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A GENERAL INTEGRAL REPRESENTATION RESULT FOR
CONTINUUM LIMITS OF DISCRETE ENERGIES WITH
SUPERLINEAR GROWTH*

ROBERTO ALICANDROT AND MARCO CICALESE?

Abstract. We study the asymptotic behavior, as the mesh size ¢ tends to zero, of a general
class of discrete energies defined on functions u : a € eZN N Q — u(a) € R? of the form

Fo(w)= Y ge(aB,u(@) = u(B))
a,BEEZN

[a,B]CQ

and satisfying superlinear growth conditions. We show that all the possible variational limits are
defined on WP (Q;R?) of the local type

/ f(z,Vu) dz.
Q

We show that, in general, f may be a quasi-convex nonconvex function even if very simple interactions
are considered. We also treat the case of homogenization, giving a general asymptotic formula that
can be simplified in many situations (e.g., in the case of nearest neighbor interactions or under
convexity hypotheses).

Key words. discrete systems, homogenization, I'-convergence
AMS subject classifications. 49J45, 74Q99

DOI. 10.1137/S0036141003426471

1. Introduction. The energetic description of the asymptotic behavior of lattice
systems when the mesh size tends to zero turns out to be useful both as a microscop-
ical theoretical justification of theories in continuum mechanics and as a powerful
means, thanks to which a great number of microscopical phenomena can be read in
the macroscopical setting. In this paper we describe variational limits of discrete lat-
tice systems in a vectorial and nonconvex setting when general “atomic” interaction
energies are taken into account that lead to continuum “elastic” theories described
by bulk integral energies. We will limit our analysis to square lattices, but more gen-
eral geometries, e.g., hexagonal lattices, can be easily included in this framework by
a change of variables (see, for instance, [10, Examples 5.1 and 5.2], for details). In
mathematical terms, given a fixed open set Q C RY and € > 0, we consider energies
defined on functions u : a € eZN N QO+ u(a) € R? of the general form

Fw =Y g 8,u() - u(@)).
a,BeezN
la,B]CQ2

In the case N = d = 3 we can picture the lattice Z™ N Q as the reference configuration
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FIG. 1. Interactions on the lattice e .

of a set of interacting material points (see Figure 1). Here u is the field mapping the
reference configuration into the deformed one; thus the total stored energy F.(u) is
obtained, according to the classical theory of crystalline structures in “hyperelastic”
regime, by the superposition of the energy densities g.(«, 3, u(a) — u(3)) weighing the
pairwise interaction between points in positions « and (3 in the reference configuration
lattice. Note that the only assumption we make is that g. depends on the displacement
field in & and 3 through the differences u(a) — u(3). This condition, expressing the
invariance under translation of our energies, arises naturally in many situations, as,
for example, in frame indifferent models.
It is usually more convenient to group the energy densities as

F=3Y 3 glaa+etulate) - ula),

EEZN aeRE(Q)
where RE(Q) := {a € eZN : [a,a + €] C Q}. Setting
FE(a,¢) = eV ge (o, + e, £[€[C)

we can rewrite

(1.1) F.(u) = Z Z eN f <a, u(a ) — u(a)> ’
3

e
€ZN oeRE(Q) €l

thus highlighting the dependence of the energy on discrete difference quotients in the
direction &.

The aim of this paper is to provide a characterization of all the possible variational
limits, as the mesh size ¢ tends to zero, of a very general class of energies of the
form (1.1). Upon identifying u with a function constant on each cell of the lattice
eZ~N | we can make the asymptotic analysis precise, thanks to the notions and the
methods of De Giorgi’s T-convergence (see [16], [4], [15]). On the functions f&(a,-)
we make assumptions of two types: a growth hypothesis of superlinear type on nearest
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neighbors (see 3.2) that ensures that the limit is finite only on W1?(2;R?) and a decay
assumption as £ — +oo (see (3.3), (H1), (H2)) that allows us to neglect very long-
range interactions. Under these conditions, a compactness theorem holds asserting
that, up to passing to a subsequence, the energies F. have a I'-limit energy F' defined
on the Sobolev space WP(Q; R?) and taking the form

F(u) :/Qf(x,Du) dx

(see Theorem 3.1). A similar compactness result for quadratic interactions in planar
networks has been observed by Vogelius [23] (see also Piatnitski and Remy [20]).

Note that the decay assumption on the density energies f¢ as |¢| — +oo guar-
antees that the nonlocality of our discrete functionals disappears in the limit. If this
hypothesis is lifted, then we may have nonlocal I'-limits (see [3]). On the other hand,
if growth conditions are removed, the limit may be defined on sets of functions with
bounded variation where a different analytical approach is needed (see [22], [5], [14],
1), [3], [8], [10]).

To perform our analysis, we develop the discrete analogue of a localization argu-
ment used, for example, in the context of homogenization theory for multiple integrals
which allows us to regard our energies and their I'-limits as functionals defined on pairs
function-set and then to prove that all the hypotheses of an integral representation
theorem are fulfilled. In order to treat minimum problems with boundary data, we
also derive a compactness theorem in case that our functionals are subject to Dirichlet
boundary conditions (see (3.30) and Theorem 3.10).

An interesting special case is when the arrangement of the “material points”
presents a periodic feature; i.e., in terms of f., we have

f§(7z) = f¢ (;Z') f§(~7z), Qr-periodic,

where Qr = (0,k)". By adapting the integral homogenization arguments to our
discrete setting, we prove that the whole family F. I'-converges to a limit energy of
the form

F(u) = /thom(Du) dx.

Note that in this setting we also include, when k = 1, the situation when f¢(a, 2) is
independent of . If not only nearest neighbor interactions are present, the formula
for fhom highlights a multiple-scale effect also in this case (see [4]). An interesting
example showing the effect of nonlinearities of “geometrical” origin is contained in a
work by Friesecke and Theil [18], where an interpretation in terms of the Cauchy—Born
rule is given.

Here from is given by the following homogenization formula:

. 1 .
(1.2) from(M) = lim h—len {Fn(w), ulag, = Ma},

h—+o0
where

TOED YDA CE =ty )

£€ZN a€R8(Qn)
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and u|ag, = Ma means that “near” the boundary of @, the function w is the discrete
interpolation of the affine function Mz (for more precise definitions see (3.29) and
Theorem 4.1). This formula generalizes that obtained in [11] in a one-dimensional
scalar setting.

In general, (1.2) cannot be simplified to a cell problem formula and gives rise to
a quasi-convex nonconvex function even for simple interactions. Indeed, in section
7 we provide an example of quasi-convex nonconvex fjo, drawing inspiration from
Sverdk’s construction of a quasi-convex function which is not polyconvex (see [21]).

In sections 5 and 6 we study some important cases when the formula for fj,,,, can
be simplified. For convex interactions a periodicity cell problem formula holds: if f¢
is a convex function in the second variable for all £ € ZV, then (1.2) can be written
as

1 ..
from(M) = N min {F(u), u Qg-periodic},

where

SRR S

EeZN ae{0,1,....k—1}N

(see Theorem 5.1). An analogous result for discrete quadratic forms has been obtained
by Piatnitski and Remy [20]. Our result has been used by Braides and Francfort [7]
as a step for the derivation of optimal bounds for composite conducting networks in
the particular case of quadratic interactions (see Remarks 3.2 and 5.2).

If we consider only interactions along independent directions a reduction to the
one-dimensional case occurs: if k = 1, that is, f¢ does not depend on «, and

(1.3) ff=0 veezN: € #£je;, i€{l,2,...,N}, j€EN,
where {e1,ea,...,ex} is the standard orthonormal base in RY, then

N

From(M) = S"(F) (M),

=1

( ﬁ) being convex functions defined by a one-dimensional homogenization formula and
M the ith column of M (see Theorem 6.3). Note that here a superposition principle
holds, in the sense that the limit energy is obtained by relaxing the energies due to
the interactions in every coordinate direction independently and then summing over
them.

From the results obtained in the one-dimensional setting in [11] (see Theorems
6.1 and 6.2), we deduce that the limit energy density fom can be rewritten by a
nonasymptotic formula only if nearest and next-to-nearest neighbor interactions along
the coordinate directions are considered (see Remark 6.5). In particular, in the case
of only nearest neighbor interactions, the only effect of the passage from the dis-
crete setting to the continuum is a separate convexification process in the coordinate
directions.

2. Notation and preliminaries. We denote by {ej,es,...,en} the standard
basis in RY, by | - | the usual euclidean norm, and by (,-) the scalar product in RY.
We denote by M¥N and ngx,fl the space of d x N matrices and symmetric d x d
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matrices, respectively. For P € M™*N @ ¢ MNXl P .(Q denotes the standard row
by column product. For z, y € RY, [x,%] denotes the segment between x and y. If
) is a bounded open subset of RV, A(Q) is the family of all open subsets of €2, while
Ap(£2) denotes the family of all open subsets of € whose closure is a compact subset
of Q. If B C RY is a Borel set, we will denote by |B| its Lebesgue measure. We use
standard notation for LP and Sobolev spaces.

We also recall the standard notation for slicing arguments (see [4]). Let & € N1,
and let Il = {y € RY : (y,£) = 0} be the linear hyperplane orthogonal to £. If y € II¢
and E C RY we define B¢ = {y s.t. 3t € R:y+tf € E} and E?f:{tER:y—i—tfe
E}. Moreover, if u: E — R we set ug,, : E5 — R by ug, (t) = u(y + t£).

We also introduce a useful notation for difference quotient along any direction.
Fix £ € RY; for € > 0 and for every u : RV — R? we define

u(z + e€) — u(x)
el¢] '

2.1. T-convergence. We recall the notion of I'-convergence in LP(Q;R?) (see
[16], [15], [4]). A sequence of functionals F; : LP(Q;RY) — [0,+o0] is said to I'-
converge to a functional F : LP(Q;RY) — [0, +oc] at u € LP(;RY) as j — +oo, and
we write F(u) = I-lim; F;(u) if the following two conditions hold:

(i) (lower semicontinuity inequality) for all sequences (u;) converging to w in

LP(9;R?) we have that F(u) < liminf; Fj(u;);
(ii) (existence of a recovery sequence) there exists a sequence (u;) converging to
u in LP($;R?) such that F(u) = lim; Fj(u;).
We say that F; I-converges to F if F(u) = I'-lim; Fj(u) at all points u € LP(£2; R?)
and that F' is the I'-limit of F;. The main reason for the introduction of this conver-
gence is the following fundamental theorem.

THEOREM 2.1. Let F = I'-lim; F}, and let a compact set K C LP(Q;RY) exist

such that infpq.re) Fj = infg Fy for all j. Then

Déu(z) ==

3 min F=Ilim inf Fj.
Lr(Q;R) J Lp(;R4)
Moreover, if (uj) is a converging sequence such that lim; F;(u;)=lim; infrpqraey Fy,
then its limit is a minimum point for F. If (F.) is a family of functionals indexed
by € > 0, then we say that F. I'-converges to F as ¢ — 0T if F = I'-lim; F;, for all
(ej) converging to 0. If we define the lower and upper I'-limits by

F'(u) = T-liminf F.(u) = inf {limirist(uE) DU — u} ,

e—0t e—0

F"(u) =T-limsup F.(u) = inf {limsup F(ue): u. — u} ,
e—0t e—0t
respectively, then F. I-converges to F as e — 07 if and only if F'(u) = F"(u) = F(u).

Note that the functions F’ and F” are lower semicontinuous (see [15, Proposition
6.8]).

2.2. Integral representation on Sobolev spaces. In this section we recall
an integral representation result on Sobolev spaces for functionals defined on pairs
function-sets (see [13]).

