after
using the relation between k and λ0,

i4πAZ + Δ⊥A +
4π2n1(X⊥, ω)

n2
0

A = 0.(A.10)

Equation (A.10) governs the linear propagation of any light field (signal or pump)
in the paraxial approximation. To obtain a model governing the Raman interaction
of signal and pump fields, us and up, we argue as follows. The signal field envelope
propagates through a medium with refractive index (A.8) corrected by an imaginary
term proportional to i|up|2 corresponding to the Raman amplification by pump. The
pump field envelope, up, propagates through a medium with refractive index (A.8)
corrected by an imaginary term proportional to −i|us|2 corresponding to pump deple-
tion by the signal. The coupled signal and pump envelopes are then taken to satisfy
the system

i∂zus + Δ⊥us − V (ωs,x⊥)us = iεs|up|2us,(A.11)

i∂zup + Δ⊥up − V (ωp,x⊥)up = −iεp|us|2up,(A.12)

where εp,s is the parameter which measures the ratio of the diffraction and nonlinear
lengths. Usually, εp,s is very small [1]. We further assume4 ε = εs = εp and neglect
the dependence of the refractive index on frequency, i.e., V (x⊥, ω) = V (x⊥).

System (A.12) models the Raman energy exchange between the two continuous
waves. We have not included the effects of losses due to the Rayleigh scattering in
order not to burden the exposition. In reality, the Raman amplification length might
be comparable to the effective (loss) length (20 km).

Thus, we have

i∂tus −Hus = iε|up|2us,

i∂tup −Hup = −iε|us|2up,(A.13)

where we use “t” to denote the “time-like” direction, z, x⊥ = x, and

H = −Δ + V (x).(A.14)

We study system (A.13) in the case where H has spectrum consisting of one point
eigenvalue, λ < 0, with corresponding eigenfunction φ, ‖φ‖L2 = 1. The components
of us and up, which are orthogonal to φ, are called radiative components. Our goal
is to prove if for t = 0 the order-one energy is concentrated in φ alone, then on time
scales of order ε−1 the energy in radiative components is at most of order ε.

Appendix B. Normal form theorem. In this section we state a normal
form result on the absence of the terms driving the radiation to any order of the
perturbation theory. While in the main part of the paper we have used only the
fact that these terms can be removed at the first order, we find this result important
and potentially useful in the search for sharper estimates of radiation growth. The
results in this section are formal in the sense that we do not verify the validity of
transformations and of obtained systems.

4Nonlinear coefficient ε is then the same for both fields. Therefore, in this system the energy is
conserved rather than photon number. This is done to simplify the presentation. All results hold for
the “true” model as well.
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For the Raman energy exchange system

i∂tus −Hus = iε|up|2us,(B.1)

i∂tup −Hup = −iε|us|2up,(B.2)

we now use representation

us = us
0φ

s
0(x) +

∫ ∞

0

us
λφ

s
λ(x)dλ,

up = up
0φ

p
0(x) +

∫ ∞

0

up
λφ

p
λ(x)dλ,

where H becomes diagonal

Hφ0 = λ0φ0,

Hφλ = λφλ, 〈uλ, φλ〉 = uλ,

where λ0 < 0 corresponds to the fundamental mode and the remaining part of the
spectrum (λ > 0) corresponds to the continuous spectrum. In this representation the
equations take the form

i∂tu
s
0 − λ0u

s
0 = iεC00

00u
p
0u

p
0u

s
0 + iε

∫ ∞

0

C00
λ10u

p
0u

p
0u

s
λ1
dλ1

+ · · · + iε

∫ ∞

0

∫ ∞

0

∫ ∞

0

Cμ1μ2

λ10
up
μ1
up
μ2
us
λ1
dμ1dμ2dλ1,

i∂tu
p
0 − μ0u

p
0 = iεC00

00u
s
0u

s
0u

p
0 + iε

∫ ∞

0

Cμ10
00 us

0u
s
0u

p
μ1
dμ1

+ · · · + iε

∫ ∞

0

∫ ∞

0

∫ ∞

0

Cμ10
λ1λ2

us
λ1
us
λ2
up
μ1
dλ1dλ2dμ1,

i∂tu
s
λ − λus

λ = iεC00
0λu

p
0u

p
0u

s
0 + iε

∫ ∞

0

C00
λ1λu

p
0u

p
0u

s
λ1
dλ1

+ · · · + iε

∫ ∞

0

∫ ∞

0

∫ ∞

0

Cμ1μ2

λ1λ
up
μ1
up
μ2
us
λ1
dμ1dμ2dλ1,

i∂tu
p
μ − μup

μ = iεC0μ
00 u

s
0u

s
0u

p
0 + iε

∫ ∞

0

Cμ1μ
00 us

0u
s
0u

p
μ1
dμ1

+ · · · + iε

∫ ∞

0

∫ ∞

0

∫ ∞

0

Cμ1μ
λ1λ2

us
λ1
us
λ2
up
μ1
dλ1dλ2dμ1,

where

Cμ1μ2

λ1λ2
=

∫ +∞

−∞
φp
μ1
φ
p

μ2
φs
λ1
φ
s

λ2
dx.

The natural consequence of the stimulated emission process is the invariance with
respect to the phase shifts of both the signal and the pump modes:

us
λi
, up

μj
→ us

λi
eiψs , up

μj
eiψp .

This torus action will be called Gsp-action below.
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Consider the class of polynomial vector fields which stay invariant under this
group action. We are going to consider near-identity transformations, which com-
mute with the torus action. Therefore these transformations map a Gsp-invariant
vector field to another Gsp-invariant vector field. We will now invoke these transfor-
mations to remove nonresonant terms from the equations. We first observe that a
polynomial vector field that is invariant with respect to the Gsp-action is generated
by the monomials of this form

es
λu

p
μ1
up
μ2

· · ·up
μm−1

up
μm

us
λ1
us
λ2

· · ·us
λk−1

us
λk
us
λk+1

,(B.3)

ep
μu

s
λ1
us
λ2

· · ·us
λm−1

us
λm

up
μ1
up
μ2

· · ·up
μk−1

up
μk
up
μk+1

,(B.4)

where m and k are even numbers.
Definition. The monomial of type (B.3) is called resonant if

μ1 − μ2 + · · · + μm−1 − μm + λ1 − λ2 + · · · + λk−1 − λk + λk+1 − λ = 0

and the monomial of type (B.4) is called resonant if

λ1 − λ2 + · · · + λm−1 − λm + μ1 − μ2 + · · · + μk−1 − μk + μk+1 − μ = 0.

If in a Gsp-invariant vector field initially all the energy is concentrated in funda-
mental modes, then the radiative modes can be excited only through the terms

es
λ|u

p
0|k|us

0|lus
0 and ep

μ|us
0|k|u

p
0|lu

p
0,

while no other radiation driving terms can appear after application of a Gsp-invariant
transformation. These terms are nonresonant, since the corresponding arithmetic
combinations are λ−λ0 and μ−λ0, where λ, μ > 0 and λ0 < 0. Therefore, |λ−λ0| >
|λ0| > 0 and |μ− λ0| > |λ0| > 0.

According to the standard normal form procedure, these terms can be removed
by employing the transformations of the form5

us
λ = Us

λ + ε
k+l
2 Cs

λ|U
p
0 |k|Us

0 |lUs
0 ,(B.5)

up
μ = Up

μ + ε
k+l
2 Cp

μ|Us
0 |k|U

p
0 |lU

p
0 .(B.6)

Now we formulate the normal form theorem.
Theorem B.1. For any N ≥ 1 there exists a sequence of transformations of the

form (B.5)–(B.6), which bring the system to the form

i∂tU
s
0 − λ0U

s
0 = i

[
εC00

00U
p
0U

p

0U
s
0 +

n1+n2<N+1∑
n1,n2>0

ε
n1+n2

2 Cs
n1,n2

|Up
0 |n1 |Us

0 |n2Us
0

]

+ εRs
0(U, ε) + O(εN+1),

i∂tU
p
0 − λ0U

p
0 = −i

[
εC00

00U
s
0U

s

0U
p
0 +

n1+n2<N+1∑
n1,n2>0

ε
n1+n2

2 Cp
n1,n2

|Up
0 |n1 |Us

0 |n2Up
0

]

+ εRp
0(U, ε) + O(εN+1),

i∂tU
s
λ − λUs

λ = εRs
λ(U, ε) + O(εN+1),

i∂tU
p
μ − μUp

μ = εRp
μ(U, ε) + O(εN+1),

5Capitals denote new variables while small ones denote old variables.
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where Rs,p
∗ (U, ε) are the terms which vanish if there is no energy in radiative modes

(Us
λ = Up

μ = 0 for all λ, μ > 0 ⇒ R = 0).
Proof. We will prove the theorem by applying a series of nearly identical trans-

formations. We start with the transformation

us
λ = Us

λ + εCs
λU

p
0U

p
0U

s
0 .

Straightforward calculations show that in order to remove the corresponding radiation
driving terms, the coefficient Cs

λ must be of the form

Cs
λ =

C00
0λ

i(λ0 − λ)

and similarly to remove pump radiation driving terms, we apply

up
μ = Up

μ + εCp
μU

s
0U

s
0U

p
0

with

Cp
μ =

C00
0μ

i(μ0 − μ)
.

Our results from the previous sections indicate that the transformations are valid and
the new system is well defined. Indeed, with the first-order radiation driving terms
removed, the obtained system is equivalent to (3.14)–(3.15).

Next, we formally remove quadratic radiation driving terms. We observe that
all transformations are near-identity ones differing only by fundamental mode am-
plitudes. No small denominators arise due to the gap in the spectrum (between the
eigenvalue and the continuum spectrum). Continuing these transformations, we re-
move higher-order radiation driving terms to order N .

Appendix C. Numerical simulations. We verify some of the results obtained
in this paper by carrying out numerical simulations. We simulate system (1.2) in one
dimension, where the potential is chosen to be V = sech2(x), so that the fundamental
mode can be explicitly calculated. We use the initial data with all the power (L2

norm) contained in fundamental modes.
The numerical simulation uses a Fourier split-step scheme, where evolutions due to

dispersive, potential, and nonlinear interactions are calculated separately. Nonlinear
interaction is solved exactly using the standard solution of the corresponding ODE [1].
Time step is chosen to be Δt = 0.01 and there are 212 Fourier modes. In Figure 1, the
L2 norm of total radiation is calculated after sufficiently long evolution, so that power
exchange between the fields is almost complete. This is done for ε ∈ [0.005, 0.05]. One
can see that the time interval is sufficiently long from Figure 2, where for the smallest
ε = 0.005, the power of both fields contained in the fundamental modes is computed.
Even in this case with the smallest ε (so that the energy exchange takes longer) there
is enough time for the pump field to transfer almost all the power to the signal field.
It appears from Figure 1 that losses due to radiation (L2 norm) scale linearly with
nonlinearity strength ε, as predicted by our analysis.
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was visiting the Program in Applied and Computational Mathematics at Princeton
University. He would like to thank Ingrid Daubechies for her hospitality and for
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Fig. 1. Dependence of radiation power on time. The radiation is “measured” after the evolution
for 75 units of dimensionless time.
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Fig. 2. Power exchange between fundamental modes for the smallest ε = 0.005 after the
evolution for the same time T = 75 (it corresponds to 7500 steps). Note that the pump field is
almost completely “depleted.” This indicates that time interval T = 75 is of sufficient length for the
power exchange to take place.

REFERENCES

[1] G. P. Agrawal, Nonlinear Fiber Optics, Academic Press, San Diego, 1995.
[2] C. D. Levermore and M. Oliver, The complex Ginzburg-Landau equation as a model prob-

lem, in Dynamical Systems and Probabilistic Methods in Partial Differential Equations,
Berkeley, CA, 1994, Lectures in Appl. Math. 31, AMS, Providence, RI, 1996, pp. 141–190.

[3] W. P. Urquhart and P. J. Laybourn, Effective core area for stimulated Raman scattering
in single-mode optical fibers, IEEE Proc., 132 (1985), pp. 201–204.

[4] C. Sulem and P.-L. Sulem, The Nonlinear Schrödinger Equation, Springer, New York, 1999.

[5] R. Weder, Lp −Lp′ estimates for Schrödinger equation on the line and inverse scattering for



REACTION DISPERSION SYSTEM 1771

the nonlinear Schrödinger equation with a potential, J. Funct. Anal., 170 (2000), pp. 37–68.
[6] R. Weder, The Wk,p-continuity of the Schrödinger wave operators on the line, Comm. Math.

Phys., 208 (1999), pp. 507–520.
[7] T. Kato and G. Ponce, Commutator estimates and the Euler Navier-Stokes equations, Comm.

Pure Appl. Math., 41 (1988), pp. 891–907.
[8] R. S. Strichartz, Restrictions of Fourier transforms to quadratic surfaces and decay of solu-

tions of wave equations, Duke Math. J., 44 (1977), pp. 705–714.
[9] I. E. Segal, Space-time decay for solutions of wave equations, Adv. Math., 22 (1976), pp. 305–

311.
[10] K. Yajima, Lp-boundedness of wave operators for two dimensional Schrödinger operators,

Comm. Math. Phys., 208 (1999), pp. 125–152.
[11] T. Cazenave and F. Weissler, The Cauchy problem for the nonlinear Schrödinger equation

in H1, Manuscripta Math., 61 (1988), pp. 477–494.
[12] J. Ginibre and G. Velo, The global Cauchy problem for the nonlinear Schrödinger equation
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Abstract. In this paper we provide a detailed analysis of the limiting behavior of some very
general families of solutions to the boundary value problem Δv = 0 in Ω, ∂v/∂n = λ sinh(v) on
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1. Introduction. In this paper we give a detailed analysis of the limiting “blow-
up” behavior of certain solutions to the two-dimensional, nonlinear elliptic boundary
value problem

Δvλ = 0 in Ω,
(1.1)

∂vλ
∂n

= λ sinh(vλ) on ∂Ω.

This is a simplified model problem, the likes of which frequently show up in connection
with corrosion/oxidation modeling. For a brief discussion of some practical aspects of
this problem, and some references to the applied literature, we refer the reader to [5]
and [12]. For λ < 0 the solution structure of (1.1) is trivial: zero is the only solution.
For λ = 0 the only solutions are constants. Our focus is thus on certain nontrivial
(nonzero) solutions corresponding to λ > 0, and in particular on the asymptotic
behavior of these solutions as λ approaches zero. In the case when Ω = D is a disk
(e.g., the unit disk) it is possible to find explicit formulas for a countable set of families
of solutions to the problem (1.1) (cf. [4]). To be precise, let {xi}2k−1

i=0 be a set of 2k
equispaced points on the unit circle, and set

v2k,λ(x) =

2k−1∑
i=0

(−1)iK(x− μk(λ)xi),

with K(x) = log |x|2 and μk(λ) = [(k + λ)/(k − λ)]1/2k. For any positive integer k
and any 0 < λ < k the functions v2k,λ are solutions to (1.1). A simple computation
shows that

‖∇v2k,λ‖2
L2(D) = 8kπ log(1/λ) + O(1),
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as λ → 0+. It is also easy to see that

∂v2k,λ

∂n
→ 2π

2k−1∑
i=0

(−1)i+1δxi

in the sense of measures on ∂D, as λ → 0+.

In [6] it was shown that similar families of solutions whose gradient L2 norms blow
up like

√
log(1/λ), as λ → 0+, continue to exist for arbitrary smooth domains, Ω.

These solutions were characterized variationally, and it was also shown that the cor-
responding boundary currents, ∂vλ/∂n = λ sinh(vλ), stay bounded in L1(∂Ω) (the
bound depending on the particular family). We were thus able to conclude that there
exist appropriately normalized convergent subsequences of solutions, and we showed
that each subsequence has a finite, nonempty set of “blow-up” points, which also
happen to be the points at which the limit of the absolute value of the flux, |∂vλ/∂n|,
has nonzero point masses. As was pointed out in [6] these solutions do not necessarily
represent all solutions. For instance, for certain nonsimply connected domains it is
not hard to construct additional families of solutions whose gradient L2 norms blow
up faster than

√
log(1/λ) (and which themselves blow up everywhere, except on a set

of measure 0).

In this paper we provide a detailed characterization of the elliptic boundary value
problem satisfied by an arbitrary (λ → 0+) limit point v0, of the normalized functions
v0
λ = vλ −

∫
∂Ω

vλ/|∂Ω|, coming from a family of solutions to (1.1) whose boundary
currents stay bounded in L1(∂Ω). In particular we show (Theorem 3.1) that the limit-
ing boundary flux, in addition to a nontrivial finite sum of point masses, may contain
a regular part that is proportional to ev0 or e−v0 . The possible presence of a regular
part of the limiting boundary flux represents a sharp contrast to the corresponding
situation for the problem Δvλ = −λevλ (with Dirichlet boundary conditions) where
only a pure sum of (negative) point masses occur. It will frequently happen that the
constant in front of the exponential term is zero (so that the regular part vanishes)—
this is, for instance, the case whenever the solutions have an odd symmetry, or in
general whenever the boundary averages of the solutions are small in the sense that
λ exp[|

∫
∂Ω

vλ|/|∂Ω|] → 0. We do, however, also provide very convincing numerical
evidence that nonvanishing regular parts do indeed occur: For a family of domains
that are simple conformal images (using the maps z → eγz) of the unit disk, our
computations clearly document how, for certain values of the parameter γ, a regular
part seems to emerge.

For simply connected domains, we derive necessary conditions for the weights
and locations of the point masses. The weights are always larger than or equal to
2π in absolute value, and generically take values ±2π (Theorem 4.1). The conditions
concerning locations are derived under the assumption that the limit flux be a pure
sum of point masses (no regular part). These conditions express the fact that the
tangential derivative of the regular part of the limiting solution, v0, vanishes at all
potential point mass locations (Theorem 4.6). They may be seen as the analogues of
the conditions derived in [11] (see also [10] and [13]) for the weights and the singularity
locations of limits of solutions to the equation Δvλ = −λevλ , with Dirichlet boundary
conditions.
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2. The particular solutions. Let λn → 0 be a sequence of positive real num-
bers, and let vλn be solutions of

Δvλn = 0 in Ω,
(2.1)

∂vλn

∂n
= λn sinh(vλn) on ∂Ω,

where Ω is a bounded, smooth (C∞) domain in R
2. Whenever in this paper we

talk about solutions to (2.1), we mean vλn ∈ H1(Ω) that satisfy the standard weak
formulation of this nonlinear Neumann problem. Due to elliptic regularity theory it
is well known that any such solution is also a classical C∞(Ω) solution. Let Eλ(·)
denote the energy

Eλ(v) =
1

2

∫
Ω

|∇v|2 dx− λ

∫
∂Ω

(cosh(v) − 1) dσ.

Suppose that, for some positive constants ai, bi, i = 0, 1,

a0 log

(
1

λn

)
− b0 ≤ Eλn

(vλn) ≤ a1 log

(
1

λn

)
+ b1.(2.2)

Since cosh(x) − 1 ≤ εx sinh(x) + Cε (for any 0 < ε), it follows that, for solutions to
(2.1),

Eλn(vλn) ≤ 1

2

∫
Ω

|∇vλn
|2 dx

= Eλn(vλn) + λn

∫
∂Ω

(cosh(vλn) − 1) dσ

≤ Eλn
(vλn

) + ελn

∫
∂Ω

vλn
sinh(vλn

) dσ + Cελn

= Eλn(vλn) + ε

∫
Ω

|∇vλn |2 dx + Cελn,

and so the assumption (2.2) is also (for 0 < λn < C) equivalent to

a0 log

(
1

λn

)
− b0 ≤

∫
Ω

|∇vλn
|2 dx ≤ a1 log

(
1

λn

)
+ b1(2.3)

for some positive constants ai, bi, i = 0, 1. The existence of infinitely (countably)
many families of solutions to (2.1), that satisfy (2.2) (or (2.3)), was already established
in [6]. These solutions were characterized variationally. To be more precise, the upper
bound in (2.2) (or (2.3)) is a consequence of the particular construction we perform
in [6]. The lower bounds, however, hold for any nontrivial solution, as asserted by the
following lemma.

Lemma 2.1. Suppose vλ, 0 < λ, is a solution to (1.1) which is not identically
zero. There exist constants a, b > 0, independent of λ and vλ such that

a log

(
1

λ

)
− b ≤ Eλ(vλ) and a log

(
1

λ

)
− b ≤

∫
Ω

|∇vλ|2 dx.

Proof. This is a restatement of Lemma 3.2 in [6]. We refer to that paper for the
proof.
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A consequence of the upper bound in (2.2) (or (2.3)) is that

‖λn sinh(vλn
)‖L1(∂Ω) = λn

∫
∂Ω

| sinh(vλn
)| dσ ≤ C.(2.4)

The verification of this relies on the following real analysis lemma.
Lemma 2.2. Let a and b be two given positive constants, and let w be a continuous

function such that for a certain λ ∈ (0, 1), one has∫
∂Ω

|w|e|w| dσ ≤ a

λ
log

(
1

λ

)
+ b.

There exists a positive constant C, depending only on a, b, and |∂Ω| such that∫
∂Ω

e|w| dx ≤ C

λ
.

Proof. Let f denote the function f(x) = x log x. A simple computation shows
that f is convex and monotonically increasing on the half-line [1,∞). An application
of Jensen’s inequality gives

f

(∫
∂Ω

e|w| dσ

|∂Ω|

)
≤

∫
∂Ω

f
(
e|w|) dσ

|∂Ω|

=

∫
∂Ω

e|w||w| dσ

|∂Ω|

≤ a

|∂Ω|λ log

(
1

λ

)
+

b

|∂Ω|

≤ C

λ
log

C

λ
= f

(
C

λ

)
,

with C ≥ 1 depending only on a, b, and |∂Ω|. The monotonicity of f now yields the
desired estimate.

To arrive at (2.4) from the upper bound in (2.3), simply note that∫
∂Ω

|vλn
|e|vλn | dσ ≤ 2

∫
∂Ω

vλn
sinh(vλn

) dσ + |∂Ω|e−1

= 2λ−1
n

∫
Ω

|∇vλn |2 dx + |∂Ω|e−1

≤ a

λn
log

(
1

λn

)
+ b,

and then use Lemma 2.2.
We shall also make use of the decomposition vλn

= v0
λn

+ sλn
, with sλn

=∫
∂Ω

vλn dσ/|∂Ω| (and thus
∫
∂Ω

v0
λn

dσ = 0). By a combination of Jensen’s inequality
for the exponential function and the estimate (2.4), it follows immediately that

|sλn | ≤ log

(
exp

(∫
∂Ω

|vλn |
dσ

|∂Ω|

))
≤ log

(∫
∂Ω

exp(|vλn |)
dσ

|∂Ω|

)

≤ log

(∫
∂Ω

2

|∂Ω| | sinh(vλn)| dσ + 1

)
≤ log

(
C

λn
+ 1

)
(2.5)

≤ log
1

λn
+ D.

This estimate was used in the “blow-up” analysis in [6]. We note that as an immediate
consequence of (2.5) we get the estimate λne

|sλn | ≤ eD.
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3. The limiting behavior. We shall now study in more detail the limiting
behavior of solutions vλn to (2.1) that satisfy the L1 boundary flux estimate (2.4).
For that purpose it is useful to introduce the Neumann function N(x, y). For fixed
y ∈ Ω this solves

ΔxN(x, y) = δy in Ω,

∂N

∂nx
(x, y) =

1

|∂Ω| ,

with the normalization
∫
∂Ω

N(x, y) dσx = 0. It is well known that N(x, y) may be

smoothly extended to Ω × Ω \ {x = y} and that N(x, y) = N(y, x). For fixed y ∈ ∂Ω
the function N(x, y) satisfies

ΔxN(x, y) = 0 in Ω,

∂N

∂nx
(x, y) = −δy +

1

|∂Ω| .

For fixed y ∈ ∂Ω, N(x, y) therefore allows the decomposition

N(y, x) = N(x, y) =
1

π
log |x− y| + Hy(x),(3.1)

where the function Hy(·) ∈ C∞(Ω) is the classical solution to

ΔxHy(x) = 0 in Ω,
∂Hy

∂nx
= − 1

π

(x− y) · nx

|x− y|2 +
1

|∂Ω| on ∂Ω,

(3.2)

with

∫
∂Ω

Hy dσx = −
∫
∂Ω

1

π
log |x− y| dσx.

In terms of N(x, y) the functions v0
λn

may be represented as follows:

v0
λn

(y) = −
∫
∂Ω

N(x, y)
∂vλn

∂n
dσx = −

∫
∂Ω

N(x, y)λn sinh(vλn
) dσx.(3.3)

Given any function f , let f+ ≥ 0 and f− ≥ 0 denote its positive and negative part,
respectively, i.e., let f+ = max{f, 0} and f− = −min{f, 0}. With this definition
f = f+ − f− and |f | = f+ + f−. Some of our main results are contained in the
following theorem.

Theorem 3.1. Let Ω ⊂ R
2 be a bounded smooth (C∞) domain, and let vλn ∈

H1(Ω), λn → 0+, be a sequence of nontrivial, i.e., not identically vanishing, solutions
to the nonlinear elliptic Neumann problem (2.1) that additionally satisfy the boundary
flux estimate (2.4). Decompose vλn as vλn = v0

λn
+ sλn , with sλn =

∫
∂Ω

vλn dσ/|∂Ω|.
There exists a subsequence, for simplicity also denoted vλn ; two positive, regular Borel
measures μ+ and μ−; and two nonnegative constants d+ and d− such that

λn sinh(v+
λn

) = λn sinh(vλn)+ → μ+, λn sinh(v−λn
) = λn sinh(vλn)− → μ−

in the sense of measures on ∂Ω (i.e., in the weak∗ topology of the dual of C0(∂Ω))
and

λne
sλn → d+, λne

−sλn → d−.
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At least one of the constants d+ and d− is zero, i.e., there are two possible scenarios:

(d+, d−) = (d+, 0) or (d+, d−) = (0, d−).

The subsequence v0
λn

converges in Ht(Ω) for any t < 1; the limit, v0, is the solution
to

Δv0 = 0 in Ω,
∂v0

∂n
= μ+ − μ− on ∂Ω,

∫
∂Ω

v0 dσ = 0,

in the sense that

v0(y) = −
∫
∂Ω

N(x, y) d(μ+ − μ−)x, y ∈ Ω.

There exist two finite sets of points {x+
i }Mi=1 and {x−

i }Ni=1 ⊂ ∂Ω, and two sets of
positive weights {α+

i }Mi=1 and {α−
i }Ni=1 such that

μ+ =

M∑
i=1

α+
i δx+

i
+

d+

2
ev0 , μ− =

N∑
i=1

α−
i δx−

i
+

d−
2
e−v0 .(3.4)

The combined set S = {x+
i }Mi=1 ∪ {x−

i }Ni=1 is nonempty. The function v0 is infinitely
smooth away from S, i.e., v0 ∈ C∞(Ω\S), and the convergence of v0

λn
toward v0 takes

place in C∞(K) for any compact set K ⊂ Ω\S. The functions d±
2 e±v0 of the limiting

boundary fluxes (3.4) are in L1(∂Ω). The set S = {x+
i }Mi=1∪{x−

i }Ni=1 represents exactly
the locations of the point masses of the measure μ+ + μ− = limλn→0+ λn| sinh(vλn)|.
Furthermore, this set also represents the “blow-up” points for the subsequence v0

λn
, in

the sense that

S = {x ∈ Ω̄ : ∃xn ∈ Ω̄, with xn → x, such that |v0
λn

(xn)| → ∞}.

Remark 3.2. As stated in the theorem, the locations of the point masses for the
measure limλn→0+ λn| sinh(vλn)| = μ++μ− are exactly the set {x+

i }Mi=1∪{x−
i }Ni=1. We

cannot exclude some overlap between the points x+
i of the measure μ+ and the points

x−
i of the measure μ−. In the case of common points it might at first seem possible

that the corresponding coefficients α+ and α− are equal. In other words it might
at first seem possible that the locations of the nonzero point masses for the measure
limλn→0+ λn sinh(vλn) = μ+ −μ− are a strict subset of {x+

i }Mi=1 ∪{x−
i }Ni=1. However,

a closer analysis shows that this is never the case; in Theorem 4.1 we prove that for
Ω simply connected |α+ −α−| (as well as α+ +α−) is always greater than or equal to
2π. In particular, it follows that μ+ − μ− and μ+ + μ− have the exact same nonzero
point mass locations. See also Remark 4.2, following the statement of Theorem 4.1.

Remark 3.3. In the case when Ω is a disk we have constructed countably many
families of explicit solutions satisfying boundary flux bound (2.4) (cf. [4]). These
solutions all have sλ =

∫
∂Ω

vλ dσ/|∂Ω| = 0, so that d+ = d− = 0, and thus the
corresponding limiting problems have boundary fluxes consisting of point masses only.
In section 5 of this paper we provide numerical examples of families of solutions for
which the limiting boundary fluxes have point masses, as well as nonzero regular
parts. For these examples the domain, Ω, is an exponential image of a disk.

Remark 3.4. If vλn , λn → 0+, is a sequence of solutions for which the boundary
flux estimate (2.4) does not hold, then we may extract a subsequence such that

αn = ‖λn sinh(vλn)‖L1(∂Ω) → ∞.
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Consider now wλn
= vλn

/αn. By extraction of a subsequence we may obtain that

∂wλn

∂n
= λn sinh(vλn

)/αn → μ̃,

in the sense of measures on ∂Ω. If we assume that the limiting measure μ̃ is not
identically zero, then it is easy to show that

w0
λn

(y) = −
∫
∂Ω

N(x, y)
∂wλn

∂n
dσx → −

∫
∂Ω

N(x, y) dμ̃x = w0(y), y ∈ Ω,

with w0(y) being different from zero almost everywhere in Ω. It follows immediately
that v0

λn
= αnw

0
λn

converges to ±∞ almost everywhere in Ω. As indicated by this
simple argument, “blow-up” almost everywhere in Ω appears as a highly probable
alternative to the finite (boundary) point “blow-up” described by Theorem 3.1. How-
ever, we do want to emphasize that here, unlike in the case of the boundary value
problem Δuλ = −λeuλ in Ω, uλ = 0 on ∂Ω (cf. [11]), this is not the only alter-
native for a sequence vλn

, with ‖λn sinh(vλn
)‖L1(∂Ω) → ∞. For instance, it is very

easy to select, among the explicit solutions we constructed in [4], a sequence whose
elements (as λn → 0+) come from “higher and higher” branches in such a way that
‖λn sinh(vλn)‖L1(∂Ω) → ∞, but at the same time v0

λn
(y) = vλn(y) has a finite limit

(zero) at any point y inside the unit disk.
Proof of Theorem 3.1. Due to the L1 bound (2.4) on λn sinh(vλn

) it follows that
λn sinh(vλn)± are bounded in L1(∂Ω), and therefore norm bounded in the dual of
C0(∂Ω). From the bound |sλn | ≤ log 1

λn
+ D (see (2.5)) we get that λne

|sλn | ≤
eD. These bounds (and the compactness) imply the existence of a subsequence (also
denoted λn) two nonnegative, regular Borel measures μ+, μ− and two nonnegative
constants d+, d−, so that

λn sinh(vλn)+ → μ+, λn sinh(vλn)− → μ−(3.5)

in the sense of measures—that is, in the weak∗ topology on the dual of C0(∂Ω)—and

λne
sλn → d+, λne

−sλn → d−.

If d+ > 0, then esλn → ∞, and thus e−sλn → 0, so that d− = 0; similarly, if d− > 0,
then we may conclude that d+ = 0. In summary, at least one of the constants d+ and
d− is zero.

Due to the fact that
∫
∂Ω

λn sinh(vλn
) dσ = 0 we conclude that (μ+ − μ−)(∂Ω) =

limλn→0

∫
∂Ω

λn sinh(vλn) dσ = 0, or μ+(∂Ω) = μ−(∂Ω). The L1(∂Ω) bound on
λn sinh(vλn) in combination with Sobolev’s imbedding theorem implies that

‖λn sinh(vλn)‖H−s(∂Ω) = sup
‖w‖Hs(∂Ω)≤1

∫
∂Ω

λn sinh(vλn)w dσ

≤ ‖λn sinh(vλn)‖L1(∂Ω) sup
‖w‖Hs(∂Ω)≤1

‖w‖L∞(∂Ω) ≤ C

for any s > 1/2. Duality and elliptic estimates for solutions to the boundary value
problem Δw = f in Ω, ∂w/∂n = const on ∂Ω now yield

‖v0
λn

‖
H

3
2
−s(Ω)

≤ C‖λn sinh(vλn)‖H−s(∂Ω) ≤ C(3.6)
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for arbitrary 3
2 − s < 1. By compactness we may extract a subsequence, also referred

to as v0
λn

, so that v0
λn

converges, in say L2(Ω), to a limit v0. By compactness (and
uniqueness of the limit) this subsequence will now actually converge to v0 in Ht(Ω)
for any t < 1. Since

v0
λn

(y) = −
∫
∂Ω

N(x, y)
∂vλn

∂n
dσx = −

∫
∂Ω

N(x, y)λn sinh(vλn
) dσx, y ∈ Ω,

it follows immediately from (3.5) that v0
λn

converges to −
∫
∂Ω

N(x, y) d(μ+ − μ−)x
pointwise in Ω. By uniqueness of the limit we thus get

v0(y) = −
∫
∂Ω

N(x, y) d(μ+ − μ−)x.(3.7)

Let ν denote the nonnegative measure ν = μ+ + μ−. Following [6] (and [3]) we call
a point x0 ∈ ∂Ω regular if there exists a continuous function 0 ≤ ψ ≤ 1, with ψ ≡ 1
in a neighborhood of x0 such that

∫
∂Ω

ψdν < π/2. Lemma 4.5 of [6] shows that given
any regular point x0 there exists a neighborhood Br0(x0) ∩ ∂Ω of x0, and a constant
C such that

‖v0
λn

‖L∞(Br0 (x0)∩∂Ω) ≤ C.

The proof of this estimate relies crucially on (an appropriate adaptation of) an in-
equality due to Brezis and Merle (cf. [3] and [6]). Following [6] we call a point
x0 ∈ ∂Ω singular if it is not regular in the above sense. A point x0 ∈ ∂Ω is thus
singular if for any continuous 0 ≤ ψ ≤ 1, with ψ ≡ 1 in a neighborhood of x0, we
have

∫
∂Ω

ψdν ≥ π/2; as a consequence, ν({x0}) ≥ π/2 for any singular point x0. Let
S denote the set of singular points. We immediately conclude that S must consist of
finitely many points and that

#S ≤
∫
∂Ω

dν

infx0∈S ν({x0})
≤ 2

∫
∂Ω

dν

π
.

This estimate is part of Lemma 4.7 of [6]. That same lemma further establishes
that S is nonempty by showing that otherwise Eλn(vλn) → 0 as λn → 0+, which
obviously contradicts the lower bound for nontrivial solutions (cf. Lemma 2.1). Thus
π/2 ≤ ν(∂Ω) = μ+(∂Ω)+μ−(∂Ω), and so μ+, μ−, and ν are indeed positive measures.

Since v0
λn

|∂Ω is bounded in L∞ near any regular point it follows that

∂v0
λn

∂n
=

λn

2
evλn − λn

2
e−vλn =

λn

2
esλn ev

0
λn − λn

2
e−sλn e−v0

λn

is bounded in L∞, and thus in L2, near any regular point. By elliptic regularity (and
the estimate (3.6)) it now follows that for any regular point, x0,

‖v0
λn

‖H3/2(Br1 (x0)∩Ω) ≤ C

for some r1 > 0. Consequently

‖v0
λn

‖H1(Br1 (x0)∩∂Ω) ≤ C, ‖e±v0
λn‖H1(Br1 (x0)∩∂Ω) ≤ C,

and

∥∥∥∥∥∂v
0
λn

∂n

∥∥∥∥∥
H1(Br1 (x0)∩∂Ω)

≤ C.
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By repeated use of elliptic estimates (induction) we may conclude that there exists
r1 > 0 such that

‖v0
λn

‖Hk(Br1
(x0)∩∂Ω) ≤ Ck, ‖e±v0

λn‖Hk(Br1
(x0)∩∂Ω) ≤ Ck,

and

∥∥∥∥∥∂v
0
λn

∂n

∥∥∥∥∥
Hk(Br1

(x0)∩∂Ω)

≤ Ck for any k ≥ 1.

Therefore

‖v0
λn

‖Hs(Br1
(x0)∩Ω) ≤ Cs for any s ≥ 1.

In combination with a compactness argument and interior elliptic regularity results
this yields

‖v0
λn

‖Hs(K) ≤ Cs,K for any index s(3.8)

and any compact set K ⊂ Ω \ S. Since we already know that v0
λn

converges to v0

in Ht(Ω), t < 1, it follows from (3.8), compactness, and the uniqueness of the limit
that v0 lies in C∞(Ω \ S) and that v0

λn
converges to v0 in C∞(K) for any compact

set K ⊂ Ω \ S (i.e., v0
λn

converges to v0 in C∞(Ω \ S)). In particular,

v0
λn

converges to v0 uniformly with all derivatives

in a neighborhood of any regular point x0 ∈ ∂Ω.

It follows immediately that

λn sinh(vλn
) =

λn

2

(
esλn ev

0
λn − e−sλn e−v0

λn

)
converges to

d+

2
ev0 − d−

2
e−v0 uniformly with all derivatives in a

neighborhood of any regular point x0 ∈ ∂Ω

and that

λn| sinh(vλn)| =

∣∣∣∣λn

2

(
esλn ev

0
λn − e−sλn e−v0

λn

)∣∣∣∣ converges to∣∣∣∣d+

2
ev0 − d−

2
e−v0

∣∣∣∣ =
d+

2
ev0 +

d−
2
e−v0 uniformly in a

neighborhood of any regular point x0 ∈ ∂Ω.

For the last identity we used the fact that d± are nonnegative, with at least one being
zero. As a consequence

λn sinh(vλn)+ =
λn

2
(| sinh(vλn)| + sinh(vλn)) converges to

d+

2
ev0

(3.9)
uniformly in a neighborhood of any regular point x0 ∈ ∂Ω

and

λn sinh(vλn)− =
λn

2
(| sinh(vλn)| − sinh(vλn)) converges to

d−
2
e−v0

(3.10)
uniformly in a neighborhood of any regular point x0 ∈ ∂Ω.
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From the representation formula (3.7) and the just-established regularity of the mea-
sures μ± at regular points, we conclude that v0 satisfies the boundary condition

∂v0

∂n
(y) =

d+

2
ev0(y) − d−

2
e−v0(y)

in a classical sense at points y ∈ ∂Ω \ S. For any compact set K ⊂ ∂Ω \ S

d±
2

∫
K

e±v0 dσ = lim
λn→0

∫
K

λn sinh(vλn)± dσ

≤ lim
λn→0

∫
∂Ω

λn| sinh(vλn)| dσ

= (μ+ + μ−)(Ω) = ν(Ω).

From Lebesgue’s monotone convergence theorem it therefore follows that d±
2 e±v0 are

in L1(∂Ω) with ∥∥∥∥d±2 e±v0

∥∥∥∥
L1(∂Ω)

≤ ν(Ω).

Suppose S = ∪L
i=1{xi} and let φi ∈ C0(∂Ω), i = 1, . . . , L, be a fixed set of functions

with 0 ≤ φi ≤ 1, with φi(xj) = 0, j �= i, and with φi ≡ 1 in a neighborhood of xi.
Given any φ ∈ C0(∂Ω) we may now write

φ = φ0 +

L∑
i=1

φ(xi)φi,

where φ0 ∈ C0(∂Ω) vanishes at all points of S. Given any ε > 0 we may find φ0,ε ∈
C0(∂Ω), with compact support K ⊂ ∂Ω \ S, such that

‖φ0 − φ0,ε‖C0(∂Ω) ≤ ε.(3.11)

Using (3.9), (3.10), and compactness we obtain∫
∂Ω

λn sinh(vλn)±φ0,ε dσ → d±
2

∫
∂Ω

e±v0φ0,ε dσ(3.12)

as λn → 0. We also have∣∣∣∣∣
∫
∂Ω

λn sinh(vλn
)±φ dσ −

L∑
i=1

φ(xi)

∫
∂Ω

λn sinh(vλn
)±φi dσ

−
∫
∂Ω

λn sinh(vλn)±φ0,ε dσ

∣∣∣∣
=

∣∣∣∣
∫
∂Ω

λn sinh(vλn)±(φ0 − φ0,ε) dσ

∣∣∣∣
≤ ε‖λn sinh(vλn

)‖L1(∂Ω).

After passage to the limit λn → 0, and combination with (3.12), this yields∣∣∣∣∣
∫
∂Ω

φ dμ± −
L∑

i=1

β±
i φ(xi) −

d±
2

∫
∂Ω

e±v0φ0,ε dσ

∣∣∣∣∣ ≤ εν(∂Ω),
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with

β±
i = lim

λn→0

∫
∂Ω

λn sinh(vλn
)±φi dσ =

∫
∂Ω

φi dμ±.

Thus ∣∣∣∣∣
∫
∂Ω

φ dμ± −
L∑

i=1

β±
i φ(xi) −

d±
2

∫
∂Ω

e±v0φ0 dσ

∣∣∣∣∣
≤ εν(∂Ω) +

∣∣∣∣
∫
∂Ω

d±
2
e±v0(φ0 − φ0,ε) dσ

∣∣∣∣
≤ εν(∂Ω) + ε

∥∥∥∥d±2 e±v0

∥∥∥∥
L1(∂Ω)

≤ 2εν(∂Ω).

By introducing

α±
i = β±

i − d±
2

∫
∂Ω

e±v0φi dσ,

we may rewrite this latter inequality as∣∣∣∣∣
∫
∂Ω

φ dμ± −
L∑

i=1

α±
i φ(xi) −

d±
2

∫
∂Ω

e±v0φ dσ

∣∣∣∣∣ ≤ 2εν(∂Ω) for any ε > 0.

We therefore conclude that∫
∂Ω

φ dμ± =

L∑
i=1

α±
i φ(xi) +

d±
2

∫
∂Ω

e±v0φ dσ

or

μ± =

L∑
i=1

α±
i δxi

+
d±
2
e±v0 .(3.13)

Since μ± are positive it follows that α±
i ≥ 0, 1 ≤ i ≤ L. We now let {x+

i }Mi=1 ⊂ {xi}Li=1

denote those points for which the corresponding coefficients α+
i are strictly positive,

and similarly we let {x−
i }Ni=1 ⊂ {xi}Li=1 denote those points for which the correspond-

ing coefficients α−
i are strictly positive. It is obvious that {x+

i }Mi=1 ∪ {x−
i }Ni=1 are

exactly the locations at which the measure ν = μ+ + μ− has nonzero point masses.
According to Lemma 4.8 of [6] (see also the corrigendum [7]) the set of singular points,
S, is likewise characterized as the set of points at which the measure ν = μ+ + μ−
has point masses. Consequently S = {xi}Li=1 = {x+

i }Mi=1 ∪ {x−
i }Ni=1 and N + M ≥ L.

Since S is nonempty (i.e., L ≥ 1) at least one of the sets {x+
i }Mi=1 and {x−

i }Ni=1 must
be nonempty (i.e., M ≥ 1 or N ≥ 1). From (3.13) and the definition of the points
{x+

i }Mi=1 and {x−
i }Ni=1 it now follows (after renumbering the α±

i ) that

μ+ =

M∑
i=1

α+
i δx+

i
+

d+

2
ev0 and μ− =

N∑
i=1

α−
i δx−

i
+

d−
2
e−v0 ,

with α±
i > 0, and d± ≥ 0. We recall that at least one of the coefficients d+ or d−

is zero. This is exactly the desired representation formula. Finally, Lemma 4.8 of [6]
asserts that S also equals the set of “blow-up” points for the subsequence v0

λn
in the

sense introduced here. This completes the proof of Theorem 3.1.
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4. Singularity weights and locations. The aim of this section is to deduce
more specific information about the “blow-up” behavior of the subsequence of solu-
tions to (2.1), extracted in Theorem 3.1. We shall do this by uncovering more specific
information about the form of the limiting measures μ+ and μ−.

Theorem 4.1. Suppose the domain Ω ⊂ R
2 is smooth, bounded, and simply

connected. Let μ+ and μ− be the limiting measures from Theorem 3.1, i.e.,

μ+ = limλn sinh(vλn)+ and μ− = limλn sinh(vλn)−.

Let {x+
i }Mi=1 and {x−

i }Ni=1 be the locations of the nonzero point masses of μ+ and μ−,
respectively, and let S = {x+

i }Mi=1 ∪ {x−
i }Ni=1. Then

(μ+ + μ−)({x∗}) ≥ |(μ+ − μ−)({x∗})| ≥ 2π ∀x∗ ∈ S,

with

(μ+ + μ−)({x∗}) = |(μ+ − μ−)({x∗})| = 2π

for all x∗ ∈ S \ ({x+
i }Mi=1 ∩ {x−

i }Ni=1). Furthermore, if the regular part of μ+ − μ−
is strictly positive, i.e., if d+ > 0, then (μ+ − μ−)({x∗}) is negative for all x∗ ∈ S,
whereas if the regular part of μ+ − μ− is strictly negative, i.e., if d− > 0, then
(μ+ − μ−)({x∗}) is positive for all x∗ ∈ S. In particular, the measures μ+ + μ− and
μ+ − μ− have the exact same set of locations with nonzero point masses. This set
coincides with the “blow-up” points for the sequence v0

λn
.

Remark 4.2. In Theorem 4.1 of [6] it is stated that the set of point mass locations
of μ = μ+ − μ− is finite and nonempty and that it equals the set of “blow-up” points
for the sequence v0

λn
. As pointed out in the subsequent corrigendum this is not quite

the statement proven in [6]. What was indeed proven was that the set of point mass
locations of ν = μ+ + μ− is finite and nonempty and that this set equals the set
of “blow-up” points for the sequence v0

λn
(this statement is also included as part of

Theorem 3.1 of the present paper). By showing, as we have done here, that the
point mass locations of the measures μ+ + μ− and μ+ − μ− agree, we have indeed
established the validity of the original formulation of Theorem 4.1 in [6] for simply
connected domains.

Before proceeding to the proof of Theorem 4.1, we establish three lemmas which
will be used in that proof as well as in the proof of our second theorem in this section
(Theorem 4.6).

Lemma 4.3. Let vλn be the subsequence extracted in Theorem 3.1. Then

λne
vλn → 2μ+ and λne

−vλn → 2μ−

in the sense of measures on ∂Ω. The convergence takes place in L∞(K) for any
compact set K ⊂ ∂Ω \ S = ∂Ω \ ({x+

i }Mi=1 ∪ {x−
i }Ni=1).

Proof. From Theorem 3.1 we know that

λn sinh(vλn) → μ+ − μ− and λn| sinh(vλn
)| → μ+ + μ−(4.1)

in the sense of measures on ∂Ω. From Theorem 3.1 we also know that the convergence
takes place in L∞(K) for any compact set K ⊂ ∂Ω \ S. The identity cosh(x) =
| sinh(x)| + e−|x| and the fact that |λne

−|vλn || ≤ λn now imply that

λn cosh(vλn) = λn| sinh(vλn)| + λne
−|vλn | → μ+ + μ−(4.2)
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in the sense of measures on ∂Ω. It also follows that this convergence takes place in
L∞(K) for any compact set K ⊂ ∂Ω\S. A combination of the first statement in (4.1)
and the statement (4.2) immediately leads to the conclusion of this lemma.

Lemma 4.4. Let H denote the half-plane H = {(y1, y2) : y2 > 0}, and for fixed
real γ �= 0 and β, let lγ,β denote the half-line lγ,β = {y2 = γy1 +β}∩H. Suppose F is
Lebesgue integrable on R, that is, suppose F is in L1(R). Then we have the following
asymptotic statements:∫

R

F (z1)
y1 − z1

(y1 − z1)2 + y2
2

dz1 = o(1/y2),

∫
R

F (z1)
y2

(y1 − z1)2 + y2
2

dz1 = o(1/y2),

and

∫
R

F (z1)
(y1 − z1)y2

[(y1 − z1)2 + y2
2 ]2

dz1 = o(1/y2
2)

as (y1, y2) ∈ H approaches the point (−β/γ, 0) ∈ ∂H along the half-line lγ,β.
Proof. We shall prove the first of these three statements. The proof of the other

two proceed in a similar fashion but are left to the reader. Simple calculations give
that for (y1, y2) ∈ lγ,β

∫
R

F (z1)
y1 − z1

(y1 − z1)2 + y2
2

dz1 =

∫
R

F (z1)

y2

γ −
(
z1 + β

γ

)
(

y2

γ −
(
z1 + β

γ

))2

+ y2
2

dz1

=

∫
R

F

(
z1 −

β

γ

) y2

γ − z1(
y2

γ − z1

)2

+ y2
2

dz1(4.3)

=
γ

y2

∫
R

F

(
z1 −

β

γ

)
1 − γz1

y2(
1 − γz1

y2

)2

+ γ2

dz1.

From the inequality |s/(s2 + γ2)| ≤ 1/2γ it follows that∣∣∣∣∣∣∣F
(
z1 −

β

γ

)
1 − γz1

y2(
1 − γz1

y2

)2

+ γ2

∣∣∣∣∣∣∣ ≤
1

2γ

∣∣∣∣F
(
z1 −

β

γ

)∣∣∣∣ .
Since the right-hand side is an integrable function, and since

F

(
z1 −

β

γ

)
1 − γz1

y2(
1 − γz1

y2

)2

+ γ2

→ 0 a.e. in z1

as y2 → 0, it now follows from Lebesgue’s dominated convergence theorem that∫
R

F

(
z1 −

β

γ

)
1 − γz1

y2(
1 − γz1

y2

)2

+ γ2

dz1 → 0 as y2 → 0.

By a combination with (4.3) we immediately get the first asymptotic statement of
this lemma.

At several points in this section we shall use the notion of conformal equivalence.
We shall call a smooth mapping Φ : Ω → R

2 a conformal equivalence if and only if
the following four conditions are satisfied:
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(a) DΦ(x) is a similarity, i.e., |DΦ(x)ξ| = k(x)|ξ|, k(x) > 0, ∀ ξ ∈ R
2, and

x ∈ Ω,
(b) k(x) = |det(DΦ(x))|1/2 ≥ k0 > 0 ∀x ∈ Ω,
(c) the mapping Φ is injective and may be extended as an injective mapping:

Ω → R
2 ∪ {∞}, and

(d) the extended mapping Φ is either smooth or there exists a point z∗ (in

R
2 \Φ(Ω)) such that the mapping (· −z∗)

|· −z∗|2 ◦Φ(x) has a smooth extension to

Ω.
We note that conditions (a)–(d) imply that 〈DΦ(x)ξ,DΦ(x)η〉 = k2(x)〈ξ, η〉 =
|det(DΦ(x))|〈ξ, η〉 ∀ ξ, η in R

2 and all x in Ω \ {Φ−1(∞)}. We also note that for any
smooth, bounded, simply connected domain we may construct a conformal equiva-
lence of Ω onto the upper half-plane. The point Φ−1(∞) may be picked arbitrarily
on ∂Ω. This follows from Riemann’s mapping theorem and subsequent composition
with a linear fractional transformation.

The following representation result will prove extremely useful.
Lemma 4.5. Let Φ be a conformal equivalence of the smooth, bounded, simply

connected domain Ω onto the half-plane H = {(y1, y2) : y2 > 0}, constructed so that
the point Φ−1(∞) lies in ∂Ω\({x+

i }Mi=1∪{x−
i }Ni=1), where x±

i are the “blow-up” points
from Theorem 3.1. Let v0 denote the limit from Theorem 3.1, i.e.,

v0 = lim v0
λn

= lim

(
vλn

− 1

|∂Ω|

∫
∂Ω

vλn
dσ

)
,

and define u0 := v0 ◦ Φ−1. Let F denote the function

F (y1) =

(
d+

2
eu0(y1,0) − d−

2
e−u0(y1,0)

)
h(y1, 0),

with

h(y) = |det(DΦ(Φ−1(y)))|−1/2

and d± as in Theorem 3.1. Then F ∈ L1(R, log(|x| + 2)dx), and the function u0 and
its derivatives have the representation formulas

u0(y) = v0(Φ
−1(∞)) − 1

π

M∑
i=1

α+
i log |y − y+

i | +
1

π

N∑
i=1

α−
i log |y − y−

i |

− 1

π

∫
R

F (z1) log |y − (z1, 0)| dz1, y ∈ H,

∂u0

∂yj
(y) = − 1

π

M∑
i=1

α+
i

(y − y+
i )j

|y − y+
i |2

+
1

π

N∑
i=1

α−
i

(y − y−
i )j

|y − y−
i |2

− 1

π

∫
R

F (z1)
(y − (z1, 0))j
|y − (z1, 0)|2 dz1, y ∈ H, j = 1, 2.

The coefficients α±
i are as in Theorem 3.1, and y±

i = Φ(x±
i ).

Proof. For any z ∈ H let z denote the “reflection in ∂H,” i.e., z = (z1, z2) =
(z1,−z2). A simple calculation shows that the function G(x,w), x,w ∈ Ω, defined by

G(x,w) =
1

2π
log |Φ(x) − Φ(w)| + 1

2π
log |Φ(x) − Φ(w)|
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is indeed the solution to

ΔxG(x,w) = δw in Ω,
∂

∂nx
G(x,w) = δw∗ on ∂Ω,

with w∗ = Φ−1(∞). Using the representation formula for v0 from Theorem 3.1 we
get∫
∂Ω

G(x,w) d(μ+−μ−)x =

∫
∂Ω

(N(x,w)−N(x,w∗)) d(μ+−μ−)x = −v0(w)+v0(w
∗).

For the identity v0(w
∗) = −

∫
∂Ω

N(x,w∗) d(μ+ − μ−)x we rely on the boundary
limit of the representation formula from Theorem 3.1, which remains valid due to
the fact that the measure μ+ − μ− is given by a C∞ density near the point w∗. By
rearrangement of the above formula,

v0(w) = v0(w
∗) −

∫
∂Ω

G(x,w) d(μ+ − μ−)x

= v0(w
∗) −

M∑
i=1

α+
i G(x+

i , w) +

N∑
i=1

α−
i G(x−

i , w)

−
∫
∂Ω

(
d+

2
ev0 − d−

2
e−v0

)
G(x,w) dσx.

Introducing y = Φ(w) and z = Φ(x) and changing variable of integration (from x to z)
we immediately obtain the first representation formula of this lemma. The second
formula follows by differentiation. The fact that F ∈ L1(R, log(|z| + 2)dz) follows
immediately from the finiteness of the last integral in the above integral identity.

Proof of Theorem 4.1. Let Φ be a conformal equivalence of Ω onto the half-plane H

such that the point Φ−1(∞) lies in ∂Ω\({x+
i }Mi=1∪{x−

i }Ni=1). Setting uλn = vλ2 ◦Φ−1,
we have a family of solutions to⎧⎨

⎩
Δuλn = 0 in H,
∂uλn

∂y2
= −λnh(y) sinh(uλn) on ∂H,

(4.4)

with h(y) = |det(DΦ(Φ−1(y)))|−1/2. The sequence

uλn
− sλn

, with sλn
=

∫
∂Ω

vλn
dσ/|∂Ω|,

converges to u0 = v0 ◦ Φ−1 in Ht(H ∩ {|y| ≤ R}) for any t < 1 and any R; the
convergence also takes place in C∞(H \ ({y+

i }Mi=1 ∪{y−
i }Ni=1)), i.e., in C∞(K) for any

compact set K ⊂ H \ ({y+
i }Mi=1 ∪ {y−

i }Ni=1). We now introduce functions wλn
and w0

by

wλn
:= ∂y1

uλn
∂y2

uλn
and w0 := ∂y1

u0∂y2
u0,

respectively. Due to the C∞(H \ {y±
i }) convergence of uλn

− sλn
toward u0, the

sequence wλn converges in C∞(H \ ({y+
i }Mi=1 ∪ {y−

i }Ni=1)) toward w0.
Let y∗ = (y∗1 , 0) be one of the points from {y+

i }Mi=1 ∪ {y−
i }Ni=1, and given any

γ �= 0, let ly∗ denote the half-line ly∗ = {(y1, y2) : y2 = γy1 − γy∗1} ∩ H. Suppose
there is a point mass contribution α+

∗ δx∗ to μ+ and point mass contribution α−
∗ δx∗
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to μ− from the point x∗ = Φ−1(y∗). This includes the possibility that one of the
α±
∗ could be zero, corresponding to y∗ /∈ {y+

i }Mi=1 ∩ {y−
i }Ni=1. From a combination of

Lemmas 4.4 and 4.5 we conclude that

∂u0

∂y1
(y) =

1

π
(−α+

∗ + α−
∗ )

y1 − y∗1
|y − y∗|2 + o(1/y2)

=
1

π
(−α+

∗ + α−
∗ )

γ

1 + γ2

1

y2
+ o(1/y2) and

∂u0

∂y2
(y) =

1

π
(−α+

∗ + α−
∗ )

y2

|y − y∗|2 + o(1/y2)

=
1

π
(−α+

∗ + α−
∗ )

γ2

1 + γ2

1

y2
+ o(1/y2)

as y approaches the point y∗ along the half-line ly∗ . As a consequence,

w0(y) =
(α+

∗ − α−
∗ )2

π2

γ3

(1 + γ2)2
1

y2
2

+ o(1/y2
2)(4.5)

as y approaches the point y∗ along the half-line ly∗ (and so y2 approaches 0).

We now proceed to analyze the same asymptotic scenario, using the relationship
w0(y) = limwλn(y), which holds for any point y ∈ ly∗ . Simple calculations yield

Δwλn = 0 in H

and

wλn = −λnh(y1, 0) sinh(uλn)∂y1uλn = −λnh(y1, 0)∂y1 (cosh(uλn)) on ∂H,(4.6)

with h(y) = |det(DΦ(Φ−1(y)))|−1/2. Let D ⊂ H be a bounded, smooth domain with
Γ0 = ∂D ∩ ∂H = [−R,R] × {0} (for instance, take D to be the half-disk BR(0) ∩ H

with the two corners “smoothed out”). Choose R sufficiently large that all the points
y±
i lie strictly inside 1

2Γ0. Let GD(y, z) denote the Green’s function for the domain
D, i.e., the solution to {

ΔGD(·, z) = δz in D,
GD(·, z) = 0 on ∂D.

(4.7)

For any fixed z ∈ D the harmonic function wλn may now be represented as

wλn(z) =

∫
∂D

wλn(y)
∂GD

∂ny
(y, z) dσy.

We decompose the boundary of D as follows: ∂D = Γ0 ∪Γ1, with Γ0 = ∂D ∩ ∂H and
Γ1 = ∂D ∩ H. In light of (4.6), the above integral representation for wλn

reads

wλn(z) =

∫
Γ1

wλn
(y)

∂GD

∂ny
(y, z)dσy

+

∫
Γ0

λnh(y1, 0)∂y1 (cosh(uλn(y1, 0)))
∂GD

∂y2
((y1, 0), z)dy1(4.8)

= I1,λn
(z) + I2,λn

(z).
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Since the sequence wλn
converges in C∞(H \ ({y+

i }Mi=1 ∪ {y−
i }Ni=1)) toward w0

lim
λn→0

I1,λn
(z) =

∫
Γ1

w0(y)
∂G

∂ny
(y, z)dσy ∀z ∈ D.(4.9)

Integration by parts yields

I2,λn(z) = −
∫

Γ0

λn cosh(uλn(y1, 0))h(y1, 0)∂y1

(
∂GD

∂y2
((y1, 0), z)

)
dy1

−
∫

Γ0

λn cosh(uλn(y1, 0))∂y1h(y1, 0)
∂GD

∂y2
((y1, 0), z)dy1(4.10)

+

(
λn cosh(uλn(y1, 0))h(y1, 0)

∂GD

∂y2
((y1, 0), z)

) ∣∣∣∣∣
y1=R

y1=−R

.

From Lemma 4.3 we know that

λne
vλn → 2μ+ and λne

−vλn → 2μ−,

in the sense of measures on ∂Ω, and so

λn cosh(vλn) → μ+ + μ−

=

M∑
i=1

α+
i δx+

i
+

N∑
i=1

α−
i δx−

i
+

d+

2
ev0 +

d−
2
e−v0 ,

in the sense of measures on ∂Ω. In the last case, the left-hand side converges uniformly
to the C∞ function d+

2 ev0 + d−
2 e−v0 away from the points x±

i . When “pushed forward”
by the conformal map Φ this last convergence statement translates into

λnh(y1, 0) cosh(uλn(y1, 0)) →
M∑
i=1

α+
i δy+

i
+

N∑
i=1

α−
i δy−

i
+ E(y1)(4.11)

in the sense of measures on Γ0 = [−R,R] × {0}, with E given by

E(y1) =

(
d+

2
eu0(y1,0) +

d−
2
e−u0(y1,0)

)
h(y1, 0).

As a consequence of (4.10) and (4.11) we immediately obtain the following limit for
the integrals I2,λn

:

lim
λn→0

I2,λn(z)

= −
M∑
i=1

α+
i

∂2GD

∂y1∂y2
(y+

i , z) −
N∑
i=1

α−
i

∂2GD

∂y1∂y2
(y−

i , z)

−
M∑
i=1

α+
i

∂y1h(y+
i )

h(y+
i )

∂GD

∂y2
(y+

i , z) −
N∑
i=1

α−
i

∂y1h(y−
i )

h(y−
i )

∂GD

∂y2
(y−

i , z)(4.12)

−
∫

Γ0

E(y1)

(
∂2GD

∂y1∂y2
((y1, 0), z) +

∂y1h(y1, 0)

h(y1, 0)

∂GD

∂y2
((y1, 0), z)

)
dy1

+E(y1)
∂GD

∂y2
((y1, 0), z)

∣∣∣∣∣
y1=R

y1=−R

∀z ∈ D.
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Here we also used the fact that λn cosh(uλn
(y1, 0))h(y1, 0) converges pointwise to E

away from the points y±
i , in order to treat the boundary term in (4.10). A combination

of (4.9) and (4.12) with (4.8) now yields

w0(z) = lim
λn→0

wλn
(z)

=

∫
Γ1

w0(y)
∂GD

∂ny
(y, z)dσy

−
M∑
i=1

α+
i

∂2GD

∂y1∂y2
(y+

i , z) −
N∑
i=1

α−
i

∂2GD

∂y1∂y2
(y−

i , z)

(4.13)

−
M∑
i=1

α+
i

∂y1h(y+
i )

h(y+
i )

∂GD

∂y2
(y+

i , z) −
N∑
i=1

α−
i

∂y1
h(y−

i )

h(y−
i )

∂GD

∂y2
(y−

i , z)

−
∫

Γ0

E(y1)

(
∂2GD

∂y1∂y2
((y1, 0), z) +

∂y1h(y1, 0)

h(y1, 0)

∂GD

∂y2
((y1, 0), z)

)
dy1

+E(y1)
∂GD

∂y2
((y1, 0), z)

∣∣∣∣∣
y1=R

y1=−R

∀z ∈ D.

Set ω = {z ∈ D : |z1| < R/2 and 0 < z2 < ε} for ε fixed, but sufficiently small. The
Green’s function GD(y, z), (y, z) ∈ D × ω \ {y = z}, may now be written

GD(y, z) =
1

2π
log |y − z| − 1

2π
log |y − z| + g(y, z),

where z = (z1, z2) = (z1,−z2) and where the function g is in C∞(D × ω). We thus
compute

∂GD

∂y2
(y, z) = − 1

π

z2

|y − z|2 + ∂y2g(y, z) and

(4.14)
∂2GD

∂y1∂y2
(y, z) =

2

π

(y − z)1z2

|y − z|4 + ∂y1
∂y2

g(y, z)

for (y, z) ∈ Γ0 × ω \ {y = z}. Substituting (4.14) into (4.13) we arrive at

w0(z) =
2

π

M∑
i=1

α+
i

(z − y+
i )1z2

|z − y+
i |4

+
2

π

N∑
i=1

α−
i

(z − y−
i )1z2

|z − y−
i |4

+
1

π

M∑
i=1

α+
i

∂y1
h(y+

i )

h(y+
i )

z2

|z − y+
i |2

+
1

π

N∑
i=1

α−
i

∂y1
h(y−

i )

h(y−
i )

z2

|z − y−
i |2

(4.15)

+
1

π

∫
Γ0

E(y1)

(
2

(z1 − y1)z2

|z − (y1, 0)|4 +
∂y1h(y1, 0)

h(y1, 0)

z2

|z − (y1, 0)|2

)
dy1

+R(z),

where R is in C∞(ω). Let y∗ = (y∗1 , 0) be one of the points from {y+
i }Mi=1 ∪ {y−

i }Ni=1

(the same as before) and let ly∗ denote the half-line ly∗ = {(z1, z2) : z2 = γz1−γy∗1}∩
H. Suppose (as before) that there is a point mass contribution α+

∗ δx∗ to μ+ and point
mass contribution α−

∗ δx∗ to μ− from the point x∗ = Φ−1(y∗) (so there are terms with
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coefficients α+
∗ and α−

∗ corresponding to y∗ in the respective sums above). From a
combination of Lemma 4.4 with (4.15) we conclude that

w0(z) =
2

π
(α+

∗ + α−
∗ )

(z1 − y∗1)z2

|z − y∗|4 + o(1/z2
2)

(4.16)

=
2

π
(α+

∗ + α−
∗ )

γ3

(1 + γ2)2
1

z2
2

+ o(1/z2
2)

as z approaches y∗ along the half-line ly∗ (and therefore z2 approaches 0). By com-
parison of the two alternate asymptotic representations, (4.5) and (4.16), for w0, we
infer that

(α+
∗ − α−

∗ )2

π2
=

2

π
(α+

∗ + α−
∗ ),(4.17)

which immediately yields

α+
∗ + α−

∗ ≥ |α+
∗ − α−

∗ | = 2π
α+
∗ + α−

∗
|α+

∗ − α−
∗ |

≥ 2π

or

(μ+ + μ−)({x∗}) ≥ |(μ+ − μ−)({x∗})| ≥ 2π,(4.18)

as stated in the formulation of this theorem. If x∗ ∈ S \ ({x+
i }Mi=1 ∩{x−

i }Ni=1), so that
either α+

∗ or α−
∗ is zero, then it follows from (4.17) that

(μ+ + μ−)({x∗}) = |(μ+ − μ−)({x∗})| = 2π.

The statement about the coincidence of the point mass locations of the measures
μ+ + μ− and μ+ − μ− is a direct consequence of the inequalities (4.18), valid for all
x∗ ∈ S.

Let us go back to the representation formula for u0 from Lemma 4.5,

u0(y) = − 1

π

M∑
i=1

α+
i log |y − y+

i | +
1

π

N∑
i=1

α−
i log |y − y−

i |

− 1

π

∫
R

F (z1) log |y − (z1, 0)| dz1 + v0(Φ
−1(∞)), y ∈ H,

with F (z1) = (d+

2 eu0(z1,0)− d−
2 e−u0(z1,0))h(z1, 0). By taking the limit as y approaches

points (y1, 0) ∈ ∂H \ ({y+
i }Mi=1 ∪ {y−

i }Ni=1) we obtain

u0(y1, 0) = − 1

π

M∑
i=1

α+
i log |(y1, 0) − y+

i | +
1

π

N∑
i=1

α−
i log |(y1, 0) − y−

i |

− 1

π

∫
R

F (z1) log |y1 − z1| dz1 + v0(Φ
−1(∞)).

Let y∗ = (y∗1 , 0) be one of the points of S = {y+
i }Mi=1 ∪ {y−

i }Ni=1, and define d0 =
min{dist(y∗, S \ y∗), 1}. The above representation formula now yields

u0(y1, 0) = − 1

π
(α+

∗ − α−
∗ ) log |y1 − y∗1 |

(4.19)

− 1

π

∫
|z1−y∗

1 |<d0/2

F (z1) log |y1 − z1| dz1 + O(1)
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for 0 < |y1 − y∗1 | < d0/4. Recall that F ∈ L1(R, log(|x| + 2)dx).
Now let us consider the case d+ > 0. In that case d− = 0, and so

F (z1) =
d+

2
eu0(z1,0)|det(DΦ(Φ−1(z1, 0)))|−1/2 > 0.

Since log |y1 − z1| < 0 whenever |z1 − y∗1 | < d0/2 and |y1 − y∗1 | < d0/4, we then obtain

− 1

π

∫
|z1−y∗

1 |<d0/2

F (z1) log |y1 − z1| dz1 > 0 for 0 < |y1 − y∗1 | < d0/4.

By insertion into (4.19) this yields

u0(y1, 0) ≥ 1

π
(α+

∗ − α−
∗ ) log |y1 − y∗1 |−1 − C

for 0 < |y1 − y∗1 | < d0/4. Now suppose (μ+ − μ−)({x∗}) = α+
∗ − α−

∗ ≥ 2π. Then it
follows immediately that

u0(y1, 0) ≥ log |y1 − y∗1 |−2 − C for 0 < |y1 − y∗1 | < d0/4.

As a consequence,

eu0(y1,0) ≥ c|y1 − y∗1 |−2 for 0 < |y1 − y∗1 | < d0/4.

However, this contradicts the fact that eu0(·,0) ∈ L1
loc(R) (ev0 ∈ L1(∂Ω)). Since we

already know that |α+
∗ − α−

∗ | ≥ 2π, we may thus conclude that

(μ+ − μ−)({x∗}) = α+
∗ − α−

∗ ≤ −2π

if d+ is positive. The argument to show that

(μ+ − μ−)({x∗}) = α+
∗ − α−

∗ ≥ 2π

if d− is positive proceeds similarly.
As our last result in this paper, we establish a theorem which provides more

precise information about the location of the point masses in the case when the
limiting measures are “pure” sums of such point masses, i.e., when d+ = d− = 0.
An extension of the proof used to verify this result may be used to derive more
precise information about the point mass locations also in the case when either d+

or d− is nonzero (see [9]). Since the results obtained are most complete if there is
assumed to be no overlap between the points {x+

i } and {x−
i }, we formulate only the

theorem under this assumption. In Remark 4.10 we describe what the corresponding
results are without this assumption.

Theorem 4.6. Suppose the domain Ω ⊂ R
2 is smooth, bounded, and simply

connected. Let vλn
, λn → 0+, be the subsequence of solutions to the nonlinear elliptic

Neumann problem (2.1) extracted in Theorem 3.1, for which

λn sinh(v+
λn

) = λn sinh(vλn)+ → μ+, λn sinh(v−λn
) = λn sinh(vλn)− → μ−

in the sense of measures on ∂Ω. Suppose that d+ = d− = 0, i.e., suppose

μ+ =

M∑
i=1

α+
i δxi

+ , μ− =

N∑
i=1

α−
i δx−

i
,(4.20)
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and furthermore, suppose {x+
i } ∩ {x−

i } = ∅. Then

M = N(≥ 1), α+
i = α−

i = 2π, 1 ≤ i ≤ M, and

lim
λn→0

λn

∫
∂Ω

| sinh(vλn)| dσ = 4Mπ.

Set v0
λn

= vλn − 1
|∂Ω|

∫
∂Ω

vλn
dσ and let v0 denote the limit v0 = limλn→0 v

0
λn

, whose

existence is guaranteed by Theorem 3.1. The function v0 satisfies

Δv0 = 0 in Ω,
∂v0

∂n
= 2π

M∑
i=1

δx+
i
− 2π

M∑
i=1

δx−
i

on ∂Ω,

∫
∂Ω

v0 dσ = 0

in the sense that

v0(x) = H(x) − 2

M∑
i=1

log |x− x+
i | + 2

M∑
i=1

log |x− x−
i |,

where H ∈ C∞(Ω) is the classical solution to

ΔH = 0 in Ω,
∂H

∂n
= 2

M∑
i=1

(x− x+
i ) · n

|x− x+
i |2

− 2

M∑
i=1

(x− x−
i ) · n

|x− x−
i |2

on ∂Ω,

∫
∂Ω

H dσ = 2

M∑
i=1

∫
∂Ω

log |x− xi
+| dσx − 2

M∑
i=1

∫
∂Ω

log |x− x−
i | dσx.

The 2M points {x+
i }Mi=1 ∪ {x−

i }Mi=1 ⊂ ∂Ω satisfy the equations

∂

∂τx
(v0(x) + 2 log |x− x+

i |)|x=x+
i

= 0, i = 1, . . . ,M, and

(4.21)
∂

∂τx
(v0(x) − 2 log |x− x−

i |)|x=x−
i

= 0, i = 1, . . . ,M,

where ∂
∂τx

denotes a tangential derivative to ∂Ω.

Remark 4.7. Since ∂v0

∂n = 2π
∑M

i=1 δx+
i
− 2π

∑M
i=1 δx−

i
on ∂Ω we easily calculate

that

∂

∂nx
(v0 ± 2 log |x− x±

i |)x=x±
i

= lim
x∈∂Ω
x→x±

i

±2(x− x±
i ) · n(x)

|x− x±
i |2

= ±κ(x±
i ),

where κ(x) is the (signed) curvature of ∂Ω at the point x. If we supplement the
identities (4.21) with these identities we obtain

∇(v0(x) ± 2 log |x− x±
i |)|x=x±

i
= ±κ(x±

i )n(x±
i ).(4.22)

This is the complete analog of the identities derived in [11] for the singularity locations
for the somewhat related problem Δvλ = −λevλ .

Remark 4.8. If we apply Theorem 4.6 to the case when Ω is a disk, then H(x) = 0,
and so

v0(x) = −2

M∑
i=1

log |x− x+
i | + 2

M∑
i=1

log |x− x−
i |.
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The equations (4.21) become

−
M∑

j=1, j 
=i

(x+
i − x+

j ) · τ(x+
i )

|x+
i − x+

j |2
+

M∑
j=1

(x+
i − x−

j ) · τ(x+
i )

|x+
i − x−

j |2
= 0, i = 1, . . . ,M,

and

−
M∑
j=1

(x−
i − x+

j ) · τ(x−
i )

|x−
i − x+

j |2
+

M∑
j=1, j 
=i

(x−
i − x−

j ) · τ(x−
i )

|x−
i − x−

j |2
= 0, i = 1, . . . ,M,

or in terms of the angles θ+
j and θ−j associated with the points x+

j and x−
j ,

−
M∑

j=1, j 
=i

sin(θ+
i − θ+

j )

1 − cos(θ+
i − θ+

j )
+

M∑
j=1

sin(θ+
i − θ−j )

1 − cos(θ+
i − θ−j )

= 0, i = 1, . . . ,M,

and

−
M∑
j=1

sin(θ−i − θ+
j )

1 − cos(θ−i − θ+
j )

+

M∑
j=1, j 
=i

sin(θ−i − θ−j )

1 − cos(θ−i − θ−j )
= 0, i = 1, . . . ,M.

It is clear that θ+
j = 2jπ

M , θ−j = (2j−1)π
M , j = 1, . . . ,M , (and any fixed rotation of this

set of angles) is a solution to these equations. This is consistent with the fact that all
the explicit solution families constructed in [4] blow up, with alternating signs, at an
even number of equidistant points.

The following lemma will be used for the proof of Theorem 4.6.
Lemma 4.9. Let Φ be a conformal equivalence on Ω, and let x∗ be an arbitrary

point on ∂Ω \ {Φ−1(∞)}; then

∂

∂τx
(log |Φ(x) − Φ(x∗)| − log |x− x∗|) |x=x∗ =

∂
∂τx

|det(DΦ(x))|x=x∗

4|det(DΦ(x∗))| .

Proof. In the following proof we use the Einstein summation convention: Re-
peated indices indicate summation. We immediately calculate

∂

∂τx
(log |Φ(x) − Φ(x∗)| − log |x− x∗|) |x=x∗

= lim
x∈∂Ω
x→x∗

[
(Φ(x) − Φ(x∗))k∂xjΦk(x)τj(x)

|Φ(x) − Φ(x∗)|2 − (x− x∗)jτj(x)

|x− x∗|2

]

= lim
x∈∂Ω
x→x∗

(Φ(x) − Φ(x∗))k∂xjΦk(x)τj(x)|x− x∗|2 − (x− x∗)jτj(x)|Φ(x) − Φ(x∗)|2
|Φ(x) − Φ(x∗)|2|x− x∗|2 .

The numerator in this last expression may be expanded as follows:

(Φ(x) − Φ(x∗))k∂xjΦk(x)τj(x)|x− x∗|2 − (x− x∗)jτj(x)|Φ(x) − Φ(x∗)|2

=
1

2
∂xl

∂xmΦk(x
∗)(x− x∗)l(x− x∗)m∂xjΦk(x

∗)τj(x
∗)|x− x∗|2

+ ∂xmΦk(x
∗)(x− x∗)m∂xl

∂xjΦk(x
∗)(x− x∗)lτj(x

∗)|x− x∗|2
(4.23)

− (x− x∗)jτj(x
∗)∂xnΦk(x

∗)(x− x∗)n∂xl
∂xmΦk(x

∗)(x− x∗)l(x− x∗)m

+O(|x− x∗|5)

= |x− x∗|4
(

1

2
∂xl

∂xmΦk(x
∗)τl(x

∗)τm(x∗)∂xjΦk(x
∗)τj(x

∗) + O(|x− x∗|)
)
,
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and the denominator may be expanded as follows:

|Φ(x) − Φ(x∗)|2|x− x∗|2 = |x− x∗|4 [|det(DΦ(x∗))| + O(|x− x∗|)] .(4.24)

Here we have on several occasions used that Φ is conformal on Ω\{Φ−1(∞)}. Insertion
of these new expressions, (4.23) and (4.24), immediately yields

∂

∂τx
(log |Φ(x) − Φ(x∗)| − log |x− x∗|) |x=x∗

(4.25)

=
∂xl

∂xm
Φk(x

∗)τl(x
∗)τm(x∗)∂xj

Φk(x
∗)τj(x

∗)

2|det(DΦ(x∗))| .

Now

∂

∂τx
|det(DΦ(x))| =

∂

∂τx

2∑
k=1

(∂xjΦk(x)τj(x))2

= 2∂xjΦk(x)τj(x)∂xm
(∂xl

Φk(x)τl(x)) τm(x)

= 2∂xj
Φk(x)τj(x)∂xm

∂xl
Φk(x)τl(x)τm(x)(4.26)

+ 2∂xjΦk(x)τj(x)∂xl
Φk(x)∂xmτl(x)τm(x)

= 2∂xj
Φk(x)τj(x)∂xm

∂xl
Φk(x)τl(x)τm(x).

For the last identity we used that〈
DΦ(x)τ(x), DΦ(x)

∂

∂τx
τ(x)

〉
= −κ(x)〈DΦ(x)τ(x), DΦ(x)n(x)〉 = 0.

Insertion of (4.26) into (4.25) finally gives

∂

∂τx
(log |Φ(x) − Φ(x∗)| − log |x− x∗|) |x=x∗ =

∂
∂τx

|det(DΦ(x))|x=x∗

4|det(DΦ(x∗))| ,

exactly as desired.
Proof of Theorem 4.6. The statement about the convergence of v0

λn
= vλn −∫

∂Ω
vλn dσ/|∂Ω| follows directly from Theorem 3.1. The limit v0 has the form

v0(x) = −
∫
∂Ω

N(z, x) d(μ+ − μ−)z = −
M∑
i=1

α+
i N(x+

i , x) +

N∑
i=1

α−
i N(x−

i , x)

(4.27)

= Hα(x) −
M∑
i=1

α+
i

π
log |x− x+

i | +
N∑
i=1

α−
i

π
log |x− x−

i |,

where Hα is the C∞(Ω) solution to

ΔHα = 0 in Ω,
∂Hα

∂n
=

M∑
i=1

α+
i

π

(x− x+
i ) · n

|x− x+
i |2

−
N∑
i=1

α−
i

π

(x− x−
i ) · n

|x− x−
i |2

on ∂Ω,

∫
∂Ω

Hα dσ =

M∑
i=1

α+
i

π

∫
∂Ω

log |x− x+
i | dσx −

N∑
i=1

α−
i

π

∫
∂Ω

log |x− x−
i | dσx.
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The form of Hα and the last identity in (4.27) are consequences of (3.1) and (3.2).
We introduce a convenient renaming of the points x±

i and the weights α±
i . Define

points xi, 1 ≤ i ≤ M + N , by

xi = x+
i , 1 ≤ i ≤ M, xi+M = x−

i , 1 ≤ i ≤ N,

and weights β±
i , 1 ≤ i ≤ M + N , by

β+
i = α+

i > 0, 1 ≤ i ≤ M, β+
i+M = 0, 1 ≤ i ≤ N,

β−
i = 0, 1 ≤ i ≤ M, β−

i+M = α−
i > 0, 1 ≤ i ≤ N.

The points xi are distinct, and the product of β+
i and β−

i is zero, since there is, by
assumption, no overlap between {x+

i }Mi=1 and {x−
i }Ni=1. With this notation,

μ± =

M+N∑
i=1

β±
i δxi .(4.28)

A part of the following argument is similar to that given in the proof of Theorem 4.1.
At this point we need a refined version in order to treat asymptotically smaller terms,
and for ease of comprehension we have decided to give the argument in its entirety.
Let x → y = Φ(x) be a conformal equivalence of Ω onto the upper half-plane H =
{(y1, y2) : y2 > 0} with the property that none of the points yi = Φ(xi), 1 ≤ i ≤
M + N are mapped to infinity. Setting uλn = vλn ◦ Φ−1, we now have a family of
solutions to ⎧⎨

⎩
Δuλn = 0 in H,
∂uλn

∂y2
= −λnh(y) sinh(uλn) on ∂H,

(4.29)

with h(y) = |det(DΦ(Φ−1(y)))|−1/2. The sequence

uλn − sλn , with sλn =

∫
∂Ω

vλn dσ/|∂Ω|,

converges to u0 = v0 ◦ Φ−1 in Ht(H ∩ {|y| ≤ R}) for any t < 1 and any R; the
convergence also takes place in C∞(H \ {yi}M+N

i=1 ), i.e., in C∞(K) for any compact
set K ⊂ H \ {yi}M+N

i=1 . The function u0 satisfies⎧⎪⎨
⎪⎩

Δu0 = 0 in H,

∂u0

∂y2
= −

M+N∑
i=1

(β+
i − β−

i )δyi
on ∂H.

(4.30)

We now introduce functions wλn and w0 by

wλn := ∂y1uλn∂y2uλn and w0 := ∂y1u0∂y2u0,

respectively. Due to the C∞(H \ {yi}M+N
i=1 ) convergence of uλn − sλn toward u0, the

sequence wλn converges in C∞(H \ {yi}M+N
i=1 ) toward w0. Simple calculations yield

Δwλn
= 0 in H
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and

wλn
= −λnh(y1, 0) sinh(uλn

)∂y1
uλn

= −λnh(y1, 0)∂y1
(cosh(uλn

)) on ∂H.(4.31)

From (4.30) and the fact that u0 = v0 ◦ Φ−1, it follows that u0 has the form

u0(y) = c0 −
M+N∑
i=1

(β+
i − β−

i )

π
log |y − yi|,(4.32)

where the constant c0 is given by c0 = v0(Φ
−1(∞)). This is a simplified version of

Lemma 4.5, corresponding to F = 0. We may thus calculate

w0(y) = ∂y1
u0∂y2

u0(y)

=
∑
i,j

(β+
j − β−

j )(β+
i − β−

i )

π2

(y − yj)1y2

|y − yj |2|y − yi|2

or by a slight regrouping

w0(y) =
∑
i

(β+
i − β−

i )2

π2

(y − yi)1y2

|y − yi|4
(4.33)

+
∑

i,j, i 
=j

(β+
j − β−

j )(β+
i − β−

i )

π2

(y − yj)1y2

|y − yj |2|y − yi|2
.

We now derive an alternate representation for the function w0 by use of the re-
lationship w0 = limλn→0 wλn

. Let D ⊂ H be a bounded, smooth domain with
Γ0 = ∂D ∩ ∂H = [−R,R] × {0} (for instance, take D to be the half-disk BR(0) ∩ H

with the two corners “smoothed out”). Choose R sufficiently large that all the points
y±
i lie inside 1

2Γ0. Let GD(y, z) denote the Green’s function for the domain D, i.e.,
the solution to {

ΔGD(·, z) = δz in D,
GD(·, z) = 0 on ∂D.

(4.34)

For any fixed z ∈ D the harmonic function wλn may now be represented as

wλn(z) =

∫
∂D

wλn(y)
∂GD

∂ny
(y, z) dσy.

We decompose the boundary of D as follows: ∂D = Γ0 ∪Γ1, with Γ0 = ∂D ∩ ∂H and
Γ1 = ∂D ∩ H. In light of (4.31), the above integral representation for wλn reads

wλn
(z) =

∫
Γ1

wλn
(y)

∂GD

∂ny
(y, z)dσy

+

∫
Γ0

λnh(y1, 0)∂y1(cosh(uλn(y1, 0)))
∂GD

∂y2
((y1, 0), z)dy1(4.35)

= I1,λn(z) + I2,λn(z).

As a consequence of the C∞(H \ {yi}M+N
i=1 ) convergence of wλn toward w0

lim
λn→0

I1,λn(z) =

∫
Γ1

w0(y)
∂GD

∂ny
(y, z)dσy ∀z ∈ D.(4.36)
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Integration by parts yields

I2,λn(z) = −
∫

Γ0

λn cosh(uλn(y1, 0))h(y1, 0)∂y1

(
∂GD

∂y2
((y1, 0), z)

)
dy1

−
∫

Γ0

λn cosh(uλn(y1, 0))∂y1h(y1, 0)
∂GD

∂y2
((y1, 0), z)dy1(4.37)

+

(
λn cosh(uλn(y1, 0))h(y1, 0)

∂GD

∂y2
((y1, 0), z)

) ∣∣∣∣∣
y1=R

y1=−R

.

From Lemma 4.3 we know that

λne
vλn → 2μ+ = 2

M+N∑
i=1

β+
i δxi and λne

−vλn → 2μ− = 2

M+N∑
i=1

β−
i δxi

in the sense of measures on ∂Ω, and so

λn cosh(vλn) →
M+N∑
i=1

(β+
i + β−

i )δxi

in the sense of measures on ∂Ω. The left-hand sides also converge uniformly to zero
away from the points xi. When “pushed forward” by the conformal map Φ, the
convergence implies that

λnh(y1, 0) cosh(uλn
(y1, 0)) →

M+N∑
i=1

(β+
i + β−

i )δyi
(4.38)

in the sense of measures on Γ0 = [−R,R]×{0}. As a consequence of (4.37) and (4.38)
we immediately obtain the following limit for the integrals I2,λn :

lim
λn→0

I2,λn(z) = −
M+N∑
i=1

(β+
i + β−

i )
∂2GD

∂y1∂y2
(yi, z)

(4.39)

−
M+N∑
i=1

(β+
i + β−

i )
∂y1h(yi)

h(yi)

∂GD

∂y2
(yi, z) ∀z ∈ D.

Here we also used the fact that λn cosh(uλn(y1, 0))h(y1, 0) converges pointwise to zero
away from the points yi to eliminate the boundary term in (4.37). A combination of
(4.36) and (4.39) with (4.35) now yields

w0(z) = lim
λn→0

wλn
(z) =

∫
Γ1

w0(y)
∂GD

∂ny
(y, z)dσy

−
M+N∑
i=1

(β+
i + β−

i )
∂2GD

∂y1∂y2
(yi, z)(4.40)

−
M+N∑
i=1

(β+
i + β−

i )
∂y1h(yi)

h(yi)

∂GD

∂y2
(yi, z) ∀z ∈ D.

Set ω = {z ∈ D : |z1| < R/2 and 0 < z2 < ε} for ε fixed but sufficiently small. The
Green’s function G(y, z), (y, z) ∈ D × ω \ {y = z}, may now be written

GD(y, z) =
1

2π
log |y − z| − 1

2π
log |y − z| + g(y, z),
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where z = (z1, z2) = (z1,−z2) and where the function g is in C∞(D × ω). Since
yi ∈ Γ0 = ∂D ∩ ∂H, 1 ≤ i ≤ M + N , we thus compute

∂GD

∂y2
(yi, z) = − 1

π

z2

|yi − z|2 + ∂y2g(yi, z) z ∈ ω \ {yi} and

(4.41)
∂2GD

∂y1∂y2
(yi, z) =

2

π

(yi − z)1z2

|yi − z|4 + ∂y1∂y2g(yi, z) z ∈ ω \ {yi}.

Substituting (4.41) into (4.40) we arrive at

w0(z) =
2

π

M+N∑
i=1

(β+
i + β−

i )
(z − yi)1z2

|z − yi|4
(4.42)

+
1

π

M+N∑
i=1

(β+
i + β−

i )
∂y1h(yi)

h(yi)

z2

|z − yi|2
+ R(z),

where R is in C∞(ω). By comparing the two representations (4.33) and (4.42) for w0,
and using the fact that the singular terms of same type (near yi) must coincide, we
now obtain equations for the weights {β±

i }M+N
i=1 and the points {yi}M+N

i=1 . From the
terms of type (· − yi)1(·)2/| · −yi|4,

(β+
i − β−

i )2

π2
=

2

π
(β+

i + β−
i ), 1 ≤ i ≤ N + M.(4.43)

From the terms of type (·)2/| · −yi|2,

(β+
i − β−

i )

π2

M+N∑
j=1, j 
=i

(β+
j − β−

j )
(yi − yj)1
|yi − yj |2

(4.44)

=
1

π
(β+

i + β−
i )

∂y1h(yi)

h(yi)
, 1 ≤ i ≤ N + M.

Recall that, by assumption, the two set of points {x+
i }Mi=1 and {x−

i }Ni=1 are disjoint,
and 0 < β+

i = α+
i , 1 ≤ i ≤ M , 0 < β−

i+M = α−
i , 1 ≤ i ≤ N , with β±

i = 0 otherwise.

In terms of the points y±
i = Φ(x±

i ) and the weights α±
i , the identities (4.43) and

(4.44) now reduce to

α+
i = 2π, 1 ≤ i ≤ M, α−

i = 2π, 1 ≤ i ≤ N,

2

M∑
j=1, j 
=i

(y+
i − y+

j )1

|y+
i − y+

j |2
− 2

N∑
j=1

(y+
i − y−

j )1

|y+
i − y−

j |2
=

∂y1h(y+
i )

h(y+
i )

, 1 ≤ i ≤ M, and(4.45)

− 2

M∑
j=1

(y−
i − y+

j )1

|y−
i − y+

j |2
+ 2

N∑
j=1, j 
=i

(y−
i − y−

j )1

|y−
i − y−

j |2
=

∂y1
h(y−

i )

h(y−
i )

, 1 ≤ i ≤ N.(4.46)

Since all the α±
i have the same value (2π) and since

∑M
i=1 α

+
i = μ+(∂Ω) = μ−(∂Ω)

=
∑N

i=1 α
−
i , it follows that M = N(≥ 1). From the definition of h we calculate

∂h

∂y1
(y±

i ) = −1

2
|det(DΦ(x±

i )|−2 ∂

∂τx
|det(DΦ(x))|x=x±

i
,
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so that

∂y1h(y±
i )

h(y±
i )2

= −1

2

∂
∂τx

|det(DΦ(x))|x=x±
i

|det(DΦ(x±
i )|

.(4.47)

We have that

v0(x) + 2 log |x− x+
i | = v0(x) + 2 log |Φ(x) − Φ(x+

i )|
+ 2(log |x− x+

i | − log |Φ(x) − Φ(x+
i )|)

= [u0(y) + 2 log |y − y+
i |]y=Φ(x)

+ 2(log |x− x+
i | − log |Φ(x) − Φ(x+

i )|)

=

⎡
⎣c0 − 2

M∑
j=1, j 
=i

log |y − y+
j | + 2

M∑
j=1

log |y − y−
j |

⎤
⎦
y=Φ(x)

+ 2(log |x− x+
i | − log |Φ(x) − Φ(x+

i )|).

For the last identity we used the representation formula (4.32) for u0 and the facts
that M = N and β+

i − β−
i = 2π, 1 ≤ i ≤ M , β+

i − β−
i = −2π, M + 1 ≤ i ≤ 2M . By

differentiation and use of Lemma 4.9 we now get that

∂

∂τx
(v0(x) + 2 log |x− x+

i |)x=x+
i

=
1

h(y+
i )

∂

∂y1

⎡
⎣c0 − 2

M∑
j=1, j 
=i

log |y − y+
j | + 2

M∑
j=1

log |y − y−
j |

⎤
⎦
y=y+

i

−1

2

∂
∂τx

|det(DΦ(x))|x=x+
i

|det(DΦ(x+
i ))|

.