THEOREM 2.2. Let 1 < p < oo, and let F: WIP(Q; R?Y) x A(Q) — [0, +00] be a
functional satisfying the following conditions:
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(i) (locality) F is local, i.e., F(u,A) = F(v,A), if u=v a.e. on A€ A(Q);
(ii) (measure property) for all u € Wl’p(Q RY) the set function F(u,-) is the
restriction of a Borel measure to A(Q);
(iii) (growth condition) there exists ¢ > 0 and a € L*(Q) such that

F(u,A) < C/A(a(m) + |Dul?) dx

for all u € WHP(Q;RY) and A € A(Q);
(iv) (translation invariance in u) F(u + 2z, A) = F(u,A) for all z € R%, u €
WLP(Q;RY), and A € A(Q);
(v) (lower semicontinuity) for all A € A(Q), F(-,A) is sequentially lower semi-
continuous with respect to the weak convergence in W1P(€; R9).
Then there exists a Carathéodory function f : Q x MYN — [0, +00) satisfying the
growth condition

0 < f(z, M) < cla(z) + | M|P)

for all z € Q and M € M™N such that
F(u, A) :/ f(z, Du(z)) dx
A

for allu € WHP(Q;RY) and A € A(Q).
If, in addition, it holds that
(vi) (translation invariance in x)

F(Mz,B(y, 0)) = F(Mz, B(z, 0))
for all M € MP>*N |y, 2 €Q, and o > 0 such that B(y, 0) U B(z,0) C Q, then f does
not depend on x.

3. Compactness and integral representation. In this section we define the
class of discrete energies we are going to consider in the rest of the paper, and we
prove a general compactness theorem, asserting that any sequence of energies in this
class has a subsequence whose I'-limit F' is an integral functional.

In what follows,  will denote a bounded open set of RY with Lipschitz boundary.
We consider the family of functionals F. : LP(€2;RY) — [0, +o00] defined as

S Y V£ (a, Diua)) ifu e A(9),

(3.1) F.(u) = { €€ZN acRrE(Q)

400 otherwise,
where for any ¢ € ZV and € > 0

RQ) :={aceZV : [o,a+e] CQ},

A () = {u:RY = R? : u constant on o + [0,€)" for any a € eZV N Q},

and f§ : (eZV NQ) x R? — [0, +00) is a given function. On f¢ we make the following
assumptions:

(3.2)  fo(a,2) > ci(]zP = 1) Y(a,2) € (Z¥ nQ)xRY  ie{l,...,N},
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N d N
(3.3) fg(a,z) < C§(|z|p +1) V(a,2) € (eZ" NQ) xR EeZY,

where ¢; > 0, and {C%}. ¢ satisfies

(H1) lim sup Z C¢ < +o0;
e—0T cezN
(H2) V6>0 IM;>0: limsup » CEf<6.
E*}O‘F
1€1>Ms

The main result of this section is stated in the following theorem.

THEOREM 3.1 (compactness). Let {f¢}. ¢ satisfy (3.2), (3.3), and let (H1)-(H2)
hold. Then for every sequence (g;) of positive real numbers converging to 0, there
exists a subsequence (g5,) and a Carathéodory function quasi-convex in the second
variable f : Q x RN satisfying

c(|MJP =1) < fa, M) < C(IM]P + 1),

with 0 < ¢ < C, such that (F., (-)) T-converges with respect to the LP(3;R%)-topology

k

to the functional F : LP(;RY) — [0, +00] defined as

z,Vu)dr ifu Lp(O). R4
(3.4) F(u) = /Qf( ,Vu)de if u e WHP(Q;RY),

+00 otherwise.

Remark 3.2 (quadratic forms). Under the hypotheses of Theorem 3.1, if, in
addition, for any ¢ € ZY and € > 0 f¢(q,-) is a positive quadratic form on R?, that
is,

folaz) = (Af(a)z,2), Af(a) € M,

then, by the properties of I'-convergence (see [15]), the limit energy density f(z,-) is
a quadratic form on M@V that is,

(3.5) flz, M) =A(z) (M, M), A(z) e ToMP>N,

where T M@V is the vectorial space of all two times covariant tensors on MV,

To prove Theorem 3.1 we use a localization technique, which is a standard argu-
ment dealing with limits of integral functionals (see, for example, [6] in the context
of homogenization theory). We stress the fact that here this analysis becomes more
difficult to perform because of the nonlocality of our discrete energies.

The first step is to define a “localized” version of our energies: given an open set
A we isolate the contributions due to interactions within A as follows. For u € A.(Q),
A€ ARQ), and € € ZN, set

(3.6) F&(u, A) = Z eNfe (a,Dgu(a)),
a€RE(A)

where

RS(A) :={aceZV : [a,a+c€] C A}
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The function F¢ represents the energy due to the interactions within A along the
direction £. Then the local version of the functional in (3.1) is given by

FS(u,A) if u € A(Q),
(3.7) F.(u,A) = gezz:N

400 otherwise.

We will prove also the following result.

THEOREM 3.3 (local compactness). Let { £} ¢ satisfy (3.2), (3.3), and let (H1)-
(H2) hold. Given (g;), a sequence of positive real numbers converging to 0, let (¢j,)
and f be as in Theorem 3.1. Then for any u € WHP(Q;R?) and A € A(Q) there holds

I-lim £, (u, 4) = / £z, V) da
A

We will derive the proof of Theorems 3.1 and 3.3 as a direct consequence of some
propositions and lemmas which are fundamental steps to show that our limit func-
tionals satisfy all the hypotheses of the representation theorem, Theorem 2.2.

In the next two propositions we show that, thanks to hypotheses (3.2) and (3.3),
the I'-liminf and the I'-lim sup of F. are finite only on WP(Q; R?) and satisfy stan-
dard p-growth conditions.

PROPOSITION 3.4. Let {f¢}.,; satisfy (3.2). If u € LP(;R?) is such that
F'(u, A) < 400, then u € WYP(A;RY), and

(3.8) F(u, 4) = ¢ IVl qpoen, — 14])

for some positive constant ¢ independent of u and A.
Proof. Let &, — 0T, and let u,, converge to u in LP(£;R?) and be such that
liminf,, F., (u,, A) < +00. By the growth condition (3.2) we get

F. (up, A >c12 > eNIDE un ()P — e1N|A.

=1 aeRZ! (A)

For anyi € {1,..., N}, consider the sequence of piecewise-affine functions (v?,) defined
as follows:

U:L($) = Up () + D up () (x5 — a;), =€ (a + [0, En)N) N, «a¢€ R (A).

Note that v?, is a function of bounded variation, and we will denote by T the density

of the absolutely continuous part of D, v with respect to the Lebesgue measure.
Moreover, for HN-a.e. y € (A)% the slices (v})e,.y € WP ((A)5;RY). For any
n > 0, set

Ay ={z e A: dist (z, A°) > n}.

Then, with fixed n > 0, it is easy to check that v — w in LP(A,;R?) for every
i € {1,..., N}; moreover, since %(m) = D% up(a) for z € a+[0,,)", we get

(3.9) F., (up, A) > clz/

8:162 dx — 1 N|A|.
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We apply now a standard slicing argument. By Fubini’s theorem and Fatou’s lemma
for any i we get

; P
ov 2)

lim inf / n
n Ja, | 0%

Since, up to passing to a subsequence, we may assume that, for HV " l-a.e. y e(A ,, )ei
(v;)ehy — U,y in LP ((A,)5;R?), we deduce that ue,, € WP ((4,)5;R?) for

HN1ae. y € (4,)%, and

lim inf /
" (Ay)

Then, by (3.9), we have

hmlan (up, A) > ch/ /
(An)ei J(Ay)y

Since, in particular, the previous inequality implies that

Z/ (Ay)ei /A i

thanks to the characterization of WP by slicing, we obtain that u € WP (An§ Rd),
and

2/ 1iminf/ |(Wi)e, , @) dtdHN 1 (y).
(Ay)es (A3’

" )y

L@ atdHN ().

71)1/

u,, ()" dtdHN " (y) — et N|A]

uy, ()7 dt dHN " (y) < 400,

(z) dm — 1 N|A]

hmlan (up, A >clz/

=

Letting n — 0T, we get the conclusion. 1]
PROPOSITION 3.5. Let {f5}c¢ satisfy (3.3), and let (H1) hold. Then for every
u € WHP(Q;RY) there holds

ox;

V()] dz — IAI)

n

(3.10) F'(u,4) < C (IVull gy + A1)
for some positive constant C independent of u and A.

Proof. We first show that inequality (3.5) holds for u smooth and then recover
the proof for any v € W1P(£2;R?) by using a density argument.

Let u € C°(RY;R?), and consider the family (u.) C A-(Q2) defined as

ue(@) == u(a), oceZV.

Then u. — u in LP(Q;R%) as ¢ — 0F. Moreover, for any o € eZ”, we have

Déu,(a |§| / Vu(a 4 e€s)Eds
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so that, by Jensen’s inequality, we get

1 P
i) = g | [ Fula+ egajeas
1 1
< ﬁ/o |Vu(a + e€s)éf? dsg/o |Vu(a +e€s)|” ds.

By the regularity hypothesis on u and by Fubini’s theorem, we easily obtain the
following inequalities:

1
/ |Vu(a +e&s)|P ds = / |Vu(a + e€s)|P ds dx

a+[0,e)N

1
< / / |Vu(z +es)|” dsdm—i—c(u)/ / |z — a|P ds dx
a+[0,e)N JO a+[0,e)N JO

1
S/ / |Vu(x)[P dxds + c(u)ePe?
0 Ja+se€+[0,e)N

where by c(u) we denote a constant depending only on u. By (3.3) and the last
inequality, we then have

e, A) < Y CE > // \Vu(z)|P dads

€€ZN  4eRS(A) toedt[0.0)N

+ (1 4 c(u)eP) ZC§ Z eN

EELN  aeRS(A)
<3¢ </ |Vu(x)|pdx+(1+c(u)6p)A5|>,
gezn
where
AT = A+ [0,e)Y
Eventually, letting ¢ — 0%, by (H1) we get
limsup F; (ue, A) < C (/ [Vu(z)|P de + |A>,
e—0*+ A

and the conclusion follows by the definition of F'. Now let u € WP(Q; RY), and let
(un) C C°(RY;RY) converge to u in the W1P(Q; R%)-topology. Then, by the lower
semicontinuity of F”', we obtain

F(u, A) < i it " (un, A) < 1im C (Va2 g, + 14])

=C (HVUHZ[),P(A;RdXN) + |A|> . O

The next technical lemma asserts that finite difference quotients along any direc-
tion can be controlled by finite difference quotients along the coordinate directions.

LEMMA 3.6. Let A € A(Q), and set A, := {x € A: dist (z,0A4) > 2v/Ne}. Then
for any € € ZN and u € A.(Q) there holds

N
(3.11) S D@l <Y S IDfu()p.

aE€RE(A,) i=1 aeR7'(A)
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Proof. Let us fix some notations: for ¢ € Z and o € eZ", set

Ifa)={B ez : (B+[-¢c,e]V) N[, a+el] #0};

moreover, we will denote by || - H1 the norm on RY defined as

H§H1—Z|£z £=(&,....&n) RV,

Let a € RE(A.), and consider {ah}yf:”ll C I¢(a) such that
e, =a+ef, ar=a, ap=ap_1+eep)
for some i(h) € {1,..., N} (see Figure 2). Then, since
€1l

fulo) = g 2 D

by Jensen’s inequality, we get

||§||1 P 1 Hg‘ll P
Déu(a)|P = () DM u(a
IDEul" =T ) | & D= ulen)
€112
||5|1>p 1 eitn)
< — D" u(ap)|?
<(%) mm 2 1D uten)
Since for any h = 1,...,N, ap € RE'™ (A) and all the norms are equivalent in a

finite-dimensional space, we infer that

S Duap <03 H§”)|Deb<>|,

a€RE(A:) =1 peRr (A
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where
YE(B) = #{a € RE(Ac) : B € IE(a)}
Hence, the proof is complete if we show that v5(3) < C|¢|. To this aim, notice that
{o€ RE(A:): B e Ii(a)} C 2V NQE(B),
where
Q(B) :={z eRY iz =y +1€ y € B+ [-¢e", t €[-ee").
Thus, we infer that

13
) < clEDL

Now we use a slicing argument to provide an estimate of |Q§(ﬁ) ‘ By Fubini’s theorem,
we get

Q5(8) = /(ng))é H(Q4()S dH ()
<HYTH((QE(8))F) 2VN + [€])e < e(N)[ele™

where the last inequality holds, since for any & € ZV

HYTH((QE(B)%) <e(N)eM~h D

In the next two propositions we establish the subadditivity and the inner regu-
larity of the set function F”(u,-). To this end we use a careful modification of De
Giorgi’s cut-off functions argument, which appears frequently in the proof of the in-
tegral representation of I'-limits of integral functionals (see [6], [15]). We underline
that the nonlocality of our energies requires a deeper analysis in which a key role is
played by hypothesis (H2), which allows us to show that very long-range interactions
do not lead to nonlocal terms in the limit.