In combination with (4.45) and (4.47) this immediately yields

∂

∂τx
(v0(x) + 2 log |x− x+

i |)x=x+
i

= 0, 1 ≤ i ≤ M.

A similar approach, based on (4.46), leads to the identities

∂

∂τx
(v0(x) − 2 log |x− x−

i |)x=x−
i

= 0, 1 ≤ i ≤ M.

Finally

lim
λn→0

λn

∫
∂Ω

| sinh(vλn
)| dσ = (μ+ + μ−)(∂Ω) =

M∑
i=1

α+
i +

M∑
i=1

α−
i = 4Mπ.

This completes the proof of Theorem 4.6.
Remark 4.10. If we drop the assumption that {x+

i } ∩ {x−
i } = ∅, then the same

techniques that were used for the proof of Theorem 4.6 still lead to some interesting
conclusions. Let x∗ be any point in {x+

i } ∪ {x−
i } = S ⊂ ∂Ω and suppose μ+ and

μ− have contributions α+
∗ δx∗ and α−

∗ δx∗ , respectively (included here is the possibility
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that α+
∗ or α−

∗ is zero). From (4.43) in the proof of Theorem 4.6 we immediately
obtain the identity

(α+
∗ − α−

∗ )2

π2
=

2

π
(α+

∗ + α−
∗ ).

For points that are in only one of the sets {x+
i } or {x−

i } (but not in {x+
i } ∩ {x−

i })
this still asserts that the nonzero weight (α+

∗ or α−
∗ ) is 2π, but for potential x∗ in

{x+
i } ∩ {x−

i } this identity implies only that

α+
∗ + α−

∗ > |α+
∗ − α−

∗ | > 2π,

so that the contribution to ∂v0

∂n = μ+ − μ− and to μ+ + μ− is of greater magnitude
than 2πδx∗ . This result was already derived in the proof of Theorem 4.1 in the most
general setting, without any assumptions about d±.

The equation analogous to (4.21) becomes

∂

∂τx

(
v0(x) +

(α+
∗ − α−

∗ )

π
log |x− x∗|

) ∣∣∣∣
x=x∗

= 0,

or in terms of the full gradient

∇x

(
v0(x) +

(α+
∗ − α−

∗ )

π
log |x− x∗|

) ∣∣∣∣
x=x∗

=
(α+

∗ − α−
∗ )

2π
κ(x∗)n(x∗)

=
(α+

∗ + α−
∗ )

(α+
∗ − α−

∗ )
κ(x∗)n(x∗).

For points that are in only one of the sets {x+
i } or {x−

i } (but not in {x+
i } ∩ {x−

i })
these are exactly the same equations as in Theorem 4.6. We are not at the moment
able to derive equations analogous to (4.21) (or (4.22)) for the case when either d+

or d− is nonzero.

5. Computational examples. In this section we present some results of nu-
merical calculations of solutions to the boundary value problem (1.1) on two dif-
ferent simply connected domains. As λ → 0+ the solutions we calculate all ap-
pear to have boundary fluxes that are bounded in L1, i.e., they appear to satisfy
‖λ sinh(vλ)‖L1(∂Ω) ≤ C, and as predicted by Theorems 3.1 and 4.1 the limiting fluxes
thus all contain at least one nonzero point mass. In section 2 we showed that such
solutions also necessarily satisfy

|sλ| =

∣∣∣∣ 1

|∂Ω|

∫
∂Ω

vλ dσ

∣∣∣∣ ≤ log
1

λ
+ D.

The second of our numerical experiments gives strong evidence that asymptotic equal-
ity is indeed attained for certain solutions. This again implies that one of the expres-
sions,

λe±sλ = λ exp

(
± 1

|∂Ω|

∫
∂Ω

vλ dσ

)
,

has a nonzero limit point as λ → 0+. As seen in Theorem 3.1 (and Theorem 4.1),
such a nonzero limit point gives rise to a subsequence of solutions with a limiting
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boundary flux that contains point masses as well as a regular part. It is therefore not
surprising that some of the limiting boundary fluxes arising in the second experiment
show strong evidence of the presence of a nonzero regular part. Due to the emergence
of nonzero regular parts in some of the limiting boundary fluxes (and the correspond-
ing elimination of some potential point masses) our second experiment also provides
potential evidence that the identities (4.21) (or (4.22)), derived in Theorem 4.6 for
the locations of point masses, are necessary but not sufficient.

For the purpose of our computations we reformulate the problem (1.1) as a non-
linear boundary integral equation, which we then approximate using a Nyström col-
location method and finally solve by means of a Newton iteration scheme [1], [8]. In
order to achieve high numerical accuracy in the presence of the points of “blow-up,”
we first calculate the potential “blow-up” locations (by the approximate solution of
the equations from Theorem 4.6) and then use a mesh for the Nyström collocation
that is refined appropriately near these points. For more details about these and other
Matlab computations, see [9]. Nyström’s method is known to achieve exceptional (ex-
ponential) accuracy for “uniform” meshes and smooth solutions. Since our solutions
develop very strong singularities as λ → 0+, the accuracy using a “uniform” mesh
is completely unsatisfactory for small λ. We believe our mesh-refinement strategy
provides much higher (though, far from exponential) accuracy. However, we should
point out that, due to the fact that even the L∞ norm of the solution blows up, we do
not have any good a priori estimate of the accuracy associated with a particular mesh,
valid uniformly in λ. Part of the challenge (short of rigorously developing a posteriori
error estimators) is to find decent ways to gauge the accuracy of the computations.

5.1. Pure sums of point masses. The domains we consider are conformal
images of the unit disk by the (complex-valued) exponential map, Φ(z) = eγz with
0 < γ < π. For small values of γ, the image of this map is very close to a disk, so we
expect the solutions to behave like the solutions on a disk. Indeed, this is the case
when we choose γ = 0.5. We compute the two “first” nontrivial solution families,
i.e., the solution families branching off at the first two nonzero Steklov eigenvalues of
the linearized problem Δw = 0 in Ω, ∂w

∂n = λw on ∂Ω. Since these two eigenvalues
represent the “split” of the first nonzero (double) eigenvalue for a disk, we expect to see
two distinct families of solutions whose boundary fluxes each develop two point masses
of opposite strength. Graphical output from our computations is shown in Figure 1.
The first two frames show the normal fluxes plotted against the arclength for the
two families of solutions. Arclength = 0 corresponds to the rightmost intersection of
the domain with the x-axis (the point (e0.5, 0)). In each frame we plot the boundary
fluxes ∂uλ

∂n , for a collection of λ ranging between 0.24 and 10−3. We clearly see
two point masses develop as λ decreases. There are no nonzero regular parts in the
limiting fluxes. The two families have different locations for the point masses. In
the third frame we show the mesh grading function used for the computation of the
first family of solutions. The horizontal axis represents the node number (from 1
to 512) and the vertical axis represents (the arclength to) the corresponding node
location on ∂Ω. There are “exponential-type” refinements near the two potential
point mass locations, the kind of refinements that appear well suited to the expected
logarithmic near-singularities of the solutions. For more details, see [9]. The fourth
frame shows the two potential pairs of point mass locations as computed from the
necessary conditions of Theorem 4.6 (with M = 1). Each potential pair is in total
agreement with the approximate point mass locations observed in exactly one of the
first two frames. The locations marked by ◦ correspond to the first family of solutions,
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Fig. 1. The case γ = 0.5. The two top frames show boundary fluxes for the two first solution
families as a function of arclength. The third frame shows the mesh grading function used for the
computation of the first solution family. The fourth frame shows the domain with marked point
mass locations: ◦’s correspond to the first family, *’s to the second.

the locations marked by * to the second family.

5.2. A regular part. At the other end of the spectrum, for clarity, we look at
the case of γ = 2.0. Figure 2 shows a collection of boundary fluxes of solutions, for λ
as small as 10−3, using a mesh that is “exponentially” refined near the two potential
“blow-up” points. On this domain (the shape of which is shown in the insert of
Figure 2) we see very strong evidence of a positive regular part and a single negative
point mass in the limiting boundary flux.

For some of the first uniform (and coarser) meshes we used in our computations,
we initially saw behavior like the one showed in Figure 2, but at a certain point in λ,
depending on the mesh, the positive part of the boundary flux would accelerate its
growth as λ approached 0. In all the meshes we tried it has always been clear that the
negative part of the boundary flux converges to a single point mass. A vast difference
in scale made it plausible that the negative part was the only point mass to develop
in the limit and that the positive part would converge to some smooth function.
However, the accelerated growth in the positive part of the flux could indicate some
additional point masses. In order to effectively rule this out we need some simple a
posteriori tests to indicate, for a certain mesh, what values of λ are simply too small
to allow accurate computational results.

To illustrate this point we choose λ = 10−2 and λ = 10−3 and compute the
approximate boundary fluxes for the same three meshes. The first frame in Figure 3
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Fig. 2. An example of a limiting boundary flux with a nonzero regular part. The domain Ω
(insert) corresponds to γ = 2. The three locations indicated by *’s (below the graphs) correspond to
the three marked points on the leftmost part of the boundary of Ω.
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Fig. 3. Left frame: Boundary fluxes for λ = 10−2 computed using three different meshes. Right
frame: Boundary fluxes for λ = 10−3 computed using the same three meshes. The domain in both
cases corresponds to γ = 2.

displays the computed fluxes for λ = 10−2; the second frame, those for λ = 10−3. The
three meshes we use are “exponentially” refined at the “blow-up” points. They differ
by the size of the smallest mesh width near “blow-up” points. Mesh a is the coarsest
near these points, and mesh c is the finest. Using the exact same three meshes, we
have computed the integrals of the positive part of the approximate boundary flux
and the boundary averages of the approximate solution. These results are displayed
in Figure 4. Since it is quite clear (from all three meshes) that a single, isolated
negative point mass develops, Theorem 4.1 asserts that this must have a mass of
−2π. Correspondingly, the integral of (∂vλ

∂n )+ should approach 2π. The left frame in
Figure 4 clearly indicates that meshes a and b lack sufficient accuracy for λ = 10−3,
whereas mesh c achieves an integral very close to 2π even for λ = 10−3. According to
the same test mesh b seems adequate for λ = 10−2, but mesh a already lacks sufficient
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Fig. 4. Two gauges of accuracy, as explained in text. Left frame: The integrals of the positive
part of the approximate boundary flux. Right frame: The boundary averages of the approximate
solution. The three meshes are the same as in Figure 3.

accuracy for this value of λ. Comparing with Figure 3 we are thus inclined to believe
the results of meshes b and c for λ = 10−2 and those of mesh c for λ = 10−3. These
results predict the presence of a nonzero regular part in the limiting boundary flux.
The growing “modes” we see in the other results can all be attributed to numerical
inaccuracy. The right frame in Figure 4 gives a positive confirmation of the accuracy
associated with mesh c all the way down to λ = 10−3 (and the accuracy associated
with mesh b down to 10−2). In this frame we plot the boundary averages of the
approximate solution versus λ. For comparison we also plot the line corresponding
to the function log( 1

λ ) + D. D is chosen by fitting the results from the “finest” mesh
(mesh c) to this logarithmic line. From Theorem 3.1 we know that a nonzero regular
part of the limiting boundary flux exists if and only if the boundary averages of the
solution behave like ± log( 1

λ )+D. The computations corresponding to mesh c shown
in Figure 3 and in the right frame of Figure 4 are completely consistent with this
equivalence, as are the computations corresponding to mesh b shown in the left frame
of Figure 3 and in the right frame of Figure 4.

Based on these additional computations we believe that the limiting boundary
flux for this second family of solutions, in case γ = 2, does indeed exhibit a nonzero
regular part as shown in Figure 2. The equations derived in Theorem 4.6 for the
potential locations of two point masses (M = 1) continue to have as a solution the
pair of points lying at the intersection of Ω and the horizontal coordinate axis (as
these equations did in the case of γ = 0.5). The fact that none of the first two
computed solution families (or for that matter none of the first four solution families,
as seen in the next figure) develops a pair of singularities at these two points gives
some indication that our “location conditions” are necessary but not sufficient.

So far we have considered only the first two nontrivial solution families, but
we have in many cases computed solution families branching off at much “higher”
Steklov eigenvalues. Figure 5 shows the results of such a computation on the domain
corresponding to γ = 2. The first frame shows the bifurcation diagram for the first
six nontrivial solution families. We plot ‖∇vλ‖L2(Ω) versus λ. In the following four
frames we show a sequence of eight boundary fluxes corresponding to each of the
first four solution branches. The number m is a counter for the Steklov eigenvalues;
m = 1 corresponds to the eigenvalue 0, m = 2 is the first nonzero eigenvalue, etc. The
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Fig. 5. A bifurcation diagram showing ‖∇vλ‖L2(Ω) as a function of λ, and the boundary fluxes
at selected points on the first four solution branches. The domain Ω corresponds to γ = 2.

points in the bifurcation diagram that correspond to the shown boundary fluxes have
been marked with squares. As seen in Figure 5, the boundary fluxes corresponding
to m = 2 and m = 4 appear to converge to pure sums of alternating point masses
(the computations also confirm that each point mass is of strength ±2π), whereas the
limiting boundary fluxes for m = 3 and m = 5 appear to contain a nonzero regular
part as well. The situation m = 3 has already been discussed. For m = 5 the limiting
boundary flux appears to have two negative point masses (each of mass −2π) balanced
by a positive regular part, in complete agreement with Theorem 4.1.

Acknowledgments. Part of this work was carried out during a stay at Université
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Abstract. This article is devoted to the proof of the hydrodynamical limit from kinetic equations
(including BGK-like equations) to multidimensional isentropic gas dynamics. It is based on a relative
entropy method; hence the derivation is valid only before shocks appear on the limit system solution.
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1. Introduction.

1.1. Context and results. This article is devoted to the study of the hydro-
dynamical limit of kinetic equations to the multidimensional system of isentropic gas
dynamics: {

∂tρ + divx(ρu) = 0, t ∈ R
+, x ∈ R

n,
∂t(ρu) + divx(ρu⊗ u + Iργ) = ρF, t ∈ R

+, x ∈ R
n,

(1.1)

for 1 ≤ γ ≤ n+2
n and a given external force field F .

This is a simplified situation of the long-term problem concerning the compressible
limit of the Boltzmann equation. In this case, the hydrodynamical limit has been
performed by Caflisch [9] only for smooth data during a small time. The asymptotic
limit of the Boltzmann equation in low Mach number towards incompressible Euler (or
Navier–Stokes) systems has been achieved recently by Saint-Raymond [26] and Lions
and Masmoudi [22] following the pioneering work of Bardos, Golse, and Levermore [1].
As for our work, they are still local time results, since it is valid in the lapse of time
in which the limit solution remains smooth. However, at the kinetic level, no strong
smoothness property is needed. Notice that in our case we deal with compressible
gases, and even the existence of a solution to (1.1) after shocks appear is not known
in the multidimensional situation.

At the kinetic level, we consider a Fokker–Planck equation for the isothermal
case (γ = 1) and a BGK-like equation for the other values of γ. Originally, BGK
equations have been introduced by Bathnagar, Gross, and Krook as a simplification
of the Boltzmann equation. This model has been extended in order to construct
kinetic equations associated with different hydrodynamical systems (see the book of
Perthame [24] for a survey of this field). In our particular case, the BGK model we
use has been introduced for the full range of γ by Bouchut [5]. Our main result is the
following.
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Theorem 1.1. Let F be in C2(Rn) ∩ L∞(Rn). Let (ρ0, ρ0u0) ∈ L1(Rn) be the
initial data of a solution U = (ρ, ρu) ∈ C1([0, T [×R

n) ∩ L1([0, T [×R
n) to (1.1) such

that ρ > 0; ρ, u, ∂xρ, ∂xu are bounded with respect to (t, x); and ρu2, h(ρ) are
integrable with respect to (t, x), where h(ρ) = ργ/(γ − 1) for γ > 1 and h(ρ) = ρ ln ρ
for γ = 1. Consider a family of kinetic initial values f0

ε verifying f0
ε ∈ L1(R2n),

H(f0
ε , v) ∈ L1(R2n) (where H is the kinetic entropy associated with the system (1.1);

see section 4). We assume that it verifies∫
Rn

(f0
ε , vf

0
ε , H(f0

ε , v)) dv−→
ε→0

(ρ0, ρ0u0, ρ0(u0)2/2 + h(ρ0)) in L1(Rn).

Let fε be the solution to the BGK equation (4.1) for 1 < γ ≤ n/(n+2) or the solution
to the Fokker–Planck equation (4.5) for the isotherm case (γ = 1). We denote

(ρε, ρεuε) =

(∫
Rn

fε dv,

∫
Rn

vfε dv

)
.

Then ρε converges strongly in C0(0, T ;Lp
loc(R

n)) to ρ for every 1 ≤ p < γ and ρεuε

converges strongly to ρu in C0(0, T ;Lq
loc(R

n)) for every 1 ≤ q < 2γ/(γ + 1).
In the monodimensional case (n = 1) a stronger result has been achieved by

Berthelin and Bouchut [3] in the similar situation where we have only one entropy.
This result is valid even when shocks appear. The simpler case dealing with the
complete family of entropies has been performed by Berthelin and Bouchut [2] (see
also Serre [27] for regular systems). However, notice that in our case, no a priori
assumption on the support of fε in v is needed. Everything is controlled by the
energy bound. (We also refer the reader to [28], [17] for the convergence of discrete
kinetic models to the Lagrangian version of the p-system in the one-dimensional case
but even after the appearance of shocks.)

The main tool is a relative entropy method. It relies on the “weak-strong” unique-
ness principle, established by Dafermos for multidimensional systems of hyperbolic
conservation laws admitting a convex entropy functional [10]. It is close to the concept
of dissipative solutions for the Euler equations of Lions [21]. It has been frequently
used for systems of particles and rarefied gas dynamics; see Yau [29] and Golse, Lev-
ermore, and Saint-Raymond [14] (see also Goudon, Jabin, and Vasseur [18]). For
different asymptotic problems it is called the “modulated energy” method (Brenier
[7], Masmoudi [23], and Brenier [8]).

1.2. Numerical motivation. The kinetic structure of hyperbolic conservation
laws have been used for a long time to construct entropic numerical schemes (see
Kaniel [20], Giga and Miyakawa [13], the “transport-collapse” method of Brenier [6],
etc.). This method has been intensively developed by the group of Perthame (see
[24] for a review). In this framework, study of hydrodynamical limits of BGK-like
equations can give a first step for the proof of the convergence of those schemes.

Recently an intense activity has been produced to solve numerically hyperbolic
conservation laws with source terms. As a test, the Saint–Venant system with bottom
topography is often proposed:⎧⎨

⎩
∂th + divx(hu) = 0, t > 0, x ∈ R

2,
∂t(hu) + divx(hu⊗ u) + ∇xh

2 + Z ′(x)h = 0, t > 0, x ∈ R
2,

(h, hu)|t=0 = (h0, h0u0), x ∈ R
2,

(1.2)

where Z is the given bottom topography, h is the unknown depth of the water, and
u is the unknown velocity of the water. This system models the evolution of a river.



KINETIC EQUATIONS TO MULTIDIMENSIONAL GAS DYNAMICS 1809

Different numerical methods have been proposed to solve such problems (see Gosse
[16], [15], Jin [19], Gallouët, Hérard, and Seguin [12], etc.). Botchorishvili, Perthame,
and Vasseur [4] developed a kinetic procedure to construct numerical schemes and
showed the convergence in the scalar case. This method has been successfully imple-
mented by Perthame and Simeoni [25] for the Saint–Venant system. Notice that the
Saint–Venant system corresponds exactly to the sytem (1.1) with γ = 2 and Z ′ = F .
Our result can be seen as a first attempt to show the convergence of kinetic schemes
in this framework.

1.3. Idea of the proof. As mentioned above, the proof relies on a relative
entropy method. We consider the following abstract conservation law:

∂tU + divx A(U) = Q(U, x),(1.3)

with U(t, x) ∈ U ⊂ R
p for t ∈ R

+, x ∈ R
n, A : U → R

p, and Q : U × R
n → R

p.
We assume that there exists an entropy, entropy flux couple (η,G) with η ∈ C2(U ,R)
convex such that

∂iGk(W ) =
∑
j

∂jη(W ) ∂iAjk(W ) ∀k, i, ∀W.(1.4)

For smooth solutions of this system, we have the entropy equality

∂tη(U) + ∂xG(U) = η′(U)Q(U, x).(1.5)

Following the notations of Dafermos, for every function Φ ∈ C1(Rp) of U we introduce
the associated related quantity Φ(·|·) ∈ C0(Rp × R

p):

Φ(U1|U2) = Φ(U1) − Φ(U2) −∇Φ(U2)(U1 − U2).(1.6)

For example, the relative entropy is defined by

η(U1|U2) = η(U1) − η(U2) − η′(U2) · (U1 − U2),(1.7)

and the entropy flux by

A(U1|U2) = A(U1) −A(U2) −A′(U2) · (U1 − U2).(1.8)

We notice that if Φ is convex, then Φ(U1|U2) ≥ 0. Moreover, if it is strictly convex,
then Φ(U1|U2) = 0 if and only if U1 = U2.

We consider in the same way an abstract kinetic equation

∂tfε + v · ∇xfε + q(fε) =
Q(fε, v)

ε
,(1.9)

where fε = fε(t, x, v) ∈ R with t ∈ R
+, x, v ∈ R

n, and q a linear operator, Q :
R × R

n → R and with a : R
n → R

p, where the collision term Q satisfies∫
Rn

a(v)Q(f, v) dv = 0 for any f ∈ R.(1.10)

We assume the existence of a kinetic entropy H : R×R
n → R which is well related to

the entropy η of the hyperbolic system we want to relax. In more precise words, we
need that the following nonincrease is checked for the solution of the kinetic equation,

d

dt

∫∫
R2n

H(fε, v) dv dx ≤
∫

Rn

η′(Uε)Q(Uε) dx,(1.11)
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where

Uε(t, x) =

∫
Rn

a(v)fε(t, x, v) dv,(1.12)

and that the following compatibility between the entropy η and the kinetic entropy
H is satisfied:

η(Uε) ≤
∫

Rn

H(fε, v) dv.(1.13)

In addition we assume that∣∣∣∣
∫

Rn

(|a(v)| + |a(v) ⊗ v|)fε dv +

∫
Rn

a(v)q(fε) dv

∣∣∣∣
≤

∫
Rn

(fε + H(fε, v)) dv.(1.14)

Then we have the following abstract theorem.
Theorem 1.2. Let U ∈ [C1([0, T ] × R

n)]p be a strong solution on [0, T ] of the
multidimensional hyperbolic system (1.3), a system with a convex, C2 entropy, for an
initial data U0. We assume in addition that U , η′(U), and ∂xη

′(U) are bounded and
that U and η(U) are integrable with respect to x. Let fε be a solution to the kinetic
equation (1.9), satisfying (1.10)–(1.14) and fε + H(fε, v) integrable with respect to x
and v for every t. We set

Uε(t, x) =

∫
Rn

a(v)fε(t, x, v) dv.

We assume the convergence of initial data∫
Rn

η(U0
ε |U0) dx ≤ C0

√
ε,(1.15)

and the following compatibility for the initial data∣∣∣∣
∫

Rn

H(f0
ε , v) dv − η(U0

ε )

∣∣∣∣ ≤ C0

√
ε.(1.16)

If we have the control of the kinetic quantities∫ T

0

∫
Rn

∣∣∣∣A(Uε) −
∫

Rn

v ⊗ a(v)fε dv

∣∣∣∣ dx dt ≤ C1

√
ε,(1.17)

∫ T

0

∫
Rn

∣∣∣∣Q(Uε, x) +

∫
Rn

a(v)q(fε) dv

∣∣∣∣ dx dt ≤ C1

√
ε,(1.18)

and the control of the relative flux and the source terms by the relative entropy as

|A(Uε|U)| ≤ C2 η(Uε|U),(1.19)

|Q(U)η′(Uε|U) + [Q(Uε) −Q(U)](η′(Uε) − η′(U))| ≤ C2 η(Uε|U),(1.20)

where C1 and C2 are positive constants, then we get, for a constant C,∫
Rn

η(Uε|U)(t, x) dx ≤ C
√
ε for any t ∈ [0, T ].(1.21)
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Hypothesis (1.15) and (1.16) are compatibility conditions on the initial data. Hy-
pothesis (1.19) and (1.20) are structure conditions on the system (1.3). This theorem
shows that if (1.17) and (1.18) are fulfilled (which will be derived from kinetic dissipa-
tion), and the system (1.3) has a good structure, then the total relative entropy of Uε

with respect to U converges to 0. This applies to the convergence of Uε to U . Notice
that this presentation splits nicely the kinetic dissipation effect from the control of
the nonlinearities. The kinetic dissipation is needed in order to fulfill the consistency
(1.17) and (1.18). The nonlinearity is driven by the relative entropy method which
can be applied if (1.3) verifies (1.19) and (1.20). Notice that the method depends only
on the structure of the system whatever the kinetic equation is.

Then we show that the isentropic system (1.1) verifies the structure compatibility
and that the involved kinetic equations verify the dissipation properties needed. No-
tice that the full Euler system (with the added energy equation) does not verify (1.19).
Hence this method cannot be applied directly to the convergence from the Boltzmann
equation to the Euler system, for instance (see the appendix). The problem relies
already on the structure itself of the system (the relative flux cannot be controlled
by the relative entropy because of the high macroscopic velocities). Of course an
additional difficulty lies in the kinetic level to control high velocities to obtain (1.17)
and (1.18).

2. Study of the abstract problem. We consider the abstract equation (1.3)
and abstract kinetic equation (1.9). This section is devoted to the proof of Theo-
rem 1.2.

2.1. The key estimate. In the following proposition, we describe the evolution
of the relative entropy using canonical quantities associated with the system (1.3) and
entropy equation (1.5). We do not claim any originality in this result. It can be found
in [10], except for the slight generalization concerning the source term Q. However,
we give the proof for the sake of completeness.

Proposition 2.1. For the entropy η ∈ C2(Rp) and for any U, V ∈ [C1(Rn)]p,
we have

∂tη(V |U) = [∂tη(V ) + divx G(V ) − η′(V )Q(V )]

− [∂tη(U) + divx G(U) − η′(U)Q(U)]

− η′′(U) · [∂tU + divx A(U) −Q(U))] · (V − U)

− η′(U) · [∂tV + divx A(V ) −Q(V )]

+ η′(U) · [∂tU + divx A(U) −Q(U))]

+ divx [G(U) −G(V )] +
∑
ik

∂xk
[∂iGk(U)(Vi − Ui)]

+
∑
jk

∂jη(U)∂xk
[A(V |U)]

+Q(U)η′(V |U) + [Q(V ) −Q(U)](η′(V ) − η′(U)).

Remark 2.2. Notice that if U and V are regular solutions to (1.3), the first
five lines vanish. The sixth line has a divergence form, hence its integral is vanishing.
Finally, the two last terms are quadratic with respect to V −U (at least when |V −U | ≤
R) as η is. Hence, from this proposition, we can expect to have a good structure to
use Gronwall’s lemma on

∫
η(V |U) dx.
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Proof. From the definition of relative quantity (1.6), we have

∂tη(V |U) = ∂tη(V ) − ∂tη(U) − ∂t [η′(U)] · (V − U) − η′(U) · ∂t(V − U)

= [∂tη(V ) + divx G(V ) − η′(V )Q(V )]

− [∂tη(U) + divx G(U) − η′(U)Q(U)]

− η′′(U) · [∂tU + divx A(U) −Q(U)] · (V − U)(2.1)

− η′(U) · [∂tV + divx A(V ) −Q(V )]

+ η′(U) · [∂tU + divx A(U) −Q(U)] + R1 + R2,

where

R1 = η′(V )Q(V ) − η′(U)Q(U) − η′′(U) ·Q(U) · (V − U)

− η′(U) ·Q(V ) + η′(U) ·Q(U)

= Q(U)η′(V |U) + [η′(U) − η′(V )] · [Q(U) −Q(V )](2.2)

and

R2 = divx [G(U) −G(V )]

+ η′′(U) · divx A(U) · (V − U)

+ η′(U) · divx [A(V ) −A(U)].

The existence of the associated entropy flux G gives the relation (see (1.4))

∂iGk(W ) =
∑
j

∂jη(W ) ∂iAjk(W ) ∀k, i, ∀W.

A derivation of this relation with respect to Wl gives

∑
j

∂ljη(W )∂iAjk(W ) = ∂ilGk(W ) −
∑
j

∂jη(W )∂ilAjk(W ).

We use this relation with W = U and get

η′′(U) · divx A(U) · (V − U)

=
∑

∂ljη(U)∂xk
[Ajk(U)](Vl − Ul)

=
∑

∂ljη(U)∂iAjk(U)∂xk
Ui(Vl − Ul)

=
∑

∂ilGk(U)∂xk
Ui(Vl − Ul) −

∑
∂jη(U)∂ilAjk(U)∂xk

Ui(Vl − Ul),

and now

− ∂jη(U)∂ilAjk(U)∂xk
Ui(Vl − Ul)

= ∂jη(U) [−∂xk
[∂lAjk(U)] (Vl − Ul)]

= ∂jη(U) [−∂xk
[∂lAjk(U)(Vl − Ul)] + ∂lAjk(U)∂xk

(Vl − Ul)];
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therefore, we obtain

R2 = divx [G(U) −G(V )] +
∑

∂ilGk(U)∂xk
Ui(Vl − Ul)

+
∑

∂jη(U) [−∂xk
[∂lAjk(U)(Vl − Ul)] + ∂lAjk(U)∂xk

(Vl − Ul)]

+ η′(U) · divx [a(V ) −A(U)]

= divx [G(U) −G(V )] +
∑

∂xk
[∂lGk(U)](Vl − Ul)

−
∑

∂jη(U)∂xk
[∂lAjk(U)(Vl − Ul)]

+
∑

∂jη(U)∂lAjk(U)∂xk
(Vl − Ul)

+
∑

∂jη(U)∂xk
[Ajk(V ) −Ajk(U)].

Permuting indexes i and l, we can rewrite (1.4) in the following way:∑
j

∂jη(U)∂lAjk(U) = ∂lGk(U).

Thus we find

R2 = divx [G(U) −G(V )] +
∑

∂xk
[∂iGk(U)(Vi − Ui)]

+
∑

∂jη(U)∂xk
[A(V |U)].(2.3)

Equation (2.1), with (2.2) and (2.3), gives the desired relation.
Remark 2.3. We notice that in particular, the term R2 of the proof satisfies∫

Rn

R2 dx =

∫
Rn

∑
jk

∂jη(U)∂xk
[A(V |U)] dx

= −
∫

Rn

∑
jk

∂xk
[∂jη(U)]Ajk(V |U) dx.

This result is now used to obtain information if one deals with weak, strong,
or/and approximated solutions.

2.2. Weak and strong solutions. This subsection is completely imbedded in
Dafermos [10] (except for the slight generalization of the source term). Moreover, it
is completely independent of the remainder of the paper. We give it since it clarifies
the structure conditions (1.19) and (1.20) needed to use the relative entropy method
without a priori condition on V in L∞ for instance. We assume here that U is a
strong solution of (1.3) (and as a consequence (1.5) is satisfied), and that V is a weak
solution of (1.3) satisfying the entropy inequality

∂tη(V ) + ∂xG(V ) ≤ η′(V )Q(V ).(2.4)

Thus applying Proposition 2.1 (on a regularization of V and passing to the limit in
the regularization), we get with the notations (2.2) and (2.3)

∂tη(V |U) ≤ R1 + R2,(2.5)

and using Remark 2.3, it leads to the following result.
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Corollary 2.4. Let U ∈ [C1([0, T ] × R
n)]p be a strong solution of (1.3) such

that U , η′(U), ∂xη
′(U) are bounded and U , η(U) are integrable. Let V be an entropy

weak solution of (1.3). Then we have

d

dt

∫
Rn

η(V |U) dx ≤ −
∫

Rn

∑
jk

∂xk
[∂jη(U)]Ajk(V |U) dx

+

∫
Rn

Q(U)η′(V |U) dx(2.6)

+

∫
Rn

[Q(V ) −Q(U)](η′(V ) − η′(U)) dx.

This result clarifies necessary information needed on the structure of the system
(1.3). If we have for every V,U ∈ R

p

|A(V |U)| ≤ Cη(V |U)(2.7)

and

|Q(U)η′(V |U) + [Q(V ) −Q(U)](η′(V ) − η′(U))| ≤ Cη(V |U),(2.8)

then we get

d

dt

∫
Rn

η(V |U) dx ≤ (C(U) + 1)C

∫
Rn

η(V |U) dx,

and by a Gronwall’s argument, it gives∫
Rn

η(V |U)(t, x) dx ≤
∫

Rn

η(V |U)(0, x) dx e(C(U)+1)Ct.

Thus if U0 = V 0, then

η(V |U)(t, x) = 0 ∀t ∈ [0, T ], a.e. x ∈ R
n.

It gives V = U if η is strictly convex. We recover here part of the classical results for
weak = strong solutions. In fact, estimates as (2.7)–(2.8) are the important point to
perform our entropy method. If we do not have a source term, it says that we need
a control of the relative flux of the system by the relative entropy. This was already
the case in Brenier [8]. We want now to extend the possible applications by studying
the link between a strong solution and some approximations of it.

2.3. Strong and approximated solutions. We now assume that U is a strong
solution of (1.3), and Uε is any approximation of a solution, coming for example from
a kinetic model. We get the following corollary from Proposition 2.1.

Corollary 2.5. Let U ∈ [C1([0, T ] × R
n)]p be a strong solution of (1.3) such

that U , η′(U), ∂xη
′(U) are bounded and U , η(U) are integrable. Then we have, for

any function Uε ∈ [C1([0, T ] × R
n)]p,

∂tη(Uε|U) = [∂tη(Uε) + divx G(Uε) − η′(Uε)Q(Uε)]

− η′(U) · [∂tUε + divx A(Uε) −Q(Uε)]

+ divx [G(U) −G(Uε)] +
∑

∂xk
[∂iGk(U)((Uε)i − Ui)]

+
∑
jk

∂jη(U)∂xk
[A(Uε|U)]

+Q(U)η′(Uε|U) + [Q(Uε) −Q(U)](η′(Uε) − η′(U)).
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In this situation we have

d

dt

∫
Rn

[η(Uε|U) − η(Uε)] dx = −
∫

Rn

η′(Uε)Q(Uε) dx

−
∫

Rn

η′(U) · [∂tUε + divx A(Uε) −Q(Uε)] dx

−
∫

Rn

∑
jk

∂xk
[∂jη(U)]Ajk(Uε|U) dx

+

∫
Rn

Q(U)η′(Uε|U) dx

+

∫
Rn

[Q(Uε) −Q(U)](η′(Uε) − η′(U)) dx.

We use now this relation in the case where Uε comes from a kinetic equation.

2.4. Approximation from a kinetic equation. We consider fε a solution to
the kinetic model (1.9) which satisfies (1.10)–(1.14) with fε +H(fε, v) integrable with
respect to x and v for every t. Let Uε be the moments of fε defined by (1.12). We set

Δε = η(Uε|U) +

∫
Rn

H(fε, v) dv − η(Uε).(2.9)

From (1.13) and the convexity of η, we have

Δε ≥ 0.(2.10)

Using (1.11) and the relation of the previous section, we obtain (again after a regu-
larization)

d

dt

∫
Rn

Δε dx ≤ −
∫

Rn

η′(U) · [∂tUε + divx A(Uε) −Q(Uε)] dx

−
∫

Rn

∑
jk

∂xk
[∂jη(U)]Ajk(Uε|U) dx

+

∫
Rn

Q(U)η′(Uε|U) dx

+

∫
Rn

[Q(Uε) −Q(U)](η′(Uε) − η′(U)) dx.

Now multiplying the kinetic equation (1.9) by a(v) and then integrating it with respect
to v and using (1.10), we have

∂tUε + divx

∫
Rn

v ⊗ a(v)fε dv +

∫
Rn

a(v)q(fε) dv = 0.

It gives

∂tUε + divx A(Uε) −Q(Uε) = divx

(
A(Uε) −

∫
Rn

v ⊗ a(v)fε dv

)

−
[∫

Rn

a(v)q(fε) dv + Q(Uε)

]
.

Therefore we get the following result.
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Proposition 2.6. We assume that the system (1.3) admits a strictly convex
entropy η ∈ C2(Rp). Let U ∈ [C1([0, T ]×R

n)]p be a strong solution of (1.3) such that
U , η′(U), ∂xη

′(U) are bounded and U , η(U) are integrable. Let fε be a solution of
(1.9) such that (1.10)–(1.14) are satisfied and fε +H(fε, v) are integrable with respect
to x and v for every time t. We set

Uε(t, x) =

∫
Rn

a(v)fε(t, x, v) dv.

Then there exists a constant C(U) such that

d

dt

∫
Rn

[
η(Uε|U) +

∫
Rn

H(fε) dv − η(Uε)

]
dx

≤ C(U)

(∫
Rn

∣∣∣∣A(Uε) −
∫

Rn

v ⊗ a(v)fε dv

∣∣∣∣ dx(2.11)

+

∫
Rn

∣∣∣∣Q(Uε) +

∫
Rn

a(v)q(fε) dv

∣∣∣∣ dx(2.12)

+

∫
Rn

|Q(U)η′(Uε|U) + [Q(Uε) −Q(U)](η′(Uε) − η′(U)) | dx(2.13)

+

∫
Rn

|A(Uε|U)| dx
)
.(2.14)

Remark 2.7. This inequality uncouples the various structures which come into
play. The term (2.11) is related to the kinetic approximation, the term (2.14) is related
to the structure of the system, the term (2.12) is related to the kinetic structure of
the source term, and the term (2.13) is related to the structure of the source term
with respect to the hyperbolic system.

We use this majoration to get the convergence result from a solution of a ki-
netic equation to a strong solution of a multidimensional hyperbolic system, that is,
Theorem 1.2.

2.5. Proof of Theorem 1.2. We use again the notation Δε given by (2.9).
From Proposition 2.6, we get

d

dt

∫
Rn

Δε(t, x) dx ≤ C(U)

(∫
Rn

∣∣∣∣A(Uε) −
∫

Rn

v ⊗ a(v)fε dv

∣∣∣∣ dx
+

∫
Rn

∣∣∣∣Q(Uε) +

∫
Rn

a(v)q(fε) dv

∣∣∣∣ dx
+ 2C2

∫
Rn

η(Uε|U) dx

)
,

and thus, for t ∈ [0, T ],∫
Rn

Δε(t, x) dx

≤
∫

Rn

Δε(0, x) dx + 2C(U)C1

√
ε + 2C(U)C2

∫ t

0

∫
Rn

Δε(s, x) dx ds.

By Gronwall’s argument, it gives∫
Rn

Δε(t, x) dx ≤
(∫

Rn

Δε(0, x) dx + 2C(U)C1

√
ε

)
e2C(U)C2t.
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From (1.15)–(1.16), we have ∣∣∣∣
∫

Rn

Δε(0, x) dx

∣∣∣∣ ≤ C
√
ε,

and consequently, since 0 ≤ η(Uε|U) ≤ Δε, we obtain the result.
Two independant studies to apply this result for a given example are thus neces-

sary: the study of the system structure and the study of the dissipation of the kinetic
model.

3. Study of the system structure. We consider here the case of the mul-
tidimensional isentropic gas dynamics system (1.1) avoiding the appearance of the
vacuum. The associated entropy is

η(ρ, ρu) = ρ
u2

2
+ h(ρ),(3.1)

where h(ρ) = 1
γ−1ρ

γ for γ > 1 and h(ρ) = ρ ln ρ for the isotherm case γ = 1. The
existence of strong solution for this problem is related to the classical result for regular
solution for hyperbolic systems endowed with a strong entropy (see for instance [11]).
In order to apply the convergence result of the previous section, we require that the
structure of the system and the source terms be controllable by the relative entropy.
For the system (1.1), the relative entropy is given by

η(U1|U2) =
ρ1

2
|u1 − u2|2 + h(ρ1|ρ2).(3.2)

The relative flux of the system is

A(U1|U2) = (0, ρ1(u1 − u2) ⊗ (u1 − u2) + h(ρ1|ρ2)I).(3.3)

We clearly have the existence of a constant C such that

|A(U1|U2)| ≤ Cη(U1|U2)(3.4)

for every U1, U2 ∈ R
n+1. This fulfills estimate (1.19).

For the system (1.1), the source terms reads

Q(ρ, ρu, x) = (0, ρF (x)).(3.5)

This gives

Q(U2)η
′(U1|U2) = −(u2 − u1)(ρ2 − ρ1)F(3.6)

and

[Q(U1) −Q(U2)](η
′(U1) − η′(U2)) = (u2 − u1)(ρ2 − ρ1)F,(3.7)

and finally

Q(U2)η
′(U1|U2) + [Q(U1) −Q(U2)](η

′(U1) − η′(U2)) = 0.(3.8)

Thus the term (1.20) associated with the system (1.1) does not appear in the system
structure study.

We turn now to the study of the terms related to the kinetic structure.
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4. Study of the kinetic structure. We begin introducing the kinetic model
we are dealing with. For γ > 1 we consider the following BGK kinetic equation:

∂tfε + v · ∇xfε + F (x) · ∇vfε =
Mfε − fε

ε
,(4.1)

where the unknown is fε = fε(t, x, v) ∈ R with t ∈ R
+, x, v ∈ R

n. The force term
F : R

n → R
n is given. The equilibrium function Mfε is defined in the following way:

Mfε(t, x, v) = M(ρε(t, x), ρεuε(t, x), v)(4.2)

with

ρε(t, x) =

∫
Rn

fε(t, x, v) dv,

ρεuε(t, x) =

∫
Rn

vfε(t, x, v) dv,

where the Maxwellian M : R
p × R

n → R is given by

M(ρ, ρu, v) = 1|u−v|n≤cnρ for γ =
n + 2

n
,(4.3)

M(ρ, ρu, v) = c

(
2γ

γ − 1
ργ−1 − |v − u|2

)d/2

+

else.(4.4)

The constants are given by

cn = n/|Sn|,

d =
2

γ − 1
− n,

c =

(
2γ

γ − 1

)−1/(γ−1) Γ( γ
γ−1 )

πn/2Γ(d/2 + 1)
.

In the isothermal case γ = 1 we consider the following Fokker–Planck equation:

∂tfε + v · ∇xfε + F (x) · ∇vfε =
1

ε
divv((v − uε)fε + ∇vfε),(4.5)

where

ρε =

∫
Rn

fε dv, ρεuε =

∫
Rn

vfε dv.(4.6)

This section is devoted to the proof of the estimates needed to apply Theorem 1.2 for
each model. For each case, we will first show that it verifies (1.10)–(1.14), and in the
second step that it verifies the more difficult estimates (1.17) and (1.18).

4.1. BGK structure for isentropic gas with 1 < γ ≤ (n + 2)/n. In this
section, we start by the study of kinetic BGK equations whose hydrodynamic limit is
the isentropic system with an external force field.

We denote

Uε = (ρε, ρεuε),

U = (ρ, ρu),

a(v) = (1, v),

q(f) = F (x) · ∇vf,

Q(f, v) = Mf − f.
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The Maxwellian M satisfies (see Bouchut [5])∫
Rn

a(v)M(U, v) dv = U ∀U ∈ R
p,(4.7) ∫

Rn

v ⊗ a(v)M(U, v) dv = A(U) ∀U ∈ R
p,(4.8) ∫

Rn

a(v)q(M(U, v)) dv = −Q(U, x) ∀U ∈ R
p, x ∈ R

n.(4.9)

This is the classical compatibility conditions required for the kinetic equation to be
related to the system. Notice that thanks to (4.7), we have (1.10).

The kinetic entropy is the following:

H(f, v) =
|v|2
2

f for γ =
n + 2

n
,

H(f, v) =
|v|2
2

f +
1

2c2/d
f1+2/d

1 + 2/d
else.

We have (see Bouchut [5]) that, for any f satisfying
∫

Rn(f + H(f, v)) dv < ∞, and
denoting U =

∫
Rn a(v)f(v) dv, the following minimization principle holds:∫

Rn

H(M(U, v), v) dv ≤
∫

Rn

H(f) dv,(4.10)

and a compatibility between the entropy η and the kinetic entropy H is satisfied as∫
Rn

H(M(U, v), v) dv = η(U) for any U ∈ R
p.(4.11)

First notice that (1.14) is verified. As a consequence of (4.10) and (4.11), we get

η(U) =

∫
Rn

H(M(U, v), v) dv ≤
∫

Rn

H(f, v) dv,

which in particular gives (1.13). We prove now the decrease (1.11). We give it for
γ = (n + 2)/n. The other case is similar. Multiplying (4.1) by |v|2/2 and then
integrating in (v, x), we get

d

dt

∫∫
R2n

|v|2
2

fε dv dx =

∫∫
R2n

F (x) · vfε dv dx

+
1

ε

∫∫
R2n

|v|2
2

(Mfε − fε) dv dx,(4.12)

since ∫∫
R2n

|v|2
2

F (x) · ∇vfε dv dx = −
∫∫

R2n

F (x) · vfε dv dx.

In particular, from (4.10), it gives

d

dt

∫∫
R2n

H(fε, v) dv dx ≤
∫

Rn

F (x) ·
(∫

Rn

vfε dv

)
dx

≤
∫

Rn

F (x) · ρεuε dx.(4.13)
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Since ∫
Rn

η′(Uε)Q(Uε) dx =

∫
Rn

F (x) · ρεuε dx,

this leads to (1.11).
We want now to prove (1.17)–(1.18). Since

A(Uε) =

∫
Rn

v ⊗ a(v)Mfε dv

and

Q(Uε) =
∑
j

∫
Rn

Fj(x)∂vj
a(v)Mfε dv,

it gives

∫ T

0

∫
Rn

∣∣∣∣A(Uε) −
∫

Rn

v ⊗ a(v)fε dv

∣∣∣∣ dx dt
=

∫ T

0

∫
Rn

∣∣∣∣
∫

Rn

v ⊗ a(v)(Mfε − fε) dv

∣∣∣∣ dx dt(4.14)

and ∫ T

0

∫
Rn

∣∣∣∣Q(Uε, x) −
∫

Rn

F (x)∇va(v)fε dv

∣∣∣∣ dx dt
=

∫ T

0

∫
Rn

∣∣∣∣
∫

Rn

F (x)∇va(v)(fε −Mfε) dv

∣∣∣∣ dx dt.(4.15)

We have ∫
Rn

∂vi
aj(v)(fε −Mfε) dv = δi+1,j

∫
Rn

(fε −Mfε) dv = 0;

thus the kinetic structure of the source term (1.18) vanishes. In order to apply the
convergence result for this kinetic model, it only remains to control the entropy dis-
sipation (1.17). It is the technical point of this example.

4.1.1. Control of the entropy dissipation. This subsection is devoted to the
proof of the following proposition.

Proposition 4.1. Let fε be a solution to the BGK equation of the previous
section with initial value f0

ε bounded in L1(R2n) verifying (finite energy)∫∫
R2n

|v|2f0
ε (x, v) dv dx ≤ C0 < ∞,(4.16)

and with γ = (n + 2)/n. Then there exists Cn such that for every ε < 1, we have

∫ T

0

∫
Rn

∣∣∣∣
∫

Rn

v ⊗ a(v)(Mfε − fε) dv

∣∣∣∣ dx dt ≤ Cn

√
ε.
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We define

Dε(t, x) =

∫
Rn

|v|2(fε(t, x, v) −Mfε(t, x, v)) dv.

From (4.13), we have

d

dt

∫∫
R2n

H(fε, v) dv dx ≤ ‖F‖L∞

∫∫
R2n

|v|fε dx dv

≤ ‖F‖L∞

∫∫
R2n

(1 + |v|2)fε dx dv

≤ ‖F‖L∞

(
‖ρε‖L1 + 2

∫∫
R2n

H(fε, v) dx dv

)
;

thus by Gronwall’s argument, we obtain∫∫
R2n

|v|2fε(t, x, v) dv dx ≤ C, 0 ≤ t ≤ T.(4.17)

Integrating now (4.13) with respect to t leads to

∫ T

0

∫
Rn

Dε(t, x) dx dt

≤ ε

(∫∫
R2n

|v|2f0(x, v) dv dx− 2

∫∫∫
[0,T ]×R2n

F (x)vfε dv dx dt

)

≤ ε

(
C0 + 2‖F‖L∞

∫∫∫
[0,T ]×R2n

|v|fε dv dx dt
)

≤ ε

(
C0 + 2‖F‖L∞

∫∫∫
[0,T ]×R2n

(1 + |v|2)fε dv dx dt
)

≤ ε(C0 + 2‖F‖L∞T‖f0
ε ‖L1 + 2‖F‖L∞C)

≤ ε C̃.(4.18)

This gives a bound in ε for

∫ T

0

∫∫
R2n

|v|2(fε −Mfε) dv dx dt,

but we need to control∫ T

0

∫
Rn

∣∣∣∣
∫

Rn

v ⊗ a(v)(Mfε − fε) dv

∣∣∣∣ dx dt,
which is more delicate.

We set a1(v) = 1 and a2(v) = v such that a = (a1, a2). Similarly, we define
A1(U) = ρu and A2(U) = ρu⊗ u + Iργ .

Since

A(Uε) =

∫
Rn

v ⊗ a(v)Mfε dv,
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the first component of
∣∣∫

Rn v ⊗ a(v)(Mfε − fε) dv
∣∣ is still zero here. Now we have∣∣∣∣A2(Uε) −

∫
Rn

v ⊗ vfε dv

∣∣∣∣ =

∣∣∣∣
∫

Rn

(v − u) ⊗ (v − u)(Mfε − fε) dv

∣∣∣∣
≤

∫
Rn

|v − u|2|Mfε − fε| dv.

The first equality uses (4.7). Thus to control the second component, we want to show
that ∫

Rn

|v − u|2|Mfε − fε| dv

can be controlled (at least for bounded mass ρ) by the dissipation of entropy∫
Rn

|v|2(fε −Mfε) dv.

It is the aim of the following proposition.
Proposition 4.2. For every f ∈ L1(Rn) verifying 0 ≤ f ≤ 1, and every u ∈ R

n

we denote

ρ =

∫
Rn

f(v) dv,

F =

∫
Rn

|v − u|2|f(v) −M(ρ, u, v)| dv,

D =

∫
Rn

|v|2(f(v) −M(ρ, u, v)) dv.

Then there exists a constant Cn such that, for every f ∈ L1(Rn) verifying 0 ≤ f ≤ 1,

F ≤ Cn(ρ
n+2
2n

√
D + D).

To prove this result, we first introduce some notations and prove preliminary
results. Notice that, thanks to (4.7),

D =

∫
Rn

|v − u|2(f(v) −M(ρ, u, v)) dv.

Then changing v by v + u if necessary, we see that we can restrict ourselves to the
case u = 0. We first reduce the problem to a one-dimensional problem. We introduce
the following quantities:

f(r) =
1

|Sn|

∫
Sn

f(rσ) dσ,

M(r) =
1

|Sn|

∫
Sn

M(ρ, 0, rσ) dσ = 1I{rn≤cnρ}(r).

Since the integral of f is equal to the integral of M(ρ, 0, ·), we have∫ ∞

0

rn−1f(r) dr =

∫ ∞

0

rn−1M(r) dr.(4.19)
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We denote r1 = (cnρ)
1
n , and we have

F = |Sn|
∫ ∞

0

rn+1|f(r) −M(r)| dr

= |Sn|
(∫ r1

0

rn+1(1 − f(r)) dr +

∫ ∞

r1

rn+1f(r) dr

)
,

D = |Sn|
∫ ∞

0

rn+1(f(r) −M(r)) dr

= |Sn|
(
−
∫ r1

0

rn+1(1 − f(r)) dr +

∫ ∞

r1

rn+1f(r) dr

)
.

We define in addition

M =

∫ r1

0

rn−1(1 − f(r)) dr =

∫ ∞

r1

rn−1f(r) dr;

the last equality comes from (4.19) and M(r) = 1I{r≤r1}(r). We have to do a different
treatment for values close to r1 and far from this value. For this purpose we consider
r2 > r1 a new number which will be fixed later on. Then we denote

M1 =

∫ r2

r1

rn−1f(r) dr,

M2 =

∫ ∞

r2

rn−1f(r) dr.

We have M = M1 + M2. Then we define 0 < r0 < r1 (in a unique way when r2 is
chosen) in the following way:

M1 =

∫ r1

r0

rn−1(1 − f(r)) dr.

Then, from the definition of M and since M is the sum of M1 and M2, we have

M2 =

∫ r0

0

rn−1(1 − f(r)) dr.

In the same way we define F1, F2, D1, D2 in the following way:

F1 =

∫ r2

r0

rn+1|f(r) −M(r)| dr

=

∫ r1

r0

rn+1(1 − f(r)) dr +

∫ r2

r1

rn+1f(r) dr,

F2 =

∫ r0

0

rn+1|f(r) −M(r)| dr +

∫ ∞

r2

rn+1|f(r) −M(r)| dr

=

∫ r0

0

rn+1(1 − f(r)) dr +

∫ ∞

r2

rn+1f(r) dr,
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D1 =

∫ r2

r0

rn+1(f(r) −M(r)) dr

= −
∫ r1

r0

rn+1(1 − f(r)) dr +

∫ r2

r1

rn+1f(r) dr,

D2 =

∫ r0

0

rn+1(f(r) −M(r)) dr +

∫ ∞

r2

rn+1(f(r) −M(r)) dr

= −
∫ r0

0

rn+1(1 − f(r)) dr +

∫ ∞

r2

rn+1f(r) dr.

Notice that F1, F2, M1, M2 are nonnegative (as integrals of nonnegative functions)
and verify

M = M1 + M2,

F = F1 + F2,

D = D1 + D2.

We can show, in addition, that D1 and D2 are nonnegative too.
Lemma 4.3. We have

D1 ≥ 0, D2 ≥ 0.

Proof. We show the result for D1 (the proof is similar for D2). We have∫ r2

r1

rn+1f(r) dr =

∫ r2

r1

r2(rn−1f(r)) dr ≥ r2
1M1,∫ r1

r0

rn+1f(r) dr =

∫ r1

r0

r2(rn−1f(r)) dr ≤ r2
1M1.

Since D1 is the difference of those two terms, we find that D1 is nonnegative.
We first consider the values far from r1.
Lemma 4.4. We can dominate F2 by D2 in the following way:

F2 ≤ D2

(
r2
1 + r2

2

r2
2 − r2

1

)
.

Proof. We have∫ ∞

r2

rn+1f(r) dr ≥ r2
2M2

≥ r2
2

1

r2
0

∫ r0

0

rn+1(1 − f(r)) dr

≥ r2
2

r2
1

∫ r0

0

rn+1(1 − f(r)) dr.

Hence we have

D2 ≥
(
r2
2

r2
1

− 1

)∫ r0

0

rn+1(1 − f(r)) dr.

But F2 can be expressed in the following way:

F2 = D2 + 2

∫ r0

0

rn+1(1 − f(r)) dr.
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Those two expressions lead to

F2 ≤ D2

(
r2
1 + r2

2

r2
2 − r2

1

)
.

We consider now the values close to r1.
Lemma 4.5. There exist a > 0 and a constant Cn depending only on n such that

if |r2 − r1| ≤ ar1, then

F1 ≤ Cna
2ρ

n−2
2n

√
D1.

Proof. We split the proof in several parts.
(i) Minimization of the entropy dissipation. We define α and β such that

M1 =

∫ β

r1

rn−1 dr =

∫ r1

α

rn−1 dr.

From the definition of M1, notice that β ≤ r2. In the same way we have α ≥ r0. We
want to show that

D1 ≥
∫ β

r1

rn+1 dr −
∫ r1

α

rn+1 dr.

First we calculate∫ r2

r1

rn+1f(r) dr −
∫ β

r1

rn+1 dr

=

∫ β

r1

r2[rn−1(f(r) − 1)] dr +

∫ r2

β

r2[rn−1f(r)] dr

=

∫ r2

β

r2[rn−1f(r)] dr −
∫ β

r1

r2[rn−1(1 − f(r))] dr

≥ β2

[∫ r2

β

rn−1f(r) dr −
∫ β

r1

rn−1(1 − f(r)) dr

]

≥ β2(M1 −M1) = 0.

In the same way we calculate∫ r1

r0

rn+1(f(r) − 1) dr +

∫ r1

α

rn+1 dr

=

∫ α

r0

rn+1(f(r) − 1) dr +

∫ r1

α

rn+1f(r) dr

≥ α2

[∫ α

r0

rn−1(f(r) − 1) dr +

∫ r1

α

rn−1f(r) dr

]
≥ 0.

Summing those two last inequalities gives the desired result.
(ii) Taylor expansion of the critical entropy dissipation. We call critical entropy

dissipation the function defined by

Dc =

(∫ β

r1

rn+1 dr −
∫ r1

α

rn+1 dr

)
,
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where α and β are defined in (i). Then we have

nM1 = βn − rn1 ,

nM1 = rn1 − αn,

(n + 2)Dc = βn+2 − 2rn+2
1 + αn+2,

and therefore

Dc

rn+2
1

=
α + β − 2r1

r1
+

n + 1

2

((
β − r1
r1

)2

+

(
α− r1
r1

)2
)

+O

((
β − r1
r1

)3

+

(
α− r1
r1

)3
)
.

Now

M1

rn1
=

β − r1
r1

+
n− 1

2

(
β − r1
r1

)2

+ O

(
β − r1
r1

)3

=
r1 − α

r1
− n− 1

2

(
r1 − α

r1

)2

+ O

(
r1 − α

r1

)3

,

and hence

0 =
β + α− 2r1

r1
+

n− 1

2

[(
β − r1
r1

)2

+

(
r1 − α

r1

)2
]

+O

((
β − r1
r1

)3

+

(
r1 − α

r1

)3
)
.

Finally, we obtain

Dc

rn+2
1

=

[(
β − r1
r1

)2

+

(
r1 − α

r1

)2
]

+ O

((
β − r1
r1

)3

+

(
r1 − α

r1

)3
)

= 2

(
M1

rn1

)2

+ O

((
β − r1
r1

)3

+

(
r1 − α

r1

)3
)
.

Hence, there exist η > 0 and δ > 0 such that

Dc ≥ δ

rn−2
1

M2
1

whenever ∣∣∣∣β − r1
r1

∣∣∣∣ +

∣∣∣∣r1 − α

r1

∣∣∣∣ ≤ η.

(iii) Final estimation. From the definition of α, there exists a > 0 such that
| r1−α

r1
| ≤ η whenever |β−r1

r1
| ≤ a. Remember that r2 ≤ β. Hence if |r2 − r1| ≤ ar1,

then ∣∣∣∣β − r1
r1

∣∣∣∣ +

∣∣∣∣r1 − α

r1

∣∣∣∣ ≤ η
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and

F1 ≤ r2
2M1 ≤ a2δ

√
Dcr

n+2
2

1

≤ Cna
2
√
D1ρ

n+2
2n .

The first inequality uses the definition of F1, the second one uses the result of (ii),
and the third one uses the definition of r1 and the result of (i).

Now we are able to prove the estimate of Proposition 4.2.
Proof of Proposition 4.2. We fix a and r2 verifying the properties of Lemma 4.5.

Thanks to Lemmas 4.4 and 4.5, we have

F ≤ F1 + F2 ≤ D2

(
1 + a

a

)
+ Cnρ

n+2
2n

√
D1

≤ C ′
n(D + ρ

n+2
2n

√
D).

We are now able to prove the announced result.
Proof of Proposition 4.1. Thanks to Proposition 4.2, we have∫ T

0

∫
Rn

∣∣∣∣
∫

Rn

v ⊗ a(v)(Mfε − fε) dv

∣∣∣∣ dx dt
≤ Cn

√√√√(∫ T

0

∫
Rn

ρ
n+2
n

ε (t, x, v) dx dt

)(∫ T

0

∫∫
R2n

Dε(t, x) dx dt

)

+Cn

∫ T

0

∫∫
R2n

Dε(t, x) dx dt.

From (4.17) and

ρε|uε|2 + nρ
n+2
n

ε =

∫
Rn

|v|2Mfε(t, x, v) dv

≤
∫

Rn

|v|2fε(t, x, v) dv,(4.20)

we have ∫ T

0

∫
Rn

ρ
n+2
n

ε (t, x, v) dx dt ≤ T

n
C.

Using (4.18), those lead to

∫ T

0

∫
Rn

∣∣∣∣
∫

Rn

v ⊗ a(v)(Mfε − fε) dv

∣∣∣∣ dx dt
≤ Cn

√
εT

n
C̃1/2 + CnεC̃.

We can then conclude the convergence result for γ = (n + 2)/n.
Proof of Theorem 1.1. We apply Theorem 1.2 to get∫

Rn

η(Uε|U)(t, x) dx → 0 for t ∈ [0, T ], as ε → 0.(4.21)
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Now

η(Uε|U) =

∫ 1

0

η′′(U + ϑ(Uε − U)) · (Uε − U)2ϑ dϑ

with

η′′(ρ, ρu) · (X0, X1)
2 = γργ−2X2

0 +
1

ρ
(X1 − uX0)

2,

and thus we have∫
Rn

∫ 1

0

ϑ(ρ + ϑ(ρε − ρ))γ−2(ρε − ρ)2 dϑ dx → 0 for t ∈ [0, T ], as ε → 0(4.22)

and ∫
Rn

∫ 1

0

ϑρ2

(ρ + ϑ(ρε − ρ))3
(ρε(uε − u))2 dϑ dx → 0 for t ∈ [0, T ], as ε → 0.(4.23)

For γ ≥ 2, (4.22) gives that, up to a subsequence, ρε → ρ a.e. as ε → 0 since ρ > 0.
For γ < 2, it gives this result except at the points where ρε → +∞, but in this case,
as ρ stays bounded,

(ρ + ϑ(ρε − ρ))γ−2(ρε − ρ)2 ∼
ε→0

ϑγ−2ργε → 0 a.e.,

and thus this case is impossible. Now (4.23) gives that, up to a subsequence,
ρε(uε − u) → 0 a.e. as ε → 0 and therefore ρεuε → ρu a.e. as ε → 0. But from
(4.17) and (4.20), we have that ρε is bounded in L∞(0, T ;Lγ(Rn)) and that

√
ρεuε

is bounded in L∞(0, T ;L2(Rn)). Hence, the whole family ρε converges strongly in
L∞(0, T ;Lp(Rn)) to ρ for every 1 ≤ p < γ and

√
ρεuε converges strongly to

√
ρu in

L∞(0, T ;Lq(Rn)) for every 1 ≤ q < 2. In particular, ρεuε converges strongly to ρu in
L∞(0, T ;Lq(Rn)) for every 1 ≤ q < 2γ/(γ + 1).

4.1.2. Extension to every γ. The previous model works for γ = (n+2)/n. In
order to deal with the values of γ ∈ ]1, (n + 2)/n[, we use an other model which was
introduced in [5] and is written as follows.

We consider the BGK equation

∂tfε + ξ · ∇xfε + F (x) · ∇ξfε =
Mfε − fε

ε
,(4.24)

where fε = fε(t, x, v) ∈ R with t ∈ R
+, x ∈ R

n, v = (ξ, I) ∈ R
n × R

+, and F : R
n →

R
n, with

Mfε(t, x, v) = M(Uε(t, x), v), Uε(t, x) =

∫
Rn+1

a(v)fε(t, x, v) dv(4.25)

with a : R
n+1 → R

p, a(v) = (1, ξ), p = n + 1, and

dv = b1I
d−1 dI dξ, b1 = 2πd/2/Γ(d/2),

where d is the number of degrees of freedom satisfying

n + d =
2

γ − 1
.(4.26)
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We notice that the function fε takes its values in [0, b2], and the Maxwellian M is
defined by

M(U, v) = b21I|ξ−u|2+I2<b3ργ−1 , U = (ρ, ρu),(4.27)

where

b2 =

(
2πγ

γ − 1

)−1/(γ−1)

Γ

(
γ

γ − 1

)
, b3 =

2γ

γ − 1
,

and satisfies (4.7)–(4.8). It satisfies also (4.9) with ∂ξja(v) instead of ∂vja(v). The
kinetic entropy is

H(f, v) =
1

2
|v|2f =

1

2
(|ξ|2 + I2)f,(4.28)

and satisfies (4.10)–(4.11). We get, as in the previous kinetic model, (1.11) and (1.18).
We recover the BGK model introduced previously integrating (4.24) (and the

function fε) with respect to I with the measure b1I
d−1dI [5].

Now for the control of the dissipation, we set

f(r) =
1

sn

∫
S
+
n+1

f(rσ)(cos θ)d−1 dσ,

M(r) =
1

sn

∫
S
+
n+1

M(ρ, 0, rσ)(cos θ)d−1 dσ = b21I{r2≤b3ργ−1}(r),

where S
+
n+1 = {(ξ, I) ∈ Sn+1; I ≥ 0}, I = r cos θ and sn =

∫
S
+
n+1

(cos θ)d−1 dσ. Then,

we get from the mass conservation∫ ∞

0

rn+d−1f(r) dr =

∫ ∞

0

rn+d−1M(r) dr.(4.29)

By similar techniques to those in the previous section, we get the following estimate.
Proposition 4.6. For every f ∈ L1

dv(R
n+1) verifying 0 ≤ f ≤ b2 and every

u ∈ R
n we denote

ρ =

∫
Rn+1

f(v) dv,

F =

∫
Rn+1

|v − u|2|f(v) −M(ρ, u, v)| dv,

D =

∫
Rn+1

|v|2(f(v) −M(ρ, u, v)) dv.

Then there exists a constant Cn such that, for every f ∈ L1
dv(R

n+1) verifying 0 ≤ f ≤
b2,

F ≤ Cn(ρ
n+d+2
2(n+d)

√
D + D).

Now since

n + d + 2

n + d
= γ,
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we get a similar dissipation result to that in Proposition 4.1, and we can conclude the
convergence in this case for every γ such that (4.26) is satisfied with d > 0; that is to
say,

1 < γ <
n + 2

n
.

We then obtain Theorem 1.1 in the same way as in the previous case.

We thank Bouchut for noticing that the proof of the case γ = (n + 2)/n (of the
previous subsection) is also valid for every 1 < γ < (n + 2)/n using this model.

4.2. Fokker–Planck. In this subsection, we study the convergence from the
Fokker–Planck kinetic equation to the isothermal system, that is, the case γ = 1.

4.2.1. The kinetic model. The Fokker–Planck equation on fε = fε(t, x, v) ∈
R, with t ∈ R

+ and x, v ∈ R
n, is given by

∂tfε + v · ∇xfε + F (x) · ∇vfε =
1

ε
divv((v − uε)fε + ∇vfε),(4.30)

where

ρε =

∫
Rn

fε dv, ρεuε =

∫
Rn

vfε dv,(4.31)

with the kinetic entropy

H(f, v) =

(
1

2
|v|2 + ln f

)
f.(4.32)

Here, we have q(f) = F (x) · ∇vf , a(v) = (1, v), and

Q(f, v) = divv((v − u)f + ∇vf), (ρ, ρu) =

∫
Rn

a(v)f dv.

The property (1.10) is clear, and the property (1.13) comes from the following majora-
tions: for f ∈L1(Rn) such that

∫
Rn H(f, v) dv < ∞, denoting (ρ, ρu)=

∫
Rn a(v)f(v) dv,

we have

ρu2 =
(
∫

Rn vf dv)2∫
Rn f(v) dv

≤
∫

Rn

|v|2f(v) dv,

ρ ln ρ =

(∫
Rn

f(v) dv

)
ln

(∫
Rn

f(v) dv

)
≤

∫
Rn

f(v) ln f(v) dv,

by Cauchy–Schwarz and by Jensen’s inequality. As in the previous section we can
check that

Q(ρε, ρεuε) = (0, Fρε) = −
∫

Rn

a(v)q(fε) dv,

so (1.18) is verified. It remains to verify (1.11) and (1.17).
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4.2.2. Control of the entropy estimate and convergence result. We have
the following estimate.

Proposition 4.7. Let fε be a solution to the kinetic equation (4.5) with initial
value f0

ε bounded in L1(R2n) verifying (finite energy)

∫∫
R2n

H(f0
ε (x, v), v) dv dx ≤ C0 < ∞.(4.33)

Then fε satisfies (1.11) and

∫ T

0

∫
Rn

∣∣∣∣A(Uε) −
∫

Rn

v ⊗ a(v)fε dv

∣∣∣∣ dx dt ≤ C
√
ε,(4.34)

where A is the flux of the isothermal system.

Proof. We have

∂fH(fε, v) =
|v|2
2

+ 1 + ln fε.

So ∫
Rn

∂fH(fε, v)F (x) · ∇vfε dv = −ρεuεF (x)

= −η′(ρε, ρεuε)Q(ρε, ρεuε)

and∫
Rn

∂fH(fε, v) divv((v − uε)fε + ∇vfε) dv

= −
∫

Rn

(v(v − uε)fε + v∇vfε) dv −
∫

Rn

(
∇vfε
fε

(v − uε)fε +
(∇vfε)

2

fε

)
dv

= −
∫

Rn

((v − uε)fε + ∇vfε)
2

fε
dv −

∫
Rn

uε(∇vfε + (v − uε)fε) dv

= −
∫

Rn

((v − uε)fε + ∇vfε)
2

fε
dv.

That is to say,

∂t

∫
Rn

H(fε, v) dv +

∫
Rn

v · ∇xH(fε, v) dv

=

∫
Rn

∂fH(fε, v)(∂tfε + v · ∇xfε) dv

= F (x)ρεuε −
1

ε

∫
Rn

((v − uε)fε + ∇vfε)
2

fε
dv.

The first consequence of this relation is

d

dt

∫∫
R2n

H(fε, v) dv dx ≤
∫

Rn

η′(ρε, ρεuε)Q(ρε, ρεuε) dx.
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In particular this implies property (1.11). Moreover,

d

dt

∫∫
R2n

H(fε, v) dv dx ≤ F (x)

∫∫
R2n

vfε dv dx

≤ ‖F‖L∞

∫∫
R2n

(|v|2 + 1)fε dv dx

≤ C1

(
‖ρ0

ε‖L1 +

∫∫
R2n

H(fε, v) dv dx

)
,

since the quantity
∫∫

|v|2fε dx dv is controlled in a classical way by
∫∫

H(fε, v) dx dv.
Using Gronwall’s lemma, we deduce that there exists a constant C depending on T
and f0

ε such that, for every 0 ≤ t ≤ T ,∫∫
R2n

H(fε(t, x, v), v) dv dx ≤ C.(4.35)

The second consequence is∣∣∣∣∣
∫∫∫

[0,T ]×R2n

((v − uε)fε + ∇vfε)
2

fε
dv dx dt

∣∣∣∣∣
≤ ε

(∫∫
R2n

H(f0
ε ) dv dx +

∫∫
[0,T ]×Rn

F (x)ρεuε dx dt

)

≤ ε

(
C0 + ‖F‖L∞

∫∫∫
[0,T ]×R2n

|v|fε dv dx dt
)

≤ ε

(
C0 + ‖F‖L∞

∫∫∫
[0,T ]×R2n

(|v|2 + 1)fε dv dx dt

)

≤ ε

(
C0 + ‖F‖L∞

(
C ′ + T

∫∫
[0,T ]×Rn

f0
ε dv dx

))

≤ εC2.

We have to estimate ∫
Rn

∣∣∣∣A(Uε) −
∫

Rn

v ⊗ a(v)fε dv

∣∣∣∣ dx.
The first componant is zero. The second one is

E2 =

∫
Rn

∣∣∣∣ρεuε ⊗ uε + ρεI −
∫

Rn

v ⊗ vfε dv

∣∣∣∣ dx,
which can be rewritten as

E2 =

∫∫
R2n

|v ⊗ [(uε − v)fε −∇vfε]| dv dx,

since ∫
Rn

v ⊗∇vfε dv = −
∫

Rn

fε dvI.
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Thus we get

∫ T

0

∫
R2n

∣∣∣∣A2(Uε) −
∫

Rn

v ⊗ a2(v)fε dv

∣∣∣∣ dx dt
≤

(∫ T

0

∫∫
R2n

|v|2fε dv dx dt
)1/2 (∫ T

0

∫∫
R2n

((v − uε)fε + ∇vfε)
2

fε
dv dx dt

)1/2

,

which concludes the proof.

We can then apply the convergence result (Theorem 1.2). As in the previous
section, this leads to Theorem 1.1 for the isothermal case.

Appendix. Euler. In this appendix, we calculate the various quantities which
appear in our study in the case of the Euler system in order to see what prevents
us from applying the method. For the full gas dynamics of Euler, the conservative
variables are

U = (ρ, q, E) =

(
ρ, ρu, ρ

|u|2
2

+
n

2
ρT

)
,

and the flux is

A(U) =

(
ρu, ρu⊗ u + ρTI, ρu

|u|2
2

+
n + 2

2
ρTu

)
.

The entropy is

η(U) = ρ ln

(
ρ

(2πT )n/2

)
− n

2
ρ,

and the associated flux is G(U) = η(U)u. The expression of the flux A in conservative
variables is

A(U) =

(
q,

1

ρ
q ⊗ q +

2E

n
I − 1

nρ
|q|2I, n + 2

n

q

ρ
E − 1

n

q

ρ2
|q|2

)
.

Then we get

∂ρAq(U) = −u⊗ u +
1

n
|u|2I,

∂qi(Aq)jk(U) = δijuk + δikuj − δjk
2ui

n
,

∂EAq(U) =
2

n
I,

∂ρAE(U) = −n− 2

2
u
|u|2
2

− n + 2

2
uT,

∂qi(AE)j(U) = δij

(
|u|2
2

+
n + 2

2
T

)
− 2

n
uiuj ,

∂EAE(U) =
n + 2

n
u,
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and the relative flux is

Aρ(U1|U2) = 0,(A.1)

Aq(U1|U2) = ρ1(u1 − u2) ⊗ (u1 − u2) −
1

n
ρ1|u1 − u2|2I,(A.2)

AE(U1|U2) =
1

2
ρ1(|u1|2 − |u2|2)(u1 − u2) +

n + 2

2
ρ1(u1 − u2)(T1 − T2)

− 1

n
ρ1u2|u1 − u2|2.(A.3)

We compute now the relative entropy. Since the linear part in a function disappeared
in any relative quantity, we have to compute the flux of

η̃(U) =
(
1 +

n

2

)
ρ ln ρ− n

2
ρ ln

(
2E

n
− |q|2

nρ

)
,

which satisfies

∂ρη̃(U) = 1 + ln ρ +
n

2
− n

2
lnT − |u|2

2T
, ∂q η̃ =

u

T
, ∂E η̃ = − 1

T
,

and thus we get

η(U1|U2) = h(ρ1|ρ2) +
nρ1

2T2
h(T2|T1) +

ρ1

2T2
|u1 − u2|2,(A.4)

where h(x) = x lnx.
We see that we cannot apply our method in this case because of the cubic power

in velocity in AE(U1|U2) since such a term does not appear in η(U1|U2).

REFERENCES

[1] C. Bardos, F. Golse, and C. D. Levermore, The acoustic limit for the Boltzmann equation,
Arch. Ration. Mech. Anal., 153 (2000), pp. 177–204.

[2] F. Berthelin and F. Bouchut, Kinetic invariant domains and relaxation limit from a BGK
model to isentropic gas dynamics, Asymptot. Anal., 31 (2002), pp. 153–176.

[3] F. Berthelin and F. Bouchut, Relaxation to isentropic gas dynamics for a BGK system with
single kinetic entropy, Methods Appl. Anal., 9 (2002), pp. 313–327.

[4] R. Botchorishvili, B. Perthame, and A. Vasseur, Equilibrium schemes for scalar conser-
vation laws with stiff sources, Math. Comp., 72 (2003), pp. 131–157.

[5] F. Bouchut, Construction of BGK models with a family of kinetic entropies for a given system
of conservation laws, J. Statist. Phys., 95 (1999), pp. 113–170.

[6] Y. Brenier, Résolution d’équations d’évolution quasilinéaires en dimension N d’espace à l’aide
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Palaiseau, 2000.

[15] L. Gosse, A well-balanced scheme using non-conservative products designed for hyperbolic
systems of conservation laws with source terms, Math. Models Methods Appl. Sci., 11
(2001), pp. 339–365.

[16] L. Gosse, Localization effects and measure source terms in numerical schemes for balance
laws, Math. Comp., 71 (2002), pp. 553–582.

[17] L. Gosse and A. E. Tzavaras, Convergence of relaxation schemes to the equations of elasto-
dynamics, Math. Comp., 70 (2001), pp. 555–577.

[18] T. Goudon, P.-E. Jabin, and A. Vasseur, Hydrodynamic limits for the Vlasov-Navier-Stokes
equations. Part II: Fine particles regime, Indiana Univ. Math. J., 53 (2004), pp. 1517–1536.

[19] S. Jin, A steady-state capturing method for hyperbolic systems with geometrical source terms,
M2AN Math. Model. Numer. Anal., 35 (2001), pp. 631–645.

[20] S. Kaniel, Approximation of the hydrodynamic equations by a transport process, in Approxi-
mation Methods for Navier-Stokes Problems (Proc. Sympos., Univ. Paderborn, Paderborn,
1979), Lecture Notes in Math. 771, Springer-Verlag, Berlin, 1980, pp. 272–286.

[21] P.-L. Lions, Mathematical Topics in Fluid Mechanics. Vol. 1, Incompressible Models, Oxford
Lecture Ser. Math. Appl. 3, The Clarendon Press, Oxford University Press, New York,
1996.

[22] P.-L. Lions and N. Masmoudi, From the Boltzmann equations to the equations of incompress-
ible fluid mechanics. I, II, Arch. Ration. Mech. Anal., 158 (2001), pp. 173–193, 195–211.

[23] N. Masmoudi, From Vlasov-Poisson system to the incompressible Euler system, Comm. Partial
Differential Equations, 26 (2001), pp. 1913–1928.

[24] B. Perthame, Kinetic Formulation of Conservation Laws, Oxford Lecture Ser. Math. Appl.
21, Oxford University Press, New York, 2002.

[25] B. Perthame and C. Simeoni, A kinetic scheme for the Saint-Venant system with a source
term, Calcolo, 38 (2001), pp. 201–231.

[26] L. Saint-Raymond, Convergence of solutions to the Boltzmann equation in the incompressible
Euler limit, Arch. Ration. Mech. Anal., 166 (2003), pp. 47–80.
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Inst. H. Poincaré Anal. Non Linéaire, 17 (2000), pp. 169–192.

[28] A. E. Tzavaras, Materials with internal variables and relaxation to conservation laws, Arch.
Ration. Mech. Anal., 146 (1999), pp. 129–155.

[29] H.-T. Yau, Relative entropy and hydrodynamics of Ginzburg-Landau models, Lett. Math.
Phys., 22 (1991), pp. 63–80.



SIAM J. MATH. ANAL. c© 2005 Society for Industrial and Applied Mathematics
Vol. 36, No. 6, pp. 1836–1861
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Abstract. In this paper we study the existence of Lorenz attractors in the unfolding of res-
onant double homoclinic loops in dimension three. Our results generalize the ones obtained in [C.
Robinson, SIAM J. Math. Anal., 32 (2000), pp. 119–141] in two ways. First, we obtain attractors
instead of weak attractors obtained there. Second, we enlarge considerably the region in the pa-
rameter space corresponding to flows presenting expanding Lorenz attractors. The proof is based
on rescaling techniques [J. Palis and F. Takens, Hyperbolicity and Sensitive Choatic Dynamics at
Homoclinic Bifurcations. Fractal Dimensions and Infinitely Many Attractors, Cambridge University
Press, Cambridge, UK, 1993] to obtain convergence to noncontinuous maps.
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1. Introduction. In the series of papers [Rob1, Rob2, Rob3] Robinson studied
the existence of transitive attractors of Lorenz type in generic unfoldings of resonant
double homoclinic loops in dimension three. For instance, [Rob1, Theorem 3.1, p. 130]
says that under certain conditions such unfoldings produce transitive weak attractors
containing the singularity. In this paper we improve this result in two ways. First, we
obtain expanding Lorenz attractors instead of weak attractors as defined in [Rob1,
p. 120]. Second, we enlarge considerably the region in the parameter space which
corresponds to flows presenting expanding Lorenz attractors. By attractor we mean
a transitive set which is maximal invariant in a positively invariant open set. A
set is transitive if it is the omega-limit set of one of its orbits. An attractor of a
three-dimensional vector field is expanding Lorenz if it contains a unique singularity
whose eigenvalues λ1, λ2, λ3 are real and satisfy λ2 < λ3 < 0 < −λ3 < λ1. The
classical example of an expanding Lorenz attractor is the geometric Lorenz attractor
in [GW, ABS]. We shall consider parametrized families of vector fields unfolding
a resonant double homoclinic loop at η = η0 as in [Rob1]. We assume the same
hypotheses (A1)–(A7) of [Rob1], except for (A5) that we replace with

B =
C+

η0
+ C−

η0

C+
η0C

−
η0

> 1,

where C±
η0

are defined as in that paper: the constants C±
η0

measure the change in area
within a certain bundle over Γ, the resonant double homoclinic loop. Note that (A5)
in [Rob1] implies B > 1 but not conversely. The proof is based on rescaling techniques
[PT] to obtain convergence to noncontinuous maps. In a forthcoming paper we use
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the rescaling techniques developed here to study the existence of contracting Lorenz
attractors (Rovella attractors) in the unfolding of resonant double homoclinic loops.
This will answer a question posed in [Rob1, Remark 5.1, p. 138].

Before we announce in a precise way our results, let us comment on some other
results concerning Lorenz attractors and its bifurcations.

1.1. Related results and comments.

1.1.1. Lorenz equations and the geometrical model. The main motiva-
tion for all these results is the Lorenz attractor [Lo], given by the solutions of the
polynomial vector field in R

3:

X(x, y, z) =

⎧⎨
⎩

ẋ = −αx + αy,
ẏ = βx− y − xz,
ż = −γz + xy,

(1.1)

where α, β, γ are real parameters. Numerical experiments performed by Lorenz (for
α = 10, β = 28, and γ = 8/3 ) suggested the existence of a strange attractor toward
which tends a full neighborhood of positive trajectories of the above system. Moreover,
the strange attractor seemed to be robust: it cannot be destroyed by any perturbation
of the parameters. On the other hand, this attractor contains an equilibrium point
(0, 0, 0), and periodic points accumulating on it, and hence cannot be hyperbolic. The
book [Sp] contains an extensive presentation of analytical and numerical facts about
the original Lorenz equations. We point out that it was proved [Tu1, Tu2] that the
solutions of (1.1) satisfy such a property for values α, β, γ near the ones considered
by Lorenz. See the feature review [Tu2, V] for a survey and a discussion of Tucker’s
proof.

However, already in the mid-seventies, the existence of robust nonhyperbolic at-
tractors was proved for flows introduced in [ABS, GW], which we now call geometrical
models for Lorenz attractors. At the same time the theory of uniformly hyperbolic
systems was being developed, and it was increasingly clear that such systems are not
dense. One of those examples was precisely the geometrical Lorenz attractor.

Although geometrical Lorenz attractors fail to be uniformly hyperbolic, they do
exhibit a certain amount of hyperbolicity (called singular hyperbolicity in [MPP2,
MPP3]), which has been exploited to understand their structure. The bifurcations of
these attractors and their relations to homoclinic bifurcations of codimensions 2 and
3 have also been intensively studied by several authors, both theoretically and with a
view toward applications. This included great interest in the so-called Lorenz maps,
one-dimensional models to which the dynamics of a geometrical Lorenz attractor can
be reduced. In addition a number of bifurcation mechanisms have been found which
yield attractors with similar properties. In what follows we give an overview of the
literature, without trying to be exhaustive.

1.1.2. Attractors that resemble a Lorenz attractor. First, let us list some
papers about the existence of chaotic attractors that resemble geometrical Lorenz
models. We start with [MPP2, MPP3] where it is proved that any robust attractor of
a flow in three manifolds containing equilibria looks like a geometric Lorenz attractor.
In [BPV] the authors construct a multidimensional Lorenz-like attractor that is Cr-
robust (r large) and contains a singularity with at least two positive eigenvalues. They
also investigate the Sinai–Bowen–Ruelle (SBR) measures of these attractors. Their
construction works in dimension greater than or equal to 5. In [ST] the authors present
an example of a four-dimensional quasi-attractor and study its perturbations. The
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quasi-attractor is pseudohyperbolic, contains a singularity with a complex eigenvalue,
and cannot be destroyed by small perturbations of the system. In [Lo84] the author
reports a careful numerical study of what seems to be a strange (chaotic) attractor in
four dimensions for a system of 2-degree polynomial equations. In [Rov] the author
proves existence and persistence of contracting Lorenz attractors, that is, with the
contracting eigenvalue condition −λ3 > λ1.

In [PRV] the authors prove that certain parametrized families of one-dimensional
maps with infinitely many critical points exhibit global chaotic behavior in a persistent
way. An application of the methods developed there yields a proof of existence and
even persistence of global spiral attractors for smooth flows in three dimensions, to
be given in [CPRV].

In [P, S] the authors propose abstract models for attractors with singularities,
called generalized hyperbolic attractors, and study their properties.

1.1.3. Topological dynamics. Some aspects of the topological dynamics of the
geometric model was studied in [Ko1, Ko2], where it was proved that most geometrical
Lorenz attractors do not have the shadowing property, and their expansive properties
are investigated. In [Kl] the author finds a topological invariant for the Lorenz at-
tractor allowing him to exhibit an uncountable number of nonhomeomorphic Lorenz
attractors in the unfolding of a certain homoclinic loop. In [Ya] the author shows
that the geometrical Lorenz attractor can be approximated by horseshoes with en-
tropy close to that of the Lorenz attractor. In [BW] the knot type of the geometric
model is analyzed, and in [GH] the Lorenz attractor is used to investigate the exis-
tence of flows realizing all links and knots as periodic orbits in 3-manifolds and an
explicit ODE with such properties is exhibited. One can also see the survey [PS].

1.1.4. Dimension theory, ergodic and statistical properties. Concerning
fractal dimensions of Lorenz attractors we mention the results in [Le1, Le2] and [BL].
The first contains an explicit formula for the Liapunov dimension of the Lorenz at-
tractor and in the second a simple upper bound on the Hausdorff dimension of Lorenz
attractors is given in terms of parameters σ, α, β in (1.1).

Statistical and ergodic properties of the geometrical model were investigated in
[Bu]. In [Me1, Me2] the existence of SBR measures and the stochastic stability for
the contracting model are proved.

1.1.5. Lorenz maps of the interval. Lorenz-like maps of the interval and their
bifurcations have been studied in [LM1, LM2]. See also the references therein. In [AL]
the authors describe the use of kneading theory to study the dynamics of Lorenz maps.
In [HS] the Lorenz maps are classified, up to topological conjugacy, by their knead-
ing invariants. In [MdeM] the notion of monotone Lorenz families is introduced, and
the authors prove that all possible topological dynamics behavior of Lorenz maps is
realized within every monotone Lorenz family. In [KS] the authors study the case
where the Lorenz map has negative Schwarzian derivative and the derivative vanishes
at both sides of the discontinuity point. The paper has both a survey and a research
flavor. Among other results they characterize the global attractor associated in terms
of renormalization properties of the Lorenz map. A modified Lorenz interval map is
studied in [LV], combining a finite number of critical points and a finite number of dis-
continuities with infinite derivative. The authors prove that the associated attractor
is nonuniformly hyperbolic. In [DY] the authors study the asymptotic periodicity of
a Lorenz interval map. They prove that a Lorenz-like map is asymptotically periodic
if the derivative set of the pre-image set of the discontinuity point is countable. See
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also the book [AH] and the references therein for more about this topic.

1.1.6. Bifurcations. An extensive series of works have been dedicated to the
bifurcations of systems leading to the appearance of Lorenz attractors, contracting
or not, besides the papers by Robinson quoted before. We start with the Shimizu–
Morioka model, a three-dimensional system of first-order ODEs which depend on two
parameters. It has been derived to study the Lorenz system for large Rayleigh num-
ber. In [SM] the authors proved that there are two types of Lorenz-like attractors in
this model. In [Sh], bifurcations near two codimension-two points in the parameter
plane are analyzed in great detail. These points lie on the boundary of the region of
existence of the Lorenz-like attractors. In [MPP1] a bifurcation of hyperbolic vector
fields on three-dimensional manifolds leading to robust strange attractors with singu-
larities is studied. In [DKO] the authors prove that bifurcations of a certain double
homoclinic loop associated with a degenerated singularity can produce geometrical
Lorenz attractors, and they also exhibit an explicit ODE presenting such attractors.
[Ry] gives sufficient conditions for a butterfly inclination-flip loop to generate geo-
metrical Lorenz attractors. In [ACL] the authors investigate the existence of Lorenz
attractors in the unfolding of a certain singular cycle involving a saddle-node periodic
orbit and a Lorenz-like singularity. In [MPu] the authors show the appearance of
Lorenz attractors in the unfolding of a cycle formed by a Lorenz-like singularity and a
saddle-node periodic orbit, and in [Mo] the appearance of Lorenz attractors through a
saddle-node bifurcation is shown. See also [KKO] and the references therein for more
about bifurcations generating geometrical Lorenz attractors.

1.2. Our hypotheses. Let us state our hypotheses in a precise way. In what
follows Xη is a family of Cr, r ≥ 1, vector fields on R

3 satisfying the following
conditions.

(A1) For every η, Xη has a hyperbolic singularity Qη such that the eigenvalues of
DXη(Qη) are real with λss(η) < λs(η) < 0 < λu(η), and with eigenvectors
vss, vs, and vu, respectively.

With this assumption, there are several invariant manifolds for the singularity Qη. We
denote the one-dimensional unstable manifold tangent to vu by Wu(Qη, η), and the
two-dimensional stable manifold tangent to vss and vs by W s(Qη, η). Next, there is a
one-dimensional strong stable manifold W ss(Qη, η). This latter manifold is made of
points which converge to Qη at an asymptotic rate determined by the eigenvalue λss.
All these manifolds are Cr if the vector field is Cr. Finally, there is a two-dimensional
extended stable manifold tangent to vs and vu, which we denote by W cu(Qη, η). The
later manifold is at least C1. With this notation we can make the second assumption
about the existence of a double homoclinic connection.

(A2) For the bifurcation value η0, there is a double homoclinic connection with the
unstable manifold of Qη0 contained in the stable manifold but outside the
strong stable manifold, that is,

Γ = Wu(Qη0 , η0) ⊂ W s(Qη0 , η0) \W ss(Qη0 , η0).

In fact, we assume that the two branches Γ± of Γ \ {Qη0
} are contained in the same

component of W s(Qη0 , η0) \W ss(Qη0 , η0). Note that Γ = {Qη0} ∪ Γ+ ∪ Γ−.

(A3) For η0, the central manifold W cu(Qη0 , η0) is transverse to the stable manifold
W s(Qη0

, η0) along Γ.
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Let

P (q) = TqW
cu(Qη0

, η0) for q ∈ Γ.

The transversality condition in (A3) with the condition

Wu(Qη0
, η0) ∩W ss(Qη0

, η0) = Qη0

in assumption (A2) implies that P (q) converges to P (Qη0) as q converges to Qη0 along
Γ (by the inclination lemma [dMP]). Therefore, {P (q) : q ∈ Γ} is a continuous bundle
over Γ. Considering one half of the homoclinic connection Γ+ ∪Qη0 , let ν+ = 1 if the
bundle {P (q) : q ∈ Γ+∪Qη0} is orientable and ν+ = −1 if the bundle is nonorientable.
In the same way, considering the other half of the homoclinic connection Γ−∪Qη0

, let
ν− = ±1 whenever the bundle {P (q) : q ∈ Γ− ∪Qη0} is orientable or nonorientable,
respectively.

(A4) We assume that

λss(η0) − λs(η0) + λu(η0) < 0 and λss(η0) < 2λs(η0).

We shall use the notation α(η) = − λs(η)
λu(η) and β(η) = −λss(η)

λu(η) .

These are open conditions and so do not add a codimension to the bifurcation.
The second inequality in (A4) assures that W cu(Qη0

, η0) is C2.
Let q±(t) be a parametrization of the solution along Γ± and div2(q

±(t)) the
Jacobian of Xη0 at t restricted to TΓ±W cu. Define C±

η0
by

C±
η0

= exp

(∫ ∞

−∞
div2(q

±(t))dt

)
.

The quantity C±
η0

is the change in area within the planes P (q) along the whole length
of Γ±.

(A5) B > 1, where

B =
C+

η0
+ C−

η0

C+
η0C

−
η0

.

We observe that condition (A5) in [Rob1] requires either 0 < C±
η0

< 1 or 0 <

C±
η0

< 2 and
C+

η0

C−
η0

∈ [(1 +
√

2)−1, 1 +
√

2]. Robinson also has a polynomial vector field

realizing such conditions.
We, on the contrary, do not make such assumptions on C±

η0
. See Figure 1.1. On

the other hand, we are still working on the problem of finding a polynomial vector
field realizing the unfolding described in this paper.

Note that (A5) in [Rob1] implies B > 1 but not conversely. Assumption (A5) is
open.

(A6) There is a one-to-one resonance between the unstable and weak stable eigenvalue
for η0:

λu(η0) + λs(η0) = 0.
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= Robinson’s condition

(2,2)

1

1 C+

C-

B>1

B=1

B<1

C C+ -+

C+ C-.

B>1

B=

= U

Fig. 1.1.

Observe that condition (A6) means α(η) = 1. This condition is needed to have
(A5) satisfied; see [Rob1]. This resonance condition is a codimension-one condition;
in total, the conditions on η0 are codimension three. (Two conditions are from the
double homoclinic connection and resonance gives the third and final codimension.)

The final assumption is related to the unfolding of the bifurcation. We assume
that the parameter space is large enough in order to break the double homoclinic loop
in a correct way.

(A7) Let N ⊂ X 1(R3) be the 3-submanifold defined by conditions (A1)–(A6). We
assume that the family {Xη} is transverse to N at η0.

1.3. The main result. It is now possible to announce our main result. Given
an A, a subset in the parameter space, we set Cl(A) for the closure of A.

Theorem 1.1. Let {Xη} be a Ck-parametrized family of Cr-vector fields (where
r, k ≥ 3) satisfying (A1)–(A7). Then, there is an open set O in the parameter space
with η0 ∈ Cl (O) such that Xη has an expanding Lorenz attractor for all η ∈ O.

The tools used in the proof are reduction of the dynamics to a one-dimensional
Poincaré map and the existence of a suitable rescaling for such maps with a well-
defined limit dynamics. Rescaling techniques in the unfolding of homoclinic loops
were used in [N] to obtain convergence to the Henon map. Here we use such techniques
to obtain convergence to noncontinuous maps. Convergence to noncontinuous maps
via rescaling was already considered in [MPu] for the study of certain heteroclinic
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Fig. 1.2. Vector field Xη0 .

connections involving saddle-node periodic orbits. See [MSV] for more about rescaling
techniques for singular cycles. Figure 1.2 displays a double homoclinic loop for the
vector field Xη0 .

1.4. Sketch of the proof. Let us present the idea of the proofs. As in [Rob1],
we observe that (A1)–(A3) imply the existence of a strong stable invariant foliation
close to the loop. By (A4), the Cr-section theorem [S] implies that such a foliation
is C1 and varies C1 with the parameters. As usual we consider the Poincaré map
along the homoclinic loop. Using the strong stable foliation we reduce the dynamics
of the return map to a one-dimensional map fη(τ). Following [Rob2] we denote by
α the order of fη(τ). Clearly α depends on η. At this point the proof in [Rob1]
requires solving certain inequalities allowing trapping regions for suitable parameter
values. Recall that a compact interval J is a trapping region for fη if fη(J) ⊂ int(J),
where int(J) means the interior of J . Instead, we use a different approach in which
we consider α as a parameter. In Lemma 2.2 we fix α and prove the existence of good
parameters values, i.e., parameters for which the critical values fη(0

±) of fη are either
fixed or pre-fixed or periodic (with period 2) expanding points. Such parameters are
solutions of certain equations that can be solved only for α < 1 because of (A5).
Using the critical values we construct, for those good parameters, an fη-invariant
closed interval [p, q] containing τ = 0. We also get |f ′

η(τ)|> 1 uniformly for τ ∈ [p, q].
Afterward we use rescaling techniques [PT]: we take a suitable parameter-depending
change of coordinates in a neighborhood of [p, q] and, at the same time, we normalize
the parameter space in a small neighborhood of those good parameters. This yields a
new family gα(μ, ν, ·) and new good parameters (μ(α), ν(α)). In Lemma 3.3 we show
the existence of bounds for the derivative of gα(ν, μ, ·). This is used to prove that
gα(μ, ν, ·) converges (in a C1-sense to be defined below) to a map g(μ, ν, ·) as α → 1−.
The limit map g(μ, ν, ·) is piecewise linear expanding that looks like the one in Figure
3.1 in section 3. In the same lemma we show that limα→1±(μ(α), ν(α)) = (μ(1), ν(1))
exists.

The maps g(μ, ν, ·) above do not have trapping regions, but they can be ap-
proximated in our family by ones having them. Indeed, by Theorem 4.1, we have
that gα(μ, ν, ·) has trapping regions for α < 1 close to 1 and for (μ, ν) close to
(μ(α), ν(α)). That is, for each α < 1 close to 1 there is a compact interval Jα
such that gα(μ, ν, Jα) ⊂ int(Jα). Then for all α < 1 and close to 1 the flow associated
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Fig. 2.1. Possible fη .

with gα(μ, ν, ·) has a trapping region. Thus a trapping region for the flow does exist
in an open set O of parameters accumulating η = 0. To prove Theorem 1.1 we use
the closeness of gα(μ, ν, ·) to g(μ(1), ν(1), ·). Such a closeness and Theorem 5.1 imply
both transitiveness and expansiveness of gα(μ, ν, ·) for the parameters with trapping
regions; see also [Rob4, Theorem A].

2. One-dimensional reduction and good parameters. To start with, con-
sider a cross section Σ of Xη0 close to Qη0 transversal W s(Qη0) intersecting both
branches of Wu(Qη0). There is a neighborhood V of Σ∩W s(Qη0) in Σ such that the
positive orbit of every point at V \W s(Qη0

) intersects Σ for every parameter η near
enough to η0, defining in this way a Poincaré map Fη : V \W s(Qη0) ⊂ Σ → Σ.

As Xη0
satisfies conditions (A1)–(A4), the standard stable manifold theory ap-

plies to show the existence of a C1 stable foliation in a small neighborhood (that for
convenience we assume equals to V ) of W s(Qη) varying C1 with the parameter. As
in [Rob2] the existence of a Cr stable foliation (r ≥ 1) depends on the relation

C3e
T (λss(η0)−λs(η0))(eTλu(η0))r < 1 .

By the first eigenvalue inequality in (A4) we have the above relation for r = 1 . Then,
we can use the Cr-section theorem (see [S, Theorem 5.18]) in the same way as in
[Rob2]. Thus, via projection along the leaves of the strong stable foliation, the problem
can be reduced to a one-dimensional Poincaré map fη : V ′ \ {cη} ⊂ [−1, 1] → [−1, 1].
Here cη is the projection of W s(Qη0) ∩ V onto V ′. We assume cη = 0 for every η.
Denote a±η = limτ→±0 fη(τ), τ ∈ [−1, 1]. Recall the description of the coefficients ν±

in assumption (A3).

Lemma 2.1. There is an interval J , 0 ∈ J , such that for every η sufficiently near
to η0, the map fη : J ⊂ [−1, 1] → [−1, 1] has the following form:

fη(τ) =

{
a+
η + ν+C+

η |τ |αη + Oη,1(|τ |αη ) if τ > 0,

a−η − ν−C−
η |τ |αη + Oη,2(|τ |αη ) if τ < 0,

where Oη,i are C1, varying C1 with respect to η, and limx→0
Oη,i(x)

x = 0 uniformly on
η. Moreover, C±

η depends C1 on η.

This result was proved in [Rob2]. See Figure 2.1.
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From now on we assume that Xη is a three-parameter family for which there is
an open set U ⊂ R

3 such that for η ∈ U , Xη satisfies conditions (A1)–(A7).
It follows from (A7) that the map η 	→ (αη, a

+
η , a

−
η ) is a diffeomorphism from a

neighborhood of η0 onto a neighborhood of (1, 0, 0). So, we can reparametrize η by
(α, a+, a−) 	→ η(α, a+, a−) in such a way that αη(α,a+,a−) = α, a+

η(α,a+,a−) = a+ and

a−η(α,a+,a−) = a−.

Lemma 2.2. There are Λ > 0, an open dense set O ⊂ (1 − Λ, 1), and C1

maps a+(·), a−(·), p(·), q(·) : O → R such that p(α) < 0 < q(α) and for η =
η(α, a+(α), a−(α)) the following hold:
(a) if ν+ = ν− = 1, then fη(p(α)) = p(α), fη(q(α)) = q(α), fη(0

+) = p(α), and
fη(0

−) = q(α);
(b) if ν+ = ν− = −1, then fη(p(α)) = q(α), fη(q(α)) = p(α), fη(0

+) = q(α), and
fη(0

−) = p(α);
(c) if ν+ = −ν− = 1, then fη(p(α)) = q(α), fη(q(α)) = q(α), and fη(0

+) = fη(0
−) =

p(α);
(d) if ν+ = −ν− = −1, then fη(p(α)) = p(α), fη(q(α)) = p(α), and fη(0

+) =
fη(0

−) = q(α).
In any case, limα→1− |p(α)|/q(α) = C+

η0
/C−

η0
, limα→1− q(α) = 0 = limα→1 p(α), and

limα→1− q(α)α−1 = limα→1− |p(α)|α−1 = B, where B is the number given in (A5).
Proof. We prove (a). Define, for α < 1, p < 0, and q > 0, the functions h, h̃, 
,

and 
̃ by

h(α, p, q) = qα

⎛
⎜⎜⎝1 +

(
C+

η qα+Oη,1(|q|α)

C−
η |p|α−Oη,2(|p|α)

|p|α
|q|α

) 1
α

C+
η qα + Oη,1(|q|α)

⎞
⎟⎟⎠ ,

h̃(α, p, q) = |p|α

⎛
⎜⎜⎝1 +

(
C−

η |p|α−Oη,2(|p|α)

C+
η |q|α+Oη,1(|q|α)

|q|α
|p|α

) 1
α

C−
η |p|α −Oη,2(|p|α)

⎞
⎟⎟⎠ ,


(α, p, q) = qα−1, 
̃(α, p, q) = |p|α−1,

where η = η(α, p, q).
Observe that h and h̃ are differentiable except for D = {(1, p, 0), (1, 0, q),∀p, q},

and they extend continuously to D. Indeed,

lim
(α,p,q)→(1,0,0)

h(α, p, q) = B = lim
(α,p,q)→(1,0,0)

h̃(α, p, q),

and so we define h(1, 0, 0) = B = h̃(1, 0, 0). Furthermore,

h(α, p, q)

(
C+

η qα + Oη,1(|q|α)

qα

)α−1
α

= h̃(α, p, q)

(
C−

η |p|α −Oη,2(|p|α)

|p|α

)α−1
α

.(2.1)

Let us choose Λ > 0. As B > 1, by (A5) there is ε > 0 such that 1 /∈ [B − ε, B + ε].
Fix δ0 and Λ such that if q, |p| ∈ (0, δ0) and α ∈ (1 − Λ, 1), then

B − ε < h(α, p, q), h̃(α, p, q) < B + ε .(2.2)

Shrinking Λ if necessary, we can further assume δα−1
0 < B − ε.
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For the proof of Lemma 2.2(a) we shall use the following result which states that
for all α ∈ (1−Λ, 1), the projection on the plane p q of graph(h(α, ·, ·))∩graph(
(α, ·, ·))
contains a regular curve Cα joining the vertical sides of [−δ0, 0] × [0, δ0].

Let C1([0, 1]) be the set of C1 maps γ : [0, 1] → [−δ0, 0]× [0, δ0] endowed with the
C1 topology.

Lemma 2.3. There are an open dense set O ⊂ (1 − Λ, 1) and a C1 map

Γ : O × [0, 1] 	→ C1([0, 1]), (α, t) 	→ Cα(t),

where

Cα(t) = (pα(t), qα(t))

is such that pα(0) = 0, pα(1) = −δ0, h(α, pα(t), qα(t)) = [qα(t)]α−1, and 0 < qα(t) <
δ0 for all t ∈ (0, 1).

Proof. We first prove that for all α small enough, graph(h(α, ·, ·))∩graph(
(α, ·, ·))
is transversal. For this we proceed as follows.

By the definition of h(α, p, q) above we have

h(α, p, q) =
1 +

(
C+

η +Oη,1(|q|α)/qα

C−
η −Oη,2(|p|α)

/ | p |α
) 1

α

C+
η qα + Oη,1(|q|α)

.

Recall that η = η(α, p, q).
Assume that Oη,i = 0 for i = 1, 2. Taking the derivative of h with respect to q

we obtain

∂qh(α, p, q) =
(1/α)(C+

η /C−
η )1/α−1 · (∂(C+

η ) · C−
η − C+

η ∂q(C
−
η )) · (C−

η )−2 · C+
η

(C+
η )2

.

From this we have that lim(α,p,q)→(1,0,0) ∂qh(α, p, q) exists, and so ∂qh(α, p, q) has a
lower bound K > −∞ . By the definition of 
(α, p, q) one has

∂q
(α, p, q) = (α− 1)q(α−2) .

If (α, p, q) satisfies h(α, p, q) = l(α, p, q), then the definition of 
(α, ·, ·) with (2.2)
imply that

qα−1 > B − ε.

So, for such points (α, p, q) one has

∂qh(α, p, q) − ∂ql(α, p, q) > K − (α− 1)qα−2 > K +
ln(B − ε) · (B − ε)

|ln(q)| · q .(2.3)

Because B − ε > 1 it follows that the right-hand term of (2.3) goes to ∞ as q →
0+. In particular, the left-hand term of (2.3) is nonzero and so graph(h(α, ·, ·)) ∩
graph(
(α, ·, ·)) is transversal.

The general case follows from similar computations using that for (α, p, q) such
that h(α, p, q) = l(α, p, q) we have B − ε < q(α−1) < B + ε and

lim
(α,p,q)→(1,0,0)

Oη,1(q
α)

qα
= lim

(α,p,q)→(1,0,0)
∂q

(
Oη,1(q

α)

qα

)
= 0.
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q

1

B

graph of h(α,.,.)

graph of l(α,.,.)

Cα

Fig. 2.2. graph (h(α, ·, ·)) ∩ graph (l(α, ·, ·)).

Returning to the proof of Lemma 2.3, since graph(h(α, ·, ·)) ∩ graph(
(α, ·, ·))
is transversal, we have that this intersection is a compact 1-manifold; see Figure
2.2. Although graph(h(α, ·, ·)) ∩ graph(
(α, ·, ·)) may be nonconnected, the number
of connected components of this intersection is finite. On the other hand, it follows
from the intermediate value theorem that graph(
(α, ·, ·)) intersects h(α, p(q), q) for
any curve q → p(q) with p(−δ) = δ, p(0) = 0. Then, for all α ∈ (1 − Λ, 1), the
projection onto the plane p q of one of the connected components of graph(h(α, ·, ·))∩
graph(
(α, ·, ·)) is a regular curve Cα joining the vertical sides of [−δ0, 0] × [0, δ0].
That is,

Cα : [0, 1] → [−δ0, 0] × [0, δ0], t 	→ (pα(t), qα(t))

such that pα(0) = 0, pα(1) = −δ0, h(α, pα(t), qα(t)) = [qα(t)]α−1, and 0 < qα(t) < δ0
for all t ∈ (0, 1).

Now observe that by usual transversality arguments, for all α′ there is Iα′ such
that for all α ∈ Iα′ the curve Cα obtained above can be chosen in such way that the
map (α, t) ∈ Iα′ × [0, 1] 	→ Cα(t) ∈ [−δ0, 0] × [0, δ0] is C1. Hence we can choose an
open dense set O in (1 − Λ, 1) such that the map (α, t) ∈ O × [0, 1] 	→ Cα(t) is C1.
All of this together concludes the proof of Lemma 2.3.

Returning to the proof of Lemma 2.2, observe that we have the following inequal-
ities:

lim
t→0

|pα(t)|α−1 > B + ε ≥ h̃(α, pα(t), qα(t)) ≥ B − ε > δα−1
0 = |pα(1)|α−1.

These inequalities and the intermediate value theorem imply that there is t = t(α)
such that

h̃(α, pα(t), qα(t)) = |pα(t)|α−1.

By Lemma 2.3, Cα(t) = (pα(t), qα(t)) depends C1 on (α, t) and so, by the implicit
function theorem we get that the map α 	→ t(α) is C1.
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From now on O is the open dense set given by Lemma 2.3.
Let a+(·), a−(·), p(·), q(·) : O → R be given by p(α) = pα(t0(α)), q(α) =

qα(t0(α)), a+(α) = p(α), and a−(α) = q(α). These maps are C1 and satisfy

h(α, p(α), q(α)) = (q(α))α−1, h̃(α, p(α), q(α)) = |p(α)|α−1 .(2.4)

From this it follows that (B − ε)
1

α−1 < q(α) < (B + ε)
1

α−1 , and hence we ob-
tain limα→1− q(α) = 0. Similarly for p(α). Applying these facts in (2.4) we get
limα→1− q(α)α−1 = B and limα→1− |p(α)|α−1 = B.

We claim that p = p(α), q = q(α), a+ = a+(α), and a− = a−(α) chosen as above
satisfy (a) in Lemma 2.2.

Indeed, since h(α, p, q) = qα−1 and h̃(α, p, q) = |p|α−1, (2.1) implies that

qα−1

(
C+

η qα + Oη,1(q
α)

qα

)α−1
α

= |p|α−1

(
C−

η |p|α −Oη,2(|p|α)

|p|α

)α−1
α

.

Hence

C+
η qα + Oη,1(q

α) = C−
η |p|α −Oη,2(|p|α) .(2.5)

On the other hand, from the definition of h we get

qα−1 = qα

⎛
⎜⎜⎝1 +

(
C+

η qα+Oη,1(q
α)

C−
η |p|α−Oη,2(|p|α)

|p|α
qα

) 1
α

C+
η qα + Oη,1(qα)

⎞
⎟⎟⎠ .(2.6)

From (2.5) and (2.6) we get C+
η qα + Oη,1(q

α) = q − p, implying that fη(q) = q and
fη(p) = p.

Note that (2.5) implies

qα
(
C+

η +
Oη,1(q

α)

qα

)
= |p|α

(
C−

η − Oη,2(|p|α)

|p|α

)

and so limα→1−
|p(α)|
q(α) =

C+
η0

C−
η0

.

All of this together finishes the proof of Lemma 2.2(a). The remaining cases are
similar and are left to the reader.

Note 1. Let O be as in Lemma 2.2 and for α ∈ O, let a+(α) and a−(α) be the
functions defined above. We shall call η = η(α, a+(α), a−(α)) for α ∈ O the good
parameters of Xη.

3. Rescaling. In this section we perform rescaling techniques [PT]. Keeping the
notation p, q in Lemma 2.2 we take suitable parameter-depending change of coordi-
nates in a neighborhood of [p, q] and, at the same time, we normalize the parameter
space in a small neighborhood of the good parameters in Notation 2. This yields a
new family gα(μ, ν, ·) and new good parameters (μ(α), ν(α)). The goal of this section
is to prove that gα(μ, ν, ·) converges to a map g(μ, ν, ·) in the sense to be described
below.

To start we consider the parametrized family {Xη} as in section 2. Recall the
notation in that section.
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Given α ∈ O let a−(α), a+(α), p(α), and q(α) be as in Lemma 2.2. De-

fine (μ(α), ν(α)) = (a
+(α)
q(α) , a−(α)

q(α) ) and (μ, ν) = ( a+

q(α) ,
a−

q(α) ) in a neighborhood of

(a+(α), a−(α)) onto a neighborhood of (μ(α), ν(α)), and the family of maps

gα(μ, ν, x) =
1

q(α)
fη(q(α)x),(3.1)

where η = η(α, q(α)μ, q(α)ν). We set Dom(gα) for the domain of gα.
Note 2. Observe that for each fixed α, this change of variables renormalizes

the parameters a± with a+ = q(α)μ and a− = q(α)ν. Moreover, by Lemma 2.2,
limα→1− μ(α) and limα→1− ν(α) exist and we denote them by μ(1) and ν(1), respec-
tively.

Definition 3.1. Let g : R
2 × (R \ {0}) → R. We say that gα → g in the C0

topology in compact sets of R
3 as α → 1− if

(a) Dom(gα) → R
2 × (R \ {0}) as α → 1−, that is, for all R > 0 there is 0 < α0 < 1

such that if α0 < α < 1, then BR(0) ∩ (R2 × (R \ {0}) ⊂ Dom(gα), where BR(0)
is the ball of radius R centered at (0, 0, 0),

(b) for every compact set K ⊂ R
3 and every ε > 0 there is δ > 0 such that if

|α− 1| < δ, then

sup
y∈K∩(R2×(R\{0}))

|gα(y) − g(y)| < ε.

Definition 3.2. Let g : R
2 × (R \ {0}) → R. We say that gα → g in the C1

topology in compact sets of R
2 × (R \ {0}) if

(a) Dom(gα) → R
2 × (R \ {0}) as α → 1−,

(b) for every compact set K ⊂ R
2 × (R \ {0}) and every ε > 0 there is δ > 0 such

that if |α− 1| < δ, then

sup
i∈{0,1},y∈K

|Digα(y) −Dig(y)| < ε.

Note that with these notions, C1 convergence does not imply C0 convergence.
We have the following result.
Lemma 3.3. Let gα be as in (3.1) and define

g(μ, ν, x) =

{
μ + ν+C+

η0
Bx if x > 0,

ν + ν−C−
η0
Bx if x < 0,

where η0 = η(1, 0, 0). Then
(i) gα → g in the C0 topology in compact sets of R

3 as α → 1−, α ∈ O,
(ii) gα → g in the C1 topology in compact sets of R

2 × (R \ {0}) as α → 1−, α ∈ O.
Moreover, for any c > max{1, C+

η0
/C−

η0
}, there are constants Δ0 > 0, 0 < K1 < K2

such that for α ∈ O ∩ [1 − Δ0, 1] we have
(a) [−c, c]2 × ([−c, c] \ {0}) ⊂ Dom(gα),
(b) K1|x|α−1 ≤

∣∣ ∂
∂xgα(μ, ν;x)

∣∣ ≤ K2|x|α−1for all (μ, ν, x) ∈ [−c, c]2 × ([−c, c] \ {0}).
Proof. First, let us prove that Dom(gα) → R

2 × (R \ {0}). For this, fix R > 0.
We shall prove that

BR(0) ∩ (R2 × (R \ {0})) ⊂ Dom(gα)

for all α close to 1.
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For simplicity set k = q(α), where q(α) is given by Lemma 2.3. Recall k → 0 as
α → 1−.

Let 0 < ε0, ε1 so that (1 − ε1, 1 + ε1) × (−ε0, ε0) × (−ε0, ε0) ⊂ Dom(η).

Given (μ, ν, x) ∈ BR(0) and α with |α − 1| < ε1, we have |kμ|, |kν| ≤ kR < ε0
for ε1 small enough. Thus, (α, kμ, kν) ∈ Dom(η). In a similar way we have that
kx ∈ Domfη(α,kμ,kν). This proves (a) of Definitions 3.1 and 3.2.

To verify (b) we proceed as follows. First observe that, by definition, see
Lemma 2.1, we have

gα(μ, ν, x) = k−1fη(kx) =

{
k−1[kμ + ν+C+

η |kx|α + Oη,1(|kαx|α)], x > 0,

k−1[kν − ν−C−
η |kx|α + Oη,2(|kx|α)], x < 0

=

⎧⎨
⎩

μ + ν+C+
η kα−1|x|α +

Oη,1(|kx|α)
k , x > 0,

ν − ν−C−
η kα−1|x|α +

Oη,2(|kx|α)
k , x < 0.

(3.2)

As kα−1 → B, k → 0, and η → η0 when α → 1, we obtain ν±C±
η kα−1|x|α →

ν±C±
η0
B|x| as α → 1−. On the other hand, by Lemma 2.1 we have limx→0

Oη,i(x)
|x| = 0

uniformly on η. So,
Oη,i(|kx|α)

k =
Oη,i(|kx|α)

|kx|α kα−1|x|α → 0 as α → 1− for |x| < R. All

of this together imply (b) of Definition 3.1. So we finish the proof of (i).

To prove (ii) we proceed as follows. We have, for x = 0,

∂xgα(μ, ν, x) =

{
ν+C+

η αkα−1|x|α−1 + O′
η,1(|kx|α)α|kx|α−1, x > 0,

ν−C−
η αkα−1|x|α−1 + O′

η,2(|kx|α)α|kx|α−1, x < 0.
(3.3)

Now fix a compact set K ⊂ R
2 × (R \ {0}). Then there are 0 < C1 = C1(K) < C2 =

C2(K) such that for all (μ, ν, x) ∈ K we have C1 < |x| < C2, implying that |x|α−1 → 1
as α → 1−. On the other hand, by Lemma 2.1, O′

η,i(0) = 0 for i = 1, 2. Since k → 0

as α → 1−, C1 < |x| < C2, we get kx → 0 as α → 1. So, O′
η,i(|kx|α)α|x|α−1 → 0 as

α → 1. Thus ∂xgα(μ, ν, x) → ∂xg(μ, ν, x) as α → 1− in compact sets of R
2×(R\{0}).

On the other hand, since k = q(α), we have a+ = kμ and a− = kν, see Note 2,
and so

∂μgα(μ, ν, x) =

{
1 + ν+∂a+C+

η kα|x|α + ∂a+Oη,1(|kx|α), x > 0,

−ν−∂a+C−
η kα|x|α + ∂a+Oη,2(|kx|α), x < 0,

(3.4)

∂νgα(μ, ν, x) =

{
ν+∂a−C+

η kα|x|α + ∂a−Oη,1(|kx|α), x > 0,

1 − ν−∂a−C−
η kα|x|α + ∂a−Oη,2(|kx|α), x < 0.

(3.5)

As C±
η is C1, we obtain that |∂a+C±

η | is uniformly bounded on K. Since kα−1 → B
and k → 0 as α → 1− we get kα|x|α = kα−1k|x| → 0 as α → 1− on K. More-
over, Oη,i(0) = 0 and so ∂a+Oη,i(|kx|α) → 0 as α → 1−. Replacing these bounds
on (3.4) and (3.5), respectively, we obtain that ∂μgα(μ, ν, x) → ∂μg(μ, ν, x) and
∂νgα(μ, ν, x) → ∂νg(μ, ν, x) for (μ, ν, x) ∈ K. This finishes the proof.

Note 3. Observe that |g′| = |C±
η0
B|. Since |ν±C±

η0
B| > 1 we obtain that g is an

expanding map. Figure 3.1 displays the possible graphics for the map g.
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Fig. 3.1. Possible g(μ(1), ν(1), .).

4. Trapping region. The main goal of this section is to prove Theorem 4.1,
which asserts the existence of trapping regions for gα(μ, ν, ·), for α ∈ O close to 1 and
(μ, ν) close to (μ(α), ν(α)) (recall the notation in section 3). A trapping region for
gα(μ, ν, .) is a closed interval J such that gα(μ, ν, J) ⊂ Int(J), where Int(J) stands
for the interior of J . To prove the existence of such a trapping region we define an
auxiliary function Fα : R

2 → R
2, which will be used to find them. This function

involves the critical and the fixed points of gα(μ, ν, ·). We shall prove that Fα is
locally one-to-one, i.e., det(DFα(μ(α), ν(α))) = 0. Once we have that, the parameters
corresponding to maps with trapping regions will be the ones in the inverse image
F−1
α (Wα) for certain open set Wα to be defined below, proving Theorem 4.1.

Theorem 4.1. There is an open set O− ⊂ R
3 such that the following properties

hold:
1. (α, μ(α), ν(α)) ∈ Cl(O−) for all α ∈ O;
2. if θ = (α, μ, ν) ∈ O−, then there is a closed interval Iθ ⊂ R with 0 ∈ Int (Iθ)

such that gα(μ, ν, x) ⊂ Int (Iθ) for all x ∈ Iθ.
To prove the theorem we need some terminology. Let O be the set given in the last

section. For α ∈ O let μ(α) = a+(α)
q(α) , ν(α) = a−(α)

q(α) , x(α) = p(α)
q(α) , and y(α) = q(α)

q(α) = 1.

Fix c > max{1, C+
η0
/C−

η0
}. Recall that Lemma 2.2 gives us limα→1

|p(α|
q(α) =

C+
η0

C−
η0

. Again,

by Lemma 2.2, we have that if ν+ = ν− = 1, then a+(α) = p(α), a−(α) = q(α) and

so μ(α) = p(α)
q(α) , ν(α) = 1 . Then limα→1 μ(α) = limα→1 x(α) =

−C+
η0

C−
η0

. This implies

that (μ(α), ν(α), x(α)) and (μ(α), ν(α), 1) belong to [−c, c]2 × ([−c, c] \ {0}) and we
conclude, by Lemma 3.3(a), that (μ(α), ν(α), x(α)) and (μ(α), ν(α), 1) ∈ Dom(gα) for
all α close to 1 .

In a similar way, for the remaining cases ν+ = ν− = −1, ν+ = −ν− = 1, and
ν+ = −ν− = −1, we also obtain (μ(α), ν(α), x(α)) and (μ(α), ν(α), 1) ∈ Dom(gα) for
all α close to 1.

From now on we assume that ν+ = ν− = 1. In this case

gα(μ(α), ν(α), x(α)) = x(α), gα(μ(α), ν(α), 1) = 1,

∂xgα(μ(α), ν(α), x(α)) > 1, ∂xgα(μ(α), ν(α), 1) > 1.

Next, set x(α, μ, ν) and y(α, μ, ν) for the C1 continuations of x(α) and y(α) for (μ, ν)
close to (μ(α), ν(α)) in the (μ, ν) parameter space, i.e., gα(x(α, μ, ν)) = x(α, μ, ν)
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and gα(y(α, μ, ν)) = y(α, μ, ν). Observe that x(α, μ(α), ν(α)) = x(α) and y(α, μ(α),
ν(α)) = y(α) = 1 for all α ∈ O. As before, set k = q(α).

Define

Fα (μ, ν) = (μ− x (α, μ, ν) , ν − y (α, μ, ν)) .

We shall prove the following theorem.
Theorem 4.2. detDFα (u (α) , ν (α)) = 0 for all α ∈ O close to 1.
Assuming Theorem 4.2, let us show how to obtain Theorem 4.1.
Observe that Theorem 4.2 implies that Fα is a local diffeomorphism in a neigh-

borhood Vα of (μ(α), ν(α)) onto a neighborhood of Fα(μ(α), ν(α)) = (0, 0). Let
Wα = Fα(Vα) ∩A where A = {(x, y), x > 0, y < 0}.

Consider θ = (α, μ, ν) such that α ∈ O and (μ, ν) ∈ F−1
α (Wα).

We claim that there is a closed interval Iθ satisfying (2) in Theorem 4.1. Indeed,
we have the following inequalities:

x(α, μ, ν) < μ and ν < y(α, μ, ν), since (μ, ν) ∈ F−1
α (Wα).(4.1)

Moreover, by (3.2),

ν = gα(μ, ν, 0−) and μ = gα(μ, ν, 0+).

Furthermore, since ν+ = ν− = 1, we have that

gα(μ, ν, .) is monotonic in [x(α, μ, ν), 0) and in (0, y(α, μ, ν)],(4.2)

and

∂xgα(μ, ν, σ) > 1, σ ∈ {x(α, μ, ν), y(α, μ, ν)}.(4.3)

Now, (4.1) and (4.3) imply that there is ε > 0 (depending on μ and ν), small such
that

ν < y(α, μ, ν) − ε and gα(μ, ν, x(α, μ, ν) + ε) > x(α, μ, ν) + ε,(4.4)

x(α, μ, ν) + ε < μ and gα(μ, ν, y(α, μ, ν) − ε) < y(α, μ, ν) − ε.(4.5)

Define I−θ (ε) = [x(α, μ, ν) + ε, 0), I+
θ (ε) = (0, y(α, μ, ν)− ε], and Iθ(ε) = I−θ ∪ I+

θ .
On one hand, (4.4) together with (4.2) imply that gα(μ, ν, I−θ (ε)) ⊂ Int(Iθ(ε)).

On the other hand, (4.5) together with (4.2) imply gα(μ, ν, I+
θ (ε)) ⊂ Int(Iθ(ε)). Thus,

gα(μ, ν, Iθ(ε)) ⊂ Int(Iθ(ε)), proving the claim with Iθ = Iθ(ε).
The proof for the remaining cases is similar.
As the existence of a trapping region is an open condition, we conclude that there

is δθ > 0 such that if ‖ζ − θ‖ < δθ, then Iζ = Iθ is such that gα(Iζ) ⊂ Int(Iζ).
Now define

O−
0 = {θ = (α, μ, ν);α ∈ O, (μ, ν) ∈ F−1

α (Wα)}

and

O− = ∪θ∈O−
0
B(θ, δθ),

where B(θ, δθ) is the ball centered at θ with radius δθ. Clearly, O− satisfies the
required properties. This finishes the proof of Theorem 4.1.

To prove Theorem 4.2 we shall use the following lemmas.
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Lemma 4.3.

(a) limα→1−
q(α)
α−1 = limα→1−

p(α)
α−1 = 0.

(b) limα→1−
q(α)α

α−1 = limα→1−
|p(α)|α
α−1 = 0.

Proof. (a) As part of the proof of the existence of q (α) and p (α), we obtain
that

B − ε < q (α)
α−1

< B + ε ,

and from this it follows that

(B − ε)
1

α−1

|α− 1| <
q (α)

|α− 1| <
(B + ε)

1
α−1

|α− 1| .

Now recall that q (α) and p (α) are defined for α < 1. Moreover, since B − ε > 1,
we get

lim
α→1−

(B − ε)
1

α−1

|α− 1| = lim
α→1−

(B + ε)
1

α−1

|α− 1| = 0 .

So limα→1−
q(α)
|α−1| = 0 .

The same argument implies limα→1−
p(α)
|α−1| = 0.

(b) limα→1−
q(α)α

|α−1| = limα→1−
q(α)
|α−1| · q (α)

α−1
= 0 ·B = 0.

Lemma 4.4. Set η = η(α, p(α), q(α)). Then

lim
α→1−

1

α− 1

[
C+

η C−
η · |p (α)|α−1 · q (α)

α−1 − C−
η |p (α)|α−1 − C+

η q (α)
α−1

]
= 0.

Proof. Equation (2.6) in Lemma 2.2 implies

q (α)
α−1

=

1 + α

√
C+

η +
On,1(q(α)α)

q(α)α

C−
η −On,2(|p(α)|α)

|p(α)|α

C+
η +

On,1(q(α)α)
q(α)α

.

In a similar way we obtain

|p (α)|α−1
=

1 + α

√
C−

η −On,2(|p(α)|α)

|p(α)|α

C+
η +

On,1(q(α)α)

q(α)α

C−
η − On,2(|p(α)|α)

|p(α)|α
.

From these equalities it follows that

C+
η q (α)

α−1
= 1 + α

√√√√ C+
η +

On,1(q(α)α)
q(α)α

C−
η − On,2(|p(α)|α)

|p(α)|α
− On,1 (q (α)

α
)

q (α)

and

C−
η |p (α)|α−1

= 1 + α

√√√√C−
η − On,2(|p(α)|α)

|p(α)|α

C+
η +

On,1(q(α)α)
q(α)α

+
On,2 (|p (α)|α)

|p (α)| .
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In this way we obtain that

C+
η C−

η |p (α)|α−1
q(α)α−1 − C−

η |p (α)|α−1 − C+
η q (α)

α−1
(4.6)

= − α

√√√√C−
η − On,2(|p(α)|α)

|p(α)|α

C+
η +

On,1(q(α)α)
q(α)α

· On,1 (q (α)
α
)

q (α)

+ α

√√√√ C+
η +

On,1(q(α)α)
q(α)α

C−
η − On,2(|p(α)|α)

|p(α)|α
· On,2 (|p (α)|α)

p (α)

−On,1 (q (α)
α
)

q (α)
· On,2 (|p (α)|)α

|p (α)| .

But ∣∣∣∣On,1 (q (α)
α
)

q (α)

∣∣∣∣ =
∣∣O′

n,1 (x)
∣∣ · q (α)

α−1
C · |x| · q (α)

α−1
,

where 0 < x < q (α)
α

and C is a positive constant (mean value theorem).
Thus, by Lemma 4.3

lim
α→1−

∣∣∣∣ On,1 (q (α)
α
)

(α− 1) · q (α)

∣∣∣∣ C · lim
α→1−

q(α)
α

α− 1
· lim
α→1

q (α)
α−1

= 0 .(4.7)

In the same way we obtain

lim
α→1−

∣∣∣∣∣On,2

(∣∣p(α)

∣∣α)
(α− 1) · p (α)

∣∣∣∣∣ = 0 .(4.8)

In addition,

lim
α→1−

α

√√√√C−
η − On,2(|p(α)|α)

|p(α)|α

C+
η +

On,1(q(α)α)
q(α)α

=
C−

η0

C+
η0

and

lim
α→1−

α

√√√√ C+
η +

On,1(q(α)α)
q(α)α

C−
η − On,2(|p(α)|α)

|p(α)|α
=

C+
η0

C−
η0

.

Now, taking limit as α → 1− and replacing (4.7) and (4.8) in (4.6) we conclude
the proof of Lemma 4.4.

Now we prove Theorem 4.2. For this, recall that x (α, μ, ν) and y (α, μ, ν) are the
continuations of x (α) and y (α) for (μ, ν) close to (μ (α) , ν (α)) in the (μ, ν)-parameter
space. Observe that x (α, μ (α) , ν (α)) = x (α) and y (α, μ (α) , ν (α)) = y (α).

Since Fα (μ, ν) = (μ− x (α, μ, ν) , ν − y (α, μ, ν)) we have that

DFα (u (α) , ν (α)) =

(
1 − ∂μx (α, μ, ν) −∂νx (α, μ, ν)

−∂μy (α, μ, ν) 1 − ∂νy (α, μ, ν)

)
.
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So,

detDFα (u (α) , ν (α)) = (1 − ∂μx (α, μ (α) , ν (α))) · (1 − ∂νy (α, μ (α) , ν (α)))

− ∂μy (α, μ (α) , ν (α)) · ∂νx (α, μ (α) , ν (α)) .

By definition gα (μ, ν, x (α, μ, ν)) = x (α, μ, ν) and gα (μ, ν, y (α, μ, ν)) =
y (α, μ, ν). Then, by the implicit function theorem we get

∂μx (α, μ (α) , ν (α)) =
∂μgα (u (α) , ν (α) , x (α))

1 − ∂xgα (μ (α) , ν (α) , x (α))
,

∂νx (α, μ (α) , ν (α)) =
∂νgα (u (α) , ν (α) , x (α))

1 − ∂xgα (μ (α) , ν (α) , x (α))
,

∂μy (α, μ (α) , ν (α)) =
∂μgα (u (α) , ν (α) , y (α))

1 − ∂xgα (μ (α) , ν (α) , y (α))
,

∂νy (α, μ (α) , ν (α)) =
∂νgα (u (α) , ν (α) , y (α))

1 − ∂xgα (μ (α) , ν (α) , y (α))
.

Thus,

detDFα (u (α) , ν (α))

=
1 − ∂xgα (u (α) , ν (α) , x (α)) − ∂μgα (u (α) , ν (α) , x (α))

1 − ∂xgα (u (α) , ν (α) , x (α))

· (1 − ∂xgα (u (α) , ν (α) , y (α)) − ∂νgα (u (α) , ν (α) , y (α)))

1 − ∂xgα (μ (α) , ν (α) , y (α))

− ∂μgα (u (α) , ν (α) , y (α))

1 − ∂xgα (u (α) , ν (α) , x (α))
· ∂νgα (u (α) , ν (α) , y (α))

1 − ∂xgα (u (α) , ν (α) , y (α))
.

Now we will prove that

lim
α→1−

detDFα (μ(α), ν(α))

α− 1
= 2 +

C+
η0

C−
η0

+
C−

η0

C+
η0

.

In fact, note that

detDFα (u (α) , ν (α))

=
E

(1 − ∂xgα (u (α) , ν (α) , x (α)))(1 − ∂xgα (u (α) , ν (α) , y (α)))
,(4.9)

where

E = [1 − ∂xgα (u (α) , ν (α) , y (α)) − ∂μgα (u (α) , ν (α) , y (α))]

·[1 − ∂xgα (u (α) , ν (α) , y (α)) − ∂νgα (∂xgα (u (α) , ν (α) , y (α)))]

− ∂μgα (u (α) , ν (α) , y (α)) · ∂νgα (u (α) , ν (α) , y (α)) .
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Using the definitions of gα we obtain

E =
[
1 − αC−

η kα−1 |x (α)|α−1
+ O

′

n,2 (|kx (α)|α) |kx (α)|α−1

+ ∂a+ C−
η |kx (α)|α − ∂a+On,2 (|kx (α)|α)

]
·
[
1 − αC+

η kα−1y (α)
α−1 −O

′

n,1 (|ky (α)|α) |ky (α)|α−1

− ∂a−C−
η |ky (α)|α − ∂a−On,1 (|ky (α)|α)

]
−
[
1 + ∂a+C+

η |ky (α)|α + ∂a+On,1 (|ky (α)|α)
]

·
[
1 − ∂a−C−

η |kx (α)|α + ∂a− On,2 (|kx (α)|α)
]
.

Arranging terms we get

E =
[
1 − αC−

η |kx (α)|α−1
+ A1 |kx (α)|α

]
·
[
1 − αC+

η |ky (α)|α−1
+ A2 |ky (α)|α

]
−
[
1 + ∂a+C+

η |ky (α)|α−1
+ A3

]
·
[
1 − ∂a−C ′

η |kx (α)|α + A4

]
,

where

A1 =
O′

n,2 (|kx (α)|α)

|kx (α)| + ∂a+C−
η − ∂a+On,2 (|kx (α)|α)

|kx (α)|α ,

A2 = −
O′

n,1 (|ky (α)|α)

|ky (α)| + ∂a−C
+
η − ∂a+On,1 (|ky (α)|α)

|ky (α)|α ,

A3 = ∂a+ On,1 (|ky (α)|α) ,

and A4 = ∂a− On,2 (|kx (α)|α).
Note that limα→1−Ai exists and is a finite number for 1 ≤ i ≤ 4 .
Recall that k x (α) = p (α) and k y (α) = q (α), then

E =
(
1 − αC−

η |p (α)|α−1
)
·
(
1 − αC+

η q (α)
α−1

)
+
(
1 − αC−

η |p (α)|α−1
)
A2 q (α)

α

+
(
1 − αC+

η q (α)
α−1

)
A1 |p (α)|α + A1 A2 q (α)

α |p (α)|α

− 1 − ∂a+C+
η q (α)

α − A3 + ∂a− C−
η |p (α)|α − ∂a+C+

η q (α)
α

∂a−C−
η |p (α)|α

−A3 ∂a−C−
η |p (α)|α −A4 − ∂a+C+

η q (α)
α

A4 −A3 A4.

So,

E = −α C−
η |p (α)|α−1 − α C+

η q (α)
α−1

+ α2 C−
η C+

η |p (α)|α−1
q (α)

α−1

+A5 q (α)
α

+ A6 |p (α)|α + A7 q (α)
α |p (α)|α ,

where

A5 =
(
1 − α C−

η |p (α)|α−1
)
A2 − ∂a+ C+

η − A3

q (α)
α − ∂a+ C+

η A4,

A6 =
(
1 − α C+

η q (α)
α−1

)
A1 + ∂a− C−

η −A3 ∂a− C−
η − A4

|p (α)|α ,
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and A7 = A1 A2 − ∂a+ C+
η ∂a− C−

η − A3 A4

q(α)α |p(α)|α .

Note that limα→1−Ai exists and is a finite number for 5 ≤ i ≤ 7.
Thus,

E =
(
α2 − α

) [
C−

η |p (α)|α−1
+ C+

η q (α)
α−1

]
+α2

[
C+

η C−
η |p (α)|α−1

q (α)
α−1 − C−

η |p (α)|α−1 − C+
η q (α)

α−1
]

+A5 q (α)
α

+ A6 |p (α)|α + A7 q (α)
α |p (α)|α .

Now, taking limits and using Lemmas 4.3 and 4.4 we obtain that

lim
α→1−

E

α− 1
= lim

α→1
α
[
C−

η |p (α)|α−1
+ C+

η q (α)
α−1

]

+ lim
α→1−

α2

α− 1

[
C+

η C−
η |p (α)|α−1

q (α)
α−1 − C−

η |p (α)|α−1
+ C+

η q (α)
α−1

]

+ lim
α→1−

[
A5

q (α)
α

α− 1
+ A6

|p (α)|α

α− 1
+ A7

q (α)
α

α− 1
|p (α)|α

]

= C−
η0

B + C+
η0

B = 2 +
C+

η0

C−
η0

+
C−

η0

C+
η0

.

To finish, we have that

lim
α→1−

(1 − ∂xgα (μ (α) , ν (α) , x (α))) · (1 − ∂xgα (μ (α) , ν (α) , y (α)))

=
(
1 − C−

η0
B
) (

1 − C+
η0

B
)

= 1 .

So, replacing this last equality in (4.9) we get

lim
α→1−

detDFα

(
μ(α), ν(α)

)
α− 1

= 2 +
C+

η0

C−
η0

+
C−

η0

C+
η0

.

All of these facts together conclude the proof of Theorem 4.2.

5. One-dimensional analysis. In this section we will prove that the trap-
ping region obtained in the previous section is contained in the basin of a transi-
tive attractor of gα(μ, ν). Depending on the geometry of the original vector field
we can obtain a different kind of such attractor. When ν+ = ν− = 1, the attractor
is the interval [μ, ν]. If ν+ = ν− = − 1 we have three alternatives: (1) the attrac-
tor is given by the interval [ν, gα(μ, ν, μ)], (2) [ν, μ], or (3) [gα(μ, ν, μ), μ], depend-
ing on ν < gα(μ, ν, μ) < μ ≤ gα(μ, ν, ν), ν < gα(μ, ν, μ) < gα(μ, ν, ν) < μ, or
gα(μ, ν, μ) ≤ ν < gα(μ, ν, ν) < μ, respectively. For ν+ = −ν− = 1 we have two
possibilities: (1) [μ, gα(μ, ν, μ)] when μ ≤ ν and (2) [ν, gα(μ, ν, ν)] when ν < μ. In
the same way, for ν+ = −ν− = −1, we have (1) [gα(μ, ν, μ), ν] or (2) [gα(μ, ν, ν), μ],
when μ ≤ ν or ν < μ, respectively (see Figure 5.1).

The proof below is similar to the one given in [Rob4, Theorem A] and we are
including it here for completeness.

Theorem 5.1. Fix λ > 1 and let n0 ∈ N be such that

λn0

2
> 1.

Let a < 0 < b and f : [a, b]∗ → [a, b], [a, b]∗ = [a, b] \ {0} a map such that f(0−) = μ,
f(0+) = ν. Assume also that the following conditions hold:
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Fig. 5.1. Possible attractors for gα(μ, ν, .).

(H0) [a, b] = convexhull{μ, ν, f(μ), f(ν)},
(H1) f has a single singularity at x = 0,
(H2) f is differentiable in [a, b]∗ and |f ′(x)| ≥ λ for all x ∈ [a, b]∗,
(H3) there are x < 0 < y such that f(x) = f(y) = 0,
(H4) there is ε > 0 such that if f(0+) = ν and f(0−) = μ, then {f i(μ), f i(ν), f i(a),

f i(b) : 0 ≤ i ≤ n0} ⊂ [a, a + ε] ∪ [b− ε, b] for all 1 ≤ i ≤ n0.
Then, for ε sufficiently small f is transitive.

Note 4. For n0 = 2 this lemma reduces to a well-known result in [W].
Proof. First of all, hypothesis (H0) shows that f([x, 0)) or f((0, y]) must contain

(a, 0] or [0, b). Now, fix and open interval I ⊂ [a, b]. We claim that one of the following
alternatives hold:

(A) f(I) is an interval and |f(I)| ≥ λ|I|,
(B) there is n ∈ N such that fn(I) contains (a, 0] or [0, b),
(C) there is an interval J ⊂ fn0(I) such that |J | > λn0

2 |I|.
Indeed, if 0 /∈ I, then (A) holds. Thus, we can assume that 0 ∈ I. Then

I∗ = I \ {0} splits into I∗ = I+ ∪ I− where I+ = I ∩ (0, b] and I− = I ∩ [a, 0).
Let Ĩ = I+ or I− such that |f(Ĩ| ≥ λ/2 |I|.
We have either
(a) f(Ĩ) ⊃ (a, 0],
(b) f(Ĩ) ⊃ [0, b),
(c) f(Ĩ) = (x, δ) with 0 < x < δ where δ ∈ {μ, ν}, or
(d) f(Ĩ) = (δ, x) with δ < x < 0 where δ ∈ {μ, ν}.
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In cases (a) and (b) we have (B) for I with n = 1.
Assume case (c).
In this case we have two possibilities, namely,
(c1) there is 1 ≤ i = i(I) < n0 such that i is the first iterate such that 0 ∈ f i(f(Ĩ)),
(c2) 0 /∈ f i(f(Ĩ)) for all 1 ≤ i ≤ n0.
If (c2) holds, then

|fn0(Ĩ)| = |fn0−1(f(Ĩ))| ≥ λn0−1 |f(Ĩ)| ≥ λn0−1 λ/2 |I| ≥ λn0/2 |I|.

If (c1) holds, then f i(f(Ĩ)) is an interval containing both 0 and f i(δ).
As f i(f(Ĩ)) is an interval we conclude that f i(f(Ĩ)) contains an interval containing

0 and f i(δ), and this implies that it contains one of the intervals [x, 0] or [0, y]. From
here, f i+1(f(Ĩ)) contains both [x, 0] and [0, y]. Hence,

f i+2(f(Ĩ)) = f(f i+1(f(Ĩ))) ⊃ (a, 0]

or

f i+2(f(Ĩ)) = f(f i+1(f(Ĩ))) ⊃ [0, b).

Thus, (B) holds with n = i + 2.
Finally, assume (d). The proof is similar to the previous case.
To finish the proof we proceed as follows.
First we claim that for all open intervals I ⊂ [a, b] there is N ∈ N such that fN (I)

contains either (a, 0) or (0, b).
The proof goes by contradiction. Assume that such an N does not exist. Then,

either (A) or (C) holds.
Fix I1 = I. Then there is N1 ∈ N such that fN1(I1) contains an interval I2 such

that |I2| ≥ min{λ, λn0

2 } |I1|. Set k = min{λ, λn0

2 }. Note that (B) is not true for I2
(because I2 ⊂ fN1(I2)). Then, there is N2 ∈ N such that fN2(I2) contains an interval
I3 such that |I3| ≥ k |I2| ≥ k2 |I1|.

In this way we construct a sequence of intervals I1, I2, I3, . . . such that

|Ii| ≥ ki |I1|.

This yields a contradiction since k > 1. This proves the claim.
Now we finish the proof arguing in the following way.
If fN (I) ⊃ (a, 0) or fN (I) ⊃ (0, b), then fN (I) ∪ fN+1(I) ⊃ (a, b). This implies

that f is transitive and the theorem follows.
Note 5. It is not difficult to prove, using (H4), that the map f in Theorem 5.1

is leo (locally eventually onto), i.e., for any interval J ⊂ I, there is n ≥ 1 such that
fn(J) = I. Clearly a leo map is transitive.

Proof of Theorem 1.1. Let Xη satisfying (A1)–(A7), and fη be the one-
parameter family associated with Xη given by Lemma 2.1 in section 2. Recall that
η = η(α, a+, a−). Next, as in section 3 we obtain gα(μ, ν, x) which is a renormalization
of fη.

From now on we work with gα(μ, ν, x).
By (A5), we can apply Theorem 4.1. Let O− ⊂ R

3 be the open set given by
Theorem 4.1. For each α ∈ O close enough to 1, where O is given by Lemma 2.2,
consider (α, μ(α), ν(α)), with (μ(α), ν(α)) defined at the beginning of section 3.

By the definition of O− we have that (α, μ(α), ν(α)) ∈ Cl(O−).
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By Theorem 4.1(2) we have that for all θ ∈ O− there is Iθ such that gα(μ, ν, Iθ) ⊂
Int(Iθ). Set Ĩθ ⊂ Iθ the convexhull{μ, ν, gα(μ, ν, μ), gα(μ, ν, ν)}. Taking (μ, ν) close
to (μ(α), ν(α)), the map gα(μ, ν, ·) satisfies the hypotheses of Theorem 5.1. In-
deed, (H0) follows from the definition of Ĩθ, (H1) is straightforward by the defi-
nition of gα, and (H2), (H3), and (H4) follow from Lemma 3.3 for (μ, ν) close to
(μ(α), ν(α)). Hence, the restriction of gα(μ, ν, .) to Ĩθ is transitive, and thus we con-
clude that gα(μ, ν, .) is transitive in Ĩθ. All of these facts together conclude the proof of
Theorem 1.1.
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TRAFFIC FLOW ON A ROAD NETWORK∗

G. M. COCLITE† , M. GARAVELLO‡ , AND B. PICCOLI§

Abstract. This paper is concerned with a fluidodynamic model for traffic flow. More precisely,
we consider a single conservation law, deduced from the conservation of the number of cars, defined on
a road network that is a collection of roads with junctions. The evolution problem is underdetermined
at junctions; hence we choose to have some fixed rules for the distribution of traffic plus optimization
criteria for the flux. We prove existence of solutions to the Cauchy problem and we show that the
Lipschitz continuous dependence by initial data does not hold in general, but it does hold under
special assumptions.

Our method is based on a wave front tracking approach [A. Bressan, Hyperbolic Systems of
Conservation Laws. The One-dimensional Cauchy Problem, Oxford University Press, Oxford, UK,
2000] and works also for boundary data and time-dependent coefficients of traffic distribution at
junctions, including traffic lights.
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1. Introduction. This paper deals with a fluidodynamic model of heavy traffic
on a road network. More precisely, we consider the conservation law formulation
proposed by Lighthill and Whitham [14] and Richards [15]. This nonlinear framework
is based simply on the conservation of cars and is described by the equation

ρt + f(ρ)x = 0,(1.1)

where ρ = ρ(t, x) ∈ [0, ρmax], (t, x) ∈ R+ × R, is the density of cars, v = v(t, x)
is the velocity, and f(ρ) = v ρ is the flux. This model is appropriate for revealing
shocks formation, as it is natural for conservation laws, whose solutions may develop
discontinuities in finite time even for smooth initial data (see [5]). In most cases one
assumes that v is a function of ρ only and that the corresponding flux is a concave
function. We make this assumption; moreover, we let f have a unique maximum
σ ∈ ]0, ρmax[ and for notational simplicity we assume ρmax = 1.

Here we deal with a network of roads, as in [12]. This means that we have a finite
number of roads modeled by intervals [ai, bi] (with one of the two endpoints possibly
infinite) that meet at some junctions. For endpoints that do not touch a junction
(and are not infinite), we assume given boundary data and solve the corresponding
boundary problem, as in [1, 2, 4]. The key role is played by junctions, at which the
system is underdetermined even after prescribing the conservation of cars, that can
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be written as the Rankine–Hugoniot relation

n∑
i=1

f(ρi(t, bi)) =

n+m∑
j=n+1

f(ρj(t, aj)),(1.2)

where ρi, i = 1, . . . , n, are the car densities on incoming roads, while ρj , j = n +
1, . . . , n + m, are the car densities on outgoing roads. In [12], the Riemann problem,
that is, the problem with constant initial data on each road, is solved maximizing a
concave function of the fluxes, and existence of weak solutions for Cauchy problems
with suitable initial data of bounded variation is proved. In this paper we assume the
following:

(A) There are some prescribed preferences of drivers, that is, the traffic from
incoming roads is distributed on outgoing roads according to fixed coefficients.

(B) Respecting (A), drivers choose so as to maximize fluxes.
To deal with rule (A), we fix a traffic distribution matrix

A
.
= {αji}j=n+1,...,n+m, i=1,...,n ∈ R

m×n,

such that

0 < αji < 1,

n+m∑
j=n+1

αji = 1,(1.3)

for each i = 1, . . . , n and j = n + 1, . . . , n + m, where αji is the percentage of drivers
arriving from the ith incoming road who take the jth outgoing road. Notice that with
only the rule (A) Riemann problems are still underdetermined. This choice represents
a situation in which drivers have a final destination, and hence distribute on outgoing
roads according to a fixed law but maximize the flux whenever possible. We are able
to solve uniquely Riemann problems, under suitable conditions on the matrix A, and
then to construct solutions to Cauchy problems for networks with simple junctions,
i.e., junctions with two incoming roads and two outgoing ones. Our main technique
is the use of a front tracking algorithm and the control of the total variation of the
flux. We refer the reader to [5] for the general theory of conservation laws and for a
discussion of wave front tracking algorithms.

The main difficulty in solving systems of conservation laws is the control of the
total variation; see [5]. It is easy to see that for a single conservation law the total
variation is decreasing; however, in our case it may increase due to interaction of
waves with junctions.

There is a natural lack of symmetry for big waves (i.e., waves crossing the value
σ; see Definition 5.8) and bad data (see Definition 5.8) at junctions, since the role of
incoming roads is different from that of outgoing ones. Similarly, for scalar conserva-
tion laws with discontinuous coefficients, one has to use a definition of strength for
discontinuities of the coefficient, seen as waves, that is not symmetric but depends on
the sign of the jump in the solution; see [13, 16, 17]. This is enough to control the
total variation in that case; on the contrary, our problem is more delicate. In fact,
the variation can still increase due to interactions of waves with junctions (and there
is no bound on the number of interactions and of the size of magnification; see Ap-
pendix B). The bounded quantity is the total variation of the flux. We prove this fact
for junctions with only two incoming roads and two outgoing ones. Unfortunately the
total variation of the flux is not equivalent to the total variation of ρ, since f ′(σ) = 0,
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and so it is not sufficient to prove existence of solutions. Therefore some compactness
argument is used together with a bound of big waves near junctions.

Our techniques are quite flexible, so we can deal with time-dependent coefficients
for rule (A). In particular, we can model traffic lights and, in this case, the control
of total variation is extremely delicate. An arbitrarily small change in the coefficients
can produce waves whose strength is bounded away from zero. Still, it is possible to
consider periodic coefficients, a case of particular interest for applications. We can
also deal with roads having different fluxes: these can be treated in the same way
with the necessary notational modifications.

There is an interesting ongoing discussion on hydrodynamic models for heavy
traffic flow. In particular, some models using systems of two conservation laws have
been proposed; see [3, 8, 10, 11]. We do no treat this aspect.

The paper is organized as follows. In section 2 we give the definition of weak
entropic solution and, following rules (A) and (B), we introduce an admissibility con-
dition at junctions. In section 3 we prove the existence and uniqueness of admissible
solutions for the Riemann problem in a junction, then using this we describe the con-
struction of the approximants for the Cauchy problem (see section 4). In section 5
we prove the bound on the total variation of the flux and existence of admissible so-
lutions for the Cauchy problem with suitable initial data. In section 6 we prove with
a counterexample that the Lipschitz continuous dependence with respect to initial
data does not hold in general, but we also show that this property holds under special
assumptions. In section 7 we describe what happens when there are traffic lights
and time-dependent coefficients. Appendix A contains an example of flux variation
increase that does not occur for junctions with only two incoming and two outgoing
roads. Finally, in Appendix B we show that the interaction of a small wave with a
junction can produce a uniformly big wave.

2. Basic definitions. We consider a network of roads that is modeled by a
finite collection of intervals Ii = [ai, bi] ⊂ R, i = 1, . . . , N , ai < bi, possibly with
either ai = −∞ or bi = +∞, on which we consider (1.1). Hence the data are given
by a finite collection of functions ρi defined on [0,+∞[ × Ii.

On each road Ii we want ρi to be a weak entropic solution, that is, for every
function ϕ : [0,+∞[ × Ii → R smooth with compact support on ]0,+∞[ × ]ai, bi[

∫ +∞

0

∫ bi

ai

(
ρi
∂ϕ

∂t
+ f(ρi)

∂ϕ

∂x

)
dxdt = 0,(2.1)

and for every k ∈ R and every ϕ̃ : [0,+∞[ × Ii → R smooth, positive with compact
support on ]0,+∞[ × ]ai, bi[

∫ +∞

0

∫ bi

ai

(
|ρi − k|∂ϕ̃

∂t
+ sgn (ρi − k)(f(ρi) − f(k))

∂ϕ̃

∂x

)
dxdt ≥ 0.(2.2)

It is well known that, for (1.1) on R and for all initial data in L∞, there exists
a unique weak entropic solution depending in a continuous way on the initial data in
L1
loc.

We assume that the roads are connected by some junctions. Each junction J is
given by a finite number of incoming roads and a finite number of outgoing roads;
thus we identify J with ((i1, . . . , in), (j1, . . . , jm)), where the first n-tuple indicates
the set of incoming roads and the second m-tuple indicates the set of outgoing roads.
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We assume that each road can be an incoming road for at most one junction and
outgoing for at most one junction.

Hence the complete model is given by a couple (I,J ), where I = {Ii : i =
1, . . . , N} is the collection of roads and J is the collection of junctions.

Fix a junction J with incoming roads, say I1, . . . ,In, and outgoing roads, say
In+1, . . . , In+m. A weak solution at J is a collection of functions ρl : [0,+∞[ ×
Il → R, l = 1, . . . , n + m, such that

n+m∑
l=0

(∫ +∞

0

∫ bl

al

(
ρl
∂ϕl

∂t
+ f(ρl)

∂ϕl

∂x

)
dxdt

)
= 0,(2.3)

for every ϕl, l = 1, . . . , n + m smooth having compact support in ]0,+∞[ × ]al, bl]
for l = 1, . . . , n (incoming roads) and in ]0,+∞[ × [al, bl[ for l = n + 1, . . . , n + m
(outgoing roads) that are also smooth across the junction, i.e.,

ϕi(·, bi) = ϕj(·, aj),
∂ϕi

∂x
(·, bi) =

∂ϕj

∂x
(·, aj), i = 1, . . . , n, j = n+1, . . . , n+m.

Remark 1. Let ρ = (ρ1, . . . , ρn+m) be a weak solution at the junction such that
each x → ρi(t, x) has bounded variation. We can deduce that ρ satisfies the Rankine–
Hugoniot condition at the junction J , namely,

n∑
i=1

f(ρi(t, bi−)) =

n+m∑
j=n+1

f(ρj(t, aj+)),(2.4)

for almost every t > 0.
Rules (A) and (B) can be given explicitly only for solutions with bounded varia-

tion, as in the next definition.
Definition 2.1. Let ρ = (ρ1, . . . , ρn+m) be such that ρi(t, ·) is of bounded vari-

ation for every t ≥ 0. Then ρ is an admissible weak solution of (1.1) related to the
matrix A, satisfying (1.3), at the junction J if and only if the following properties
hold:

(i) ρ is a weak solution at the junction J ;
(ii) f(ρj(·, aj+)) =

∑n
i=1 αjif(ρi(·, bi−)), for each j = n + 1, . . . , n + m;

(iii)
∑n

i=1 f(ρi(·, bi−)) is maximum subject to (ii).
For every road Ii = [ai, bi], if ai > −∞ and Ii is not the outgoing road of any

junction, or bi < +∞ and Ii is not the incoming road of any junction, then boundary
data ψi : [0,+∞[ → R are given. In this case we ask ρi to satisfy ρi(t, ai) = ψi(t) (or
ρi(t, bi) = ψi(t)) in the sense of [4]. The treatment of boundary data in the sense of
[4] can be done in the same way as in [1, 2]; thus we treat the case without boundary
data. All the stated results hold also for the case with boundary data with obvious
modifications.

Our aim is to solve the Cauchy problem on [0,+∞[ for given initial and boundary
data as in next definition.

Definition 2.2. Given ρ̄i : Ii → R, i = 1, . . . , N , L∞ functions, a collection of
functions ρ = (ρ1, . . . , ρN ), with ρi : [0,+∞[ × Ii → R continuous as functions from
[0,+∞[ into L1

loc, is an admissible solution if ρi is a weak entropic solution to (1.1)
on Ii, ρi(0, x) = ρ̄i(x) a.e., at each junction ρ is a weak solution and is an admissible
weak solution in case of bounded variation.

On the flux f we make the following assumption:
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3 n

n+1

n+2

n+m

Fig. 1. A junction.

(F) f : [0, 1] → R is a smooth strictly concave function (i.e., f ′′ ≤ −c < 0 for
some c > 0) such that f(0) = f(1) = 0. Therefore there exists a unique
σ ∈ ]0, 1[ such that f ′(σ) = 0 (that is, σ is a strict maximum).

3. The Riemann problem. In this section we study Riemann problems. For
a scalar conservation law a Riemann problem is a Cauchy problem for initial data of
Heaviside type, that is, piecewise constant with only one discontinuity. One looks for
centered solutions, i.e., ρ(t, x) = φ(xt ), which are the building blocks of solutions to
the Cauchy problem via wave front tracking algorithm. These solutions are formed
by continuous waves called rarefactions and by traveling discontinuities called shocks.
The speeds of waves are related to the values of f ′; see [5].

Analogously, we call the Riemann problem for a junction the Cauchy problem
corresponding to an initial datum that is constant on each road. Then, for the whole
network, since solutions on each road Ii can be constructed in the same way as for
the scalar conservation law, it suffices to describe the solution at junctions. Because
of finite propagation speed, it is enough to study the Riemann problem for a single
junction.

Consider a junction J in which there are n roads with incoming traffic, m roads
with outgoing traffic, and a traffic distribution matrix A. For simplicity we indicate
by

(t, x) ∈ R+ × Ii �→ ρi(t, x) ∈ [0, 1], i = 1, . . . , n,(3.1)

the densities of the cars on the roads with incoming traffic and by

(t, x) ∈ R+ × Ij �→ ρj(t, x) ∈ [0, 1], j = n + 1, . . . , n + m(3.2)

those on the roads with outgoing traffic; see Figure 1.
We need the following notation.
Definition 3.1. Let τ : [0, 1] → [0, 1] be the map such that
1. f(τ(ρ)) = f(ρ) for every ρ ∈ [0, 1];
2. τ(ρ) 	= ρ for every ρ ∈ [0, 1] \ {σ}.

Clearly, τ is well defined and satisfies

0 ≤ ρ ≤ σ ⇐⇒ σ ≤ τ(ρ) ≤ 1, σ ≤ ρ ≤ 1 ⇐⇒ 0 ≤ τ(ρ) ≤ σ.

To state the main result of this section we need some assumption on the matrix
A satisfied under generic conditions. Let {e1, . . . , en} be the canonical basis of R

n

and, for every subset V ⊂ R
n, indicate by V ⊥ its orthogonal. Define for every

i = 1, . . . , n, Hi = {ei}⊥, i.e., the coordinate hyperplane orthogonal to ei, and for
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every j = n + 1, . . . , n + m let αj = (αj1, . . . , αjn) ∈ R
n and define Hj = {αj}⊥. Let

K be the set of indices k = (k1, . . . , k�), 1 ≤ 
 ≤ n− 1, such that 0 ≤ k1 < k2 < · · · <
k� ≤ n + m, and for every k ∈ K set

Hk =

�⋂
h=1

Hkh
.

Letting 1 = (1, . . . , 1) ∈ R
n, we assume

(C) for every k ∈ K, 1 /∈ H⊥
k .

Remark 2. Condition (C) is a technical condition, which allows us to have unique-
ness in the maximization problem described in Theorem 3.2. From (C) we immediately
derive m ≥ n. Otherwise, since by definition, 1 =

∑n+m
j=n+1 αj , we get 1 ∈ H⊥

k , where

Hk =

n+m⋂
j=n+1

Hj .

Moreover if n ≥ 2, then (C) implies that, for every j ∈ {n+ 1, . . . , n+m} and for all
distinct elements i, i′ ∈ {1, . . . , n}, it holds that αji 	= αji′ . Otherwise, without loss
of generality, we may suppose that αn+1,1 = αn+1,2. If we consider

H =

⎛
⎝ ⋂

2<j≤n

Hj

⎞
⎠⋂

Hn+1,

then, by (C), there exists an element (x1, x2, 0, . . . , 0) ∈ H such that x1 + x2 	= 0 and
αn+1,1(x1 + x2) = 0.

In the case of a simple junction J with two incoming roads and two outgoing
ones, condition (C) is completely equivalent to the fact that, for every j ∈ {3, 4},
αj1 	= αj2.

Remark 3. Notice that the matrix A could have identical lines. For example the
matrix

A =

⎛
⎜⎜⎝

1
3

1
4

1
5

1
3

1
4

1
5

1
3

1
2

3
5

⎞
⎟⎟⎠

satisfies condition (C).

Theorem 3.2. Consider a junction J , assume that the flux f : [0, 1] → R satisfies
(F), and that the matrix A satisfies condition (C). For every ρ1,0, . . . , ρn+m,0 ∈ [0, 1],
there exists a unique admissible centered weak solution, in the sense of Definition 2.1,
ρ =

(
ρ1, . . . , ρn+m

)
of (1.1) at the junction J such that

ρ1(0, ·) ≡ ρ1,0, . . . , ρn+m(0, ·) ≡ ρn+m,0.

Moreover, there exists a unique (n + m)-tuple (ρ̂1, . . . , ρ̂n+m) ∈ [0, 1]n+m such that

ρ̂i ∈
{

{ρi,0} ∪ ]τ(ρi,0), 1] if 0 ≤ ρi,0 ≤ σ,
[σ, 1] if σ ≤ ρi,0 ≤ 1,

i = 1, . . . , n,(3.3)
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and

ρ̂j ∈
{

[0, σ] if 0 ≤ ρj,0 ≤ σ,
{ρj,0} ∪ [0, τ(ρj,0)[ if σ ≤ ρj,0 ≤ 1,

j = n + 1, . . . , n + m.(3.4)

By fixed i ∈ {1, . . . , n}, if ρi,0 ≤ ρ̂i, we have

ρi(t, x) =

⎧⎨
⎩

ρi,0 if x <
f(ρ̂i)−f(ρi,0)

ρ̂i−ρi,0
t + bi, t ≥ 0,

ρ̂i if x >
f(ρ̂i)−f(ρi,0)

ρ̂i−ρi,0
t + bi, t ≥ 0,

(3.5)

and, if ρ̂i < ρi,0,

ρi(t, x) =

⎧⎨
⎩

ρi,0 if x ≤ f ′(ρi,0)t + bi, t ≥ 0,(
f ′)−1(

(x− bi)/t
)

if f ′(ρi,0)t + bi ≤ x ≤ f ′(ρ̂i)t + bi, t ≥ 0,
ρ̂i if x > f ′(ρ̂i)t + bi, t ≥ 0.

(3.6)

By fixed j ∈ {n + 1, . . . , n + m}, if ρj,0 ≤ ρ̂j, we have

ρj(t, x) =

⎧⎨
⎩

ρ̂j if x ≤ f ′(ρ̂j)t + aj , t ≥ 0,(
f ′)−1(

(x− aj)/t
)

if f ′(ρ̂j)t + aj ≤ x ≤ f ′(ρj,0)t + aj , t ≥ 0,
ρj,0 if x > f ′(ρj,0)t + aj , t ≥ 0,

(3.7)

and, if ρ̂j < ρj,0,

ρj(t, x) =

⎧⎨
⎩

ρ̂j if x <
f(ρj,0)−f(ρ̂j)

ρj,0−ρ̂j
t + aj , t ≥ 0,

ρj,0 if x >
f(ρj,0)−f(ρ̂j)

ρj,0−ρ̂j
t + aj , t ≥ 0.

(3.8)

Proof. Define the map

E : (γ1, . . . , γn) ∈ R
n �−→

n∑
i=1

γi

and the sets

Ωi
.
=

{
[0, f(ρi,0)] if 0 ≤ ρi,0 ≤ σ,
[0, f(σ)] if σ ≤ ρi,0 ≤ 1,

i = 1, . . . , n,

Ωj
.
=

{
[0, f(σ)] if 0 ≤ ρj,0 ≤ σ,
[0, f(ρj,0)] if σ ≤ ρj,0 ≤ 1,

j = n + 1, . . . , n + m,

Ω
.
=

{
(γ1, . . . , γn) ∈ Ω1 × · · · × Ωn

∣∣A · (γ1, . . . , γn)T ∈ Ωn+1 × · · · × Ωn+m

}
.

The set Ω is closed, convex, and not empty. Moreover, by (C), ∇E = 1 is not
orthogonal to any nontrivial subspace contained in a supporting hyperplane of Ω;
hence there exists a unique vector (γ̂1, . . . , γ̂n) ∈ Ω such that

E(γ̂1, . . . , γ̂n) = max
(γ1,...,γn)∈Ω

E(γ1, . . . , γn).
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For every i ∈ {1, . . . , n}, we choose ρ̂i ∈ [0, 1] such that

f(ρ̂i) = γ̂i, ρ̂i ∈
{

{ρi,0} ∪ ]τ(ρi,0), 1] if 0 ≤ ρi,0 ≤ σ,
[σ, 1] if σ ≤ ρi,0 ≤ 1.

By (F), ρ̂i exists and is unique. Let

γ̂j
.
=

n∑
i=1

αjiγ̂i, j = n + 1, . . . , n + m,

and ρ̂j ∈ [0, 1] be such that

f(ρ̂j) = γ̂j , ρ̂j ∈
{

[0, σ] if 0 ≤ ρj,0 ≤ σ,
{ρj,0} ∪ [0, τ(ρj,0)[ if σ ≤ ρj,0 ≤ 1.

Since (γ̂1, . . . , γ̂n) ∈ Ω, ρ̂j exists and is unique for every j ∈ {n+ 1, . . . , n+m}. Solv-
ing the Riemann problem (see [5, Chap. 6]) on each road, the claim is proved.

4. The wave front tracking algorithm. Once the solution to a Riemann
problem is provided, we are able to construct piecewise constant approximations via
a wave front tracking algorithm. The construction is very similar to that for scalar
conservation laws (see [5]); hence we briefly describe it.

Let ρ̄ = (ρ1, . . . , ρN ) be a piecewise constant map defined on the road network.
We want to construct a weak solution of (1.1) with initial condition ρ(0, ·) ≡ ρ̄.
We begin by solving the Riemann problems on each road in correspondence to the
jumps of ρ̄ and the Riemann problems at junctions determined by the values of ρ̄
(see Theorem 3.2). We split each rarefaction wave into a rarefaction fan formed by
rarefaction shocks that are discontinuities traveling with the Rankine–Hugoniot speed.
We always split rarefaction waves, inserting the value σ (if it is in the range of the
rarefaction). Moreover, we let any rarefaction shock with endpoint σ have velocity
zero.

When a wave interacts with another we simply solve the new Riemann problem.
Instead, when a wave reaches a junction, we solve the Riemann problem at the junc-
tion. The number of waves may increase only for interactions of waves at junctions.
Since the speeds of waves are bounded, there are finitely many waves on the network
at each time t ≥ 0. We call the obtained function an approximate wave front tracking
solution. Given a general initial data, we approximate it by a sequence of piecewise
constant functions and construct the corresponding approximate solutions. If they
converge in L1

loc, then the limit is a weak entropic solution on each road; see [5] for a
proof.

5. Estimates on flux variation and existence of solutions. This section is
devoted to the estimation of the total variation of the flux along an approximate wave
front tracking solution and to the construction of solutions to the Cauchy problem.
From now on, we assume that every junction has exactly two incoming roads and
two outgoing ones. This hypothesis is crucial because, as shown in Appendix A,
the presence of more complicated junctions causes additional increases in the total
variation of the flux. The case where junctions have at most two incoming roads and
at most two outgoing roads can be treated in the same way. So, for each junction J ,
the matrix A, defined in the introduction, takes the form

A =

(
α β

1 − α 1 − β

)
,(5.1)
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where α, β ∈ ]0, 1[ and α 	= β, so that (C) is satisfied.
From now on we fix an approximate wave front tracking solution ρ, defined on

the road network.
Definition 5.1. For every road Ii, i = 1, . . . , N , we indicate by

(ρθ−, ρ
θ
+), θ ∈ Θ = Θ(ρ, t, i), Θ finite set,

the discontinuities on road Ii at time t, and by xθ(t), λθ(t), θ ∈ Θ, respectively,
their positions and velocities at time t. We also refer to the wave θ to indicate the
discontinuity (ρθ−, ρ

θ
+).

For each discontinuity (ρθ−, ρ
θ
+) at time t̄ on road Ii, we call yθ(t), t ∈ [t̄, tθ], the

trace of the wave so defined. We start with yθ(t̄) = xθ(t̄) and we continue up to the
first interaction with another wave or a junction. If at time t̃ an interaction with

a wave or a junction occurs, then either a single new wave (ρθ̃−, ρ
θ̃
+) on road Ii is

produced or no wave is produced. In the latter case we set tθ = t̃; otherwise we set

yθ(t̃) = xθ̃(t̃) and follow xθ̃(t) for t ≥ tθ̃ up to the next interaction, and so on.
We start by proving some technical lemmas.
Lemma 5.2. Fix a junction J and an incoming road Ii. Let θ be a wave on road

Ii, originated at time t̄ from J with a flux decrease, i.e., xθ(t̄) = bi, λθ(t̄) < 0, and
f(ρθ+) < f(ρθ−). Let yθ be the traced wave and assume that there exists t̃, the first time
yθ interacts with J after t̄. Then either yθ interacts with another junction on ]t̄, t̃[
or, letting θ1, . . . , θl be the waves interacting with yθ at times tm ∈ ]t̄, t̃[, m = 1, . . . , l
(t1 < t2 < . . . < tl), we have∣∣f(ρ(t̃− ε, yθ(t̃− ε)+)) − f(ρ(t̃− ε, yθ(t̃− ε)−))

∣∣
≤

l∑
m=1

∣∣f(ρ(tm − ε, xθm(tm − ε)+)) − f(ρ(tm − ε, xθm(tm − ε)−))
∣∣− ∣∣f(ρθ−) − f(ρθ+)

∣∣
for ε > 0 small enough. This means that the initial flux variation along yθ is canceled.
The same conclusion holds for an outcoming road Ij.

Proof. Consider the wave (ρθ−, ρ
θ
+) as in the statement. Then it is a shock with

negative velocity and ρθ+ > max{ρθ−, τ(ρθ−)}. If yθ interacts with another junction,
then there is nothing to prove. So, we assume that yθ does not interact with another
junction. At time t1, the wave θ1 interacts with yθ. We analyze first the case of
interaction from the left of yθ. We have the following two possibilities:

1. ρθ1− ∈ [0, τ(ρθ+)]. In this case we have total cancellation of the flux variation
and so ∣∣∣f(ρθ+) − f(ρθ1− )

∣∣∣ =
∣∣∣f(ρθ1− ) − f(ρθ−)

∣∣∣− ∣∣f(ρθ−) − f(ρθ+)
∣∣ .

Therefore the claim easily follows.
2. ρθ1− ∈ ]τ(ρθ+), ρθ+]. In this case the wave yθ after the time interaction t1 is of

the same type of yθ before t1, i.e.,

max{ρ(t1, yθ(t1)−), τ(ρ(t1, y
θ(t1)−))} < ρ(t1, y

θ(t1)+).

We consider now the case of interaction from the right of yθ. It is clear that
ρθ1+ ∈ ]ρθ−, 1]. If, moreover, f(ρθ1+ ) ≥ f(ρθ−), then we have total cancellation of the

flux and we conclude as before. If instead f(ρθ1+ ) < f(ρθ−), then the wave yθ after the
time t1 is of the same type of yθ before t1.
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We repeat this argument at each interaction time tm. If at some tm we have total
cancellation of the flux, then we are done. Therefore we may suppose that at each tm
total cancellation of the flux does not occur. Since the type of the wave yθ does not
change, we have

max{ρ(t̃− ε̃, yθ(t̃− ε̃)−), τ(ρ(t̃− ε̃, yθ(t̃− ε̃)−))} < ρ(t̃− ε̃, yθ(t̃− ε̃)+)

for ε̃ > 0 small enough, and hence the speed λθ(t̃− ε̃) is negative, which contradicts
the fact that yθ interacts with J at time t̃.

Lemma 5.3. Fix a junction J and an incoming road Ii. Let θ be a wave on road
Ii, originated at time t̄ from J by a flux increase, i.e., xθ(t̄) = bi, λθ(t̄) < 0, and
f(ρθ+) > f(ρθ−). Let yθ be the traced wave and assume that there exists t̃, the first
time yθ interacts with J after t̄. Then yθ interacts with other junctions in ]t̄, t̃[, or
cancels the flux variation, or produces a flux decrease at J at t̃, i.e.,

f(ρ(t̃− ε, yθ(t̃− ε)−)) < f(ρ(t̃− ε, yθ(t̃− ε)+)),

for ε > 0 small enough. The same holds for outgoing roads.
Proof. Since λθ(t̄) < 0 and f(ρθ+) > f(ρθ−), then ρθ− > σ. Moreover, the wave

(ρθ−, ρ
θ
+) is a rarefaction fan; hence σ < ρθ+ < ρθ−.

If an interaction on the right with a wave θ1 occurs, then ρθ1+ ∈ ]ρθ−, 1] and we have
total cancellation of the flux variation. Therefore we may suppose that an interaction
on the left with a wave θ1 occurs. In this case we have two possibilities:

1. ρθ1− ∈ [0, τ(ρθ+)[;

2. ρθ1− ∈ [τ(ρθ+), ρθ+[.
In the latter case we have total cancellation of the flux variation and so we are done.
In the first case, instead, the type of the wave changes, since

0 < ρθ1− < τ(ρθ+) ≤ σ ≤ ρθ+ < 1.

The speed of the wave yθ after this interaction is positive and if there are no more
interactions, then we have the claim since f(ρθ1− ) < f(ρθ+). Thus we suppose that
an interaction with a wave θ2 occurs. If it is an interaction from the left, then the
possibilities are as follows:

1. ρθ2− ∈ [0, τ(ρθ+)[. We do not have total cancellation of the flux variation, but
the type of the wave does not change and the situation is identical to the
previous one.

2. ρθ2− ∈ [τ(ρθ+), σ[. We have total cancellation of the flux variation and so we
are done.

If it is an interaction from the right, then the possibilities are as follows:
1. ρθ2+ ∈ [σ, τ(ρθ1− )[. We do not have total cancellation of the flux variation, but

the type of the wave does not change.
2. ρθ2+ ∈ [τ(ρθ1− ), 1]. We have total cancellation of the flux variation and so we

are done.
The conclusion now easily follows repeating this argument. If at each interaction

we do not have total cancellation of the flux variation, then we necessarily have that

f(ρ(t̃− ε, yθ(t̃− ε)−)) < f(ρ(t̃− ε, yθ(t̃− ε)+))

for ε > 0 small enough, which concludes the proof.
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Lemma 5.4. Fix a junction J . If a wave interacts with the junction J from an
incoming road at time t̄, then

Tot.Var.
(
f(ρ(t̄+, ·))

)
= Tot.Var.

(
f(ρ(t̄−, ·))

)
.(5.2)

Proof. For simplicity let us assume that I1, I2 are the incoming roads and I3, I4 are
the outgoing ones. Let (ρ1,0, . . . , ρ4,0) be an equilibrium configuration at the junction
J . We assume that the wave is coming from the first road and that it is given by the
values (ρ1, ρ1,0). Let us define the incoming flux

f in(y)
.
=

{
f(y) if 0 ≤ y ≤ σ,
f(σ) if σ ≤ y ≤ 1,

(5.3)

and the outgoing flux

fout(y)
.
=

{
f(σ) if 0 ≤ y ≤ σ,
f(y) if σ ≤ y ≤ 1.

(5.4)

Clearly, since the wave on the first road has positive velocity, we have

0 ≤ ρ1 < σ.(5.5)

Let (ρ̂1, . . . , ρ̂4) be the solution of the Riemann problem in the junction J with initial
data (ρ1, ρ2,0, ρ3,0, ρ4,0) (see Theorem 3.2). By definition,

(
f(ρ1,0), f(ρ2,0)

)
is the

maximum point of the map E on the domain

Ω0
.
=

{
(γ1, γ2) ∈ Ω1,0 × Ω2,0

∣∣A · (γ1, γ2)
T ∈ Ω3,0 × Ω4,0

}
,

and
(
f(ρ̂1), f(ρ̂2)

)
is the maximum point of the map E on the domain

Ω̂
.
=

{
(γ1, γ2) ∈ Ω1 × Ω2,0

∣∣A · (γ1, γ2)
T ∈ Ω3,0 × Ω4,0

}
,

where

Ωj,0
.
=

{
[0, f in(ρj,0)] if j = 1, 2,
[0, fout(ρj,0)] if j = 3, 4,

and, by (5.5),

Ω1
.
= [0, f in(ρ1)] = [0, f(ρ1)].

It is also clear that(
f(ρ1,0), f(ρ2,0)

)
∈ ∂Ω0,

(
f(ρ̂1), f(ρ̂2)

)
∈ ∂Ω̂.

For simplicity we use the notation (5.1).
We distinguish two cases. First we suppose that

f(ρ1) < f(ρ1,0)(5.6)

(equality cannot happen in the previous equation because the wave would have ve-
locity zero). Then Ω̂ ⊂ Ω0 and

f(ρ̂1) ≤ f(ρ1), f(ρ̂1) + f(ρ̂2) ≤ f(ρ1,0) + f(ρ2,0).(5.7)
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We claim that

f(ρ2,0) ≤ f(ρ̂2), f(ρ̂3) ≤ f(ρ3,0), f(ρ̂4) ≤ f(ρ4,0).(5.8)

The points
(
f(ρ1,0), f(ρ2,0)

)
,
(
f(ρ̂1), f(ρ̂2)

)
are on the boundaries of Ω0, Ω̂, re-

spectively, where the function E attains the maximum; hence each one is at least on
one of the curves

αγ1 + βγ2 = fout(ρ3,0), (1 − α)γ1 + (1 − β)γ2 = fout(ρ4,0), γ2 = f in(ρ2,0).

Let us assume that the two points are on the same curve, with the other cases being
similar:

αγ1 + βγ2 = fout(ρ3,0).(5.9)

Observe that the map E is increasing on the curve

γ1 �→
(
γ1,

fout(ρ3,0)

β
− α

β
γ1

)
;

otherwise we contradict the maximality of E at
(
f(ρ1,0), f(ρ2,0)

)
. Thus α < β,

ρ̂1 = ρ1, the first two inequalities in (5.8) hold, and

f(ρ̂1) = f(ρ1), f(ρ̂2) > f(ρ2,0), f(ρ̂3) = f(ρ3,0) = fout(ρ3,0).(5.10)

On the other hand, by (5.7), we have

f(ρ̂4) = (1 − α)f(ρ̂1) + (1 − β)f(ρ̂2)

≤ (1 − α)
(
f(ρ1,0) + f(ρ2,0) − f(ρ̂2)

)
+ (1 − β)f(ρ̂2)

= (1 − α)
(
f(ρ1,0) + f(ρ2,0)

)
+
(
α− β

)
f(ρ̂2)

≤ (1 − α)
(
f(ρ1,0) + f(ρ2,0)

)
+
(
α− β

)
f(ρ2,0) = f(ρ4,0).

Thus (5.8) holds. Using the Rankine–Hugoniot condition (2.4) at the junction J , and
using (5.8) and (5.10), we get

Tot.Var.
(
f(ρ(t̄+, ·))

)
= |f(ρ̂1) − f(ρ1)| + |f(ρ̂2) − f(ρ2,0)| + |f(ρ̂3) − f(ρ3,0)| + |f(ρ̂4) − f(ρ4,0)|

=
(
f(ρ̂2) − f(ρ2,0)

)
+
(
f(ρ3,0) − f(ρ̂3)

)
+
(
f(ρ4,0) − f(ρ̂4)

)
= f(ρ1,0) − f(ρ̂1) = f(ρ1,0) − f(ρ1) = Tot.Var.

(
f(ρ(t̄−, ·))

)
.

Suppose now that

f(ρ1,0) < f(ρ1);

then ρ1,0 < ρ1 < σ and Ω0 ⊂ Ω̂. Assuming again that both maximum points of the
function E are on the curve (5.9), we have

f(ρ̂1) = f(ρ1), f(ρ̂2) ≤ f(ρ2,0), f(ρ3,0) = f(ρ̂3), f(ρ4,0) ≤ f(ρ̂4).
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By the Rankine–Hugoniot condition at the junction J (see (2.4)), we have

Tot.Var.
(
f(ρ(t̄+, ·))

)
= |f(ρ̂1) − f(ρ1)| + |f(ρ̂2) − f(ρ2,0)| + |f(ρ̂3) − f(ρ3,0)| + |f(ρ̂4) − f(ρ4,0)|

=
(
f(ρ2,0) − f(ρ̂2)

)
+
(
f(ρ̂3) − f(ρ3,0)

)
+
(
f(ρ̂4) − f(ρ4,0)

)
= f(ρ̂1) − f(ρ1,0) = f(ρ1) − f(ρ1,0) = Tot.Var.

(
f(ρ(t̄−, ·))

)
.

This concludes the proof.
Lemma 5.5. Consider a network (I,J ). We have

Tot.Var.
(
f(ρ(0+, ·))

)
≤ Tot.Var.

(
f(ρ(0, ·))

)
+ 2Rf(σ),

where R is the total number of roads of the network.
Proof. At time t = 0 we can have an instantaneous increase of the total variation

of the flux due to the waves generated by the Riemann problems in the junctions.
Clearly, this increase can be estimated by the maximum number of waves gener-
ated in the junctions (≤ 2R) times the maximum variation of the flux on each road
(≤ f(σ)).

We are now ready to prove the following.
Lemma 5.6. Consider a road network (I,J ). For some K > 0, we have

Tot.Var.
(
f(ρ(t+, ·))

)
≤ eKtTot.Var.

(
f(ρ(0+, ·))

)
≤ eKt

(
Tot.Var.

(
f(ρ(0, ·))

)
+ 2Rf(σ)

)
,

for each t ≥ 0.
Proof. Fix a junction J . Notice that there exists a constant CJ , depending on the

coefficients of the matrix A at J , so that each interaction of a wave with J causes an
increase in the flux variation by at most a factor of CJ . More precisely, if Tot.Var.±f
is the flux variation of waves before and after the interaction, then Tot.Var.+f ≤
CJTot.Var.−f .

Consider a wave θ interacting with the junction J . Then from Lemma 5.4 the
flux variation can increase only if the wave is coming from an outgoing road. Let
θ1, . . . , θ4 be the waves so produced. Thanks to Lemma 5.2, waves produced by a flux
decrease cannot interact with the junction J without canceling the flux variation or
reaching another junction. Moreover, by Lemma 5.3, every θi can return to junction J
(without interacting with other junctions) only with a decrease of the flux. Now notice
that a wave with decreasing flux interacting with J always produces a flux decrease
on outgoing roads. Hence, waves θi may return to the junction only with decreasing
flux, thus, by Lemma 5.2, producing other waves that cannot return to the junction,
unless they cancel their flux variation or interact with other junctions. Finally, each
wave flux variation can be magnified at most twice by a factor CJ interacting only
with junction J and not with other junctions.

Now let δ be the minimum length of a road, i.e., δ = mini∈I(bi − ai), and λ̂ be

the maximum speed of a wave, i.e., λ̂ = max{f ′(0), |f ′(1)|}. Then each wave takes at

least time δ/λ̂ to go from one junction to another.
Finally, recalling that the total variation of the flux may only decrease for in-

teractions on roads, we get that a magnification of flux variation of a factor CJ =
maxJ∈J C2

J may occur only once on each time interval of length δ/λ̂. We thus get

Tot.Var.
(
f(ρ(t+, ·))

)
≤ C

tλ̂
δ

J Tot.Var.
(
f(ρ(0+, ·)

)
= eKtTot.Var.