PROPOSITION 3.7. Let {f$}.¢ satisfy (3.2),(3.3), and let (H1)~(H2) hold. Let
A, B € A(Q), and let A',B" € A(Q) be such that A’ CC A and B’ CC B. Then, for
any u € WHP(Q; RY),

F" (u, A" UB') < F" (u, A) + F" (u, B) .

Proof. Without loss of generality, we may suppose that F”(u, A) and F"(u, B)
are finite. Let ue,v. € A-(2) both converge to u in LP(Q; R%) and be such that

lim sup Fy(ue, A) = F"(u, A), limsup F.(v., B) = F'(u, B).

e—0t e—0*t

By (3.2) and Lemma 3.6, we infer that

(3.12) sup sup Z eV DSu ()P < 400,
gezN e>0 o
a€R:(AL)
(3.13) sup sup Z eV Dév. ()P < 400,
gezN e>0

RE(Be)
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where A, and B are defined as in Lemma 3.6. Moreover, since (u.) and (ve) converge
to u in the LP(Q; RY)-topology, we have

SN (@) + [0=(@)]?) < el gy + 0=l ey < C < 00,

aceZNNQ/
(3.14)
(3.15) Yo &V (luc@) = ve(@)P) < flue = vl g ey — OF
aceZNNQY

for any Q' CC Q. Set
d:=dist (A", A9),

a,nd f()I‘ a,ny 1€ {17 PN ,N} deﬁne
A = xr e A : dlSt(.’L‘ A ) <1 .
7 I N

Let ¢; be a cut-off function between A; and A;41, with [|[Vy;|le < 2%. Then for any
i € {1,...,N} consider the family of functions w! € A.(f2) still converging to u in
LP(Q;R?) defined as

wi(a) = pi(a)us(a) + (1 - pi(@)) v=(a).
Note that, for any ¢ € ZY, we have

waz(a) =g;(a+ sf)Dgus(a) + (1 —pi(a+¢€f)) ngs(a)
(3.16) + (ue(a) — ve(@)) Dip(ar).

Fix i€ {1,2,...,N —3}. Given £ € Z" and a € RE(A’U B'), then either a € RE(4;)
or o € RE(A;‘:H N B’), or

[, o+ €] N (A1 \ Ai) N B # 0.
Then, if we set

(ZiJrl \141')675 = {;[: =y + tf, |t| < g, Y& ZiJrl \Al‘},

vag = (Zz_;'_l \141')675 N (A/ U Bl) 5
we get
RE(A'UB') C RE(A) U RE(B'\ A, ) U RE (57°)

(see Figure 3). Thus, since Déw!(a) = Diuc(a) if a € RE(A;) and Diwl(a) =
Dév.(a) if a € Rg(A;_l N B’), we get by (3.3) and (3.16)
(3.17) Ff (wi, A'UB') < Fi(ue, A) + Fi(ve, B)

+C CE Y N (IDu ()P + |DEv- ()P + NP Juc(a) — ve(@)” +1) .
QE€RE(SS0)
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Fic. 3. a € RE(A;), B € RE(SS%),y € RE(B'\ A¢, ).

Ifelg] < 2N, then
(3.18) S C (AN \A)NB' =Sy CC ANB.
If e|¢| > 5%, then
1 2P NP
< 7,
TP = @
and so

| Déue ()P < ONP (fue ()P + |ue(a + €€)IP),
and the same inequality holds for v.. Thus, in this case we get by (3.17)
(3.19) FE(wl, A'U B') < FE(ue, A) + FE(ve, B)
+CON? CE Y &N (Juc(@)]” + |uc(a+ )P + [ve(@) P + [ve(a +E)[P +1).
a€RS(A'UB')
Let Ms > 0 be such that limsup,_,q+ Z\E\>M5 C& < 6. Then, by (3.17), (3.18), and
(3.19), summing over ¢ € Z¥ | for ¢ small enough we get
F.(w!,A’UB'") < F.(u.,A) + F.(v., B)
+C Y CEY N (IDEuc()” + [DEve(@)P + NP Juc(a) — ve(a)|” +1)
I€1<Ms aeRE(SSF)
+ C Z 0525 |D6 a)|P + |Dév. (a )P+ NP |uc(a) — ve(@)[? + 1)
Ms<|¢|<53z a€RE(SN)
+ OND CE YT N (jus(@)f + fu(o)P + 1)

|€]> 52— aceZNNA'UB’

Note that, for & small enough and || < Ms, we have that R$(S™%) N Rg(S;T’g) #0
if and only if |i — j| = 1, and UN ® RE(S%*%) C RE(A. N B.). Thus, summing over
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i€ {1,2,...,N — 3}, averaging, and taking into account (3.12), (3.13), (3.14), and
(3.15), we get

N—
(3.20) Z (wi, A'UB') < F.(ue, A) + Fe(v., B)

+ NL_(I + NPO(e)) + C(6 + O(e))(1 + NPO(¢))

+C(6+0(e))(NP).
For any € > 0 there exists i(e) € {1,..., N — 3} such that

N-3
1
i(e)
(3.21) F(wl, A UB) < 5 §F (wi, A'UB).

Then, since w'® still converges to u in LP(£;RY), by (3.20) and (3.21), letting e — 07,
we get

F'"(u,A"UB') < F"(u,A) + F"(u, B) + N% +C6(1+ NP).

Eventually, letting first 6 — 0% and then N — 400, we obtain the thesis. ]
PROPOSITION 3.8. Let {f¢}. ¢ satisfy (3.2), (3.3), and let (H1)~(H2) hold. Then,
for any u € WHP(Q; R?) and for any A € A(RQ), there holds

sup F"(u,A") = F"(u, A).
ArccaA

Proof. Since F"(u,-) is an increasing set function, it suffices to prove that

sup F"(u,A") > F"(u, A).
A'CCA
To do this, we apply the same argument of the proof of Proposition 3.7. Given ¢ > 0,
there exists A” CC A such that
A7 P
A\ A”| + HVUHLP(A\W) <o.
Let Q DD Q, and let @ € W'?(Q;R%) be an extension of u. By reasoning as in

the proof of Proposition 3.5, we may find v. € A< (€) such that v, converges to @ in
LP(Q;R?) and

. i A7) < A" b =) < C6.
(322)  limoup Fu(ve, A\NAT) < O (JANAT 4 [Vl ) < O6

We remark that this extension on Q is just a technical tool to exploit an analogue
of inequality (3.14) and obtain a control of the interactions near the boundary of €.
Let A" € A(f2) be such that A” cC A’ CC A, and let u. € A () converge to u in
LP(;RY), with

limsup F.(ue, A") = F" (u, A").

e—0t

Set

d = dist(A”, A"),
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and for any ¢ € {1,..., N} define
A=<z eA: dist(x, 4) < zi
;= : , N[

Let ¢; be a cut-off function between A4; and A; 1, with IVpilloo < 2%. Then for any
i € {1,..., N} consider the family of functions w? € A.(Q) still converging to u in
LP(Q;R?) defined as

wi(a) == gi(@)uc (@) + (1 — @i(a)) v-(a).
Now we can set
S¢ = (A \ A) N A
so that
RE(A) € RE(A;) URS(ANA,, ) URS (S«Z?,f) .

Let 6 > 0, and let Ms > 0 be such that limsup,_, g+ Z‘ng& C¢ < 6. Then, by
reasoning as in the proof of Proposition 3.7, for € small enough, we get

Fo(wi, A) < Fe(ue, A') + F.(v-, A\ A7)
+C > CED N (DS ()P + | DEvc(a) [P + NP Juc(a) — ve(a) P + 1)
[€1SMs aeRE(SDF)
+ 0 Y CEY N (IDfus ()P + | Déve (@) P + NP fug(ar) — ve(a)|? + 1)
Ms<|¢|<5f= acRS(SN)

+ ON? 3 CE (el oy + 101 ey 1)

1€1> 55~

Since u. and v. satisfy (3.12), (3.13), (3.14), and (3.15) with A. replaced by AL and
B. by (A\ A”), then we can choose i(e) € {1,..., N — 3} such that

=L

< F.(ue, A') + C6 + NL_?) (1+ NPO(¢))

+C(6+0(e)) (1 + NPO(e)) + CNP(6 + O(e)).

(3.23) F.(wi®), A)

Then, since wi® still converges to u in LP(Q;R%), by (3.23), letting ¢ — 0%, we get

F"(u,A) < sup F”(u,A')—i—C(l—i—é—l—éNp)
A'CCA N-3

Eventually, letting first § — 0% and then N — +o00, we obtain the thesis. O

The following proposition asserts that F”'(-,-) satisfies hypothesis (i) of Theorem
2.2. The argument we use for the proof is still the same one exploited in the last two
propositions.
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PROPOSITION 3.9. Let {f}. ¢ satisfy (3.2), (3.3), and let (H1)~(H2) hold. Then
for any A € A(Q) and for any u, v € WHP(Q;R?) such that u = v a.e. there holds

F"(u, A) = F"(v, A).

Proof. Thanks to Proposition 3.8, we may assume that A € Ay(2). We first
prove

(3.24) F"(u, A) > F" (v, A).

Once more we apply the argument used in the previous proposition. Given § > 0,
there exists As CC A such that

Let v € A.(Q2) and u. € A () be such that

(3.25) ve — v in LP(Q;RY),
(3.26) ue — w in LP(Q; RY),
and

limsup Fx(ue, A) = F"(u, A),

e—0t

(3.27) limsup F(v., A\ A) = F"(v, A\ 45) < C (|A\A5\ + | Vaul? < C.

e—0*t

Lr(A\As ))
Set
d := dist(As, A°),

and for any ¢ € {1,..., N} define

d
A; = {x € A: dist(x, As) < z} .
N
Let o; be a cut-off function between A; and A;11, with ||[V;lleo < 2%. Then for
any i € {1,..., N} consider the family of functions w! € A.(f2) converging to v in
LP(;RY) defined as
w

c(a) = pi(@)us(a) + (1 = pi(a)) ve(a).

Then, following the same steps as in the proofs of Propositions 3.7 and 3.8, we can
choose i(¢) € {1,..., N — 3} such that

N-3
(3.28) F.(wi® A )< % 3 F.(w

i=1
C

4)
+ 0(5 +0() (1+ NpO(a)) +C(6+ O(e))N?
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Then, since wi® still converges to v in LP(2;R?), by (3.28), letting ¢ — 01, we get

1
F'(v,A) < F"'(u, A) + C (M +6+ 6N”) )
Eventually, letting first § — 07 and then N — +o00, we obtain (3.24). Reversing the
roles of u and v we obtain the thesis. O
Proof of Theorems 3.1 and 3.3. By the compactness property of the I'-convergence

and by Proposition 3.8, there exists a subsequence (ej,) such that, for any (u, A) €
WP (Q; RY) x A(Q), there holds

I‘(Lp)—liin Fe, (u, A) == F(u, A)

(see [6, Theorem 10.3]). Moreover, by Proposition 3.4,

I'(LP)- liin F.; (u) =400

for u € LP(Q;R?Y) \ WP(Q;R?). So far, it suffices to check that, for every (u, A) €
WLP(Q;RY) x A(RQ), F(u, A) satisfies all the hypotheses of Theorem 2.2. In fact, it
can be easily seen that the superadditivity property of F.(u,-) is conserved in the
limit. Thus, as an easy consequence of Propositions 3.5, 3.7, 3.8, and 3.9 and thanks
to the De Giorgi-Letta criterion (see [17], [6]), hypotheses (i), (ii), and (iii) hold true.
Moreover, as F.(u, A) depends on u only through its difference quotients, hypothesis
(iv) is satisfied, and, finally, by the lower semicontinuity property of the I'-limit, also
hypothesis (v) is fulfilled. O

3.1. Convergence of minimum problems. In order to treat minimum prob-
lems with boundary data, we also derive a compactness theorem in case that our
functionals are subject to Dirichlet boundary conditions.