(
f(ρ(0+, ·))

)
,
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where K = λ̂ log(CJ )/δ.
Definition 5.7. Consider a road network (I,J ) and an approximate wave front

tracking solution ρ. For every road Ii, we define two curves Y i,ρ
− (t), Y i,ρ

+ (t), called
boundary of external flux (BEF), in the following way. We set the initial condition
Y i,ρ
− (0) = ai, Y i,ρ

+ (0) = bi (if ai = −∞, then Y i,ρ
− ≡ −∞ and if bi = +∞, then

Y i,ρ
+ ≡ +∞). We let Y i,ρ

± (t) follow the generalized characteristic as defined in [9],

letting Y i,ρ
− (t) = ai (resp., Y i,ρ

+ (t) = bi) if the generalized characteristic reaches the

boundary and f ′(ρ(t, ai)) < 0 (resp., f ′(ρ(t, bi)) > 0). (In this way Y i,ρ
± (t) may

coincide with ai or bi for some time intervals.) Let t̄ be the first time t̄ such that
Y i,ρ
− (t̄) = Y i,ρ

+ (t̄) (possibly t̄ = +∞); then we let Y i,ρ
± be defined on [0, t̄]. Finally, we

define the sets

Di
1(ρ) =

{
(t, x) : t ∈ [0, t̄) : Y i,ρ

− (t) ≤ x ≤ Y i,ρ
+ (t)

}
and

Di
2(ρ) = [0,+∞) × [ai, bi] \Di

1(ρ).

Clearly, Y i
±(t) bounds the set on which the data are not influenced by the other

roads through the junctions.
Definition 5.8. Fix an approximate wave front tracking solution ρ, a road Ii,

i = 1, . . . , N, and a junction J . A wave θ in Ii is said to be a big wave if

sgn(ρθ− − σ) · sgn(ρθ+ − σ) ≤ 0,

where sgn(0) = 0.
We say that an incoming road Ii has a bad datum at J at time t > 0 if

ρi(t, bi−) ∈ [0, σ[.

We say that an outgoing road Ij has a bad datum at J at time t > 0 if

ρj(t, aj+) ∈]σ, 1].

Lemma 5.9. For every t ≥ 0, there exist at most two big waves on{
x : (t, x) ∈ Di

2(ρ)
}
⊆ [ai, bi].

Proof. A big wave can originate at time t on road Ii from J only if road Ii has a
bad datum at J at time t. If this happens, then road Ii does not have a bad datum
at J up to the time in which a big wave is absorbed from Ii. Then we reach the
conclusion.

Theorem 5.10. Fix a road network (I,J ). Given C > 0 and T > 0, there exists
an admissible solution defined on [0, T ] for all initial data ρ̄ ∈ cl{ρ : TV (ρ) ≤ C},
where cl indicates the closure in L1

loc.
Proof. We fix a sequence of initial data ρ̄ν piecewise constant such that TV (ρ̄ν) ≤

C for every ν ≥ 0 and ρ̄ν → ρ̄ in L1
loc as ν → +∞. For each ρ̄ν we consider an ap-

proximate wave front tracking solution ρν such that ρν(0, x) = ρ̄ν(x) and rarefactions
are split in rarefaction shocks of size 1

ν .
For every road Ii, we notice that on Di

1(ρν), ρν is not influenced by other roads and
so the estimates of [5] hold. Since the curves Y i,ρν

± are uniformly Lipschitz continuous,
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they converge, up to a subsequence, to a limit curve, and hence the regions Di
1(ρν)

“converge” to a limit region Di
1. Then ρν → ρ in L1

loc on Di
1 with ρ an admissible

solution to the Cauchy problem.
On Di

2 := [0,+∞[ × [ai, bi] \ Di
1, we have that, up to a subsequence, ρν ⇀∗ ρ

weak∗ on L1 and, using Theorem 2.4 of [5] and Lemma 5.6, f(ρν) → f̄ in L1 for
some f̄ . By Lemma 5.9, there are at most two big waves on Di

2 for every time, hence
splitting the domain Di

2 in a finite number of pieces, where we can invert the function
f , getting ρν → f−1(f̄) in L1. Together with ρν ⇀∗ ρ weak∗ on L1, we conclude that
ρν → ρ strongly in L1.

The other requirements of the definition of admissible solution are clearly
satisfied.

6. Lipschitz continuous dependence: A counterexample and two spe-
cial cases. In this section we assume that every junction has exactly two incoming
roads and two outgoing ones and for every junction we follow the notation (5.1). We
present a counterexample to the Lipschitz continuous dependence by initial data with
respect to the L1-norm. The continuous dependence by initial data with respect the
L1-norm remains an open problem. The counterexample is constructed using shifts
of waves as in the spirit of [6, 7], to which we refer the reader for general theory.

We show that, for every C > 0, it is possible to choose two piecewise constant
initial data, which are exactly the same except for a shift ξ of a discontinuity, such
that the L1-distance of the two corresponding solutions increases by the multiplicative
factor C. Obviously, the L1-distance of the initial data is finite and given by |ξ Δρ|,
where ξ is the shift and Δρ is the jump across the corresponding discontinuity. From
now on, we consider a junction J , satisfying condition (C), with I1, I2 as incoming
roads and I3, I4 as outgoing ones. Moreover, we suppose that the entries of the matrix
A satisfy α < β.

First we need some technical lemmas. The first one is well known; we report the
proof for the reader’s convenience.

Lemma 6.1. Let us consider in a road two waves, with speeds λ1 and λ2, respec-
tively, that interact together at a certain time t̄ producing a wave with speed λ3. If
the first wave is shifted by ξ1 and the second wave by ξ2, then the shift of the resulting
wave is given by

ξ3 =
λ3 − λ2

λ1 − λ2
ξ1 +

λ1 − λ3

λ1 − λ2
ξ2.(6.1)

Moreover, we have that

Δρ3 ξ3 = Δρ1 ξ1 + Δρ2 ξ2,(6.2)

where Δρi are the signed strengths of the corresponding waves.
Proof. We suppose that ρl and ρm are the left and right values of the wave with

speed λ1 and ρm and ρr are the left and right values of the wave with speed λ2; see
Figure 2.

So Δρ1 = ρm−ρl, Δρ2 = ρr −ρm, and Δρ3 = ρr −ρl. The two wave fronts have,
respectively,

x = λ1t + x1,0, x = λ2t + x2,0,

where x1,0 and x2,0 are the initial positions of the wave fronts with speed λ1 and λ2,
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Fig. 2. Shifts of waves.

respectively. Therefore they interact at the point

(x̄, t̄) =

(
λ1

x1,0 − x2,0

λ2 − λ1
+ x1,0,

x1,0 − x2,0

λ2 − λ1

)
.

If we consider the shifts, then the two wave fronts interact at the point

(x̃, t̃) =

(
x1,0 + ξ1 + λ1

(x2,0 + ξ2) − (x1,0 + ξ1)

λ1 − λ2
,
(x2,0 + ξ2) − (x1,0 + ξ1)

λ1 − λ2

)
,

and consequently (6.1) holds. Multiplying equation (6.1) by Δρ3 = Δρ1 + Δρ2, we
easily deduce (6.2).

Lemma 6.2. Let us consider a junction J with incoming roads I1 and I2 and
outgoing roads I3 and I4. If a wave on a road Ii (i ∈ {1, . . . , 4}) interacts with J
without producing waves in the same road Ii and if ξi is the shift of the wave in Ii,
then the shift ξj produced in a different road Ij (j ∈ {1, . . . , 4} \ {i}) satisfies

ξj
(
ρ+
j − ρ−j

)
=

Δγj
Δγi

ξi
(
ρ+
i − ρ−i

)
,(6.3)

where Δγl (l ∈ {i, j}) represents the variation of the flux in the road Il and ρ−l ,
ρ+
l (l ∈ {i, j}) are the states at J in the road Il, respectively, before and after the

interaction.
Proof. For simplicity let us consider the case i = 1 and j = 3, with the other

cases being identical. Applying the shift ξ1 to the wave (ρ+
1 , ρ

−
1 ), the interaction of

the wave with J is shifted in time by

−ξ1
ρ+
1 − ρ−1

f(ρ+
1 ) − f(ρ−1 )

= −ξ1
ρ+
1 − ρ−1
Δγ1

.

The shift in time in I3 must be the same and so

ξ1
ρ+
1 − ρ−1
Δγ1

= ξ3
ρ+
3 − ρ−3
Δγ3

,

which concludes the lemma.
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Remark 4. It is easy to understand that the coefficient of multiplication Δγj/Δγi
in the previous lemma depends by the entries of the matrix A. For example, under
the same hypotheses of the previous lemma, if a wave in the I1 road interacts with J
producing a variation of the flux Δγ1, and if no wave is produced in I1 and I2, then

Δγ3 = αΔγ1, Δγ4 = (1 − α)Δγ1.

Consequently, in this case

Δγ3

Δγ1
= α,

Δγ4

Δγ1
= 1 − α.

The following lemma is the first step needed to show that the Lipschitz dependence
by initial data does not hold in our setting. More precisely, we show that there exists
a simple configuration of waves and of shifts, which, after some interactions with J ,
produces an increase in the L1-distance and takes a similar configuration.

Lemma 6.3. There exists an initial datum given by (ρ1,0, ρ2,0, ρ3,0, ρ4,0) that is
an equilibrium configuration at J , a wave (ρ̄2, ρ2,0) on road I2, waves (ρ3,0, ρ

∗
3) with

shift ξ3,0, and (ρ∗3, ρ̄3) on road I3 such that the following occur in chronological order:

1. The initial distance in L1 is ξ3,0 |ρ3,0 − ρ∗3| ;
2. the wave (ρ3,0, ρ

∗
3) in I3 with shift ξ3,0 interacts with J ;

3. waves are produced only in I2 and I4;
4. the wave on road I2 interacts with (ρ̄2, ρ2,0) producing a new wave;
5. the new wave from road I2 interacts with J ;
6. waves are produced only in I3 and I4;
7. in I4 the L1-distance after the interactions is equal to

2
1 − β

β
|ξ3,0 (ρ∗3 − ρ3,0)| ,

and the L1-distance on road I3 is equal to ξ3,0 |ρ3,0 − ρ∗3|.
Proof. Let (ρ1,0, ρ2,0, ρ3,0, ρ4,0) be an equilibrium configuration in J such that

0 < ρ1,0 < σ, 0 < ρ2,0 < σ, 0 < ρ3,0 < σ, 0 < ρ4,0 < σ.

In road I3, we consider a wave with negative speed (ρ3,0, ρ
∗
3) with shift ξ3,0. Since

(ρ3,0, ρ
∗
3) has negative speed, then ρ∗3 > τ(ρ3,0). Initially the L1-distance of the two

solutions is given by |ξ3,0(ρ3,0 − ρ∗3)|. When this wave interacts with J , new waves
are produced in I2 and I4, which is possible, since α < β. Therefore the new solution
to the Riemann problem at J is given by

(ρ1,0, ρ̂2, ρ̂3, ρ̂4) ,

where τ(ρ2,0) < ρ̂2 < 1, 0 < ρ̂4 < ρ4,0. Moreover, some shifts ξ̂2 and ξ̂4 are produced

in roads I2 and I4, respectively, where obviously ξ̂2 has the same sign of ξ3,0 while ξ̂4
has opposite sign. By Lemma 6.2, we have⎧⎨

⎩
ξ̂2(ρ̂2 − ρ2,0) = 1

β ξ3,0(ρ
∗
3 − ρ3,0),

ξ̂4(ρ̂4 − ρ4,0) = 1−β
β ξ3,0(ρ

∗
3 − ρ3,0).
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If 0 < ρ̄2 < τ(ρ̂2), then the wave (ρ̄2, ρ2,0) in the road I2 with shift ξ̄2 = 0 interacts
with the wave (ρ2,0, ρ̂2) producing a wave (ρ̄2, ρ̂2) with positive speed and with shift

ξ̃2. In this case,

ξ̃2(ρ̂2 − ρ̄2) = ξ̂2(ρ̂2 − ρ2,0) =
1

β
ξ3,0(ρ

∗
3 − ρ3,0).

Then, after the interaction of the wave (ρ̄2, ρ̂2) with J , the new solution of the Rie-
mann problem at J is given by

(ρ1,0, ρ̄2, ρ̂3, ρ̄4) ,

where 0 < ρ̂3 < τ(ρ∗3) and 0 < ρ̄4 < ρ̂4. So in the roads I3 and I4 new shifts ξ̂3 and
ξ̄4 are created, where⎧⎨

⎩
ξ̂3(ρ

∗
3 − ρ̂3) = βξ̃2(ρ̂2 − ρ̄2) = ξ3,0(ρ

∗
3 − ρ3,0),

ξ̄4(ρ̂4 − ρ̄4) = (1 − β)ξ̃2(ρ̂2 − ρ̄2) = 1−β
β ξ3,0(ρ

∗
3 − ρ3,0).

Now, if τ(ρ̂3) < ρ̄3 < 1, then the wave (ρ∗3, ρ̄3) with shift ξ̄3 = 0 interacts in I3 with
the wave (ρ̂3, ρ

∗
3) producing a wave (ρ̂3, ρ̄3) with negative speed and with shift ξ̃3 such

that

ξ̃3(ρ̄3 − ρ̂3) = ξ̂3(ρ
∗
3 − ρ̂3) = ξ3,0(ρ

∗
3 − ρ3,0).

If the two waves on road I4 do not interact, and this occurs when choosing appropri-
ately the position of waves, then in the road I4 the L1-distance is

2
1 − β

β
|ξ3,0(ρ∗3 − ρ3,0)| ,

and so the lemma is proved.
Applying repeatedly Lemma 6.3, we produce a counterexample to the Lipschitz

continuous dependence by initial data, as the next proposition shows.
Proposition 6.4. Let C > 0, J be a junction, and (ρ1,0, . . . , ρ4,0) be an equilib-

rium configuration as in Lemma 6.3. There exist two piecewise constant initial data
satisfying the equilibrium configuration at J such that the L1-distance between the
corresponding two solutions increases by the multiplication factor C.

Proof. Let n be big enough so that(
1 + 2n

1 − β

β

)
> C.

We want to define an initial data that provides the desired increase. We choose ρ∗3
and two finite sequences (ρ̄i2), (ρ̄i3), i = 1, . . . , n, so that, letting ρ̂i2, ρ̂

i
3 be the states

determined as in Lemma 6.3, we have⎧⎪⎪⎨
⎪⎪⎩

ρ∗3 ∈ ]τ(ρ3,0), 1],

ρ̄i2 ∈ [0, τ(ρ̂i2)[, i = 1, . . . , n,

ρ̄i3 ∈ ]τ(ρ̂i3), 1], i = 1, . . . , n.

It is easy to check that these sequences can be defined by induction.
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The piecewise constant initial data in I3 are given by⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ρ3,0 if 0 < x < x∗,
ρ∗3 if x∗ < x < x̂1,
ρ̂1
3 if x̂1 < x < x̂2,

... . . .
ρ̄n3 if x̃n < x,

where the values x∗, x̂1, . . . , x̂n are to be determined in what follows. If ξ3,0 denotes
the shift of the wave (ρ3,0, ρ

∗
3) and if no more shifts are present, then the L1-distance

of initial data are given by

|ξ3,0| (ρ∗3 − ρ3,0) .

The initial data on I2 are ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ρ2,0 if x̃1 < x < 0,
ρ̂1
2 if x̃2 < x < x̃1,

... . . .
ρ̂n2 if x < x̃n,
... . . . ,

where x̃1, . . . , x̃n are to be chosen appropriately.

The speed of the wave (ρ3,0, ρ
∗
3) is given by the Rankine–Hugoniot condition

f(ρ3,0) − f(ρ∗3)

ρ3,0 − ρ∗3
,

and consequently the time needed to go to junction J is

T̄ = − (ρ3,0 − ρ∗3)x
∗

f(ρ3,0) − f(ρ∗3)
.

Clearly we adjust T̄ , choosing x∗. Applying n times Lemma 6.3 and adjusting the
interaction times by choosing appropriately x̄i, x̃i, i ∈ {1, . . . , n}, we can create 2n
waves on road I4 that do not interact together before the end of these n cycles and
so we deduce that, at the end, the L1-distance of the two solutions is given by(

1 + 2n
1 − β

β

)
|ξ3,0(ρ∗3 − ρ3,0)| ,

which concludes the proof.

Remark 5. The process described in the proof of Proposition 6.4 cannot be

infinitely repeated. In fact, the sequences ρ̄i2, ρ̄
i
3 are monotonic and so ρ̄i+1

3 − ρ̄i3 ∼ ρ̄1
3

n
as n goes to infinity. Then the corresponding shifts on I3 tend to infinity, letting
waves interact with each other on road I4. Therefore, with this method, it is not
possible to produce a blow-up of the L1-distance in finite time.

In some special cases the Lipschitz continuous dependence holds, as we show in
the next subsections.
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6.1. Network with only one junction. We consider a road network with only
one junction J and with I1, I2 incoming roads and I3, I4 outgoing roads. We define

D :=
{
ρ̄ = (ρ̄1, . . . , ρ̄4) ∈ L∞(I1 × · · · × I4) ∩ L1(I1 × · · · × I4) : ρ̄j ∈ [0, σ], j = 3, 4

}
.

The following theorem holds.
Theorem 6.5. There exists a Lipschitz continuous semigroup S : [0,+∞[ ×D →

D so that, for every ρ̄ ∈ D, ρ(t, x) = S(t, ρ̄)(x) is an admissible solution with ρ(0, x) =
ρ̄(x).

Before proving the theorem, we consider the following lemma.
Lemma 6.6. Let T > 0 and let ρ, ρ̃ be two approximate wave front tracking

solutions (AWFTS) connected by shifts such that ρ(0, ·) ∈ D and ρ̃(0, ·) ∈ D. Then,
for every t ∈ [0, T ], we have

‖ρ(t, ·) − ρ̃(t, ·)‖L1 =
∑

θ∈Θ(t)

∣∣ξθΔρθ
∣∣ = ‖ρ(0, ·) − ρ̃(0, ·)‖L1 ,

where Θ(t) denotes the set of the jumps Δρθ of ρ(t, ·) with shifts ξθ.
Proof. We note first that D is invariant with respect to approximate wave front

tracking solutions. Since ρj ∈ [0, σ] for every j ∈ {3, 4}, each wave on I3 and I4 has
positive speed and so shifts on outgoing roads cannot propagate themselves on other
roads. The conclusion easily follows from Lemmas 6.2 and 5.4.

Proof of Theorem 6.5. For every T > 0, by Theorem 5.10, a solution exists for
every initial data in D. By fixed ρ, ρ̃ ∈ D, we denote by ρν , ρ̃ν two approximate
wave front tracking solutions. As in [5, 6], to control the norm ‖ρν(t, ·) − ρ̃ν(t, ·)‖L1 ,
t ∈ [0, T ], it is enough to control the lengths of the shifts. Therefore, by Lemma 6.6,
we obtain

‖ρν(t, ·) − ρ̃ν(t, ·)‖L1 ≤ ‖ρν(0, ·) − ρ̃ν(0, ·)‖L1

for every t ∈ [0, T ]. Passing to the limit in the last expression, we finish the
proof.

6.2. Finite number of big waves, bad data, and interactions. Here we
want to show a more general result about the Lipschitz continuity with respect to
initial data. We omit the proof of this result, since it can be done with the same
techniques as in the last subsection.

Let us consider a road network (I,J ).
Definition 6.7. Let us fix an approximate wave front tracking solution ρ. For

every junction J and for every incoming road Ii, the function bρ(J, i, ·) is defined on
[0, T ] by

bρ(J, i, t) =

{
0 if ρi(t, bi−) ∈ [σ, 1],
1 if ρi(t, bi−) ∈ [0, σ[.

If ρν is a sequence of AWFTS, then we say that the sequence ρν has the property
(H) if the following hold:

H1. There exists M ∈ N such that the function bρν (J, i, ·) has at most M discon-
tinuities for every J ∈ J , for every i ∈ {1, . . . , N}, and for every ν ≥ 0.

H2. There exists δ > 0 such that

|ρν(t, ai+) − σ| > δ
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and

|ρν(t, bi−) − σ| > δ

for every J ∈ J , for every i ∈ {1, . . . , N}, for every ν ≥ 0, and for every
t ∈ [0, T ].

The following proposition holds.
Proposition 6.8. By fixed T > 0, we consider a solution ρ defined on [0, T ]

such that, for every t ∈ [0, T ], ρ(t, ·) is a bounded variation function. Given η > 0,
δ > 0, and M ∈ N, we define

Dη
ρ(δ,M) := {ρ̄ ∈ L1

loc : ∃(ρν)ν∈N sequence of AWFTS satisfying (H)

with parameters δ and M,

ρν(0, ·) → ρ̄(·) in L1
loc,Tot.Var.(ρν(0, ·) − ρ(0, ·)) < η}.

If there exist 0 < η′ < η, δ > 0 and M ∈ N such that

D := cl {ρ̃ : Tot.V ar.(ρ− ρ̃) < η′} ⊆ Dη
ρ(δ,M),

then there exists a Lipschitz continuous semigroup S of solutions defined on [0, T ]×D.
Remark 6. We expect the existence of η, η′, δ,M , as in Proposition 6.8, if we have

η < δ and if we assume that big waves of ρ have velocity bounded away from zero.

7. Time-dependent traffic. In this section we consider a model of traffic in-
cluding traffic lights and time-dependent traffic. The latter means that the choice of
drivers at junctions may depend on the period of the day; for instance, during the
morning the traffic flows toward some specific parts of the network and during the
evening it may flow back. This means that the matrix A may depend on time t.

Consider a single junction J as in section 3 with two incoming roads I1, I2 and
two outgoing ones I3 and I4. Let α = α(t), β = β(t) be two piecewise constant
functions such that

0 < α(t) < 1, 0 < β(t) < 1, α(t) 	= β(t)(7.1)

for each t ≥ 0. Moreover, let χ1 = χ1(t), χ2 = χ2(t) be piecewise constant maps such
that

χ1(t) + χ2(t) = 1, χi(t) ∈ {0, 1}, i = 1, 2,

for each t ≥ 0. The two maps represent traffic lights, with the value 0 corresponding
to the red light and the value 1 to the green light.

Definition 7.1. Consider ρ =
(
ρ1, . . . , ρ4

)
with bounded variation. We say that

ρ is a solution at junction J if it satisfies (i), (iii) of Definition 2.1 and if the following
property holds:

(iv) f(ρ3(t, a3+)) = α(t)χ1(t)f(ρ1(t, b1−)) + β(t)χ2(t)f(ρ2(t, b2−)) and
f(ρ4(t, a4+)) =

(
1−α(t)

)
χ1(t)f(ρ1(t, b1+))+

(
1−β(t)

)
χ2(t)f(ρ2(t, b2+)) for

each t > 0.
The construction of the solution can be done as in section 5. However, the total

variation of f(ρ) does not depend continuously on the total variation of the maps
α(·), β(·). Indeed, let us suppose that there are no traffic lights, i.e., χi ≡ 1, and let

α(t) =

{
η1 if 0 ≤ t ≤ t̄,
η2 if t̄ ≤ t ≤ T ,

β(t) =

{
η2 if 0 ≤ t ≤ t̄,
η1 if t̄ ≤ t ≤ T ,
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where 0 < η2 < η1 < 1
2 and 0 < t̄ < T . Consider the initial data (ρ1,0, ρ2,0, ρ3,0, ρ4,0),

where

f(ρ1,0) = f(ρ4,0) = f(σ), f(ρ2,0) = f(ρ3,0) =
η1

1 − η2
f(σ),

and

σ < ρ2,0 < 1, 0 < ρ3,0 < σ.

This is an equilibrium configuration and hence the solution of the Riemann problem for
0 ≤ t ≤ t̄. At time t = t̄ we have to solve a new Riemann problem. Let (ρ̂1, ρ̂2, ρ̂3, ρ̂4)
be the new solution. We have

f(ρ̂2) = f(ρ̂4) = f(σ), f(ρ̂1) = f(ρ̂3) =
η1

1 − η2
f(σ).

Now, if η1 → η2, then

Tot.Var.
(
α; [0, T ]

)
−→ 0, Tot.Var.

(
β; [0, T ]

)
−→ 0,

but

(f(ρ1,0), f(ρ2,0)) →
(
f(σ),

η2

1 − η2
f(σ)

)
, (f(ρ̂1), f(ρ̂2)) →

(
η2

1 − η2
f(σ), f(σ)

)
,

and hence Tot.Var.
(
f(ρ); [0, T ]

)
is bounded away from zero.

Appendix A. Total variation of the fluxes. Let J be a junction with three
incoming roads and three outgoing ones. We show with an example that the total
variation of the flux may increase if a wave arrives at J from an incoming road. Let
us suppose that the matrix A is given by

A
.
=

⎛
⎜⎜⎝

1
2 − ε 1

2
1
3

1
3

1
2

1
2 + ε

1
6 + ε 0 1

6 − ε

⎞
⎟⎟⎠ ,(A.1)

with ε > 0. Notice that the matrix A satisfies condition (C) for every ε > 0 small
enough.

Let us choose ρ1, ρ1,0, . . . , ρ6,0 ∈ [0, 1] such that

ρ1,0 = ρ4,0 = ρ5,0 = σ, σ < ρ2,0 < 1, σ < ρ3,0 < 1, 0 < ρ6,0 < σ, 0 < ρ1 < σ,

f(ρ2,0) =
1 + 36ε + 36ε2

3(1 + 6ε)
, f(ρ3,0) =

1 − 6ε

1 + 6ε
, f(ρ6,0) =

1

6
+ ε +

(1 − 6ε)2

6(1 + 6ε)
.

We assume f(σ) = 1. Then (ρ1,0, . . . , ρ6,0) is an equilibrium configuration and ρ,
given by

ρ1(0, x) =

{
ρ1,0 if x1 ≤ x ≤ b1,
ρ1 if x < x1,

ρi(0, ·) ≡ ρi,0, i = 2, . . . , 6,

is a solution (see Figure 3). Moreover the point
(
f(ρ1,0), f(ρ2,0), f(ρ3,0)

)
is given by

the intersection of the planes(
1

2
− ε

)
γ1 +

1

2
γ2 +

1

3
γ3 = 1,

1

3
γ1 +

1

2
γ2 +

(
1

2
+ ε

)
γ3 = 1, γ1 = 1.
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ρ
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2,0

ρ
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6,0

5,0

Fig. 3. Configuration at J.

At some time, say t̄, the wave (ρ1, ρ1,0) interacts with the junction. Let (ρ̂1, . . . , ρ̂6)
be the solution of the Riemann problem at the junction for the data (ρ1, ρ2,0, . . . , ρ6,0).
If f(ρ1) is sufficiently near 1, then we have

f(ρ̂1) = f(ρ1), f(ρ̂2) = 2 − 5 − 36ε2

3(1 + 6ε)
f(ρ1),

f(ρ̂3) =
1 − 6ε

1 + 6ε
f(ρ1), f(ρ̂4) = f(ρ̂5) = 1,

f(ρ̂6) =
1 + 36ε2

3(1 + 6ε)
f(ρ1).

Therefore

Tot.Var.
(
f(ρ(t̄−, ·))

)
= 1 − f(ρ1)

and

Tot.Var.
(
f(ρ(t̄+, ·))

)
=

3(1 − 2ε)

1 + 6ε

(
1 − f(ρ1)

)
> 2 Tot.Var.

(
f(ρ(t̄−, ·))

)
.

Appendix B. Total variation of the densities. Consider a junction J with
two incoming roads and two outgoing ones that we parameterize with the intervals
]−∞, b1], ]−∞, b2], [a3, +∞[, [a4, +∞[, respectively. We suppose that 0 < β < α <
1/2, where α and β are the entries of the matrix A as in (5.1).

Define a solution ρ by

ρ1(0, x) =

{
ρ1,0 if x1 ≤ x ≤ b1,
ρ1 if x < x1,

ρ2(0, x) = ρ2,0, ρ3(0, x) = ρ3,0, ρ4(0, x) = ρ4,0,

(B.1)

where ρ1, ρ1,0, ρ2,0, ρ3,0, ρ4,0 are constants such that

σ < ρ2,0 < 1, σ < ρ3,0 < 1, 0 ≤ ρ1 < σ, ρ1,0 = ρ4,0 = σ,(B.2)

f(ρ1,0) = f(ρ4,0) = f(σ), f(ρ2,0) = f(ρ3,0) =
α

1 − β
f(σ),



TRAFFIC FLOW ON A ROAD NETWORK 1885

γ

γ
1

2

1 1 2

f(     ) f(     )

f(     )

σ

σ

ρ
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2 (1 − α  ) γ  +  (1 − α  )  γ   =  f(     ) σ

α   γ   + α   γ   = f(       )ρ
3,0

Fig. 4. Solution to the Riemann problem at J.

so (ρ1,0, ρ2,0, ρ3,0, ρ4,0) is an equilibrium configuration.
After some time the wave (ρ1, ρ1,0) interacts with the junction. Let (ρ̂1, ρ̂2, ρ̂3, ρ̂4)

be the solution of the Riemann problem in the junction for the data (ρ1, ρ2,0, ρ3,0, ρ4,0);
see Figure 4. By (B.1) and (B.2),

f(ρ̂1) = f(ρ1), f(ρ̂2) =
f(σ) − (1 − α)f(ρ1)

1 − β
,

f(ρ̂3) =
α− β

1 − β
f(ρ1) +

β

1 − β
f(σ), f(ρ̂4) = f(σ),

and

0 < ρ̂3 < σ ≤ ρ̂2 < 1.(B.3)

Therefore, if ρ1 → ρ1,0 = σ, then

f(ρ̂3) −→
α

1 − β
f(σ) = f(ρ3,0),

and, by (B.3) and (B.2), we have ρ̂3 → τ(ρ3,0). Then, we are able to create on the
third road a wave with strength bounded away from zero using an arbitrarily small
wave on the first one.
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size of the body tends to infinity, and even if the surface energy is of cohesive form, under suitable
boundary displacements the crack propagates following the Griffith’s functional.
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1. Introduction. A well-known fact in fracture mechanics is that ductility is
also influenced by the size of the structure, and in particular the structure tends to
become brittle if its size increases (see, for example, [8] and the references therein).
The aim of this paper is to capture this fact for the problem of quasi-static growth
of cracks in linearly elastic bodies in the framework of the variational theory of crack
propagation formulated by Francfort and Marigo in [14].

The model proposed in [14] is inspired by the classical Griffith’s criterion (see
[16], [17], [18]) and it determines the evolution of the crack through a competition
between volume and surface energies. Let us illustrate the theory and the variant we
investigate in the case of generalized antiplanar shear.

Let Ω ⊆ R
N be open, connected, bounded, and with Lipschitz boundary. A crack

Γ ⊆ Ω is any rectifiable set, and a displacement u is any function defined almost
everywhere in Ω whose set of discontinuities S(u) is contained in Γ (we will make
precise the functional setting later). The total energy of the configuration (u,Γ) is
given by ∫

Ω\Γ
|∇u|2 dx + HN−1(Γ).(1.1)

The first term in (1.1) implies that we assume to apply linearized elasticity in the
unbroken part of Ω. The second term can be considered as the work done to create
Γ.

As suggested in [14], more general surface energies can be considered in (1.1),
especially those of Barenblatt’s type [5], and here we consider energies of the form∫

Γ

ϕ(|[u]|(x)) dHN−1(x),(1.2)

where [u](x) := u+(x) − u−(x) is the difference of the traces of u on both sides of Γ,
and ϕ : [0,+∞[ → [0,+∞[ (which depends on the material) is such that ϕ(0) = 0.
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In order to get a physical interpretation of (1.2), let us set σ := ϕ′: we interpret
σ(|[u]|(x)) as density of forces in x that act between the two lips of the crack Γ
whose displacements are u+(x) and u−(x), respectively. Typically σ is decreasing,
and σ(s) = 0 for s ≥ s̄: this means that the interaction between the two lips of the
crack decreases as the opening increases, and disappears when the opening is greater
than a critical length s̄. As a consequence, ϕ is increasing and concave, and ϕ(s)
is constant for s ≥ s̄. We will then consider ϕ increasing, concave, with ϕ(0) = 0,
a = ϕ′(0) < +∞, and lims→+∞ ϕ(s) = 1. We can interpret∫

Γ

ϕ(|[u]|(x)) dHN−1(x)

as the work made to create Γ with an opening given by [u]. Assuming linearized
elasticity to hold in Ω \ Γ, we consider a total energy of the form

‖∇u‖2 +

∫
Γ

ϕ(|[u]|) dHN−1,(1.3)

where ‖ · ‖ denotes the L2 norm. The problem of irreversible quasi-static growth of
cracks in the cohesive case can be addressed through a time discretization process in
analogy to what is proposed in [14] for the energy (1.1).

Let g(t) be a time-dependent boundary displacement defined on ∂DΩ ⊆ ∂Ω with
t ∈ [0, T ]. Let δ > 0 and let Iδ := {0 = tδ0 < tδ1 < · · · < tδNδ

= T} be a subdivision of

[0, T ] with max(tδi+1 − tδi ) < δ, and let gδi := g(tδi ). At time t = 0 we consider uδ
0 as a

minimum of

‖∇u‖2 +

∫
Sg(0)(u)

ϕ(|[u]|) dHN−1.(1.4)

Here Sg(0)(u) := S(u)∪{x ∈ ∂DΩ : u(x) 
= g(0)(x)}, and for all x ∈ ∂DΩ we consider
[u](x) := g(x) − ũ(x), where ũ is the trace of u on ∂Ω. We define the crack Γδ

0 at
time t = 0 as Sg(0)(uδ

0). We also set ψδ
0 := |[uδ

0]| on Γδ
0. The presence of Sg(0)(u) in

(1.4) indicates that the points at which the boundary displacement is not attained
are considered as a part of the crack.

Supposing to have constructed Γδ
i and ψδ

i at time tδi , we consider a minimum uδ
i+1

of the problem

‖∇u‖2 +

∫
S

gδ
i+1 (u)∪Γδ

i

ϕ(|[u]| ∨ ψδ
i ) dHN−1,(1.5)

where |[u]| ∨ ψδ
i := max{|[u]|, ψδ

i }, and define Γδ
i+1 := Γδ

i ∪ Sgδ
i+1(uδ

i+1) and ψδ
i+1 :=

ψδ
i ∨ |[uδ

i+1]| on Γδ
i+1.

Notice that problem (1.5) takes into account an irreversibility condition in the

growth of the crack. Indeed, while on Sgδ
i+1(u)\Γδ

i the surface energy which comes in

minimization of (1.5) is exactly as in (1.2), on Sgδ
i+1(u)∩Γδ

i the surface energy involved
takes into account the previous work made on Γδ

i . The surface energy is of the form
of (1.2) only if |[u]| > ψδ

i , that is, only if the opening is increased. If |[u]| ≤ ψδ
i , no

energy is gained, that is, displacements of this form along the crack are in a sense
surface-energy-free. Notice finally that the irreversibility condition involves only the
modulus of [u]: this is an assumption which is reasonable since we are considering
only antiplanar displacements. Clearly more complex irreversibility conditions can be
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formulated, involving, for example, a partial release of energy: the one we study is
the first straightforward extension of the irreversibility condition given in [14] for the
energy (1.1).

The discrete-in-time evolution of the crack relative to the subdivision Iδ, and the
boundary datum g(t) is given by {(uδ

i ,Γ
δ
i , ψ

δ
i ) : i = 0, . . . , Nδ}.

The irreversible quasi-static evolution of the crack relative to the boundary datum
g(t) is obtained as a limit for δ → 0 of (uδ(t),Γδ(t), ψδ(t)), where uδ(t) := uδ

i , Γδ(t) :=
Γδ
i , and ψδ(t) := ψδ

i for tδi ≤ t < tδi+1.

This program has been studied in detail in several papers in the case ϕ ≡ 1, that
is, for energy of the form (1.1). A first mathematical formulation has been given
by Dal Maso and Toader in [12], where the authors consider the case of dimension
N = 2 and cracks which are compact and with a uniform bound on the number of
connected components. This analysis has been extended to the case of plane elasticity
by Chambolle in [9]. In [13] Francfort and Larsen consider the general N -dimensional
case, and remove the bound on the number of the connected components of the
cracks: the key point is to introduce a weak formulation of the problem considering
displacements in the space SBV (see section 2). Finally Dal Maso, Francfort, and
Toader [11] treat the case of finite elasticity not restricted to antiplanar shear, with
volume energy depending on the full gradient under suitable growth conditions, and
in presence of body and traction forces: the appropriate functional space for the
displacements is now GSBV (see, for example, [4] for a precise definition).

In all these papers (see [12], [9], [13], [11]), the analysis of the limit reveals three
basic properties (irreversibility, static equilibrium, and nondissipativity; see Theorem
2.2) which are taken as definition of irreversible quasi-static growth in brittle fractures:
the time discretization procedure is considered as a privileged way to get an existence
result.

In the case of energy (1.3), several difficulties arise in the analysis of the discrete-
in-time evolution, and in the analysis as δ → 0. In section 3, we prove that the
functional space we need in order to apply the direct method of the Calculus of
Variations in the step-by-step minimizations (1.4), (1.5) is the space of functions with
bounded variation BV (see section 2): we thus consider a relaxed version of the
problems, namely,

∫
Ω

f(∇u) dx +

∫
Γ

ϕ(|[u]| ∨ ψ) dHN−1 + a|Dcu|(Ω),

where a = ϕ′(0), f is defined in (3.3), and Dcu indicates the Cantorian part of the
derivative of u. An existence result for discrete-in-time evolution in this context of
BV space is given in Proposition 3.1.

The analysis for δ → 0 presents several difficulties, the main one being the stability
of the minimality property of the discrete-in-time evolutions. The main purpose of
this paper is to prove that these difficulties disappear as the size of the reference
configuration increases, thanks to the fact that the body response tends to become
more and more brittle in spite of the presence of cohesive forces on the cracks. More
precisely, we prove this fact for the discrete evolutions in Ωh := hΩ for h large and
under suitable boundary displacements. The idea is to rescale displacements and
cracks to the fixed configuration Ω, and take advantage from the form of the problem
in this new setting. The boundary displacements on ∂DΩh := h∂DΩ will be taken of
the form
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gh(t, x) := hαg
(
t,
x

h

)
, g ∈ AC([0, T ];H1(Ω)),

‖g(t)‖∞ ≤ C, t ∈ [0, T ], x ∈ Ωh,

where α > 0 and C > 0. We indicate by (uδ,h(t),Γδ,h(t), ψδ,h(t)) the piecewise
constant interpolation of the discrete-in-time evolution of the crack in Ωh relative to
the boundary displacement gh. Let us moreover set for every t ∈ [0, T ]

Eδ,h(t) :=

∫
hΩ

f(∇uδ,h(t)) dx +

∫
Γδ,h(t)

ϕ(ψδ,h(t)) dHN−1 + a|Dcuδ,h(t)|(Ωh).

In the case α = 1
2 , we make the following rescaling:

vδ,h(t, x) :=
1√
h
uδ,h(t, hx), Kδ,h(t) :=

1

h
Γδ,h(t), γδ,h(t) :=

1√
h
ψδ,h(t, hx),

where t ∈ [0, T ] and x ∈ Ω. The main result of the paper is the following (see Theorem
4.1 for a more precise statement).

Theorem 1.1. If δ → 0 and h → +∞, there exists a quasi-static crack evolution
{t → (v(t),K(t))} in Ω relative to the boundary displacement g in the sense of [13]
(see Theorem 2.2) such that for all t ∈ [0, T ] we have

∇vδ,h(t) ⇀ ∇v(t) weakly in L1(Ω; RN ).

Moreover, for all t ∈ [0, T ] we have

1

hN−1
Eδ,h(t) → ‖∇v(t)‖2 + HN−1(K(t));

in particular h−N+1|Dcuδ,h(t)|(Ωh) → 0,

1

hN−1

∫
Ωh

f(∇uδ,h(t)) dx → ‖∇v(t)‖2,

and

1

hN−1

∫
Γδ,h(t)

ϕ(ψδ,h(t)) dHN−1 → HN−1(K(t)).

Theorem 1.1 proves that as the size of the reference configuration increases, the
response of the body in the problem of quasi-static growth of cracks tends to become
brittle, so that energy (1.1) can be considered. Moreover, we have convergence results
for the volume and surface energies involved.

The particular value α = 1
2 comes out because a problem of quasi-static evolution

has been considered. In fact if we consider an infinite plane with a crack segment of
length l and subject to a uniform stress σ at infinity, following Griffith’s theory, the
crack propagates quasi-statically if σ = KIC√

πl
, where KIC is the critical stress intensity

factor (depending on the material). So if the crack has length hl, the stress rescales
as 1√

h
. This is precisely what we are prescribing in the case α = 1

2 : in fact the stress

that intuitively we prescribe at the boundary can be reconstructed from ∇uh and
rescales precisely as 1√

h
.

For the proof of Theorem 1.1, the first step is to recognize that

(vδ,h(t),Kδ,h(t), γδ,h(t))
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is a discrete-in-time evolution relative to the boundary displacement g for a total
energy of the form∫

Ω

fh(∇u) dx +

∫
Γ

ϕh(|[u]| ∨ γ) dHN−1 + a
√
h|Dcu|(Ω),

where ϕh(s) ↗ 1 for all s ∈ [0,+∞[, and fh(ξ) ↗ |ξ|2 for all ξ ∈ R
N . From the

fact that ϕh ↗ 1 we recognize that the structure tends to become brittle. Bound on
total energy for the discrete-in-time evolution is available, so that compactness in the
space BV can be applied: it turns out that the limits of the displacements are of class
SBV with gradient in L2(Ω; RN ). Limits for the cracks are constructed through a
Γ-convergence procedure (see Proposition 5.2). The main point in order to see that
(v(t),K(t)) is a quasi-static crack growth is to recover the static equilibrium condition
(see point (c) of Theorem 2.2)

‖∇v(t)‖2 ≤ ‖∇v‖2 + HN−1(Sg(t)(v) \K(t)), v ∈ SBV (Ω)

from the minimality properties satisfied by (vδ,h(t),Kδ,h(t), γδ,h(t)). This is done in
Proposition 5.5 by means of a refined version of the Transfer of Jump of [13]: the main
difference here is that we have to deal with BV functions and we have to transfer the
jump on the part of Kδ,h(t) where ψδ,h(t) is greater than a given small constant.

We also consider the cases α ∈ ]0, 1
2 [ and α > 1

2 . It turns out that in the case
α ∈ ]0, 1

2 [, the body is not solicited enough to create a crack, that is, Ωh tends to
behave elastically: more precisely we prove (Theorem 4.2) that setting

vδ,h(t, x) :=
1

hα
uδ,h(t, hx)(1.6)

for all t ∈ [0, T ], we have that vδ,h(t) converges to the displacement of the elastic
problem in Ω under boundary displacement given by g(t).

In the case α > 1
2 we have that the body tends brutally toward rupture: in fact

in Theorem 4.3 we prove that vδ,h(0) given by (1.6) converges to a piecewise constant
function v in Ω, so that Sg(0)(v) disconnects Ω. This phenomenon is a consequence of
the variational approach based on the search for global minimizers: as the size of Ωh

increases, cracks carry an energy of order hN−1, while nonrigid displacements carry
an energy of greater order: in this way crack is preferred to deformation.

The paper is organized as follows. In section 2 we recall some basic definitions and
introduce the functional setting for the problem. In section 3 we deal with the problem
of discrete-in-time evolutions for cracks in the cohesive case. The main theorems are
listed in section 4, while in section 5 we prove some results which will be employed
in their proofs to which sections 6, 7, and 8 are devoted. In the appendix we prove
a relaxation result which is used in the problem of the discrete-in-time evolution of
cracks.

2. Preliminaries. In this section we state the notation and recall the prelimi-
nary results employed in the rest of the paper.

2.1. Basic notation. We will employ the following basic notation:
- Ω is an open, connected, and bounded subset of R

N with Lipschitz boundary;
- ∂DΩ is a subset of ∂Ω open in the relative topology;
- HN−1 is the (N − 1)-dimensional Hausdorff measure;
- we say that A ⊆̃B if A ⊆ B up to a set of HN−1-measure zero; similarly we

say that A=̃B if A = B up to a set of HN−1-measure zero;



1892 ALESSANDRO GIACOMINI

- Γ ⊆ Ω is rectifiable if there exists a sequence of C1 manifolds (Mi)i∈N such
that Γ ⊆̃ ∪i Mi;

- for all A ⊆ R
N , |A| denotes the Lebesgue measure of A;

- for all A ⊆ R
N , 1A denotes the characteristic function of A;

- if μ is a Borel measure on R
N and A is a Borel subset of R

N , μ A denotes the
restriction of μ to A, i.e., (μ A)(B) := μ(B ∩A) for all Borel sets B ⊆ R

N ;
- ‖u‖∞ and ‖u‖ denote the sup-norm and the L2 norm of u, respectively;
- if u, g ∈ BV (Ω; Rm), Sg(u) := S(u) ∪ {x ∈ ∂DΩ : u(x) 
= g(x)};
- if x, y ∈ R, x ∨ y := max{x, y} and x ∧ y := min{x, y}.

2.2. Functions of bounded variation. For the general theory of functions of
bounded variation, we refer the reader to [4]; here we recall some basic definitions
and theorems we need in what follows. We say that u ∈ BV (A) if u ∈ L1(A), and
its distributional derivative Du is a bounded vector-valued Radon measure on A. In
this case it turns out that the set S(u) of points x ∈ A which are not Lebesgue points
of u is rectifiable, that is, there exists a sequence of C1 manifolds (Mi)i∈N such that
S(u) ⊆ ∪iMi up to a set of HN−1-measure zero. As a consequence S(u) admits a
normal νu(x) at HN−1-a.e. x ∈ S(u). Moreover, for HN−1-a.e. x ∈ S(u), there exist
u+(x), u−(x) ∈ R such that

lim
r→0

1

|B±
r (x)|

∫
B±

r (x)

|u(y) − u±(x)| dy = 0,

where B+
r (x) := {y ∈ Br(x) : (y − x) · νu(x) > 0} (similarly for B−

r (x)), and Br(x)
is the ball with center x and radius r. It turns out that Du can be represented as

Du(A) =

∫
A

∇u(x) dx +

∫
A∩S(u)

(u+(x) − u−(x))νu(x) dHN−1(x) + Dcu(A),

where ∇u denotes the approximate gradient of u and Dcu is the Cantor part of Du.
BV (A) is a Banach space with respect to the norm ‖u‖BV (A) := ‖u‖L1(A) + |Du|(A).

We will often use the following result: if A is bounded and Lipschitz, and if
(uk)k∈N is a bounded sequence in BV (A), then there exist a subsequence (ukh

)h∈N

and u ∈ BV (A) such that

ukh
→ u strongly in L1(A),(2.1)

Dukh

∗
⇀ Du weakly* in the sense of measures.

We say that uk
∗
⇀ u weakly* in BV (A) if (2.1) holds.

We say that u ∈ SBV (A) if u ∈ BV (A) and Dcu = 0. The space SBV (A) is
called the space of special functions of bounded variation. Note that if u ∈ SBV (A),
then the singular part of Du is concentrated on S(u).

The space SBV is very useful when dealing with variational problems involving
volume and surface energies because of the following compactness and lower semicon-
tinuity result due to Ambrosio [1], [2], [3].

Theorem 2.1. Let A be an open and bounded subset of R
N , and let (uk)k∈N be

a sequence in SBV (A). Assume that there exist q > 1 and C ∈ [0; +∞[ such that∫
A

|∇uk|q dx + HN−1(S(uk)) + ||uk||∞ ≤ C
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for every k ∈ N. Then there exist a subsequence (ukh
)h∈N and a function u ∈ SBV (A)

such that

ukh
→ u strongly in L1(A),

∇ukh
⇀ ∇u weakly in L1(A; RN ),(2.2)

HN−1(S(u)) ≤ lim inf
h→+∞

HN−1(S(ukh
)).

In the rest of the paper, we will say that uk ⇀ u weakly in SBV (A) if uk and u
satisfy (2.2). The following fact, which can be derived from Ambrosio’s theorem, will

also be useful: if uk ⇀ u weakly in SBV (A) and if HN−1 S(uk)
∗
⇀ μ weakly* in the

sense of measures, then HN−1 S(u) ≤ μ as measures.
Finally in the context of fracture problems we will use the following notation: if

A is Lipschitz, and if ∂DA ⊆ ∂A, then for all u, g ∈ BV (A) we set

Sg(u) := S(u) ∪ {x ∈ ∂DA : u(x) 
= g(x)},(2.3)

where the inequality on ∂DA is intended in the sense of traces. Moreover, we set for
all x ∈ S(u)

[u](x) := u+(x) − u−(x),

and for all x ∈ ∂DA we set [u](x) := u(x) − g(x), where the traces of u and g on ∂A
are used.

2.3. Quasi-static evolution in brittle fracture. Let Ω be an open bounded
subset of R

N with Lipschitz boundary, and let ∂DΩ be a subset of ∂Ω open in the
relative topology. Let g : [0, T ] → H1(Ω) be absolutely continuous (see [7] for a precise
definition); we indicate the gradient of g at time t by ∇g(t), and the time derivative
of g at time t by ġ(t). For u ∈ SBV (Ω), let Sg(t)(u) be defined as in (2.3), and for
every A,B ⊆ R

N , let A ⊆̃B mean A ⊆ B up to a set of HN−1-measure zero. The
main result of [13] is the following theorem.

Theorem 2.2. There exists {(u(t),Γ(t)) : t ∈ [0, T ]} with Γ(t) ⊆̃Ω ∪ ∂DΩ recti-
fiable and u(t) ∈ SBV (Ω) such that

(a) Γ(s) ⊆̃Γ(t) for all 0 ≤ s ≤ t ≤ T ;
(b) u(0) minimizes

‖∇v‖2 + HN−1(Sg(0)(v))

among all v ∈ SBV (Ω);
(c) for t ∈ ]0, T ], u(t) minimizes

‖∇v‖2 + HN−1(Sg(t)(v) \ Γ(t))

among all v ∈ SBV (Ω);
(d) Sg(0)(u(0)) = Γ(0), and Sg(t)(u(t)) ⊆̃Γ(t) for all t ∈ ]0, T ].

Furthermore, the total energy

E(t) := ‖∇u(t)‖2 + HN−1(Γ(t))

is absolutely continuous and satisfies

E(t) = E(0) + 2

∫ t

0

∫
Ω

∇u(τ)∇ġ(τ) dx dτ(2.4)
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for every t ∈ [0, T ].
Condition (a) stands for the irreversibility of the crack propagation, conditions

(b) and (c) are static equilibrium conditions, while (2.4) stands for the nondissipativity
of the process.

2.4. Γ-convergence. Let us recall the definition and some basic properties of De
Giorgi’s Γ-convergence in metric spaces. We refer the reader to [10] for an exhaustive
treatment of this subject. Let (X, d) be a metric space. We say that a sequence
Fh : X → [−∞,+∞] Γ-converges to F : X → [−∞,+∞] (as h → +∞) if for all
u ∈ X we have

(i) (Γ-liminf inequality) for every sequence (uh)h∈N converging to u in X,

lim inf
h→+∞

Fh(uh) ≥ F (u);

(ii) (Γ-limsup inequality) there exists a sequence (uh)h∈N converging to u in X,
such that

lim sup
h→+∞

Fh(uh) ≤ F (u).

The function F is called the Γ-limit of (Fh)h∈N (with respect to d). Γ-convergence is
a convergence of variational type as explained in the following proposition.

Proposition 2.3. Assume that the sequence (Fh)h∈N Γ-converges to F and that
there exists a compact set K ⊆ X such that for all h ∈ N

inf
u∈K

Fh(u) = inf
u∈X

Fh(u).

Then F admits a minimum on X, infX Fh → minX F , and any limit point of any
sequence (uh)h∈N such that

lim
h→+∞

(
Fh(uh) − inf

u∈X
Fh(u)

)
= 0

is a minimizer of F .
Moreover, the following compactness result holds.
Proposition 2.4. If (X, d) is separable, and (Fh)h∈N is a sequence of functionals

on X, then there exist a subsequence (Fhk
)k∈N and a function F : X → [−∞; +∞]

such that (Fhk
)k∈N Γ-converges to F .

3. Discrete-in-time evolution of cracks in the cohesive case. In this sec-
tion we are interested in generalized antiplanar shear of an elastic body Ω in the
context of linearized elasticity and in presence of cohesive forces on the cracks.

The notion of discrete-in-time evolution for cracks relative to time-dependent
boundary displacement g(t) has been described in the introduction. It relies on the
minimization of functionals of the form

‖∇u‖2 +

∫
Γ∪Sg(t)(u)

ϕ(|[u]| ∨ ψ) dHN−1,(3.1)

with ψ a positive function defined on Γ. We now define rigorously the functional space
to which the displacements belong, and the properties of Ω, Γ, ψ, and g(t) in order
to prove an existence result for the discrete-in-time evolution of cracks.

Let Ω be an open bounded subset of R
N with Lipschitz boundary. Let ∂DΩ ⊆ ∂Ω

be open in the relative topology, and let ∂NΩ := ∂Ω\∂DΩ. Let ϕ : [0,+∞[ → [0,+∞[
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be increasing and concave, ϕ(0) = 0 and such that lims→+∞ ϕ(s) = 1. If a := ϕ′(0) <
+∞, we have

ϕ(s) ≤ as for all s ∈ [0,+∞[.

Let T > 0, and let us consider a boundary displacement g ∈ AC([0, T ];H1(Ω)) such
that ‖g(t)‖∞ ≤ C for all t ∈ [0, T ]. We discretize g in the following way. Given δ > 0,
let Iδ be a subdivision of [0, T ] of the form 0 = tδ0 < tδ1 < · · · < tδNδ

= T such that

maxi(t
δ
i − tδi−1) < δ. For 0 ≤ i ≤ Nδ we set gδi := g(tδi ).

As for the space of the displacements, it would be natural, following [13], to
consider u ∈ SBV (Ω). Since a = ϕ′(0) < +∞, we have unfortunately that the
minimization of (3.1) is not well posed in SBV (Ω). Let us in fact consider (un)n∈N

minimizing sequence for (3.1): it turns out that we may assume (un)n∈N bounded
in BV (Ω). As a consequence (un)n∈N admits a subsequence weakly* convergent in
BV (Ω) to a function u ∈ BV (Ω). Then we have that minimizing sequences of (3.1)
converge (up to a subsequence) to a minimizer of the relaxation of (3.1) with respect
to the weak* topology of BV (Ω). By Proposition 9.1, the natural domain of this
relaxed functional is BV (Ω), and that its form is∫

Ω

f(∇u) dx +

∫
Γ∪Sg(t)(u)

ϕ(|[u]| ∨ ψ) dHN−1 + a|Dcu|(Ω),(3.2)

where

f(ξ) :=

⎧⎨
⎩

|ξ|2 if |ξ| ≤ a
2 ,

a2

4 + a(|ξ| − a
2 ) if |ξ| ≥ a

2 .

(3.3)

In view of these remarks, we consider BV (Ω) as the space of displacements u of the
body Ω, and a total energy of the form (3.2). The volume part in the energy (3.2)
can be interpreted as the contribution of the elastic behavior of the body. The second
term represents the work done to create the crack Γ∪ Sg(t)(u) with opening given by
|[u]| ∨ψ. The new term a|Dcu| can be interpreted as the contribute of microcracks in
the configuration which are considered as reversible.

Let us define the discrete evolution of the crack in this new setting. For i = 0, let
uδ

0 ∈ BV (Ω) be a minimum of

min
u∈BV (Ω)

{∫
Ω

f(∇u) dx +

∫
S

gδ
0 (u)

ϕ(|[u]|) dHN−1 + a|Dcu|
}
.(3.4)

We set Γδ
0 := Sgδ

0 (uδ
0).

Supposing to have constructed uδ
j and Γδ

j for all j = 0, . . . , i − 1, let uδ
i be a

minimum of

min
u∈BV (Ω)

{∫
Ω

f(∇u) dx +

∫
S

gδ
i (u)∪Γδ

i−1

ϕ(|[u]| ∨ ψδ
i−1) dHN−1 + a|Dcu|

}
,(3.5)

where ψδ
i−1 := |[uδ

0]| ∨ · · · ∨ |[uδ
i−1]|. We set Γδ

i := Γδ
i−1 ∪ Sgδ

i (uδ
i ).

In the following proposition we establish the existence of this discrete evolution.
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Proposition 3.1. Let Iδ = {0 = tδ0 < · · · < tδNδ
= T} be a subdivision of [0, T ]

such that max(tδi − tδi−1) < δ. Then for all i = 0, . . . , Nδ there exists uδ
i ∈ BV (Ω)

such that setting Γδ
−1 := ∅, ψδ

−1 := 0,

Γδ
i :=

i⋃
j=0

Sgδ
j (uδ

j), ψδ
i (x) := |[uδ

0]|(x) ∨ · · · ∨ |[uδ
i ]|(x),

the following holds:
(a) ‖uδ

i ‖∞ ≤ ‖gδi ‖∞ ≤ C;
(b) for all v ∈ BV (Ω) we have∫

Ω

f(∇uδ
i ) dx +

∫
Γδ
i

ϕ(ψδ
i ) dHN−1 + a|Dcuδ

i |(Ω)(3.6)

≤
∫

Ω

f(∇v) dx +

∫
S

gδ
i (v)∪Γδ

i−1

ϕ(|[v]| ∨ ψδ
i−1) dHN−1 + a|Dcv|(Ω),

where a = ϕ′(0) and f is defined in (3.3);
(c) we have that∫

Ω

f(∇uδ
i ) dx +

∫
Γδ
i

ϕ(ψδ
i ) dHN−1 + a|Dcuδ

i |(Ω)

= inf
v∈SBV (Ω)

{
‖∇v‖2 +

∫
S

gδ
i (v)∪Γδ

i−1

ϕ(|[v]| ∨ ψδ
i−1) dHN−1

}
.

Proof. We have to prove that problems (3.4) and (3.5) admit solutions. Let
us consider, for example, problem (3.5), the other being similar. Let (un)n∈N be a
minimizing sequence for problem (3.5). By a truncation argument we may assume
that ‖un‖∞ ≤ ‖gδi ‖. Comparing un with gδi , we get for n large∫

Ω

f(∇un) dx +

∫
S

gδ
i (un)∪Γδ

i−1

ϕ(|[un]| ∨ ψδ
i−1) dHN−1 + a|Dcun|(Ω)

≤
∫

Ω

f(∇gδ0) dx +

∫
Γδ
i−1

ϕ(ψδ
i−1) dHN−1 + 1 ≤ C ′,

with C ′ independent of n. Since there exists d > 0 such that a|ξ| − d ≤ f(ξ) for all
ξ ∈ R

N , we deduce that (∇un)n∈N is bounded in L1(Ω; RN ). Moreover, if s̄ is such
that ϕ(s̄) = 1

2 and ā is such that s ≤ āϕ(s) for all s ∈ [0, s̄], we have∫
S(un)

|[un]| dHN−1 =

∫
{|[un]|≤s̄}

|[un]| dHN−1 + ‖gδi ‖∞HN−1({|[un]| > s̄})

≤ ā

∫
|[un]|≤s̄

ϕ(|[un]|) dHN−1 + 2‖gδi ‖∞
∫
|[un]|>s̄

ϕ(|[un]|) dHN−1

≤ (ā + 2‖gδi ‖∞)C ′.

Finally for all n

|Dcun| ≤
C ′

a
.
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We conclude that (un)n∈N is bounded in BV (Ω). Then there exists u ∈ BV (Ω) such

that up to a subsequence un
∗
⇀ u weakly* in BV (Ω) and pointwise almost everywhere.

Let us set uδ
i := u. By Lemma 9.2 we deduce that∫

Ω

f(∇u) dx +

∫
S

gδ
i (u)∪Γδ

i−1

ϕ(|[u]| ∨ ψδ
i−1) dHN−1 + a|Dcu|(Ω)

≤ lim inf
n→+∞

∫
Ω

f(∇un) dx +

∫
S

gδ
i (un)∪Γδ

i−1

ϕ(|[un]| ∨ ψδ
i−1) dHN−1 + a|Dcun|(Ω).

Setting ψδ
i := ψδ

i−1∨|[uδ
i ]|, we have that point (b) holds. Moreover ‖uδ

i ‖∞ ≤ ‖gδ0‖∞ ≤
C, so that point (a) holds. Finally point (c) is a consequence of Proposition 9.1.

Let us consider now the following piecewise constant interpolation in time:

uδ(t) := uδ
i , Γδ(t) := Γδ

i , ψδ(t) := ψδ
i , gδ(t) := gδi(3.7)

for tδi ≤ t < tδi+1, with uδ(T ) := uδ
Nδ

, Γδ(T ) := Γδ
Nδ

, ψδ(T ) := ψδ
Nδ

, and gδ(T ) := g(T ).
For every v ∈ BV (Ω) and for every t ∈ [0, T ] let us set

Eδ(t, v) :=

∫
Ω

f(∇v) dx +

∫
Sgδ(t)(v)∪Γδ(t)

ϕ(|[v]| ∨ ψδ(t)) dHN−1(3.8)

+ a|Dcv|(Ω).

Then the following estimate holds.
Lemma 3.2. There exists eδa → 0 for δ → 0 and a → +∞ such that for all

t ∈ [0, T ] we have

Eδ(t, uδ(t)) ≤ Eδ(0, uδ(0)) +

∫ tδi

0

∫
Ω

f ′(∇uδ(τ))∇ġ(τ) dx dτ + eδa,

where tδi is the step discretization point such that tδi ≤ t < tδi+1.
Proof. Comparing uδ

i with uδ
i−1 + gδi − gδi−1 by means of (3.6) we obtain

Eδ(tδi , u
δ
i ) ≤

∫
Ω

f(∇uδ
i−1 + ∇gδi −∇gδi−1) dx +

∫
Γδ
i−1

ϕ(ψδ
i−1) dHN−1 + a|Dcuδ

i−1|(Ω).

Notice that by the very definition of f the following hold:
(1) if |∇uδ

i−1 + ∇gδi −∇gδi−1| ≥ a
2 and |∇uδ

i−1| ≥ a
2 ,

f ′(∇uδ
i−1 + ∇gδi −∇gδi−1) = f ′(∇uδ

i−1);

(2) if |∇uδ
i−1 + ∇gδi −∇gδi−1| < a

2 and |∇uδ
i−1| ≥ a

2 ,

f(∇uδ
i−1 + ∇gδi −∇gδi−1) ≤ f(∇uδ

i−1);

(3) if |∇uδ
i−1 + ∇gδi −∇gδi−1| ≥ a

2 and |∇uδ
i−1| < a

2 ,

f(∇uδ
i−1+∇gδi−∇gδi−1) ≤ f(∇uδ

i−1)+2(∇uδ
i−1,∇gδi−∇gδi−1)+|∇gδi−∇gδi−1|2;

(4) if |∇uδ
i−1 + ∇gδi −∇gδi−1| < a

2 and |∇uδ
i−1| < a

2 ,

f(∇uδ
i−1+∇gδi−∇gδi−1) = f(∇uδ

i−1)+2(∇uδ
i−1,∇gδi−∇gδi−1)+|∇gδi−∇gδi−1|2.
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Then by convexity of f we deduce

Eδ(tδi , u
δ
i ) ≤ Eδ(tδi−1, u

δ
i−1) +

∫
Ω

f ′(∇uδ
i−1)(∇gδi −∇gδi−1) dx + Rδ,a

i−1,

where

Rδ,a
i−1 :=

∫
Ω

|∇gδi −∇gδi−1|2 dx +

∫
{|∇uδ

i−1
|≥ a

2 }
|f ′(∇uδ

i−1)| |∇gδi −∇gδi−1| dx.

Then summing up from tδi to tδ0, and taking into account (3.7) we get

Eδ(t, uδ(t)) ≤ Eδ(0, uδ(0)) +

∫ tδi

0

∫
Ω

f ′(∇uδ(τ))∇ġ(τ) dx dτ +

∫ tδi

0

Rδ,a(τ) dτ,

where

Rδ,a(τ) := σ(δ)‖∇ġ(τ)‖ +

∫
{|∇uδ(τ)|≥ a

2 }
|f ′(∇uδ(τ))| |∇ġ(τ)| dx

and

σ(δ) := max
i=1,...,Nδ

∫ tδi

tδ
i−1

‖∇ġ‖ dτ.

In order to conclude the proof it is sufficient to see that∫ T

0

Rδ,a(τ) dτ → 0

as δ → 0 and a → +∞. Notice that σ(δ) → 0 as δ → 0 by the absolutely continuity of
‖∇ġ‖. Let us come to the second term. Note that |f ′(∇uδ(τ))| = a on {|∇uδ(τ)| ≥ a

2}.
Then we have to see ∫ T

0

∫
Ω

a|∇ġ(τ)|1{|∇uδ(τ)|≥ a
2 } dx dτ → 0(3.9)

as δ → 0 and a → +∞. Setting Aδ
a(τ) := {x ∈ Ω : |∇uδ(τ)|(x) ≥ a

2} we have by
Hölder inequality

∫
Ω

a|∇ġ(τ)|1Aδ
a(τ) dx ≤ a

√
|Aδ

a(τ)|
(∫

Aδ
a(τ)

|∇ġ(τ)|2 dx
) 1

2

.

Notice that

a2

2
|Aδ

a(τ)| ≤ a

∫
Aδ

a(τ)

|∇uδ(τ)| dx ≤ 2

∫
Aδ

a(τ)

f(∇uδ(τ)) dx ≤ C ′,(3.10)

where C ′ depends only on g and is obtained comparing uδ(τ) with gδ(τ) by means of
(3.6). We deduce that

∫
Ω

a|∇ġ(τ)|1Aδ
a(τ) dx ≤

√
2C ′

(∫
Aδ

a(τ)

|∇ġ(τ)|2 dx
) 1

2

≤
√

2C ′‖∇ġ(τ)‖.

As δ → 0 and a → +∞, by (3.10) we have that |Aδ
a(τ)| → 0. Then by the equiconti-

nuity of |∇ġ(τ)|2 and by the Dominated Convergence theorem, we deduce that (3.9)
holds, and the proof is finished.
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4. The main results. Let Ω be an open, connected, and bounded subset of R
N

with Lipschitz boundary. Let ∂DΩ ⊆ ∂Ω be open in the relative topology, and let
∂NΩ := ∂Ω \ ∂DΩ.

In this section we consider discrete-in-time evolution of cracks in a linearly elastic
body whose reference configuration is given by Ωh := hΩ, where h is positive and
large. Let us assume that the cohesive forces on the cracks of Ωh are given in the
sense of section 3 by a function ϕ : [0,+∞[ → [0, 1] which is increasing, concave,
ϕ(0) = 0, ϕ′(0) = a < +∞, and such that lims→+∞ ϕ(s) = 1. Let us moreover set

f(ξ) :=

⎧⎨
⎩

|ξ|2 if |ξ| ≤ a
2 ,

a2

4 + a(|ξ| − a
2 ) if |ξ| ≥ a

2 .

(4.1)

Let us consider on ∂DΩh := h∂DΩ boundary displacements of the following particular
form:

gh(t, x) := hαg
(
t,
x

h

)
,(4.2)

with g ∈ AC([0, T ];H1(Ω)) such that ‖g(t)‖∞ ≤ C for all t ∈ [0, T ]. Given δ > 0, let

Iδ = {0 = tδ0 < · · · < tδNδ
= T}

be a subdivision of [0, T ] such that max(tδi − tδi−1) < δ, and let

{t → (uδ,h(t),Γδ,h(t), ψδ,h(t)) : t ∈ [0, T ]}

be the piecewise constant interpolation in the sense of (3.7) of a discrete-in-time
evolution of cracks in Ωh relative to the boundary datum gh and the subdivision Iδ
given by Proposition 3.1.

Our aim is to study the asymptotic behavior of {t → (uδ,h(t),Γδ,h(t), ψδ,h(t)) :
t ∈ [0, T ]} as δ → 0 and h → +∞. Let us consider h ∈ N (we can consider any
sequence which diverges to +∞), let us fix δh → 0, and let us set for all t ∈ [0, T ]

uh(t) := uδh,h(t), Γh(t) := Γδh,h(t), ψh(t) := ψδh,h(t),(4.3)

and let gδhh (t) := gh(tδhi ) where tδhi ∈ Iδh is such that tδhi ≤ t < tδhi+1. Let us moreover
set for every v ∈ BV (Ω) and for every t ∈ [0, T ]

Eh(t, v) :=

∫
Ωh

f(∇v) dx +

∫
S

g
δh
h

(t)
(v)∪Γh(t)

ϕ(|[v]| ∨ ψh(t)) dHN−1(4.4)

+ a|Dcv|(Ωh).

The asymptotic of (uh,Γh, ψh) depends on α, and we have to distinguish three cases.
The first case α = 1

2 was stated in the introduction and reveals the prevalence of
brittle effects as the size of the body increases. We give here the precise statement
we will prove.

Theorem 4.1. Let g ∈ AC(0, T ;H1(Ω)) be such that ‖g(t)‖∞ ≤ C for all
t ∈ [0, T ]. Let {t → (uh(t),Γh(t), ψh(t)) : t ∈ [0, T ]} be the piecewise constant
interpolation given in (4.3) of a discrete-in-time evolution of cracks in Ωh relative to
the boundary data

gh(x, t) :=
√
hg

(x
h
, t
)
.

Then the following facts hold:
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(a) there exists a constant C ′ dependent only on g such that for all t ∈ [0, T ]

1

hN−1
Eh(t, uh(t)) ≤ C ′;

(b) for all t ∈ [0, T ]

vh(t, x) :=
1√
h
uh(t, hx) is bounded in BV (Ω);

(c) there exists a subsequence independent of t and there exists a quasi-static
crack evolution {t → (v(t),K(t)) : t ∈ [0, T ]} in Ω relative to boundary
displacement g in the sense of Theorem 2.2 such that for all t ∈ [0, T ] we
have

∇vh(t) ⇀ ∇v(t) weakly in L1(Ω; RN ),

and every accumulation point v of (vh(t))h∈N in the weak* topology of BV (Ω)
is such that v ∈ SBV (Ω), Sg(t)(v) ⊆̃K(t), and ∇v = ∇v(t). Moreover, for
all t ∈ [0, T ] we have

1

hN−1
Eh(t, uh(t)) → ‖∇v(t)‖2 + HN−1(K(t));(4.5)

in particular h−N+1|Dcuh(t)|(Ωh)| → 0,

1

hN−1

∫
Ωh

f(∇uh(t)) dx → ‖∇v(t)‖2,(4.6)

and

1

hN−1

∫
Γh(t)

ϕ(ψh(t)) dHN−1 → HN−1(K(t)).(4.7)

Notice that in point (c) we cannot assert that the sequence (vh(t))h∈N converges
to v(t) in the weak* topology of BV (Ω): this is due to the fact that K(t) could
disconnect Ω (in a weak sense), so that v(t) is determined up to a constant on the
components of Ω \K which do not touch ∂DΩ.

The case α < 1
2 leads to a problem in elasticity in Ωh in the sense of the following

theorem.
Theorem 4.2. Let g ∈ AC(0, T ;H1(Ω)) be such that ‖g(t)‖∞ ≤ C for all

t ∈ [0, T ]. Let {t → (uh(t),Γh(t), ψh(t)) : t ∈ [0, T ]} be the piecewise constant
interpolation given in (4.3) of a discrete-in-time evolution of cracks in Ωh relative to
the boundary data

gh(x, t) := hαg
(
t,
x

h

)

with α < 1
2 . Then the following facts hold:

(a) for all t ∈ [0, T ]

vh(t, x) :=
1

hα
uh(t, hx) is bounded in BV (Ω);



SIZE EFFECTS ON QUASI-STATIC GROWTH OF CRACKS 1901

(b) there exists a subsequence independent of t such that for all t ∈ [0, T ] we have

vh(t)
∗
⇀ v(t) weakly* in BV (Ω) and

∇vh(t) ⇀ ∇v(t) weakly in L1(Ω; RN ),

where v(t) is the minimizer of

min{‖∇v‖2 : v ∈ H1(Ω), v = g(t) on ∂DΩ};

moreover for all t ∈ [0, T ] we have

1

hN+2α−2

∫
Ωh

f(∇uh(t)) dx → ‖∇v(t)‖2.

Finally for the case α > 1
2 the body goes to rupture at time t = 0, in the sense of

the following theorem.

Theorem 4.3. Let g ∈ AC(0, T ;H1(Ω)) be such that ‖g(t)‖∞ ≤ C for all
t ∈ [0, T ]. Let {t → (uh(t),Γh(t), ψh(t)) : t ∈ [0, T ]} be the piecewise constant
interpolation given in (4.3) of a discrete-in-time evolution of cracks in Ωh relative to
the boundary data

gh(x, t) := hαg
(x
h
, t
)

with α > 1
2 . Let us set vh(t, x) := 1

hαuh(t, hx) for all x ∈ Ω and for all t ∈ [0, T ].

Then (vh(0))h∈N is bounded in BV (Ω), and every accumulation point v of
(vh(0))h∈N in the weak* topology of BV (Ω) is piecewise constant in Ω, i.e., v ∈
SBV (Ω) and ∇v = 0. Moreover,

HN−1(Sg(0)(v(0))) ≤ HN−1(Sg(0)(w))(4.8)

for all piecewise constant function w ∈ SBV (Ω).

Notice that the minimality property (4.8) can be restated saying that v(0) deter-
mines a minimal partition of Ω (in the sense of the perimeter of Sg(0)(w)).

5. Some tools for the asymptotic analysis. In this section we prove some
technical propositions which will be very useful in the proofs of the main results of the
paper. More precisely, we will prove compactness results for the displacements and
the cracks, and we will prove a generalization of the Transfer of Jump of [13] which will
be employed in order to study what the minimality property of the discrete-in-time
evolutions imply in the limit.

For all h ∈ N let fh : R
N → [0,+∞[ be such that for all ξ ∈ R

N

fh(ξ) ↗ |ξ|2, fh(ξ) ≥ min{|ξ|2 − 1, bh|ξ|}(5.1)

with bh → +∞ as h → +∞, and let ϕh : [0,+∞[ → [0, 1] be increasing and such that
for all s ∈ [0,+∞[

ϕh(s) ≥ min{chs, dh}(5.2)

with ch → +∞ and dh ↗ 1 for h → +∞.
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5.1. Compactness for the displacements. In this subsection we give a com-
pactness and lower semicontinuity result for the displacements whose proof is inspired
by the proof of Ambrosio’s compactness theorem (see [3]).

Proposition 5.1. Let us consider the functionals

Fh(u) :=

m∑
i=1

∫
Ω

fh(∇ui) dx +

∫
S(u)

ϕh(|[u1]| ∨ · · · ∨ |[um]|) dHN−1 + ah|Dcu|(Ω),

where u = (u1, . . . , um) ∈ BV (Ω; Rm) (with fh and ϕh defined in (5.1) and (5.2)). Let
ah → +∞ for h → +∞, and let (uh)h∈N be a sequence in BV (Ω). Then the following
facts hold.

(a) If

Fh(uh) + ‖uh‖L∞(Ω;Rm) ≤ C

for some C ∈ [0,+∞[, then up to a subsequence

uh ∗
⇀ u weakly* in BV (Ω; Rm).

(b) If Fh(uh) ≤ C for some C ∈ [0,+∞[ and uh ∗
⇀ u weakly* in BV (Ω; Rm),

then u ∈ SBV (Ω; Rm),

∇uh ⇀ ∇u weakly in L1(Ω; Rm×N ),(5.3)

‖∇ui‖2 ≤ lim inf
h→+∞

∫
Ω

fh(∇uh
i ) dx, i = 1, . . . ,m,(5.4)

and

HN−1(S(u)) ≤ lim inf
h→+∞

∫
S(uh)

ϕh(|[uh
1 ]| ∨ · · · ∨ |[uh

m]|) dHN−1.(5.5)

Proof. As for point (a), let us prove that there exists C ′ independent of h such
that we have

|Duh(t)|(Ω) ≤ C ′.(5.6)

In fact, since for h large we have for all ξ ∈ R
N

|ξ| − 1 ≤ fh(ξ),

we deduce that for all i = 1, . . . ,m∫
Ω

|∇uh
i | dx ≤

∫
Ω

[fh(∇uh
i ) + 1] dx ≤ C + |Ω|,

where |Ω| denotes the Lebesgue measure of Ω. Moreover, if h is so large that s ≤ 2ϕh(s)
for all s ∈ [0, 1], we have for all i = 1, . . . ,m∫

S(uh
i
)

|[uh
i ]| dHN−1 ≤

∫
|[uh

i
]|<1

|[uh
i ]| dHN−1 + ‖uh

i (t)‖∞HN−1
({

|[uh
i ]| ≥ 1

})

≤ 2

∫
|[uh

i
]|<1

ϕh(|[uh
i ]|) dHN−1 + 2C

∫
|[uh

i
]|≥1

ϕh(|[uh
i ]|) dHN−1 ≤ 2(1 + C)C.
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Finally for all h

|Dcuh|(Ω) ≤ C

ah
.

We deduce that (5.6) holds, and so up to a subsequence we may suppose that uh
∗
⇀ u

weakly* in BV (Ω; Rm).

Let us come to point (b). Let us consider uh ∈ BV (Ω) such that uh ∗
⇀ u weakly*

in BV (Ω; Rm) and Fh(uh) ≤ C. Notice that (∇uh)h∈N is equi-integrable. In fact if
rh is such that for all |ξ| ≤ rh

|ξ|2 − 1 ≤ bh|ξ|,

we get for all i = 1, . . . ,m and for all E ⊆ Ω∫
E

|∇uh
i | dx ≤

∫
{|∇uh

i
|≤rh}∩E

|∇uh
i | dx +

∫
{|∇uh

i
|>rh}∩E

|∇uh
i | dx

≤
(∫

{|∇uh
i
|≤rh}∩E

|∇uh
i |2 dx

) 1
2

|E| 12 +

∫
{|∇uh

i
|>rh}∩E

|∇uh
i | dx

≤
(∫

Ω

(fh(∇uh
i ) + 1) dx

)1
2

|E| 12 +
1

bh

∫
Ω

fh(∇uh
i ) dx ≤

√
(C + |Ω|)|E| + C

bh
.

This proves that ∇uh is equi-integrable. Up to a subsequence we may suppose that
for all i = 1, . . . ,m we have

∇uh
i ⇀ gi weakly in L1(Ω; RN ).

Since ah → +∞, we get Dcuh → 0 strongly in the sense of measures.
Let ψ : R → R be bounded, Lipschitz, and C1, and for all i = 1, . . . ,m let us

consider the measures

μh
i (B) := Dψ(uh

i )(B) −
∫
B

ψ′(uh
i )∇uh

i dx, λh
i (B) :=

∫
S(uh

i
)∩B

ϕh(|[uh
i ]|) dHN−1,

where B is a Borel set in Ω. Notice that ψ(uh
i ) ∈ BV (Ω), and that by chain rule in

BV (see [4, Theorem 3.96]) we have

Dψ(uh
i ) = ψ′(uh

i )∇uh
i dLN + (ψ((uh

i )+) − ψ((uh
i )−))νHN−1 S(uh

i ) + ψ′(ũh
i )Dcuh

i ,

where ũh
i (x) is the Lebesgue value of uh

i at x. We deduce that

|Dψ(uh
i ) − ψ′(uh

i )∇uh
i dLN | ≤ ||ψ||ϕh

λh
i + ||ψ′||∞|Dcuh

i |,(5.7)

where

||ψ||ϕh
:= sup

{
ψ(t) − ψ(s)

ϕh(|t− s|) : t 
= s

}
.

Up to a subsequence we have

μh
i

∗
⇀ Dψ(ui) − ψ′(u)gi dLN , λh

i
∗
⇀ λi
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weakly* in the sense of measures, and so from (5.7), by lower semicontinuity for the
variations of measures (see [4, Proposition 1.62]) and since Dcuh → 0 strongly in the
sense of measures we get

|Dψ(ui) − ψ′(u)gi dLN | ≤ (supψ − inf ψ)λi.

As a consequence of SBV characterization (see [4, Proposition 4.12]), we get that
ui ∈ SBV (Ω), ∇ui = gi, and HN−1 S(ui) ≤ λi for all i = 1, . . . ,m. We deduce that
(5.3) holds.

In order to prove (5.4), for every M > 0 let gMi be the weak limit in L1(Ω) (up
to a subsequence) of |∇uh

i | ∧M . Since fh(ξ) → |ξ|2 uniformly on [0,M ], we have

‖gMi ‖2 ≤ lim inf
h→+∞

∫
Ω

fh(∇uh
i ) dx.

Then letting M → +∞ we obtain (5.4).

Let us come to (5.5). If λ is the weak limit in the sense of measures of

λh(A) :=

∫
S(uh)∩A

ϕh(|[uh
1 ]| ∨ · · · ∨ |[uh

m]|) dHN−1,

we have that λi ≤ λ for all i = 1, . . . ,m. Since we have HN−1 S(ui) ≤ λi for all
i = 1, . . . ,m, we deduce that HN−1 S(u) ≤ λ, so that (5.5) is proved.

5.2. Compactness for the cracks. This subsection is devoted to the proof
of a compactness property for the cracks of the discrete-in-time evolutions, which is
closely related to the notion of σp-convergence of sets defined in [11].

The convergence we propose is related to the energies which appear in the asymp-
totic study of the size effects, and so it depends on the cracks, but also on the bulk
and surface energies, and on the rate at which the Cantor parts of the derivative of
the displacements are disappearing.

Let (Kh)h∈N be a sequence of rectifiable sets in Ω ∪ ∂DΩ, and let fh : R
N →

[0,+∞[ and ϕh : [0,+∞[ → [0, 1] be such that (5.1) and (5.2) hold. Let γh be a
positive function on Kh such that for all h∫

Kh

ϕh(γh) dHN−1 < C(5.8)

for some C ∈ [0,+∞[, and let ah → +∞. Let gh, g ∈ H1(Ω) be such that gh → g
strongly in H1(Ω). Let us set for all u ∈ BV (Ω)

Eh(u) :=

∫
Ω

fh(∇u) dx +

∫
Sgh (u)

ϕh(|[u]|) dHN−1 + ah|Dcu|(Ω).

Then the following compactness result holds.

Proposition 5.2. Up to a subsequence there exists a rectifiable set K ⊆̃Ω∪∂DΩ
such that the following facts hold:

(a) for all subsequences (hk)k∈N and for all (uk)k∈N such that Sghk (uk) ⊆̃Khk
,

|[uk]| ≤ γhk
, Ehk

(uhk
) ≤ C ′ for some C ′ ∈ [0,+∞[, and uk

∗
⇀ u weakly* in

BV (Ω), we have u ∈ SBV (Ω), ∇u ∈ L2(Ω; RN ), and Sg(u) ⊆̃K;
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(b) there exists a countable set D in SBV (Ω) such that

K =
⋃
u∈D

Sg(u),(5.9)

where for every u ∈ D there exists a sequence (uh)h∈N in BV (Ω) with

Sgh(uh) ⊆̃Kh, |[uh]| ≤ γh, Eh(uh) ≤ C ′ for some C ′ ∈ [0,+∞[, and uh
∗
⇀ u

weakly* in BV (Ω);
(c) we have

HN−1(K) ≤ lim inf
h→+∞

∫
Kh

ϕh(γh) dHN−1.(5.10)

Proof. Our approach is based on Γ-convergence (see section 2). In order to deal
with Sg(u) as an internal jump, let us consider Ω̃ ⊆ R

N open and bounded, such that
Ω ⊆ Ω̃, and let us set Ω′ := Ω̃ \ ∂NΩ.

Let us consider the functionals E ′
h : BV (Ω′) → [0,+∞],

E ′
h(u) :=

∫
Ω′

fh(∇u) dx +

∫
S(u)

ϕh(|[u]|) dHN−1 + ah|Dcu|(Ω′),

if u ∈ BV (Ω′), u = gh on Ω′ \ Ω, S(u) ⊆̃Kh, |[u]| ≤ γh on Kh, and E ′
h(u) = +∞

otherwise for u ∈ BV (Ω′). Let us consider on BV (Ω′) the strong topology of L1(Ω′).
By Proposition 2.4, up to a subsequence, (E ′

h)h∈N Γ-converges to a functional E ′. We
denote this subsequence still by (E ′

h)h∈N, and we may suppose that the liminf in (5.10)
and the liminf along this subsequence are equal.

Let us consider

epi(E ′) := {(u, s) ∈ BV (Ω′) × R : E ′(u) ≤ s},

and let D ⊆ epi(E ′(t)) be countable and dense. If π : BV (Ω′)×R → BV (Ω′) denotes
the projection on the first factor, let D := π(D) and let us set

K :=
⋃
u∈D

S(u).

Notice that by a truncation argument we may suppose that each u ∈ D is bounded
in L∞(Ω), and moreover that there exists uh ∈ BV (Ω′) such that uh

∗
⇀ u weakly*

in BV (Ω′) and E ′
h(uh) ≤ C ′ with C ′ ∈ [0,+∞[. By Proposition 5.1 and Γ-liminf

inequality we deduce that u ∈ SBV (Ω′) and

‖∇u‖2 + HN−1(S(u)) ≤ E ′(u).(5.11)

Then K is precisely of the form (5.9) once we consider the restriction of u to Ω and
recall that u = g on Ω′ \ Ω. Thus point (b) is proved.

Let us prove that (5.10) holds. Let u1, . . . , uk ∈ D, and let uh
1 , . . . , u

h
k ∈ BV (Ω′)

be such that uh
i

∗
⇀ ui weakly* in BV (Ω′) and

lim
h→+∞

E ′
h(uh

i ) = E ′(ui), i = 1, . . . , k.(5.12)

Setting uh := (uh
1 , . . . , u

h
k), by (5.12) we have

k∑
i=1

∫
Ω′

fh(∇uh
i ) dx +

∫
S(uh)

ϕh(|[uh
1 ]| ∨ · · · ∨ |[uh

k ]|) dHN−1 + ah|Dcuh|(Ω′) ≤ C̃
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with C̃ independent of h. By Proposition 5.1 we deduce

HN−1

(
k⋃

i=1

S(ui)

)
≤ lim inf

h→+∞

∫
S(uh)

ϕh(|[uh
1 ]| ∨ · · · ∨ |[uh

k ]|) dHN−1

≤ lim inf
h→+∞

∫
Kh

ϕh(γh) dHN−1.

Taking the sup over all possible u1, . . . , uk we get

HN−1(K) ≤ lim inf
h→+∞

∫
Kh(t)

ϕh(γh(t)) dHN−1,

so that (5.10) is proved. In particular, by (5.8) we have that HN−1(K) < +∞.

Let us come to point (a). Let us extend uk and u to Ω′ setting uk = ghk
and

u = g on Ω′ \ Ω. By Proposition 5.1 we get u ∈ SBV (Ω′) and ∇u ∈ L2(Ω′; RN ). Let
us see that S(u) ⊆̃K. Notice that by Γ-liminf inequality we have

E ′(u) ≤ lim inf
k→+∞

E ′
hk

(uk) < +∞,

so that (u, E ′(u)) ∈ epi(E ′). Let (vj , sj) ∈ D be such that vj → u strongly in L1(Ω′)
and sj → E ′(u). By truncation, we may assume that u and vj are uniformly bounded
in L∞. We know that vj ∈ SBV (Ω′) for all j, and that by (5.11)

‖∇vj‖2 + HN−1(S(vj)) ≤ E ′(vj).(5.13)

By lower semicontinuity of E ′ we have

E ′(u) ≤ lim inf
j→+∞

E ′(vj).

Moreover, since E ′(vj) ≤ sj , we deduce

lim sup
j→+∞

E ′(vj) ≤ lim
j→+∞

sj = E ′(u),

so that we have E ′(vj) → E ′(u) < +∞. By (5.13) we conclude that vj ⇀ u weakly
in SBV (Ω′): since S(vj) ⊆̃K for all j, and HN−1(K) < +∞, by Ambrosio’s theorem
we get S(u) ⊆̃K. The proof is now complete.

Remark 5.3. Notice that in the case fh(ξ) = |ξ|p (p ∈]1,+∞[) and ϕh = 1, and
no Cantor part is considered (i.e., ah = +∞), Proposition 5.2 gives an alternative
proof of the compactness and lower semicontinuity properties of σp-convergence of
sets formulated in [11].

Notice moreover that the limit set of Proposition 5.2 is contained (up to negligible
HN−1 set) in Ω∪∂DΩ, so that ∂NΩ is not involved: this is done in view of the concrete
application to quasi-static crack growth, where convergence for the surface energy
holds, and so a crack would never approach ∂NΩ otherwise but transversally. This
can be seen also from an energetic point of view, since the displacement can choose
the more convenient boundary datum on ∂NΩ without creating a crack on this part
of the boundary.



SIZE EFFECTS ON QUASI-STATIC GROWTH OF CRACKS 1907

5.3. A generalization of the Transfer of Jump. In this subsection we prove
a generalization of the Transfer of Jump theorem of Francfort–Larsen [13] which will
be useful in the proof of Theorem 4.1.

Let fh : R
N → [0,+∞[ and ϕh : [0,+∞[ → [0, 1] be such that (5.1) and (5.2)

hold. Then the following proposition holds.
Proposition 5.4. Let (uh)h∈N be a sequence in BV (Ω) such that (∇uh)h∈N is

equi-integrable,

sup
h

∫
S(uh)

ϕh(|[uh]|) dHN−1 ≤ C, and |Dcuh|(Ω) → 0.(5.14)

Let u ∈ SBV (Ω) be such that uh
∗
⇀ u weakly* in BV (Ω), and let gh, g ∈ H1(Ω) be

such that gh → g strongly in H1(Ω). Then for all v ∈ SBV (Ω) with ∇v ∈ L2(Ω; RN )
there exists vh ∈ SBV (Ω) such that ∇vh → ∇v strongly in L2(Ω; RN ) and

lim sup
h→+∞

[∫
Sgh (vh)∪Sgh (uh)

ϕh(|[vh]| ∨ |[uh]|) dHN−1 −
∫
Sgh (uh)

ϕh(|[uh]|) dHN−1

]

≤ HN−1(Sg(v) \ Sg(u)).

Proof. In order to deal with Sg(u) as an internal jump, let us consider Ω̃ ⊆ R
N

open and bounded, and such that Ω ⊆ Ω̃. Let us set Ω′ := Ω̃ \∂NΩ. Let v ∈ SBV (Ω)
with ∇v ∈ L2(Ω; RN ) and HN−1(Sg(v)) < +∞. Let us consider

w := v − g, z := u− g, zh := uh − gh,

and let us extend w, z, zh to Ω′ setting w = z = zh = 0 on Ω′ \ Ω. In this setting,
we have to find wh ∈ SBV (Ω′) such that wh ≡ 0 on Ω′ \ Ω, ∇wh → ∇w strongly in
L2(Ω′; RN ), and such that

lim sup
h→+∞

[∫
S(wh)∪S(zh)

ϕh(|[wh]| ∨ |[zh]|) dHN−1 −
∫
S(zh)

ϕh(|[zh]|) dHN−1

]

≤ HN−1(S(w) \ S(z)).

Then the result follows considering the restriction of wh to Ω, and setting vh :=
wh + gh.

The key point in the proof is the following: for all ε > 0 find δ > 0 and wh ∈
SBV (Ω′) such that wh ≡ 0 on Ω′ \ Ω,

lim sup
h→+∞

‖∇wh −∇w‖L2(Ω′;RN ) ≤ ε,(5.15)

and

lim sup
h→+∞

HN−1(S(wh) \Kδ
h) ≤ HN−1(S(w) \ S(z)) + ε,(5.16)

where Kδ
h := {x ∈ S(zh) : |[zh]| ≥ δ}. In fact if (5.16) holds, noting that by (5.14) we

get HN−1(Kδ
h) ≤ C + 1 for h large enough, following the decomposition

S(wh) ∪ S(zh) = (S(wh) \Kδ
h) ∪ (S(wh) ∩Kδ

h)

∪ (Kδ
h \ S(wh)) ∪ [S(zh) \ (S(wh) ∪Kδ

h)],

S(zh) = (Kδ
h ∩ S(wh)) ∪ (Kδ

h \ S(wh)) ∪ (S(zh) \Kδ
h),
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we have (dh is defined in (5.2))

lim sup
h→+∞

[∫
S(wh)∪S(zh)

ϕh(|[wh]| ∨ |[zh]|) dHN−1 −
∫
S(zh)

ϕh(|[zh]|) dHN−1

]

≤ HN−1(S(w) \ S(z)) + ε

+lim sup
h→+∞

[∫
S(wh)∩Kδ

h

ϕh(|[wh]| ∨ |[zh]|) dHN−1 −
∫
S(wh)∩Kδ

h

ϕh(|[zh]|) dHN−1

]

≤ HN−1(S(w) \ S(z)) + ε + lim sup
h→+∞

(1 − dh)HN−1(S(wh) ∩Kδ
h)

≤ HN−1(S(w) \ S(z)) + ε.

Letting now ε → 0, and using a diagonal argument we obtain the result.

Let ε > 0, and let us prove that we can find δ > 0 and (wh)h∈N such that (5.15)
and (5.16) hold. Following the Transfer of Jump [13, Theorem 2.1], let us fix G ⊆ R

countable and dense: we recall that we have up to a set of HN−1-measure zero

S(z) =
⋃

c1,c2∈G

∂∗Ec1(z) ∩ ∂∗Ec2(z),

where Ec(z) := {x ∈ Ω′ : x is a Lebesgue point for z, z(x) > c} and ∂∗ denotes
the essential boundary (see [4, Definition 3.60]). Let us orient νz in such a way that
z−(x) < z+(x) for all x ∈ S(z), and let us consider

Jj :=

{
x ∈ S(z) : z+(x) − z−(x) >

1

j

}
,

with j so large that

HN−1 (S(z) \ Jj) < σ,

where σ > 0. Let U be a neighborhood of S(z) such that

|U | < σ

j2
,

∫
U

|∇w|2 dx < σ.

Following [13, Theorem 2.1], we can find a finite disjoint collection of closed cubes
{Qk}k=1,...,n with edge of length 2rk, with center xk ∈ S(z), and oriented as the
normal ν(xk) to S(z) at xk, such that

⋃n
k=1 Qk ⊆ U and HN−1(Jj \

⋃n
k=1 Qk) ≤ σ.

Let Hk denote the intersection of Qk with the hyperplane through xk orthogonal to
ν(xk). Following [13] we can suppose that the following facts hold:

(a) if xk ∈ Ω, then Qk ⊆ Ω, and if xk ∈ ∂DΩ, then ∂Ω ∩Qk ⊆ {y + sν(xk) : y ∈
Hk, s ∈ [−σrk

2 , σrk
2 ]};

(b) HN−1(S(z) ∩ ∂Qk) = 0;
(c) rN−1

k < 2HN−1(S(z) ∩Qk);
(d) z−(xk) < c1k < c2k < z+(xk) and c2k − c1k > 1

2j ;

(e) HN−1([S(z) \ ∂∗Ecs
k
(z)] ∩Qk) < σrN−1

k for s = 1, 2;

(f) HN−1({y ∈ ∂∗Ecs
k
(z) ∩Qk : dist(y,Hk) ≥ σ

2 rk}) < σrN−1
k for s = 1, 2;
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(g) if Q+
k := {x ∈ Qk | (x− xk) · ν(xk) > 0} and s = 1, 2,

‖1Ecs
k
(z))∩Qk

− 1Q+
k
‖L1(Ω′) < σ2rNk ;

(h) HN−1
((
S(w) \ S(z)

)
∩Qk

)
< σrN−1

k and HN−1(S(w) ∩ ∂Qk) = 0.

Since (∇zh)h∈N is equi-integrable, we may assume that U is chosen so that for h large

n∑
k=1

∫
Qk

|∇zh| dx <
σ

j2
.(5.17)

Let η ∈ ]0, 1[: we claim that there exists δ > 0 such that for all k = 1, . . . , n

lim sup
h→+∞

|Dzh|({0 < |[zh]| < δ} ∩Qk) ≤ η|Qk|.(5.18)

Let M > 0: by (5.2) there exists sh → 0 with ϕh(sh) → 1 such that for h large enough

Ms ≤ ϕh(s) for all s ∈ [0, sh].

Then we have

|Dzh| ({0 < |[zh]| < sh} ∩Qk) =

∫
{0<|[zh]|<sh}∩Qk

|[zh]| dHN−1

≤ 1

M

∫
{0<|[zh]|<sh}∩Qk

ϕh(|[zh]|) dHN−1,

so that we conclude for h large

|Dzh| ({0 < |[zh]| < δ} ∩Qk) ≤
1

M

∫
{0<|[zh]|<sh}∩Qk

ϕh(|[zh]|) dHN−1

+
δ

ϕh(sh)

∫
{sh≤|[zh]|<δ}∩Qk

ϕh(|[zh]|) dHN−1 ≤
(

1

M
+

δ

ϕh(sh)

)
C,

where C is defined in (5.14). Taking the limsup in h and choosing δ small enough and
M large enough, we have that (5.18) holds.

Let δ be as in (5.18), and let us set

Kδ
h := {x ∈ S(zh) : |[zh]|(x) ≥ δ}.

Then in view of (5.17) and (5.18), since |Dczh|(Ω′) → 0, by the Coarea formula for
BV functions (see [4, Theorem 3.40]) we have for h large enough

n∑
k=1

∫ c2k

c1
k

HN−1
(
∂∗Ec(zh) ∩ (Qk \Kδ

h)
)
dc ≤

n∑
k=1

|Dzh|(Qk \Kδ
h)

=

n∑
k=1

∫
Qk

|∇zh| dx +

n∑
k=1

|Dzh|(Qk ∩ {0 < |[zh]| < δ}) + |Dczh|
(

n⋃
k=1

Qk

)

≤ (1 + η)
σ

j2
.

By the Mean Value theorem and by property (d) we get that there exist c1k < chk < c2k,
k = 1, . . . , n, such that

n∑
k=1

HN−1
(
∂∗Ech

k
(zh) ∩ (Qk \Kδ

h)
)
≤ 2(1 + η)

σ

j
.(5.19)
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Following [13], by property (g) we have that for h large

‖1E
ch
k
(zh)∩Qk

− 1Q+
k
‖L1(Ω′) ≤ σ2rNk .

Then by Fubini’s theorem and by the Mean Value theorem, we can find s+
k ∈ [σrk2 , σrk]

and s−k ∈ [−σrk,−σrk
2 ] such that setting H+

k := {x = y + s+
k ν(xk), y ∈ Hk} and

H−
k := {x = y + s−k ν(xk), y ∈ Hk} we have

HN−1(H+
k \ (Ech

k
(zh) ∩Qk)) + HN−1(H−

k ∩ (Ech
k
(zh) ∩Qk)) ≤ 2σrN−1

k .

Let Rk be the region between H−
k and H+

k , i.e.,

Rk := {x ∈ Qk : x = y + sν(xk), y ∈ Hk, s
2
k ≤ s ≤ s1

k},

and let us indicate by R+
k w the reflection in Qk of w|Q+

k
\Rk

with respect to H+
k , and

by R−
k w the reflection in Qk of w|Q−

k
\Rk

with respect to H−
k . We can now consider

wh defined in the following way:

wh :=

⎧⎨
⎩

w on Ω′ \
⋃n

k=1 Rk,
R+

k w on Rk ∩ Ech
k
(zh),

R−
k w on Rk \ Ech

k
(zh).

wh is well defined for σ small, and wh = 0 on Ω′ \ Ω. Notice that by construction we
have that for h large

‖∇wh −∇w‖L2(Ω′;RN ) +

n∑
k=1

HN−1((S(wh) \Kδ
h) ∩Qk) ≤ e(σ),

where e(σ) → 0 as σ → 0: the proof follows analyzing the set S(wh) inside Qk, and
it is very similar to that contained in [13, Theorem 2.1]. Since

S(wh) \Kδ
h ⊆̃ [S(w) \ S(z)] ∪

[
S(z) \

n⋃
k=1

Qk

]
∪

n⋃
k=1

((S(wh) \Kδ
h) ∩Qk),

we deduce

lim sup
h→+∞

HN−1
(
S(wh) \Kδ

h

)
≤ HN−1 (S(w) \ S(z)) + e(σ),

with e(σ) → 0 as σ → 0. Choosing σ small enough and using a diagonal argument,
we obtain that (5.15) and (5.16) hold, and the proof is finished.

The following proposition extends the Transfer of Jump to the case of cracks
converging in the sense of Proposition 5.2.

Proposition 5.5. Let (Kh, γh)h∈N and K be as in Proposition 5.2, and let
gh, g ∈ H1(Ω) be such that gh → g strongly in H1(Ω). Then for all v ∈ SBV (Ω)
with ∇v ∈ L2(Ω; RN ) there exists vh ∈ SBV (Ω) such that ∇vh → ∇v strongly in
L2(Ω; RN ) and

lim sup
h→+∞

[∫
Sgh (vh)∪Kh

ϕh(|[vh]| ∨ γh) dHN−1 −
∫
Kh

ϕh(γh) dHN−1

]

≤ HN−1(Sg(v) \K).
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Proof. We indicate how to modify the proof of Proposition 5.4 in order to get the
result for (Kh, γh)h∈N and K.

Notice that properties (5.15) and (5.16) can be extended to the case of a finite
number of converging sequences: more precisely if k = 1, . . . ,m, (uk

h)h∈N is a sequence

in BV (Ω) such that uk
h

∗
⇀ uk weakly* in BV (Ω), (∇uk

h)h∈N is equi-integrable,∫
Sgh (uk

h
)

ϕh(|[uk
h]|) dHN−1 ≤ C, |Dcuk

h|(Ω) → 0,

then for every ε > 0 and v ∈ SBV (Ω) with ∇v ∈ L2(Ω; RN ) there exists vh ∈ SBV (Ω)
such that

lim sup
h→+∞

‖∇vh −∇v‖L2(Ω;RN ) ≤ ε(5.20)

and

lim sup
h→+∞

HN−1(Sgh(vh) \ K̃δ
h) ≤ HN−1

(
Sg(v) \

m⋃
k=1

Sg(uk)

)
+ ε,(5.21)

where K̃δ
h := {x ∈

⋃m
k=1 S

gh(uk
h) : |[uk

h]|(x) ≥ δ for some k = 1, . . . ,m}. This can be
done using the localization on the squares already employed in [13, Theorem 2.3]: on
each squares Qj we have that

⋃m
k=1 S

g(uk) ∩ Qj is essentially given by Sg(uτ(j)) for
some τ(j) ∈ {1, . . . ,m}.

Let us come to the Transfer of Jump for K. We recall that

K =
⋃
u∈D

Sg(u)

for some countable set D, and that each u ∈ D is limit in the weak* topology of
BV (Ω) of a function uh such that Sgh(uh) ⊆̃Kh, |[uh]| ≤ γh, ∇uh ⇀ ∇u weakly in
L1(Ω; RN ),

sup
h

∫
S(uh)

ϕh(|[uh]|) dHN−1 ≤ C, and |Dcuh|(Ω) → 0.

Let ε > 0 be fixed: since HN−1(K) < +∞, we can find m such that

HN−1

(
K \

m⋃
k=1

Sg(uk)

)
≤ ε(5.22)

for some uk ∈ D, k = 1, . . . ,m. Let uk
h be the approximation of uk for all k = 1, . . . ,m,

and let v ∈ SBV (Ω) with ∇v ∈ L2(Ω; RN ). Then by (5.20) and (5.21) we can find
(vh)h∈N such that

lim sup
h→+∞

‖∇vh −∇v‖L2(Ω;RN ) ≤ ε

and

lim sup
h→+∞

HN−1(Sgh(vh) \ K̃δ
h) ≤ HN−1

(
Sg(v) \

⋃
k

Sg(uk)

)
+ ε.
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Setting Kδ
h := {x ∈ Kh : γh(x) ≥ δ}, recalling that K̃δ

h ⊆̃Kδ
h since |[uk

h]| ≤ γh, by
(5.22) we deduce that

lim sup
h→+∞

HN−1
(
Sgh(vh) \Kδ

h

)
≤ HN−1 (Sg(v) \K) + 2ε.

The proof now follows exactly as in Proposition 5.4.

6. Proof of Theorem 4.1. In this section we will give the proof of Theorem 4.1.
Let {t → (uh(t),Γh(t), ψh(t)) : t ∈ [0, T ]} be the piecewise constant interpolation of
a discrete-in-time evolution of cracks in Ωh relative to the subdivision Iδh := {0 =
tδh0 < · · · < tδhNδh

= T}, and the boundary displacement
√
tg(t, x

h ) given in (4.3). We

divide the proof in several steps.
Step 1: Rescaling. For all t ∈ [0, T ] let vh(t) ∈ BV (Ω) and Kh(t) ⊆̃Ω ∪ ∂DΩ

be defined as

vh(t, x) :=
1√
h
uh (t, hx) , Kh(t) :=

1

h
Γh(t).(6.1)

Let us moreover set

γh(t, x) :=
1√
h
ψh(t, hx) = max

0≤s≤t
|[vh(s)](t, x)|, t ∈ [0, T ], x ∈ Ω.(6.2)

We notice that {t → (vh(t),Kh(t), γh(t)) : t ∈ [0, T ]} is the piecewise constant
interpolation of a discrete-in-time evolution of cracks in Ω relative to the subdivision
Iδh and boundary displacement g(t) with respect to the basic total energy∫

Ω

fh(∇v) dx +

∫
Sgδh (t)(v)∪Kh(t)

ϕh(|[v]| ∨ γh(t)) dHN−1 + a
√
h|Dcv|(Ω),

where gδh(t) := g(tδhi ) for tδhi ≤ t < tδhi+1, a := ϕ′(0),

ϕh(s) := ϕ(
√
hs), s ∈ [0,+∞[,(6.3)

and

fh(ξ) :=

{
|ξ|2 if |ξ| ≤ a

√
h

2 ,

a2h
4 + a

√
h(|ξ| − a

√
h

2 ) if |ξ| ≥ a
√
h

2 .
(6.4)

Let us recall some properties of the evolution {t → (vh(t),Kh(t), γh(t)) : t ∈
[0, T ]} which are derived from Proposition 3.1 and that will be employed in what
follows:

(a) for all t ∈ [0, T ]

‖vh(t)‖∞ ≤ ‖gδh(t)‖∞;(6.5)

(b) Kh(0) = Sgδh (0)(vh(0)) and Sgδh (t)(vh(t)) ⊆̃Kh(t) for all t ∈ ]0, T ];
(c) for all w ∈ BV (Ω) we have∫

Ω

fh(∇vh(0)) dx +

∫
Sgδh (0)(vh(0))

ϕh(|[vh(0)]|) dHN−1 + a
√
h|Dcvh(0)|(Ω)

≤
∫

Ω

fh(∇w) dx +

∫
Sgδh (0)(w)

ϕh(|[w]|) dHN−1 + a
√
h|Dcw|(Ω);(6.6)
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(d) for all w ∈ BV (Ω) and for all t ∈]0, T ] we have∫
Ω

fh(∇vh(t)) dx +

∫
Kh(t)

ϕh(γh(t)) dHN−1 + a
√
h|Dcvh(t)|(Ω)(6.7)

≤
∫

Ω

fh(∇w) dx +

∫
Sgδh (t)(w)∪Kh(t)

ϕh(|[w]| ∨ γh(t)) dHN−1 + a
√
h|Dcw|(Ω).

Let us set for all w ∈ BV (Ω) and for all t ∈ [0, T ]

Fh(t, w) :=

∫
Ω

fh(∇w) dx +

∫
Sgδh (t)(w)∪Kh(t)

ϕh(|[w]| ∨ γh(t)) dHN−1(6.8)

+ a
√
h|Dcw|(Ω).

Notice that for all t ∈ [0, T ]

Fh(t, vh(t)) =
1

hN−1
Eh(t, uh(t)),(6.9)

where Eh(t, u) is defined in (4.4).
Recalling Lemma 3.2, for all t ∈ [0, T ] we have

Fh(t, vh(t)) ≤ Fh(0, vh(0)) +

∫ th

0

∫
Ω

f ′
h(∇vh(τ))∇ġ(τ) dx dτ + e(h),(6.10)

where e(h) → 0 as h → +∞, and th := tδhih is the step discretization point of Iδh such

that tδhih ≤ t < tδhih+1.

Step 2: Uniform bound on the energy. There exists a constant C ′ indepen-
dent of h such that for all t ∈ [0, T ] we have

Fh(t, vh(t)) + ‖vh(t)‖∞ ≤ C ′.(6.11)

In fact by (6.6) we have

Fh(0, uh(0)) ≤ ‖∇g(0)‖2,

and by (6.7) for all τ ∈ [0, T ],∫
Ω

fh(∇vh(τ)) dx ≤ ‖∇gδh(τ)‖2.

Moreover, for all τ ∈ [0, T ]∫
Ω

|f ′
h(∇vh(τ))|2 dx ≤ 4

∫
Ω

fh(∇vh(τ)) dx.

Taking into account (6.10) and (6.5) we deduce that (6.11) holds.
Step 3: Compactness. In view of Step 2, by Propositions 5.1 and 5.2 we have

that for all t ∈ [0, T ] the displacements (vh(t))h∈N are relatively compact with respect
to the weak* topology of BV (Ω), while the cracks (Kh(t), γh(t))h∈N are compact in
a suitable energetic sense.

Let B ⊆ [0, T ] be countable and dense, and such that 0 ∈ B. By Propositions
5.1 and 5.2 (with fh and ϕh defined in (6.4) and (6.3), ah := a

√
h, γh := γh(t),

and gh := gδh) up to a subsequence (which we denote by the same symbol) for all
t ∈ B there exists v(t) ∈ SBV (Ω) and a rectifiable set K(t) ⊆̃Ω ∪ ∂DΩ such that the
following facts hold:



1914 ALESSANDRO GIACOMINI

(a) vh(t)
∗
⇀ v(t) in the weak* topology of BV (Ω), ∇vh(t) ⇀ ∇v(t) weakly in

L1(Ω; RN ), ∇v(t) ∈ L2(Ω; RN ), and

Sg(t)(v(t)) ⊆̃K(t);

(b) K(s) ⊆̃K(t) for all s, t ∈ B, s ≤ t;
(c) we have

HN−1(K(t)) ≤ lim inf
h→+∞

∫
Kh(t)

ϕh(γh(t)) dHN−1;(6.12)

(d) K(0) = Sg(0)(v(0)).
Points (a) and (c) comes directly from Propositions 5.1 and 5.2. Let us prove point
(b). Let s, t ∈ B with s < t. By Proposition 5.2 we know that there exists a countable
set D(s) in SBV (Ω) such that

K(s) =
⋃
u∈D

Sg(s)(u),(6.13)

and such that for every u ∈ D(s) there exists a sequence (uh)h∈N in BV (Ω) such that

uh
∗
⇀ u weakly* in BV (Ω) with Sgδh (s)(uh) ⊆̃Kh(s), |[uh]| ≤ γh(s), and Fh(s, uh) ≤

C ′ for some C ′ ∈ [0,+∞[. Let us set vh := uh − gδh(s) + gδh(t). Since Kh(s) ⊆̃Kh(t)

and γh(s) ≤ γh(t), we have that Sgδh (t)(vh) ⊆̃Kh(t), |[vh]| ≤ γh(t),∫
Ω

fh(∇vh) dx +

∫
Kh(t)

ϕh(|[vh]|) dHN−1 + a
√
h|Dcvh|(Ω) ≤ C̃ ′

with C̃ ′ independent of h, and vh
∗
⇀ u − g(s) + g(t) weakly* in BV (Ω). We deduce

that Sg(t)(u− g(s) + g(t)) ⊆̃K(t), that is, Sg(s)(u) ⊆̃K(t). Then by (6.13) we obtain
K(s) ⊆̃K(t).

Let us come to point (d). Notice that

‖∇v(0)‖2 + HN−1(K(0)) ≤ lim inf
h→+∞

Fh(0, vh(0))(6.14)

≤ ‖∇v(0)‖2 + HN−1(Sg(0)(v(0))),

the first inequality coming from point (c) and Proposition 5.1, the last inequality
coming from the minimality property (6.6). Since Sg(0)(v(0)) ⊆̃K(0), by (6.14) we
get that Sg(0)(v(0)) = K(0), so that point (d) is proved.

Step 4: Recovering the static equilibrium for K(t), t ∈ B. Let B be the
countable and dense set defined in Step 3, and let K(t) be the limit crack associated
with (Kh(t), γh(t))h∈N for all t ∈ B. In order to prove that K(t) is part of an evolution
in the sense of [13] with respect to the boundary data g(t), we have to prove that
K(t) satisfies the one-sided minimality property with respect to the Griffith’s energy
given by point (c) of Theorem 2.2. This is done in this step, where also some useful
convergence results for the gradient of the displacements are obtained.

Let t ∈ B, and let us consider the subsequence of (vh(t),Kh(t), γh(t))h∈N (which
we indicate with the same symbol), the displacement v(t) and the rectifiable set K(t)
given by Step 3. Then for all v ∈ SBV (Ω) we have

‖∇v(0)‖2 + HN−1(Sg(0)(v(0))) ≤ ‖∇v‖2 + HN−1(Sg(0)(v)),(6.15)
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and for all t ∈ ]0, T ]

‖∇v(t)‖2 ≤ ‖∇v‖2 + HN−1(Sg(t)(v) \K(t)).(6.16)

Moreover,

‖∇v(0)‖2 + HN−1(K(0)) = lim
h→+∞

Fh(0, vh(0)),(6.17)

where Fh is defined in (6.8), and for all t ∈ B

∇vh(t)1Eh(t) → ∇v(t) strongly in L2(Ω; RN ),(6.18)

where

Eh(t) :=

{
x ∈ Ω : |∇vh(t)| ≤ a

√
h

2

}

and

‖∇v(t)‖2 = lim
h→+∞

∫
Ω

fh(∇vh(t)) dx.(6.19)

In fact (6.15) and (6.17) come from point (d) of Step 3, from the minimality property
(6.6), and from Proposition 5.1.

Let us come to (6.16). Let t ∈ [0, T ]. By Proposition 5.5 we have that there exists
(vh)h∈N sequence in SBV (Ω) such that ∇vh → ∇v strongly in L2(Ω; RN ) and

lim sup
h→+∞

[∫
Sgδh (t)(vh)∪Kh(t)

ϕh(|[vh]| ∨ γh(t)) dHN−1

−
∫
Kh(t)

ϕh(γh(t)) dHN−1

]
≤ HN−1(Sg(t)(v) \K(t)).

Then using the minimality property (6.7) we get

lim sup
h→+∞

∫
Ω

fh(∇vh(t)) dx ≤ ‖∇v‖2 + HN−1(Sg(t)(v) \K(t)).(6.20)

By Proposition 5.1 we have that

‖∇v(t)‖2 ≤ lim inf
h→+∞

∫
Ω

fh(∇vh(t)) dx,(6.21)

and so we obtain that (6.16) holds.
Let us now come to (6.18) and (6.19). Equation (6.19) is a direct consequence of

(6.21) and (6.20) with v = v(t). Finally, notice that (∇vh(t)1Eh(t))h∈N is bounded in
L2(Ω; RN ). Since ∇vh(t) ⇀ ∇v(t) weakly in L1(Ω; RN ) and ∇v(t) ∈ L2(Ω; RN ), we
get ∇vh(t)1Eh(t) ⇀ ∇v(t) weakly in L2(Ω; RN ). By (6.20) with v = v(t) we have

lim sup
h→+∞

‖∇vh(t)1Eh(t)‖2 ≤ lim sup
h→+∞

∫
Ω

fh(∇vh(t)) dx ≤ ‖∇v(t)‖2,

so that (6.18) holds.
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Step 5: Defining K(t) for all t ∈ [0, T ]. Since {t → K(t) : t ∈ B} is
increasing by Step 3, setting

K−(t) :=
⋃

s∈B,s≤t

K(s), K+(t) :=
⋂

s∈B,s≥t

K(s),

there exists a countable set B′ ⊆ [0, T ] \B such that we have K−(t) =̃ K+(t) for all
t ∈ [0, T ] \ B′. For all such t’s let us set K(t) := K−(t) =̃ K+(t). Up to a further
subsequence relative to the elements of B′ (which we indicate still with the same
symbol), we find K(t) such that Steps 3 and 4 hold for every t ∈ B′. Notice that

{t → K(t) : t ∈ [0, T ]}

is increasing, and for all t ∈ [0, T ] we have HN−1(K(t)) ≤ C ′, where C ′ is given by
(6.11).

Let v(t) be a minimum of the following problem:

min{‖∇v‖2 : v ∈ SBV (Ω), Sg(t)(v) ⊆̃K(t)}.(6.22)

Notice that problem (6.22) is well posed since K(t) has finite HN−1-measure, and g(t)
is bounded in L∞(Ω): moreover by strict convexity we have that ∇v(t) is uniquely
determined.

Let us prove that (v(t),K(t)) satisfies Steps 3 and 4 for every t ∈ [0, T ]. Moreover,
let us see that

∇vh(t) ⇀ ∇v(t) weakly in L1(Ω; RN ),(6.23)

and that every accumulation point v of (vh(t))h∈N in the weak* topology of BV (Ω)
is such that v ∈ SBV (Ω), Sg(t)(v) ⊆̃K(t), and ∇v = ∇v(t).

In fact let t 
∈ B∪B′ (otherwise the result holds by construction), and let vhm(t)
∗
⇀

v weakly* in BV (Ω) for some subsequence (hm)m∈N. By Proposition 5.1 we get that
v ∈ SBV (Ω), ∇v ∈ L2(Ω; RN ), and ∇vhm

(t) ⇀ ∇v weakly in L1(Ω; RN ).
Applying Steps 3 and 4 to B ∪ {t}, we can find (up to a further subsequence)

K̃(t) such that Sg(t)(v) ⊆̃ K̃(t), K̃(t) satisfies static equilibrium, and

K(s1) ⊆̃ K̃(t) ⊆̃K(s2)

for all s1, s2 ∈ B with s1 < t < s2. Then we get K̃(t) = K(t) up to a set of
HN−1-measure zero.

Finally, in order to prove that (6.23) holds, notice that v is a minimum of problem
(6.22): by uniqueness we obtain ∇v = ∇v(t) so that (6.23) holds along the entire
sequence.

Step 6: Recovering the nondissipativity condition. In order to prove that

{t → (v(t),K(t)), t ∈ [0, T ]}

is a quasi-static crack growth in the sense of [13], that is, in the sense of Theorem 2.2,
we have just to prove the nondissipativity condition, that is,

E(t) = E(0) + 2

∫ t

0

(∇v(τ),∇ġ(τ))L2(Ω;RN ) dτ,(6.24)
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where E(t) := ‖∇v(t)‖2 + HN−1(K(t)) for all t ∈ [0, T ]. In fact irreversibility and
static equilibrium are consequences of Steps 3, 4, and 5. First of all, for all t ∈ [0, T ]
we have

E(t) ≥ E(0) + 2

∫ t

0

(∇u(τ),∇ġ(τ))L2(Ω;RN ) dτ.(6.25)

In fact as noticed in [15], using the minimality property (6.16), the map {t → ∇v(t)}
is continuous at all the continuity points of {t → HN−1(K(t))}, in particular it is
continuous up to a countable set in [0, T ]. Given t ∈ [0, T ] and k > 0, let us set

ski :=
i

k
t, vk(s) := v(ski+1) for ski < s ≤ ski+1, i = 0, 1, . . . , k.

By (6.16), comparing v(ski ) with v(ski+1) − g(ski+1) + g(ski ), it is easy to see that

E(t) ≥ E(0) + 2

∫ t

0

(∇vk(τ),∇ġ(τ))L2(Ω;RN ) dτ + e(k),

where e(k) → 0 as k → +∞. By the continuity property of ∇v, passing to the limit
for k → +∞ we deduce that (6.25) holds. On the other hand, for all t ∈ [0, T ] we
have that

E(t) ≤ E(0) + 2

∫ t

0

(∇u(τ),∇ġ(τ))L2(Ω;RN ) dτ.(6.26)

In fact by Step 4 we have that for all t ∈ [0, T ]

∇vh(t)1Eh(t) → ∇v(t) strongly in L2(Ω; RN ),(6.27)

where

Eh(t) :=

{
x ∈ Ω : |∇vh(t)| ≤ a

√
h

2

}
.

By (6.10) and by the very definition of fh we deduce

Fh(t, vh(t)) ≤ Fh(0, vh(0)) + 2

∫ t

0

(∇vh(τ)1Eh(τ),∇ġ(τ))L2(Ω;RN ) dτ(6.28)

+ a
√
h

∫ t

0

∫
Ω\Eh(τ)

|∇ġ(τ)| dx dτ + e(h),

where e(h) → 0 as h → +∞. Notice that by (6.11) we have

a

2
h|Ω \ Eh(τ)| ≤

√
h

∫
Ω\Eh(τ)

|∇vh(τ)| dx ≤ 2

a

∫
Ω\Eh(τ)

fh(∇vh(τ)) dx ≤ 2

a
C ′.

We deduce that

√
h

∫
Ω\Eh(τ)

|∇ġ(τ)| dx ≤
(∫

Ω\Eh(τ)

|∇ġ(τ)|2 dx
) 1

2 √
h|Ω \ Eh(τ)|(6.29)

≤ 2
√
C ′

a

(∫
Ω\Eh(τ)

|∇ġ(τ)|2 dx
) 1

2

→ 0
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as h → +∞ by equicontinuity of ∇ġ(τ). Then passing to the limit for h → +∞ in
(6.28), in view of (6.19), (6.12), (6.17), (6.27), and (6.29) we deduce that (6.26) holds.
This proves that (6.24) holds, and so {t → (v(t),K(t)) : t ∈ [0, T ]} is a quasi-static
crack growth in the sense of [13].

Step 7: Convergence of bulk and surface energies. In order to conclude
the proof, let us see that (4.5), (4.6), and (4.7) hold. By (6.28) we deduce that for all
t ∈ [0, T ]

Fh(t, vh(t)) → E(t),

so that by (6.19) and (6.12) we deduce that

HN−1(K(t)) = lim
h→+∞

∫
Kh(t)

ϕh(γh(t)) dHN−1, a
√
h|Dcvh(t)|(Ω) → 0.

Theorem 4.1 is now completely proved in view of the rescaling (6.1), of (6.2), (6.3),
and (6.9).

7. Proof of Theorem 4.2. In this section we will give the proof of Theorem
4.2. Let {t → (uh(t),Γh(t), ψh(t)) : t ∈ [0, T ]} be the piecewise constant interpolation
given in (4.3) of a discrete-in-time evolution of crack in Ωh relative to the subdivision
Iδh := {0 = tδh0 < · · · < tδhNδh

= T}, and the boundary displacement hαg(t, x
h ) with

α ∈ ]0, 1
2 [. We divide the proof in several steps.

Step 1: Rescaling. We rescale uh and Γh in the following way: for all t ∈ [0, T ]
let vh(t) ∈ BV (Ω) and Kh(t) ⊆̃Ω ∪ ∂DΩ be given by

vh(t, x) :=
1

hα
uh (t, hx) , Kh(t) :=

1

h
Γh(t), t ∈ [0, T ], x ∈ Ω.(7.1)

Let us moreover set

γh(t, x) :=
1

hα
ψh(t, hx) = max

0≤s≤t
|[vh(s)](t, x)|, t ∈ [0, T ], x ∈ Ω.

It turns out that {t → (vh(t),Kh(t), γh(t)) : t ∈ [0, T ]} is the piecewise constant
interpolation of a discrete-in-time evolution of cracks in Ω relative to the subdivision
Iδh and boundary displacement g(t) with respect to the basic total energy∫

Ω

fh(∇v) dx + h1−2α

∫
Sgδh (t)(v)∪Kh(t)

ϕh(|[v]| ∨ γh(t)) dHN−1 + ah1−α|Dcv|(Ω),

where gδh(t) := g(tδhi ) for tδhi ≤ t < tδhi+1, a := ϕ′(0),

ϕh(s) := ϕ(hαs), s ∈ [0,+∞[,

and

fh(ξ) :=

⎧⎪⎨
⎪⎩

|ξ|2 if |ξ| ≤ ah1−α

2 ,

a2h2(1−α)

4 + ah1−α(|ξ| − ah1−α

2 ) if |ξ| ≥ ah1−α

2 .

We have that the following facts hold:
(a) for all t ∈ [0, T ]

‖vh(t)‖∞ ≤ ‖gδh(t)‖∞ ≤ C;(7.2)
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(b) Kh(0) = Sgδh (0)(vh(0)), and Sgδh (t)(vh(t)) ⊆̃Kh(t) for all t ∈ ]0, T ];
(c) for all w ∈ BV (Ω) we have∫

Ω

fh(∇vh(0)) dx + h1−2α

∫
Sgδh (0)(vh(0))

ϕh(|[vh(0)]|) dHN−1

+ ah1−α|Dcvh(0)|(Ω)

≤
∫

Ω

fh(∇w) dx + h1−2α

∫
Sgδh (0)(w)

ϕh(|[w]|) dHN−1 + ah1−α|Dcw|(Ω);

(d) for all w ∈ BV (Ω) and t ∈ ]0, T ] we have∫
Ω

fh(∇vh(t)) dx + h1−2α

∫
Kh(t)

ϕh(γh(t)) dHN−1 + ah1−α|Dcvh(t)|(Ω)

≤
∫

Ω

fh(∇w) dx + h1−2α

∫
Sgδh (t)(w)∪Kh(t)

ϕh(|[w]| ∨ γh(t)) dHN−1

+ ah1−α|Dcw|(Ω).

Let us set for all v ∈ BV (Ω) and for all t ∈ [0, T ]

Fh(t, w) :=

∫
Ω

fh(∇w) dx + h1−2α

∫
Sgδh (t)(w)∪Kh(t)

ϕh(|[w]| ∨ γh(t)) dHN−1

+ ah1−α|Dcw|(Ω).

Notice that

Fh(t, vh(t)) =
1

hN+2α−2
E(t, uh(t)),

where E(t, uh(t)) is defined in (4.4).
By Lemma 3.2 we obtain for all t ∈ [0, T ]

Fh(t, vh(t)) ≤ Fh(0, vh(0)) +

∫ th

0

∫
Ω

f ′
h(∇vh(τ))∇ġ(τ) dx dτ + e(h),(7.3)

where e(h) → 0 as h → +∞, and th := tδhih is the step discretization point of Iδh such

that tδhih ≤ t < tδhih+1.
Step 2: Uniform bound on the energy. By point (c) comparing vh(0) and

g(0) we have∫
Ω

fh(∇vh(0)) dx+ h1−2α

∫
Sg(0)(vh(0))

ϕh(|[vh(0)]|) + ah1−α|Dcvh(0)|(Ω) ≤ ‖∇g(0)‖2.

By point (d) comparing vh(t) and gδh(t) we obtain∫
Ω

fh(∇vh(t)) dx ≤ ‖∇gδh(t)‖2,

and since we have ∫
Ω

|f ′
h(∇vh(τ))|2 dx ≤ 4

∫
Ω

fh(∇vh(τ)) dx,
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by (7.3) we deduce that∫
Ω

fh(∇vh(t)) dx + h1−2α

∫
Kh(t)

ϕh(γh(t)) dHN−1 + ah1−α|Dcv|(Ω) ≤ C ′

with C ′ independent of h and of t. By Proposition 5.1 and by (7.2) we deduce that
(vh(t))h∈N is bounded in BV (Ω), and this proves point (a).

Step 3: Convergence to the elastic solution. Let v(t) be an accumulation
point for (vh(t))h∈N in the weak* topology of BV (Ω), and let us consider Ω̃ ⊆ R

N

open and bounded, and such that Ω ⊆ Ω̃. Let us set Ω′ := Ω̃ \ ∂NΩ. Then we
can extend vh(t) and v(t) to Ω′ setting vh(t) = gδh(t) and v(t) = g(t) on Ω′ \ Ω,

respectively. We have vhj (t)
∗
⇀ v(t) weakly* in BV (Ω′) for a suitable hj ↗ +∞, and∫

Ω′
fhj (∇vhj (t)) dx + h1−2α

j

∫
S(vhj

(t))

ϕhj (|[vhj (t)]|) dHN−1(7.4)

+ ah1−α
j |Dcvhj (t)|(Ω′) ≤ C̃

with C̃ independent of j. In particular, we have∫
Ω′

fhj
(∇vhj

(t)) dx +

∫
S(vhj

(t))

ϕhj
(|[vhj

(t)]|) dHN−1 + ah1−α
j |Dcvhj

(t)|(Ω′) ≤ C̃ ′

with C̃ ′ independent of j. Then by Proposition 5.1 we have that v(t) ∈ SBV (Ω),

∇vhj (t) ⇀ ∇v(t) weakly in L1(Ω; RN ),

and

‖∇v(t)‖2 ≤ lim inf
j→+∞

∫
Ω

fhj (∇vhj (t)) dx.(7.5)

Finally, if we consider for all Borel sets B ⊆ Ω′

λj(B) :=

∫
B∩S(vhj

(t))

ϕhj (|[vhj (t)]|) dHN−1

and if (up to a subsequence) λj
∗
⇀ λ weakly* in the sense of measures, we deduce

following Proposition 5.1 that

HN−1 S(v(t)) ≤ λ as measures.

Since by (7.4) we have λ = 0, then we have S(v(t)) = ∅, that is, v(t) ∈ H1(Ω) and
v(t) = g(t) on ∂DΩ.

Let us consider v ∈ H1(Ω) with v = g(t) on ∂DΩ. Comparing vh(t) with v −
g(t) + gδh(t) by minimality property of point (d) we obtain∫

Ω

fh(∇vh(t)) dx + ah1−α|Dcvh(t)|(Ω) ≤
∫

Ω

fh(∇v −∇g(t) + ∇gδh(t)) dx(7.6)

≤ ‖∇v −∇g(t) + ∇gδh(t)‖2.

In view of (7.5) we deduce that

‖∇v(t)‖2 ≤ ‖∇v‖2,
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so that v(t) is a minimizer of

min{‖∇v‖2 : v ∈ H1(Ω), v = g(t) on ∂DΩ}.

By strict convexity and since Ω is connected, we have that v(t) is uniquely determined,

and so we deduce that vh(t)
∗
⇀ v(t) weakly* in BV (Ω) and ∇vh(t) ⇀ ∇v(t) weakly

in L1(Ω; RN ).
Choosing v = v(t) in (7.6) and taking the limsup in h we have

lim sup
h→+∞

∫
Ω

fh(∇vh(t)) dx ≤ ‖∇u(t)‖2,

so that

lim
h→+∞

∫
Ω

fh(∇vh(t)) dx = ‖∇u(t)‖2.

The proof of point (b) is now concluded thanks to the rescaling (7.1).

8. Proof of Theorem 4.3. In this section we will give the proof of Theorem
4.3. Let {t → (uh(t),Γh(t), ψh(t)) : t ∈ [0, T ]} be the piecewise constant interpolation
given in (4.3) of a discrete-in-time evolution of crack in Ωh relative to the subdivision
Iδh := {0 = tδh0 < · · · < tδhNδh

= T}, and the boundary displacement hαg(t, x
h ) with

α > 1
2 .
We rescale uh and Γh in the following way: for all t ∈ [0, T ] let vh(t) ∈ BV (Ω)

and Kh(t) ⊆̃Ω ∪ ∂DΩ be given by

vh(t, x) :=
1

hα
uh (t, hx) , Kh(t) :=

1

h
Γh(t), t ∈ [0, T ], x ∈ Ω.

Let us moreover set

γh(t, x) :=
1

hα
ψh(t, hx) = max

0≤s≤t
|[vh(s)](t, x)|, t ∈ [0, T ], x ∈ Ω.

It turns out that {t → (vh(t),Kh(t), γh(t)) : t ∈ [0, T ]} is the piecewise constant
interpolation of a discrete-in-time evolution of cracks in Ω relative to the subdivision
Iδh and boundary displacement g(t) with respect to the basic total energy

h2α−1

∫
Ω

fh(∇v) dx +

∫
Sgδh (t)(v)

ϕh(|[v]| ∨ γh(t)) dHN−1 + ahα|Dcv|(Ω),

where gδh(t) := g(tδhi ) for tδhi ≤ t < tδhi+1, a := ϕ′(0),

ϕh(s) := ϕ(hαs), s ∈ [0,+∞[,

and

fh(ξ) :=

⎧⎪⎨
⎪⎩

|ξ|2 if |ξ| ≤ ah1−α

2 ,

a2h2(1−α)

4 + ah1−α(|ξ| − ah1−α

2 ) if |ξ| ≥ ah1−α

2 .

Notice that by Proposition 3.1 we have

‖vh(0)‖∞ ≤ ‖g(0)‖∞ ≤ C,(8.1)
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and for all w ∈ BV (Ω) we have

h2α−1

∫
Ω

fh(∇vh(0)) dx +

∫
Sgδh (0)(vh(0))

ϕh(|[vh(0)]|) dHN−1 + ahα|Dcvh(0)|(Ω)

≤ h2α−1

∫
Ω

fh(∇w) dx +

∫
Sgδh (0)(w)

ϕh(|[w]|) dHN−1 + ahα|Dcw|(Ω).(8.2)

Comparing vh(0) and w = −C by means of (8.2) we have

h2α−1

∫
Ω

fh(∇vh(0)) dx +

∫
Sgδh (0)(vh(0))

ϕh(|[vh(0)]|) dHN−1 + ahα|Dcvh(0)|(Ω)

(8.3)

≤ HN−1(∂DΩ).

As a consequence, since ‖vh(0)‖∞ ≤ C by (8.1), following Proposition 5.1, we deduce
that (vh(0))h∈N is bounded in BV (Ω). Let v be an accumulation point for (vh(0))h∈N

in the weak* topology of BV (Ω). Let us prove that v ∈ SBV (Ω) and that ∇v = 0:
in fact we have that for all ξ ∈ R

N

f̃h(ξ) ≤ h2α−1fh(ξ),

where

f̃h(ξ) :=

⎧⎨
⎩

|ξ|2 if |ξ| ≤ ahα

2 ,

a2h2α

4 + ahα(|ξ| − ahα

2 ) if |ξ| ≥ ahα

2 .

We deduce that there exists C ′′ independent of h such that for all h∫
Ω

f̃h(∇vh(0)) dx +

∫
S(vh(0))

ϕh(|[vh(0)]|) dHN−1 + chα|Dcvh(0)|(Ω) ≤ C ′′.

By Proposition 5.1, we obtain that v ∈ SBV (Ω) and that ∇vh(0) ⇀ ∇v weakly in
L1(Ω; RN ). By (8.3) we obtain that

‖∇vh(0)‖L1(Ω;RN ) ≤
HN−1(∂DΩ) + 1

ahα
,

so that we deduce ∇v = 0; that is, v is piecewise constant in Ω. Finally taking the
limit in (8.2) with w piecewise constant, by Proposition 5.1 we get exactly (4.8), so
that the proof of Theorem 4.3 is concluded.

9. Appendix. In this section, we prove a relaxation result we used in order to
study the discrete-in-time evolution of cracks in the cohesive case. It consists of a
variant of a result by Bouchitté, Braides, and Buttazzo [6]: the difference here is that
we have to take into account the presence of a preexisting crack with a given opening
which enters in the surface part of the energy.

Let f : R → [0,+∞[ be convex, f(0) = 0, and with superlinear growth, i.e.,

lim sup
|ξ|→+∞

f(ξ)

|ξ| = +∞.
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Let ϕ : [0,+∞[ → [0,+∞[ be increasing, concave, and such that ϕ(0) = 0. Notice
that if a := ϕ′(0) < +∞, we have

ϕ(s) ≤ as for all s ∈ [0,+∞[.

Let Ω be a Lipschitz bounded open set in R
N , and let ∂DΩ ⊆ ∂Ω be open in the

relative topology. Let Γ be a rectifiable set in Ω ∪ ∂DΩ, and let ψ be a positive
function defined on Γ. Let us extend ψ to Ω ∪ ∂DΩ setting ψ = 0 outside Γ. Let
g ∈ W 1,1(Ω): we may assume that g is extended to the whole R

N , and we indicate
this extension still by g.

We will study the following functional:

F (u) :=

{∫
Ω
f(|∇u|) dx +

∫
Sg(u)∪Γ

ϕ(|[u]| ∨ ψ) dHN−1 if u ∈ SBV (Ω),

+∞ otherwise in BV (Ω),

where Sg(u) is defined in (2.3), and a∨ b := max{a, b} for all a, b ∈ R. The functional
F naturally appears (see section 3) when dealing with quasi-static growth of cracks in
the cohesive case, where one is required to look for its minima. We are led to compute
the relaxation of F with respect to the strong topology of L1(Ω). The relaxation in
the case Γ = ∅ (without boundary conditions but without superlinear growth on f)
has been proved in [6]. Let

f1(ξ) := inf{f(ξ1) + a|ξ2| : ξ1 + ξ2 = ξ},(9.1)

where a := ϕ′(0). We have that the following result holds.
Proposition 9.1. The relaxation of the functional F with respect to the weak*

topology of BV (Ω) is given by F : BV (Ω) → [0,+∞] defined as

F (u) :=

∫
Ω

f1(|∇u|) dx +

∫
Sg(u)∪Γ

ϕ(|[u]| ∨ ψ) dHN−1 + a|Dcu|,

where a = ϕ′(0) and f1 is defined in (9.1).
In order to prove Proposition 9.1, the first step is the following lemma.
Lemma 9.2. Let F̄ : BV (Ω) → [0,+∞] be defined by

F (u) :=

∫
Ω

f1(|∇u|) dx +

∫
Sg(u)∪Γ

ϕ(|[u]| ∨ ψ) dHN−1 + a|Dcu|,

with a = ϕ′(0) and f1 as in (9.1). Then F̄ is lower semicontinuous with respect to
the weak* topology of BV (Ω).

The proof of Lemma 9.2 is obtained by a standard slicing argument (see, for
example, [4, Theorem 5.4]) based on the lower semicontinuity result in dimension
one. We establish this last one.

Let I ⊆ R be a finite union of disjoint intervals, and let J ⊆ I be a countable set.
Let us consider the functional

F(μ) :=

∫
I

f1(|φμ|) dx +
∑

t∈Sμ\J
ϕ(|μ({t})|)(9.2)

+
∑
t∈J

ϕ(|μ({t})| ∨ ψ(t)) + a|μc|(I)

defined for all μ ∈ Mb(I; R
k), i.e., μ is a bounded R

k-valued Radon measure on I.
Here φμ is the density of the absolutely continuous part μa of μ, Sμ is the set of atoms
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of μ, μc := μ− μa − μ Sμ, ψ is a strictly positive function defined on J , a = ϕ′(0),
and f1 is defined in (9.1).

Lemma 9.3. The functional F defined in (9.2) is lower semicontinuous with
respect to the weak∗ convergence in the sense of measures.

Proof. Since F can be obtained as the sup of functionals of the form (9.2) with

J finite, we may assume that J = {x1, . . . , xm}. Let μn
∗
⇀ μ weakly* in the sense

of measures, and let λ be the weak* limit (up to a subsequence) of |μn J |. Let
J := J1 ∪ J2, with

J1 := {t ∈ J : |μ({t})| ≥ ψ(t)}, J2 := J \ J1.

Let ε > 0 be such that ⋃
xi∈J2

B̄ε(xi) ⊆ I

and such that for all n

|μn|
( ⋃

xi∈J2

∂B̄ε(xi)

)
= |μ|

( ⋃
xi∈J2

∂B̄ε(xi)

)
= 0.

Let us set

I1 := I \
⋃

xi∈J2

B̄ε(xi), I2 :=
⋃

xi∈J2

Bε(xi).

Let F1 and F2 denote the restriction of F to Mb(I1; R
k) and Mb(I2; R

k), respectively.
We have

lim inf
n→+∞

F(μn) ≥ lim inf
n→+∞

F1(μn I1) + lim inf
n→+∞

F2(μn I2).

We notice that

F1(μn I1) ≥ G1(μn I1),

where

G1(η) :=

∫
I1

f1(|φη|) dx +
∑
t∈Sη

ϕ(|η({t})|) + a|ηc|(I1)

for all η ∈ Mb(I1; R
k). By [4, Thorem 5.2] we have that

G1(μ I1) ≤ lim inf
n→+∞

G1(μn I1),

so that

F1(μ I1) = G1(μ I1) ≤ lim inf
n→+∞

F1(μn I1).

On the other hand, we have

F2(μn I2) = G2(μn I2 \ J2) +
∑
t∈J2

ϕ(|μn({t})| ∨ ψ(t)),
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where

G2(η) :=

∫
I2

f1(|φη|) dx +
∑
t∈Sη

ϕ(|η({t})|) + a|ηc|(I2)

for all η ∈ Mb(I2; R
k). We have

lim inf
n→+∞

F2(μn I2) ≥ G2(μ I2 \ J2) +
∑
t∈J2

ϕ(λ({t}) ∨ ψ(t))

≥ G2(μ I2 \ J2) +
∑
t∈J2

ϕ(ψ(t)).

We deduce

F2(μ I2) = G2(μ I2 \ J2) +
∑
t∈J2

ϕ(ψ(t)) ≤ lim inf
n→+∞

F2(μn I2),

and so we get

F(μ) = F1(μ I1) + F2(μ I2) ≤ lim inf
n→+∞

F(μn).

The proof is now concluded.
Let us now come to the proof of Proposition 9.1.
Proof of Proposition 9.1. We can assume without loss of generality that∫

Γ

ϕ(ψ) dHN−1 < +∞.

Following Lemma 9.2, let us consider Ω̃ open and bounded in R
N such that Ω ⊂ Ω̃,

and let us set Ω′ := Ω̃ \ ∂NΩ. Let us consider the functional

F ′(u) :=

⎧⎪⎪⎨
⎪⎪⎩

∫
Ω
f(|∇u|) dx +

∫
S(u)∪Γ

ϕ(|[u]| ∨ ψ) dHN−1 if u ∈ SBV (Ω′),

u = g on Ω′ \ Ω,

+∞ otherwise in BV (Ω′).

The relaxation result of Proposition 9.1 is equivalent to proving that the relaxation
of F ′ under the weak* topology of BV (Ω′) is

F ′(u) :=

∫
Ω

f1(|∇u|) dx +

∫
S(u)∪Γ

ϕ(|[u]| ∨ ψ) dHN−1 + a|Dcu|(Ω′)

if u ∈ BV (Ω′), u = g on Ω′ \ Ω, and F ′(u) = +∞ otherwise in BV (Ω′).
Following [6], it is useful to introduce the localized version of F ′; namely, for all

open set A ⊆ Ω′ let us set

F ′(u,A) :=

∫
A∩Ω

f(|∇u|) dx +

∫
A∩(S(u)∪Γ)

ϕ(|[u]| ∨ ψ) dHN−1(9.3)

if u ∈ SBV (Ω′), u = g on Ω′ \ Ω, and F ′(u,A) = +∞ otherwise in BV (Ω′). Let us
indicate by F ′(u,A) the relaxation of (9.3) under the weak* topology of BV (Ω′).
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Arguing as in [6, Proposition 3.3], we have that for every u ∈ BV (Ω′), F ′(u, ·) is
the restriction to the family A(Ω′) of all open subsets of Ω′ of a regular Borel measure.
Since for all u ∈ SBV (Ω′) with u = g on Ω′ \ Ω and for all A ∈ A(Ω′) we have∫

A∩Ω

f(|∇u|) dx +

∫
A∩S(u)

ϕ(|[u]|) dHN−1 ≤ F ′(u,A)

≤
∫
A∩Ω

f(|∇u|) dx +

∫
A∩S(u)

ϕ(|[u]|) dHN−1 +

∫
A∩Γ

ϕ(ψ) dHN−1,

by [6, Theorem 3.1] we obtain that for all u ∈ BV (Ω′) with u = g on Ω′ \ Ω and for
all A ∈ A(Ω′) with A ∩ ∂DΩ = ∅∫

A∩Ω

f1(|∇u|) dx +

∫
A∩S(u)

ϕ(|[u]|) dHN−1 + a|Dcu|(A) ≤ F ′(u,A)(9.4)

≤
∫
A∩Ω

f1(|∇u|) dx +

∫
A∩S(u)

ϕ(|[u]|) dHN−1 + a|Dcu|(A) +

∫
A∩Γ

ϕ(ψ) dHN−1.

As a consequence of (9.4), we deduce that

F ′(u, ·) (Ω′ \ (S(u) ∪ Γ ∪ ∂DΩ)) = f1(|∇u|) dLN Ω + a|Dcu|.

In order to evaluate F ′(u, ·) (S(u) ∪ Γ ∪ ∂DΩ), we notice that for all A ∈ A(Ω′) and
for all u ∈ SBV (Ω′) with u = g on Ω′ \ Ω∫

A∩Ω

f1(|∇u|) dx +

∫
A∩(S(u)∪Γ)

ϕ(|[u]| ∨ ψ) dHN−1 + a|Dcu|(A) ≤ F ′(u,A),

and since the left-hand side is lower semicontinuous by Lemma 9.2, we get that for
all u ∈ BV (Ω′) with u = g on Ω′ \ Ω∫

A∩Ω

f1(|∇u|) dx +

∫
A∩(S(u)∪Γ)

ϕ(|[u]| ∨ ψ) dHN−1 + a|Dcu|(A) ≤ F ′(u,A).

By outer regularity of F ′(u, ·) we conclude that

F ′(u,E) ≥
∫
E

ϕ(|[u]| ∨ ψ) dHN−1

for all Borel sets E ⊆ S(u) ∪ Γ ∪ ∂DΩ. We have to prove the opposite inequality,
namely,

F ′(u,E) ≤
∫
E

ϕ(|[u]| ∨ ψ) dHN−1

for all Borel sets E ⊆ S(u) ∪ Γ ∪ ∂DΩ. Without loss of generality, we may assume
that ∫

S(u)

ϕ(|[u]|) dHN−1 < +∞,

and by a truncation argument, we can suppose that u|Ω ∈ L∞(Ω). Let K be a
compact subset of S(u) ∪ Γ ∪ ∂DΩ, ε > 0, and let Aε be open with K ⊆ Aε and

|Du|(Aε \K) < ε,

∫
(Aε\K)∩Γ

ϕ(ψ) dHN−1 < ε.
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We can find uh ∈ BV (Ω′) with uh = g on Ω′\Ω and such that uh is piecewise constant
in Ω (that is (uh)|Ω ∈ SBV (Ω) with ∇uh = 0 in Ω), uh → u strongly in L∞(Ω), and
|Duh|(Aε \K) < ε. Since uh is piecewise constant in Ω we have for all h

F ′(uh, Aε) ≤
∫
Aε∩(S(uh)∪Γ)

ϕ(|[uh]| ∨ ψ) dHN−1.(9.5)

We conclude

F ′(u,Aε) ≤ lim inf
h→+∞

F ′(uh, Aε) ≤ lim inf
h→+∞

∫
Aε∩(S(uh)∪Γ)

ϕ(|[uh]| ∨ ψ) dHN−1

≤
∫
K∩(S(u)∪Γ)

ϕ(|[u]| ∨ ψ) dHN−1 + a|Duh|(Aε \K) +

∫
(Aε\K)∩Γ

ϕ(ψ) dHN−1

≤
∫
K∩(S(u)∪Γ)

ϕ(|[u]| ∨ ψ) dHN−1 + (a + 1)ε

so that, letting ε → 0 we obtain

F ′(u,K) ≤
∫
K∩(S(u)∪Γ)

ϕ(|[u]| ∨ ψ) dHN−1.

Since K is arbitrary in S(u) ∪ Γ ∪ ∂DΩ, the proof is concluded.
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REGULARITY OF SOLUTIONS TO A CLASS OF
CROSS DIFFUSION SYSTEMS∗

DUNG LE†

Abstract. Regularity of bounded solutions to a class of strongly coupled parabolic systems is
investigated. Conditions on the structure of the systems are found to assure that bounded solutions
are Hölder continuous. The theory is then applied to the general Shigesada–Kawasaki–Teramoto
model in population dynamics.
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1. Introduction. In the last twenty years, cross diffusion systems have attracted
great attention in both mathematical analysis and real life modeling. The introduction
of cross diffusion terms into regular diffusion systems allows the mathematical models
to capture much more important features of phenomena in physics, biology, ecology,
and engineering sciences. At the same time, the presence of these terms caused
enormous difficulties in the mathematical treatment due to the strong coupling in the
diffusion terms. Among unanswered fundamental questions, we face the regularity of
bounded weak solutions.

In this work, we study Hölder continuity of a bounded weak solution �u = (u1, . . . , um)
to the following parabolic system:

�ut = ∇ · (A(�u)∇�u) + F(�u).(1.1)

Here, A(�u) = (Pij(�u)) is an m × m matrix, F(�u) = (F1(�u), . . . , Fm(�u)), and
∇�u = (∇xu1, . . . ,∇xum).

This system is coupled with certain boundary conditions on the boundary of a
bounded domain Ω in R

n. For the sake of simplicity, we will study only interior regu-
larity of solutions although our method can be easily modified to cover the boundary
case, given suitable boundary conditions.

Fundamental theory for strongly coupled systems like (1.1) was presented in [1].
The question on the global existence of solutions was also discussed there. For regular
reaction diffusion systems, when A is a diagonal matrix, it is well known that bounded
weak solutions are Hölder continuous (see [6]). Moreover, �u exists globally if its
supremum norm ‖�u(•, t)‖∞,Ω does not blow up in time. In contrast, things are more
complicated if A is a full matrix. Counterexamples in [4] showed that, in general, a
bounded solution to (1.1) can disappear in finite time while staying bounded. Thus,
the boundedness of the L∞ norm of a solution �u is not sufficient to guarantee its
global existence. Fortunately, there is an elaborated theory developed in [1] showing
that a solution �u to (1.1) exists globally (and is classical) if one has controls on both
of its L∞ and Hölder norms. Thus, it is necessary to study the Hölder continuity
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of the solutions. Furthermore, estimates on Hölder norms of solutions also provide
valuable information on the compactness of the trajectories of solutions if one wishes
to study their long time dynamics, such as the existence of global attractors.

Partial regularity results were obtained by Giaquinta and Struwe in [3] for a
general class of systems. Everywhere regularity results for bounded solutions were
proven only in very few situations assuming restrictive structure conditions. Among
these are triangular systems (see [1, 9]) or strongly coupled systems of special form
(see [9, 11]). In [9], we had to assume certain structural conditions that prevent the
application of our results to many important models. In fact, the strongly coupled
parabolic system ⎧⎪⎪⎨

⎪⎪⎩
∂u

∂t
= Δ[(d1 + a11u + a12v)u] + F (u, v),

∂v

∂t
= Δ[(d2 + a21u + a22v)v] + G(u, v),

(1.2)

does not satisfy the structures studied in [9, 11]. This system was proposed by
Shigesada, Kawasaki and Teramoto in [10] to study spatial segregation of interacting
species. Global existence and long time dynamics of solutions were investigated in
either triangular cases or under the assumption that the dimension n of the domain
Ω is two (see [5, 7] and the reference therein). For n > 2, to our best knowledge, the
question of whether bounded positive solutions to this model are Hölder continuous
(everywhere) remains open.

The aim of this paper is to present certain sufficient conditions on the structure of
(1.1) for its bounded weak solutions to be Hölder continuous everywhere (and therefore
classical). The dimension n of the domain Ω and the number m of equations in (1.1)
can be arbitrary. This will be done in section 2. Our key assumption (see (H.1)) is the
existence of a function H(�u), being defined on the range of a solution �u, which links the
structures of the equations in a way that we can derive certain regularity information of
H(�u(x, t)) in (x, t). To this end, we follow logarithmic function techniques developed
in [8] dealing with scalar equations. Such regularity of H will be exploited later to
study that of �u.

The condition (H.1) was motivated by a biological model of two equations studied
in [10], where the following form of Pi,j was considered:

Pij(�u) = a∇ui + ci∇H(x, t, �u), with i, j ∈ {1, 2}.(1.3)

The function H was a given affine function in �u and represented the environmental
influences on the species �u. Naturally, this influence might depend nonlinearly on �u
itself. For simplicity, let us assume that H depends only on �u, then (H.1) can be
fulfilled (see Remark 2.2). Our condition (H.1) generalizes this situation in hope that
it can cover more general structure and, in particular, (1.2).

Unless H is described explicitly as in (1.3), the existence of such function H
required in (H.1) seems to be unclear and of little use in practice. In particular, we
may ask if (H.1) is ever satisfied for (1.2). We take a closer look at these hypotheses
in section 3, and try to find sufficient conditions on the parameters defining (1.1).
This is not an easy task for systems of more than two equations. We are forced to
study the case m = 2 (but n is still arbitrary). It turns out that H must be a solution
to a first order PDE dictated by the coefficients of the system. This PDE can be
solved by elementary methods of characteristics. Sufficient conditions for H to exist
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will be formulated in Theorem 3. We will describe a way of constructing such H in
Lemma 3.3 of section 3.

The system (1.2) is a test case of the general result in section 2. Since u, v are
population densities, only positive solutions are of interest. We then study these
solutions in section 4 where we will give the proof of the following theorem.

Theorem 1. Assume that di, aij > 0, i, j = 1, 2. If (a22 − a12)(a11 − a21) > 0,
then bounded positive weak solutions to (1.2) are Hölder continuous everywhere.

That is, in population dynamics terms, we assumed that self diffusion rates are
either stronger or weaker than cross diffusion ones. In fact, our method also works
for a more general setting than that of (1.2) as we briefly point out in Theorem 4.

2. The general case. Let �u = (u1, . . . , um) be a bounded solution to (1.1) that
exists on some interval (0, T ). We consider the range of �u

Γ = {�u(x, t) : (x, t) ∈ ΩT = Ω × (0, T )} ⊂ R
m.(2.1)

Hereafter, we use the summation convention, where the i, j indices run from 1 to
m. We set Pi = Pi,j∇uj =

∑m
j=1 Pi,j∇uj .

Our main assumptions are the followings.
(P.1) The functions Pi,j , Fi are continuous functions in �u ∈ R

m.
(H.1) There exist a C2 function H : R

m → R defined on a bounded neighborhood
Γ0 of Γ, and positive numbers λ1, λ2, λ3 such that

Δ1 = ∇H · (HujPj) = ∇H ·
m∑
j=1

HujPj ≥ λ1|∇H|2,(2.2)

Δ2 = Pj · ∇Huj =

m∑
j=1

Pj · ∇Huj ≥ λ2|∇�u|2,(2.3)

Δ3 = |HujPj | = |
m∑
j=1

HujPj | ≤ λ3|∇H|(2.4)

for every C1 function �u : ΩT → R
m whose range is contained in Γ0.

Here, with a slight abuse of notation, we will write Ht = ∂
∂tH(�u(x, t)), Huj =

∂
∂uj

H(�u), Huiuj = ∂2

∂ui∂uj
H(�u), ∇H = ∇xH(�u(x, t)), and so on.

Our main result of this section is the following theorem.
Theorem 2. Assume that Γ is bounded and (P.1) and (H.1) hold. We assert that

�u belongs to the Hölder class Cα,α/2(ΩT ) for any α ∈ (0, 1). Moreover, the Cα,α/2

norm of �u can be estimated in terms of the data of the equation and ‖�u‖∞,ΩT
.

Let us fix a point (x0, t0) ∈ ΩT . For R, r > 0, we consider the cylinder Q(R, r) :=
Q(x0, t0, R, r) := Bx0(R) × [t0 − r, t0], and always assume that R, r are sufficiently
small such that Q(R, r) ⊂ ΩT . For i = 1, 2, . . ., we denote QiR = Q(iR, iR2).

The key ingredient of our proof is to show that

lim inf
R→0

1

Rn

∫∫
QR

|∇�u|2 dxdt < ε, QR := B(x0, R) × [t0 −R2, t0] ∀ε > 0.(2.5)

Once this is proven, thanks to the Poincaré type inequality (see [3, Prop. 3.1])∫∫
QR

|�u− �uR|2 dxdt ≤ cR2

∫∫
QR

|∇�u|2 dxdt,(2.6)
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we see that (2.5) implies lim infR→0

∫∫
QR

|�u− �uR|2 dxdt < ε. Since ε > 0 can be

arbitrarily small, the Hölder continuity of �u follows from [3, Theorem 3.1]. Moreover,
provided ε is taken sufficiently small, the proof (see [3, pages 445–446]) also shows

that

∫∫
QR

|�u− �uR|2 dxdt ≤ CRα, for any α ∈ (0, 1) and R > 0 with the constant C

depends uniformly on α, ε the data and the supremum norm of �u. By the Campanato
imbedding theorem (see [3]), the desired estimate for the Cα,α/2 norm of �u is implied
and we conclude the proof of Theorem 2.

For R > 0, we denote

Mi = sup
QiR

H(�u(x, t)), mi = inf
QiR

H(�u(x, t)), and ωi = Mi −mi,

and, for some positive θ, α to be determined later, define the following function:

w(x, t) := log

(
ω4 + Rα

N(�u(x, t))

)
, with N(�u) = θ(M4 −H(�u)) + Rα.

Let Q0 = {(x, t) ∈ Q2R : w(x, t)+ = 0}. It is easy to see that Q0 is the set where
H ≤ (1 − 1/θ)M4 + m4, or H(�u(x, t)) is away from M4.

We consider the following two alternatives discussing the largeness of the measure
|Q0| of this set Q0.
(A) There is R0 > 0 such that

|Q0| > 1

θ
Rn+2 ∀R ∈ (0, R0).(2.7)

(B) There is a sequence {Rk}, Rk → 0, such that

|Q0| < 1

θ
Rn+2, for R = Rk.(2.8)

For any given ε > 0, we will try to determine θ = θ(ε) > 0 such that (2.5) holds.
If (A) holds, the role of θ is not relevant in this case as any positive θ will do. Here,
the values of H(�u(x, t)) in Q2R are “evenly” between m4,M4, and we will follow the
argument in [8] to show that H(�u(x, t)) is Hölder continuous by proving that w is
uniformly bounded. On the other hand, if (B) holds for large θ, then H is close to
M4 in a large part of Q2R. We will show that �u will not oscillate to much by proving
that its gradients is averagely small if θ is large.

First, we test the jth equation by Hujη, sum the results, and use (2.3) to get∫
Ω

∂H

∂t
η dx +

∫
Ω

[(HujPj)∇η + λ2|∇�u|2η] dx ≤
∫

Ω

Ψη dx.(2.9)

Here we denoted Ψ =
∑

FjHuj .
Proof of (2.5) given (A).
Let η be a function with compact support in Q2R. We test the jth equation by

θHuj
η/N , and add the results to get∫

Ω

∂w

∂t
η dx +

∫
Ω

θ

[
(HujPj)

N
∇η +

Pj∇Huj

N
η

]
dx

+

∫
Ω

θ2 (HujPj)∇H

N2
η dx =

∫
Ω

θΨ

N
η dx.

(2.10)



REGULARITY OF SOLUTIONS 1933

If η ≥ 0, then (2.2), (2.3) and the above imply∫
Ω

∂w

∂t
η dx + θ

∫
Ω

(HujPj)

N
∇η dx ≤

∫
Ω

θΨ

N
η dx.(2.11)

We first show that ‖w‖∞,QR
can be estimated in terms of ‖w‖2,Q2R

. We replace
η in (2.11) by (w − k)+η

2, with η being a cut-off function in Q2R. Note that ∇w =
θ∇H/N . We derive

∫
Ω

∂(w − k)2+
∂t

η2 dx +

∫
w≥k

θ2(Huj
Pj)∇H

N2
η2dx

≤
∫

Ω

θ(HujPj)(w − k)+

N
η|∇η| dx +

∫
Ω

θΨ(w − k)+
N

η2 dx.

Integrating with respect to t ∈ I := [t0 − 4R2, t0] and using the Young inequality
and (2.4) to the first term on the right-hand side, we obtain

sup
t∈[t0−R2,t0]

∫
B(R)

∂(w − k)2+
∂t

η2 dx +

∫∫
Q2R

|∇(w − k)+|2η2 dxdt

≤ θ2

∫∫
Q2R

(w − k)2+R
−2 dxdt + θ2

∫
I

∫
w≥k

R2Ψ2

N2
η2dxdt.

(2.12)

Let Ak = {(x, t) ∈ Q2R : w(x, t) > k}. Because Ψ is bounded on Γ0 and
N ≥ Rα ≥ C|Ak|

α
n+2 , we bound the last term in (2.12) by∫

I

∫
w≥k

R2Ψ2

N2
η2dxdt ≤ C|Ak|1−

2α
n+2 .(2.13)

We now choose α < 1 and see that 1 − 2α
n+2 > n

n+2 . This fact, (2.12), (2.13), and
the well known DiGiorgi’s method in [6] will give

sup
Bx0 (R)×[t0−R2,t0]

w ≤ Const

(
1 +

1

Rn+2

∫∫
Bx0

(2R)×[t0−2R2,t0]

(w+)2 dxdt

)
.(2.14)

Next, we replace η by η2 in (2.10) and use (2.2), (2.3), and (2.4) to get∫
Ω

∂w

∂t
η2 dx +

∫
Ω

|∇w|2η2 dx ≤ C

∫
Ω

(
|∇w|η|∇η| + θΨ

N
η2

)
dx.

This and the condition on the measure of Q0 in (2.7) allow us to follow the proof
of [8, Lemma 2.4] to show that ‖w‖2,Q2R

, and therefore ‖w‖∞,QR
(see (2.14)), can be

bounded by a constant independent of R. The argument in [8, page 924] then gives a
decay estimate for the oscillation of H and then its Hölder continuity.

Moreover, let η be a cutoff function for QR and satisfy: η ≡ 1 in QR, η(x, t) ≡ 0
outside the cylinder Q′ given by Bx0

(2R)×[t0−2R2, t0+R2]. In addition, |Dη| ≤ 1/R

and

∣∣∣∣∂η∂t
∣∣∣∣ ≤ 1/R2. Replacing η in (2.9) by (H(�u)− infQR

H(�u))η2, with η is the above

cutoff function, and using the fact that for some positive ν, |H(�u)−infQR
H(�u)| ≤ CRν

we easily show that |DH(�u)|2 ∈ L1,μ
loc for μ = n + 2ν > n.
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Let H̄(�u) = H(�u) −H(�u)R, where H(�u)R denotes the mean value of H(�u(x, t))
over QR. We can replace H in (2.9) by H̄. We use (2.4) to get∫

Ω

∂(H̄η)

∂t
dx + λ2

∫
Ω

|∇�u|2η dx ≤ C

∫
Ω

[
|∇H||∇η| + |H̄|∂η

∂t
+ Ψη

]
dx.

We integrate the above inequality with respect to t over the interval [t0−2R2, t0+
R2] and obtain

λ2

∫∫
Q′

|∇�u|2η dxdt ≤ C

∫∫
Q′

(
|∇H||∇η| + |H̄||∂η

∂t
| + |Ψη|

)
dxdt.

Using the definition of η and the facts that |DH(�u)|2 ∈ L1,μ
loc , and that |H̄| ≤ CRν

(since H(�u(x, t)) is Hölder continuous), we can majorize the terms on the right as
follows: ∫∫

Q′
|H̄|

∣∣∣∣∂η∂t
∣∣∣∣ dxdt ≤ CRn+ν ,

∫∫
Q′

|∇H||∇η| dxdt ≤ |Q′|1/2
R

(∫∫
Q′

|∇H|2 dxdt

)1/2

≤ CR(n+μ)/2.

Since μ > n, we have (n + μ)/2 > n. From these estimates, for some γ > 0, we
obtain ∫∫

QR

|∇�u|2 dxdt ≤
∫∫

Q′
|∇�u|2η dxdt ≤ CRn+γ .

This gives (2.5) and completes this alternative.
Proof of (2.5) given (B). Since we can replace H by H + k with k being any

constant, we will hereafter assume that m4 = 0 in the definition of w. It is clear that
(B) implies

|{(x, t) ∈ QR|H ≤ (1 − ρ)M4}| < ρRn+2, with ρ = 1/θ.(2.15)

We have the following estimate for the integral of |∇�u|.
Lemma 2.1. Let q = 2n/(n + 2). There exists a constant C(M4) such that

(∫∫
QR

|∇�u|q dxdt

) 2
q

≤ C(M4)ρ
2
nR−2 ∀R < ρM4.(2.16)

Proof. We substitute (H − k)+η2, with k ∈ R and η being a cut-off function on
Q2R with respect to QR, into the places of η in (2.9). Since we can choose η such
that |Dη|2 + |ηt| ≤ cR−2, standard estimates give

λ2

∫ ∫
QR

|∇�u|2(H − k)+dxdt +
λ1

2

∫ ∫
QR

|∇H|2 ≤
∫ ∫

Q2R

(H − k)2+|∇η|2 + CRn+2.

By the choice of k := (1 − 2ρ)M4, (H − k)+ ≤ 2ρM4 on Q2R so that∫∫
QR

|∇�u|2(H − k)+ dxdt ≤ C(ρM4)
2Rn + CRn+2.
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Let A0 := {(x, t) ∈ QR|H ≥ (1 − ρ)M4}. Then (H − k)+ ≥ ρM4 on A0. So,

∫∫
A0

|∇�u|2 dxdt ≤ CRn

(
ρM4 +

R2

ρM4

)
≤ 2ρM4R

n ∀R < ρM4.(2.17)

Also, by substituting esHη2 into places of η in (2.9) with s > 0 sufficiently large,
it is standard to show ∫∫

QR

|∇�u|2 dxdt ≤ CRn.(2.18)

For any subset A of QR, Hölder’s inequality gives

∫∫
A

|∇�u|q dxdt ≤
(∫∫

A

|∇�u|2 dxdt

) n
n+2

|A| 2
n+2 .(2.19)

Taking A = A0 and using (2.17), we obtain

∫∫
A0

|∇�u|q dxdt ≤ (2ρM4R
n)

n
n+2R2 = (2ρM4)

n
n+2Rn+ 4

n+2 ∀R < ρM4.

Similarly, we take A = QR \ A0 in (2.19). Using (2.18) and also the fact that
|A| ≤ ρRn+2 by (2.15), we have

∫∫
QR\A0

|∇�u|q dxdt ≤ (CRn)
n

n+2 (ρRn+2)
2

n+2R2 = Cρ
2

n+2Rn+ 4
n+2 .

Since (n + 4
n+2 − n− 2) 2

q = −2. The above estimates give the lemma.

From [3, page 443], we have

∫∫
QR

|∇�u|2 dxdt ≤ C(ε)

(∫∫
Q4R

|∇�u|q dxdt

) 2
q

+ ε

∫∫
Q4R

|∇�u|2 dxdt ∀ε > 0.

(2.20)

Using (2.18), (2.16) in (2.20) to estimate the integrals on the right-hand side and
multiplying through by R2, we obtain

1

Rn

∫∫
QR/4

|∇�u|2 dxdt ≤ C(ε)C(M4)ρ
2
n + Cε ∀R < ρM4.

Obviously, we can make the right-hand side arbitrarily small by choosing ε and
then ρ = ρ(ε) sufficiently small. We have shown (2.5), given (B) with θ being suffi-
ciently large. Our proof is now complete.

Remark 2.2. If (1.3) is considered, then one can easily check that (H.1) is
verified if a, ci are positive constants, and the matrix (Huiuj ) is positive definite (that
is, Huiujξiξj ≥ γ|ξ|2 for some γ > 0 and ξ ∈ R

m×n). The conditions (2.2)–(2.4) seem
to be technical. They are discovered in the search for an equation satisfied by the
influence H. It turns out that these conditions make H a subsolution to some scalar
parabolic equation. This information was used in the proof of the alternative (A).
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3. Sufficient conditions for the existence of H. In this section we will find
sufficient conditions that guarantee the existence of the function H satisfying our
main assumptions (2.2)–(2.4). Unless H is explicitly present in systems like (1.3),
the question of the existence of H verifying (H.1) is not easy to answer for general
m ≥ 2. Here, we restrict ourself to the case of two equations (m = 2). Parts of our
calculation can be useful to study the case m > 2, but the possibility of formulating
a similar sufficient condition, like (H.2) below, is questionable.

From now on, as we will deal with two equations and to simplify our notation,
we denote �u = (u, v), P1 = P11, P2 = P12, Q1 = P21, and Q2 = P22.

We then assume further that
(P.2) P1, P2, Q1, Q2 are C1 functions on Γ0 and are positive on Γ. Moreover, P1, Q2

are greater than a positive constant on Γ.
We consider the following equation:

−P2f
2 + (P1 −Q2)f + Q1 = 0,(3.1)

because P2Q1 > 0, (3.1) has two solutions f = f1, f2 with f1f2 < 0. In what follows,
we denote by f(u, v) the positive solution of (3.1). By (P.2), f is differentiable so
that there exists a C2 solution g (see [2, pages 106–109]) to the following first order
equation:

gu − f(u, v)gv = 0.(3.2)

We will impose the following main assumption of this section.
(H.2) Let Γ0 be connected. Assume that there exists a solution g to (3.2) such that

g is defined on Γ0, and

gv �= 0, and 4(Q1P2 − P1Q2)(fu − fvf) �= 0 ∀(u, v) ∈ Γ0.(3.3)

The existence of H is then given by the following theorem.
Theorem 3. Assume (H.2) and let H(u, v) = K exp(kg(u, v)). There exist

K > 0 and k ∈ R such that (H.1) holds.
Note also that if G : R → R is a C2 function, then H(u, v) = G(g(u, v)) is also a C2

solution to (3.2). To prove this theorem, we need only to verify the conditions (2.2)–
(2.4) that amount to the positivity of the following quadratics for every (u, v) ∈ Γ
and U, V ∈ R

n.

A1 =
(
(P1Hu + Q1Hv)Hu − λ1Hu

2
)
U2 +

(
(P2Hu + Q2Hv)Hv − λ1Hv

2
)
V 2

+ ((P2Hu + Q2Hv)Hu + (P1Hu + Q1Hv)Hv − 2λ1HvHu)V U,
(3.4)

A2 = (Q1Huv + P1Huu − λ2)U
2 + (P2Huv + Q2Hvv − λ2)V

2

+ (P2Huu + P1Huv + Q2Huv + Q1Hvv)V U,
(3.5)

and

A3 =
(
λ3Hu

2 − (P1Hu + Q1Hv)
2
)
U2 +

(
λ3Hv

2 − (P2Hu + Q2Hv)
2
)
V 2

+ (2λ3HvHu − 2 (P2Hu + Q2Hv) (P1Hu + Q1Hv))V U.
(3.6)

To study these quadratics, we will need some lemmas and calculations.
Lemma 3.1. If H is a solution to (3.2) and (P.2) holds, then there exist λ1, λ3 > 0

such that A1, A3 are positive definite.
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Proof. First, we will prove that the discriminants Θ1,Θ3 of A1, A3 are nonpositive.
However, simple calculation shows that

Θ1 = ((P2Hu + Q2Hv)Hu + (P1Hu + Q1Hv)Hv − 2λ1HvHu)
2

−4
(
(P1Hu + Q1Hv)Hu − λ1Hu

2
) (

(P2Hu + Q2Hv)Hv − λ1Hv
2
)

=
(
HvP1Hu − P2Hu

2 −HuQ2Hv + Q1Hv
2
)2

,

and

Θ3 = 4λ3

(
P1HuHv −Hu

2P2 −HvHuQ2 + Q1Hv
2
)2

.

Because H satisfies (3.2), it is easy to see that Θ1 = Θ3 = 0. We need only
to show that the coefficients of U2, V 2 in A1, A3 are positive. By (3.1), they can be
written as

H2
v (P1f

2 + Q1f − λ1f
2) = H2

vf
2(P2f + Q2 − λ1), H2

v (P2f + Q2 − λ1),

H2
u(λ3 − (P1 + Q1/f)2) = H2

u(λ3 − (P2f + Q2)
2), H2

v (λ3 − (P2f + Q2)
2).

Since f > 0 and because of (P.2), we can take

λ1 =
1

2
inf
Γ

(P2f + Q2), λ3 = 2 sup
Γ

(P2f + Q2)
2,

which are positive thanks to (P.2). The lemma is proven.
To verify the positivity of A2 in (2.3), we consider its discriminant Θ2. Easy

computation shows that we can write

Θ2 = −4λ2
2 + Θ11λ2 + Θ12,

with

Θ11 := 4 (Q1Huv + P1Huu + P2Huv + Q2Hvv) ,

Θ12 := (P2Huu + P1Huv + Q2Huv + Q1Hvv)
2−4 (Q1Huv + P1Huu) (P2Huv + Q2Hvv) .

Differentiating Hu = fHv, we get Huu = fuHv + fHuv and Huv = fvHv + fHvv.
Substitute these into Θ12 and simplify to obtain

Θ12 := α1H
2
vv + α2HvvHv + α3H

2
v ,

with

α1 =
(
P2f

2 + P1f + Q2f + Q1

)2 − 4
(
Q1f + P1f

2
)
(P2f + Q2) ,

α2 = 2 (P2 (fu + ffv) + P1fv + Q2fv)
(
P2f

2 + P1f + Q2f + Q1

)
−4 (Q1fv + P1 (fu + ffv)) (P2f + Q2) − 4

(
Q1f + P1f

2
)
P2fv,

α3 = (P2(fu + ffv) + P1fv + Q2fv)
2 − 4(Q1fv + P1(fu + ffv))P2fv.

From (3.1), we have P2f
2 + Q2f = P1f + Q1. Hence,

α1 = 4(P1f + Q1)
2 − 4(Q1 + P1f)(P2f

2 + Q2f) = 0,
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α2 = 4[(P2(fu + ffv) + P1fv + Q2fv)(P1f + Q1)
−(Q1fv + P1(fu + ffv))(P2f + Q2) − (Q1f + P1f

2)P2fv]
= 4[P2Q1(fu − ffv) − P1fv(P2f

2 − P1f −Q1) − P1fuQ2]
= 4(Q1P2 − P1Q2)(fu − fvf),

α3 = (fu + ffv)
2P2

2 + (P1 + Q2)
2f2

v + 2P2fv[(fu + ffv)(Q2 − P1) − 2Q1]
= (fu + ffv)

2P2
2 + (P1 −Q2)

2f2
v + 2P2fv(fu + ffv)(Q2 − P1)

+4(P1Q2 −Q1P2)f
2
v

= [(fu + ffv)P2 + fv(Q2 − P1)]
2 + 4(P1Q2 −Q1P2)f

2
v .

Similarly, we also have Θ11 = β2Hvv + β3Hv, with

β2 = 4(Q1f + P1f
2 + P2f + Q2) = 4(f2 + 1)(P2f + Q2),

β3 = 4(Q1fv + P1(fu + ffv) + P2fv).

Proof of Theorem 3. Thanks to Lemma 3.1 and the choice of g, we need only to
check the positivity of A2. We first show that Θ2 < 0 on Γ for suitable choice of k.
Let G(x) = exp(kx) and H̃(u, v) = G(g(u, v)) . As H̃v = G′gv, H̃vv = (G′′g2

v+G′gvv),
and G′′/G′ = k, we have

Θ̃12 = H̃vvH̃vα2 + H̃2
vα3 = (G′)2

[
kg3

vα2 + (gvvgvα2 + g2
vα3)

]
.

Thanks to our assumption (3.3) and the fact that Γ0 is connected, the coefficient
of k never vanishes on Γ0. That is, either supΓ g3

vα2 < 0 or infΓ g3
vα2 > 0. Moreover,

(gvvgvα2 + g2
vα3) is bounded on Γ and gv, G

′ �= 0. The above shows that Θ̃12 < 0 on
Γ for suitable choice of k with |k| sufficiently large.

We then choose K sufficiently large in

Θ2 = −4λ2
2 + Θ11λ2 + Θ12 = −4λ2

2 + K(β2H̃vv + β3H̃v)λ2 + K2Θ̃12

to see that Θ2 < 0, because Θ̃12 < 0 on Γ̄.
Finally, we need only to check that the coefficients of U2, V 2 in A2 are positive.

This amounts to show that the quantities

δ1 = (Q1Huv + P1Huu) and δ2 = (P2Huv + Q2Hvv)

are strictly positive on Γ, and then choose λ2 sufficiently small. Similar calculation
as before yields

δ1 =
(
Q1f + P1f

2
)
Hvv+Q1fvHv+P1 (fuHv + ffvHv) = K exp(kg)

[
kδ12 + fδ11k

2
]
,

δ2 = (P2f + Q2)Hvv + P2fvHv = K exp(kg)

[
kδ21 +

δ22
f

k2

]
,

where δ12 =
(
Q1f + P1f

2
)
gvv +Q1fvgv +P1 (fugv + ffvgv), δ21 = (P2f + Q2) gvv +

P2fvgv and δ11 = δ22 = gv
2(Q1 + P1f) = gv

2(P2f
2 + Q2f).

Since δ12, δ21 are bounded on Γ, and δ11 = δ22 > 0, we can choose |k| large to
have that δ1, δ2 > 0 on Γ.
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Remark 3.2. Differentiate (3.1) with respect to u, v, and then solve for fu, fv to
see that

fu − fvf =
fF

P2f2 + Q1
,(3.7)

with F = ∂vPvf
3 + (∂vQ2 − ∂uP2 − ∂vP1)f

2 + (∂uP1 − ∂uQ2 − ∂vQ1)f + ∂uQ1.
Therefore, (3.3) of (H.2) requires that F �= 0 on Γ.

We conclude this section by discussing the existence of a solution g of (3.2) and
the condition gv �= 0 in (3.3). In applications, see section 4, the function f(u, v) may
be singular in u, v so that we will rewrite (3.2) in the form

M(u)gu −N(u, v)gv = 0(3.8)

for some function M,N such that f = N/M , M �= 0. The above equation can be
solved by characteristic methods. If g is such a solution, then we know that (see [2, pp
97–99]) �x(t) = (u(t), v(t)), z(t) = g(�x(t)) and �p(t) = (pu(t), pv(t)) = ∇g(�x(t)) solve
the following system:

�x′(t) = (M,−N),

�p′(t) = (−Mupu + Nupv, Nvpv),

z′(t) = Mpu −Npv.

(3.9)

We first observe that the above system is decoupled. In fact, one can solve for
u(t) from the first equation u′(t) = M(u(t)), and then substitute the result into the
second equation v′(t) = −N(u(t), v(t)) to get v(t). Once u(t), v(t) are known, we
can solve the (linear) equation for �p. Equation (3.8) simply says that g is constant
along the characteristic curve �x(t), which is an integral curve of the planar vector field
(M,−N).

Let γ be a smooth curve in Γ0 ⊂ R
2, which is a diffeomorphic image of an open

interval, and assume that γ is noncharacteristic with respect to (3.9). For each x0 ∈ γ,
we assume that the first equation of (3.9) has a solution �x(t) with �x(0) = x0. This
solution is locally defined on certain open interval Ix0 containing 0. We then define

Ξ = {(x0, s) ∈ γ × Ix0
: �x(t) exists on Ix0

with �x(0) = x0},

and the map X : Ξ → R
2 by X(�x(0), t) = �x(t). The system (3.9) is also supplied with

its initial data

z(0) = g̃(�x(0)) and �p(0) = �p0(�x(0))(3.10)

along γ. Here, the function g̃ is given in a neighborhood of γ and �p0(�x0) = (p0
u, p

0
v) is a

vector field defined along γ. The initial data must satisfy the compatibility conditions
on γ,

�p0 = (p0
u, p

0
v) = ∇g̃, Mp0

u = Np0
v.(3.11)

Let �T = (Tu, Tv) be the unit tangent vector along γ. Since γ is a diffeomorphic

image of an open interval, we can pick g̃ such that ∇g̃ · �T �= 0 (see also the proof of
Theorem 1 in section 4).

The following lemma concerns the first condition in (3.3) of (H.2).
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Lemma 3.3. Assume that Γ̄ ⊂ X(Ξ) and (3.11). Then there exists a solution to
(3.2) with gv �= 0 on Γ̄.

Proof. We define g on Γ̄ by g(�x(t)) = g̃(�x(0)). From the condition (3.11), we have

�p0 · �T = ∇g̃ · �T . Therefore, p0
v(NTu +MTv) = M∇g̃ · �T . Since γ is noncharacteristic,

we have (NTu + MTv) �= 0. Because ∇g̃ · �T �= 0, p0
v �= 0 along γ. From the second

equation of (3.9) we have p′v = Nvpv. This gives

pv(t) = p0
v(�x(0)) exp

(∫ t

0

Nv(�x(s))ds

)
.

Because gv(�x(t)) = pv(t) and p0
v(�x(0)) �= 0, we see that gv(�x(t)) �= 0 on I�x(0). Thus,

gv �= 0 on Γ̄.
In a more special situation, we can explicitly find g.
Lemma 3.4. If f(u, v) = f̂(v/u) for some function f̂ , then there exists a solution

to (3.2) defined on the set u, v > 0 with gv > 0.
Proof. Set v = Y u, we derive

dv

du
= u

dY

du
+ Y = −f̂(Y ) ⇒ dY

f̂(Y ) + Y
= −du

u
,

which has the general solution g(u, v) = C with

g(u, v) =

∫
dY

f̂(Y ) + Y
+ log(u), Y =

v

u
.

Hence, gv = 1/[f̂( v
u )+ v

u )u] = 1/(f(u, v)u+v), which is positive if u, v are positive.

4. Applications. We conclude our paper by giving the proof of Theorem 1. We
consider the system (1.2) and let

P = d1u + a12uv + a11u
2, Q = d2v + a21uv + a22v

2.

Obviously, (1.2) is a special case of (1.1) with P1, P2, Q1, Q2 simply the partial
derivatives of P,Q with respect to u, v. That is,

P1 = d1 + a12v + 2a11u, P2 = a12u, Q1 = a21v, Q2 = d2 + a21u + 2a22v.(4.1)

The proof is to verify the assumption (H.2) and that of Lemma 3.3 in the previous
section. As we consider bounded positive solutions, the set Γ in (2.1) is a bounded
subset of R

2
+. One can see that (P.2) is satisfied.

Proof of Theorem 1. We first look at the condition α2 �= 0 in (H.2). From
Remark 3.2 and (4.1), we have F = 2(a22 − a12)f

2 + 2(a11 − a21)f �= 0. This is
the case because f > 0 and (a22 − a12)(a11 − a21) > 0. Calculation also shows that
Q1P2 − P1Q2 is

−(2a11u
2a21+4a11ua22v+(d1a21 + 2a11d2)u+2a12v

2a22+(2d1a22 + a12d2) v+d1d2),

which is negative on R
2
+. Therefore, the second condition in (3.3) of (H.2). is verified.

Finally, we show the existence of g solving (3.8) with gv �= 0. Since Γ is bounded,
there exists L > 0 such that Γ ⊂ Γ0 = (0, L)× (0, L). On the other hand, we see that
the positive solution to (3.1) is given by

f(u, v) =
(P1 −Q2) +

√
(P1 −Q2)2 + 4P2Q1

2P2
, u, v > 0.
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Because P2 = a12u, f(u, v) is singular in u. Therefore, we will take in the equation
(3.8),

M(u) = u, N(u, v) = ((P1 −Q2) +
√

(P1 −Q2)2 + 4P2Q1)/(2a12).(4.2)

Let (u0, v0) ∈ Γ0 be given. The characteristic curves of (3.8), with u(0) = u0

and v(0) = v0, are given by u(t) = u0 exp(t) and v(t) being the solution to d
dtv(t) =

−N(u(t), v(t)). Let I0 = (a0, b0) be the interval on which u(t), v(t) are positive.
From (4.2), the equation for v is sublinear. That is, there are functions α(t), β(t)

such that |N(u(t), v(t))| ≤ α(t)v(t) + β(t). Using the Gronwall inequality, it is easy
to show that v(t) exists for all t in some interval I as long as N(u, v) is defined. In
particular, this is the case when u(t), v(t) stay positive. Since N(u, v) > 0, v(t) is
decreasing so that v(t) > v0 > 0 for all t < 0. Of course, u(t) > 0, for all t and
limt→−∞ u(t) = 0. Hence, we can take I0 = (−∞, b0).

We argue that limt→b−0
v(t) = 0. If not, let v1 > 0 be the limit. Continuation

arguments allow us to extend u, v, being positive, beyond b0 if b0 is finite. Thus
b0 = ∞. From the definitions of P,Q,N , we easily see that N(u(t), v(t)) ≥ c0 for
some c0 > 0 and t sufficiently large. But this implies v(t) ≤ −c0e

t + v0 for some
constant v0, and v can be negative on I0 as t → ∞, a contradiction. This shows that
limt→b−0

v(t) = 0.