Given ¢ € Lip (RY) and I € N, set, for any € > 0 and A € A(Q),

(3.29) AZEW(A) i={u € A(RY) :u(a) = p(a)if (o + [, le]V) N A # 0)}.
Then define F£:!: LP(Q;RY) x A(Q) — [0, +00] as
F.(u,A) ifuc AlEW(A),
(3.30) Fl(u, A) =
+00 otherwise.
By simplicity of notation we set A ,(A) := Al (A) and F? := F#!.
THEOREM 3.10. Let {f$}. ¢ satisfy (3.2), (3.3), and let (H1)—(H2) hold. Given
(€j), a sequence of positive real numbers converging to 0, let (¢;,) and f be as in

Theorem 3.1. For any ¢ € Lip (RN), let F¥ : LP(;R?) x A(Q) — [0, +oc] be defined
as

z,Vu)dr ifu— @€ WiP(A;RY),

N )RR DLER PR TS

400 otherwise.

Then, for any A € A(Q) with Lipschitz boundary and | € N, (ngkl(, A)) T-converges
with respect to the LP(Q;R?)-topology to the functional F¥#(-, A).
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Proof. For the sake of simplicity we prove the theorem with [ = 1, the proof being
the same in the other cases. Let us first prove the I'-liminf inequality. Let (ug) be a
sequence of functions belonging to A, i o(A) converging to u in the LP-topology such
that

limkinf Fy (ug, A) = lilgn Fy (ug, A) < 400.

Then, from (3.2), we get in particular that

N
(3.31) supz Z 6§-\£\D§;kun(a)|l’ < +o0.
koim aeRg;k(A)

Thanks to the boundary conditions on uy, it is easy to deduce that

N
Y Y D w(ep < oo
" i=lacrs (9)

Then, by reasoning as in the proof of Proposition 3.4, we can prove that u € W17 (Q; R?),
and, since (ug) converge to ¢ in LP(Q\ A;R%), we get that u — ¢ € W' (4;RY). By
Theorem 3.3 one has

limkinf FE (ug, A) = limkinf Fe, (uk, A) > F¥(u, A).

To prove the I-limsup inequality, let us first consider u € W1P(€;R?) such that
supp (u—¢) CC A. Let ug € A, (§2) be such that (ug) converges to u in LP(€; R%),
and

limsup Fy; (ug, A) = F*(u, A).
k

Then, by reasoning as in the proof of Proposition 3.8, given § > 0, we can find suitable
cut-off functions ¢, with supp (u — ¢) CC supp ¢ CC A such that if we set

vk (@) i= dr(@)ur(a) + (1 = gr(@))p(a),
then (vy) still converges to u in LP(Q;R%), vy, € Ae;, () for k large enough, and

limsup F; (v, A) < lim sup Fe,, (ug, A) + 6.
k

Thus, thanks to the definition of I'-limsup, we have
F—limsung‘;k (u, A) < F¥(u, A) + 6.

By the arbitrariness of §, we obtain the required inequality. In the general case
the thesis follows by a density argument, thanks to the lower semicontinuity of I'-
limsup and to the continuity of F with respect to the strong convergence in
Whr(Q;R?). |

As a consequence of the previous theorem we derive the following result about
the convergence of minimum problems with boundary data.
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COROLLARY 3.11. Under the hypotheses of Theorem 3.10 we get that, for any
¢ € Lip (RYN), 1 € N and A € A(Q) with Lipschitz boundary,

lilgninf{ngk (u,A): ue Algjk oy =min{F(u,A): u—pe WP (A; R},

Moreover, if (ux) is a converging sequence such that

lilgn Fe, (ug, A) = li]£n inf{FEM_ (u,A): ue Alejkw}v
then its limit is a minimizer for min{F(u, A) : u— ¢ € Wy (4;R%)}.

Proof. Let (ux) be a sequence such that F.; (uy, A) < +oo. Then, by (3.2) and
by the boundary conditions on uy, it is easy to show that

N
sup Z Z €N|D§;k ug(a)|P < 400

=1 a€e, ZNNK

for any compact set K of R™. By virtue of this property, up to passing to a continuous
extension of uj vanishing outside a bounded open set containing 2, we get

i . e = 0
Jim sup 7 — el v =0,

where we have set
(thu)(z) == u(z +h), x=cRY hecRV.

Then, by the Frechét—Kolmogorov theorem, there exists a subsequence (ug,, ) converg-
ing in LP(;R%) to a function u € LP(2;RY). Arguing as in the previous proof it is
easy to show that u — ¢ € Wol’p(Q). The thesis follows, thanks to Theorem 3.10 and
Theorem 2.1. ]

We can also derive the analogue of Theorem 3.10 and Corollary 3.11 about the
convergence of minimum problems with periodic conditions.

Let Q(Q) be the family of all open N-cubes contained in . For any € > 0, r > 0,
Q = (zg,z0 + 7)Y € Q(Q), and ¢ € Lip (RY), set

=< ([g-)

Aﬁw(Q) = {U € AE(RN) PU— P Te — periodic} ,

where ¢ € A.(RY), ¢(a) = p(a) for any a € eZY. Then define F## : LP(Q;R?) x
Q(Q) — [0, +oc] as

F.(u,Q) ifue Afi{,(QL
(3.32) F&#(u,Q) =

+o00 otherwise.

THEOREM 3.12. Let {f¢}. ¢ satisfy (3.2), (3.3), and let (H1)~(H2) hold. Given
(€5), a sequence of positive real numbers converging to 0, let (g;,) and f be as in
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Theorem 3.1. Then, for any ¢ € Lip (RY), let F# : LP(Q;RY) x Q(2) — [0, +00] be
defined as

; o). md
Fet(u, Q) = /Qf(x,Vu)dx ifue Wy (Q;RY),

+00 otherwise.

Then, for any Q € Q(Q), (Fg‘;k#(,Q)) [-converges with respect to the LP(2;RY)-
topology to the functional F## (u, Q).

Proof. To prove the I'-liminf inequality, let (uj) be a sequence of functions be-
longing to A?i,, »(Q) converging to u in the LP-topology such that

lin inf F;jak#(uk, Q) = lim F;j;#(uk, Q) < +oo.

Then, arguing as in the proof of Theorem 3.10 and observing that r. — r, we can
conclude that u — ¢ € W;’p(Q; R?), and

limkinf Ffj;#(uk, Q) > F#(u,Q).

By a density argument it suffices to prove the I'-limsup inequality for w such that
u—p € W;&’OO(Q’; R?) for any open N-cube @’ such that (zo+6,20+7r—96) C Q' C Q
for some 6 > 0. Note that, for such a u, AEJ‘M C Afjkw for k large enough. Then
the existence of a recovery sequence is ensured by Theorem 3.10. 0

As a consequence of the previous theorem, by reasoning as in the proof of Corol-
lary 3.11 one can prove the following result.

COROLLARY 3.13. Under the hypotheses of Theorem 3.12 we get that, for any
¢ € Lip (RY) and Q € Q(9),

1iI£ninf{FEjk (u,Q): ue A¥ (Q)} =min{F(u,Q): u—¢pc W;&’p(Q;Rd)}.

€jp P
Moreover, if (ux) is a converging sequence such that

lilzn Fe, (ug, Q) = lilgn inf{F,, (v,Q): ue Afjk b

then its limit is a minimizer for min{F(u,Q): uv— ¢ € W;f’(Q;Rd)}.

4. Homogenization. In this section we will show that if the functions f¢ are
obtained by rescaling by ¢ functions f¢ periodic in the space variable, then a I'-
convergence result holds true. This models the case when the arrangement of the
“material points” presents a periodic feature (see Figure 4).

Let k = (ky,...,ky) € ZV be given, and set

Rk = (O,kl) X oo X (07]€N).

For any ¢ € ZN, let f¢: ZY x R — [0,4+00) be such that f(-,z2) is Ry-periodic for
any z € R%. Then we consider f¢ of the following form:

(4.1) Fi(a,2) = f€ (gz) .
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Fic. 4. Example of periodic structure.

In this case, the growth conditions (3.2) and (3.3) and hypotheses (H1) and (H2) can
be rewritten as follows:

(4.2) fa,2) > ce1(|z|P=1) Vie{l,...,N},
(4.3) fola,2) < C(|2P + 1),
where
(H3) Y Cf <+
cezN
In what follows we will use the following notation: for any = (x1,...,zy) € RV
define

o ([ [0

Moreover, for any A € A(Q), e > 0,1 € N, and M € MV we denote by AL ,/(A)
the set defined in formula (3.29) with ¢(z) = Mz. By simplicity of notation, we set
ALy (A) := Ac y(A). Finally, for every r > 0 we set Q, := (0,7)"

The following theorem is the main result of this section, and its proof is obtained
by adapting a homogenization argument to the discrete setting. We remark that a
central role is played by Theorems 3.1 and 3.3 and by the convergence of minimum
problems with boundary data stated in Corollary 3.11. Moreover, we recall that the
following result has been already proven in [11] in the one-dimensional case, where a
more straightforward proof is possible.

THEOREM 4.1. Let {f¢}.¢ satisfy (4.1)—(4.3), and let (H3) hold. Then (F)
['-converges with respect to the LP(£2; R%)-topology to the functional F : LP(Q; R?) —
[0, 4+00] defined as

u)dr ifu Lp(O.- RY
(4.4) Fu) = Ath)d fue WP (Q:RY),

400 otherwise,
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where from : MP>*N — [0, +00) is given by the following homogenization formula:

(45) from(M) = Tm_—mind S ST (5 D5(), v e Av (Qn)

h—+o00
€€ZN BeRS(Qn)

Proof. Let (g,) be a sequence of positive numbers converging to 0. Then, by
Theorems 3.1 and 3.3, we can extract a subsequence (not relabelled) such that (Fy, ) I'-
converges to a functional F defined as in (3.4) and such that, for any u € W1P(Q; R%),
Ae A(Q),

F—liman(u,A):/ f(z, Vu) de.
n A

The theorem is proved if we show that f does not depend on the space variable x and
f = frhom- To prove the first claim, by Theorem 2.2, it suffices to show that if we set

F(u,A):/Af(x,Vu)dz,
then
F(Mz,B(y, p)) = F(Mz, B(z,p))

for all M € MY*N 'y 2 € Q and p > 0 such that B(y, p) UB(z,p) C Q. We will prove
that

F(Mz,B(y,p)) < F(Mz, B(z,p)),

the proof of the opposite inequality being analogous. By the inner regularity of
F(Mz,-), given by Proposition 3.8, it suffices to show that for any p’ < p we get

(4.6) F(Mz, B(y, o)) < F(Mz, B(z, p)).
Then let v, € A, (Q) be such that (v,) converges to Mz in LP(£2; R%), and

(4.7) liern F., (vn,B(z,p)) = F(Mx,B(z,p)).

For n € N, define u,, € A._(Q) as

ED (a —€n [y;z}k) + e, M [yfz}k if « € ,ZY N B(y, p'),

up (@) == c e

Mo otherwise.

Then it is easy to verify that (u,) converges to Mz in LP(Q;R%). Moreover, for n
large enough

RS (B(y, ) — en [y -

=] cre .

Thus, since, by the periodicity hypothesis, fg(a—an[ya—zz]k, z) = f&(a, z) and Duy, ()

= Dév,(a — en["]k), we get for n large enough

Fe, (un, B(y, p)) < Fe,, (vn, B(z, p)).
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Eventually, by (4.7), we obtain
F(Mz,B(y,p')) < 1im_‘i_nf F., (un, By, p"))
n—-—+0o0
< lim F. (vn,B(z,p)) = F(Mz,B(z,p)).

~ n—+4oo

In order to prove that f = fpom, first note that, by the lower semicontinuity of F
in WLP(Q;RY), f is quasi-convex so that, by the p-growth properties of f, for any
A € A(Q) with Lipschitz boundary and for any M € M%*¥ there holds

F(M) = |f17\ mi“{ /Af (Vu)dz:  u— Mz €Wy (4 Rd>}
:E{Tmin{F(u,A): u—MxEWOLP(A;Rd)}
1

A liminf {F, (u,A): we A, um(A)},

where the last equality follows by Corollary 3.11. In particular, if g € Q and r > 0
are such that Q,(z¢) := (20,70 + 1) C Q, then

FOM) = tim (R, (1, Qu(0)) £ € Aey r(Qel0))}.