The function u(t) − v(t) is increasing on I0. It is negative when t → −∞, and
positive when t → b−0 . Thus, there is t0 such that u(t0) = v(t0) ≤ max{u0, v0}. So,
if we take the curve γ in Lemma 3.3 to be the diagonal u = v of Γ0, then for every
(u0, v0) ∈ Γ0 the characteristic curve intersects γ. In other words, Γ is contained in
X(Ξ). Moreover, as M,N are positive, we see that γ is noncharacteristic. Finally, we
need to define the initial condition g̃(u, v) = φ(u)+ψ(v) on γ to fulfill the assumption
(3.11) of Lemma 3.3. For γ = {u = v}, (3.11) reads M(u)g̃u = N(u, u)g̃v Clearly, this
holds if we choose g̃ such that g̃v = p0

v = M(u) and g̃u = p0
u = N(u, u). That is,

φ(u) =

∫ u

0

N(s, s)ds, ψ(v) =

∫ v

0

M(s)ds.(4.3)

Since M,N > 0, we see that ∇g̃ · �T �= 0. Lemma 3.3 is applicable and our proof
is complete.

Remark 4.1. If d1 = d2, then f(u, v) = (Au+Bv+
√
a1u2 + a2v2 + a3uv)/(a21u)

for some constants A,B, a1, a2, a3. If u, v ≥ 0, then f(u, v) > 0. We also see that f

can be written as f̂(v/u) for some function f̂ . Therefore, Lemma 3.4 applies here to
give an explicit formula for g.

We conclude this paper by considering a generalized version of (1.2)

ut = ∇((d1 + a12v + a11u)∇u + (c1 + b12u)∇v) + F (u, v),
vt = ∇((c2 + b21v)∇u + (d2 + a21u + a22v)∇v) + G(u, v).

(4.4)

The constants di, ci, aij , bij are assumed to be positive. With minor modifications
in the calculation of the proof of Theorem 1, we can prove the following.

Theorem 4. Bounded positive solutions to (4.4) are Hölder continuous if

a11 > a21 + b21, a22 > a12 + b12,(4.5)

d1d2 > c1c2, d1a22 + d2a12 > c1b21, d1a21 + d2a11 > c2b12.(4.6)
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Again, these conditions simply say that the self diffusion dominates the cross
diffusion. We only remark here that (4.5) gives fu − fvf > 0, and (4.6) provides
Q1P2 − P1Q2 < 0 so that α2 < 0 as required by (H.2). The proof of the existence of
g can be repeated here with M(u) = c1 + b12u (so that the interval I0 = (a0, b0), on
which u(t), v(t) are positive, may not be unbounded as before).

Acknowledgment. We would like to thank the anonymous referees for their
invaluable comments that lead to many improvements of this version of the paper.
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Abstract. We study, by means of Γ-convergence, the asymptotic behavior of a variational
problem modeling a dislocation ensemble moving on a slip plane through a discrete array of obstacles.
The variational problem is a two-dimensional phase transition-type energy given by a nonlocal term
and a nonlinear potential which penalizes noninteger values. In this paper we consider a regime
corresponding to a diluted distribution of obstacles. In this case the leading term of the energy can
be described by means of a cell problem formula defining an appropriate notion of capacity (that we
call dislocation capacity).
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1. Introduction.

1.1. Formulation of the problem. In this paper we begin the study of the
large body limit of a phase-field model for dislocations, recently introduced by
Koslowski, Cuitino, and Ortiz [10]. This model studies a dislocation ensemble moving
within a single slip plane through an array of discrete obstacles (e.g., forest dislo-
cations) under the action of an applied shear stress. In this theory, after a suitable
rescaling (see the end of this subsection for the details), the slip (measured in units of
the Burgers vectors) on the slip plane is represented by a scalar phase field u, which
prefers to take integer values. We will consider a periodic setting; i.e., u will be a peri-
odic scalar-valued function defined on the slip plane which is chosen as T 2×{0}. The
first contribution to the energy, the so-called Peierls potential, penalizes noninteger
values of the slip distribution u and is given by

1

2ε

∫
T 2

dist2(u,Z) dx .(1.1)

Here T 2 = R2/Z2 denotes the standard torus; i.e., functions on T 2 are periodic with
period one. The small parameter ε is proportional to the ratio between the Burgers
vector (or, equivalently, the lattice spacing) and the physical size of the (periodic)
domain under consideration. In particular the large body limit is characterized by
the limit ε → 0. The arguments in this paper do not require the special form of (1.1).
Instead of the special integrand dist2(u,Z) we could consider a general integrand
W (u), where W is a Z periodic C1 function satisfying W (u) ≥ cdist2(u,Z), c > 0.

The second term in the energy represents the long-range elastic interaction in-
duced by the slip. This can be obtained by considering a field ũ on T 2 ×R which has
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a jump of size u across {x3 = 0} and considering its elastic energy

1

2

∫
T 2×R

|∇ũ|2 dx .

One can easily verify that the optimal ũ (for a given jump u) is antisymmetric in x3

(up to an irrelevant constant) and the elastic energy is given by the minimizer of the
expression ∫

T 2×(0,+∞)

|∇ũ|2 dx

subject to the boundary condition ũ(x′, 0) = 1
2u(x′). This energy is nothing but the

square of the H
1
2 seminorm of 1

2u which in the Fourier representation is given by

1

4
[u]2

H
1
2 (T 2)

=
1

4

∑
k∈(2πZ)2

|k||û(k)|2 ,(1.2)

where

û(k) =

∫
T 2

e−ikxu(x) dx .

In real space the energy can be written as

1

4
[u]2

H
1
2 (T 2)

=
1

2

∫ ∫
T 2×T 2

K(x− y)|u(x) − u(y)|2 dx dy ,(1.3)

where the kernel K(t) has the following properties:
(i) K(t) = O(|t|−3) as |t| → 0.
(ii) K(t) is periodic, i.e., is defined in T 2.

In fact, the Fourier coefficients of K are given by K̂(k) = − 1
4 |k|, so that K(t) ∼ 1

8π t
−3

as t → 0.
The energy we are really looking at is the isotropic elastic bulk energy given in

terms of the symmetrized displacement gradient e(U) = 1
2 (∇U + ∇UT ) as∫

T 2×R

μ |e(U)|2 +
λ

2
|tr e(U)|2 dx′ ,

where U is the vector displacement and the jump of U across {x3 = 0} is given by

ue1. Using Fourier variables this leads to the following H
1
2 -like energy:

μ

4

∑
k∈(2πZ)2

mν(k)|û(k)|2.(1.4)

Here the weight mν(k) is homogeneous of degree 1 and is explicitly given by

mν(k) =
k2
2√

k2
1 + k2

2

+
1

1 − ν

k2
1√

k2
1 + k2

2

,

where ν < 1
2 is the Poisson ratio (see [10] for a detailed derivation of the above

formula). If ν = 0, then mν(k) = |k|, and (1.4) reduces to (1.2); we call this the
isotropic case.
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One can also compute the real space version of the energy in (1.4), and this gives
the following representation of the elastic energy:

μ

2

∫ ∫
T 2×T 2

Kν(x− y)|u(x) − u(y)|2 dx dy ,(1.5)

where the kernel Kν(t) satisfies conditions (i) and (ii). In fact, Kν is the Fourier series
of − 1

4mν(k), and a more explicit formula is given in (2.4) below. It is also clear that

this nonlocal energy is controlled from above and below by the H
1
2 -periodic seminorm

introduced above; more precisely,

[u]2
H

1
2 (T 2)

≤ 1

4

∑
k∈(2πZ)2

mν(k)|û(k)|2 ≤ 1

1 − ν
[u]2

H
1
2 (T 2)

.(1.6)

We now take μ = 1. Then the total energy is thus given by

1

2ε

∫
T 2

dist2(u,Z) dx +
1

2

∫ ∫
T 2×T 2

Kν(x− y)|u(x) − u(y)|2 dx dy −
∫
T 2

Sεu dx.(1.7)

The last term of the energy takes into account the interaction with the (nondimension-
alized) resolved shear stress Sε. In this paper we will consider the case that Sε is
of order 1, more precisely that it converges weakly in L2 as ε → 0. To study the
Γ-limit of the above energy it thus suffices to consider only the first two terms and to
regard the third term as a continuous perturbation (see Remark 15). We shall study
this energy subject to a pinning condition in order to model, e.g., a forest hardening
mechanism by secondary dislocation. For definiteness we focus on the idealization of
obstacles with infinitely strong pinning; i.e., we require that u vanishes on the union
of discs B(xε

i , Rε) = Bi
Rε of radius Rε and centers xε

i , i = 1, . . . , Nε. (The effects of
a finite pinning strength are discussed in the appendix.)

To summarize, we will study the asymptotic behavior, in terms of Γ-convergence,
of the following functional:

Eε(u) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1

ε

∫
T 2

dist2(u,Z) dx +

∫ ∫
T 2×T 2

Kν(x− y)|u(x) − u(y)|2 dx dy

if u ∈ H
1
2 (T 2) , u = 0, on

⋃
i B

i
Rε,

+∞ otherwise .

(1.8)

Before discussing in more detail the relevant limits let us briefly indicate how
the above nondimensionalized functional is related to the energy considered in [10].
Passing from the Fourier representation to the real space formulation and directly
taking into account the periodicity of the phase field we can write the energy in [10]
as follows:

b2

2d

∫
QL

dist2(v,Z) dx′ + b2
∫ ∫

QL×QL

L−3Kν

(
x′ − y′

L

)
|v(x′) − v(y′)|2 dx′ dy′,

where QL is the square in R2 of side L, where b is the length of the Burgers vector,
and where d is the interplanar spacing (which is of the same order of b). Scaling with

x = x′

L and y = y′

L and dividing the energy by b2L we get (1.8) with ε of order b
L .
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1.2. Mathematical context and scaling regimes for Nε. From a mathe-
matical point of view the functional Eε combines two features: a singular perturbation
of Modica–Mortola type and a boundary condition on perforated domains, i.e., do-
mains with many small holes.

If we ignore the boundary condition and also replace the H
1
2 seminorm by the

Dirichlet integral we obtain exactly a version of the Modica–Mortola problem for a
potential with infinitely many wells [13, 14]. In this case the typical scaling of the

energy is proportional to 1/
√
ε. The situation for the H

1
2 seminorm is more delicate,

and Alberti, Bouchitté, and Seppecher [2] showed (for the case of two wells) that the
natural scaling for the energy is ln 1/ε and that after rescaling by 1/ ln(1/ε) the Γ-limit
of the energy is proportional to the BV-norm

∫
|∇u|, i.e., to the length of the jump

set of u. (The limiting energy is finite only on functions which take values in the wells.)
If we ignore instead the singular Peierls energy, then our functional falls in the

class of variational problems in perforated domains. Again for the Dirichlet integral
(and many other local functionals) a large amount of literature is available (see, e.g.,
[12] and [4], or [6], for a more general approach). The general idea is that in the limit
a violation of the boundary condition no longer carries an infinite cost but only a
finite cost computed by the integration of a suitable function of u against a suitable
measure which captures the local density of holes (in the sense of capacity). At least
in terms of scaling, our problem (without the Peierls term) can be reduced to that
setting by working with the harmonic extension ũ of u. This shows that without
Peierls energy, Eε should scale like the “capacity density” εNε. Combining these two
results we expect two standard scaling regimes.

1. εNε → 1. In this case we expect that Eε is of order 1 and that the limiting
energy can be obtained by solving a suitable cell problem which involves one
obstacle in an infinite medium with boundary conditions at the obstacle and
at infinity. In view of the results of [2] we expect also that the limit energy
functional is finite only on constant, integer-valued functions, since a jump
would result in an energy cost of order ln 1/ε. A typical minimizer uε of (1.8)
looks almost constant with small perturbations (on a length scale ε) near the
holes. The shape of these perturbations is essentially determined by the cell
problem.

2. εNε/ ln(1/ε) → 1. In this case the contributions of the pinning energy dis-
cussed above and the Modica–Mortola-like energy are of the same order. After
rescaling by 1/ ln(1/ε) we expect a limiting energy of the form

∫
|∇u|+

∫
D(u)

(subject to the constraint u(x) ∈ Z almost everywhere) where, as before, the
function D(a) is computed from a cell problem with boundary condition a at
infinity. In the physics literature this functional is referred to as a line-tension
model because the first term penalizes the length of the jump set of u. In
fact, for the anisotropic kernel Kν above, the term |∇u| has to be replaced
by an anisotropic line energy of the type γ( ∇u

|∇u| )|∇u|.
In this paper we investigate the first regime εNε ∼ 1 (see Theorem 14 below for

a precise statement). In fact, it turns out that the regime εNε → 0 can be handled
in exactly the same way if we scale the energy by 1/(εNε) (see also Theorem 14).
Going back to (1.8) the natural scaling of the resolved shear stress in this regime
is Sε ∼ εNε. The regimes εNε ∼ ln 1/ε and εNε 
 ln 1/ε will be discussed in a
forthcoming paper [8].

Finally, we remark that while our analysis is phrased in terms of statics the same
energy functional arises in the approximation of the evolution through a sequence of
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minimization problems at discrete times (see [10, Chapter 4]). Actually in this case
it is more natural to consider a “soft” pinning condition which can be treated exactly
along the same lines (see the appendix). In this case the “pinning energy” represents
the energy dissipated in crossing one of the pinning sites. A full understanding of dis-
location dynamics and its macroscopic consequences, such as hysteresis, will of course
require a much better understanding of local minimizers (and the energy barriers be-
tween them). To do this rigorously seems currently out of reach. Nonetheless we can
identify (in this paper and in [8]) in a rigorous way the relevant scaling regimes for
the competition of elastic energy, applied stress, pinning energy, dissipation, and line
energy of the dislocations, and we believe that this will be helpful for further studies.

2. The nonlocal energy. This section will be devoted to recalling some basic
properties of the nonlocal part of the energy. By minimizing an elastic energy on R3

+

we get, as in the periodic case, a nonlocal energy equivalent to the H
1
2 (R2) seminorm.

Indeed, as above, similar considerations give an energy of the form

∫
R2

(
λ2

2

|λ| +
1

1 − ν

λ2
1

|λ|

)
|û(λ)|2dλ,

which can be written in spatial variables as

1

2

∫ ∫
R2×R2

Γν(x− y)|u(x) − u(y)|2 dx dy ,(2.1)

where the Fourier transform of the kernel Γν(t), with t ∈ R2, is − 1
4 (

λ2
2

|λ| + 1
1−ν

λ2
1

|λ| ) and

it can be computed explicitly, i.e.,

Γν(t) =
1

2π(1 − ν)|t|3

(
ν + 1 − 3ν

t22
|t|2

)
.(2.2)

In particular it is homogeneous of degree −3 and is positive if ν < 1
2 . Clearly we also

have

[u]2
H

1
2 (R2)

≤ 1

2

∫ ∫
R2×R2

Γν(x− y)|u(x) − u(y)|2 dx dy ≤ 1

1 − ν
[u]2

H
1
2 (R2)

,(2.3)

where

[u]
H

1
2 (R2)

:=

(
1

4π

∫ ∫
R2×R2

|u(x) − u(y)|2
|x− y|3 dx dy

) 1
2

=

(∫
R2

|λ||û(λ)|2 dλ
) 1

2

.

Proposition 1. Let Kν(t) be the anisotropic kernel defined above for the periodic
case, and let Γν(t) be the corresponding kernel in R2. Then there exists a constant
C > 0 such that

|Γν(t) −Kν(t)| ≤ C

on {t ∈ R2 : |ti| ≤ 3/4}.
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Proof. By the Poisson summation formula (see, e.g., Stein and Weiss [15, Corol-
lary 2.6]) we have

Kν(t) =
∑
z∈Z2

Γν(t + z) .(2.4)

In particular, for any t ∈ R2 such that |ti| ≤ 3/4 we get

|Kν(t) − Γν(t)| =
∑

z∈Z2\{0}
Γν(t + z) ≤

∑
z∈Z2\{0}

c

|z|3 ≤ C .

Remark 2. By Proposition 1, using the homogeneity of Γν we deduce that for
every δ > 0

lim
ε→0

ε3Kν(εt) = Γν(t)

uniformly on {t ∈ R2 : |t| ≤ δ}.
From the definition of [·]

H
1
2

as a trace seminorm we can deduce a Poincaré-type

inequality for functions in H
1
2 (T 2). For a given bounded domain D ⊆ R3 a refinement

of the classical Poincaré inequality permits us to estimate the L2 norm of a function
in H1(D) with the L2 norm of its gradient, as long as the set where the function is
zero is not too small. There exists a constant C such that for every w ∈ H1(D)∫

D

|w|2dx′ ≤ C

Cap(N(w))

∫
D

|∇w|2dx′ ,(2.5)

where Cap(N(w)) denote the harmonic capacity (with respect to R3) of the set
N(w) = {x′ ∈ D : w(x) = 0} (see [16, Corollary 4.5.2] or [7, Theorem 2.9]).
(Note that in view of (2.5) the set N(w) is well defined, since the pointwise value of
w can be specified up to a set of zero harmonic capacity using its quasi-continuous
representative.)

Proposition 3. There exists a constant C0 such that for every u ∈ H
1
2 (T 2),

with u = 0 on E ⊆ T 2, we have∫
T 2

|u|2dx ≤ C0

(
1 +

1

Cap(E × {0})

)
[u]2

H
1
2 (T 2)

,(2.6)

where Cap(E × {0}) denote the harmonic capacity of E × {0} as a subset of R3.
Proof. The proof follows immediately by applying (2.5) to the harmonic extension

ũ of u in D = (0, 1)3 and by the fact that∫
T 2

|u|2dx ≤ c ‖ũ‖2
H1(D) .

Remark 4. Given an arbitrary H
1
2 (Q) function we can extend by reflection to a

periodic function on Q2, and applying the above inequality we get that there exists a
constant C1 such that∫

Q

|u|2dx ≤ C1

(
1 +

1

Cap(E × {0})

)∫ ∫
Q×Q

|u(x) − u(y)|2
|x− y|3 dx dy .(2.7)
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3. The cell problem. In this section we will define a suitable notion of capacity
which will be the natural tool to study the asymptotics of our problem. We call the
following set function the “H

1
2 dislocation capacity of an open set E with respect to

Ω at the integer level a ∈ Z”:

(3.1)

Dν
1
2
(a,E,Ω) := inf

{∫
R2

dist2(ζ,Z) dx +

∫ ∫
R2×R2

Γν(x− y)|ζ(x) − ζ(y)|2 dx dy :

ζ = a on E , ζ = 0 on R2 \ Ω

}
.

We denote by Dν
1
2

(a,E) the “H
1
2 dislocation capacity of an open set E with respect

to R2 at the integer level a ∈ Z”; namely,

Dν
1
2
(a,E) := inf

{∫
R2

dist2(ζ,Z) dx +

∫ ∫
R2×R2

Γν(x− y)|ζ(x) − ζ(y)|2 dx dy :(3.2)

ζ = a on E , ζ ∈ L4(R2)

}
.

The condition ζ ∈ L4(R2) is the natural condition at ∞, in view of the following
Sobolev inequality:

‖u‖L4(R2) ≤ C∗[u]
H

1
2 (R2)

∀ u ∈ C∞
0 (R2) .(3.3)

Remark 5. Denote

I(ζ) :=

∫
R2

dist2(ζ,Z) dx +

∫ ∫
R2×R2

Γν(x− y)|ζ(x) − ζ(y)|2 dx dy .(3.4)

Using the fact that the kernel Γν is positive (under the assumption ν < 1
2 ), it is easy

to check that both terms in the energy are decreasing under truncations by integers.
For every a, b ∈ R we set a ∧ b = min(a, b) and a ∨ b = max(a, b). Then for every
t ∈ Z, we have I(ζ ∧ t) ≤ I(ζ) (and I(ζ ∨ t) ≤ I(ζ)). Moreover, I(ζ ∧ t) < I(ζ) (and
I(ζ ∨ t) < I(ζ)) unless ζ ∧ t = ζ a.e. (or ζ ∨ t = ζ a.e.).

Proposition 6. Let Ω be a bounded open subset of R2, and let E ⊆ Ω be an
open set such that Dν

1
2

(a,E,Ω) < +∞, with a ∈ Z. Then there exists a minimum

point ζ ∈ H
1
2 (Ω) for (3.1) and it satisfies 0 ≤ ζ ≤ a. We will call each minimum

point a Dν
1
2

-capacitary potential of E with respect to Ω.

Proof. In order to obtain the existence let ζk be a minimizing sequence for (3.1).
By Remark 5 we may assume that 0 ≤ ζk ≤ a. Now let ξk : R2 → Z such that∫

R2

dist2(ζk,Z) dx =

∫
R2

|ζk − ξk|2dx ,

i.e., ξk = PZζk. Clearly ξk = 0 on R2 \ Ω, and

lim
k→∞

∫
R2

|ζk − ξk|2 dx +

∫ ∫
R2×R2

Γν(x− y)|ζk(x) − ζk(y)|2 dx dy = Dν
1
2
(a,E,Ω) .
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By (2.3) and the assumption Dν
1
2

(a,E,Ω) < +∞, the sequence {(ζk, ξk)} is bounded

in H
1
2 (R2)×L2(Ω,Z), and we may assume that ζk and ξk converge weakly to a pair

(ζ, ξ). By lower semicontinuity the limiting pair minimizes the energy and clearly
satisfies 0 ≤ ζ ≤ a and ζ = 0 on R2 \ Ω.

Remark 7. If Ω = BR, E = Br, and ν = 0 (in the “isotropic case”) the capacitary
potential is unique and radially symmetric. This follows immediately by the fact
that both terms of the energy defining D 1

2
(a,Br, BR) are rotation invariant and the

H
1
2 seminorm is strictly decreasing under radial rearrangements. (For results on

rearrangements for nonlocal energies see, e.g., [9] or the review paper [3].)
Proposition 8. There exists a minimizer for problem (3.2), the Dν

1
2

-capacitary

potential of E with respect to R2. If, moreover, E is bounded, then every minimizer
converges to zero uniformly at infinity.

Proof. As above, the existence follows by considering a minimizing sequence and
remarking that the “boundary condition” ζ − a ∈ L4(R2) is preserved, in view of
(3.3).

Let now ζ be a potential of a bounded set E with respect to R2. In the case ν = 0
the decay at infinity follows by a comparison argument with the radially symmetric
case (see Remark 7). Let us consider now the general case. Let L be the linear
operator representing the quadratic form defined by (2.1), so that

I(ζ) = 〈Lζ, ζ〉 +

∫
R2

dist2(ζ,Z) dx .

We will see that there exist a function ψ ∈ L4(R2) and a measure μ supported on E
such that ζ is the solution in the sense of distributions of

Lζ = μ + ψ .(3.5)

This would follow immediately from the Euler–Lagrange equation if dist2(·,Z2) was
a C1 function. For the case at hand we can argue as follows.

Fix η ∈ C∞
0 (R2), with η ≥ 0 on E, and compute the variation of I(ζ) in direction

η. We have

2〈Lζ, η〉 + t〈Lη, η〉 +

∫
R2

dist2(ζ + tη,Z) − dist2(ζ,Z)

t
dx ≥ 0 .(3.6)

Since dist(·,Z) is a Lipschitz function,

lim sup
t→0

dist2(ζ(x) + tη(x),Z) − dist2(ζ(x),Z)

t
≤ 2dist(ζ(x),Z) η(x) a.e. x ∈ R2,

and hence, by Fatou’s lemma, we get

〈Lζ, η〉 +

∫
R2

dist(ζ,Z) η dx ≥ 0 ∀ η ∈ C∞
0 (R2) , η ≥ 0 .

Thus there exists a positive measure μ̃ such that

Lζ = μ̃− dist(ζ,Z)(3.7)

in the sense of distributions. Now consider η ∈ C∞
0 (R2), with η = 0 on E. We can

apply the above argument to η and −η and get

|〈Lζ, η〉| ≤
∫
R2

dist(ζ,Z)|η| dx ∀η ∈ C∞
0 (R2 \ E) .
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By density this holds also for η ∈ C0
0 (R2 \ E), and since dist(ζ,Z) ∈ L4(R2) we

deduce that the restriction of μ̃ to R2 \E is absolutely continuous with respect to the
Lebesgue measure and its density is a L4 function. Thus μ̃ can be written as the sum
of a measure μ supported on E and a function belonging to L4(R2) which together
with (3.7) gives (3.5).

Now let Gν be the Green function of the operator L+I. We will need only rather
mild decay properties of Gν at ∞. To verify these it suffices to note that the Fourier
transform of Gν is given by

Ĝν(λ) =
1

1 +
λ2

2

|λ| + 1
1−ν

λ2
1

|λ|

,

since L̂ζ(λ) = (
λ2

2

|λ| +
1

1−ν
λ2

1

|λ| ) ζ̂(λ). One easily sees that Ĝν and its first two derivatives

are in L1(R2). Hence Gν is continuous, and Gν(x) ≤ C/(1 + |x|2). In particular,
Gν ∈ L4/3(R2).

Since ψ and ζ belong to L4(R2), for every ε > 0 we can write ψ + ζ = ψ1 + ψ2,
where ψ1 has compact support and ‖ψ2‖4 ≤ ε. Thus we have

ζ(x) = Gν ∗ μ(x) + Gν ∗ ψ1(x) + Gν ∗ ψ2(x) a.e. R2 .

We can estimate the L∞ norm of the last term of the right-hand side using the Hölder
inequality and get

‖Gν ∗ ψ2‖L∞(R2) ≤ ‖Gν‖
L

4
3 (R2)

‖ψ2‖L4(R2) ≤ Cε .

On the other hand, the decay of Gν and the fact that μ and ψ1 have compact support
guarantee that for |x| big enough ζ is uniformly small. This concludes the proof of
the proposition.

The following proposition shows that as a → ∞ the Peierls potential term becomes
negligible and the dislocation capacity converges to the H

1
2 -capacity, defined for any

open set E ⊆ R2 as

(3.8)

Capν

H
1
2
(E) = inf

{∫ ∫
R2×R2

Γν(x− y)|η(x) − η(y)|2 dx dy : η = 1 on E , η ∈ L4(R2)

}

(see, for instance, [1]).
Proposition 9. For any bounded open set E ⊆ R2 there exists a positive con-

stant CE such that

a2Capν

H
1
2
(E) ≤ Dν

1
2
(a,E) ≤ a2Capν

H
1
2
(E) + 2a3/2Capν

H
1
2
(E) + CEa(3.9)

for every a ∈ N. In particular,

lim
a→∞

Dν
1
2

(a,E)

a2
= Capν

H
1
2
(E) .(3.10)

Proof. The first inequality in (3.9) is trivial. In order to prove the estimate from

above let ηE be the H
1
2 -potential of E, i.e., the minimum point for (3.8). Using the

fact that Γ̂ν(λ) is homogeneous of degree 1, nonvanishing, and smooth on the unit
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sphere, one can easily check that ηE decays at infinity as 1/|x|. Fix a ∈ N and define
the function

va(x) =

{
a

a−
√
a
(aηE(x) −

√
a) if x ∈ Ea = {ηE > 1/

√
a},

0 otherwise.

The function va is admissible in the definition of Dν
1
2

(a,E); thus

(3.11)

Dν
1
2
(a,E) ≤

∫
Ea

dist2( a
a−

√
a
(aηE −

√
a),Z) dx +

∫ ∫
R2×R2

Γν(x− y)|va(x) − va(y)|2dx dy .

By the decay of ηE at infinity we have that there exists a constant CE such that
|Ea| ≤ CEa. Thus ∫

Ea

dist2( a
a−

√
a
(aηE −

√
a),Z) dx ≤ CEa .

Moreover, ∫ ∫
R2×R2

Γν(x− y)|va(x) − va(y)|2dx dy

≤ a2

(1 − 1√
a
)2

∫ ∫
R2×R2

Γν(x− y)|ηE(x) − ηE(y)|2dx dy

=
a2

(1 − 1√
a
)2

Capν

H
1
2
(E) .

After possibly modifying the value of CE this yields (3.8).
We can extend the dislocation capacity to the class of all subsets of Ω by setting

Dν
1
2
(a,E,Ω) = inf{Dν

1
2
(a,A,Ω) : A open , A ⊇ E}(3.12)

for any set E ⊆ Ω.
Proposition 10. The dislocation capacity satisfies the following properties:
(1) Dν

1
2

(a,E,Ω) ≤ Dν
1
2

(a, F,Ω) if E ⊆ F ⊆ Ω;

(2) Dν
1
2

(a,E,Ω) ≤ Dν
1
2

(a,E,Ω′) if E ⊆ Ω′ ⊆ Ω;

(3) Dν
1
2

(a,E,Ω) = Dν
1
2

(−a,E,Ω) for every a ∈ Z;

(4) If 0 ≤ a ≤ b, a, b ∈ Z, then Dν
1
2

(a,E,Ω) ≤ Dν
1
2

(b, E,Ω);

(5) (Subadditivity). Given two open subsets of Ω, E1 and E2,

Dν
1
2
(a,E1 ∪ E2,Ω) ≤ Dν

1
2
(a,E1,Ω) + Dν

1
2
(a,E2,Ω)

for every a ∈ Z;
(6) (Continuity on increasing sequences of sets). Given a sequence of subsets

En ⊆ Ω, such that En ⊆ En+1, and letting E =
⋃

n En, we have

lim
n→∞

Dν
1
2
(a,En,Ω) = Dν

1
2
(a,E,Ω)

for every a ∈ Z;
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(7) (Continuity on decreasing sequences of compact sets). Given a sequence of
compact subsets of Ω, Kn, such that Kn ⊇ Kn+1, and letting K =

⋂
n Kn,

we have

lim
n→∞

Dν
1
2
(a,Kn,Ω) = Dν

1
2
(a,K,Ω)

for every a ∈ Z.
Proof. The monotonicity properties (1)–(4) can be checked directly by the def-

inition. In order to prove property (5) let ζ1 and ζ2 be capacitary potentials of E1

and E2, respectively. Clearly the function ζ1 ∨ ζ2 is a good competitor for the Dν
1
2

-

capacity of E1∪E2. The conclusion follows by the explicit computation of the energy,
remarking that

|ζ1(x) − ζ2(y)|2 ≤ |ζ1(x) − ζ1(y)|2 ∨ |ζ2(x) − ζ2(y)|2

if ζ1(x) ≥ ζ2(x) and ζ2(y) ≥ ζ1(y).
Let us prove property (6). By (1) we have

lim
n→∞

Dν
1
2
(a,En,Ω) ≤ Dν

1
2
(a,E,Ω) .

For the reverse inequality it is enough to consider the case of open sets. Let ζn ∈
H

1
2 (R2) be a sequence of capacitary potentials, i.e., ζn = a a.e. on En and

I(ζn) = Dν
1
2
(a,En,Ω) ≤ Dν

1
2
(a,E,Ω) .

Thus the H
1
2 seminorm of ζn is bounded. In view of (3.3), ζn is bounded in L4, and

hence in H
1
2

loc(R
2). Thus (a subsequence of) ζn converges strongly in L2

loc(R
2). By

the lower semicontinuity of I(·) we get

I(ζ) ≤ lim inf
n→∞

I(ζn) = lim inf
n→∞

Dν
1
2
(a,En,Ω) .

Since E =
⋃

n En is also open, ζ = a a.e. in E, and hence is a good competitor for
the definition of Dν

1
2

(a,E,Ω). Thus

Dν
1
2
(a,E,Ω) ≤ I(ζ) ≤ lim inf

n→∞
Dν

1
2
(a,En,Ω),

which concludes the proof.
Finally, the proof of property (7) follows directly from the definition. In fact, for

any fixed ε > 0 there exists an open set A ⊇ K such that Dν
1
2

(a,A,Ω) ≤ Dν
1
2

(a,K,Ω)+

ε. Since the sets Kn are decreasing and compact, there exists an index n0 such
that Kn ⊆ A for every n ≥ n0. The conclusion follows by the monotonicity of the
dislocation capacity.

Remark 11. The properties proved above show that the dislocation capacity is a
Choquet capacity (see, for instance, [1] or [11] for a general capacity theory). Note,
however, that we define the dislocation capacity starting from open sets instead of
compact sets, since this is more convenient for the present purpose.

In the following we will mostly consider the dislocation capacity of a ball with
respect to either a concentric ball or R2. In order to simplify the notation we will
state and prove some properties of the capacity in this particular case, although most
of them hold in a more general situation.
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Proposition 12. Let a ∈ Z and r > 0. Then

lim
R→∞

Dν
1
2
(a,Br, BR) = Dν

1
2
(a,Br) .

Proof. By Proposition 10 we know that Dν
1
2

(a,Br, BR) is decreasing in R. Thus

the limit always exists, and

lim
R→∞

Dν
1
2
(a,Br, BR) ≥ Dν

1
2
(a,Br) .

In order to prove the reverse inequality, fix a ∈ Z positive, and let ζ be a capac-
itary potential of Br with respect to R2. We may assume that 0 ≤ ζ ≤ a, and by
Proposition 8 we know that ζ decays to zero uniformly at infinity; i.e., for every ε > 0
there exists R0 > 0 such that

|ζ(x)| < ε if |x| ≥ R0 .

Fix ε > 0, and let us define the function ζε as follows:

ζε(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ζ(x) if x ∈ {ζ ≥ 1},

ζ(x) − ε

1 − ε
if x ∈ {ε ≤ ζ < 1},

0 if x ∈ {ζ < ε}.

We can write ζε as ζε(x) = max{min{ζ(x), ζ(x)−ε
1−ε }, 0}, and hence ζε ∈ H

1
2 (R2).

Moreover, ζε(x) = a on Br, and ζε(x) = 0 in R2 \ BR0 . This implies that ζε is an
admissible function in the definition of Dν

1
2

and

(3.13)

Dν
1
2
(a,Br, BR) ≤

∫
R2

dist2(ζε,Z) dx +

∫ ∫
R2×R2

Γν(x− y)|ζε(x) − ζε(y)|2 dx dy = I(ζε)

for every R ≥ R0. Let us compute I(ζε) and show that I(ζε) ≤ I(ζ) + o(1), as ε → 0.
Denote by Et the level set {ζ ≤ t}, and let us first estimate the dislocation part of
the energy∫

R2

dist2(ζε,Z) dx =

∫
R2\E1

dist2(ζ,Z) dx +
1

(1 − ε)2

∫
E1\Eε

dist2(ζ − ε, (1 − ε)Z) dx

=

∫
R2\E1

dist2(ζ,Z) dx +
1

(1 − ε)2

∫
E1\E 1+ε

2

|ζ − 1|2dx +
1

(1 − ε)2

∫
E 1+ε

2

\Eε

|ζ − ε|2dx .

Since ∫
E 1+ε

2

\Eε

|ζ − ε|2dx ≤
∫
E 1+ε

2

\Eε

|ζ|2dx,

we have

lim sup
ε→0

∫
R2

dist2(ζε,Z) dx ≤
∫
R2

dist2(ζ,Z) dx .

To estimate the nonlocal term in I(ζε) it suffices to note that ζε = ψε ◦ ζ with
Lipψε ≤ 1

1−ε . Hence |ζε(x) − ζε(y)|2 ≤ (1 − ε)−2|ζ(x) − ζ(y)|2, and we get

lim sup
ε→0

∫ ∫
Rn×Rn

Γν(x− y)|ζε(x)− ζε(y)|2 dx dy ≤
∫ ∫

Rn×Rn

Γν(x− y)|ζ(x)− ζ(y)|2 dx dy .

Thus the conclusion follows from (3.13).
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4. Compactness and Γ-convergence result. In this section we will study the
Γ-convergence of the functional Eε defined in (1.8) with a pinning condition on Nε

balls of radius εR and centered in uniformly distributed and well-separated points xε
i ,

i ∈ Iε ⊂ N, in the regime where Nεε is bounded.
For every i ∈ Iε and r > 0 we denote by Bi

r the ball in R2 of radius r and center
xε
i . (Br always denotes the ball of radius r centered at 0.)

In order to get a nontrivial result we rescale the function Eε and prove that the
functional Fε(u) := Eε(u)/Nεε, i.e.,

Fε(u) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1

Nεε2

∫
T 2

dist2(u,Z) dx +
1

Nεε

∫ ∫
T 2×T 2

Kν(x− y)|u(x) − u(y)|2 dx dy

if u ∈ H
1
2 (T 2) ,

u = 0 on
⋃

i B
i
Rε,

+∞ otherwise ,

Γ-converges, with respect to the strong L2 topology, to the functional

F (u) =

⎧⎨
⎩

Dν
1
2

(u,BR) if u = const. ∈ Z ,

+∞ otherwise .

(4.1)

For every subset E of (0, 1)2 we denote Iε(E) := {i ∈ Iε : xε
i ∈ E}. For the centers

of the balls we assume the following conditions:
• (Uniformly distributed). There exists a constant L > 0 such that

|#(Iε(Q)) −Nε|Q|| ≤ L(4.2)

for every open square Q ⊂ (0, 1)2.
• (Well separated). There exists β < 1 such that

dist(xε
i , x

ε
j) > 6εβ(4.3)

for every i, j ∈ Iε, i �= j, and for every ε ∈ (0, ε0).
• (Finite capacity density). There exists a constant Λ ≥ 0 (possibly zero) such

that Nεε → Λ.
Remark 13. For brevity we refer to the constant Λ as the capacity density of

the obstacles. (More correctly ΛCapν

H
1
2
(BR) ∼ ΛR is the capacity density.) Note

that in order to get a Γ-convergence result the capacity density does not need to be
constant. One could also consider either a case where the obstacles are not uniformly
distributed in space or the case where the radii of the obstacles are varying (i.e.,
Bi

ε = B(xi
ε, R

i
εε)). This would lead in general to a nonconstant capacity density

Λ(x). In this case, condition (4.2) should be replaced by

∣∣∣∣∣∣
∑
xi
ε∈Q

Ri
ε −

1

ε

∫
Q

Λ(x) dx

∣∣∣∣∣∣ ≤ L,(4.4)

with Λ ∈ L∞.
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Theorem 14. Assume that Nε → +∞ and that the balls Bi
Rε are uniformly

distributed, are well separated, and have finite capacity density. Then
(i) every sequence {uε} such that supε Fε(uε) < ∞ is precompact in L2, and

every cluster point is an integer constant;
(ii) for every u ∈ L2(R2) there exists a sequence {uε} strongly converging in L2

to u such that

lim
ε→0

Fε(uε) = F (u) ;

(iii) every sequence {uε} strongly converging in L2 to some function u satisfies

lim inf
ε→0

Fε(uε) ≥ F (u) .

Remark 15. As noted in the introduction, by general facts about Γ-convergence
(see, e.g., [5, Proposition 6.20]), we can easily include an applied stress Sε. If Sε

converges to some S strongly in L2, then the functional

Fε(u) −
∫
T 2

Sεu dx

Γ-converges to F (u) −
∫
T 2 S udx.

Proof of (i) (compactness). Since supε Fε(uε) ≤ C < +∞, by (1.6) we have

[uε]
H

1
2 (T 2)

≤ CNεε .(4.5)

Moreover, uε = 0 on
⋃

i B
i
Rε = Eε. This obstacle condition is enough to deduce an L2

estimate via Poincaré’s inequality (2.7). Roughly speaking, the idea is the standard
fact that the capacity is almost additive on a union of small well-separated sets and
the three-dimensional harmonic capacity of a disc is proportional to its radius, i.e.,

Cap(Eε × {0}) ≈
∑
i

Cap(Bi
Rε × {0}) ≈ Nεε .

In order to carry out this argument rigorously we cover the unit square with a lattice
of small squares and apply the Poincaré inequality to each of them. The right estimate
follows if we choose the side of each square small but big enough to contain at least
one obstacle.

Fix rε =
√

L+1
Nε

. (L is the constant given by (4.2).) With a little abuse of

notation we denote by Qrε
j the squares of a lattice on (0, 1)2 of size approximatively

rε. Applying the Poincaré inequality (2.7), scaled to the square Qrε
j , we get∫

Qrε
j

|uε|2dx ≤ C0rε

(
1 +

rε
Cap(({uε = 0} ∩Qrε

j ) × {0})

)
[u]2

H
1
2 (Qrε

j
)
.(4.6)

By our choice of rε and assumption (4.2) we have

1 ≤ #(Iε(Q
rε
j )) ≤ 2L + 1,

and thus Cap(({uε = 0} ∩Qrε
j )× {0}) > CRε. Taking the sum over all j in (4.6), by

(4.5), we get∫
T 2

|uε|2dx ≤
∑
j

C0rε

(
1 +

rε
CRε

)
[u]2

H
1
2 (Qrε

j
)
≤ Crε

(
1 +

rε
CRε

)
Nεε ≤ C .

Thus uε is precompact in the weak topology of H
1
2 and, by the compact embedding,

in the strong topology of L2.
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Finally, let u be a cluster point. Assume for simplicity that the whole sequence
uε converges to u. In particular, since supε Fε(uε) ≤ C, we have

lim
ε→0

∫
T 2

dist2(uε,Z) dx = 0 .

This implies that u ∈ H
1
2 (T 2,Z). Then u must be constant. This is obvious in the

case when Nεε → 0 but is true in general for any function in H
1
2 taking values in Z.

(This fact can be easily checked in one dimension, where jumps are not permitted,
and then extended to any dimension by slicing.)

Proof of (ii) (the upper bound). It is clearly enough to prove the result for any
constant function u = a ∈ Z. (Otherwise the upper bound is trivial.) In order to
construct a sequence {uε} which converges strongly to a in L2 and satisfies

lim
ε→0

Fε(uε) = Dν
1
2
(a,BR),

fix ρε > 0 such that ε ≤ ρε � ε(β+1)/2, and let ζε be a H
1
2 -dislocation capacitary

potential of BR with respect to B ρε
ε

at level a. Define

ui
ε(x) = a− ζε

(
x− xi

ε

ε

)

and

uε(x) =

{∑
i u

i
ε(x)χBi

εβ
(x) if x ∈

⋃
i B

i
εβ ,

a otherwise.

It is easy to check that the sequence uε converges to a in L2. In order to control
the nonlocal term in the energy let us first show that long-range interactions are
negligible. Indeed, using the fact that ui

ε = a outside Bi
ρε

and the properties of the
kernel Kν we have∫ ∫

T2×T2

|x−y|>εβ

Kν(x− y)|uε(x) − uε(y)|2dx dy

≤ 2
∑
i

∫
Bi

ρε

∫
T 2

χ
|x−y|>εβ

Kν(x− y) |ui
ε(x) − uε(y)|2dx dy

≤ 2a2Nε

∫
Bρε

∫
T 2

χ
|y|>εβ

Kν(y) dy dx ≤ C
ρ2
εNε

εβ
.

The constant C depends on a, but since a is fixed we suppress this dependence in the
following. Since (T 2 \ ∪iB

i
2εβ )× T 2 ⊆

[
(T 2 \ ∪iB

i
εβ ) × (T 2 \ ∪iB

i
εβ )
]
∪ {|x− y| > εβ}

and uε(x) = a outside ∪iB
i
εβ , by our choice of ρε and (4.3) we have

(4.7)

Fε(uε) ≤
∑
i

1

Nεε

(
1

ε

∫
Bi

εβ

dist2(ui
ε,Z) dx +

∫ ∫
Bi

3εβ
×Bi

3εβ

Kν(x− y) |ui
ε(x) − ui

ε(y)|2dx dy

)
+ o(1)

=
1

ε2

∫
B

εβ

dist2
(
ζε

(
x

ε

)
,Z
)

dx +
1

ε

∫ ∫
B

3εβ
×B

3εβ

Kν(x− y)

∣∣∣ζε (x
ε

)
− ζε

(
y

ε

)∣∣∣2 dx dy + o(1)

=

∫
B

εβ−1

dist2(ζε(x),Z) dx +

∫ ∫
B

3εβ−1×B
3εβ−1

ε3Kν(ε(x− y)) |ζε(x) − ζε(y)|2 dx dy + o(1).
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Now, by Proposition 1, for ε small enough we have

|ε3Kν(ε(x− y)) − Γν(x− y)| ≤ Cε3 ∀ x , y ∈ B3εβ−1 ,

and hence∫ ∫
B

3εβ−1×B
3εβ−1

ε3Kν(ε(x− y)) |ζε(x) − ζε(y)|2 dx dy(4.8)

≤
∫ ∫

B
3εβ−1×B

3εβ−1

Γν(x− y) |ζε(x) − ζε(y)|2 dx dy + Cε3ε4(β−1) .

Thus by the definition of ζε we have

Fε(uε) ≤ D
1
2
ν (a,BR, B ρε

ε
) + Cε4β−1,

which for the choice of β > 1
4 together with Proposition 12 gives

lim sup
ε→0

Fε(uε) ≤ D
1
2
ν (a,BR).

(Note that if (4.3) holds for some β, it also holds for all larger β.)
The proof of the lower bound is based on the following key lemma.
Lemma 16. Given R : R+ → R+, with R(ε) → ∞ as ε → 0, there exists a

function ω : R+ × R+ → R+, with ω(ε, δ) → 0 as (ε, δ) → (0, 0), such that the

following statement holds. Let a ∈ Z. If ζ ∈ H
1
2 (BR(ε)) satisfies

−
∫
BR(ε)

|ζ − a|dx ≤ δ(4.9)

and ζ = 0 on BR, then

Jε(ζ) :=

∫
BR(ε)

dist2(ζ,Z) dx+

∫ ∫
BR(ε)×BR(ε)

Kε(x− y)|ζ(x) − ζ(y)|2 dx dy

(4.10)

≥ Dν
1
2
(a,BR) − ω(ε, δ) ,

where Kε(t) = ε3Kν(εt).
Proof. Assume for a contradiction that there exist (εk, δk) → (0, 0), η > 0, and

ζk ∈ H
1
2 (BR(εk)), with ζk = 0 on BR such that

Jεk(ζk) ≤ Dν
1
2
(a,BR) − η

and

−
∫
BR(εk)

|ζk − a|dx → 0 as k → ∞ .(4.11)

Denote Bk = BR(εk). By the Sobolev embedding there exists a sequence of real
numbers ak such that

(∫
Bk

|ζk − ak|4dx
) 1

2

≤ C

∫ ∫
Bk×Bk

Kεk(x− y)|ζk(x) − ζk(y)|2 dx dy ≤ C .
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Hence by the Hölder inequality we have

−
∫
Bk

|ζk − ak|dx ≤
(

−
∫
Bk

|ζk − ak|4dx
) 1

4

→ 0,

and thus we deduce that ak → a as k → ∞. In conclusion there exists a function ζ
such that for every r > 0 we have that ζk converge weakly to ζ in H

1
2 (Br) and in

L4(Br) and strongly in L2(Br). Moreover,∫
Br

|ζ − a|4dx ≤ lim inf
k→∞

∫
Br

|ζk − ak|4dx ≤ lim inf
k→∞

∫
Bk

|ζk − ak|4dx ≤ C;(4.12)

i.e., ζ is a good competitor for the definition of Dν
1
2

(a,BR). In addition we have

lim
k→∞

∫
Br

dist2(ζk,Z) dx =

∫
Br

dist2(ζ,Z) dx

and

lim
k→∞

∫ ∫
Br×Br

Γν(x− y)|ζk(x) − ζk(y)|2 dx dy =

∫ ∫
Br×Br

Γν(x− y)|ζ(x) − ζ(y)|2 dx dy .

Finally, by Proposition 1 and the homogeneity of Γν we have

|Kε(x− y) − Γν(x− y)| ≤ Cr
ε3

|x− y|3 if |x− y| ≤ 3

4ε
,

and hence∣∣∣∣
∫ ∫

Br×Br

(Kεk(x− y) − Γν(x− y)) |ζk(x) − ζk(y)|2 dx dy
∣∣∣∣ ≤ Crε

3
k‖ζk‖H 1

2 (Br)
.

Thus for every r > 0 we get

Dν
1
2
(a,BR)−η ≥ lim sup

k→∞
Jεk(ζk) ≥

∫
Br

dist2(ζ,Z) dx+

∫ ∫
Br×Br

Γν(x−y)|ζ(x)−ζ(y)|2 dx dy

so that

Dν
1
2
(a,BR) − η ≥

∫
R2

dist2(ζ,Z) dx +

∫ ∫
R2×R2

Γν(x− y)|ζ(x) − ζ(y)|2 dx dy .

This is a contradiction, in view of the fact that ζ is a good test function in the
definition of Dν

1
2

(a,BR), and the proof is complete.

A second key point for the proof of the lower bound is to show that if the sequence
uε − a is close to zero in some ball Br, then it is close to zero also at a smaller scale.
This is a consequence of the following proposition.

Proposition 17. There exists a positive constant C such that for every 0 < ρ < r
the following inequality holds:

−
∫
Bρ

|u| dx ≤ −
∫
Br

|u| dx +
C
√
ρ
[u]

H
1
2 (Br)

(4.13)

for all u ∈ H
1
2 (Br).
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Proof. Let us first show that there exists a constant C such that for any u ∈
H

1
2 (B1)

−
∫
Bθ

|u| dx ≤ −
∫
B1

|u| dx + C [u]
H

1
2 (B1)

(4.14)

for every θ ∈ [ 12 , 1]. By the Hölder inequality and the Sobolev embedding there exists
a constant c such that

‖u− c‖L1(Bθ) ≤ ‖u− c‖L1(B1) ≤ C [u]
H

1
2 (B1)

.(4.15)

Moreover, the constant c can be estimated as follows:

c = −
∫
B1

c ≤ −
∫
B1

|u| dx + −
∫
B1

|u− c| dx ≤ −
∫
B1

|u| dx + C [u]
H

1
2 (B1)

,

and hence (4.14) follows by (4.15). By a scaling argument we obtain

−
∫
Bθr

|u| dx ≤ −
∫
Br

|u| dx +
C√
r
[u]

H
1
2 (Br)

for every r > 0, θ ∈ [ 12 , 1], and u ∈ H
1
2 (Br). Finally, any ρ < r can be written as

ρ = θ2−kr for some θ ∈ ( 1
2 , 1) and k ∈ N ∪ {0}, so that the conclusion follows by an

iteration procedure, with a slightly modified constant C.
Proof of (iii) (lower bound). Let uε be a sequence in H

1
2 (T 2), and assume that

uε converges to u strongly in L2. In order to prove the lower bound we may assume
that lim infε Fε(uε) = limε Fε(uε) < +∞. Thus by (i) (compactness) we have that
u = a ∈ Z. Since the energy decreases under truncation we may assume that 0 ≤
uε ≤ a.

Consider a lattice of squares Qε
j of size approximatively 1/

√
Nε. Let Q̂ε

j be con-
centric squares twice the size. Since each point is contained at most in nine of the
squares Q̂ε

j , we have

∑
j

∫ ∫
Q̂ε

j
×Q̂ε

j

|uε(x) − uε(y)|2
|x− y|3 dx dy ≤ CNεε

and

∑
j

∫
Q̂ε

j

|uε − a|dx ≤ ωε ,

where ωε → 0 as ε → 0. Let θ > 0. Then there exist a set of indices Jε such that
1
Nε

#(Jε) ≥ 1 − θ and a constant Cθ such that

∫ ∫
Q̂ε

j
×Q̂ε

j

|uε(x) − uε(y)|2
|x− y|3 dx dy ≤ Cθε(4.16)

and

−
∫
Q̂ε

j

|uε − a|dx ≤ Cθωε(4.17)
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for all j ∈ Jε. Let 0 < δ < 1. By applying Proposition 17 with ρ = εβ , with
1
2 < β < 1, and r = 1√

Nε
, for each xi

ε ∈ Qε
j we also have

−
∫
Bi

εβ

|uε − a|2dx ≤ δ if ε ≤ ε0(δ, θ) .(4.18)

Then by Lemma 16 and the assumption that dist(xε
i , x

ε
j) > 6εβ

Fε(uε) ≥
1

Nε

⎡
⎣∑
j∈Jε

#(Iε(Q
ε
j))

⎤
⎦(D 1

2
ν (a,BR) − ω(ε, δ)

)
.(4.19)

The uniform distribution of the obstacles (see condition (4.2)) implies that∑
j∈Jε

#(Iε(Q
ε
j)) = Nε −

∑
j 
∈Jε

#(Iε(Q
ε
j)) ≥ Nε −

∑
j 
∈Jε

(Nε|Qε
j | + L)

= Nε − (L + 1)#({j : j �∈ Jε}) .

Since #({j : j �∈ Jε}) ≤ Nεθ, we get

Fε(uε) ≥ (1 − θ(L + 1))
(
D

1
2
ν (a,BR) − ω(ε, δ)

)
,

and this yields the required lower bound taking the limit as ε → 0; then δ → 0, and,
finally, θ → 0.

Appendix. Finite pinning condition. We can model the hardening mecha-
nism due to obstacles such as secondary dislocations by assuming a weaker pinning
condition given by a concentrated force. Namely, we assume that a crossing of an
obstacle by a dislocation costs a finite amount of energy, i.e.,

λ0

∫
Bi

Rε

εψi
ε|u| dx ,

where ψi
ε(x) = ε−2ψ(

x−xi
ε

ε ), with suppψ ⊆ BR(0) and
∫
BR

ψ dx = 1, and λ0εψ
i
ε

is the force concentrated on each obstacle Bi
ε. Then we can consider the following

functional:

F̃ε(u) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

ε

∫
T 2

dist2(u,Z) dx +

∫ ∫
T 2×T 2

Kν(x− y)|u(x) − u(y)|2 dx dy

+
∑
i

λ0

∫
Bi

Rε

εψi
ε|u| dx

if u ∈ H
1
2 (T 2) ,

+∞ otherwise .

(A.1)

With our scaling assumptions the total force due to the obstacles is finite and is
given by

∑
i

λ0

∫
Bi

Rε

εψi
ε dx = Nεελ0 ≈ Λλ0 .
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In order to study the Γ-limit of the functional F̃ε, another natural notion of capacity
has to be defined, i.e.,

(A.2)

D̃ν
1
2
(a, λ0, ψ) := inf

{∫
R2

dist2(ζ,Z) dx +

∫ ∫
R2×R2

Γν(x− y)|ζ(x) − ζ(y)|2 dx dy +

+λ0

∫
R2

ψ|ζ| dx : ζ − a ∈ L4(R2)

}
.

Again one can check that this is a Choquet capacity and satisfies

D̃ν
1
2
(a, λ0, ψ) ≤ Dν

1
2
(a,BR) .

Moreover,

lim
λ0→∞

D̃ν
1
2
(a, λ0, ψ) = Dν

1
2
(a,BR) .(A.3)

Indeed, D̃ν
1
2

(a, λ0, ψ) is increasing in λ0; thus the limit always exists. If ζ̃λ0 is a

sequence of potentials for D̃ν
1
2

(a, λ0, ψ), one can check that, up to a subsequence, it

converges weakly in H
1
2 to a function ζ̃ which is a good competitor for Dν

1
2

(a,BR).

Using this notion of capacity we can perform the same analysis as above and
prove the following theorem.

Theorem 18. Assume that Nε → +∞ and that the balls Bi
Rε are uniformly

distributed, are well separated, and have finite capacity density. Denote by F̃ the
functional

F̃ (u) =

⎧⎪⎨
⎪⎩

D̃ν
1
2

(u, λ0ψ) if u = const. ∈ Z ,

+∞ otherwise .

(A.4)

Then
(i) every sequence {uε} such that supε F̃ε(uε) < ∞ is precompact in L2, and

every cluster point is an integer constant;
(ii) for every u ∈ L2(R2) there exists a sequence {uε} strongly converging in L2

to u such that

lim
ε→0

F̃ε(uε) = F̃ (u) ;

(iii) every sequence {uε} strongly converging in L2 to some function u satisfies

lim inf
ε→0

F̃ε(uε) ≥ F̃ (u) .

Remark 19. The new dislocation capacity for the weak pinning condition is linear
for a big enough. In order to see this we can rewrite it for positive a as follows:

(A.5)

D̃(a, λ0, ψ) = inf

{∫
R2

dist2(w,Z) dx +

∫ ∫
R2×R2

Γν(x− y)|w(x) − w(y)|2 dx dy

+ λ0

∫
R2

ψ(w + a) dx : w ∈ L4(R2) and − a ≤ w ≤ 0

}
.
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Then consider the following minimum problem:

(A.6)

D0(λ0, ψ) := inf

{∫
R2

dist2(w,Z) dx +

∫ ∫
R2×R2

Γν(x− y)|w(x) − w(y)|2 dx dy

+ λ0

∫
R2

ψw dx : w ∈ L4(R2)

}
,

and let w0 be a minimum point. As in the proof of Proposition 8 one can prove that
there exists an L4 function f0 such that

Lw0 = f0 −
λ0

2
ψ

in the sense of distributions. Using the Green function Gν of L + I we show that w0

is bounded. In fact,

w0(x) = Gν ∗ f0(x) + Gν ∗ w0(x) − λ0

2
Gν ∗ ψ(x),

and the conclusion follows by the Hölder inequality. Now let a0 the smallest positive
integer such that

w0 ≥ −a0 .

Clearly we have

D̃(a, λ0, ψ) = D0(λ0, ψ) + λ0a ∀a ≥ a0 .

In particular, if we minimize our energy subject to an external force S, i.e.,

min
a∈Z

F̃ (a) − a

∫
T 2

S dx ,

then the minimum exists if and only if |
∫
T 2 S dx| ≤ λ0. If the force S is greater than

the total resistance of the obstacles, then no equilibrium states exist.

Acknowledgment. We would like to thank M. Ortiz for bringing this problem
to our attention and for many stimulating discussions.
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QUASI-PERIODIC SOLUTIONS FOR 1D SCHRÖDINGER
EQUATIONS WITH HIGHER ORDER NONLINEARITY∗

ZHENGUO LIANG† AND JIANGONG YOU†

Abstract. In this paper, one-dimensional (1D) nonlinear Schrödinger equations

iut − uxx + mu + ν|u|4u = 0,

with Dirichlet boundary conditions are considered. It is proved that for all real parameters m,
the above equation admits small-amplitude quasi-periodic solutions corresponding to b-dimensional
invariant tori of an associated infinite-dimensional dynamical system. The proof is based on infinite-
dimensional KAM theory, partial normal form, and scaling skills.

Key words. quasi-periodic solutions, infinite-dimensional KAM theory, partial normal form
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1. Introduction and main result. In this paper, we will prove that one-
dimensional (1D) nonlinear Schrödinger equation

iut − uxx + mu + ν|u|4u = 0(1.1)

subject to Dirichlet boundary conditions

u(0, t) = u(π, t) = 0,(1.2)

admits small-amplitude quasi-periodic solutions for all m. Equation (1.1) with m = 0
and negative ν is called “focusing” while (1.1) with m = 0 and positive ν is called
“defocusing.” Under some initial-boundary conditions they have been considered by
many authors (see [2, 3, 4, 11]). Throughout this paper, we suppose ν > 0 in (1.1).
As we will see later, the sign of ν is immaterial for our results.

We study the equation (1.1) as a Hamiltonian system on P = W 1
0 ([0, π]), the

Sobolev space of all complex valued L2-functions on [0, π] with an L2-derivative and
vanishing boundary values. Let

φj(x) =

√
2

π
sinjx, λj = j2 + m, j ≥ 1

be the basic modes and their frequencies for the linear equation iut = uxx −mu with
Dirichlet boundary conditions. Then every solution is the superposition of oscillations
of the basic modes, with the coefficients moving on circles,

u(t, x) =
∑
j≥1

qj(t)φj(x), qj(t) = q0
j e

iλjt.
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Together they move on a rotational torus of finite or infinite dimension, depending on
how many modes are excited. In particular, for every choice

J = {j1 < j2 < · · · < jb} ⊂ N

of b basic modes there is an invariant linear space EJ of complex dimension b which
is completely foliated into rotational tori,

EJ = {u = q1φj1 + · · · + qbφjb : q ∈ Cb} =
⋃

I∈P b

TJ(I ),

where P b = {I : Ij > 0 for 1 ≤ j ≤ b} and

TJ(I ) = {u = q1φj1 + · · · + qbφjb : |qj |2 = 2Ij for1 ≤ j ≤ b}.

In addition, each such torus is linearly stable and all solutions have vanishing Lya-
punov exponents. This is the linear situation.

Upon restoration of the nonlinearity ν|u|4u, we show that there exists a Cantor
set C ⊂ Pb , a specially chosen index set I = n1 < n2 < · · · < nb ⊂ N (we will call it
an admissible set, for more specific see section 3) and a family of b-tori

TI [C] = ∪I∈CTI(I) ⊂ EI

over C, and a Whitney smooth embedding

Φ : TI [C] ↪→ P,

such that the restriction of Φ to each TI(I) in the family is an embedding of a rota-
tional b-torus for the nonlinear equation. In [10], The image EI of TI [C] is called a
Cantor manifold of rotational b-tori given by the embedding Φ : TI [C] → EI .

Theorem 1 (main theorem). Consider the 1D nonlinear Schrödinger equation
(1.1) with (1.2). Then for any admissible index set I = {n1 < n2 < · · · < nb} ⊂ N and
m ∈ R, there exists a positive-measure Cantor manifold EI of real analytic, linearly
stable, Diophantine b-tori for the nonlinear Schrödinger equation given by a Whitney
smooth embedding Φ : TI [C] → EI , which is a higher order perturbation of the inclusion
map Φ0 : EI ↪→ P restricted to TI [C].

Remark 1. The existence of admissible sets will be proved in the appendix. In
fact there exist infinite admissible index sets I.

Remark 2. The result remains true for more general nonlinearities f(|u|2)u, where
f(0) = f ′(0) = 0, f ′′(0) �= 0. Our method essentially applies to the nonlinearities
f(|u|2)u, where f(0) = f (1)(0) = · · · = f (k−1)(0), f (k)(0) �= 0, k ≥ 1, but the proof
would be much more complicated.

Remark 3. The frequencies of the diophantine tori are also under control. They
are ω(I) = (λn1

, λn2
, . . . , λnb

) + 1
π2 (10I2

1 + 18I2
2 + · · · + 18I2

b + 36I1(I2 + · · · + Ib) +
48(I2I3 + · · ·+Ib−1Ib), . . . , 18I2

1 + · · ·+18I2
b−1 +10I2

b +36Ib(I1 + · · ·+Ib−1)+48(I1I2 +

· · · + Ib−2Ib−1)) + O(||I|| 136 ).
Remark 4. The technique of this paper is not restricted to the nonlinear Schrodinger

equation. It applies equally well to the nonlinear 1D beam equations

utt + uxxxx = f(u)

with hinged boundary conditions, where f is a real analytic, odd function of u of the
form f(u) = au3 +

∑
k≥5 fku

k, a �= 0. Our result is an improvement on [6]. Details
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will be given in another paper. Unfortunately, our technique can’t be applied to the
complete resonant 1D wave equation

utt + uxx = u3(1.3)

with Dirichlet boundary conditions. From the proof, one sees that that superlinear
growth of the eigenvalues λj ∼ j2 is crucial. For (1.3), the admissible set does not
exist and one can’t obtain the desired partial Birkhoff normal form by eliminating all
the unpleasant terms, which include 2 or 3 tangential coordinates.

The rest of the paper is organized as follows. In section 2 the Hamiltonian function
is written in infinitely many coordinates, which is then put into partial normal form
in section 3. In section 4 we improve an infinite dimensional KAM theorem, which is
developed by many people (see Kuksin [7, 8, 9], Wayne [16], Pöschel [13], Chierchia
and You [5]). Measure estimates are given in section 5. Some propositions are proved
in the appendix.

2. The Hamiltonian. For simplicity, we choose ν = 1. Other cases can be
rescaled into this case. The Hamiltonian of the nonlinear Schrödinger equation is

H =
1

2
〈Au, u〉 +

1

6

∫ π

0

|u|6dx,(2.1)

where A = −d2/dx2 + m. We rewrite H as a Hamiltonian in infinitely many coordi-
nates by making the ansatz

u(x) =
∑
j≥1

qjφj , φj =

√
2

π
sinjx, j ≥ 1.

The coordinates are taken from the Hilbert spaces Ha,ρ of all complex-valued se-
quences q = (q1, q2, . . .) with

‖q‖2
a,ρ =

∑
j≥1

|qj |2j2ae2jρ < ∞.

Fix ρ > 0 and a ≥ 0 later. One then obtains the Hamiltonian

H = Λ + G =
1

2

∑
j≥1

λj |qj |2 +
1

6

∫ π

0

|u|6dx(2.2)

on the phase space Ha,ρ with symplectic structure i
2

∑
j dqj ∧ dq̄j . Its equations of

motion are

q̇j = 2i
∂H

∂q̄j
, j ≥ 1.(2.3)

They are the classical Hamiltonian equations of motion for the real and imaginary
parts of qj = xj + iyj written in complex notation. Rather than discussing the above
formal validity, we shall, following [10] or [5], use the following elementary observation.

Lemma 1. Let I be an interval and let

t ∈ I → q(t) ≡ ({qj(t)}j≥1)
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be an analytic solution of (2.3) such that

sup
t∈I

∑
j≥1

|qj(t)|2j2ae2jρ < ∞(2.4)

for some ρ > 0 and a ≥ 0. Then

u(t, x) ≡
∑
j≥1

qj(t)φj(x),

is an analytic solution of (1.1).
For the proof, refer to Lemma 1 in [10].
Next, we consider the regularity of the gradient of G. To this end, let H2

b and L2,
respectively, be the Hilbert spaces of all bi-infinite, square summable sequences with
complex coefficients and all square-integrable complex valued functions on [−π, π].
Let

F : H2
b → L2, q �→ Fq =

1√
2π

∑
j

qje
ijx

be the inverse discrete Fourier transform, which defines an isometry between the two
spaces. The subspaces Ha,ρ

b ⊂ H2
b consist, by definition, of all bi-infinite sequences

with finite norm

‖q‖2
a,ρ = |q0|2 +

∑
j

|qj |2|j|2ae2|j|ρ.

Through F they define subspaces W a,ρ ⊂ L2 that are normed by setting ‖Fq‖a,ρ =
‖q‖a,ρ.

Lemma 2. For a > 1
2 and ρ ≥ 0, the space Ha,ρ

b is a Hilbert algebra with respect
to convolution of sequences, and

‖q ∗ p‖a,ρ ≤ c‖q‖a,ρ‖p‖a,ρ

with a constant c depending only on a. Consequently, W a,ρ is a Hilbert algebra with
respect to a multiplication of functions.

For the proof, see [10].
Lemma 3. For a > 1

2 and ρ ≥ 0, the gradient Gq is real analytic as a map from
some neighborhood of the origin in Ha,ρ into Ha,ρ, with

‖Gq‖a,ρ = O(‖q‖5
a,ρ).

The proof is similar with Lemma 3 in [10], which we omit.
By the elementary computation, one can get

G =
1

6

∫ π

0

|u(x)|6 dx

=
1

6

∑
i,j,k,l,m,n

Gijklmnqiqjqk q̄lq̄mq̄n

with

Gijklmn =

∫ π

0

φiφjφkφlφmφn dx.(2.5)
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It is not difficult to verify that Gijklmn = 0 unless i± j ± k± l±m± n = 0, for some
combination of plus and minus signs. For simplicity, we denote Gijk = Giijjkk, Gi =
Giiiiii. If we choose n1, n2, . . . , nb satisfying

ni �= nj + nk, ∀i, j, k ∈ {1, 2, . . . , b},(2.6)

one can get

Gn1
= · · · = Gnb

=
5

2π2
, Gninjnj =

3

2π2
, Gninjnk

=
1

π2

and

Gninj l =
1

4π2
(4 − δ

nj

ni+l − δni

nj+l − δlni+nj
), Gninil =

1

4π2
(6 − δ2ni

l ),

where i �= j, j �= k, k �= i, i, j, k ∈ {1, 2, . . . , b}, l /∈ {n1, n2, . . . , nb}, and for v ∈ Z

δvi =

{
1, i = v,
0, otherwise.

3. Partial Birkhoff normal form. We shall use the KAM iteration to get the
desired result. Since the quadratic part of the Hamiltonian

H = Λ + G =
1

2

∑
j≥1

λj |qj |2 +
1

6

∑
i±j±k±l±m±n=0

Gijklmnqiqjqk q̄lq̄mq̄n

does not provide any “twist” required by KAM theory, we shall use the normal form
technique to get the “twisted” integrable terms from the sixth order terms. To get
finite dimensional KAM tori, we shall first fix finite many sites {n1, n2, . . . , nb}, and
call q = (qn1

, . . . , qnb
) tangential variables. All the other variables, denoted by w,

are called normal variables. For our purpose, the sixth order terms with at most two
normal variables

qiqjqkqlq̄mq̄n, qiqjqk q̄lqmwn, qiqjqkqlwmwn

must be put into normal form, i.e., the terms that remain after normal form procedure
must have the form of |qi|2|qj |2|qk|2 or |qi|2|qj |2|wk|2. The other sixth order terms are
left since they can be scaled into higher perturbations. Such kind of normal form is
called a partial Birkhoff normal form since we don’t normalize all sixth order terms.
In order to get the desired partial Birkhoff normal form, we have to carefully choose
{n1, n2, . . . , nb}.

For fixed {n1, n2, . . . , nb}, we define the index sets Δ∗, ∗ = 0, 1, 2 and Δ3 in
the following way: Δ∗ is the set of index (i, j, k, l,m, n) such that there exist right ∗
components not in {n1, n2, . . . , nb}. Δ3 is the set of the index (i, j, k, l,m, n) such that
there exist at least three components not in {n1, n2, . . . , nb}. Define the resonance sets
N ={(i, j, k, i, j, k)}∩Δ2 and M ={(i, j, k, i, j, k)}∩Δ2. For our convenience, rewrite
G = G0 + G1 + G2 + Ĝ, where

G∗ =
1

6

∑
i±j±k±l±m±n=0,(i,j,k,l,m,n)∈Δ∗

Gijklmnqiqjqk q̄lq̄mq̄n,(3.1)

and ∗ = 0, 1, 2.
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Definition 1. The index set I ={n1 < n2< · · · < nb} is said to be admissible if
and only if n1, n2, . . . , nb satisfy the following Assumptions A,B,C and (2.6).

A. If i± j ± k ± l ±m± n = 0, (i, j, k, l,m, n) ∈ Δ0 \ N , then

λi + λj + λk − λl − λm − λn �= 0.

B. If i± j ± k ± l ±m± n = 0, (i, j, k, l,m, n) ∈ Δ1, then

λi + λj + λk − λl − λm − λn �= 0.

C. If i± j ± k ± l ±m± n = 0, (i, j, k, l,m, n) ∈ Δ2 \M, then

λi + λj + λk − λl − λm − λn �= 0.

Proposition 1. There exist infinite many admissible index sets.

When b = 2, we can construct some of the admissible index sets clearly. Denote

S = {n1 ≤ n2|n1 ≡ 5 or 9(mod14), n2 ≡ 8(mod14), n2 ≥ 11n2
1}.

Proposition 2. If b = 2, any element in S is the admissible index set.

The proofs of Propositions 1 and 2 are given in the appendix.

Next we transform the Hamiltonian (2.2) into the partial Birkhoff form of order
six so that the infinite KAM Theorem (see section 4) can be applied.

Lemma 4. For any given admissible index set {n1 < n2 < · · · < nb}, there
exists a real analytic, symplectic change of coordinates X1

F in some neighborhood of
the origin that takes the Hamiltonian H = Λ + G into

H ◦X1
F = Λ + G + Ĝ + K,

where XG, XĜ and XK are real analytic vector fields in a neighborhood of the origin
in Ha,ρ,

G =
5

12π2
(|qn1

|6 + · · · + |qnb
|6)

+
9

4π2
(|qn1

|4|qn2 |2 + · · · + |qn1 |4|qnb
|2

+ |qn2 |4|qn1 |2 + |qn2 |4|qn3 |2 + · · · + |qn2 |4|qnb
|2 + · · · + |qnb

|4|qnb−1
|2)

+
6

π2
(|qn1

|2|qn2
|2|qn3

|2 + · · · + |qnb−2
|2|qnb−1

|2|qnb
|2)

+
3

2

⎛
⎝ ∑

i �=n1,n2,...,nb

Gn1n1i|qn1
|4|qi|2 + · · · +

∑
i �=n1,n2,...,nb

Gnbnbi|qnb
|4|qi|2

⎞
⎠

+ 6

⎛
⎝ ∑

i �=n1,n2,...,nb

Gn1n2i|qn1
|2|qn2

|2|qi|2 + . . . +
∑

i �=n1,n2,...,nb

Gnb−1nbi|qnb−1
|2|qnb

|2|qi|2
⎞
⎠,

|K| = O(||q||8a,ρ) and Ĝ = 1
6

∑
i±j±k±l±m±n=0,(i,j,k,l,m,n)∈Δ3

Gijklmnqiqjqk q̄lq̄mq̄n.

Proof. Let Γ = Xt
F |t=1 be the time 1-map of the flow of the Hamiltonian vector

field XF given by the Hamiltonian
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F = F 0 + F 1 + F 2

=
1

6

{ ∑
i,j,k,l,m,n

F 0
ijklmnqiqjqk q̄lq̄mq̄n

+
∑

i,j,k,l,m,n

F 1
ijklmnqiqjqk q̄lq̄mq̄n

+
∑

i,j,k,l,m,n

F 2
ijklmnqiqjqk q̄lq̄mq̄n

}

with coefficients

iF 0
ijklmn =

{
Gijklmn

λi+λj+λk−λl−λm−λn
i± j ± k ± l ±m± n = 0, (i, j, k, l,m, n)∈Δ0\N ,

0 otherwise,

iF 1
ijklmn =

{
Gijklmn

λi+λj+λk−λl−λm−λn
i± j ± k ± l ±m± n = 0, (i, j, k, l,m, n) ∈ Δ1,

0 otherwise,

iF 2
ijklmn =

{
Gijklmn

λi+λj+λk−λl−λm−λn
i± j ± k ± l ±m± n = 0, (i, j, k, l,m, n)∈Δ2\M,

0 otherwise.

Note our Assumptions A, B, C, the remained proof is just a copy of Lemma 4 of
[10].

Now our Hamiltonian is H = Λ+G+ Ĝ+K. Introduce the symplectic polar and
complex coordinates by setting

qj =

{√
2(ξj + yj)e

−ixj , j = n1, n2, . . . , nb√
2zj , j �= n1, n2, . . . , nb

depending on parameters ξ ∈ Π = [0, 1]b. The precise domain will be specified later. In
order to simplify the expression, we substitute ξnj , j = 1, 2, . . . , b by ξj , j = 1, 2, . . . , b.
Then one gets

i

2

∑
j≥1

dqj ∧ dq̄j =
∑

j=n1,n2,...,nb

dxj ∧ dyj + i
∑

j �=n1,n2,...,nb

dzj ∧ dz̄j .

The new Hamiltonian

H = Λ + G + Ĝ + K = 〈ω(ξ), y〉 + 〈Ω(ξ)z, z̄〉 + G̃ + Ĝ + K

with frequencies ω(ξ) = α′ + A(ξ), Ω(ξ) = β′ + B(ξ), where

α′ = (λn1 , λn2 , . . . , λnb
), β′ = (λi)i �=n1,...,nb

,

A(ξ) =
1

π2
(10ξ2

1+ 18ξ2
2+ · · ·+18ξ2

b + 36ξ1(ξ2 + · · · + ξb)+ 48(ξ2ξ3 + · · · + ξb−1ξb), . . . ,

18ξ2
1 + · · · + 18ξ2

b−1+10ξ2
b + 36ξb(ξ1 + · · · + ξb−1)+ 48(ξ1ξ2 + · · · + ξb−2ξb−1)),

B(ξ) = (12Gn1n1iξ
2
1+· · ·+12Gnbnbiξ

2
b+48Gn1n2iξ1ξ2+· · ·+48Gnb−1nbiξb−1ξb)i �=n1,...,nb

,
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and the remainder G̃ = O(|y|3) + O(|ξ||y|2) + O(|ξ||y||z|2a,ρ) + O(|y|2|z|2a,ρ), Ĝ =

O(|ξ| 32 |z|3a,ρ),K = O(|ξ|4). Rescaling ξ by ε6ξ,z, z̄ by ε4z, ε4z̄, and y by ε8y, one
obtains a Hamiltonian given by the rescaled Hamiltonian

H̃(x, y, z, z̄, ξ) = ε−20H(x, ε8y, ε4z, ε4z̄, ε6ξ, ε)

= 〈ω̃(ξ), y〉 + 〈Ω̃(ξ)z, z̄〉 + εP̃ (x, y, z, z̄, ξ, ε),

where ω̃(ξ) = ε−12α′ +A(ξ), Ω̃ = ε−12β′ +B(ξ), ξ ∈ [1, 2]b. For simplicity, we rewrite
H̃ by H, ω̃ by ω, Ω̃ by Ω, and P̃ by P .

In what follows, we use the KAM iteration which involves infinite many steps of
coordinate transformations to prove the existence of the KAM tori. To make this
quantitative we introduce the following notations and spaces.

Define

D(r, s) = {(x, y, z, z̄) : |Imx| < s, |y| < r2, ||z||a,ρ < r, ||z̄||a,ρ < r}

a complex neighborhood of T
b × {y = 0} × {z = 0} × {z̄ = 0}, where | · | denotes the

sup-norm for complex vectors. For a p (p ≥ 1) order Whitney smooth function F (ξ),
define

||F ||∗ = max

{
sup
ξ∈Π

|F |, . . . , sup
ξ∈Π

∣∣∣∣∂pF

∂ξp

∣∣∣∣
}
,

||F ||∗ = max

{
sup
ξ∈Π

∣∣∣∣∂F∂ξ
∣∣∣∣ , . . . , sup

ξ∈Π

∣∣∣∣∂pF

∂ξp

∣∣∣∣
}
.

If F (ξ) is a vector function from ξ to Ha,ρ(Rn) which is p order Whitney smooth
on ξ, define ||F ||∗a,ρ = ||(||Fi(ξ)||∗)i||a,ρ(||F ||∗Rn = maxi(||Fi(ξ)||∗)). If F (η, ξ) is a
vector function from D × Π to Ha,ρ, define ||F ||∗a,ρ,D = supη∈D ||F ||∗a,ρ. We usually
omit D for brevity. For functions F , associate a Hamiltonian vector field defined as
XF = {Fy,−Fx, iFz̄,−iFz}. Denote the weighted norm for XF by letting

|XF |∗r,D(r,s) = ||Fy||∗ +
1

r2
||Fx||∗ +

1

r
‖Fz‖∗a,ρ +

1

r
‖Fz̄‖∗a,ρ.

4. An infinite dimensional KAM theorem. Theorem 1 is a direct result of
Theorem 2 and measures estimates in section 5. Consider small perturbations of an
infinite dimensional Hamiltonian in the parameter dependent normal form

N = 〈ω(ξ), y〉 + 〈Ω(ξ)z, z̄〉

on a phase space

Pa,ρ = T
n × R

n ×Ha,ρ ×Ha,ρ � (x, y, z, z̄),

where

ωj =
jd + · · ·

εt
+ O(ξp)1, Ωj =

jd + · · ·
εt

+ O(ξp),

t, p ∈ N, ρ > 0, a ≥ 0. Suppose that ||ω||∗ ≤ M1, ||Ωj ||∗ ≤ M2,M1 + M2 ≥ 1. Define
M = (M1 + M2)

p. The parameter set Π is [1, 2]n.

1O(ξp) means pth order terms in ξ1, . . . , ξb
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For the Hamiltonian H = N +P , there exists n-dimensional, linearly stable torus
T n

0 = T
n × {0, 0, 0} with frequencies ω(ξ) when P = 0. Our aim is to prove the per-

sistence of a large portion of this family of linearly stable rotational tori under small
perturbations. Suppose that the perturbation P is real analytic in the space variables,
Cp in ξ, and for each ξ ∈ Π its Hamiltonian vector field XP = (Py,−Px, iPz̄,−iPz)

T

defines near T n
0 a real analytic map XP : Pa,ρ → Pa,ρ. Under the previous assump-

tions, we have the following theorem.

Theorem 2. Suppose that H = N + P satisfies

|XP |∗r,D(s,r) ≤ γs2(1+μ),(4.1)

where γ depends on n, p, τ and M , μ = (p + 1)τ + p + n
2 . Then there exists a Cantor

set Πε ⊂ Π, a Whitney smooth family of torus embeddings Φ : T
n ×Πε → Pa,ρ, and a

Whitney smooth map ω∗ : Πε → R
n, such that for each ξ ∈ Πε, the map Φ restricted

to T
n × {ξ} is a real analytic embedding of a rotational torus with frequencies ω∗(ξ)

for the Hamiltonian H at ξ.

Each embedding is real analytic on |Imx| < s
2 , and

‖Φ − Φ0‖∗r ≤ cε
1
2 ,

||ω∗ − ω||∗ ≤ cε,

uniformly on that domain and Πε, where Φ0 is the trivial embedding T
n × Π → T n

0 .
Moreover, there exist Whitney smooth maps ωm and Ωm on Π for m ≥ 1 satisfying
ω1 = ω, Ω1 = Ω and

||ωm − ω||∗ ≤ cε,(4.2)

‖Ωm − Ω‖∗ ≤ cε.(4.3)

Remark. Note that in the theorem, we didn’t claim that the measure of Πε is
positive. For positive measure, one needs further information of the frequencies ω(ξ)
and Ω(ξ). We shall come back to this point in section 5.

Since the proof of Theorem 2 is essentially standard, we only state the main step
of KAM iteration. The more detailed steps can be found in [13] and other papers.

4.1. Solving the linearized equations and KAM step. At each step of
KAM iteration, the symplectic coordinate change Φ is obtained as the time 1-map
Xt

F |t=1 of the flow of Hamiltonian vector field XF . Its generating function F and some

normal correction N̂ to the given normal form N are solutions of the linear equation

{F,N} + N̂ = R,(4.4)

where

R =
∑

2m+|q+q̄|≤2

Rkmqq̄y
mzq z̄q̄ei〈k,x〉, Rkmqq̄ = Pkmqq̄,

and the coefficients Rkmqq̄ depend on ξ such that XR : P a,ρ → P a,ρ is real analytic and
Whitney smooth in ξ. Below we solve the linear equation and estimate the generating
function F .
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Lemma 5. Suppose that uniformly on Π+ ⊂ Π,

|〈k, ω〉| ≥ εβ

Ak
for k �= 0,(4.5)

|〈k, ω〉 + Ωi| ≥
εβ

Ak
,(4.6)

|〈k, ω〉 + Ωi + Ωj | ≥
εβ(|i− j| + 1)

Ak
,(4.7)

|〈k, ω〉 + Ωi − Ωj | ≥
εβ(|i− j| + 1)

Ak
, i �= j.(4.8)

Then the linear equation has solution F and N̂ , which satisfy [F ] = 0, [N̂ ] = N̂ .
Moreover,

|XN̂ |∗r,D(s,r) ≤ |XR|∗r,D(s,r), |XF |∗r,D(s−σ,r) ≤
cM

ε(p+1)βσμ
|XR|∗r,D(s,r),(4.9)

where Ak = 1 + |k|τ , β will be denoted later.
For the proof, refer to [13].
Lemma 6. If |XF |∗r,D(s−σ,r) ≤ σ, then for any ξ ∈ Π+, the flow Xt

F (·, ξ) exists on

D(s− 2σ, r
2 ) for |t| ≤ 1 and maps D(s− 2σ, r

2 ) into D(s−σ, r). Moreover, for |t| ≤ 1,

|Xt
F − id|∗r,D(s−2σ, r2 ), σ||DXt

F − Id||∗r,r,D(s−3σ, r4 ) ≤ c|XF |∗r,D(s−σ,r),

where D is the differentiation operator with respect to (x, y, z, z̄), id and Id are identity
mapping and unit matrix, and the operator norm

||A(ξ, η)||r̄,r,D(s,r) = supη∈D(s,r)supw �=0

||A(ξ, η)w||a,r̄
||w||a,r

,

||A||∗r,r = max

{
||A||r,r, . . . ,

∣∣∣∣
∣∣∣∣∂pA

∂ξp

∣∣∣∣
∣∣∣∣
r,r

}
.

For the proof, see [14].
Below we consider the new perturbation under the sympletic transformation Φ =

Xt
F |t=1. Let |XP |∗r,D(s,r) ≤ ε. From the above we have

R =
∑

2|m|+|q+q̄|≤2

Rkmqq̄y
mzq z̄q̄ei〈k,x〉.

Thus |XR|∗r,D(s,r) ≤ ·|XP |∗r,D(s,r) ≤ ·ε, and for η ≤ 1
8 ,

|XP−R|∗ηr,D(s,4ηr) ≤ ·η|XP |∗r,D(s,r) ≤ ·ηε.(4.10)

Since

N̂ =
∑

2|m|+|q+q̄|≤2,q=q̄

P0mqq̄y
mzq z̄q̄ei〈k,x〉,
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the new normal form is

N+ = N + N̂ = 〈ω+, y〉 + 〈Ω+z, z̄〉.

By Lemma 5, one has |XN̂ |∗r,D(s,r) ≤ ·ε. Therefore,

||ω+ − ω||∗, ||Ω+ − Ω||∗ ≤ ·ε,(4.11)

where ||Ω||∗ = maxj≥1 ||Ωj ||∗. If cMε1−β(p+1)

σμ+1 ≤ 1, by Lemmas 5 and 6, it follows that
for |t| ≤ 1,

1

σ
|Xt

F − id|∗r,D(s−2σ, r2 ), ||DXt
F − Id||∗r,r,D(s−3σ, r4 ) ≤

cMε1−(p+1)β

σμ+1
.(4.12)

Under the transformation Φ = X1
F , (N + R) ◦ Φ = N+ + R+, where R+ =

∫ 1

0
{(1 −

t)N̂ + tR, F} ◦Xt
F . Thus, H ◦ Φ = N+ + R+ + (P − R) ◦ Φ = N+ + P+, where the

new perturbation

P+ = R+ + (P −R) ◦ Φ = (P −R) ◦ Φ +

∫ 1

0

{R̄(t), F} ◦Xt
F dt,

where R̄(t) = (1 − t)N̂ + tR. Hence, the Hamiltonian vector field of the new pertur-
bation is

XP+ = (X1
F )∗(XP−R) +

∫ 1

0

(Xt
F )∗[XR̄(t), XF ]dt.

For the estimate of XP+
, we need the following lemma.

Lemma 7. If the Hamiltonian vector field W (·, ξ) on V = D(s−4σ, 2ηr) depends
on the parameter ξ ∈ Π+ with ||W ||∗r,V < +∞, and Φ = Xt

F : U = D(s−5σ, ηr) → V ,

then Φ∗W = (DΦ)−1W ◦Φ and if cMε1−(p+1)β

n2σμ+1 ≤ 1, we have ||Φ∗W ||∗ηr,U ≤ c||W ||∗ηr,V .
For the proof, see [14].

Now we estimate XP+
. By Lemma 7, if cMε1−(p+1)β

n2σμ+1 ≤ 1,

|XP+ |∗ηr,D(s−5σ,ηr) ≤ c|XP−R|∗ηr,D(s−4σ,2ηr) + c

∫ 1

0

|[XR̄(t), XF ]|∗ηr,D(s−4σ,2ηr)dt.

By Cauchy’s inequality and Lemma 6, one obtains

|[XR̄(t), XF ]|∗ηr,D(s−4σ,2ηr) ≤
cMε2−(p+1)β

η2σμ+1

= cMηε,

where one chooses η3 = ε1−(p+1)β

σμ+1 . Combining (4.10) we have

|XP+ |∗ηr,D(s−5σ,ηr) ≤ cMηε.

4.2. Iteration and proof of Theorem 2. To iterate the KAM step infinitely
we must choose suitable sequences. For m ≥ 1 set

εm+1 =
cM(m)ε

4
3−

1
3 (p+1)β

m

σ
1
3 (1+μ)
m

, σm+1 =
σm

2
, η3

m =
ε
1−(p+1)β
m

σm
,
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where β = 1
2(p+1) . Furthermore, sm+1 = sm − 5σm, rm+1 = ηmrm, M(m) = (M1 +

M2 + 2c(ε1 + · · · + εm−1))
p, and Dm = D(sm, rm). As initial value fix σ1 = s1

20 ≤ 1
2 .

Choose

ε1 ≤ γ6
0σ

2(μ+1)
1

c6M6p
,(4.13)

where γ0 ≤ 1
c(M+1)p26p+4μ . Finally, let Km = K12

m−1 with

Kτ+1
1 = c5−6βM6p(1−β)22(1+μ)(1−β)−3γ

6(β−1)
0 .(4.14)

Lemma 8. Suppose Hm = Nm + Pm is given on Dm × Πm, where Nm =
〈ωm(ξ), y〉 + 〈Ωm, zz̄〉 is a normal form satisfying

|〈k, ωm〉| ≥ εβm
Ak

for k �= 0,(4.15)

|〈k, ωm〉 + Ωm,i| ≥
εβm
Ak

,(4.16)

|〈k, ωm〉 + Ωm,i + Ωm,j | ≥
εβm(|i− j| + 1)

Ak
,(4.17)

|〈k, ωm〉 + Ωm,i − Ωm,j | ≥
εβm(|i− j| + 1)

Ak
, i �= j,(4.18)

for any ξ ∈ Πm, and

|XPm
|∗rm,Dm

≤ εm.

Then there exists a Whitney smooth family of real analytic symplectic coordinate trans-
formations Φm+1 : Dm+1 × Πm → Dm and a closed subset

Πm+1 = Πm \
⋃

|k|>Km

Rm+1
kl (εm+1)

of Πm, where

Rm+1
kl (εm+1) = Am+1

k1 ∪Am+1
k2 ∪Am+1

k3 ∪Am+1
k4 ,

and

Am+1
k1 =

{
ξ ∈ Πm : |〈k, ωm+1〉| <

εβm+1

Ak

}
,

Am+1
k2 =

⋃
i

Bm+1,1
ki =

⋃
i

{
ξ ∈ Πm : |〈k, ωm+1〉 + Ωm+1,i| <

εβm+1

Ak

}
,

Am+1
k3 =

⋃
i,j

Bm+1,11
kij =

⋃
i,j

{
ξ∈Πm : |〈k, ωm+1〉+ Ωm+1,i+ Ωm+1,j |<

εβm+1(|i− j| + 1)

Ak

}
,

Am+1
k4 =

⋃
i �=j

Bm+1,12
kij =

⋃
i �=j

{
ξ∈Πm : |〈k, ωm+1〉+ Ωm+1,i − Ωm+1,j |<

εβm+1(|i− j| + 1)

Ak

}
,
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such that for Hm+1 = Hm ◦Φm+1 = Nm+1 +Pm+1 the same assumptions are satisfied
with m + 1 in place of m.

Proof. Note the value for p1, ε1, β and σ1, one verifies that

Mm+1ε
1−(p+1)β
m+1

σ1+μ
m+1

≤ 1

2

Mmε
1−(p+1)β
m

σ1+μ
m

(4.19)

for all m ≥ 1. So the smallness condition of the KAM step is satisfied. For the
remained proof, see the iterative lemma in [13].

With (4.11) and (4.12), we also obtain the following estimate.

Lemma 9. For m ≥ 1,

1

σm
||Φm+1 − id||∗rm,Dm+1

, ||DΦm+1 − I||∗rm,rm,Dm+1
≤ cM(m)ε

1−(p+1)β
m

σμ+1
m

(4.20)

||ωm+1 − ωm||∗Πm
, ||Ωm+1 − Ωm||∗Πm

≤ cεm.(4.21)

Proof of Theorem 2. The smallness condition is

ε1 ≤ γ6
0

202(1+μ)(cMp)6
s
2(1+μ)
1 .(4.22)

To apply Lemma 8 with m = 1, set s1 = s, r1 = r, . . . , N1 = N, P1 = P ,

γ =
γ6
0

202(1+μ)(cMp)6
and ε1 = γs

2(1+μ)
1 .

The smallness condition is satisfied, because

|XP1 |∗r1,D(s1,r1)
= |XP |∗r,D(r,s) ≤ γs2(1+μ) = ε1.

The small divisor conditions are satisfied by setting Π1 = Π \ ∪klR
1
kl(ε), where k �= 0

for A1
k1, and Π0 = Π. Then the iterative lemma applies.

Remark. For the rescaled Hamiltonian H, we fix r = 1. Then

|XεP |∗1,D(s,1) ≤ |XεP |∗1,D(1,1) ≤ cε ≤ γs2(1+μ),

for ε small enough. If fix ρ > 0 and a > 1
2 arbitrarily, Theorem 2 can be applied to

the rescaled Hamiltonian.

5. Measure estimates. The remaining job is to estimate the measure. We first
give the measure estimates for the first step. In our case, the tangent frequencies ωi =
λi+O(ξ2)(i = n1, . . . , nb) and normal frequencies Ωj = λj +O(ξ2)(j �= n1, . . . , nb) are
second orders in ξ while the ones appeared in the papers such as [10] and [12] are linear
in ξ. This is another main difference between our paper and others. To obtain the
measure estimates, we have to control the higher order derivatives for 〈k, ω〉±Ωi±Ωj

etc. One finds that more information from O(ξ2) is needed to exclude the degenerate
cases. The measure estimates in the subsequent steps are based on the techniques
developed in [14] and [15].
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5.1. Measure estimates in the first step. The thrown parameter sets in the
first step are (∪k �=0A

1
k1)

⋃
(∪k(A

1
k2 ∪A1

k3 ∪A1
k4)), where

A1
k1 =

{
ξ ∈ Π : |〈k, ω〉| < εβ

Ak

}
,(5.1)

A1
k2 =

⋃
i

B1,1
ki =

⋃
i

{
ξ ∈ Π : |〈k, ω〉 + Ωi| <

εβ

Ak

}
,(5.2)

A1
k3 =

⋃
i,j

B1,11
kij =

⋃
i,j

{
ξ ∈ Π : |〈k, ω〉 + Ωi + Ωj | <

εβ(|i− j| + 1)

Ak

}
,(5.3)

A1
k4 =

⋃
i �=j

B1,12
kij =

⋃
i �=j

{
ξ ∈ Π : |〈k, ω〉 + Ωi − Ωj | <

εβ(|i− j| + 1)

Ak

}
.(5.4)

It is obvious that |A1
02 ∪A1

03 ∪A1
04| = 0.

Lemma 10. Suppose that g(x) is an mth differentiable function on the closure Ī
of I, where I ⊂ R is an interval. Let Ih = {x||g(x)| < h}, h > 0. If for some constant

d > 0, |gm(x)| ≥ d for any x ∈ I, then |Ih| ≤ ch
1
m , where |Ih| denotes the Lebesgue

measure of Ih and c = 2(2 + 3 + · · · + m + d−1).
For the proof, see [15]. The similar method can be found in [1] and [14].

Lemma 11. For τ > 2b + 5, |
⋃

k �=0 A
1
k3| = O(ε

β
2 ).

Proof. Suppose i ≥ j without losing generalities. When i ≥ c|k|, one obtains
|Ωi+Ωj |
1+i−j ≥ c|k|

8ε12 . But we know |〈k,ω〉|
1+(i−j) ≤ c′|k|

ε12 . If c is large enough, then
|Ωi+Ωj+〈k,ω〉|

1+(i−j) ≥
1. This means A1

k3 =
⋃

max{i,j}≤c|k| B
1,11
kij . Define

f(ξ) =
k1

π2
(10ξ2

1+18ξ2
2 + · · · + 18ξ2

b+ 36ξ1(ξ2 + · · · + ξb)+ 48(ξ2ξ3 + · · · + ξb−1ξb))+ · · ·

+
kb
π2

(18ξ2
1+ 18ξ2

2 + · · ·+ 10ξ2
b+ 36ξb(ξ1 + · · · + ξb−1)+ 48(ξ1ξ2 + · · · + ξb−2ξb−1))

+ (12ξ2
1Gn1n1i + · · · + 12ξ2

bGnbnbi + 48Gn1n2iξ1ξ2 + · · · + 48Gnb−1nbiξb−1ξb)

+ (12ξ2
1Gn1n1j + · · · + 12ξ2

bGnbnbj + 48Gn1n2jξ1ξ2 + · · · + 48Gnb−1nbjξb−1ξb).

It follows that

π2

2

∂2f

∂ξ2
1

= 10k1 + 18k2 + · · · + 18kb + 3(c1 + c′1)

...
π2

2

∂2f

∂ξ2
n

= 18k1 + 18k2 + · · · + 10kb + 3(cb + c′b),

where ci, c
′
i = 5 or 6, i = 1, 2, . . . , b. We will prove the inequality

max

(
π2

2

∣∣∣∣∂2f

∂ξ2
1

∣∣∣∣ , . . . , π2

2

∣∣∣∣∂2f

∂ξ2
b

∣∣∣∣
)

≥ 1

always holds. If it is not true, one gets that

k1 =
−3

8(9b− 4)
((13 − 9b)(c1 + c′1) + 9(c2 + c′2 + · · · + cb + c′b)).
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One can draw the contradictions from the following three cases.
Case 1. Two “5s” in {c1, c2, . . . , cb, c′1, c′2, . . . , c′b}. In this case, we discuss it from

different possibilities.

Subcase a: c1 = 5, c′1 = 6. One obtains k1 = − 3(9b+26)
72b−32 . It is obvious that k1 /∈ Z.

It is similar for the case c1 = 6, c′1 = 5.
Subcase b: c1 = c′1 = 6. One gets k1 = − 45

4(9b−4) . It is impossible.

Subcase c: c1 = c′1 = 5. One gets |k1| = 3(18b+22)
8(9b−4) . When b ≥ 6, 0 < |k1| < 1. For

b = 2, . . . , 5, one can get k1 /∈ Z(check directly).
Case 2. Only one “5” in {c1, c2, . . . , cb, c′1, c′2, . . . , c′b}.
Subcase a: c1 = 5 or c′1 = 5. One obtains |k1| = 105+27b

72b−32 . If b ≥ 4, then 0 < |k1| <
1. It is impossible. If b = 2, 3, one has k1 /∈ Z(check directly). It also contradicts with
the previous assumption.

Subcase b: ck0 = 5 or c′k0
= 5(k0 �= 1). One gets k1 = − 117

8(9b−4) . It can’t happen.

Case 3. No “5s” in {c1, c2, . . . , cb, c′1, c′2, . . . , c′b}.
One gets k1 = − 18

9b−4 . If b ≥ 3, one can get 0 < |k1| < 1. When b = 2, we obtain
k1 /∈ Z directly. It is impossible.

Hence, for any k �= 0, i, there exists some k0 ∈ {1, 2, . . . , b}, s.t., |π2

2
∂2f
∂ξ2

k0

| ≥ 1.

Then one obtains ∣∣∣∣∣∣
⋃
k �=0

A1
k3

∣∣∣∣∣∣ =

∣∣∣∣∣∣
⋃
k �=0

⋃
i,j≤c|k|

B1,11
kij

∣∣∣∣∣∣ ,

≤ ·
∑
k �=0

(
εβ |k|
Ak

) 1
2

|k|2,

≤ ·
+∞∑
l=1

1

l
τ−2b−3

2

ε
β
2 ,

= O(ε
β
2 ).

Lemma 12. For τ > 2b + 5, |
⋃

k �=0 A
1
k4| = O(ε

β
2 ).

Proof. By the same methods, one obtains that A1
k4 =

⋃
max{i,j}≤c|k| B

1,12
kij . Fol-

lowing the similar way, we can get

kl =
−3

8(9b− 4)

⎛
⎝(13 − 9b)(cl − c′l) + 9

⎛
⎝∑

m�=l

ck −
∑
m�=l

c′k

⎞
⎠
⎞
⎠ ,

where l,m ∈ {1, . . . , b}.
Case 1. Two “5s” in {c1, c2, . . . , cb, c′1, c′2, . . . , c′b}.
If for any i, we have ci = c′i. One gets k = 0 in this case. It is impossible. If

∃i0, ci0 �= c′i0 , there exist two cases. One is ci0 = 5, c′i0 = 6. The other is ci0 = 6, c′i0 =

5. In any case, one can get |ki0 | = 3
8 .

Case 2. One “5” in {c1, c2, . . . , cb, c′1, c′2, . . . , c′b}.
Case 3. No “5s” in {c1, c2, . . . , cb, c′1, c′2, . . . , c′b}.

We omit the proof for the two cases. The measure estimate is similar as before. We
also omit it.

The following conclusions are obvious according to the above methods.
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Lemma 13. For τ > 2b + 2, |
⋃

k �=0 A
1
k2| = O(ε

β
2 ).

Lemma 14. For τ > 2b, |
⋃

k �=0 A
1
k1| = O(ε

β
2 ).

Lemma 15. For τ > 2b + 5, |(∪k �=0A
1
k1)

⋃
(∪k(A

1
k2 ∪A1

k3 ∪A1
k4))| = O(ε

β
2 ).

5.2. The total measure. In order to estimate the total measure of the param-
eter sets Πε which is thrown in all the steps, we must estimate the measure in the
subsequent steps. The thrown parameter set in m + 1 step is

⋃
|k|>Km

Rm+1
kl (εm+1),

where ξ ∈ Πm. In fact, we may extend ωm and Ωm defined in Πm to Π. The following
ωm and Ωm are both defined in Π.

Lemma 16. For τ > 2b + 4 and Km ≥ 80b
c1

,

∣∣∣∣∣
⋃

|k|>Km

Am+1
k4

∣∣∣∣∣ =

∣∣∣∣∣
⋃

|k|>Km

⋃
i �=j

Bm+1,12
k,ij

∣∣∣∣∣ = O

(
ε

β
2
m+1

)
,

where c1 is a constant which depends on b and will be defined in the following.

Proof. For our convenience, we write ω′ and Ω′ for ωm+1 and Ωm+1. Define
v1 = (1, 0, . . . , 0)T and vb = (0, 0, . . . , 1)T . Define S = {(x1, x2, . . . , xb) ∈ R

b :
|x1| + |x2| + · · · + |xb| = 1}. Write A(ξ) = (D2

v1
ω,D2

v2
ω, . . . ,D2

vb
ω)T . It is easy to

check that |A(ξ)| = c > 0, for any ξ ∈ Π. For any (ξ, υ) ∈ Π × S, |A(ξ)υ|1 ≥ c1 > 0.
Thus for any (ξ, υ) ∈ Π×S, there exists a open neighborhood Sυ of υ in S, such that
for some i, |〈D2

vi
ω, υ′〉| ≥ c1

2b , for any (ξ, υ′) ∈ Π×Sv. Since {Π×Sv} covers the compact

set Π×S, there exist finite covers: Π×S1, . . . ,Π×Sk0 such that
⋃k0

i=1 Π×Si ⊃ Π×S
and for any (ξ, υ) ∈ Π × Si,

|〈D2
v̄ω, υ〉| ≥

c1
2b

,

where v̄ ∈ {v1, v2, . . . , vb}.
Now fix k �= 0 and suppose k

|k| ∈ Si. Then for any ξ ∈ Π,

∣∣∣∣
〈
D2

v̄ω,
k

|k|

〉∣∣∣∣ ≥ c1
2b

> 0.(5.5)

Define f(ξ) = 〈k, ω′〉 + Ω′
i − Ω′

j . Note

D2
v̄

f(ξ)

|k| =

〈
k

|k| , D
2
v̄(ω)

〉
+

D2
v̄(Ωi − Ωj)

|k| +
D2

v̄(Ω
′
i − Ωi)

|k|

+
D2

v̄(Ωj − Ω′
j)

|k| +

〈
k

|k| , D
2
v̄(ω

′ − ω)

〉
.(5.6)

We estimate every term in (5.6). From (4.2) and (4.3), one obtains∣∣∣∣
〈

k

|k| , D
2
v̄(ω

′ − ω)

〉∣∣∣∣ ≤ |D2
v̄(ω

′ − ω)| ≤ cε,(5.7)

|D2
v̄(Ω

′
i − Ωi)|
|k| ≤ cε

|k| ≤
1

|k| ,(5.8)

|D2
v̄(Ωj − Ω′

j)|
|k| ≤ cε

|k| ≤
1

|k| .(5.9)
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Note
|D2

v̄(Ωi−Ωj)|
|k| ≤ 8

|k| and (5.7), (5.8), (5.9), (5.5), we arrive at |Dv̄
f(ξ)
|k| | ≥

c1
4b when

|k| ≥ 80b
c1

. We will show in what follows that when max{i, j} ≥ c|k|,

|〈k, ω′〉 + Ω′
i − Ω′

j |
|i− j| + 1

≥ 1.(5.10)

The proof is similar as before. First,

|Ω′
i − Ω′

j |
|i− j| + 1

≥ |Ωi − Ωj |
2|i− j| − |Ω′

i − Ωi|
2|i− j| −

|Ω′
j − Ωj |

2|i− j|

≥ c|k|
2ε12

−M9 − c∗ε

≥ c|k|
4ε12

.

Moreover,

|〈k, ω′〉| ≤ |〈k, ω〉| + |〈k, ω′ − ω〉| ≤ c′|k|
ε12

.

Therefore, when c is large enough and max{i, j} ≥ c|k|, (5.10) holds. So when Km ≥
80b
c1

and τ > 2b + 4,

∣∣∣∣∣
⋃

|k|>Km

⋃
i �=j

Bm+1,12
k,ij

∣∣∣∣∣ =

∣∣∣∣∣
⋃

|k|>Km

⋃
i,j≤c|k|

Bm+1,12
k,ij

∣∣∣∣∣
≤

∑
|k|≥|Km|

∑
i,j≤c|k|

(
|i− j|
Ak|k|

) 1
2

O(ε
β
2
m+1),

≤
+∞∑
l=1

1

l
τ
2 −b−1

O(ε
β
2
m+1)

= O(ε
β
2
m+1).

Lemma 17. For τ > 2b + 4 and Km ≥ 80b
c1

,

∣∣∣∣∣
⋃

|k|>Km

Am+1
k3

∣∣∣∣∣ =

∣∣∣∣∣
⋃

|k|>Km

⋃
i,j

Bm+1,11
k,ij

∣∣∣∣∣ = O(ε
β
2
m+1).

Lemma 18. For τ > 2b + 1 and Km ≥ 80b
c1

,

∣∣∣∣∣
⋃

|k|>Km

Am+1
k2

∣∣∣∣∣ =

∣∣∣∣∣
⋃

|k|>Km

⋃
i

Bm+1,1
k,i

∣∣∣∣∣ = O(ε
β
2
m+1).

Lemma 19. For τ > 2b− 1,∣∣∣∣∣
⋃
k �=0

Am+1
k1

∣∣∣∣∣ = O(ε
β
2
m+1).
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Lemma 20. For τ > 2b + 4 and Km ≥ 80b
c1

,∣∣∣∣∣
⋃

|k|>Km

Rm+1
kl (εm+1)

∣∣∣∣∣ = O(ε
β
2
m+1).

In order to estimate the value for K1, a series of constants have to be chosen. We
know p = 2, β = 1

6 . One fixes M, τ > 2b+5. It is easy to see that one obtains K1 ≥ 80b
c1

when γ0 is small enough. Now we compute the total measure of the parameter sets
Πε which is thrown in all the steps

|Πε| ≤ O(ε
1
12
1 ) + O(ε

1
12
2 ) + · · ·

≤ O(ε
1
12
1 ) = O(ε

1
12 ).

6. Appendix. The existence of infinite admissible index sets isn’t obvious since
the corresponding tangential frequencies have to satisfy infinite many nonresonance
conditions. The main idea of the proof is as follows: Suppose that our conclusions

hold when b = d−1, we prove that there exists at least one nd in [x, x+
√

x
9nd−1

](x, n1

is large enough) such that n1, . . . , nd−1, nd satisfy all the nonresonance assumptions

(see section 3). The idea is to estimate the total number of integers n in [x, x+
√

x
9nd−1

]

such that n1, n2, . . . , nd−1, n conflicts with one of our nonresonance assumptions. In

fact we can prove that the total number is far less than
√

x
9nd−1

. This shows the

existence of nd. In case d = 2, we explicitly construct the admissible index sets. The
proof of Proposition 1 requires a couple of lemmas. For our convenience, we introduce

the set K2 = {k2|k ∈ Z} and define L =
√

nd

9nd−1
.

Lemma 21. For any given n1, n2, . . . , nd−1 with n1 < n2 < · · · < nd−1, {n1, n2} ∈
S and nd large enough, there exists at most L

8d integers xd ∈ [nd, nd+L]∩Z satisfying
5x2

d + 2kxd − 3k2 ∈ K2, k ∈ {n1, n2, . . . , nd−1}.
Proof. Note

√
5 /∈ Q, the conclusion is obvious.

Similarly, we have the following lemma.
Lemma 22. For any given n1, n2, . . . , nd−1 with n1 < n2 < · · · < nd−1, {n1, n2} ∈

S and nd large enough, there exist at most L
8d integers xd ∈ [nd, nd +L]∩Z satisfying

5x2
d − 2kxd − 3k2 ∈ K2, k ∈ {n1, n2, . . . , nd−1}.

For the following two lemmas, it is easy to draw the contradictions from the
contrary.

Lemma 23. For any given n1, n2, . . . , nd where n1 < n2 < · · · < nd−1 < nd,
nd >> n2

d−1 and {n1, n2} ∈ S, there exists at most one xij ∈ [nd, nd + L] ∩ Z
satisfying

4xij(nj + ni) + (nj − 3ni)(nj + ni) ∈ K2,

where i, j ∈ {1, 2, . . . , d− 1}.
Lemma 24. For any given n1, n2, . . . , nd with n1 < n2 < · · · < nd−1 < nd,

nd >> n2
d−1 and {n1, n2} ∈ S, there exists at most one xij ∈ [nd, nd + L] ∩ Z

satisfying

4xij(nj − ni) + (nj + 3ni)(nj − ni) ∈ K2,

where 1 ≤ i < j ≤ d− 1, i, j ∈ Z.
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Lemma 25. For any given n1, n2, . . . , nd−1, nd, where n1 < n2 < · · · < nd−1 <
nd, nd >> n3

d−1 and (n1, n2) ∈ S, there exists at most 12L√
nj−ni

integers x belonging

to [nd, nd + L] so that
x2−n2

i

nj−ni
∈ Z, where 1 ≤ i < j ≤ d− 1, i, j ∈ Z.

Proof. Rewrite nj − ni = pk1
1 pk2

2 · · · pks
s , where p1, . . . , ps are different prime

numbers, k1, k2, . . . , ks ∈ Z+. For x + ni, x ∈ [nd, nd + L], it is apparent that there
exist at most L

p
l1
1 p

l2
2 ···pls

s

+ 2 integers including pl11 pl22 · · · plss as factor, where 0 ≤ li ≤
ki, i = 1, 2, . . . , s. For our convenience, we use Al1l2···ls representing the event that
x + ni includes pl11 pl22 · · · plss as factor. Similarly, Bl1l2···ls represents the event that

x− ni includes pk1−l1
1 pk2−l2

2 · · · pks−ls
s as factor. C represents the event

x2−n2
i

nj−ni
∈ Z. It

is apparent that ∪l1···lsA
l1l2···lsBl1l2···ls = C. Then the probability of C is

P (C) =
∑
l1···ls

P (Al1l2···lsBl1l2···ls)

≤
∑
l1···ls

P (Al1l2···ls)P (Bl1l2···ls)

≤
∑
l1···ls

⎛
⎝ L

p
l1
1 p

l2
2 ···pls

s

+ 2

L

⎞
⎠

⎛
⎝ L

p
k1−l1
1 p

k2−l2
2 ···pks−ls

s

+ 2

L

⎞
⎠

≤ 2
∑
l1···ls

1

pk1
1 pk2

2 · · · pks
s

≤ 2(k1 + 1) · · · (ks + 1)

pk1
1 pk2

2 · · · pks
s

.

We know that l + 1 ≤ p
l
2 (p ≥ 4), l + 1 ≤ 3

l
2+1, and l + 1 ≤ 2

l
2+1, for any l ≥ 1.

Then P (C) ≤ 2(k1+1)···(ks+1)
nj−ni

≤ 12√
nj−ni

. Now it is easy to see that our conclusion

holds.

Similarly, we have the following lemma.

Lemma 26. For any given n1, n2, . . . , nd where n1 < n2 < · · · < nd−1 < nd,
nd >> n3

d−1 and {n1, n2} ∈ S, there exists at most 12L√
nj+ni

integers x belonging to

[nd, nd + L] so that
x2−n2

i

nj+ni
∈ Z, where L =

√
nd

9nd−1
, 1 ≤ i ≤ j ≤ d− 1, i, j ∈ Z.

The proof of Proposition 1.

We first admit that Proposition 2 holds (the proof will be delayed to the end).
This means that Proposition 1 holds for b = 2. Suppose that Proposition 1 holds
for b = d − 1 ≥ 2, we will show that it also holds for d. When b = d − 1, one can
choose one admissible set made of n1, n2, . . . , nd−1. Our aim is to construct nd so that
{n1 < n2 < · · · < nd} is an admissible set for b = d. We first construct nd to satisfy
Assumption A. In fact, it is enough when nd >> ni, i ≤ d− 1. Otherwise one gets

{
i2 + j2 + k2 = l2 + m2 + n2

i± j ± k ± l ±m± n = 0,

where i, j, k, l,m, n ∈ {n1, n2, . . . , nd}. One can induce the contradictions from differ-
ent cases. We only prove the case in which there exist two n′

ds in {i, j, k, l,m, n}. For
any more or less nd(at least one nd), the proof is similar. Note nd >> ni(i ≤ d− 1),
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one gets {i, j, k} ∩ {l,m, n} ⊃ nd. Hence, one obtains{
j2 + k2 = l2 + m2

nd ± nd ± j ± k ± l ±m = 0.
(6.1)

We know that ±nd ± nd = 0,±2nd. For the preceding, from Lemma 5 in [10], it
contradicts with our choice of {i, j, k, l,m, n}. For the last, it is apparent that |j±k±
l ±m| < 2nd. This leads a contradiction to (6.1). If none of n′

ds is in {i, j, k, l,m, n},
this contradicts with the choice of n1, n2, . . . , nd−1.

In fact, nd also satisfies Assumption B under the same condition. If this is not
true, then

x2 + j2 + k2 − l2 −m2 − n2 = 0.

The unique index which is different with n1, n2, . . . , nd is denoted by x. We only prove
the case in which there exist three n′

ds in {j, k, l,m, n}. For the other cases (at least
one nd), the method is similar. One can induce the contradictions from the following
three cases.

Case 1. {
x2 + j2 + k2 = 3n2

d

x± j ± k ± nd ± nd ± nd = 0.

From x2+j2+k2 = 3n2
d, we conclude that x ≈

√
3nd. But from x±j±k±nd±nd±nd =

0, we know that |x| ≈ 3nd or nd. It is impossible.
Case 2. {

x2 + n2
d = m2 + n2

x± nd ± nd ± nd ±m± n = 0.

From n2
d >> m2 + n2, we know it can’t happen.

Case 3. {
x2 + j2 = n2

d + m2

x± j ±m± nd ± nd ± nd = 0.
(6.2)

From x2 + j2 = n2
d +m2, we can get x ≈ nd. Hence, (6.2) holds only when ±nd±nd±

nd = ±nd. But at this case, from Lemma 5 of [10], one can get {x, j} = {nd,m}. It
can’t happen.

If none nd in {j, k, l,m, n}, this contradicts with the choice of n1, n2, . . . , nd−1.
For Assumption C, one must place much heavier restrictions on nd. From Lem-

mas 21–26, we will prove that there exist many integer points x belonging to [nd, nd+√
nd

9nd−1
] so that n1, . . . , x fulfill our Assumption C when nd and n1 is large enough.

If it isn’t true, then

i2 + j2 + k2 = l2 + m2 + n2.

The other two indexes different from n1, n2, . . . , nd are denoted by x, y,
Case 1.

{x, y} ⊂ {i, j, k} or {x, y} ⊂ {l,m, n}.
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Without losing generality, one gets{
x2 + y2 = l2 + m2 + n2 − k2

x± y = ±k ± l ±m± n.

We have to consider several different subcases. For our convenience, we introduce the
notation “| · |.” The equality |{k, l,m, n}| = t, t = 1, 2, 3, 4, means there exist exactly
t n′

ds in {k, l,m, n}.
Subcase a.

|{k, l,m, n}| = 1.

It is easy to see that the case x2 + y2 + n2
d = l2 +m2 + n2 can’t happen. So only the

following case need be considered:{
x2 + y2 + k2 = l2 + m2 + n2

d

x± y ± k ± l ±m± nd = 0.

We only consider the case when

x = y ± k ± l ±m± nd.(6.3)

For x = −y ± k ± l ±m± nd, it is similar. From (6.3), one obtains

2y2 + 2(±k ± l ±m± nd)y + (±k ± l ±m± nd)
2 + k2 − l2 −m2 − n2

d = 0.

Write a = ±k ± l ±m. Note

� = 4(nd − a)2 + 8(l2 + m2 − a2 − k2),

and y ∈ Z, one gets

l2 + m2 = a2 + k2.(6.4)

At the same time, one obtains

y =
−(a± nd) ± (nd − a)

2
.

By further computations, one knows |x| = nd or |y| = nd. It is impossible.
Subcase b.

|{k, l,m, n}| = 2.

We must consider different cases.
Case I. {

x2 + y2 = m2 + n2

x± y ±m± n± nd ± nd = 0.
(6.5)

If ±nd ± nd = 0, we arrive at {x, y} = {m,n} from Lemma 5 of [10]. It is impossible.
When ±nd ± nd = ±2nd, we get |x ± y| << nd from (6.5). Hence the equality
x± y ±m± n± 2nd = 0 can’t hold.
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Case II. {
x2 + y2 + k2 = 2n2

d + n2

x± y ± k ± n± nd ± nd = 0.
(6.6)

Write ±k ± n = a. If ±nd ± nd = 0, one gets

2y2 + 2ay + (a2 + k2 − 2n2
d − n2) = 0

and

� = 16n2
d + 8n2 − 8k2 − 4a2.

From y ∈ Z, one obtains 8n2 − 8k2 − 4a2 = 0. Then we have 3k2 ± 2kn − n2 = 0.
Hence, 3k = n or k = n. Only the last case need be considered. But at this case, we
get |y| = nd. It is impossible.

If ±nd ± nd = 2nd, from (6.6), one gets |x| <<
√

3nd. Then the equality x± y ±
k ± n + 2nd = 0 can’t hold. Similarly, the equality x− y ± k ± n− 2nd = 0 can’t be
true. So the only case need be considered is

x + y ± k ± n− 2nd = 0.(6.7)

Denote ±k ± n = a. From (6.6) and (6.7), one gets

2y2 − 2y(a + 2nd) + 2n2
d + 4and + a2 + k2 − n2 = 0.

If a = −k−n, we obtain � = 4(ni+nj)(4nd+nj−3ni) = 4�1, i, j ∈ {1, 2, . . . , d−1}. If
a = −k+n, k �= n, we obtain � = 4(nj−ni)(4nd+3ni+nj) = 4�2. Other cases can’t
happen. In order to draw the contradictions, one removes all the integers belonging
to [nd, nd + L] which satisfy �1 ∈ K2,�2 ∈ K2. Thanks to Lemmas 23 and 24, we
throw at most 2(d− 1)2 integer points. Then y /∈ Z.

Subcase c.

|{k, l,m, n}| = 3.

Case I. {
x2 + y2 = n2

d + n2

x± y ± n± nd ± nd ± nd = 0.
(6.8)

If ±nd ± nd ± nd = ±nd, from (6.8) and Lemma 5 of [10], one gets {x, y} = {nd, n}.
It is impossible. If ±nd ± nd ± nd = ±3nd, from x2 + y2 = n2

d + n2 one obtains
| ± x± y ± n| << 5

2nd. Hence the equality x± y ± n± 3nd = 0 can’t hold.
Case II. {

x2 + y2 + k2 = 3n2
d

x± y ± k ± nd ± nd ± nd = 0.
(6.9)

If ±nd±nd±nd = ±3nd, from x2+y2+k2 = 3n2
d, one gets |x±y|2 ≤ 2(x2+y2) ≤ 6n2

d.
Hence, one knows |x ± y ± k| <<

√
7nd. The inequality x ± y ± k ± 3nd = 0 can’t

hold. For the case when ±nd±nd±nd = ±nd, we throw all the integers belonging to
[nd, nd +L] which satisfy 5n2

d ± 2knd − 3k2 ∈ K2, k = n1, . . . , nd−1. From Lemmas 21
and 22, the thrown integers are at most L

4 . Then y /∈ Z.
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Subcase d.

|{k, l,m, n}| = 4.

{
x2 + y2 = 2n2

d

x± y ± nd ± nd ± nd ± nd = 0.

The discussion is trivial. We omit it.
Subcase e. If which is no nd in {k, l,m, n}, this contradicts with the choice of

n1, n2, . . . , nd−1.
Case 2.

{x, y} ∩ {i, j, k} �= {x, y} and {x, y} ∩ {l,m, n} �= {x, y}.

In this case, one obtains{
x2 − y2 = m2 + n2 − i2 − j2

x± y ± i± j ±m± n = 0.
(6.10)

We have to discuss it in several subcases.
Subcase a′.

|{i, j,m, n}| = 1.

In this case, (6.10) is{
x2 − y2 = m2 + n2

d − i2 − j2

x± y ± i± j ±m± nd = 0.
(6.11)

Without losing generality, we suppose that x = y ± i± j ±m± nd. From (6.11), one
gets

2y(±i± j ±m± nd) + (±i± j ±m± nd)
2 + i2 + j2 −m2 − n2

d = 0.

Write a = ±i± j ±m. If x = y + a + nd, one has

y = −a +
a2 + m2 − i2 − j2

2(a + nd)
.

If nd >> n2
d−1 and y ∈ Z, one obtains a2 + m2 − i2 − j2 = 0 and y = −a. Hence

|x| = nd. It is impossible. If x = y + a− nd, the proof is similar.
Subcase b′. |{i, j,m, n}| = 2.
If {x, i, j} ∩ {y,m, n} = {nd}, then{

x2 + i2 = y2 + m2

x± y ± i±m± nd ± nd = 0.
(6.12)

When ±nd ± nd = 0, from Lemma 5 of [10], one gets {x, i, nd} = {y,m, nd}. It
contradicts with our assumptions. When ±nd ± nd = ±2nd, write a = ±i ± m.
Without losing generality, we suppose that

x = y − a± 2nd.(6.13)
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From (6.13) and (6.12), one gets

y =
m2 − i2 − (−a± 2nd)

2

2(−a± 2nd)
.

Note that y > 0, we have

y =
1

2
(a + 2nd) +

m2 − i2

−2(a + 2nd)
.

If { 1
2 (a + 2nd)} = 1

2 , one gets y /∈ Z. It is impossible. If { 1
2 (a + 2nd)} = 0 and

m2 − i2 �= 0, we know y /∈ Z. It is also impossible. If { 1
2 (a + 2nd)} = 0 and m2 = i2,

one gets x = y. It can’t happen.
If {x, i, j} ∩ {y,m, n} = ∅, we have{

x2 + 2n2
d = y2 + m2 + n2

x± y ±m± n± nd ± nd = 0.
(6.14)

When ±nd±nd = ±2nd, write ±m±n = a. If x = y+a±2nd, from (6.14) and y > 0,
we get

y =
6nd − a

4
+

2m2 + 2n2 − a2

4(a− 2nd)
.

If { 6nd−a
4 } �= 0, one gets y /∈ Z. It is impossible. Only when { 6nd−a

4 } = 0 and
a = 2m or a = −2m, we gets y ∈ Z. But by further computation, one gets x < 0.
It is impossible. If x = −y + a ± 2nd, one get x < 0 by similar method. When
±nd ± nd = 0, we throw all the integers x belonging to [nd, nd + L] which satisfy
x2−m2

n−m ∈ Z(1 ≤ m < n ≤ d− 1) or x2−m2

n+m ∈ Z(1 ≤ m ≤ n ≤ d− 1). From Lemmas 25

and 26, the thrown integers are at most 24L(d−1)2√
2n1

. Then y /∈ Z.

Subcase c′. |{i, j,m, n}| = 3.
In this case, we get{

x2 + i2 = y2 + n2
d

x± y ± i± nd ± nd ± nd = 0.
(6.15)

When ±nd ± nd ± nd = ±nd, from Lemma 5 of [10], one obtains {x, i} = {y, nd}.
It is impossible. When ±nd ± nd ± nd = ±3nd, we suppose x = y ± i ± 3nd. For
x = −y ± i± 3nd, the method is similar. From (6.15) and y > 0, we get

y =
4

9
(3nd + i) +

4i2

9(3nd − i)
− i,

or

y =
4

9
(3nd − i) +

4i2

9(3nd + i)
+ i.

Both can’t be integers. It is impossible.
Subcase d′. |{i, j,m, n}| = 4.
We easily get x = y. It means {x, nd, nd} = {y, nd, nd}. It contradicts with our

assumptions.
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Subcase e′. If there is no nd in {i, j,m, n}, this contradicts with the choice of
n1, n2, . . . , nd−1.

Now we declare that there exist many integers x belonging to [nd, nd + L] so
that n1, . . . , x fulfill our Assumptions A,B,C and (2.6) when nd is large enough and
n1 ≥ 18432d2. In fact the thrown integers are at most

24L(d− 1)2√
2n1

+
L

4
+ 2(d− 1)2.(6.16)

If n1 ≥ 18432d2, one can get (6.16)≤ L
2 . Then there exist many x satisfying Assump-

tions A,B,C and (2.6). From Proposition 2, Proposition 1 is complete.

The proof of Proposition 2 also requires a couple of lemmas. Since the proof is
elementary, we give them without proof as follows.

Lemma 27. If n1, n2 ∈ N, n1 < n2, then −7n2
2 + n2

1 ± 6n1n2 /∈ K2.

Lemma 28. If n1 ≡ 2 or 5(mod7), n2 ≡ 1(mod7), then −7n2
1 +n2

2±6n1n2 /∈ K2.

Lemma 29. If n1, n2 ∈ N, n2 > 11n2
1, then −3n1 ± n2†n2

2 − n2
1, 3n2 ± n1†n2

2 − n2
1,

where the notation a†b means that a is not a factor of b.

Lemma 30. If n1 ∈ 2N− 1, n2 ∈ 2N,, then 5n2
1 − 3n2

2 ± 2n1n2 /∈ K2, 5n2
2 − 3n2

1 ±
2n1n2 /∈ K2, n1(2n2 − n1) /∈ K2, n2

2 − n2
1 /∈ K2.

Since the proof of Proposition 2 is similar with Proposition 1, we omit it.
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Abstract. The aim of this paper is to show the existence of renormalized solutions to a parabolic-
elliptic system with unbounded diffusion coefficients. This system may be regarded as a modified
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conductor and the electrical potential.

Key words. renormalized solutions, nonlinear elliptic equations, nonlinear parabolic equations,
weak solutions, Caratheodory functions, thermistor problem, Sobolev spaces

AMS subject classifications. 35M10, 35J60, 35K65

DOI. 10.1137/S0036141003423041

1. Introduction. This paper is concerned with the resolution of the nonlinear
parabolic-elliptic system⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂u

∂t
−∇ · (a(u)∇u) =σ(u)|∇ϕ|2 in Q = Ω × (0, T ),

−∇ · (σ(u)∇ϕ) =∇ · F (u) in Q,
u= 0 on ∂Ω × (0, T ),
ϕ= 0 on ∂Ω × (0, T ),

u(·, 0) =u0 in Ω,

(1)

where Ω ⊂ R
N is a bounded domain, T > 0, a(x, t, s), σ(x, t, s), and F (x, t, s), F =

(F1, . . . , FN )′, are Caratheodory functions defined in Q×R. This problem has a similar
structure to the so-called thermistor problem arising in electromagnetism ([4, 12]); in
that particular context, Ω stands for the domain occupied by the thermistor, u is the
temperature, u0 the initial temperature, ϕ is a shifted electric potential, F (x, t, s) =
σ(s)∇ϕ0(x, t), ϕ0 is a given function, and σ is a continuous and bounded function.
Indeed, the actual electric potential is ψ = ϕ+ϕ0, and thus ϕ0 is the electric potential
Dirichlet boundary data on ∂Ω × (0, T ). In our analysis, and from a mathematical
standpoint, we will consider more general functions F (x, t, s).

A great deal of attention has been paid to the thermistor problem during the last
two decades by several authors ([2, 4, 13, 26], etc.). In these works, many situations
and different hypotheses have been considered, but both a and σ are assumed to be
bounded in all these referred works.

The goal of this paper is to analyze problem (1) in the case of nonbounded diffusion
coefficients a and σ. Moreover, no asymptotic behavior on a, σ, and F is assumed.

Under these general assumptions, one readily realizes that weak solutions (in the
sense of distributions) are not well suited in this context. Note that even if u or ϕ
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‡Departamento de Matemáticas, Facultad de Ciencias del Mar, Universidad de Cádiz, 11510

Puerto Real, Cádiz, Spain (francisco.ortegon@uca.es).

1991



1992 M. T. GONZÁLEZ AND F. ORTEGÓN

belong to some Banach space of the form Lq(W 1,q(Ω)), the terms a(u)∇u, σ(u)∇ϕ,
or F (u) may not belong to any Lr(Q) space, r ≥ 1. For this reason, we consider the
notion of renormalized solutions adapted to our setting. The concept of renormalized
solution was fist introduced by DiPerna and Lions ([15, 16]) in the framework of
the Fokker–Plank–Boltzmann equations; later on, it was applied to more general
situations (for instance, in the resolution of nonlinear elliptic equations ([9, 22, 23]),
or in the resolution of nonlinear parabolic equations ([6, 7, 8])).

The fact that a and σ are unbounded is not the only difficulty we may encounter
in the resolution of problem (1). Indeed, the parabolic equation needs a special
treatment due to the nonlinear right-hand side belonging to L1(Q).

In order to solve problem (1) under the assumptions stated below, we use trun-
cation and approximate solutions. This work is organized as follows.

In section 2, we set up the notation used in the paper; this leads to the introduction
of some functional spaces. We also recall certain compactness results and give an
existence theorem for problem (1) in the case of bounded data.

Section 3 enumerates the hypotheses and introduces the concept of renormalized
solution adapted to our context. Finally, we give the existence result.

Section 4 develops the proof of the existence result; it is split into three steps,
namely: setting of approximate problems, derivation of estimates, and passing to the
limit and conclusion.

2. Notation and functional spaces. Let Ω ⊂ R
N , N ≥ 1, be an open bounded

domain, and ∂Ω its boundary. Then we define D(Ω) as the space of all C∞–functions
in Ω with compact support.

For p ∈ [1,+∞], let W 1,p(Ω) be the first order Sobolev space given as

W 1,p(Ω) =
{
v ∈ Lp(Ω) /∇v ∈ Lp(Ω)N

}
,

where the gradient ∇v =
(

∂v
∂x1

, . . . , ∂v
∂xN

)′
is taken in the sense of distributions (here,

the prime symbol stands for vector transposition). It is well-known that W 1,p(Ω) is
a Banach space with norm

‖v‖W 1,p(Ω) =
(
‖v‖pLp(Ω) + ‖∇v‖p

Lp(Ω)N

)1/p

, p ∈ [1,+∞),

‖v‖W 1,∞(Ω) = ‖v‖L∞(Ω) + ‖∇v‖L∞(Ω)N ;

moreover, if p = 2, then we write H1(Ω) = W 1,2(Ω), which is a Hilbert space.
Since we deal with homogenous Dirichlet boundary conditions, it is interesting to

introduce the space W 1,p
0 (Ω) defined as the closure of D(Ω) with respect to ‖·‖W 1,p(Ω),

that is,

W 1,p
0 (Ω) = D(Ω)

W 1,p(Ω)
, p ∈ [1,+∞).

It is known that if ∂Ω is smooth enough (for instance, Lipschitz continuous), W 1,p
0 (Ω)

is characterized by the following property:

W 1,p
0 (Ω) = {v ∈ W 1,p(Ω) / v|∂Ω

= 0}, p ∈ [1,+∞).

Also we put H1
0 (Ω) = W 1,2

0 (Ω). W 1,p
0 (Ω) and H1

0 (Ω) are, respectively, Banach and
Hilbert spaces. By Poincaré’s inequality, the seminorm |v|W 1,p(Ω) = ‖∇v‖Lp(Ω)N is a



RENORMALIZED SOLUTIONS TO A PARABOLIC-ELLIPTIC SYSTEM 1993

norm in W 1,p
0 (Ω) equivalent to ‖ · ‖W 1,p(Ω) on W 1,p

0 (Ω). The space W−1,p′
(Ω) stands

for the dual space of W 1,p
0 (Ω), p ∈ [1,+∞).

We now introduce some notation according to the parabolic equation of (1). For
a Banach space X and 1 ≤ p ≤ +∞, let Lp(X) denote the space Lp([0, T ];X), that
is, the set of (equivalence class of) measurable functions f : [0, T ] → X such that
t ∈ [0, T ] 
→ ‖f(t)‖X is in Lp(0, T ). If f ∈ Lp(X), we define

‖f‖Lp(X) =

(∫ T

0

‖f(t)‖pX

)1/p

, 1 ≤ p < +∞, ‖f‖L∞(X) = ess sup
t∈[0,T ]

‖f(t)‖X ;

and thus
(
Lp(X), ‖ · ‖Lp(X)

)
is a Banach space. By Fubini’s theorem we can identify

the space Lp(Lp(Ω)) with Lp(Q), Q being the cylinder Ω × (0, T ).
Let X and Y be two Banach spaces, X ↪→ Y with continuous inclusion, and set

W =

{
v ∈ Lp(X) /

dv

dt
∈ Lq(Y )

}
, p, q ∈ [1,+∞],

provided with the standard norm ‖w‖W = ‖w‖Lp(X) +
∥∥dv

dt

∥∥
Lq(Y )

. Then (W, ‖ · ‖W )

is a Banach space and the inclusion W ↪→ C0 ([0, T ];Y ) holds and is continuous.
However, it will be very interesting and useful to know if a particular compactness
embedding involving these spaces holds. The answer is given by the following two
lemmas ([24]).

Lemma 1. Let X, B, and Y be three Banach spaces such that X ↪→ B ↪→ Y , every
embedding being continuous and the inclusion X ↪→ B compact. Let 1 ≤ p < +∞ and
1 ≤ q ≤ +∞. Then, the inclusion W ↪→ Lp(B) holds and is compact.

Lemma 2. Let X, B and Y be as in Lemma 1, and E ⊂ L∞(X) be a bounded
set such that

(i) dv
dt ∈ L1(Y ) for all v ∈ E, and

(ii) there exist h ∈ L1(0, T ), s > 1 and a bounded set Z ⊂ Ls(0, T ) such that∥∥∥∥dv

dt

∥∥∥∥
Y

≤ h + zv, for all v ∈ E, zv ∈ Z and a.e. in (0, T ).

Then, E is relatively compact in C0 ([0, T ];B).
The approximate problems in section 4.1 are defined via truncation functions.

For this purpose, we introduce, for each j > 0 in R, the truncation function at height
j to be

Tj(s) = sign(s) min(j, |s|), sign(s) =

{
0 if s = 0,
s/|s| if s �= 0.

(2)

We will also make use of the following lemma, due to Boccardo and Gallouët ([10])
and ([19]).

Lemma 3. Let (vn) be a sequence of measurable functions in Q such that
1. (vn) is bounded in L∞(L1(Ω)).
2. For all j > 0, n ≥ 0, Tj(vn) ∈ L2(H1

0 (Ω)).
3. There exists a constant C > 0 such that∫

{m≤|vn|<m+1}
|∇vn|2 ≤ C for all m, n ≥ 0.
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Then (vn) is bounded in the space Lq(W 1,q(Ω)) for all q < N+2
N+1 if N ≥ 2, and for all

q < 2 if N = 1.
If g : Q× R is a Caratheodory function and u is measurable in Q, we write g(u)

for the measurable function in Q defined as (x, t) ∈ Q 
→ g(x, t, u(x, t)).
In what follows, C > 0 stands for generic constant values which only depend on

initial data.
The introduction of the approximate solutions relies on the following result.
Theorem 4. Assume that the Caratheodory functions a, σ and F are such that

a, σ ∈ L∞(Q× R), F ∈ L∞(Q× R)N and there exist two constant values a0 > 0 and
σ0 satisfying

a(x, t, s) ≥ a0, σ(x, t, s) ≥ σ0, for all s ∈ R, a.e. (x, t) ∈ Q.

Finally, let u0 ∈ L2(Ω). Then, for every j > 0, there exists u ∈ L2(H1
0 (Ω)) and

ϕ ∈ L∞(H1
0 (Ω)) such that

du

dt
∈ L2(H−1(Ω)), u(·, 0) = u0 in Ω,

and⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∫ T

0

〈
du

dt
, v

〉
+

∫
Q

a(u)∇u∇v =

∫
Q

Tj

(
σ(u)|∇ϕ|2

)
v, for all v ∈ L2(H1

0 (Ω)),

∫
Ω

σ(u)∇ϕ∇ψ =

∫
Ω

F (u)∇ψ, for all ψ ∈ H1
0 (Ω), a.e. t ∈ (0, T ).

(3)

For the proof of this result one may follow the same arguments as in the proof of
the existence theorem for the thermistor problem ([4]).

3. The main result. We make the following assumptions:
(H.1) a, σ : Q×R → R and F : Q×R → R

N are Caratheodory functions and there
exists a nondecreasing function γ : R

+ → R
+ such that

max (a(x, t, s), σ(x, t, s), |F (x, t, s)|) ≤ γ(|s|), for all s ∈ R, a.e. in Q.

(H.2) There exist two constant values a0 > 0 and σ0 > 0 such that

a(x, t, s) ≥ a0, σ(x, t, s) ≥ σ0, for all s ∈ R, a.e. in Q.

(H.3) There exists a function Γ ∈ L1(Q) such that

|F (x, t, s)|2 ≤ Γ(x, t)σ(x, t, s), for all s ∈ R, a.e. in Q.

(H.4) max
k≤|s|≤2k

ess sup
Q

1

k

σ(x, t, s)

a(x, t, s)
= ω(k) as k → +∞, where ω(k) stands for a null

sequence, that is, limk→∞ ω(k) = 0.
(H.5) u0 ∈ L1(Ω).

Hypothesis (H.1) is one of the main difficulties in the resolution of problem (1).
As it has been stated in section 1, we cannot expect to search for weak solutions.
However, assumptions (H.3) and (H.4) give a relation of the asymptotic behavior of
a(s), σ(s) and F (s) for large values of s.

We introduce now the definition of renormalized solutions to problem (1).
Definition 5. A couple of functions (u, ϕ) is called a renormalized solution to

problem (1) if the following conditions are fulfilled:
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(R.1) u ∈ L1(Ω), ϕ ∈ L2(H1
0 (Ω)), and

∫
Q
σ(u)|∇ϕ|2 < +∞;

(R.2) TM (u) ∈ L2(H1
0 (Ω)) for all M > 0;

(R.3) lim
n→∞

∫
{n≤|u|<n+1}

a(u)∇u∇u = 0;

(R.4) For all S ∈ C∞(R) with supp S′ compact,

∂S(u)

∂t
−∇ · [a(u)∇uS′(u)] + S′′(u)a(u)∇u∇u = σ(u)|∇ϕ|2S′(u) in D′(Q),

S(u(·, 0)) = S(u0) in Ω;

(R.5) For all ψ ∈ L2(H1
0 (Ω)) such that

∫
Q
σ(u)|∇ψ|2 < +∞, we have∫

Q

σ(u)∇ϕ∇ψ = −
∫
Q

F (u)∇ψ.

Remark. Properties (R.1)–(R.4) on u are the usual conditions verified by renor-
malized solutions of parabolic equations ([7]). On the other hand, (R.5) says in
particular that the set of test functions in the equation for ϕ depends upon the solu-
tion u.

We can now state the main result of this work.
Theorem 6. Under hypotheses (H.1)–(H.5), system (1) admits a renormalized

solution (u, ϕ) in the sense of Definition 5.

4. Proof of Theorem 6. The proof is divided into three steps: first, we intro-
duce a sequence of approximate problems; then, we derive certain estimates for the
approximate solutions; and finally, we pass to the limit and conclude.

4.1. Setting of the approximate problems. For every j > 0, we consider
the truncation functions defined by

aj(x, t, s) = a(x, t, Tj(s)), σj(x, t, s) = σ(x, t, Tj(s)), Fj(x, t, s) = F (x, t, Tj(s)),

where Tj is defined in (2). Thanks to aj , σj ∈ L∞(Q× R) and Fj ∈ L∞(Q× R)N .
The approximate problems are stated as follows: to find uj ∈ L2(H1

0 (Ω)) and

ϕj ∈ L∞(H1
0 (Ω)) such that

duj

dt ∈ L2(H−1(Ω)), uj(·, 0) = Tj(u0) in Ω and⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫ T

0

〈
duj

dt
, v

〉
+

∫
Q

aj(uj)∇uj∇v=

∫
Q

Tj

(
σj(uj)|∇ϕj |2

)
v, for all v∈L2(H1

0 (Ω)),

∫
Ω

σj(uj)∇ϕj∇ψ = −
∫

Ω

Fj(uj)∇ψ, for all ψ ∈ H1
0 (Ω), a.e. t ∈ (0, T ).

(4)

By virtue of Theorem 4, we know that for each j > 0, there exists (uj , ϕj) verifying
all these conditions.

4.2. Estimates for (uj) and (ϕj). Choosing ψ = ϕj in the equation for ϕj

and integrating over Q yields,∫
Q

σj(uj)|∇ϕj |2 =−
∫
Q

Fj(uj)∇ϕj≤
(∫

Q

σj(uj)
−1|Fj(uj)|2

)1/2(∫
Q

σj(uj)|∇ϕj |2
)1/2

,

hence, using (H.3),∫
Q

σj(uj)|∇ϕj |2 ≤
∫
Q

σj(uj)
−1|Fj(uj)|2 ≤

∫
Q

Γ = C.(5)
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In this way, the sequence
(
σj(uj)|∇ϕj |2

)
is bounded in L1(Q). We may rewrite the

parabolic equation of (4) as⎧⎨
⎩

∫ T

0

〈
duj

dt
, v

〉
+

∫
Q

aj(uj)∇uj∇v =

∫
Q

fjv, for all v ∈ L2(H1
0 (Ω)),

uj(·, 0) = Tj(u0),

(6)

where fj = Tj

(
σj(uj)|∇ϕj |2

)
. Since the sequences (fj) and (Tj(u0)) are bounded

in L1(Q) and L1(Ω), respectively, we may deduce some well-known estimates for the
sequence of solutions to (6) (uj) in suitable Banach spaces ([7, 10]), namely

(uj) is bounded in L∞(L1(Ω));(7)

for all M > 0 and j ≥ 1, there exists a constant C > 0, not depending upon M and
j, such that ∫

Q

|∇TM (uj)|2 ≤ CM,(8)

∫
{M≤|uj |<M+1}

|∇uj |2 ≤ C,(9)

and also ∫
{M≤|uj |<M+1}

aj(uj) |∇uj |2 ≤
∫
{|uj |>M}

|fj | +
∫
{|u0|>M}

|u0|.(10)

Owing to (7), (9), and Lemma 3, we have

(uj) is bounded in Lq(W 1,q
0 (Ω)), for all q <

N + 2

N + 1
if N ≥ 2, q < 2 if N = 1.(11)

As far as the parabolic term
duj

dt is concerned, we proceed as follows. Let S ∈ C∞(R)
with supp S′ ⊂ [−M,M ]. Taking v = S′(uj)φ, φ ∈ D(Ω), in (6), it yields

dS(uj)

dt
−∇ · [aj(uj)∇ujS

′(uj)] + S′′(uj)aj(uj)∇uj∇uj = fjS
′(uj) in D′(Ω).(12)

Thanks to (8) and (H.1) we obtain(
dS(uj)

dt

)
is bounded in L2(H−1(Ω)) + L1(Q).

Since L2(H−1(Ω)) + L1(Q) ↪→ L1(W−1,r(Ω)), r < N
N−1 , with continuous inclusion,

we have (
dS(uj)

dt

)
is bounded in L1(W−1,r(Ω)) for all r <

N

N − 1
.(13)

Furthermore, using (11), we readily have

(S(uj)) is bounded in Lq(W 1,q
0 (Ω)), for all q <

N + 2

N + 1
, if N ≥ 2, q < 2 if N = 1.
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Now we apply the compactness result stated in Lemma 1. To do so, we take

X = W 1,q
0 (Ω), B = Lq(Ω), Y = W−1,r(Ω);

therefore,

(S(uj)) is relatively compact in Lq(Q) for all q <
N + 2

N + 1
.(14)

Property (14) is not enough to deduce the almost everywhere convergence of (uj)
modulo a subsequence. We must also use the estimates derived above. To this end,
let M > 0 and consider a function S ∈ C∞(R) satisfying

(i) supp S′ is compact,
(ii) S is nondecreasing, and
(iii) S(s) = s if |s| ≤ M .

Therefore, we have the identity TM (s) = TM (S(s)) for all s ∈ R, and, in particular,

TM (uj) = TM (S(uj)).(15)

According to (8), for every M > 0 there exist a subsequence, which will be denoted
in the same way, and a function zM ∈ L2(H1

0 (Ω)) such that

TM (uj) → zM weakly in L2(H1
0 (Ω)).(16)

On the other hand, from (14), there exist a subsequence, still denoted in the same
way, and a function ςS ∈ Lq(Q) such that

S(uj) → ςS strongly in Lq(Q) and a.e. in Q.(17)

Notice that (15) and (17) imply that TM (uj) converges almost everywhere to TM (ςS);
this fact, together with (16), implies that zM = TM (ςS).

Furthermore, from (11), there exist u ∈ Lq(W 1,q
0 (Ω)) and a subsequence of (uj)

such that

uj → u weakly in Lq(W 1,q
0 (Ω)), for all q <

N + 2

N + 1
if N ≥ 2, q < 2 if N = 1.

All these convergences lead to (modulo a subsequence) the almost everywhere con-
vergence of (uj). Indeed, this property can be readily derived from the next result
([19]).

Lemma 7. Let q ≥ 1, A ⊂ R
N a nonnegligible measurable set, (wj) ⊂ Lq(A),

w ∈ Lq(A) be such that

wj → w weakly in Lq(A).

Assume that for every M > 0 there exists vM ∈ L1(A) such that

TM (vj) → vM a.e. in A,

then TM (w) = vM , for all M > 0 (and in particular wj → w almost everywhere
in A).

Summing up, we have shown the existence of subsequences, still denoted in the
same way, (uj), (ϕj), and functions u ∈ Lq(W 1,q

0 (Ω)) and ϕ ∈ L2(H1
0 (Ω)) such that

uj → u weakly in Lq(W 1,q
0 (Ω)), for all q <

N + 2

N + 1
if N ≥ 2, q < 2 if N = 1,(18)
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TM (uj) → TM (u) weakly in L2(H1
0 (Ω)),(19)

uj → u a.e. in Q,(20)

S(uj) → S(u) strongly in Lr(Q) for all r < +∞,(21)

dS(uj)

dt
→ dS(u)

dt
in D′(Q),(22)

ϕj → ϕ weakly in L2(H1
0 (Ω)),(23)

where (21) and (22) are valid for all S ∈ C∞(Ω) with supp S′ compact, and (23) is
obtained from (5) and (H.2).

Now we turn our attention to (ϕj) and ϕ. First of all, we show that

σj(uj)
1/2∇ϕj → σ(u)1/2∇ϕ weakly in L2(Q)N .(24)

Indeed, from (5), there exist a subsequence and Φ ∈ L2(Q)N such that

σj(uj)
1/2∇ϕj → Φ weakly in L2(Q)N .(25)

Using (20) and (H.2), it yields

σj(uj)
−1/2 → σ(u)−1/2 weakly–∗ in L∞(Q) and a.e. in Q.(26)

Putting

∇ϕj = σj(uj)
−1/2σj(uj)

1/2∇ϕj ,(27)

and passing to the limit, gathering (25)–(27), we obtain Φ = σ(u)1/2∇ϕ, and this
shows the statement (24). Notice that, in particular, σ(u)|∇ϕ|2 ∈ L1(Q).

One of the most delicate parts in the passing to the limit consists in showing the
convergence

σj(uj)
1/2∇ϕj → σ(u)1/2∇ϕ strongly in L2(Q)N .(28)

From (24), it is enough to show that∫
Q

σj(uj)|∇ϕj |2 →
∫
Q

σ(u)|∇ϕ|2.(29)

To do this, we first introduce the function Sk ∈ W 1,∞(R), k > 0, defined as

Sk(s) =

⎧⎨
⎩

1 if |s| ≤ k,
(2k − |s|)/k if k < |s| ≤ 2k,
0 if |s| > 2k.

(30)

Note that supp Sk = [−2k, 2k] and S′
k(s) = 1

k

(
χ(−2k,−k) − χ(k,2k)

)
. Then, we take

in (4) the test function ψ = Sk(uj)TM (ϕ) ∈ L∞(H1
0 (Ω)). The integration over (0, T )

leads to ∫
Q

σj(uj)∇ϕj∇TM (ϕ)Sk(uj) +

∫
Q

σj(uj)∇ϕj∇ujS
′
k(uj)TM (ϕ)

= −
∫
Q

Fj(uj)∇TM (ϕ)Sk(uj) −
∫
Q

Fj(uj)∇ujS
′
k(uj)TM (ϕ);
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we call these terms (I)–(IV ) and study them separately.
(I). Since σj(uj)Sk(uj) = σj(T2k(uj))Sk(uj) ∈ L∞(Q) and is bounded in this space,
using (20) it yields

σj(uj)Sk(uj) → σ(u)Sk(u) weakly–∗ in L∞(Q) and a.e. in Q.

From (23), making j → ∞, we readily obtain∫
Q

σj(uj)∇ϕj∇TM (ϕ)Sk(uj) →
∫
Q

σ(u)∇ϕTM (ϕ)Sk(u).

Owing to Lebesgue’s theorem, we finally deduce

lim
M→∞

lim
k→∞

lim
j→∞

∫
Q

σj(uj)∇ϕj∇TM (ϕ)Sk(uj) =

∫
Q

σ(u)|∇ϕ|2.

(II). We first derive another estimate for (uj). Let Hk ∈ W 1,∞(R) be the function

Hk(s) =

⎧⎨
⎩

0 if |s| ≤ k,
(|s| − k)/k if k < |s| ≤ 2k,
|s|/s if |s| > 2k,

then put H̃k(s) =
∫ s

0
Hk(τ)dτ and Ek

j = {k < |uj | < 2k}. Choosing v = Hk(uj) in
(4) yields∫

Ω

H̃k(uj(T )) +
1

k

∫
Ek

j

aj(uj)|∇uj |2 =

∫
Q

fjHk(uj) +

∫
Ω

H̃k(Tj(u0));

therefore, for all j ≥ 1 and k > 0, there exists a constant C > 0, not depending upon
j and k, such that

1

k

∫
Q

aj(uj)|∇uj |2χEk
j
≤ C,

that is, (
1√
k
aj(uj)

1/2∇ujχEk
j

)
is bounded (in j and k) in L2(Q)N .(31)

Going back to (II)

(II) =

∫
Q

σj(uj)
1/2∇ϕjσj(uj)

1/2aj(uj)
−1/2aj(uj)

1/2∇ujS
′
k(uj)TM (ϕ),

thus

|(II)| ≤ M

∫
Q

∣∣∣∣σj(uj)
1/2∇ϕj

1√
k
σj(uj)

1/2aj(uj)
−1/2 1√

k
aj(uj)

1/2∇ujχEk
j

∣∣∣∣
≤ M

∥∥∥σj(uj)
1/2∇ϕj

∥∥∥
L2(Q)

·
∥∥∥∥ 1√

k
aj(uj)

1/2∇ujχEk
j

∥∥∥∥
L2(Q)

·
∥∥∥∥ 1√

k
σj(uj)

1/2aj(uj)
−1/2χEk

j

∥∥∥∥
L∞(Q)

.
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Hence, from (H.4), (5), and (31), we deduce

|(II)| ≤ Cω(k),

which implies

lim
k→∞

lim sup
j→∞

∫
Q

σj(uj)∇ϕj∇ujS
′
k(uj)TM (ϕ) = 0.

(III). Lebesgue’s theorem easily shows that

lim
j→∞

∫
Q

Fj(uj)∇TM (ϕ)Sk(uj) =

∫
Q

F (u)∇TM (ϕ)Sk(u).

We now express this last integral as∫
Q

F (u)σ(u)−1/2σ(u)1/2∇TM (ϕ)Sk(u).

Owing to (H.3) and (24) we can apply again Lebesgue’s theorem, first in k, then in
M , to deduce finally that

lim
M→∞

lim
k→∞

lim
j→∞

∫
Q

Fj(uj)∇TM (ϕ)Sk(uj) =

∫
Q

F (u)∇ϕ.(32)

(IV ). Following the same techniques as in (II) and (III), it is straightforward that

lim
k→∞

lim sup
j→∞

∫
Q

Fj(uj)∇ujS
′
k(uj)TM (ϕ) = 0.

Gathering (27)–(32), ∫
Q

σ(u)|∇ϕ|2 = −
∫
Q

F (u)∇ϕ.(33)

On the other hand, taking ψ = ϕj in (4) and integrating over (0, T ), we obtain∫
Q

σj(uj)|∇ϕj |2 = −
∫
Q

Fj(uj)∇ϕj ;

since Fj(uj)∇ϕj = Fj(uj)σj(uj)
−1/2σj(uj)

1/2∇ϕj , and bearing in mind (H.3), (20),
and (24), we conclude that ∫

Q

Fj(uj)∇ϕj →
∫
Q

F (u)∇ϕ;(34)

putting together (33)–(34) gives directly (29), that is, σj(uj)
1/2∇ϕj → σ(u)1/2∇ϕ

strongly in L2(Q)N . This also implies that

fj = Tj

(
σj(uj)|∇ϕj |2

)
→ σ(u)|∇ϕ|2 strongly in L1(Q).(35)

The last relevant convergence to be shown before passing to the limit in the
approximate problems (4) is,

TM (uj) → TM (u) strongly in L2(H1
0 (Ω)), for every M > 0.(36)

In fact, this is a consequence of (6), (19), and (35), but it is not an immediate result;
for details of the proof of this property the reader is referred to [8].
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4.3. Passing to the limit and conclusion. Let u and ϕ be the limit func-
tions given in (18) and (23). Here we show that both functions verify (R.1)–(R.5) of
Definition 5.

In fact, (R.1) and (R.2) have been already obtained.
By virtue of (19), (20), and (35), making j → ∞ in (10) yields∫

{M≤|u|<M+1}
a(u)|∇u|2 ≤

∫
{|u|>M}

σ(u)|∇ϕ|2 +

∫
|u0|>M

|u0|;

due to hypothesis (H.5) and making M → ∞ in this last expression, we can easily
derive (R.3).

In order to obtain (R.4), we just take v = S(uj)φ in (4) with S ∈ C∞(R),
supp S′ compact and φ ∈ D(Ω). Thanks to the convergence properties derived in the
preceding section, we can make j → ∞ and this yields the variational formulation
(R.4). Note that the strong convergence of the truncations function TM (uj) → TM (u)
in L2(H1

0 (Ω)) is essential in this stage. It remains to state the initial condition
S(u(·, 0)) = S(u0); to do so, we apply Lemma 2 with the following choices:

X = L∞(Ω), B = Y = W−1,r(Ω), any r <
N

N − 1
,

and put E = {S(uj)}j≥1, supp S′ = [−M,M ]. Obviously, E is bounded in L∞(X)
and, according to (13), dv

dt ∈ L1(Y ) for all v ∈ E. Also, by virtue of (12), we can write

dS(uj)

dt
= fjS

′(uj)−S′′(uj)aj(TM (uj))|∇TM (uj)|2+∇·[aj(TM (uj))∇TM (uj)S
′(uj)] .

Now, from (20) and (35), fjS
′(uj) converges strongly in L1(Q) and from (20) and

(36), S′′(uj)aj(TM (uj))|∇TM (uj)|2 converges strongly in L1(Q). Owing to Lebesgue’s
inverse theorem, there exists h̄ ∈ L1(Q) such that

|Φj | ≤ h̄ for all j ≥ 1 and a.e. in Q,

where Φj = fjS
′(uj) − S′′(uj)aj(uj)|∇uj |2. Consequently,

‖Φj‖W−1,r(Ω) ≤ C‖Φj‖L1(Ω) ≤ C‖h̄‖L1(Ω), for all r <
N

N − 1
, j ≥ 1, a.e. t ∈ (0, T ).

On the other hand, the last term ∇ · [aj(TM (uj))∇TM (uj)S
′(uj)] is bounded in

L2(H−1(Ω)), and therefore it is also bounded in L2(W−1,r(Ω)), for all r < N
N−1 .

Hence, we may take h = C‖h̄‖L1(Ω) ∈ L1(0, T ) and s = 2 to deduce that

∥∥∥∥dS(uj)

dt

∥∥∥∥
Y

≤ h + ‖∇ · [aj(TM (uj))∇TM (uj)S
′(uj)]‖Y , for all j ≥ 1, a.e. t ∈ (0, T ).

By Lemma 2, this means that (S(uj)) is relatively compact in C0
(
[0, T ];W−1,r(Ω)

)
for any r < N

N−1 and thus, there exists a subsequence, still denoted in the same way,

such that (S(uj)) converges in C0
(
[0, T ];W−1,r(Ω)

)
. From (21), this limit must be

S(u). In particular,

S(uj(·, 0)) → S(u(0)) in W−1,r(Ω),
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and since S(uj(0)) = S(Tj(u0)) → S(u0) in L1(Ω)-strongly, we deduce the initial
condition

S(u(·, 0)) = S(u0) in W−1,r(Ω), r <
N

N − 1
.

Finally, in order to derive (R.5), we just take ψ = Sk(uj)TM (φ) in (3), where Sk is
defined in (30) and φ ∈ L2(H1

0 (Ω)) is such that
∫
Q
σ(u)|∇φ|2 < +∞. In this situation,

we can proceed as in (I)–(IV ) above: taking the iterate limits, first in j, then in k,
then in M , and the last expression becomes (R.5).

This ends the proof of Theorem 6.

5. Concluding remarks. The diffusion coefficients a and σ are scalar functions
in the setting given by hypotheses (H.1)–(H.4). We may consider a more general
setting in which a and σ are diffusion matrices of order N × N . The hypotheses on
this data read as follows:

(H.1) a, σ : Q× R → R
N×N and F : Q× R → R

N are Caratheodory functions and
there exists a nondecreasing function γ : R

+ → R
+ such that

max (‖a(x, t, s)‖, ‖σ(x, t, s)‖, |F (x, t, s)|) ≤ γ(|s|), for all s ∈ R, a.e. in Q,

where ‖ · ‖ stands for the spectral norm.
(H.2) There are two constant values a0 > 0 and σ0 > 0 so that

a(x, t, s)ξξ ≥ a0|ξ|2, σ(x, t, s)ξξ ≥ σ0|ξ|2, for all s ∈ R, ξ ∈ R
N , a.e. in Q.

(H.3) Γ ∈ L1(Q) is a function satisfying

|σ(x, t, s)−S/2F (x, t, s)|2 ≤ Γ(x, t), for all s ∈ R, a.e. in Q.

(H.4) max
k≤|s|≤2k

ess sup
Q

1√
k
‖σ(x, t, s)S/2a(x, t, s)−S/2‖ = ω(k) as k → +∞.

(H.5) u0 ∈ L1(Ω).

The notation in (H.3) and (H.4) is now explained: for a matrix B ∈ R
N×N , we denote

by BS the symmetric part of B, that is, BS = (B + B′)/2. From (H.2), σ(x, t, s)S

and a(x, t, s)S are positive definite; then σ(x, t, s)S/2 stands for the unique positive
definite square root of σ(x, t, s), whereas a(x, t, s)−S/2 represents the inverse matrix
of the unique positive definite square root of a(x, t, s)S.

In this situation, the existence result given in Theorem 6 still holds true.

The analysis described in this paper shows that the concept of renormalized so-
lutions may be applied to systems of parabolic-elliptic equations with unbounded dif-
fusion coefficients. The existence result relies on certain assumptions on data, apart
from the standard ones, describing the relation of the asymptotic behavior between
them.

The uniqueness of renormalized solution to problem (1) is a very complex task to
be deduced; this is due to the fact that all known uniqueness results for the thermistor
problem are derived from L∞ estimates verified by u and ϕ; this regularity may
be obtained under certain restrictive assumptions, including for instance F ∈ L∞,
a, σ ∈ L∞. In that setting, there is no need to search for renormalized solutions: one
reencounters the setting of weak solutions.
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Abstract. The existence of a deformation and magnetization minimizing the magnetostrictive
free energy is given. Mathematical challenges are presented by a free energy that includes elastic
contributions defined in the reference configuration and magnetic contributions defined in the spatial
frame. The one-to-one a.e. and orientation-preserving property of the deformation is demonstrated,
and the satisfaction of the nonconvex saturation constraint for the magnetization is proven.
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1. Introduction. A mathematical model for magnetostrictive materials, in which
the deformation and the magnetization are coupled, has been given in [4, 19, 20, 22, 8].
More significant shape change can be obtained from magnetostrictive materials that
also undergo a structural phase transformation since the material can then lower its
energy by an increase in the volume fraction of the martensitic variant with magnetic
easy axis aligned with the applied magnetic field [11, 21]. This shape change is being
utilized in emerging applications in actuators, sensors, and micromachines because
they can provide a large work output/(cycle · volume) [25].

In this paper, we prove the existence of a deformation and magnetization mini-
mizing the magnetostrictive free energy [4, 19, 20]. A novel feature of this free energy
is that the elastic free energy is given in a reference configuration, as usual for elas-
ticity, but the magnetic energies are given in the spatial frame. This requires that we
use a free energy for which the Jacobian of the deformation can be controlled. We
also must prove that the deformation is one-to-one a.e. and that the magnetization
satisfies the nonconvex saturation constraint.

The existence of low energy phase and variant interfaces in single crystal thin
films that do not exist in bulk martensitic crystals offers the possibility to develop
thin materials with substantially larger strains than are possible in bulk [2]. Mag-
netostrictive, shape memory, single crystal, thin films such as Ni2MnGa have re-
cently been grown [11, 21]. We hope that this work will provide the foundation for
our future work on the derivation of a rigorous magnetostrictive thin film energy
to extend the results developed for micromagnetics [17] and martensitic deformation
[2, 7, 6, 5].

The plan of our work is the following. In section 2, we introduce the magne-
tostriction model and in particular we present the constitutive assumptions. We shall
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seek the minimizers in an admissible set A, described in section 2, that incorporates
all of the constraints. To prove the existence of minimizers, we demonstrate in Theo-
rem 3.1 that A is closed in a weak topology. We then show in section 4 that E is lower
semicontinuous on A, and hence that it attains its minimum. This is the content of
Theorem 4.2 and is the main result of this paper.

2. The magnetostriction model. We consider a magnetostrictive crystal that
in an undeformed state occupies the Lipschitz domain Ω ⊂ R

3. The admissible
deformations ȳ : Ω → R

3 of the crystal will be required to have the regularity
y ∈ W 2,2(Ω; R3), to be orientation-preserving (det∇y > 0 a.e. [18]), and to be one-to-
one a.e., where we recall that a mapping y : Ω → R

3 is one-to-one a.e. if there is a set
G ⊂ Ω of full measure (that is, |G| = |Ω|) such that y(x) restricted to G is one-to-one.
The one-to-one property everywhere of y(x) would seem more appropriate; however,
it is the weaker property that we will prove is preserved under weak convergence in
W 2,2(Ω; R3).

The demonstration that energy-minimizing deformations obtained from the cal-
culus of variations are one-to-one often requires sophisticated techniques [28], such
as for problems with cavitation [27] or other problems with low regularity. Since
our problem has higher regularity, simpler methods based on Banach’s indicatrix are
sufficient.

Because of the continuity of y ∈ W 2,2(Ω; R3), it follows that the sets y(Ω̄) and
y(∂Ω̄) are closed and the deformed domain O(y) := y(Ω̄) \ y(∂Ω̄) is open. Here and
in what follows the bar over a set denotes its closure. We note that O(y) differs from
y(Ω) on a set of measure zero [14] and |O(y)| = |y(Ω̄)|.

We wish to model a crystal that is attached on a nonempty, open subset of its
boundary, Γ ⊂ ∂Ω, so we will assume that admissible deformations y(x) satisfy the
boundary condition

y(x) = y0(x) for all x ∈ Γ,(2.1)

where y0 : Ω̄ → R
3 is a C2 diffeomorphism with positive Jacobian.

The magnetization m(z) of the crystal is naturally defined in spatial coordinates
by m : O(y) → R

3 and admissible magnetizations will be required to have the regu-
larity m ∈ W 1,2(O(y); R3) which is equivalent to

∫
O(y)

[
|∇zm(z)|2 + |m(z)|2

]
dz =

∫
Ω

[
|∇zm(y(x))|2 + |m(y(x))|2

]
det∇y(x) dx < ∞.

We will often find it convenient as above to consider the magnetization m◦y : Ω → R
3

described in material coordinates. We will assume that the crystal is at a fixed
temperature below the Curie temperature so that

|m(y(x))|det∇y(x) = τ, x ∈ Ω,(2.2)

where τ, the saturation magnetization, is a positive constant depending on the tem-
perature.

The applied magnetic field will be given in spatial coordinates by h : R
3 → R

3,
and we will assume that h ∈ L2(R3; R3).
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The free energy of a magnetostrictive crystal can be modeled by [20, 4],

E (y,m) =

∫
Ω

{
κ
∣∣D2y(x)

∣∣2 + Φ (∇y(x),m ◦ y(x))
}
dx

+

∫
O(y)

{
α |∇zm(z)|2 − h(z) ·m(z)

}
dz + emag(y,m)

(2.3)

=

∫
Ω

{
κ
∣∣D2y(x)

∣∣2 + Φ (∇y(x),m ◦ y(x))

+
(
α |∇zm (y(x))|2 − h(y(x)) ·m(y(x))

)
det∇y(x)

}
dx + emag(y,m),

where the magnetostatic energy emag(y,m) is calculated from the magnetic scalar
potential ζ : R

3 → R by

emag(y,m) =
1

2

∫
R3

|∇zζ(z)|2 dz,(2.4)

and where the magnetic scalar potential ζ satisfies

divz

(
−∇zζ + χO(y)m

)
= 0, z ∈ R

3.(2.5)

We use the definition

∫
Ω

∣∣D2y(x)
∣∣2 dx =

∫
Ω

⎡
⎣ 3∑
i,j=1

∣∣∣∣ ∂2y(x)

∂xi∂xj

∣∣∣∣
2
⎤
⎦ dx,

and we recall above that χO(y)(z) is the characteristic function of O(y). The terms in
(2.3) represent, from left to right, the surface energy [2, 26, 23], the anistropy energy,
the exchange energy [17, 9], the interaction energy due to the applied magnetic field,
and the magnetostatic energy. The parameters α and κ are positive material con-
stants depending on the fixed temperature. The anisotropy energy density Φ(F,m) is
a continuous function of the deformation gradient F ∈ R

3×3
+ (where R

3×3
+ denotes the

group of 3× 3 matrices with positive determinant) and the magnetization m ∈ R
3.

(Since the temperature is assumed to be fixed, we do not explicitly denote the depen-
dence of the anisotropy energy density Φ(F,m) on temperature.)

We will assume that the anisotropy free energy density Φ ∈ C2(R3×3
+ × R

3; R) is
of the form

Φ(F,m) = W (F,m) + ψ(detF ),(2.6)

where ψ : (0,∞) → R is continuous, convex, and satisfies for

q > 2 and cL > 0

the growth conditions

cL(a−q + aq) ≤ ψ(a) for all 0 < a < +∞,(2.7)

and where W : R
3×3
+ × R

3 → R is continuous and satisfies for

2 ≤ r < 6 and 0 < CL < CU
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the growth conditions

CL(|F |2 − 1) ≤ W (F,m) ≤ CU (|F |r + 1) for all F ∈ R
3×3
+ and m ∈ R

3.(2.8)

We shall define the set of admissible functions to be

A =

{
(y,m) ∈ W 2,2(Ω; R3) ×W 1,2(O(y); R3) : y(x) = y0(x) for all x ∈ Γ,

ψ(det∇y) ∈ L1(Ω), det∇y > 0 a.e., and y is one-to-one a.e.

}
,

where the growth properties of ψ were given in (2.7). We note that A is nonempty
since we assumed in (2.1) that y0 : Ω̄ → R

3 is a C2 diffeomorphism with positive
Jacobian. We also note that A is not an affine space.

We shall show under the above assumptions that the problem

min{E(y,m) : (y,m) ∈ A and |m(y(x))|det∇y(x) = τ for almost all x ∈ Ω}(2.9)

has a solution. We shall see that the terms∫
O(y)

|∇zm(z)|2 dz =

∫
Ω

|∇zm|2 det∇y dx and

∫
Ω

ψ(det∇y) dx

in E require the most care in the analysis.
The anisotropy energy density for magnetostrictive crystals that undergo a struc-

tural phase transformation can have the form (2.6). To see this, we note that the
anisotropy energy density for magnetostrictive crystals such as Ni2MnGa is minimized
at temperatures below the martensitic transformation on the wells [20, 21]

M = SO(3)(U1,m1) ∪ SO(3)(U1,−m1) ∪ · · · ∪ SO(3)(UN ,mN ) ∪ SO(3)(UN ,−mN ),

where detU1 > 0 and where for the symmetry group G ⊂ SO(3) of the high temper-
ature phase we have

{(U1,m1), . . . , (UN ,mN )} = {(QU1Q
T , Qm1) : Q ∈ G}.(2.10)

We note that SO(3) is the group of proper rotations and

SO(3)(Uk,±mk) ≡ {(RUk,±Rmk) : R ∈ SO(3)} for k = 1, . . . , N.

If W (F,m) satisfies the property of frame indifference

W (RF,Rm) = W (F,m) for all F ∈ R
3×3
+ , m ∈ R

3, R ∈ SO(3),

and the property of material symmetry for the group, G,

W (FQ,m) = W (F,m) for all F ∈ R
3×3
+ , m ∈ R

3, R ∈ G,

then Φ(F,m) satisfies the property of frame indifference and material symmetry by
the invariance of the determinant function. If W (F,m) is minimized on the wells
(2.10), that is,

W (F̂ , m̂) < W (F,m) for all (F̂ , m̂) ∈ M and (F,m) ∈ R
3×3
+ × R

3 \M

and ψ(a) is minimized at detU1, then Φ(F,m) is also minimized on the wells (2.10).
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By rescaling the crystal domain Ω onto a domain of unit size, we can see that
the dimensionless size of the surface energy coefficient (κ) and the exchange energy
coefficient (α) become large for small crystals [9, 26, 17]. For the large crystal limit [9],
the scaled micromagnetic energy converges to a phase theory which is the relaxation
of the micromagnetics energy without exchange energy (α = 0).

Since energy-minimizing solutions of (2.3) without surface energy (κ = 0) and
exchange energy (α = 0) do not generally exist, microstructures defined by minimizing
sequences are studied in [20]. The existence of minimizers for a two-dimensional model
without surface energy (κ = 0) and exchange energy (α = 0) when the deformation is
constrained on the boundary to be affine, y(x) = Fx, for F ∈ R

2×2
+ in the lamination

convex hull of a M with two wells (N = 2) was given in [10] using the method of
convex integration.

3. Compactness and closure in the set of admissible functions. In order
to demonstrate the existence of minimizers, we will use the direct method of the
calculus of variations. For this purpose, we will show that weak limits of elements of
A belong to A. To be precise, we say that the sequence {(yn,mn)} ⊂ A converges
weakly to (y,m) ∈ A if and only if

yn ⇀ y in W 2,2(Ω; R3),

and

χO(yn)mn → χO(y)m in L2(R3; R3),

χO(yn)∇zmn ⇀ χO(y)∇zm in L2(R3; R3×3).

It is possible to explain the weak convergence defined above within the general
framework of Cartesian currents (see [15]). However, since yn, mn enjoy so much
smoothness, we shall be content with easier, more direct methods.

It is convenient to introduce another definition. Namely, we say that a sequence
{(yn,mn)} ⊂ A is A-bounded if there exists a positive constant K, independent of n,
such that

∫
Ω

{
|D2yn(x)|2 + |∇yn(x)|2 + ψ(det∇yn(x))

}
dx +

∫
O(yn)

|∇zmn(z)|2 dz ≤ K.

(3.1)

We now state the main technical result of this section.
Theorem 3.1. If a sequence {(yn,mn)} ⊂ A is A-bounded, then there exists a

subsequence (not relabeled ) and (y,m) ∈ A such that (yn,mn) converges weakly to
(y,m).

This result is fundamental for our considerations. It guarantees the existence
of candidates for minimizers, which are weak limits of minimizing sequences. We
shall divide the proof into a number of tasks. We shall first deal with {yn} prior to
discussing {mn}.

Our main technical tool will be the distribution function. We define

An
t = {x ∈ Ω : det∇yn(x) < t} , t < 1,

Bn
t = {x ∈ Ω : det∇yn(x) > t} , t > 1.

Lemma 3.2. If the sequence {(yn,mn)} ⊂ A is A-bounded, then

|An
t | ≤ tqc−1

L K and |Bn
t | ≤ t−qc−1

L K.
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Proof. Our starting point is simply

|An
t | =

∫
An

t

1 dx =

∫
An

t

t

t
dx

≤ t

∫
An

t

1

det∇yn
dx ≤ t

(∫
An

t

1

(det∇yn)
q dx

) 1
q

· |An
t |

1− 1
q .

Hence, we have by (2.7) that

|An
t | ≤ tq

∫
An

t

(det∇yn)−q dx ≤ tqc−1
L

∫
An

t

ψ(det∇yn) dx ≤ tqc−1
L K

for t < 1.

The argument leading to the second estimate is similarly given by

|Bn
t | =

∫
Bn

t

1 dx =

∫
Bn

t

t

t
dx

≤ t−1

∫
Bn

t

det∇yn dx ≤ t−1

(∫
Bn

t

(det∇yn)
q
dx

) 1
q

· |Bn
t |

1− 1
q .

Hence, we have by (2.7) that

|Bn
t | ≤ t−q

∫
Bn

t

(det∇yn)q dx ≤ t−qc−1
L

∫
Bn

t

ψ(det∇yn) dx ≤ t−qc−1
L K

for t > 1.

We next state and prove a main lemma on the convergence of {yn}. We note that
the convergence result for det∇yn below is better than that implied by the Sobolev
embedding and compactness theorem [1, 16, 13]. It is due to the growth condition
(2.7).

Lemma 3.3. If the sequence {(yn,mn)}⊂A is A-bounded, then there exists a
subsequence (not relabeled ) such that

yn ⇀ y in W 2,2(Ω; R3),

and

det∇yn → det∇y in Lp(Ω) for p < q,(3.2)

det∇yn ⇀ det∇y in Lq(Ω),(3.3) ∫
Ω

ψ(det∇y) dx < ∞,(3.4)

det∇y > 0 a.e.(3.5)

Proof. In order to show existence of a subsequence (not relabeled) {yn}∞n=1, which
is weakly convergent in W 2,2(Ω; R3), it is sufficient to prove a uniform in n bound on
‖yn‖W 2,2 . Due to the A-boundedness of {(yn,mn)}, it is enough to prove a uniform
bound on ‖yn‖L2 . This easily follows from the boundary condition (2.1), the Poincaré
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inequality [1, 16, 13], and the A-boundedness because we have∫
Ω

|yn(x)|2 dx≤ 2

∫
Ω

|yn(x) − y0(x)|2 dx + 2

∫
Ω

|y0(x)|2 dx

≤ 2C(Ω)

∫
Ω

|∇ (yn(x) − y0(x)) |2 dx + 2

∫
Ω

|y0(x)|2 dx

≤ C

(∫
Ω

|∇yn(x)|2 dx + 1

)
≤ C(K + 1).

Since the sequence {yn} converges weakly in W 2,2(Ω; R3) it follows from the
Sobolev embedding theorem [1] that there exists a subsequence such that yn −→ y in
W 1,p(Ω; R3) for p< 6 and also in C0,α(Ω; R3) for 0<α< 1− 3

6 = 1
2 . Thus, for another

subsequence

∇yn −→ ∇y a.e.,

det∇yn −→ det∇y a.e.,

det∇yn −→ det∇y in Lp(Ω) for p < 2.(3.6)

We now show that we can improve the convergence in (3.6). For that purpose,
we are going to show that {(det∇yn)p} is equi-integrable for any p < q, that is, for
any given ε> 0 there is a δ > 0 such that, if V ⊂Ω satisfies |V |<δ, then∫

V

(det∇yn)p dx < ε.

Indeed, for any V ⊂ Ω and t > 1 we have that

∫
V

(det∇yn)p dx =

(∫
V \Bn

t

+

∫
V ∩Bn

t

)
(det∇yn)p dx.(3.7)

Due to the definition of Bn
t , we can see that

∫
V

(det∇yn)p dx ≤ tp |V \Bn
t | +

(∫
V ∩Bn

t

(det∇yn)q dx

) p
q

· |Bn
t |

1− p
q

≤ tp|V | + c
−p/q
L

(∫
Bn

t

ψ (det∇yn) dx

) p
q

· (t−qc−1
L K)(1−

p
q )

≤ tp|V | + c−1
L Kt−q+p.

We can now take t > 1 so large that the second term is less than ε
2 . Then we choose

δ so small that tpδ < ε
2 , and the claim follows since |V | < δ.

After we choose an a.e.-convergent subsequence, we deduce by Vitali’s theorem
that

(det∇yn)p → (det∇y)p in L1(Ω) for p < q.

Furthermore, we can infer that for this subsequence [3, Theorem 1],

det∇yn −→ det∇y in Lp(Ω) for p < q.
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Thus, (3.2) follows.
In order to deduce (3.3), we notice that due to (2.7) the sequence det∇yn is

bounded in Lq(Ω). Hence, it contains a subsequence converging weakly to g. By
uniqueness of the limit it follows that g = det∇y.

To prove (3.4), we observe that since det∇yn → det∇y in L1(Ω), we have that
there exists a subsequence (not relabeled) such that det∇yn → det∇y a.e. Since ψ
is continuous, we have also that ψ(det∇yn) → ψ(det∇y) a.e. Thus, since sequence
{(yn,mn)} is A-bounded, we have by Fatou’s lemma [12] that∫

Ω

ψ(det∇y) dx ≤ lim inf
n→∞

∫
Ω

ψ(det∇yn) dx ≤ K < ∞.

Our next task is to show that (3.5) holds. For this purpose, we use again the
technique of distribution functions. Let us define for t < 1 the set

At = {x ∈ Ω : det∇y < t}.

It is clear that (3.5) holds once we establish the estimate

|At| ≤ ctq,(3.8)

where c is a positive constant. Since

det∇y = det∇yn + (det∇y − det∇yn)

and det∇yn > 0 a.e., we have for all n ∈ N that

At ⊂ An
2t ∪ {x ∈ Ω : |det∇y(x) − det∇yn(x)| ≥ t} ≡ An

2t ∪ En.

By Egorov’s theorem, for any t ∈ (0, 1) there is a V ⊂ Ω such that |V | < tq and
det∇yn converges uniformly to det∇y on Ω \ V . Hence,

|At| ≤ |An
2t| + |En ∩ V | + |En \ V |

≤ c−1
L K2qtq + tq + |En \ V | .

However, for fixed t and sufficiently large n, the set En \ V is empty. Thus, (3.8)
holds with c = 1 + c−1

L K2q. Hence, (3.5) follows.
We remark that the methods we have presented and the assumptions on ψ allow

us to prove similar convergence statements for (det∇yn)−1. Indeed, we have the
following lemma.

Lemma 3.4. If 1 ≤ p < q, then (det∇yn)−1 converges to (det∇y)−1 in Lp(Ω).
Proof. By previous results, det∇yn converges a.e., and the limit det∇y is positive

a.e. Hence, (det∇yn)−1 → (det∇y)−1 a.e. Due to Vitali’s convergence theorem, it
is sufficient to check that the sequence (det∇yn)−p is equi-integrable. To prove this,
we suppose that ε > 0 is given. Then for V ⊂ Ω with |V | ≤ δ, similar to argument
following (3.7), we have that∫

V

(det∇yn)−p dx =

(∫
V \An

t

+

∫
V ∩An

t

)
(det∇yn)−p dx

≤ t−p|V | +
(∫

V ∩An
t

(det∇yn)−q dx

) p
q

|An
t |1−

p
q

≤ t−p|V | + c−1
L Ktq−p ≤ ε

for a suitable choice of t and δ.
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Finally, we want to make sure that the limit mapping y is indeed one-to-one a.e.
Lemma 3.5. Let us suppose that Ω ⊂ R

3 is open, the deformations yn : Ω →
R

3 are one-to-one a.e., and det∇yn > 0 a.e. We also assume that the sequence yn
converges weakly in W 2,2(Ω) to y, det∇yn → θ in L1(Ω), and θ > 0 a.e. Then y is
one-to-one a.e. (and obviously det∇y = θ).

Proof. We need a characterization of invertibility a.e. which is easy to apply to
the limit y. Let us recall for that purpose the notion of Banach’s indicatrix

N(y,Ω, z) = #{x ∈ Ω : y(x) = z},

where we restrict our attention to the continuous representative of y. Of course, we
have that y(Ω) = {z ∈ R

3 : N(y,Ω, z) ≥ 1}.
We claim that y is one-to-one a.e. if and only if

|{z ∈ R
3 : N(y,Ω, z) ≥ 2}| = 0.

Indeed, let us suppose that y|G is one-to-one and G is of full measure. Since y has
the Lusin property (see [14], section 5.2), we deduce that E = y(Ω \G) has measure
zero. Moreover, N(y,Ω, z) ≥ 2 if and only if z ∈ E.

On the other hand, let us suppose that E = {z ∈ R
3 : N(y,Ω, z)≥ 2} has

measure zero. We set G = Ω\y−1(E). We must show that |y−1(E)| = 0. By the area
formula (see [14], Theorem 5.11), we can see that∫

y−1(E)

det∇y(x) dx =

∫
E

N(y,Ω, z) dz = 0.

Since det∇y > 0 a.e., we deduce that |y−1(E)| = 0.
We shall show that

N(y,Ω, z) ≤ 1 a.e.

Let us take φ ∈ C0(R
3) such that φ ≥ 0. Obviously, we obtain since yn is one-to-one

a.e. that ∫
Ω

φ(yn(x)) det∇yn(x) dx =

∫
yn(Ω)

φ(z) dz ≤
∫

R3

φ(z) dz.

Hence, ∫
Ω

φ(y(x)) det∇y(x) dx ≤
∫

R3

φ(z) dz.

Furthermore, this inequality implies that N(y,Ω, z) ≤ 1 a.e. That is, y is one-to-one
a.e. as desired.

Our next task is to prove the convergence of the sequence of magnetization vectors
{mn}.

Lemma 3.6. If {yn,mn} ⊂ A is a A-bounded sequence, then there exists m ∈
W 1,2(O(y); R3) such that a subsequence (not relabeled) converges weakly to (y,m).

Proof. We shall apply again the technique of distribution functions. We define
the set

Dn
t = {x ∈ Ω : |∇zmn ◦ yn(x)| > t}.

We claim that

|Dn
t | ≤ Kc

− 1
q+1

L t−2 q
q+1 .(3.9)
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Indeed, by the Schwartz inequality

|Dn
t | =

∫
Dn

t

1 dx =

∫
Dn

t

(
|∇mn|det

1
2∇yn

|∇mn|det
1
2∇yn

)
dx

≤
(∫

Dn
t

|∇mn|2 det∇yn dx

)1/2 (∫
Dn

t

|∇mn|−2(det∇yn)−1 dx

)1/2

≤ 1

t
K1/2

(∫
Dn

t

1

det∇yn
dx

)1/2

≤ 1

t
K1/2

(∫
Dn

t

1

(det∇yn)q
dx

) 1
2q

|Dn
t |

1
2 (1− 1

q )

≤ 1

t
K1/2

(∫
Dn

t

c−1
L ψ (det∇yn) dx

) 1
2q

|Dn
t |

1
2 (1− 1

q )

≤ 1

t
c
− 1

2q

L K
1
2+ 1

2q |Dn
t |

1
2 (1− 1

q ).

Hence, (3.9) follows.
We recall that O(y) = y(Ω̄)\y(∂Ω̄) is open. We define the two families of sets

Oε(y) = {z ∈ O(y) : dist(z, ∂O(y)) > ε} and Oε(y) = {z ∈ R
3 : dist(z,O(y)) ≤ ε}.

We note that ⋃
ε>0

Oε(y) = O(y).

For ε> 0 fixed, we have that Oε(y)⊂O(yn) for sufficiently large n because of
the uniform convergence of yn to y. We now claim that for any ε > 0 there exists a
subsequence (not relabeled) such that

mn ⇀ m in W 1,2(Oε(y); R
3).(3.10)

We have for any ε > 0 that∫
Oε(y)

|∇zmn(z)|2 dz ≤
∫
O(yn)

|∇zmn(z)|2 dz =

∫
Ω

|∇zmn|2 det∇yn dx ≤ K.