Without loss of generality, we may suppose o = 0. If we set

r

ne 2]

57L

then it is easy to show that A. a (Qr) = A-, am(Qe,1,) and that for ¢ € ZV
Rt (Qr) = R, (Qe,1,)- Thus

FOM) =l b (P, (1, Q(0, 20T3)) - € Auy v (Qe,r, )}

Eventually, through the change of variable

(4.8) g==2

)
9

o(B) = Zu(e0),

we get

En

fan =tim () e d S S G DE). ve A (@r)

§€ZY BeR} (Qr,)

= li7rln TlN inf Z Z ff(@va(ﬂ)), ve A (Qrn,) s

" £€ZN Be RS (Qr,,)

where the last equality holds since
BT, 2% = 1.
n r

Then the thesis will follow by the next proposition.
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PROPOSITION 4.2. Let f¢ satisfy (4.2), (4.3), and (H3) for any & € ZV. Then
the limit

im —cinfd 303 SO, D50(B). v e A (Qn)

h—+oo hN
£€ZN BeRS(Qn)

exists for all M € M¥*N
Proof. Let M € M be fixed, and set

Fi(v,A) =Y Y 48, Dv(B)),

£€ZN BeRS(A)

Fu(M) = o inf (R0, Qu), v € Av (Qu))

Moreover, for any R > 0, set

Ffiw,A):= > > 48, Div(B)),

I€I<R ge RS (A)

RO = o if {0, Qu), v € Av (Qn)}-

We prove that

(4.9) Rim_sup|fi*(M) = fa(M)] = 0.

To this end, since f{*(M) < f,(M) for any h € N and R > 0, it suffices to prove that
for any 6 > 0, there exist Rs > 0 such that

fu(M) < fE(M)+6 VR>Rs;, heN.
Fix 6§ > 0, and let v/ € A; p(Qp) be such that
1
th

By testing the minimum problem defining f{*(M) with v(a) = Ma, we get, by (4.3)
and (H3), that

FRl,Qu) < fROM) + ~.

(4.10) i

RO < o

Thus, by (4.10) and (4.2), we obtain that

Fif(Ma,Qp) < C|MP.

N
1 .
Sup Z Z |DSi o (8)|P < +oc.
h,R i=1 ﬁERfi (@Qn)

Then, by arguing as in the proof of Lemma 3.6 and thanks to the particular geometry
of the sets @y, we deduce that

Sup 5 Sup Z | DS (B[P < +oo.
hR WY cezn 4o
ﬂERl (Qh)
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Eventually, we have

Fu(M) < ol Qn) € e FER. Q)+ iy 005 D)

lEI>R  BeRS(Qn)
1
R = 3
[€I>R
Thus, it suffices to choose Rs > 0 such that for R > R;s

1

— €

R+C E Cs <.
|¢|>R

So far, in order to prove the thesis, it suffices to show that for any R > 0 there exists

the limit
lim (M.
Set

RO = s in {0, Qu), ve Al @)

Using backward the scaling argument exploited in the proof of the previous propo-
sition and thanks to Theorem 3.10 and Corollary 3.11, one can show that, for any
subsequence (h,) C N, it is possible to extract a further subsequence (not relabelled)

such that

(4.11) lim fi7 (M) = lim f;""(M).

Thus, to complete the proof, it is sufficient to prove that there exists the limit
lim FER(M).

Let h € N, and let v, € A[IIE]W(Qh) be such that

Ff(on, Qn) < fi™(M) + 1

1
hN h

For any k > h define a function uy, € A (Qk) as follows:
vn(a—hi) + hMi if o € hi+Qy, i€ {0,..., [¥] =1},

ug () =

Mao otherwise.

Note that for any ¢ € ZV, [¢] < R we have

R§(Qr) C U Ri(hi+Qn) |URT [ @\ | (hi+Qu)
ie{o,...[£]-1}" ic{o,....[E]-1}"
U U (hi+ ({0,....h+ RYN\{0,...,h — R}Y))

o, 5] -1}
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Moreover, Dug(a) = M if a € R$(Qy \ Uie{o &]71}N(hi + @) or

H k
@ € Uscqox)oayy (Pt ({0, b RIVAAO, . h— R}Y)), and

BN
# | Ri | Qr\ U (hi+ Qp) <EN - [} hN,
ic{o,....[E]-1}"
#({0,...,h+ RIN\{0,...,h = R}N) < (h+ R)N — (h— R)V.
Then, by (4.3) and (H3), we get
N
k] kLNFlR(vh,Qh)

vemnrd ([ [1] - )
<1 (o)
b (o[ T wom-ooa).

By letting k tend to +o00, we then get

+
Q
=

v

limsup 75 (M) < fFPR (M) + % + C\M|PhiN (h+ RN — (h— R)N).
k

Eventually, letting h tend to +o00, we obtain
lim sup f,f’R(M) < limhinf f,?’R(M),
k
that is, the conclusion. |
Remark 4.3. In formula (4.5) we can replace A; p(Qp) by All,M(Qh) for any

fixed [ € N, the proof being exactly the same.
Remark 4.4. The function fj, in Theorem 4.1 also satisfies

Frm(¥0) = lin_prcint 3 3 S 5 (80054 Dfus)

h—4o0 hN
£€ZN BeRS(Qn)
(4.12) v € Ay (Qn-2) }

where, for every k € R,
A1 2(Qr) == {ve AARY): v k-periodic}.

This characterization can be proved by arguing as in the proof of Theorem 4.1 and
Proposition 4.2, taking into account Corollary 3.13 and recalling that, since from is
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quasi-convex, there holds
1
fhom(M) = 7"7N mln{ o fhonL(M + Vw) dx : ¢ S W;!p(QT; Rd)}

= TLN min {F(Ma + ;[;’QT) RN W;p(QT;Rd)}.

As a consequence of Theorem 3.10, Corollary 3.11, and Theorem 4.1 we immediately
derive the following result about I'-convergence and convergence of minimum problems
for homogeneous functionals subject to Dirichlet boundary conditions.

THEOREM 4.5. For any ¢ € Lip (RN) and | € N let F#' be defined by (3.30),
and let F? : LP(; RY) x A(Q) — [0, +00] be defined as

om(Vu)dz  if u— ¢ € WEHP(4; RY),
s o) = /Afh (Vu)de ifu—p € WEP(A;RY)
+00 otherwise.

Under the hypotheses of Theorem 4.1, F£(-,A) T-converges with respect to the
LP(Q; RY)-topology to F#(-, A) for any A € A.

COROLLARY 4.6. Under the hypotheses of Theorem 4.5, for any o € Lip (RN), | €
N, and A € A(Q),

lim inf{F.(u, A) : u€ AL Y = min{F(u,A) : u—pe WP (4R}
E—

Moreover, for any (g;) converging to zero as j tends to infinity, if (u;) is a converging
sequence such that

lim F., (uj, A) = iminf{F., (u, A) : ue AL o)
J J »

then its limit is a minimizer for min{F(u, A) : u— ¢ € Wy’ (4;R%)}.
An analogous result about the convergence of minimum problems with periodic
conditions follows by Theorem 3.12 and Corollary 3.13.

5. The convex case: A cell problem formula. In this section we will see that
in the convex case the function f3,,, can be rewritten by a single periodic minimization
problem on the periodic cell Ry. Set

N
IAf = H ki,
i=1

N
Le= {0, . ki = 1},
=1

and
A1 4 (Ry) == {u € Ay (RY) : wis Ry-periodic}.

THEOREM 5.1. Let (f8)c¢ satisfy all the assumptions of Theorem 4.1, and in,
addition, let f&(c,-) be convex for all a € eZN, ¢ > 0, and ¢ € ZN. Then the
conclusion of Theorem 4.1 holds with from Satisfying

Fhom(M) = %inf DI (ﬂ,Mg +D§v(ﬂ)) , v € ALy (Ry)

£€ZN Belyx |§|
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for all M € MI*N,
Proof. Set

(M mf{z Zf5<5aM|§+D (ﬂ)), UEAl,#(Rk)}-

£€ZN Belx
We first prove that
(5.1) from(M) < f(M).
With fixed 6 > 0, let v € Ay % (Ry) be such that

LY (s Dfe) <TON +o

£eZN pBelx

f#( mf{ Z Z fe (5 M|§| + DS (ﬁ)) , VE AL#(th)} .

wi€ZY B RS (Qn)
For n € N, since in particular v € Ay »(Q,,;), we get

nk+2 <> > ff (5vM|§ + Djv (5))

€€ZN BeRri(Q,;)

<RV ST Y g (/3 M|§|+D (ﬁ))

£eZN pelyx
where the last inequality follows by the periodicity of v, (f(+, z)) and by the fact that

Q,; is the union of nVkN=1 periodicity cells. Eventually, by Remark 4.4, we get

fhom (M) < hmnsup (nk—|—2)Nf:;+2( )

Z DOWA <5,M|€| + Djv (ﬁ)) < (M) +6

geZN pelx
and inequality (5.1) follows by letting § tend to 0. Let us prove that
fhom(M) > ?(M)

For any R > 0, set

From (M) = Tim - mf{z Do I8 Diu(B), ve A <Qh>}

I€I<R e RS (Qn)

|

[¢|<R Bk

"o mf{ DI (ﬁ,Mlg + DS (ﬁ)), veAl,#(Rk)}.
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By (4.9) and (4.11)we easily derive that
hm fhom(M) = fhom(M)-

Analogously one can prove that

lim 7(M) = F(M).

R—+o00
Thus it suffices to prove that for any R > 0
—R
(5.2) From (M) = f(M).
For n € N, let u € A[R] 1 (@Q,,1), and let v € Ay 4(Q, ;) be such that
v(a) =u(a) — Ma YaeQ, ;.

Moreover, set

N
Ie=J30.....n]Jki -1
i=1 j#i
Then we get
(o + 08

\£\<R5eRf( i)

i > fﬁ(“ﬁa ) -o(7)

I€I<R gefo,...,
1 N 1
:% Z kN InN Zlfg <ﬂM§|+D <ﬂ+ ’Yﬂﬁt%))—O(n)
€I<R byt ;_1:
l 2 : ¢ § o ) 1
- ’%\E\SRﬁakf S Mt ;;N LN ;ﬂD <ﬂ+ ;:1 %kzez> 0 (n> ,

where in the last inequality we have used the convexity hypothesis on f¢. Eventually,
set

N
1
v (B) = 7]}:N—1nN Z v (ﬂJr Z%‘kiei> .
RISEIN i=1
It is easy to show that v, € A; 4(Rk), and so, by the previous inequality, we get

> % (s 0ho)

|§|<RgeR€( 2

L5 E Ay otos) o)

‘§‘<R5€Ik

(nk)
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Passing to the inf with respect to u € Af,(Q,;), we get
R,R —R 1
e o0 = 700 -0 (1),

and then, letting n tend to 400, we obtain (5.2). 0
Remark 5.2 (quadratic forms). Under the hypotheses of Theorem 5.1, if, in
addition, for any ¢ € ZV f%(a,-) is a positive quadratic form on R?, that is,

ff(oz,z)z (Aé(a)z7z>, AE( )eded

sym>

then, thanks to Remark 3.2, the limit energy density from(-) is a homogeneous
quadratic form on M¥*¥ and formula (3.5) becomes

fhom(M): Ahom (M M)

Ll 3 3 () (v i) (G 00).

£eZN Bely

NS ./417# (Rk) }

with Apom € TQ(MdXN).
If N =d =1 and only nearest-neighbor interactions are taken into account, that
is,

fE=0ifE#e, [, 2) = a(a)?

with a : Z¥ — (0,400) k-periodic, the previous minimum problem can be easily
solved (see [9]), giving the analogue in the discrete setting of a well-known homoge-
nization result for integral functionals (see [6]). In fact, in this case

—1
k—1

1 1
Aomzf
hom = g [;aw)

is the harmonic mean of a(-).
Remark 5.3. Note that if Ry = (0,1)", that is, f does not depend on the space
variable «, in Theorem 5.1 we obtain

om0 = 3 £ (1)),

£ezZN

6. Interactions along independent directions and reduction to the one-
dimensional case. In this section we first recall some results proven in the one-
dimensional setting in [11], where a nonasymptotic formula defining the limit energy
density from is provided when only nearest and next-to-nearest neighbor interactions
are considered.

Then in Theorem 6.3 we will show that if only interactions along the coordinate
directions are taken into account, the N-dimensional problem can be reduced to a
one-dimensional one.
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The following two theorems have been proven in [11] in the case d = 1. Their
proof in the case d > 1 is the same.

THEOREM 6.1 (nearest-neighbor interactions). Let Q@ = (0,1) C R, and let
F.: LP(;RY) — [0, +00) be defined as

Zf( ZH)) (Ei)) ifue A(Q),

400 otherwise,

F.(u) :=
with f : R — [0, 4+00) satisfying f(z) > C(|z|P—1). Then the conclusions of Theorem

4.1 hold with

fhom(z) = f**(Z)

THEOREM 6.2 (next-to-nearest neighbor interactions). Let Q@ = (0,1) C R, and
let F. : LP(Q;RY) — [0, +00) be defined as

Zfl(u e(i+1)) )Jrzgjﬁ( )E)u(si)>

if u e A(Q),

F.(u):=

+00 otherwise,

with f1,f2: R — [0,4+00) satisfying f1(z) > C(|z|P — 1). Then the conclusions of
Theorem 4.1 hold with

fhom(z) = f**(z)v

where f(z) = f2(z) + 2inf{f(z1) + f*(22), 21 + 22 = 2z}. Back to the general
N-dimensional setting, we consider now energies of the form

N
(61) P = | T ifue A@),

400 otherwise,
where, for any i € {1,..., N}, F: A.(Q) x A(2) — [0, +0oc] is defined as
(6.2) Fi(u, A) Z Z eN fE(DFeiu(a)),
F=laeR (4)
with fF : R? — [0, +00) satisfying
fi) 2 ellzlP =1),  ff(z) S CF(2P +1),

and

N 4o

ZZC’f < +00.

=1 k=1
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This is a particular case of the model considered in section 4, with f& = 0 if £ # ke;,
frei(0,2) = fF(2),i € {1,...,N}, k € N, and Ry = (0,1)V
The following theorem shows that, in this case, the homogenization formula defin-
ing from can be rewritten as a sum of N one-dimensional homogenization formulas.
THEOREM 6.3. Let F. be defined by (6.2). Then the T'-convergence result stated
in Theorem 4.1 holds with from satisfying

N
(6.3) Fhom (M Zf (M)

for any M = (M*,...,MN) e MP*N where fi : R* - R, i € {1,...,N}, is defined
by the following one-dimensional homogenization formula:

+oo h—k—1
P v(j + k) —v(j)
fie) = lm i >y (HEE =), e a0,

Proof. We first prove that

fhom f M’L

HMZ

To do this, by the definition of fj,m (M), it suffices to show that for any i € {1,..., N},
u € A1, m(Qp) we have

(6.4) h—NP(u,Qm > fi(M?) + O(h).
We use a slicing argument. For i € {1,..., N}, set
+oco h—k—1
mi (z) = lmf oS (”k)()) ve A ((0,h))
k=1 j=1

By simplicity of notation, we prove (6.4) for ¢ = 1. Given u € Ay 5(Qp), we may
write

+o00 h— y
(6.5)  Fi(u,Qn) = > ) Z It < — ﬂ) Uﬁ)).

Be{l,...h—1}N-1 k=1 j=1

Since for any 3 € {1,...,h — 1}~ the function v(j) := u(j, 5) — M p3 belongs to
A; a1 (0,h), where M := (M?2,..., M"), from (6.5) we get

thl(u Qn) > th ——# {1 A=Y my (M) > my (M.

We then easily infer inequality (6.4).
We now prove that

N
(66) fhom(M) < Z ';(Ml)
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With fixed 7 > 0, for any i € {1,... N} let v}, € A7 ,/:(0,h) be such that

o0

+

(6.7)

S

k

el
I
—_

h—k—1 i v
j=1

and set

N

uh(a) I:ZU};(O@'), a:(ala"'vaN)'
=1

Note that up, € Ma + Ay %(Qnr—2). Moreover, by the analogue of (6.5) applied to
Fi(u,Qp) for any i € {1,..., N} and by (6.7), we easily deduce that

N N
1 o
iy E Fi(up, Q) < E my, (M*) + Nn.
i=1 i=1

Eventually, by the characterization of frem given by formula (4.12), letting first h
tend to +oo and then 1 tend to 0, we get (6.6). O

Remark 6.4. Note that formula (6.3) highlights that a superposition principle
holds, in the sense that the limit energy is obtained by relaxing the energies due to
the interactions in every coordinate direction independently and then summing over
them.

Remark 6.5. (a) (nearest-neighbors) by Theorem 6.1, if f¥ = 0 for all k # 1,
then formula (6.3) can be rewritten as

N

From(M) =Y (F1)™(M7);

=1

(b) (next-to-nearest neighbors) by Theorem 6.2, if f¥ = 0 for all k # 1,2, then formula
(6.3) can be rewritten as

N

fhom(M) = Z(ﬁ)**(Ml),

i=1

with
fi2) = () + gt (1) + il (22), 21+ 22 = 22,

7. An example of quasi-convex nonconvex limit energy density. In the
following we provide an example of vector-valued discrete interaction energies defined
in the plane whose continuous counterpart has an energy density which is a quasi-
convex (nonpolyconvex) function. Our example draws inspiration from Sverdk’s con-
struction of a quasi-convex function which is not polyconvex (see [21]). Let N = d = 2,
p > 1, and define f; : R? — [0, 4+00),i=1,2,3, as

1+ |zP ifz#:l:é—il,
fi(z) =

0 otherwise,
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where & = e, & = €2, £3 = e1 + e3. Let F be defined as

3
F.(u) = Z Z e2f; (Dgiu(a));

=1 qeRli
then the conclusions of Theorems 4.1 and 4.5 and Corollary 4.6 hold with fj.., given
by

3

frhom(M) = lim 1 in YD HDFUB), ve ALy (Qn)

h— 400 hN — -
=1 Be RS (Qn)

THEOREM 7.1. from is not convexz.
Proof. By testing the minimum problem defining fr,on, with the identity function
and its opposite, we immediately obtain that

fhom(-[) = fhom(_-[) = 07

where I is the identity matrix in M?2*2. The claim is proven if we show that
from(0) > 0. We argue by contradiction. Without loss of generality we may as-
sume that Theorem 4.5 holds with A = Q1. If from(0) were zero, there should exist
a sequence u, € Ae, o(Q1) such that u, — 0 in LP(Q1; R?) and

(7.1) lim F, _(u,) = 0.
Set

T+ = {($1,1’2)€R2Z 0§£C1§1, x1§x2§1},
T~ :={(r1,20) €ER?*: 0<2; <1, 0<um <z},

and consider the family of piecewise affine functions v, : Q1 — R? defined as follows:

un (@) + D) un () (21 — ax)

+D&up (o + eper) (w2 — o) ifrea+e, T,
v (7) =

Un(a) + D& up (o + epea) (w1 — )

+Dg up () (w2 — a2) ifzea+e,TT.

Note that v,|ag, = 0. Moreover, it is easy to check that
(7.2) E. (u)= [ f(Vov,) dz,
Q1

where f : M?*2 — [0, +00) is defined as

F(Q) = f1(G) + fo(G) + f (Cl\—/gCZ

> . (= (C1,¢) € MPX2

In particular, by (7.1)

(7.3) lim [ f(Vuy) dz=0.
mJQ,
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Since we have

F(€) = (|G — Co2|” + G2 + ¢ ]P),
by (7.1) and (7.2) we obtain

(7.4) lim [ (V1o — Vou|P 4 |V 102 + Vaul|P) dz = 0.
mJoy

Since
Av} = div(Viv} — VavZ, Viv2 + Vaol),
Av2 = div(Viv2 + Vaul, —=Viv} + Vav?),
using the L? estimates for the Laplace operator (see [19]) we obtain that

||VU31H§,P(Q1;R2) S HAU’:;’LH%_LP(QURQ)

< / (V10 — Vo |P 4 |V 102 4 Vool |P) do
1

for ¢ = 1,2. Then, by (7.4) and the previous estimates, Vu,, converges to 0 strongly
in LP(Qq; M?*?), so that

lim [ f(Vu,) dz = f(0) |Q1] > 0.
"Jy

Hence we reach a contradiction. ]
Remark 7.2. In the particular case 1 < p < 2, thanks to the growth hypotheses
on fi, from 18 a quasi-convex nonpolyconvex function (see [6, Remark 6.9]).
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Abstract. The authors introduce two nonlinear advection-diffusion equations, each of which
combines Burgers’s convection with a fourth order nonlinear diffusion previously designed for image
denoising. One equation uses the L?-curvature diminishing diffusion of You and Kaveh [IEEE Trans.
Image Process., 9 (2000), pp. 1723-1730], and the other uses the “low curvature image simplifiers”
diffusion of Tumblin and Turk [Proceedings of the 26th Annual Conference on Computer Graphics,
ACM Press/Addison-Wesley, New York, 1999, pp. 83-90]. The new PDEs are compared with a
third advection-diffusion equation that combines Burgers’s convection with a second order diffusion
recommended by Perona and Malik for denoising and edge detection [IEEE Trans. Pattern Anal.
Machine Intell., 12 (1990), pp. 629-639]. We prove results regarding the existence and nonexistence
of traveling wave solutions of each PDE. Visualizations of each ODE’s phase space show qualitative
differences between the two fourth order problems. The combined work gives insight into the existence
of finite time singularities in solutions of the diffusion equations.
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1. Introduction. We introduce two nonlinear advection-diffusion equations that
each combine Burgers’s convection with a fourth order nonlinear diffusion intended
for image processing:

1
and
Ly
x
with g(s) = 14-% Very little is known about the fourth order diffusions, despite recent

demonstrations of their effectiveness for image denoising [43, 51]. The combined
advection-diffusion equations have the possibility of smooth traveling wave solutions
approximating Burgers’s shocks. We prove rigorously that such smooth traveling wave
solutions of (YK) do not exist for sufficiently large jumps, whereas smooth traveling
wave solutions of (TT) exist for all jump values. These results suggest very different
behavior of the fourth order nonlinear imaging equations introduced by You and
Kaveh [51] and Tumblin and Turk [43].
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1.1. Nonlinear PDEs for image denoising. Nonlinear PDEs are now com-
monly used in image processing for issues ranging from edge detection, denoising,
and image inpainting to texture decomposition. Before the development of nonlinear
PDE-based methods, the problem of noise reduction in images was treated through
linear filtering, in which the image intensity function is convolved with a Gaussian.
The method of linear filtering was introduced by Marr and Hildreth [34] and then
further developed by Witkin [50], Koenderink [28], and Canny [15]. It is equivalent to
solving the heat equation with initial data given by the noisy image intensity function.
Although this technique quickly damps out any noise in the image, it also badly blurs
edges, often leaving objects in the image unrecognizable.

Nonlinear second order PDEs were introduced with the intention of smoothing
while preserving edges. Examples of second order nonlinear PDEs for image processing
date back to the seminal works of Perona and Malik [36] and Rudin, Osher, and Fatemi
[38]. Their methods are based on a nonlinear version of the heat equation,

(1.1) ur =V - ((9(|Vu|) Vu),

in which the “thresholding function” g is small in regions of sharp gradients. A number
of mathematical issues arise with these equations and their use. For example, Perona
and Malik suggest using a smooth, positive, and even function ¢ that decays fast
enough for large Vu so that significant diffusion takes place only in regions away from
image edges. Specifically, Perona and Malik required the existence of some K > 0
such that

d
(1.2) o (g(s)s) >0for0< s < K
and
d
(1.3) o (g(s)s) <0 for s > K.

However, the nonmonotonicity of g(s)s causes (1.1) to be ill-posed in regions of high
gradients, and the ensuing dynamics result in a characteristic “staircase” instability.
Following [1] and [26], the cause of this ill-posedness can be seen by rewriting the
Laplacian locally in terms of v = \gzl and a direction 7 perpendicular to v. Letting
F(s) = g(s)s, (1.1) can be rewritten as

(1.4) ug = F'(|Vul)us, + g(|Vu|)uy,.

Requirement (1.3) then implies that in regions where |Vu| > K, (1.4) (and therefore
(1.1)) is backwards parabolic in the direction of the gradient.
A typical thresholding function g is

1
1.5 §)=———.
(1.5) 9(s) )
where k is a parameter used to establish a standard edge size for the image [21, 27,
45, 46]. Figure 1 shows (1.5) for k = 1. We note that degenerate parabolic equations
which have structure similar to those of Perona and Malik, and which exhibit the
same “staircasing” effect, arise in simplified models for the velocity field of a sheared
granular medium [49].
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Fi1G. 1. An example thresholding function. g(s) and g(s)s are shown for g(s) = ﬁ

In the past few years, a number of authors have proposed analogous fourth order
PDE:s for edge detection and image denoising with the hope that these methods would
perform better than their second order analogues [17, 18, 32, 33, 43, 44, 51]. Indeed
there are good reasons to consider fourth order equations. First, fourth order linear
diffusion damps oscillations at high frequencies (i.e., noise) much faster than second
order diffusion. Second, there is the possibility of having schemes that include effects
of curvature (i.e., the second derivatives of the image) in the dynamics, thus creating
a richer set of functional behaviors. On the other hand, the theory of fourth order
nonlinear PDEs is far less developed than that of their second order analogues. Also,
such equations often do not possess a maximum principle or comparison principle,
and implementation of the equations could thus introduce artificial singularities or
other undesirable behavior.