Due to the constraint (2.2), we can see that∫
O(yn)

|mn(z)|2 dz =

∫
Ω

|mn(yn(x))|2 det∇yn(x) dx

= τ2

∫
Ω

(det∇yn(x))−1 dx

≤ τ2

(∫
Ω

(det∇yn(x))
−q

dx

) 1
q

|Ω|1− 1
q

≤ τ2c
− 1

q

L

(∫
Ω

ψ(det∇yn(x)) dx

) 1
q

|Ω|1− 1
q ≤ K1.
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This immediately implies that there exists a subsequence (not relabeled) such that

mn ⇀ m in W 1,2(Oε(y); R
3).

It thus follows that there exists a further subsequence (not relabeled) such that

mn → m in L2(Oε(y); R
3).(3.11)

We shall now show that

χO(yn)mn → χO(y)m in L2(R3; R3) and χO(yn)∇zmn ⇀ χO(y)∇zm in L2(R3; R3×3).

We first estimate χO(yn)mn − χO(y)m in L2(R3; R3) by observing that

χO(yn)mn − χO(y)m = (χO(yn) − χOε(y))mn + χOε(y)(mn −m) + (χOε(y) − χO(y))m.

Thus,

‖χO(yn)mn − χO(y)m‖L2(R3)

≤ ‖mn‖L2(O(yn)ΔOε(y)) + ‖mn −m‖L2(Oε) + ‖m‖L2(O(y)\Oε(y))

= I + II + III.

To estimate I, we set Ωε
n := y−1

n (Oε(y)). We can see using (2.2) and (2.7) that for
t < 1

I2 =

∫
Ω

(1 − χΩε
n
)2|mn|2 det∇yn dx

=

(∫
An

t

+

∫
Ω\An

t

)
(1 − χΩε

n
)2τ2

det∇yn
dx

≤ τ2

(∫
An

t

(
1

det∇yn

)q

dx

) 1
q

|An
t |1−

1
q +

τ2

t
|Ω \ (Ωε

n ∪An
t )|

≤ ctq−1 +
τ2

t
|Ω \ (Ωε

n ∪An
t )|.

We first choose t < 1 to make the first term small, that is, less than 1
2 (δ/3)2. We then

show that we can select ε so that the second term is less than 1
2 (δ/3)2. This would

imply that I < δ/3, as desired. We can do so because

|Oε(y) \ Oε(y)| ≥ |yn(Ω \ Ωε
n)| ≥ |yn(Ω \ (Ωε

n ∪An
t ))|

=

∫
Ω\(Ωε

n∪An
t )

det∇yn ≥ t|Ω \ (Ωε
n ∪An

t )|.

Our claim follows because |Oε(y) \ Oε(y)| can be made arbitrarily small, for fixed t.

For fixed ε > 0 and for sufficiently large n, we have that II < δ/3 because of
(3.11). Finally, for given δ > 0 one can find ε > 0 for which III < δ/3 because
|O(y) \Oε(y)| can be made arbitrarily small, and integration is absolutely continuous
with respect to the set of integration.
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The weak convergence is slightly easier. For ϕ ∈ L2(R3; R3×3), we consider∫
R3

(χO(yn)∇zmn − χO(y)∇zm) · ϕdz

=

∫
R3

[
(χO(yn) − χOε(y))∇zmn · ϕ

+ χOε(y)(∇zmn −∇zm) · ϕ + (χOε(y) − χO(y))∇zm · ϕ
]
dz

= J + JJ + JJJ.

We can see that

|J | ≤ ‖∇zmn‖L2(O(yn))‖ϕ‖L2(O(yn)\Oε(y)).

We can make |J | < δ/3 by taking ε > 0 small enough. The second term can be
made small due to (3.10). Moreover, it is clear that |JJJ | < δ/3 for sufficiently small
ε > 0.

Finally, we shall demonstrate that the term
∫
Ω
|∇mn|2 det∇yn dx is lower semi-

continuous.
Lemma 3.7. If {(ym,mn)}⊂A is an A-bounded sequence, then∫

Ω

|∇zm|2 det∇y dx ≤ lim inf
n→∞

∫
Ω

|∇zmn|2 det∇yn dx.

Proof. If we take any δ > 0, then there exists ε > 0 such that∫
Oε(y)

|∇zm|2 dz ≥
∫
O(y)

|∇zm|2 dz − δ.

It then follows from (3.10) that

lim inf
n→∞

∫
Ω

|∇zmn|2 det∇yn dx

= lim inf
n→∞

∫
O(yn)

|∇zmn|2 dz ≥ lim inf
n→∞

∫
Oε(y)

|∇zmn|2 dz

≥
∫
Oε(y)

|∇zm|2 dz ≥
∫
O(y)

|∇zm|2 dz − δ =

∫
Ω

|∇zm|2 det∇y dx− δ.

The proof follows since δ was arbitrary.
We are now ready for the proof of Theorem 3.1.
Proof of Theorem 3.1. If {(yn,mn)} ⊂ A is an A-bounded sequence (3.1) with

bound K, then by Lemmas 3.2–3.7 its subsequence converges weakly to an element
(y,m) in A and∫

Ω

{
|D2y|2 + |∇y|2 + ψ(det∇y)

}
dx +

∫
O(y)

|∇zm|2 dz ≤ K.

4. The existence of an energy minimizer. We are going to demonstrate a
lower semicontinuity property for the energy E . We begin with a simple observation
on minimizing sequences.

Lemma 4.1. If {(yn,mn)} ⊂ A is a minimizing sequence, then it is A-bounded.
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Proof. We can estimate the magnetic interaction energy term, which is the only
nonpositive expression in E , by

Jn=

∣∣∣∣∣
∫
O(yn)

h(z) ·mn(z) dz

∣∣∣∣∣ =

∣∣∣∣
∫

Ω

h(yn(x)) ·mn(yn(x)) det∇yn(x) dx

∣∣∣∣
≤ Cε

∫
O(yn)

h2(z) dz + ε

∫
Ω

|mn(yn(x))|2 det∇yn dx

≤ Cε ‖h‖2
L2(R3) + ετ2

∫
Ω

(det∇yn)−1 dx

≤ Cε ‖h‖2
L2(R3) + ετ2c

− 1
q

L

(∫
Ω

ψ(det∇yn) dx

) 1
q

|Ω|
q−1
q .

By Young’s inequality, we have that

Jn ≤ Cε ‖h‖2
L2(R3) + ετ2c

− 1
q

L

(
1

q

∫
Ω

ψ(det∇yn) dx +
q − 1

q
|Ω|

)
.

Hence, due to (2.8) we have that∫
Ω

[
κ|D2yn|2 + |∇yn|2 + ψ(det∇yn) + |∇zmn ◦ yn|2 det∇yn

]
dx

≤ max

{
1,

1

CL

}
E(yn,mn) + Jn + |Ω|

≤ K + |Ω| + Cε ‖h‖2
L2(R3) +ετ2c

− 1
q

L

(
1

q

∫
Ω

ψ(det∇yn) dx +
q − 1

q
|Ω|

)
.

Since ε can be made arbitrarily small and since we have assumed that h ∈ L2(R3),
our claim follows.

We are thus ready to prove the main result of this paper, the existence of a
solution to (2.9).

Theorem 4.2. Suppose that the magnetostrictive free energy E is given by (2.3)
and that the growth assumptions (2.7) and (2.8) hold. Then the minimum free energy
satisfying the saturation constraint (2.2) is attained.

Proof. We consider a minimizing sequence {(yn,mn)} ⊂ A. By Lemma 4.1,
{(ym,mn)} is an A-bounded sequence. Hence, by Theorem 3.1 there exists (y,m) ∈ A
such that a subsequence {(ynk

,mnk
)} converges weakly to (y,m). It is sufficient for

us to show that

E(y,m) ≤ lim inf
n→∞

E(ym,mn).

We shall treat each term in E separately, because after choosing a suitable subsequence
we may replace lim inf with lim.

Due to the lower semicontinuity of the norm, we see for the elastic surface energy
that

κ

∫
Ω

|D2y|2 dx ≤ lim inf
n→∞

κ

∫
Ω

|D2yn|2 dx.

We recall from (2.6) that the anisotropy energy density Φ(∇y,m) is the sum
Φ(∇y,m) = W (∇y,m) + ψ(det∇y). We first show that

lim
n→∞

∫
Ω

W (∇yn,mn) dx =

∫
Ω

W (∇y,m) dx.(4.1)
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Indeed, we know that ∇yn → ∇y in Lp(Ω : R
3×3) for p < 6 and mn ◦ yn → m ◦ y a.e.

Moreover, due to Lemma 3.4 we have that

|mn ◦ yn| =
τ

det∇yn
→ τ

det∇y
= |m ◦ y| in L1(Ω).

Thus, by [3, Theorem 1], (there is no need to extract another subsequence) we con-
clude that mn ◦ yn → m ◦ y in L1(Ω; R3). Thus, by the continuity of the Nemytskii
operator [24]

Lr(Ω) × L1(Ω) � (∇y,m) → W (∇y,m) ∈ L1(Ω),

where r < 6 is the growth factor for W (F,m) given by (2.8), we deduce (4.1).
We finally recall that we have proved that∫

Ω

ψ(det∇y) dx ≤ lim inf
n→∞

∫
Ω

ψ(det∇yn) dx.

For the magnetic exchange energy, we have from Lemma 3.7 that

α

∫
Ω

|∇m|2 det∇y dx ≤ lim inf
n→∞

α

∫
Ω

|∇mn|2 det∇yn dx.

We now turn to the magnetic interaction energy and observe that

lim
n→∞

∫
Ω

(h ◦ yn ·mn ◦ yn) det∇yn dx =

∫
Ω

(h ◦ y ·m ◦ y) det∇y dx.

We recall that∫
Ω

(h ◦ yn ·mn ◦ yn) det∇yn dx =

∫
O(yn)

mn(z) · h(z) dz =

∫
R3

χyn(Ω)mn(z) · h(z) dz.

Since χyn(Ω)mn converges to χy(Ω)m in L2(R3; R3), our claim follows.
We finally have to show the convergence of the magnetization energy emag(y,m)

given by (2.4). We note that for given y and m, the weak solution ζ ∈ H(R3) of the
magnetostatic equation (2.5) satisfies∫

R3

(−∇zζ + χO(y)m)∇zη dz = 0 for all η ∈ H(R3),(4.2)

where

H(R3) =

{
ζ ∈ D′(R3) : ∇ζ ∈ L2,

∫
R3

ζ(z) dz = 0

}
.

Since ∇zζ for ζ ∈ H(R3) is an L2(R3; R3) projection of χO(y)m(z), we have that

‖∇zζ‖L2 ≤ ‖χO(y)m‖L2 ;

and since χO(yn)mn → χO(y)m in L2(R3; R3), we have

lim
n→∞

1

2

∫
R3

|∇zζn|2 dz =
1

2

∫
R3

|∇zζ|2 dz.
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We have to check that weak limits also satisfy the pointwise magnetic saturation
constraint (2.2). If (yn,mn) ⊂ A is a minimizing sequence, then the magnetic satura-
tion constraint (2.2) follows since we showed L2 convergence of mn ◦ yn and det∇yn.
Namely, we have that∫

Ω

∣∣(mn ◦ yn) det∇yn − (m ◦ y) det∇y
∣∣ dx

≤‖mn −m‖L2‖det∇yn ‖L2 + ‖m‖L2‖det∇yn − det∇y‖L2.

Finally, combining all of the above results we conclude that

E(y,m) ≤ lim
n→∞

E(yn,mn),

that is, (y,m) ∈ A is the desired minimum of E .
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Abstract. This paper provides mathematical analysis of a system of nonlinear PDEs which
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1. Introduction and biological motivation. The present paper deals with
a class of prey-predator models which could take into account the diffusive as well
as the hysteresis effects in the evolution of the populations and is described by the
following system of PDEs:

σt − (λ(u))t − κΔσ + ∂Iu,v(σ) � F (σ, u, v) in Q,(1)

ut − Δu = h(σ, u, v) in Q,(2)

vt − Δv = g(σ, u, v) in Q,(3)

where T > 0, Ω ⊂ RN is a bounded domain with smooth boundary ∂Ω, Q = (0, T )×Ω;
κ ≥ 0 is a constant; λ : R → R, F, h, g : R3 → R, f∗, f

∗ : R2 → R are given
functions. We assume that f∗, f

∗ ∈ C2(R2), 0 ≤ f∗ ≤ f∗ ≤ 1 on R2, and all partial
derivatives of first and second order of f∗ and f∗ are bounded on R2. We denote by
Iu,v(·) the indicator function of the interval [f∗(u, v), f

∗(u, v)], and ∂Iu,v(·) denotes
the subdifferential of Iu,v(·). The subdifferential ∂Iu,v(σ) is a set-valued mapping in
our statement of the problem

∂Iu,v(σ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∅ if σ > f∗(u, v) or σ < f∗(u, v),
[0,+∞) if σ = f∗(u, v) > f∗(u, v),
{0} if f∗(u, v) < σ < f∗(u, v),
(−∞, 0] if σ = f∗(u, v) < f∗(u, v),
R if σ = f∗(u, v) = f∗(u, v).

(4)

Equation (1) corresponds to the kinetics of the density of the quantity of food σ (for
the prey), (2), (3) describe the evolution of the prey and evolution of the predator,
respectively; here u and v are the densities of the prey and predator, respectively. A
typical example from the population dynamics is the following system:

σt + aut − κΔσ + ∂Iu,v(σ) � 0 in Q,(5)
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Fig. 1.

ut − Δu = a0σu− b0uv in Q,(6)

vt − Δv = −c0v + d0(1 − σ)v in Q,(7)

where a, a0, b0, c0, d0 are positive constants. The system (5)–(7) could be considered a
generalization of the classical prey-predator model allowing hysteresis relation between
the prey/predator densities u, v and the density of the food quantity σ for the prey
with vector input (u, v) and output σ. Our model originates from a prey-predator
model of the type

σ = λ(u) in Q,(8)

ut − Δu = h(σ, u, v) in Q,(9)

vt − Δv = g(σ, u, v) in Q,(10)

in which the density of the food σ is determined by relation (8). We generalize this
model in order to allow this relation to possibly depend also on the previous evolution
data. More precisely, in our model the speed of change of density of food when the
density of the prey decreases is different from the speed when the density of the prey
increases. This situation can be described by the generalized stop operator shown in
Figure 1, where f̃∗ and f̃∗ are upper and lower curves, respectively, of the hysteresis
loop and a is the slope of the line in the loop. As a biologically consistent example
for the constraint functions f̃∗, f̃

∗ we can consider, for instance,

f̃∗(u) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if u < 2,
−2.5u2 + 10u− 9 if 2 ≤ u < 2.2,
−u + 3.1 if 2.2 ≤ u < 3,
2.5u2 − 16u + 25.6 if 3 ≤ u < 3.2,
0 if 3.2 ≤ u,

f̃∗(u) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if u < 0,
−2.5u2 + 1 if 0 ≤ u < 0.2,
−u + 1.1 if 0.2 ≤ u < 1,
2.5u2 − 6u + 3.6 if 1 ≤ u < 1.2,
0 if 1.2 ≤ u.

The biologically relevant assumption on the constraint functions reflected in the above
example is that f̃∗(0) = f̃∗(0) (= 1) and f̃∗ = f̃∗ = 0 on [uc,∞), which is due to the
fact that the food σ should be constant (= 1) if u = 0, and σ should keep zero value
if the density u is bigger than some critical value uc > 0.

Let us note that although there are indications for the existence of hysteresis in
various biological problems (see, for example, [10], [13]), the mathematical treatment
of biological problems with hysteresis has been considered only in a few papers; see
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[7], as well as the survey paper [14]. The paper [7] seems to be the first to treat
hysteresis phenomena in a biological problem. The authors of [7] treated bacterial
growth in a petri dish modeled by a hysteresis operator of relay type which describes
the relation between the rate of the growth of the bacterial population and the pH
of the surrounding acid-buffer mix. The survey paper [14] treats applications of
hysteresis in various natural phenomena. One of the chapters of [14] is devoted to the
applications in biological problems and the authors of [14] also note the necessity of
developing new models describing hysteresis effect in biological processes. The lack of
papers dealing with hysteresis in biological phenomena could be explained with the
diversity of the processes involved in mathematical biology. Let us note that many
biological problems involve a fold catastrophe regime which, as is shown in [11], could
be replaced by hysteresis model. Also there are various biological processes whose
state variables change due to change of parameters in such a way that when the
parameters go back to the old values the system does not follow its steps in return
and thus a hysteresis loop is formed.

It is known that some types of hysteresis operators can be represented by ordinary
differential inclusion containing subdifferential of the indicator function of a closed
interval (whose length could possibly depend on the unknown variables). This fact
was already pointed out by Visintin in [16]. Now we give a brief explanation of the
fact that a function σ is determined by the hysteresis operator in Figure 1 if and only
if σ is the solution of the differential inclusion

(*) σt + aut + ∂Iu(σ) � 0 in Q,

where u is some given function, f̃∗ and f̃∗ are Lipschitz continuous functions on R
and 0 ≤ f̃∗ ≤ f̃∗ ≤ 1 on R, and −a ≤ f̃ ′

∗ ≤ 0 and −a ≤ f̃∗′ ≤ 0 on R. Indeed, since
the solution of the inclusion is unique it is sufficient to show that σ defined by Figure
1 is a solution of (*). If f̃∗ < σ < f̃∗, then σt = aut so that (*) holds. If f̃∗(u) = σ,
then ut ≥ 0 and σt = utf̃

′
∗(u) ≥ −aut. This implies that −σt−aut ≤ 0 and (*) holds.

It is easy to see that (*) holds also if f̃∗(u) = σ.
This characterization of hysteresis operators was used for analysis of many nonlin-

ear phenomena; for example, a real-time control problem (see [8]), solid-liquid phase
transition (see [6], [9]), and shape memory alloy (see [1], [2], [3]). Also, in [9] it is
explained that by using the inclusion (*) various types of hysteresis operators can
be described. However, to the best of our knowledge this approach to hysteresis
phenomena has not been used to problems from population dynamics.

In the model under consideration we allow also a small diffusive effect (0 ≤ κ 
 1)
for the food of the prey σ (from a biological point of view the diffusive effect for σ
(for example, a plant occupying the domain Ω) is almost negligible with respect to
other terms).

In the present paper we obtain results for positivity, boundedness, existence,
and uniqueness of solutions of the prey-predator model with hysteresis effect (1)–(3).
Using the method of Yosida approximation combined with derivation of appropriate
uniform bounds, we prove that there exists at least one solution of the system under
consideration (1)–(3). Furthermore, uniqueness of solutions is obtained in the case
when N ≤ 3.

2. Preliminary notes. Denote by H the Hilbert space L2(Ω) with the usual
scalar product (·, ·) and norm | · |H . Denote by V the Sobolev space H1(Ω) equipped

with the norm |u|V = (u, u)
1/2
V , where (u, v)V = (u, v) + a(u, v), a(u, v) =

∫
Ω
∇u(x) ·

∇v(x)dx, u, v ∈ V . Let A : V → V ′ be a linear continuous operator defined by
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〈Au, v〉 = a(u, v), u, v ∈ V, where V ′ is the dual space of V and 〈·, ·〉 stands for the
duality pairing between V ′ and V . For simplicity, in what follows we will denote the
supremum of a bounded function by | · |∞. Define the operator −ΔN : D(−ΔN )(⊂
H) → H by the restriction of A to the elements w ∈ V such that Aw ∈ H, i.e.,
D(−ΔN ) = {w ∈ H2(Ω) : ∂w

∂n = 0 in H1/2(∂Ω)} and −ΔNw = −Δw for all w ∈
D(−ΔN ), where ∂

∂n is the outward normal derivative on ∂Ω.

Definition 2.1. Let κ ≥ 0. A triplet of functions {σ, u, v} is called a solution
of the system (1)–(3) if

(i) σ ∈ W 1,2(0, T ;H)∩L∞(0, T ;V )∩L2(0, T ;H2(Ω)) if κ > 0 and σ ∈ W 1,2(0, T ;H)
if κ = 0.

(ii) u, v ∈ W 1,2(0, T ;H) ∩ L∞(0, T ;V ) ∩ L2(0, T ;H2(Ω)).

(iii) σ′ − (λ(u))′ − κΔNσ + ∂Iu,v(σ) � F (σ, u, v) in H a.e. in (0, T ).

(iv) u′ − ΔNu = h(σ, u, v) in H a.e. in (0, T ).

(v) v′ − ΔNv = g(σ, u, v) in H a.e. in (0, T ).

(vi) σ(0) = σ0, u(0) = u0, v(0) = v0.

For simplicity, we denote, respectively, by σ′, u′, and v′ the time-derivatives σt,
ut, and vt of σ, u, and v. Note that the inclusion (iii) implies the following:

(iii)(a) f∗(u, v) ≤ σ ≤ f∗(u, v) a.e. in Q.

(iii)(b) (σ′(t)− (λ(u))′(t)−κΔσ(t)−F (σ(t), u(t), v(t)), σ(t)−z) ≤ 0 for all z ∈ H
with f∗(u(t), v(t)) ≤ z ≤ f∗(u(t), v(t)) a.e. in Ω for a.e. t ∈ (0, T ).

(iii)(c) ∂σ(t)
∂n = 0 a.e. on ∂Ω for a.e. t ∈ (0, T ) if κ > 0.

Throughout the paper we suppose that the following assumptions hold:
H1. κ ≥ 0 is a given constant; λ ∈ C2(R), λ′, and λ′′ are bounded functions on

R.
H2. f∗, f

∗ ∈ C2(R2), 0 ≤ f∗ ≤ f∗ ≤ 1 on R2, and all partial derivatives of first
and second order of f∗ and f∗ are bounded on R2. We put C0 = max{|f∗|W 2,∞(R2),
|f∗|W 2,∞(R2)}.

H3. F, h, and g are Lipschitz continuous functions on R3 (with a common
Lipschitz constant M), and h(σ, 0, v) = 0 for σ ∈ [0, 1], v ∈ R, g(σ, u, 0) = 0 for
σ ∈ [0, 1], u ∈ R.

H4. σ0, u0, v0 ∈ L∞(Ω) ∩ V and u0 ≥ 0, v0 ≥ 0, f∗(u0, v0) ≤ σ0 ≤ f∗(u0, v0) a.e.
in Ω.

3. Main results.

3.1. Nonnegativity of solutions.

Theorem 3.1. Any solution {σ, u, v} of (1)–(3) satisfies the estimate

σ ≥ 0, u ≥ 0, v ≥ 0 a.e. in Q.(11)

Proof. The estimate for σ follows from the constraint 0 ≤ f∗(u, v) ≤ σ ≤
f∗(u, v) ≤ 1 a.e. in Q. Now we prove the estimate for u. We multiply both sides
of (2) by [−u]+ (the positive part of −u) and using the Lipschitz continuity of h, we
obtain that

1

2

d

dt

∣∣[−u]+
∣∣2
H

+ a([−u]+, [−u]+) ≤ M
∣∣[−u]+

∣∣2
H

a.e. in (0, T ).

Therefore, by integration and application of the Gronwall inequality we conclude that
u(t) ≥ 0 a.e. in Q. Analogously it can be proved that v(t) ≥ 0 a.e. in Q.
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3.2. Boundedness of solutions.
Theorem 3.2. Any solution {σ, u, v} of (1)–(3) satisfies the estimate

|σ|∞, |u|∞, |v|∞ ≤ M0,(12)

where M0 = max{1, k1e
MT }, k1 = max{|u0|∞, |v0|∞}.

Proof. First let us note that |σ|∞ ≤ 1 by the definition. Now we prove the
estimate for u. Define p(t) = k1e

Mt for t ∈ [0, T ]. We have in view of Theorem 3.1
that

(u− p)′ − ΔN (u− p) = h(σ, u, v) −Mp ≤ M(u− p) a.e. in (0, T ) × Ω.(13)

Multiplying both sides of inequality (13) by [u− p]+, we obtain that

1

2

d

dt

∣∣[u− p]+
∣∣2
H

≤ M
∣∣[u− p]+

∣∣2
H

a.e. in (0, T ).

Thus integrating and applying Gronwall inequality, we conclude that u(t) ≤ p(t) ≤
k1e

MT ≤ M0 a.e. in Q. Similarly, it can be proved that v ≤ M0, a.e. in (0, T ) ×
Ω.

Remark 3.1. From Theorems 3.1 and 3.2 it follows that by restricting ourselves
to the set {0 ≤ σ ≤ M0, 0 ≤ u ≤ M0, 0 ≤ v ≤ M0} (if necessary), we can assume
without loss of generality that the functions F, h, and g are bounded and Lipschitz
continuous on R3.

Remark 3.2. The proofs of Theorems 3.1 and 3.2 could be easily adapted to the
system (5)–(7) using the boundedness of σ.

3.3. Existence of solutions.

3.3.1. Approximate solutions. For σ, u, v ∈ R denote by ∂Iμu,v the Yosida
regularization of the subdifferential graph ∂Iu,v,

∂Iμu,v(σ) =
1

μ
[σ − f∗(u, v)]+ − 1

μ
[f∗(u, v) − σ]+.

Consider the following approximate system of PDEs:

σt − (λ(u))t − κΔσ + ∂Iμu,v(σ) = F (σ, u, v) in Q,(14)

ut − Δu = h(σ, u, v) in Q,(15)

vt − Δv = g(σ, u, v) in Q.(16)

Definition 3.3. Let κ ≥ 0. The triplet of functions {σμ, uμ, vμ} is said to be a
solution of the system (14)–(16) if

(i) σμ ∈ W 1,2(0, T ;H) ∩ L∞(0, T ;V ) ∩ L2(0, T ;H2(Ω)) if κ > 0 and σμ ∈
W 1,2(0, T ;H) if κ = 0.

(ii) uμ, vμ ∈ W 1,2(0, T ;H) ∩ L∞(0, T ;V ) ∩ L2(0, T ;H2(Ω)).
(iii) σ′

μ − (λ(uμ))′ − κΔNσμ + ∂Iμuμ,vμ
(σμ) = F (σμ, uμ, vμ) in H a.e. in (0, T ).

(iv) u′
μ − ΔNuμ = h(σμ, uμ, vμ) in H a.e. in (0, T ).

(v) v′μ − ΔNvμ = g(σμ, uμ, vμ) in H a.e. in (0, T ).
(vi) σμ(0) = σ0, uμ(0) = u0, vμ(0) = v0.
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Lemma 3.4. Let {σμ, uμ, vμ} be a solution of (14)–(16). Then

uμ ≥ 0, vμ ≥ 0 a.e. in Q.(17)

The proof of Lemma 3.4 is similar to the proof of Theorem 3.1.
Lemma 3.5. Let {σμ, uμ, vμ} be a solution of (14)–(16). Then

|uμ|∞, |vμ|∞ ≤ M0,

for the same constant M0 as in Theorem 3.2.
The proof of Lemma 3.5 is similar to the proof of Theorem 3.2.
Theorem 3.6. There exists a constant κ0 > 0 such that for 0 < κ < κ0 there

exists at least one solution of the system (1)–(3).

3.3.2. Proof of Theorem 3.6. By a result of Colli and Hoffmann [5], it follows
that the approximate system (14)–(16) possesses a unique solution {σμ, uμ, vμ} for
each μ > 0. Indeed, the function A(σ, u) = σ − λ(u) is Lipschitz continuous as well
as the function F (σ, u, v) − ∂Iμu,v(σ) and (A(σ1, u) − A(σ2, u), σ1 − σ2) ≥ |σ1 − σ2|2
for all σ1, σ2, u ∈ R. Moreover, define

Φ(U) =

{
1
2a(u, u) + 1

2a(v, v) if u, v ∈ V,
+∞ otherwise,

for U =

(
u
v

)
∈ H ×H.

We have that Φ is a proper convex l.s.c. functiononH × H, and its subdifferential
is (−ΔNu

−ΔNv ). Thus, choosing X = H ×H in Theorem 1 of [5], we conclude that there
exists a unique solution of the approximate system (14)–(16).

Now, we will prove some uniform bounds for the triplets {σμ, uμ, vμ}, μ > 0, that
solve the equations

σ′
μ − (λ(uμ))′ − κΔNσμ + ∂Iμuμ,vμ

(σμ) = F (σμ, uμ, vμ) in H a.e. in (0, T ),(18)

u′
μ − ΔNuμ = h(σμ, uμ, vμ) in H a.e. in (0, T ),(19)

v′μ − ΔNvμ = g(σμ, uμ, vμ) in H a.e. in (0, T ).(20)

To this end we derive certain energy inequalities. Again for simplicity of the notation
we will write {σ, u, v} instead of {σμ, uμ, vμ}. Now, we multiply (19) by u′ and (20)
by v′; adding together and applying Young’s inequality, we obtain that

|u′|2H + |v′|2H +
d

dt
|∇u|2H +

d

dt
|∇v|2H ≤ C1 a.e. in (0, T ),(21)

where C1 = (|h|2∞+ |g|2∞)|Ω|, |Ω| denotes the Lebesgue measure of the set Ω. Multiply
(19) by −Δu and (20) by −Δv, and adding together, we conclude that

d

dt
|∇u|2H +

d

dt
|∇v|2H + |Δu|2H + |Δv|2H ≤ C1 a.e. in (0, T ).(22)

Lemma 3.7. Let {σ, u, v} be a solution of (14)–(16). Then the function

(Iμu,v(σ))(t) =
1

2μ

∣∣[σ − f∗(u, v)]+
∣∣2
H

+
1

2μ

∣∣[f∗(u, v) − σ]+
∣∣2
H
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is absolutely continuous on [0, T ] and

d

dt
Iμu,v(σ) ≤ (∂Iμu,v(σ), σ′) + C0|∂Iμu,v(σ)|H(|u′|H + |v′|H) a.e. in (0, T ).

The proof of Lemma 3.7 is similar to the proof of Lemma 4.1 of [6].
Now, we multiply (18) by σ′ and using Lemma 3.7, we obtain that

(23)

|σ′|2H + κ
d

dt
|∇σ|2H + 2

d

dt
Iμu,v(σ) ≤ C2

(
|u′|2H + |v′|2H + κ2|Δσ|2H + 1

)
a.e. in (0, T ),

where C2 = max{4C2
0 + C0 + 3C(λ), 2C0|F |2∞|Ω|}, C(λ) = max{|λ′|∞, |λ′′|∞}.

Since f∗(u, v), f
∗(u, v) ∈ H2(Ω) a.e. in (0, T ), we have that

(∂Iμu,v(σ),−Δσ)

=

(
1

μ
[σ − f∗(u, v)]+,−Δ(σ − f∗(u, v))

)
+

(
1

μ
[σ − f∗(u, v)]+,−Δf∗(u, v)

)

+

(
1

μ
[f∗(u, v) − σ]+,−Δ(f∗(u, v) − σ)

)
+

(
1

μ
[f∗(u, v) − σ]+,Δf∗(u, v)

)

=
1

μ
|∇[σ − f∗(u, v)]+|2H +

(
1

μ
[σ − f∗(u, v)]+,−Δf∗(u, v)

)

+
1

μ
|∇[f∗(u, v) − σ]+|2H +

(
1

μ
[f∗(u, v) − σ]+,Δf∗(u, v)

)

≥ − 1

4μ2

{
|[σ − f∗(u, v)]+|2H + |[f∗(u, v) − σ]+|2H

}
−|Δf∗(u, v)|2H −|Δf∗(u, v)|2H

≥ −1

4
|∂Iμu,v(σ)|2H − |Δf∗(u, v)|2H − |Δf∗(u, v)|2H .(24)

Also

(F (σ, u, v),−Δσ) ≤ C∗
F (|∇σ|2H + |∇u|2H + |∇v|2H),(25)

where C∗
F =

∣∣∂F
∂σ

∣∣
∞ +

∣∣∂F
∂u

∣∣
∞ +

∣∣∂F
∂v

∣∣
∞.

Now, multiplying (18) by −Δσ, we get in view of (24) and (25) that

1

2

d

dt
|∇σ|2H + κ|Δσ|2H + ((λ(u))′,Δσ)

≤ 1

4
|∂Iμu,v(σ)|2H + |Δf∗(u, v)|2H + |Δf∗(u, v)|2H + C∗

F (|∇σ|2H + |∇u|2H + |∇v|2H).

Since ((λ(u))′,Δσ) = − d
dt (λ

′(u)∇u,∇σ) − (Δλ(u), σ′), we conclude that

1

2

d

dt
|∇σ|2H +κ|Δσ|2H− d

dt
(λ′(u)∇u,∇σ) ≤ 1

4
|∂Iμu,v(σ)|2H +|Δf∗(u, v)|2H +|Δf∗(u, v)|2H

+
1

2
|Δλ(u)|2H +

1

2
|σ′|2H + C∗

F (|∇σ|2H + |∇u|2H + |∇v|2H).(26)

Note that Δλ(u) = λ′′(u)|∇u|2 + λ′(u)Δu and consequently,

|Δλ(u)|2H ≤ 2C(λ)2(|∇u|4L4 + |Δu|2H).
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By the Gagliardo–Nirenberg inequality (cf. [17]), we have that

|∇u|4L4(Ω) ≤ C(Ω)|u|2H2(Ω)|u|2∞ ≤ C(Ω)(|u|2H + |Δu|2H)|u|2∞ ≤ C3(1 + |Δu|2H),(27)

where the constant C3 depends on M0 (cf. Lemma 3.5). Thus, we obtain that

|Δλ(u)|2H ≤ C4(1 + |Δu|2H),(28)

with C4 = 2C(λ)2(C3 + 1). Hence we have that

1

2

d

dt
|∇σ|2H +κ|Δσ|2H− d

dt
(λ′(u)∇u,∇σ) ≤ 1

4
|∂Iμu,v(σ)|2H +|Δf∗(u, v)|2H +|Δf∗(u, v)|2H

+
1

2
C4(1 + |Δu|2H) +

1

2
|σ′|2H + C∗

F (|∇σ|2H + |∇u|2H + |∇v|2H).(29)

Now, we multiply (18) by ∂Iμu,v(σ) and using Lemma 3.7, we obtain the estimate

d

dt
Iμu,v(σ) +

1

2
|∂Iμu,v(σ)|2H ≤ C5(|u′|2H + |v′|2H)

+
κ

4
|∂Iμu,v(σ)|2H + κ|Δf∗(u, v)|2H + κ|Δf∗(u, v)|2H + C6,(30)

where C5 = (C0 + 1)(C0 + C(λ)2), C6 = (C0 + 1)|F |2∞|Ω|.
Noting that |Δf∗(u, v)|2H+|Δf∗(u, v)|2H ≤ 2C7(|∇u|4L4+|∇v|4L4+|Δu|2H+|Δv|2H),

where C7 = 32C2
0 , we conclude in view of (27) that

|Δf∗(u, v)|2H + |Δf∗(u, v)|2H ≤ C8(1 + |Δu|2H + |Δv|2H),(31)

with C8 = 2C7(C3 + 1). Adding (29) and (30), we get in view of (31) that

d

dt

{
Iμu,v(σ) +

1

2
|∇σ|2H − (λ′(u)∇u,∇σ)

}
+ κ|Δσ|2H +

1 − κ

4
|∂Iμu,v(σ)|2H

≤ C9(1 + |∇σ|2H + |∇u|2H + |∇v|2H + |σ′|2H

+ |u′|2H + |v′|2H + (1 + κ)(1 + |Δu|2H + |Δv|2H)),(32)

where C9 = max
{

C4

2 + C6, C
∗
F ,

1
2 , C5,

C4

2 + C8

}
.

Let ε1, ε2, ε3 be positive numbers to be specified later. Calculate (21)+ε1×(22)+
ε2 × (23) + ε3 × (32). We have that

(1 − ε2C2 − ε3C9)|u′|2H + (1 − ε2C2 − ε3C9)|v′|2H

+ (ε2 − ε3C9)|σ′|2H + (ε1 − ε3C9(1 + κ))|Δu|2H + (ε1 − ε3C9(1 + κ))|Δv|2H

+ κ(ε3 − ε2C2κ)|Δσ|2H + ε3
1 − κ

4
|∂Iμu,v(σ)|2H

+
d

dt
{(1 + ε1)|∇u|2H + (1 + ε1)|∇v|2H +

(
ε2κ +

ε3

2

)
|∇σ|2H
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− ε3(λ
′(u)∇u,∇σ) + (2ε2 + ε3)I

μ
u,v(σ)}

≤ C10 + ε3C9

(
2 + κ + |∇u|2H + |∇v|2H + |∇σ|2H

)
,(33)

where C10 = C1 + ε1C1 + ε2C2. Now, we will fix εi, i = 1, 2, 3, as well the con-
stant κ0 in the statement of the theorem, so that the coefficients in the first three
lines of (33), i.e., 1 − ε2C2 − ε3C9, ε2 − ε3C9, ε1 − ε3C9(1 + κ), κ(ε3 − ε2C2κ),
ε3

1−κ
4 will be all positive whenever κ ∈ (0, κ0). For instance, we can take ε2 = 1

4C2
,

ε3 = min{ 1
4C9

min{1, 1
2C2

}, 1
C(λ)2 }, and then ε1 = min{min{1, 1

2C2
}, 4C9

C(λ)2 } with κ0 =

min{ 1
2 ,

1
2C9

min{1, 1
2C2

}, 2
C(λ)2 }. We note that in this case

1 − ε2C2 − ε3C9 ≥ 1

2
,(34)

ε2 − ε3C9 ≥ ε2

2
(35)

along with

ε1 − ε3C9(1 + κ) ≥ ε1

2
for all κ ∈ (0, κ0),(36)

so that the above coefficients are all bounded from below uniformly with respect
to κ. Moreover, concerning the coefficients in the third line of (33), we have that
κ(ε3 − ε2C2κ) ≥ κ ε3

2 , ε3
1−κ

4 ≥ ε3
8 for all κ ∈ (0, κ0).

Consequently, from (33) we can deduce uniform estimates for σμ = σ, uμ = u, and
vμ = v with respect to the parameter μ. We have that {σμ}μ, {uμ}μ, and {vμ}μ are
bounded in W 1,2(0, T ;H)∩L∞(0, T ;V )∩L2(0, T ;H2(Ω)), {∂Iμuμ,vμ

(σμ)}μ is bounded

in L2(0, T ;H), and {Iμuμ,vμ
(σμ)}μ is bounded in L∞(0, T ).

Therefore (cf. [6], [8]), possibly by extracting a subsequence μn ↘ 0, we conclude
that σμn → σ, uμn → u, and vμn → v weakly in W 1,2(0, T ;H)∩L2(0, T ;H2(Ω)) and
weakly star in L∞(0, T ;V ) to a triplet {σ, u, v}, which is a solution of the system
(1)–(3). Let us note also that f∗(u, v) ≤ σ ≤ f∗(u, v) a.e. in Q.

Remark 3.3. Without loss of generality, in the proof of Theorem 3.6 it could be
assumed that σ is also bounded. Thus, in view of Remarks 3.1 and 3.2 it follows that
the proof of Theorem 3.6 can be easily adapted to the system (5)–(7) as well.

3.4. Uniqueness of solutions. The purpose of this section is to discuss the
uniqueness of solutions. Before the proof of uniqueness we give an estimate for a
solution of a parabolic equation. The estimate in the following lemma will play a very
important role in the proof of uniqueness.

Lemma 3.8 (cf. [12, Theorem 3.7.1]). Let μ0 > 0 and θ be a solution of the
following initial boundary value problem:

θ′ − μ0Δθ = f in Q,(37)

∂θ

∂n
= 0 on (0, T ) × ∂Ω, θ(0) = θ0,(38)

where f and θ0 are given functions. If f ∈ Lr(0, T ;Lq(Ω)) with 1
r + N

2q < 1 for q, r ≥ 1

and θ0 ∈ L∞(Ω), then there exists a positive constant C∗ depending only on Ω, μ0, q,
r, and N such that

|θ|L∞(0,t;L∞(Ω)) ≤ C∗(|f |Lr(0,t;Lq(Ω)) + |θ0|L∞(Ω)) for 0 ≤ t ≤ T.
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Proof. First, we assume that |f |Lr(0,T ;Lq(Ω)) + |θ0|L∞(Ω) ≤ 1. Let θ be a solution
of (37)–(38). Then Theorem 3.7.1 of [12] implies that

|θ|L∞(0,t;L∞(Ω)) ≤ C∗ for 0 ≤ t ≤ T,

where C∗ is a positive constant. Next, for general f and θ0 we put θ̂ = θ
�0

, where θ is a

solution of (37)–(38) and �0 = |f |Lr(0,t;Lq(Ω)) + |θ0|L∞(Ω). Immediately, θ̂ is a solution

of (37)–(38) with f̂ = f
�0

and θ̂0 = θ0
�0

so that |θ̂|L∞(0,t;L∞(Ω)) ≤ C∗ for 0 ≤ t ≤ T

because |f̂ |Lr(0,T ;Lq(Ω)) + |θ̂0|L∞(Ω) ≤ 1. Thus we can prove this lemma.

In order to prove uniqueness we assume that Ω ⊂ R3.

Theorem 3.9. Let Ω ⊂ R3. Then the system (1)–(3) admits at most one solu-
tion.

The main idea of the proof is due to Kenmochi, Koyama, and Meyer [8].

Proof. Let {σ1, u1, v1} and {σ2, u2, v2} be solutions of (1)–(3) in the sense of
Definition 2.1. Also, we put σ = σ1 − σ2, u = u1 − u2, v = v1 − v2. For s ∈ (0, T ] we
define

L(s) = max{|f∗(u1, v1)−f∗(u2, v2)|L∞(0,s;L∞(Ω)), |f∗(u1, v1)−f∗(u2, v2)|L∞(0,s;L∞(Ω))}.

The proof is rather long. So, we divide it into several steps.
1st step.

|[σ(t) − L(s)]+|2H + |[−σ(t) − L(s)]+|2H

≤ K1 exp

{∫ t

0

(3 + |u′
1(τ)|2H + |u′

2(τ)|2H)dτ

}
(39)

×
∫ t

0

(|u(τ)|2H + |v(τ)|2H + |σ(τ)|2H + |u(τ)|2L∞(Ω) + |u′(τ)|2H)dτ for t ∈ [0, s],

where K1 is a positive constant.
Proof of 1st step. We put σ̃1 = σ1 − [σ − L(s)]+, σ̃2 = σ2 + [σ − L(s)]+ a.e. on

(0, s) × Ω. Easily, we have f∗(ui, vi) ≤ σ̃i ≤ f∗(ui, vi) for i = 1, 2, a.e. on (0, s) × Ω.
Then, Definition 2.1(iii)(b) implies that

(σ′
1(t), [σ(t) − L(s)]+) + κa(σ1(t), [σ(t) − L(s)]+)

≤ (F (u1(t), v1(t), σ1(t)) + (λ(u1))
′(t), [σ(t) − L(s)]+) for a.e. t ∈ [0, s].(40)

Also, we have

−(σ′
2(t), [σ(t) − L(s)]+) − κa(σ2(t), [σ(t) − L(s)]+)

≤ −(F (u2(t), v2(t), σ2(t)) + (λ(u2))
′(t), [σ(t) − L(s)]+) for a.e. t ∈ [0, s].(41)

By adding (40) and (41), we obtain

(σ′(t), [σ(t) − L(s)]+) + κa(σ(t), [σ(t) − L(s)]+)

≤ (F (u1(t), v1(t), σ1(t)) − F (u2(t), v2(t), σ2(t)), [σ(t) − L(s)]+)

+((λ(u1))
′(t) − (λ(u2))

′(t), [σ(t) − L(s)]+) for a.e. t ∈ [0, s]

so that
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(42)

d

dt
|[σ(t) − L(s)]+|2H

≤ M(|u(t)|H + |v(t)|H + |σ(t)|H)|[σ(t) − L(s)]+|H
+((λ′(u1)(t) − λ′(u2)(t))u

′
1(t), [σ(t) − L(s)]+) + (λ′(u2)u

′(t), [σ(t) − L(s)]+)

≤ K2(|u(t)|2H + |v(t)|2H + |σ(t)|2H + |u(t)|2L∞(Ω) + |u′(t)|2H)

+(3 + |u′
1(t)|2H)|[σ(t) − L(s)]+|2H for a.e. t ∈ [0, s],

where C(λ) = max{|λ′′|L∞(R), |λ′|L∞(R)} and K2 = M2 + 2C(λ)2. Applying the
Gronwall inequality to (42) it holds that

|[σ(t) − L(s)]+|2H ≤ K2 exp

{∫ t

0

(3 + |u′
1(τ)|2H)dτ

}

×
∫ t

0

(|u(τ)|2H + |v(τ)|2H + |σ(τ)|2H + |u(τ)|2L∞(Ω) + |u′(τ)|2H)dτ for t ∈ [0, s].

We can obtain similar estimate for [−σ(t) − L(s)]+. Hence, we get (39).
2nd step. It holds that

1

2
(|u(t)|2H + |v(t)|2H) ≤ 4M

∫ t

0

(|u(τ)|2H + |v(τ)|2H + |σ(τ)|2H)dτ, t ∈ [0, T ],(43) ∫ t

0

|u′(τ)|2Hdτ ≤ 4M

∫ t

0

(|u(τ)|2H + |v(τ)|2H + |σ(τ)|2H)dτ, t ∈ [0, T ].(44)

The proof of this step is omitted since it is quite standard.
3rd step.

|u|L∞(0,t;L∞(Ω)) ≤ C∗M(|u|L8(0,t;H) + |v|L8(0,t;H) + |σ|L8(0,t;H)),

|v|L∞(0,t;L∞(Ω)) ≤ C∗M(|u|L8(0,t;H) + |v|L8(0,t;H) + |σ|L8(0,t;H)) for 0 ≤ t ≤ T,

where C∗ is a positive constant given by Lemma 3.8.
Proof of 3rd step. Lemma 3.8 guarantees that

|u|L∞(0,t;L∞(Ω)) ≤ C∗|h(σ1, u1, v1) − h(σ2, u2, v2)|L8(0,t;H) for 0 ≤ t ≤ T.

Therefore, by using H3, we conclude that the assertion of the 3rd step is true.
4th step. There exists a positive constant K3 such that

|σ|2L∞(0,s;H) ≤ K3s
1/4(|u|2L∞(0,s;H) + |v|2L∞(0,s;H) + |σ|2L∞(0,s;H)) for 0 ≤ s ≤ T.(45)

Proof of 4th step. It is easy to see that

|σ| ≤ |[σ − L(s)]+ − [−σ − L(s)]+ − σ| + |[σ − L(s)]+| + |[−σ − L(s)]+|
≤ L(s) + |[σ − L(s)]+| + |[−σ − L(s)]+| a.e. on (0, s) × Ω.(46)

It follows from the definition of L(s) and the 3rd step that

L(s)2 ≤ 4M2
0 (|u|2L∞(0,s;L∞(Ω)) + |v|2L∞(0,s;L∞(Ω)))

≤ 24M2
0C

2
∗M

2s1/4(|u|2L∞(0,s;H) + |v|2L∞(0,s;H) + |σ|2L∞(0,s;H)).(47)
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On account of (39), (46), (47), the 3rd step, and (44), we observe that

|σ|2L∞(0,s;H) ≤ K3s
1/4(|u|2L∞(0,s;H) + |v|2L∞(0,s;H) + |σ|2L∞(0,s;H))

+K4

∫ s

0

(|u(t)|2H + |v(t)|2H + |σ(t)|2H)dt

+K4

∫ s

0

(|u(t)|2L∞(Ω) + |u′(t)|2H)dt

≤ K4(1 + T 3/4 + C∗MT + 4MT 3/4)s1/4

×(|u|2L∞(0,s;H) + |v|2L∞(0,s;H) + |σ|2L∞(0,s;H)),

where K4 = 24M2
0C

2
∗M

2 + K1 exp{
∫ T

0
(3 + |u′

1(τ)|2H + |u′
2(τ)|2H)dτ}. Thus we have

proved the 4th step.
Proof of the uniqueness. By (43) we have

|u|2L∞(0,s;H)+|v|2L∞(0,s;H) ≤ 8Ms(|u|2L∞(0,s;H)+|v|2L∞(0,s;H)+|σ|2L∞(0,s;H)) for 0 ≤ s ≤ T.

This inequality together with (45) implies that

|u|2L∞(0,s;H) + |v|2L∞(0,s;H) + |σ|2L∞(0,s;H)

≤ (8MT 3/4 + K3)s
1/4(|u|2L∞(0,s;H) + |v|2L∞(0,s;H) + |σ|2L∞(0,s;H)) for 0 ≤ s ≤ T.

Here, we take s1 > 0 satisfying (8MT 3/4 + K3)s
1/4
1 ≤ 1

2 . Then we see that

|u|2L∞(0,s1;H) + |v|2L∞(0,s1;H) + |σ|2L∞(0,s1;H) = 0,

that is, u = v = σ = 0 a.e. on (0, s1) × Ω. The choice of s1 is independent of initial
values. Therefore, we can obtain the uniqueness of the solution.

3.5. Existence and uniqueness in the case when Ω ⊂ R3. In this section
we present an existence and uniqueness result for the case when Ω ⊂ R3.

Theorem 3.10. Let Ω ⊂ R3. Then (i) the system (1)–(3) with κ = 0 possesses
a unique solution; (ii) there exists a constant κ0 > 0 such that the system (1)–(3)
possesses a unique solution for any κ satisfying 0 < κ < κ0.

Proof. (i) Let us note that the validity of the estimates for the approximate
solutions from section 3.3.2 extends to the constructed solution {σ(κ), u(κ), v(κ)} of
the system (1)–(3) whenever 0 < κ < κ0 (cf. (33)–(36)). Therefore, in view of
Theorem 3.9 and arguing as in [8], it could be shown that {σ(κ), u(κ), v(κ)} con-
verges in a suitable sense to the unique solution {σ, u, v} of the system (1)–(3) with
κ = 0. Moreover, σ satisfies σ ∈ L∞(0, T ;V ). (ii) is a corollary of Theorems 3.6 and
3.9.
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LINEAR OPERATORS∗
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Abstract. In this work, we show how to construct, by means of the function space interpolation
theory, a natural norm ||| · ||| for a generic linear coercive and nonsymmetric operator L. The natural
norm ||| · ||| allows for continuity and inf-sup conditions which hold independently of L. In particular
we will consider the convection-diffusion-reaction operator, for which we obtain continuity and inf-
sup conditions that are uniform with respect to the operator coefficients. In this case, our results
give some insight for the analysis of the singular perturbed behavior of the operator, occurring
when the diffusivity coefficient is small. Furthermore, our analysis is preliminary to applying some
recent numerical methodologies (such as least-squares and adaptive wavelet methods) to this class
of operators, and more generally to analyzing any numerical method within the classical framework
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1. Introduction. Consider the convection-diffusion-reaction linear operator

w �→ Lw := −κΔw + β · ∇w + ρw,(1.1)

where the argument w is a function on the domain Ω ⊂ R
n, κ is a constant positive

diffusion coefficient, β : Ω → R
n is a velocity field, and ρ : Ω → R is a reaction

coefficient. Under suitable assumptions on the coefficients, e.g., ρ− 1/2 divβ ≥ 0, the
operator L is an isomorphism from V := H1

0 (Ω) into V ∗ := H−1(Ω). In fact, given a
source term f ∈ V ∗, the boundary value problem{

Lu = f in Ω,

u = 0 on ∂Ω
(1.2)

admits a unique solution u ∈ V . Nevertheless, the norm of L, as linear operator from
H1

0 (Ω) into H−1(Ω),

‖L‖H1
0 (Ω)→H−1(Ω) := sup

w∈H1
0 (Ω)

‖Lw‖H−1(Ω)

‖w‖H1
0 (Ω)

= sup
w∈H1

0 (Ω)

sup
v∈H1

0 (Ω)

〈Lw, v〉
‖w‖H1

0 (Ω)‖v‖H1
0 (Ω)

,

and the norm of its inverse L−1

‖L−1‖H−1(Ω)→H1
0 (Ω) : = sup

w∈H1
0 (Ω)

‖w‖H1
0 (Ω)

‖Lw‖H−1(Ω)

=

(
inf

w∈H1
0 (Ω)

sup
v∈H1

0 (Ω)

〈Lw, v〉
‖w‖H1

0 (Ω)‖v‖H1
0 (Ω)

)−1
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depend on the coefficients κ, β, and ρ.
Our analysis encompasses any linear and coercive operator L, of which (1.1) is a

model case. Given such an operator L, we construct a norm ||| · ||| on its domain V
such that the continuity

sup
w∈V

sup
v∈V

〈Lw, v〉
|||w||||||v||| ≤ Cc < +∞(1.3)

and the inf-sup condition

inf
w∈V

sup
v∈V

〈Lw, v〉
|||w||||||v||| ≥ Cis > 0(1.4)

hold true with constants Cc and Cis independent of L. Therefore, for the example
(1.1), Cc and Cis will be independent of the coefficients κ, β, and ρ.

If L were symmetric, besides coercive, then conditions (1.3)–(1.4) would hold true

for the so-called energy norm, i.e., by setting |||w||| := 〈Lw,w〉1/2, with Cc = Cis = 1.
Our aim is to extend this trivial result to the nonsymmetric case, obtaining a suitable
||| · ||| by means of the function space interpolation.

The norm ||| · |||, for which (1.3)–(1.4) hold true, depends on L and gives the
natural topology for L. For the example (1.1)–(1.2), given a source term f and a
perturbed source term f + δf , denoting by u and u+ δu the solutions of Lu = f and
L(u + δu) = f + δf , respectively, one easily gets from (1.3)–(1.4)

|||δu|||
|||u||| ≤ Cc

Cis
|||δf |||∗
|||f |||∗

;

i.e., the relative perturbation of the solution of (1.2) is uniformly bounded by the
relative perturbation of the source term, ||| · |||∗ being the dual of norm of ||| · |||. This
is the proper framework to understand the behavior of (1.1)–(1.2) for small values of
the diffusivity κ, when the higher order term −κΔ acts as a singular perturbation on
the lower order term β · ∇ + ρ Id.

Conditions (1.3)–(1.4) are also the proper framework for using some recent nu-
merical methodologies for solving (1.1)–(1.2). Particularly, we are thinking of the
least-squares formulations in the context of finite element methods [6] or in the con-
text of wavelet methods [12], and of adaptive wavelet methods [11] (see also [10, 2, 5]).

More generally, (1.3)–(1.4) are the starting point for the classical analysis of
numerical methods devoted to (1.1)–(1.2). When the continuity and inf-sup conditions
are known for an operator L, then ideal numerical methods should preserve them at
the discrete level. This happens, for example, with symmetric and coercive operators
(see [9]) or with some indefinite problems (as in mixed formulations; see [7]), and
it is in general the key property for the classical error theory (see, e.g., [1]). Even
though there are very effective numerical methods for solving (1.1)–(1.2), such as the
streamline-upwind Petrov-Galerkin (SUPG) finite element method (see [8] and [17]),
the error analysis of them typically does not follow the classical argument mentioned
above and it is not completely satisfactory (see [18]). We hope this paper could give
some insights for a deeper theoretical understanding of numerical methods devoted to
(1.1)–(1.2) (we refer to [18, section 4], [19], and [3, section 2.1] for a further discussion
on the topic).

This work is an extension of our previous analysis proposed in [18], where the
convection-diffusion operator, without the reaction term, is considered. Different
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estimates for (1.1)–(1.2) have been obtained by other authors; see, for example, the
analysis by Bertoluzza, Canuto, and Tabacco in [4, section 2.1] or the paper by Dörfler
[13]. The peculiarity of our paper is that both conditions (1.3)–(1.4) are obtained for
(1.1)–(1.2).

The outline of this paper is as follows: in section 2 we present our methodology
for obtaining (1.3)–(1.4) in the case of a generic nonsymmetric and coercive operator
L. Then we apply the theory—first, in section 3.1, to the very simple one-dimensional
(n = 1) convection-diffusion-reaction model problem, and then, in section 3.2, to the
multidimensional (n > 1) case—and discuss the results.

2. The abstract framework. In this section, we present our idea for obtaining
uniform continuity and inf-sup conditions (1.3)–(1.4).

Let V be a Hilbert space, and let V ∗ be its dual. In the present section we
consider a generic coercive isomorphism L : V → V ∗ and the associated bilinear form

a(w, v) := V ∗〈Lw, v〉V ∀w, v ∈ V.(2.1)

The abstract variational problem which corresponds to (1.2) is

find u ∈ V such that a(u, v) = V ∗〈f, v〉V ∀v ∈ V.(2.2)

We also assume that ‖ · ‖V , the norm of V , is the energy norm for L, i.e.,

a(w,w) = ‖w‖2
V ∀w ∈ V.(2.3)

We split L = Lsym + Lskew, and introduce the bilinear forms asym(·, ·) and askew(·, ·)
on V × V such that

V ∗〈Lsymw, v〉V := asym(w, v) :=
1

2
(a(w, v) + a(v, w)) ∀w, v ∈ V,

V ∗〈Lskeww, v〉V := askew(w, v) :=
1

2
(a(w, v) − a(v, w)) ∀w, v ∈ V.

(2.4)

In other words Lsym is the symmetric part of L (i.e., asym(w, v) = asym(v, w) ∀w, v ∈
V ), and we have

asym(w,w) = ‖w‖2
V ∀w ∈ V,

asym(w, v) ≤ ‖w‖V ‖v‖V ∀w, v ∈ V,
(2.5)

while Lskew is the skew-symmetric part of L (i.e., askew(w, v) = −askew(v, w) ∀w, v ∈
V ).

Finally, we define

‖w‖2
A0

:= ‖w‖2
V ∀w ∈ V,

‖w‖2
A1

:= ‖w‖2
V + ‖Lskeww‖2

V ∗ ∀w ∈ V,
(2.6)

where

‖Lskeww‖V ∗ = sup
v∈V

askew(w, v)

‖v‖V
.

We also set A0 = A1 = V from the algebraic standpoint; in other words A0 and A1

are the same space with the same topology, but the two norms ‖ · ‖A0 and ‖ · ‖A1 are
different (even though equivalent, up to constants depending on L).
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The following lemma states two basic estimates; we explicitly compute the con-
stants appearing in the estimates to highlight their independence of L.

Lemma 2.1. We have

a(w, v) ≤ 21/2‖w‖Ai‖v‖A1−i ∀w, v ∈ V,(2.7)

sup
v∈V

a(w, v)

‖v‖A1−i

≥ 5−1/2‖w‖Ai
∀w ∈ V(2.8)

for i = 0 or i = 1.
Proof. Let v and w be two generic elements of V .
By using the Cauchy–Schwarz inequality we easily get

a(w, v) = asym(w, v) + askew(w, v)

≤ ‖w‖V ‖v‖V + ‖Lskeww‖V ∗‖v‖V
≤ 21/2‖w‖A1‖v‖A0 .

Similarly, since askew(w, v) = −askew(v, w), we also get a(w, v) ≤ 21/2‖w‖A0‖v‖A1 ,
and then (2.7) follows.

Recalling (2.3) and (2.5), we have

‖w‖V ≤ sup
v∈V

a(w, v)

‖v‖V
(2.9)

and

sup
v∈V

asym(w, v)

‖v‖V
= ‖w‖V ≤ sup

v∈V

a(w, v)

‖v‖V
.(2.10)

Then, we get

‖Lskeww‖V ∗ = sup
v∈V

askew(w, v)

‖v‖V

≤ sup
v∈V

a(w, v)

‖v‖V
+ sup

v∈V

asym(w, v)

‖v‖V

≤ 2 sup
v∈V

a(w, v)

‖v‖V
,

(2.11)

and collecting (2.9) and (2.11), we get

‖w‖A1 ≤ 51/2sup
v∈V

a(w, v)

‖v‖A0

,(2.12)

which is (2.8) for i = 1. We are left to show that

‖w‖A0
≤ 51/2sup

v∈V

a(w, v)

‖v‖A1

;(2.13)

for that purpose, we make use of a duality argument. Reasoning as for (2.12) we
obtain

‖w̃‖A1 ≤ 51/2sup
v∈V

a(v, w̃)

‖v‖A0

(2.14)
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for any w̃ ∈ V . Given a generic w ∈ V , we associate with it w̃ ∈ V such that
a(v, w̃) = asym(v, w) ∀v ∈ V ; thanks to (2.14) we have

‖w̃‖A1 ≤ 51/2sup
v∈V

a(v, w̃)

‖v‖A0

= 51/2sup
v∈V

asym(v, w)

‖v‖A0

= 51/2‖w‖A0 ,

whence

‖w‖2
A0

= asym(w,w) = a(w, w̃)

≤ sup
v∈V

a(w, v)

‖v‖A1

· ‖w̃‖A1

≤ 51/2sup
v∈V

a(w, v)

‖v‖A1

· ‖w‖A0 ,

which completes the proof.
From Lemma 2.1 we can obtain a family of intermediate estimates by means of the

function spaces interpolation. We follow the notation and the definitions of [20]; for
the reader’s convenience, we recall the fundamental definition of interpolated norm,
according to the K-method : given 0 < θ < 1 and 1 ≤ p ≤ +∞, we define

‖w‖(A0,A1)θ,p :=

⎡
⎣∫ +∞

0

inf
w0∈A0,w1∈A1,

w0+w1=w

(
t−θ‖w0‖A0 + t1−θ‖w1‖A1

)p dt

t

⎤
⎦

1/p

.(2.15)

Generally (A0, A1)θ,p is the space of functions w ∈ A0 +A1 such that ‖w‖(A0,A1)θ,p <
+∞. In our particular case, A0 and A1 are the same space from the algebraic stand-
point (A0 ≡ A1 ≡ V ), and ‖ · ‖(A0,A1)θ,p simply is a new norm on V .

Lemma 2.2. Given θ, p, and p′ such that 0 < θ < 1, 1 ≤ p ≤ +∞, and
1/p + 1/p′ = 1, we have

a(w, v) ≤ 21/2‖w‖(A0,A1)θ,p‖v‖(A0,A1)1−θ,p′
∀w, v ∈ V,(2.16)

sup
v∈V

a(w, v)

‖v‖(A0,A1)1−θ,p′

≥ 5−1/2‖w‖(A0,A1)θ,p ∀w ∈ V.(2.17)

Proof. Typically interpolation theorems are stated in terms of linear operators
instead of bilinear forms. Then it is more convenient to rephrase (2.7) as

‖Lw‖A∗
1
≤ 21/2 ‖w‖A0

,

‖Lw‖A∗
0
≤ 21/2 ‖w‖A1

(2.18)

and (2.8) as

‖w‖A0
≤ 51/2 ‖Lw‖A∗

1
,

‖w‖A1 ≤ 51/2 ‖Lw‖A∗
0

(2.19)

∀ w ∈ V .
From (2.18) and thanks to the theorems in [20, sections 1.3.3 and 1.11.2], we get

(2.16). Proceeding similarly for L−1, from (2.19) we obtain

‖L−1φ‖(A0,A1)∗1−θ,p′
≤ 51/2 ‖φ‖(A0,A1)θ,p
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for any φ ∈ V ∗, and that gives (2.17).

Thanks to (2.5), Lsym is an isomorphism from V into V ∗ ≡ Lsym(V ); henceforth,
we also assume that Lskew is injective. Then we introduce the two Hilbert spaces C0

and C1:

C0 := Lskew(V ) with ‖φ‖C0
:= ‖L−1

skewφ‖V ,
C1 := Lsym(V ) with ‖φ‖C1

:= ‖L−1
symφ‖V = ‖φ‖V ∗ .

(2.20)

In the next lemma we analyze the structure of ‖ · ‖(A0,A1)θ,p .

Lemma 2.3. Given θ, p, and p′ such that 0 < θ < 1, 1 ≤ p ≤ +∞, and
1/p + 1/p′ = 1, we have

1/10 ‖w‖2
(A0,A1)θ,p

≤ ‖w‖2
V + ‖Lskeww‖2

(C0,C1)θ,p
≤ 2‖w‖2

(A0,A1)θ,p
∀w ∈ V.(2.21)

Proof. Since ‖w‖V ≤ ‖w‖Ai with i = 0, 1, then ‖w‖V ≤ ‖w‖(A0,A1)θ,p follows by
a straightforward application of the interpolation theorem (e.g., [20, section 1.3.3]).
We also have

‖Lskeww‖C0 = ‖w‖A0 ,

‖Lskeww‖C1 ≤ ‖w‖A1 ,

which gives ‖Lskeww‖(C0,C1)θ,p ≤ C‖w‖(A0,A1)θ,p , whence ‖w‖2
V +‖Lskeww‖2

(C0,C1)θ,p
≤

2‖w‖2
(A0,A1)θ,p

.

In order to complete the proof, we deal directly with the definition of interpolated
norm (2.15). For any t > 0 consider the two splittings

w = w̃0(t) + w̃1(t) with w̃i(t) ∈ V, i = 1, 2,

w = ŵ0(t) + ŵ1(t) with ŵi(t) ∈ V, i = 1, 2.
(2.22)

Then define w0(t) ∈ V and w1(t) ∈ V such that Lwi(t) = Lsymw̃i(t) + Lskewŵi(t),
i.e.,

a(wi(t), v) = asym(w̃i(t), v) + askew(ŵi(t), v) ∀v ∈ V, i = 0, 1,(2.23)

whence w = w0(t) + w1(t) ∀t > 0.

Thanks to (2.8) and to the properties of asym(·, ·) and askew(·, ·) we have

‖w0(t)‖A0 ≤ 51/2 sup
v∈V

a(w0(t), v)

‖v‖A1

≤ 51/2

(
sup
v∈V

asym(w̃0(t), v) − askew(v, ŵ0(t))

‖v‖A1

)

≤ 51/2

(
sup
v∈V

asym(w̃0(t), v)

‖v‖V
+ sup

v∈V

askew(v, ŵ0(t))

‖Lskewv‖V ∗

)
≤ 51/2 (‖w̃0(t)‖V + ‖ŵ0(t)‖V ) .

(2.24)
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In a similar way, we have

‖w1(t)‖A1 ≤ 51/2 sup
v∈V

a(w1(t), v)

‖v‖A0

≤ 51/2

(
sup
v∈V

asym(w̃1(t), v) + askew(ŵ1(t), v)

‖v‖A0

)

≤ 51/2

(
sup
v∈V

asym(w̃1(t), v)

‖v‖V
+ sup

v∈V

askew(ŵ1(t), v)

‖v‖V

)
≤ 51/2 (‖w̃1(t)‖V + ‖Lskewŵ1(t)‖V ∗) .

(2.25)

From (2.15), by the triangle inequality and using (2.24)–(2.25), we have

‖w‖(A0,A1)θ,p ≤
[∫ +∞

0

(
t−θ‖w0(t)‖A0 + t1−θ‖w1(t)‖A1

)p dt

t

]1/p

≤ 51/2

[∫ +∞

0

(
t−θ‖w̃0(t)‖V + t−θ‖ŵ0(t)‖V

+ t1−θ‖w̃1(t)‖V + t1−θ‖Lskewŵ1(t)‖V ∗
)p dt

t

]1/p

≤ 51/2

[∫ +∞

0

(
t−θ‖w̃0(t)‖V + t1−θ‖w̃1(t)‖V

)p dt

t

]1/p

+

[∫ +∞

0

(
t−θ‖Lskewŵ0(t)‖C0 + t1−θ‖Lskewŵ1(t)‖C1

)p dt

t

]1/p

.

Finally, taking the infimum over all w̃0 ∈ V , and w̃1 = w − w̃0 ∈ V , ŵ0 ∈ V
and ŵ1 = w − ŵ0 ∈ V , and using [20, 1.3.3.(f)], we finally get ‖w‖(A0,A1)θ,p ≤
51/2

(
‖w‖V + ‖Lskeww‖(C0,C1)θ,p

)
, completing the proof of (2.21).

When p = p′ = 2 and θ = 1−θ = 1/2, Lemma 2.2 gives the continuity and inf-sup
conditions for L, as stated in section 1, where ||| · ||| = ‖ · ‖(A0,A1)1/2,2

. In particular,
under the hypotheses of Lemma 2.3, we have the following obvious corollary.

Corollary 2.4. Under the assumption of Lemma 2.3 and setting

||| · ||| :=
(
‖ · ‖2

V + ‖Lskew · ‖2
(C0,C1)1/2,2

)1/2

,(2.26)

we have the continuity and inf-sup conditions (1.3)–(1.4) for L, with constants Cc and
Cis independent of L.

The particular case considered in Corollary 2.4 is of interest from the numerical
analysis standpoint, as discussed in [18, section 4].

3. The convection-diffusion-reaction operator. We now apply the results
of the previous section to the convection-diffusion-reaction operator. In Lemmas 2.1–
2.3 we have explicitly computed the constants involved into the estimates, in order
to emphasize that the estimates do not depend on L; henceforth, for the sake of
simplicity, we will use generic constants denoted by C, C1, C2, which are independent
on the operator coefficients κ, β, and ρ and on the domain Ω.
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3.1. The one-dimensional case. We start with the analysis of the very simple
one-dimensional operator, with constant coefficients κ > 0 and ρ ≥ 0 and unitary
velocity. Then, for this subsection only, we will consider a special case of (1.1), which
is

w �→ Lw := −κw′′ + w′ + ρw,(3.1)

where the argument w is a function of the interval Ω = [0, 1].
We consider first, and with particular emphasis, the ordinary differential equation

with homogeneous Dirichlet boundary conditions (1.2). The variational formulation
(2.2) reads as

find u ∈ V such that a(u, v) =

∫ 1

0

fv ∀v ∈ V,

where

V = H1
0 (0, 1) with ‖ · ‖2

V = κ| · |2H1 + ρ‖ · ‖2
L2 ,

a(w, v) = κ

∫ 1

0

w′v′ +

∫ 1

0

w′v + ρ

∫ 1

0

wv.
(3.2)

Then Lsymw = −κw′′ + ρw, Lskeww = w′, asym(w, v) = κ
∫ 1

0
w′v′ + ρ

∫ 1

0
wv, and

askew(w, v) =
∫ 1

0
w′v. From the algebraic standpoint, C0 = L2

0(0, 1) and C1 =
H−1(0, 1), where L2

0 is the subspace of L2 of zero mean value functions, its natu-
ral norm is ‖ · ‖L2

0
:= ‖ · ‖L2 , and H−1 is the dual of H1

0 , endowed with the dual norm

‖ · ‖H−1 = supv∈H1
0 (0,1) 〈·, v〉 /|v|H1(we recall that | · |H1 := [

∫ 1

0
(w′)2]1/2 is a norm on

H1
0 ). It is easy to see that L2

0 is a dense subspace of H−1. From Corollary 2.4 we
immediately have the following result.

Theorem 3.1. For the case (3.1)–(3.2), uniform continuity and inf-sup condi-
tions (1.3)–(1.4) hold true with respect to the norm

w �→ |||w||| =
(
κ|w|2H1 + ‖w′‖2

(C0,C1)1/2,2
+ ρ‖w‖2

L2

)1/2

.(3.3)

Now we focus our attention on ||| · ||| in (3.3) in order to better understand its struc-
ture. Roughly speaking, the term ‖w′‖(C0,C1)1/2,2

is related to the skew-symmetric
part of L, which is the first order derivative. Then we expect w �→ ‖w′‖(C0,C1)1/2,2

to
act as a 1/2-order norm uniformly on the operator coefficients κ and ρ. That is in fact
stated in the next theorem: we show that ‖w′‖(C0,C1)1/2,2

stays between the H1/2-

seminorm and H
1/2
00 -norm, where H1/2 := (L2, H1)1/2,2 and H

1/2
00 := (L2, H1

0 )1/2,2
are the two usual Hilbert spaces of order 1/2, endowed with the usual norms given
by interpolation (see [15]), and |w|H1/2 is the seminorm ‖w−Π0w‖H1/2 , Π0· denoting
the mean value of its argument.

Theorem 3.2. For the case (3.1)–(3.2), we have

C1|w|H1/2 ≤ ‖w′‖(C0,C1)1/2,2
≤ C2‖w‖H1/2

00
∀w ∈ V.(3.4)

Proof. When ρ = 0, (3.4) follows from (3.18); we assume henceforth that ρ > 0.
We consider first the left inequality in (3.4), i.e.,

C|w|H1/2 ≤ ‖w′‖(C0,C1)1/2,2
∀w ∈ V.(3.5)
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It is easy to see that ‖z′‖L2 � ‖z‖H1 and ‖z′‖H−1 � ‖z‖L2 for any z ∈ H1 ∩ L2
0;

then, thanks to the theorems in [20, sections 1.3.3, 1.11.2, and 1.17.1], the first order
derivative is a topological isomorphism from H1/2 ∩ L2

0 into (H−1, L2)1/2,2, which
means

|w|H1/2 = ‖w − Π0w‖H1/2 � ‖w′‖(H−1,L2)1/2,2
.(3.6)

We introduce now the new space C̃0: from the algebraic standpoint we set C̃0 := L2,

and we define ‖ · ‖C̃0
:=

(
κ‖ · ‖2

L2 + ρ‖ · ‖2
H−1

)1/2
. Our next step is to show that

‖φ‖(H−1,L2)1/2,2
≤ C‖φ‖(C̃0,C1)1/2,2

∀φ ∈ L2.(3.7)

For that purpose we split a generic φ ∈ L2 into

φ = φhigh + φlow,(3.8)

where φhigh, φlow ∈ L2 are, roughly speaking, the high frequency part and the low
frequency part of φ, respectively, in such a way that

κ1/2‖φhigh‖L2 + ρ1/2‖φlow‖H−1 ≤ C‖φ‖C̃0
,(3.9)

κ−1/2‖φhigh‖H−1 + ρ−1/2‖φlow‖L2 ≤ C‖φ‖C1 .(3.10)

For that purpose, we introduce an auxiliary problem: let ψ ∈ H1
0 be the solution of

Lsymψ = φ in (0, 1)(3.11)

and let φhigh := −κψ′′ and φlow := ρψ.
Multiplying both members of the differential equation (3.11) by −ψ′′, integrating

over (0, 1), and integrating by parts we get

κ‖ψ′′‖2
L2 + ρ‖ψ′‖2

L2 = −
∫ 1

0

φψ′′;

then, thanks to the Cauchy–Schwarz inequality, we have

‖φhigh‖L2 = ‖κψ′′‖L2 ≤ ‖φ‖L2 .(3.12)

Integrating (3.11) we have

−κψ′ + κψ′(0) + ρΨ = Φ,

where Ψ(x) =
∫ x

0
ψ(t) dt and analogously Φ(x) =

∫ x

0
φ(t) dt. After multiplying both

members by Ψ − Π0Ψ, integrating over (0, 1), and integrating by parts, we obtain

κ‖ψ‖2
L2 + ρ‖Ψ − Π0Ψ‖2

L2 =

∫ 1

0

Φ(Ψ − Π0Ψ),

whence now

‖φlow‖H−1 = ρ‖Ψ − Π0Ψ‖L2 ≤ ‖Φ − Π0Φ‖L2 = ‖φ‖H−1 .(3.13)

Collecting (3.12)–(3.13) we obtain (3.9). From (3.11) it is also easy to obtain the esti-
mate (κ‖ψ′‖2

L2 + ρ‖ψ‖2
L2)1/2 ≤ ‖φ‖V ∗ = ‖φ‖C1

, which gives (3.10) straightforwardly.
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Consider now the linear operator φ �→ (φhigh, φlow) from L2 into L2 × L2, with
φhigh, φlow as defined earlier: by interpolation from the two continuity estimates (3.9)
and (3.10) we get

‖φhigh‖(L2,H−1)1/2,2
+ ‖φlow‖(H−1,L2)1/2,2

≤ C‖φ‖(C̃0,C1)1/2,2
,(3.14)

whence, by using the triangle inequality and since ‖ · ‖(L2,H−1)1/2,2
= ‖ · ‖(H−1,L2)1/2,2

,
we obtain (3.7). Finally (3.6) and (3.7) gives (3.5).

Now we consider the right equivalence in (3.4), which is

‖w′‖(C0,C1)1/2,2
≤ C‖w‖

H
1/2
00

∀w ∈ V.(3.15)

Given w ∈ H1
0 it is easy to see that

‖w′‖C0 = ‖w‖V = ‖w‖C∗
1

and

‖w′‖C1 = ‖w′‖V ∗ ≤ ‖w‖C̃∗
0
,

whence (thanks to the theorem in [20, section 1.11.2])

‖w′‖(C0,C1)1/2,2
≤ ‖w‖(C∗

1 ,C̃
∗
0 )1/2,2

= ‖w‖(C̃0,C1)∗1/2,2
.(3.16)

Moreover, passing to the duals in (3.7), still using the theorem in [20, section 1.11.2],
we also have

‖w‖(C̃0,C1)∗1/2,2
≤ ‖w‖(H−1,L2)∗1/2,2

= ‖w‖(H1
0 ,L

2)1/2,2
= ‖w‖

(H
1/2
00 )

.(3.17)

Inequalities (3.16)–(3.17) give (3.15).
It is worth noting that Theorems 3.1 amd 3.2 allow for ρ = 0 as well; in that case

we have ‖w′‖(C0,C1)1/2,2
= ‖w′‖(H−1,L2

0)1/2,2
, since the coefficient κ easily cancels when

interpolating. Let H1
# be the subspace of H1 of functions w such that w(0) = w(1)

endowed with the ‖ · ‖H1
#

:= ‖ · ‖H1 , and H
1/2
# := (L2, H1

#)1/2,2 endowed with the

norm given by interpolation. Given z ∈ H1
# ∩ L2

0, one has ‖z′‖L2
0
� ‖z‖H1

#
and

‖z′‖H−1 � ‖z‖L2 , whence (making use of the theorems in [20, sections 1.3.3, 1.11.2,
and 1.17.1], for example) we have ‖z′‖(H−1,L2

0)1/2,2
� ‖z‖(L2,H1

#)1/2,2
and therefore

‖w′‖(H−1,L2
0)1/2,2

� ‖w − Π0w‖(L2,H1
#)1/2,2

, for any w ∈ H1
0 ; this means that we have

the following characterization:

ρ = 0 ⇒ |w|
H

1/2
#

:= ‖w − Π0w‖(L2,H1
#)1/2,2

= ‖w′‖(C0,C1)1/2,2
∀w ∈ V.(3.18)

We may also deal with different kinds of boundary conditions. Consider the
example {

Lu = f in (0, 1),

u(0) = u′(1) = 0,
(3.19)

where L is still formally given by (3.1). The variational formulation (2.2) now requires

V =
{
v ∈ H1(0, 1) such that v(0) = 0

}
,

a(w, v) = κ

∫ 1

0

w′v′ +

∫ 1

0

w′v + ρ

∫ 1

0

wv.
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The key point is that the bilinear form a(·, ·) is coercive on V ; accordingly, we define
‖ · ‖V as

‖w‖2
V := a(w,w) = κ|w|2H1 + ρ‖w‖2

L2 +
1

2
w(1)2,

and we now have

asym(w, v) = κ

∫ 1

0

w′v′ + ρ

∫ 1

0

wv +
1

2
w(1)v(1),

askew(w, v) =

∫ 1

0

w′v − 1

2
w(1)v(1).

Then we can still make use of the theory of section 2 and obtain uniform inf-sup and
continuity conditions from Corollary 2.4.

When the bilinear form a(·, ·) is not coercive, we cannot use the results of section
2. This is the case of {

−κu′′ + u′ = f in (0, 1),

u′(0) = u(1) = 0,
(3.20)

i.e., when ρ = 0 and we prescribe a Neumann boundary condition at the inflow x = 0;
then V =

{
v ∈ H1(0, 1) such that v(1) = 0

}
and

a(w,w) = κ|w|2H1 + ρ‖w‖2
L2 −

1

2
w(1)2,

which is not positive in general, when κ and ρ are small enough. However, when
f = 1 the solution of (3.20) is u(x) = κ (exp(1/κ) − exp(x/κ)) + x− 1; for κ → 0 we
have ‖u‖L2 ≈ κ exp(1/κ), whence we see that (3.20) is not uniformly well posed with
respect to κ.

3.2. The multidimensional case. In this section, we analyze the multidimen-
sional convection-diffusion-reaction operator with Dirichlet homogeneous boundary
conditions (1.1)–(1.2), and the associated bilinear form

a(w, v) = κ

∫
Ω

∇w · ∇v +

∫
Ω

β · ∇w v +

∫
Ω

ρwv,

which is defined on H1
0 (Ω) ×H1

0 (Ω) (see, e.g., [15]). Under the assumption

ρ− 1

2
div(β) ≥ 0(3.21)

the bilinear form a(·, ·) is coercive, whence we set

V = H1
0 (Ω),

‖w‖2
V = a(w,w) = κ|w|2H1 +

(
ρ− 1

2
div(β)

)
‖w‖2

L2 .
(3.22)

The decomposition (2.4) gives

asym(w, v) = κ

∫
Ω

∇w · ∇v +

∫
Ω

(
ρ− 1

2
div(β)

)
wv,

askew(w, v) =

∫
Ω

β · ∇w v +
1

2

∫
Ω

div(β)wv.

(3.23)
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For the sake of simplicity, we shall consider henceforth the case

div(β) = 0.(3.24)

In order to apply Corollary 2.4 to this case, we need Lskew = β · ∇ to be injective on
V . This is assured, for example, by the assumption

there exists a smooth φ : Ω → R such that ∇φ · β ≥ C > 0;(3.25)

we refer to [14] for further details. Definition (2.20) says that, from the algebraic
standpoint, C0 is the space of the streamline derivatives β · ∇w of functions w ∈ H1

0 ,
while C1 is H−1. Corollary 2.4 then gives the following result.

Theorem 3.3. For the case (3.22), (3.24)–(3.25), the uniform continuity and
inf-sup conditions (1.3)–(1.4) hold true with respect to the norm

w �→ |||w||| =
(
κ|w|2H1 + ‖β · ∇w‖2

(C0,C1)1/2,2
+ ρ‖w‖2

L2

)1/2

.(3.26)

Roughly speaking, we expect ‖β ·∇w‖(C0,C1)1/2,2
to be of order 1/2 in the direction

of β and of order 0 in the directions orthogonal to β (this can be more easily seen for
the case ρ = 0), but a rigorous analysis of the structure of ‖β ·∇w‖(C0,C1)1/2,2

is more
difficult now than for the simpler one-dimensional case considered in section 3.1. The
next result shows that ‖β · ∇w‖(C0,C1)1/2,1

has some uniform bounds independent of
κ and ρ (though the anisotropy is not investigated). Then we end with a comparison
between ‖β · ∇w‖(C0,C1)1/2,1

and ‖β · ∇w‖(C0,C1)1/2,2
.

Proposition 3.4. For the case (3.22), (3.24)–(3.25), we have

Cp‖β‖1/2
L∞diam(Ω)−1/2‖w‖L2 ≤ ‖β · ∇w‖(C0,C1)1/2,1

≤ C‖β‖1/2
L∞‖w‖(L2,H1

0 )1/2,1
∀w ∈ V,

(3.27)

where the constant Cp of the Poincaré-like inequality depends on β/‖β‖L∞ and (the
shape of) Ω.

Proof. Let η be the solution of β · ∇η = ‖β‖L∞ with η = 0 on ∂Ω− :=
{x ∈ ∂Ω|β(x) · n(x) < 0}, where n denotes the outward normal unit vector defined
on ∂Ω. The existence of η is guaranteed by (3.25). Given w ∈ H1

0 , integrating by
parts, and using the Cauchy–Schwarz inequality and (3.24), we have

‖β‖L∞‖w‖2
L2 =

∫
Ω

β · ∇η w2

= −2

∫
Ω

ηw β · ∇w

≤ 2‖ηw‖V ‖β · ∇w‖V ∗ .

(3.28)

We have

‖ηw‖L2 ≤ ‖η‖L∞‖w‖L2 ,(3.29)

and using the classical Poincaré inequality, it is easy to get

|ηw|H1 ≤ C(‖η‖L∞ |w|H1 + ‖∇η‖(L∞)2‖w‖L2)

≤ C(‖η‖L∞ + diam(Ω)‖∇η‖(L∞)2)|w|H1 .
(3.30)
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Moreover, thanks to (3.25), we have C̃p := diam(Ω)−1‖η‖L∞ +‖∇η‖(L∞)2 < +∞ (e.g.,

see [14, Theorem 3.2]), where C̃p depends on η, i.e., on β/‖β‖L∞ and on (the shape
of) Ω. Then

‖ηw‖V ≤ CC̃pdiam(Ω)‖w‖V ;(3.31)

substituting back in (3.28),

‖β‖L∞‖w‖2
L2 ≤ CC̃pdiam(Ω)‖w‖V ‖β · ∇w‖V ∗

= CC̃pdiam(Ω)‖β · ∇w‖C0
‖β · ∇w‖C1

.
(3.32)

It has been proven in [16] (see also Lemma (a) in [20, section 1.10.1]) that when a

linear operator L : C0 ∩C1 → E satisfies ‖Lφ‖E ≤ ‖φ‖1/2
C0

‖φ‖1/2
C1

, for all φ ∈ C0 ∩C1,

it also satisfies ‖Lφ‖E ≤ ‖φ‖(C0,C1)1/2,1
; using this in (3.32), with L = (β · ∇)

−1
and

φ = β · ∇w, we get

Cp‖β‖1/2
L∞diam(Ω)−1/2‖w‖L2 ≤ ‖β · ∇w‖(C0,C1)1/2,1

∀w ∈ V,(3.33)

which is the left inequality of (3.27).
We have, thanks to the theorem in [20, section 1.3.3],

‖β · ∇w‖2
(C0,C1)1/2,1

≤ ‖β · ∇w‖C0‖β · ∇w‖C1

≤ κ1/2|w|H1‖β · ∇w‖V ∗

+ ρ1/2‖w‖L2‖β · ∇w‖V ∗

(3.34)

and

‖β · ∇w‖V ∗ ≤ κ−1/2‖β · ∇w‖H−1 ≤ κ−1/2‖β‖L∞‖w‖L2 ,

‖β · ∇w‖V ∗ ≤ ρ−1/2‖β · ∇w‖L2 ≤ ρ−1/2‖β‖L∞ |w|H1 ;
(3.35)

from (3.34)–(3.35) we get

‖β · ∇w‖2
(C0,C1)1/2,1

≤ 2‖β‖L∞ |w|H1‖w‖L2 .

Still using the result of [16] mentioned above, for (3.32)–(3.33) we get

‖β · ∇w‖(C0,C1)1/2,1
≤ C‖β‖1/2

L∞‖w‖(L2,H1
0 )1/2,1

∀w ∈ V,

which concludes the proof of (3.27).
In the previous proposition, we have shown uniform bounds (with respect to the

operator coefficients) for ‖β · ∇w‖(C0,C1)1/2,1
. As a general result of the interpolation

theory (see, e.g., [20, 1.3.3.d]), we have

‖β · ∇w‖(C0,C1)1/2,2
≤ ‖β · ∇w‖(C0,C1)1/2,1

∀w ∈ V,(3.36)

and similarly

‖w‖(A0,A1)1/2,2
≤ ‖w‖(A0,A1)1/2,1

∀w ∈ V.(3.37)

The converse inequality of (3.36), that is, ‖β ·∇w‖(C0,C1)1/2,1
≤ C‖β ·∇w‖(C0,C1)1/2,2

,
does not hold true; on the other hand the converse of (3.37) holds true, and it is,
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roughly speaking, almost uniform in the sense that the constant in it only depends
on a logarithm of the coefficients, as stated in the next proposition.

Proposition 3.5. Consider the case (3.22), (3.24), and (3.25): let

α := max
{
κ1/2ρ1/2, κ diam(Ω)

}
/‖β‖L∞ .(3.38)

When α ≤ 1 we have

‖w‖(A0,A1)1/2,1
≤

(
C − log1/2(α)

)
‖w‖(A0,A1)1/2,2

∀w ∈ V,(3.39)

while for α > 1 we have

‖w‖(A0,A1)1/2,1
≤ C‖w‖(A0,A1)1/2,2

∀w ∈ V.(3.40)

Proof. We only consider here the case α ≤ 1, since when α > 1 we can set α := 1
instead of (3.38) and follow the proof. Recall that from the definition (2.6) we have

‖w‖A0 ≤ ‖w‖A0 ∀w ∈ V,

‖w‖A0
≤ ‖w‖A1

∀w ∈ V,
(3.41)

and from (3.35) and the Poincaré inequality, we also have

‖w‖A1 ≤ ‖w‖A1 ∀w ∈ V,

α‖w‖A1
≤ C‖w‖A0

∀w ∈ V.
(3.42)

Then, by interpolation we get from (3.41)

‖w‖A0 ≤ ‖w‖(A0,A1)1/2,2
∀w ∈ V,(3.43)

and from (3.42)

α1/2‖w‖A1 ≤ C‖w‖(A0,A1)1/2,2
∀w ∈ V.(3.44)

By the definition (2.15) and by the triangle inequality we get

‖w‖(A0,A1)1/2,1
≤

∫ +∞

0

(
t−1/2‖w0(t)‖A0

+ t1/2‖w1(t)‖A1

) dt

t

≤
∫ α

0

(
t−1/2‖w0(t)‖A0 + t1/2‖w1(t)‖A1

) dt

t

+

∫ 1

α

(
t−1/2‖w0(t)‖A0 + t1/2‖w1(t)‖A1

) dt

t

+

∫ +∞

1

(
t−1/2‖w0(t)‖A0 + t1/2‖w1(t)‖A1

) dt

t

= I + II + III

for any w0(t) and w1(t) with w = w0(t) + w1(t), wi(t) ∈ V, i = 1, 2 and 0 < t < +∞.
Taking w0(t) = w and w1(t) = 0 for t ≥ 1 and using (3.43) we have

III ≤ ‖w‖A0

∫ ∞

1

t−3/2dt

≤ 2‖w‖A0

≤ 2‖w‖(A0,A1)1/2,2
.
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In a very similar way, we deal with the first term, taking w1(t) = w and w0(t) = 0 for
0 < t < α; thanks to (3.44) we obtain

I ≤ ‖w‖A1

∫ α

0

t−1/2dt

≤ 2α1/2‖w‖A1

≤ C‖w‖(A0,A1)1/2,2
.

Thanks to the Cauchy–Schwarz inequality we have

∫ 1

α

(
t−1/2‖w0(t)‖A0 + t1/2‖w1(t)‖A1

) dt

t

≤
[∫ 1

α

dt

t

]1/2

·
[∫ 1

α

(
t−1/2‖w0(t)‖A0 + t1/2‖w1(t)‖A1

)2 dt

t

]1/2

≤ [− log(α)]
1/2

·
[∫ 1

α

(
t−1/2‖w0(t)‖A0

+ t1/2‖w1(t)‖A1

)2 dt

t

]1/2

,

(3.45)

which holds true for any choice of w0(t) and w1(t) on α < t < 1. Taking the infimum
on w0, w1 we obtain

II ≤ [− log(α)]
1/2 ‖w‖(A0,A1)1/2,2

.

Finally, (3.39) follows from the previous estimates on I, II, and III.
From Propositions 3.4 and 3.5 we easily derive the next almost uniform bounds

(up to a log(α)1/2 factor, which is, roughly speaking, a weak loss of uniformity).
Corollary 3.6. For the case (3.22), (3.24)–(3.25), given α from (3.38), we have

Cp min
{

1, | log(α)|−1/2
}

diam(Ω)−1/2‖β‖1/2
L∞‖w‖L2 ≤ |||w||| ∀w ∈ V,(3.46)

‖β · ∇w‖(C0,C1)1/2,2
≤ C‖β‖1/2

L∞‖w‖(L2,H1
0 )1/2,1

∀w ∈ V,(3.47)

where Cp depends on β/‖β‖L∞ and (the shape of) Ω.
Though (3.46)–(3.47) are not as sharp as the estimates we got in section 3.1 for

the one-dimensional case, they put in evidence the relationship between the norm ||| · |||
defined in (3.26) and the skew-symmetric part Lskew = β · ∇ of (1.1). Recall that
max{κ1/2diam(Ω)−1, ρ1/2}‖w‖L2 ≤ C‖w‖V ≤ C|||w|||, while (3.46) states the bound
on the L2-norm which is mainly due to ‖β · ∇w‖(C0,C1)1/2,2

. Then (3.46) becomes
relevant when κ and ρ are small.
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