Some examples of fourth order equations include the L?-curvature gradient flow
method of You and Kaveh [51],

(1.6) uy = —A(g(Au)Au),

the Perona—Malik analogue by Wei [44],

(L.7) wp = =V - (g(|Vul) VAu),

and Tumblin and Turk’s “low curvature image simplifiers” [43],
(1.8) up + V- (9(D;ju)VAu) = 0.

In (1.8), g is a function of the second derivatives of the image intensity function w.
Although application of these PDEs to images as demonstrated in [43], [44], and [51]
give similar results, it is unclear how the dynamics of the equations compare to each
other and to the more established second order methods. Rigorous analysis is thus
needed to better understand the new PDEs. One immediate observation is that (1.6)
is linearly ill-posed in regions of high curvature, while (1.8) is not. Further insight
into the two equations is gained by again defining F(s) = g(s)s and noticing that
(1.6) can be rewritten as

(1.9) u = —F' (Au) A%u — F” (Au) [VAul?,



FOURTH ORDER TRAVELING WAVES 41

while picking D;;u = Au allows us to rewrite (1.8) as
(1.10) up = —g (Au) A%u — ¢’ (Au) |VAul* .

We see that (1.9), like (1.1), is ill-posed in regions where F’ (s) is negative. On the
other hand, (1.10) is always linearly well-posed. Also note that (1.9) becomes unstable
in all directions when F” (s) changes sign, whereas (1.4) has the instability only in the
direction of Vu.

A class of equations including (1.7) and (1.8) was studied in [24] by the authors,
who proved global existence of H' solutions when the argument of g, in the form of
derivatives of the intensity w, is convolved with a standard mollifier kernel. However,
as is well known for some second order equations, as in (1.1), such mollification can
turn an ill-posed problem into a well-posed problem [16]. The resulting numerical
methods for the equations with mollification appear to smooth out, but not remove,
undesirable artifacts of the method without mollification, such as the staircase insta-
bility of the Perona—Malik method.

1.2. The model equations. We introduce two model problems designed for
studying the dynamics of these new image processing equations without mollification.
Both are convection-diffusion equations which can be studied by a combination of
analytical and computational methods. We introduce a Burgers convection into the
dynamics of the fourth order diffusions (1.6) and (1.8) in order to instigate shock
or jump-type behavior typical of edges in images. Such convective motion has real
application in image processing. One area in particular is image inpainting [2, 3], for
which image information is convectively flowed into a region where the image content
is unknown. Thus our study gives insight into the behavior of hybrid imaging methods
that combine diffusion and convection.

The two fourth order equations are compared with a second order convection
diffusion equation that was introduced in [23] and [29]. This equation combines a
Burgers convection term with the second order diffusion of (1.1). The authors of [23]
and [29] share our motivation of using these equations as tools for understanding the
diffusion dynamics.

The three model equations that we consider are

1
Ly
(YK) ug + 5“’ = _(g(uaw)u:vz)zwa
and
Ly
In each equation, we use the thresholding function
(111) (5)=
' IS =1

as in [36]. Many of our results can be easily generalized to thresholding functions
g which satisfy the properties stated in [36]. Remarks are made regarding possible
generalizations of our results.
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The idea of creating a simplified model PDE in order to understand more complex
dynamics is an approach in applied analysis that has met with tremendous success in
recent decades. A few examples include applications in combustion [12], singularities
[25], aggregation in bacterial colonies [13], surface tension driven interfaces [4, 6, 11],
shockwaves [19], vortex dynamics [20], and solidification [39]. In imaging, a very
relevant problem is the interaction of higher order diffusion with jump discontinuities.
Thus it is very natural to consider a model problem combining Burgers’s equation,
which produces shocks, with higher order diffusion.

We are interested in one overarching question for all three problems: When do
the equations have smooth solutions, and when do they develop singularities (jumps
in u or its derivatives)? This fundamental question arises when using such methods
for image processing. Moreover, if a singularity forms, it is unclear whether a solution
to the equation will continue to exist, perhaps as a weak or distribution solution, as
is the case with shock dynamics.

We focus on a special class of similarity solutions—traveling waves of the form
u(z — ct). This traveling wave ansatz reduces the fourth order PDEs (YK) and (TT)
to third order ODEs, to which we apply phase plane analysis from dynamical systems
theory, as well as rigorous analysis using Conley index theory and estimates involving
Lyapunov functions. Analyzing the simpler Perona—Malik equation (PM) is much
more straightforward; however, it gives some insight and provides a standard for
comparison with the more complicated fourth order equations.

Our approach in this paper has been successfully used for other fourth order
nonlinear equations that model physical systems. A mathematically similar family of
PDEs are the lubrication equations used to model thin liquid films under the influence
of surface tension. These equations take the form

u + V- (m(u)VAu) =0,

where m(u) is typically degenerate (i.e., f vanishes when u vanishes). Convection in
thin films can arise due to body forces such as gravity or surface stresses involving
gradients of surface tension. Recent analysis of traveling waves for the PDE

Uy + (f(u))m = _(u?)uxzx)m

has led to an understanding of compressive and undercompressive shock dynamics in
driven films [8, 10, 9, 14]. Similar work has also been done to study the convective
Cahn-Hilliard equation [47, 48]. We consider some of the analytical methods for these
problems in our study of traveling waves for image processing.

1.3. Organization. We derive traveling wave ODEs for all three PDEs in sec-
tion 2. By restricting ourselves to traveling wave solutions, the problems simplify to
nonlinear ODEs. Sections 3-5 each contain an analysis of one of the three travel-
ing wave ODEs. We first consider the simpler problem (PMODE) in section 3 and
use it as a standard for comparing (YKODE), discussed in section 4, and (TTODE),
considered in section 5. The three sections share the same outline. We first prove
analytic results for the considered ODE. These results are then illustrated with phase
plane visualizations which also provide strong evidence for ODE properties that are
not proved here. We close each section with a numerical demonstration of the PDE’s
behavior and its relationship with the corresponding ODE.
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2. Traveling wave solutions to PDEs. Traveling waves are similarity solu-
tions of the form

(2.1) u(z,t) = ¢z — ct),

where ¢ € R is the wave speed. By substituting (2.1) into the PDE, we reduce the
problem to an ODE in the variable £ = x — ¢t. ODEs are typically easier to study,
as there are many well-understood analytical and numerical methods for examining
their qualitative behavior.

In this paper we consider traveling wave solutions that satisfy

(2.2) Jim ¢(§) =ur and dm ¢(&) = ur.

Such solutions correspond to trajectories connecting ¢ = uy, to ¢ = ug in the phase
space of the traveling wave ODE. They give diffusive shocks, similar to those for the
viscous Burgers equation [31]. The values of uy, and up determine the viscous shock’s
wave speed, c.

2.1. ODEs resulting from (PM), (YK), and (TT). Assume

(2.3) u(z,t) = ¢z — ct) = (&)

for some real number ¢ to be determined. Using the notation ¢’ := d%qb and substi-
tuting (2.3) into (PM), (YK), and (TT), we derive the ODEs

(2.4) ¢'(¢—c) = (9(¢")9"),

(2.5) ¢'(¢—c) = —(g(¢")¢")",

and

(2.6) ¢'(¢—c) = —(g(¢")¢"),

respectively. Assuming (2.2) and that all of the derivatives of ¢ decay at infinity,
integrating each ODE yields

(PMODE) r(p) = g(¢")¢',
(YKODE) (@) = —(9(¢")e"),
and

(TTODE) r(¢) = —g(¢")¢"",
where

(27) r(6) = 3¢ — b+ surun,

with wave speed
1
(2.8) c:i(uL + uR).

For reference, we call (PMODE) the Perona-Malik ODE, (YKODE) the You-
Kaveh ODE, and (TTODE) the Tumblin—Turk ODE. Each ODE has two equilibrium
points: L, where ¢ = uy, and R, where ¢ = ug. A trajectory of one of the given ODEs
is a traveling wave solution of the respective PDE if and only if that trajectory is a
heteroclinic orbit connecting L and R. Each equation also has an entropy condition
(which we derive) requiring uy, > up for such an orbit to exist. This entropy condition
is analogous to that of the viscous Burgers equation [31].
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2.2. Reducing the number of parameters. Consider (PMODE), for a given
pair u;, and ug, and corresponding wave speed, ¢ = %(uL + up). Letting & = ¢ — ¢,
(PMODE) becomes

(2.9) % <<1>2 - i(uR - uL)2> = g(®"P'.

The dynamics of (PMODE) and (2.9) are affected solely by the difference between w,
and ug. Changing their average, which gives the wave speed c, alters ¢ by only an
added constant. The same holds true for (YKODE) and (TTODE).

For simplicity, we consider only the case ¢ = 0, and we do so without loss of
generality. All of our computational examples are done with ¢(0) = ¢ = 0. These ODE
solutions correspond to PDE solutions that travel with zero speed. We study the full
range of behavior of the traveling wave ODEs by adjusting only one parameter, v :=
ur, > 0. Insisting ¢ = 0 forces ug = —v. With these conditions 7(¢) = 3 (¢* —~?).
For both fourth order equations, L = (0,0,v) and R = (0,0, —v). For (PMODE), L
corresponds to ¢ = 7, and R corresponds to ¢ = —v.

2.3. Comparing the traveling wave ODEs. In [29], Kurganov, Levy, and
Rosenau proved the existence of traveling wave solutions of (PM) for the case g(s) =
TZQ. Traveling wave solutions exist for only a small range of left and right states. In
particular, if uy, is much larger than ug, the ODE will not have a solution connecting
L to R. We generalize the results of [23] and [30] in section 3, which contains a proof of
the existence of solutions of (PMODE) for the general class of functions g satisfying
the properties listed by Perona and Malik. By studying (PM) and (PMODE), we
develop a framework for analyzing the higher order equations. In section 3.4, we
compare solutions of (PMODE) with the PDE (PM). Numerical experiments show
a one-to-one correspondence between heteroclinic orbits of the ODE and attracting
steady state solutions of the PDE. When there is no trajectory connecting L to R
in the ODE, a jump discontinuity forms in the PDE. We show that this restriction
of left and right states stems from a singularity in the ODE which is caused by the
lack of monotonicity of g(s)s. The same dilemma also occurs in (YKODE), and we
establish results in section 3 that parallel the higher order problem.

The higher order diffusion makes analytical results more difficult to obtain for
(YKODE) and (TTODE). However, in section 4 we prove that (YKODE) does not
have a smooth solution connecting L and R for large . By studying the ODE phase
plane with the method introduced by [8], we discover that the unstable manifold of
the left state intersects the stable manifold of the right state only when v is small
enough—just as in the second order case. We conclude the section by comparing the
ODE solutions with the PDE (YK).

The Tumblin-Turk ODE is remarkably different from the other two ODEs. In
section 5, we use a topological argument to prove that (TTODE) has smooth solutions
connecting L and R for all v > 0. Cross-sections of its phase plane illustrate the key
differences between the phase plane geometries of (YKODE) and (TTODE). Once
again, we follow the discussion with numerical computations of the PDE.

3. Perona—Malik with advection. Equation (PM) is carefully studied in [23]
and [29]. We review and expand upon those results here, as they provide an excellent
foundation for our analysis of (YK) and (TT). We first prove that (PMODE) has an
orbit corresponding to a traveling wave solution of (PM) only when ~ > 0 is smaller
than a critical value, 7.. This result is followed with a numerical and asymptotic
description of solutions of (PMODE) for v > ~..
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3.1. The traveling wave ODE. We consider a general thresholding function
g, as described in the introduction. Define

(3.1) F(s) = g(s)s
so that (PMODE) can be written as
r(¢) = F(¢).

Since g(s)s is bounded, we can only define F~! on a subset of R. F~! has three
branches that depend on the unique K satisfying

(3.2) g (K)K + g(K) = 0.

Two of these branches correspond to the regions |s| > K, where %(g(s)s) < 0. The
third is an interior branch with its range centered around zero and corresponds to the
interval |s| < K, where 4 (g(s)s) > 0. We define F~! on the interior branch, since our
traveling waves have ¢’ — 0 as £ — +oo. With this definition, we rewrite (PMODE)
as

with the requirement

(3.3) Ir(6)] < F(K) = g(K)K.
This condition is satisfied if and only if

(3.4) 0<v<V2(K)K

and is essential to proving the following theorem, which is proved in [29] for the specific
_ 1
case g(s) = 1352
THEOREM 3.1. Let g be a smooth, positive, and nonincreasing function of |s|,
with some K > 0 satisfying

d d
%(g(s)s) >0 for|s| < K and %(g(s)s) <0 for|s| > K.

Then the ODE (PMODE) has a continuous solution ¢(&) satisfying

(3.5) lim ¢(&)=v and lim ¢(&) = —v

r——00 r—+00
if and only if
(3.6) 0<v<V2(K)K.

Proof. Any traveling wave solution of (PM) satisfying (2.2) corresponds to a
trajectory of (PMODE) connecting L, the point ¢ = ~, to R, the point ¢ = —v. Such
a trajectory can only exist when v > 0, since F~(r(¢)) < 0 for |¢| < |y|. This is
analogous to the Lax—Oleinik entropy condition for Burgers’s equation [31]. If v < 1,
r(¢) < /29(K)K for all ¢ € (—v,7), so the existence of an orbit connecting L to R
is obvious.
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Smooth Solutions of Equation (PMODE)
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F1G. 2. Heteroclinic orbits of (PMODE) for different values of . Solutions connecting L to R
exist only for v < 1. For v = 1.1, we show two trajectories—one starting near L and one approaching

R.

Suppose v > 1/2¢(K)K. Any continuous heteroclinic orbit, ¢, connecting L to R
must have (&) = 0 for some &. We calculate |r(0)| = 17% > g(K)K and remember
that g(s)s < g(K)K for all s, implying that ¢ cannot possibly satisfy (PMODE). d

Remark. For the remainder of the paper, we restrict the main part of our dis-
cussion to g(s) = 1-&-%’ for which K = 1, and |g(s)s| < %. Comments regarding
generalizing our results to other thresholding functions will be made throughout the
paper.

Figure 2 shows solutions of (PMODE) for g(s) = H% and various values of ~.
Equation (PMODE) has a trajectory connecting L to R only when v < 1. When
~v > 1, (PMODE) has only a solution near the equilibrium points. Starting with ¢
slightly smaller than v, we integrate forward in time until [r(¢)| = 2 = max {g(s)s}.
We then start with ¢ slightly larger than —v and integrate backward in time until
Ir(¢)| = 4. Figure 2 shows ¢(£) for v = 1.1 in the regions of &, where F~1(r(4(¢))) is
defined.

3.2. Second order version of (PMODE). Expanding the right side of (2.4)
yields a second order form of the traveling wave ODE for (PM):
(3.7) ¢ =(g'(¢)¢" +9(¢)) 0"

Unlike (PMODE), (3.7) does not depend on the choice of . Due to the properties of
g, (3.7) becomes singular as |¢'| — 1. We rewrite (3.7) as a system of two ODEs:

v

(3.8) ¢ =v, v = Tt a00)
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Phase Plane Portrait
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Fic. 3. Phase plane of ODE system (3.8). A series of trajectories are plotted for different
values of 7. If v > 1, any connection from (v,0) to (—v,0) would need to pass through the line of
singularity, ¢’ = —1.

System (3.8) has a line of equilibrium points at v = 0. Figure 3 shows integral curves
where ¢ — —v as £ — oo and ¢ — vy as £ — —o0. Each integral curve coincides with
a particular value of . As v increases, the integral curves move toward the singular
line v = —1, clearly illustrating the results of section 3 and showing why heteroclinic
orbits of (PMODE) do not exist for large ~. Such traveling waves would require ¢’ to
pass through the singular value ¢/ = —1.

3.3. Singularities in solutions of (PMODE). We now consider the behavior
of singular solutions of (PMODE). We examine two cases: v > 1 and v = 1. When
~ > 1, there is no traveling wave solution. We consider a trajectory ¢(£) starting near
L and moving toward R and examine £, satisfying

lim ¢'(¢) = —1 and lim ¢(¢) = ¢*
§—& §—¢&o

for some ¢* > 0. We have ¢'¢p — —¢* as £ — &y. Near ¢/ = —1,

§)0 +9(0') ~ 3¢/ +1),

/g ¥ g /5 " @+ 1),

(3.9) ¢'(§) ~ VA (& — &) — 1.

SO
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When « = 1, there is a nonsmooth traveling wave solution. In this case, ¢* = 0 and

P(&) ~ —(§o — &) near § = &o, so
(3.10) ¢'(€) ~ V2I€ — &| - 1.
This singular behavior is demonstrated by the solid line trajectory in Figure 3.

3.4. Second order PDE computations. We test the stability of each trav-
eling wave solution found from (PMODE) by choosing an initial condition near the
traveling wave and numerically integrating the PDE (PM). We use centered differ-
ences in space and backward Euler in time with an adaptive time step. The Burgers
term is computed with a centered difference in flux form. We use Newton’s method
to approximate solutions of the nonlinear system, and the time step is adjusted to
expedite convergence of Newton’s method. If convergence requires more than three
iterations, the time step is decreased by 10%.

Figure 4 shows computations for vy =1 and v = 1.1. When 0 <~ <1 (PMODE)
has a heteroclinic orbit between L and R. The case v = 1 is discussed in section
3.3. This traveling wave, ¢, is continuous but nonsmooth. ¢’ behaves like (3.10) near
¢ = 0. Given an initial condition near this traveling wave, the PDE solution converges
to the traveling wave solution, as long as the gradient of the initial condition is not too
large (for large gradients, (PM) becomes ill-posed, and a jump discontinuity occurs).
There is no traveling wave solution for v > 1, as seen in the computations for v = 1.1;
although the initial condition is smooth with small gradient, a discontinuity develops
in finite time, and the long time solution has a jump discontinuity.

4. You—Kaveh with advection. Equation (YK) shares many of the properties
of (PM). We prove that orbits of (YKODE) corresponding to traveling wave solutions
of (YK) do not exist when = is too large. This nonexistence follows from a singularity
in (YKODE) that is analogous to that of (PMODE). We study the phase space of
(YKODE) for evidence of the existence of traveling wave solutions when + is small.
For simplicity, we assume g(s) = H%’ which is the thresholding function chosen by
You and Kaveh in [51]. However, our results generalize to other thresholding functions
as described in section 1.1.

4.1. The traveling wave ODE. Equation (YKODE) can be expanded to

(4.1) r(¢) =—(g'(¢")¢" +g(¢")) ¢"".

Since ¢'(s)s + g(s) = 0 for s = £1, we immediately see a similarity to (PMODE): a
solution ¢ of (YKODE) becomes singular in ¢ when |¢”| — £1, just as a solution ¢
of (PMODE) becomes singular in ¢” when |¢'| — £1.

Remark. For general functions g as described in [36], there exists a K > 0
satisfying (3.2), so (4.1) is singular at ¢’ = £K. A solution ¢ of (PMODE) becomes
singular in ¢ when |¢'| — K, and a solution ¢ of (YKODE) becomes singular in ¢"’
when |¢"| — K.

4.2. Lyapunov function for the You—Kaveh ODE. Equation (YKODE) has
a Lyapunov function. Multiplying (YKODE) by ¢’ and integrating, we have

¢ ¢
(4.2) / r(¢W)¢' (y)dy + 96" (£))¢'(£)8" (€) =/ 9(¢" ())(@" (y))*dy.

— 0o — 0o

Define
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v=1.0
L — ode solution |
----- t=0.0
B --t=1.0
0.5 ——1=52
--t=10.4
I —t=100
u o | |
-0.51 -
-1
vy=1.1
17 —
----- t=0.0
- ---t=1.0 -
-—t=5.2
0.5 - t=6.8 *
-t=73
" —t=25.0 ]
u o———— —t—f—
I -10 5 10 |
-0.51 -
'17 \\;\.\g —

Fic. 4. PDE (PM) solution, u, for v = 1.0 and v = 1.1. When v = 1.0, u approaches the
corresponding traveling wave ODE solution as t increases. v = 1.0 is the mazimum value for which
the PDE has a traveling wave connecting v to —y. When v = 1.1, u forms a jump discontinuity in
finite time.
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R(¢) fory=2

_
(=)
\

FIG. 5. R(¢) for v = 2. We mark the mazimum and minimum values, ¢ and @, for a bounded
solution of (YKODE).

We see that
(4.3) L1(&) = R(#(8)) +9(¢"(£))¢'(£)d" (€)

is nondecreasing, since
(4.4)

Since £1(§) = R(4(£)) at extrema of ¢, the structure of R(¢) = £¢> — 37°¢ has a
tremendous effect on solutions of (YKODE). Figure 5 shows R for a particular 7. The
structure of R implies the entropy condition v > 0. If v < 0, then R(y) > R(—7), so
there could not be a heteroclinic orbit traveling from L = (0,0,7) to R = (0,0, —).
R’s essential behavior remains the same for different values of 7. Assuming v > 0, R
is a cubic polynomial with a local maximum at —y and a local minimum at 7. R(¢)
strictly increases for ¢ < —vy and for ¢ > ~y, while it strictly decreases for —y < ¢ < .
Let

(4.5) =2y and ¢=-27.
A simple calculation shows
(4.6) R(9) =R(—7y) and R($) =R(7).

The following lemmas are essential for proving that (YKODE) does not have a
smooth heteroclinic orbit connecting L and R when « is large. Lemma 4.1 is merely
a tool for proving Lemma 4.2.



FOURTH ORDER TRAVELING WAVES 51

LEMMA 4.1. Let ¢ and ¢ be defined by (4.5). Let &, € R be given. Suppose ¢(&)
is a bounded solution of (YKODE) that is defined for all £ € R. Then there exists a
&+ > &, satisfying

¢ < d(&y) < .

Similarly, there is a £_ < &, satisfying the same

¢ < (&) < o

Proof. Consider any bounded solution ¢ of (YKODE). We first show that given
any &, € R, there exists a &4 > & such that ¢ < ¢(§;) < ¢. If this were not the
case, [r(6(€))] = |r (6) | = [r(27)] > 0 for all € > &, thus implying |(9(¢")¢")'| >
[r(27)| > 0 for all £ > &x, contradicting the fact that g(s)s is bounded. Similarly,
given &, € R, there exists a £ < &, with ¢ < ¢(£_) < 6. O

LEMMA 4.2. Let ¢ and ¢ be defined by (4.5). Any bounded solution ¢(§) of
(YKODE) that is defined for all € € R must satisfy

(4.7) ¢ < 96 < ¢

for all € € R.

Proof. For the sake of contradiction, suppose there exists a & with ¢(&) > 0.
With the knowledge of Lemma 4.1, we choose some & < &; with ¢ < ¢(&y) < ¢. By
the same lemma, there also exists a & > &; with ¢(&;) < @, so ¢ has a local maximum,
d(Ear) = dar > ¢ with & < €pr < &. Since ¢/ = 0 at extrema,

Li(Enr) = R(P(€m)) > R(=7) > R(v)-

Since ¢ is smooth, there exists some & with £y < & < & satisfying ¢(§) = ¢ and
#(€) < ¢ for all £ € (€,¢&;]. There are two possible behaviors of ¢(¢) for & > €. Either
¢ has an extrema ¢(£,) < ¢ or ¢ is monotonically decreasing for ¢ > . Consider the
first case. Since ¢(&,) is an extrema,

L1(&) = R(#(&)) < R(p(€m)) = L1(mr)-

This contradicts the fact that £; is strictly increasing, since £y < &«. Now suppose
#(€) decreases monotonically for ¢ > £. Since ¢ is bounded, it approaches a limit as
& — o0o. This limit must be either v or —v, or g(¢")¢” would blow up as argued in
the proof of Lemma 4.1. For each limit,

51520 El(f) < El(fM)7

contradicting the fact that £, increases. It follows that ¢(£) < ¢ for all £. A similar
argument shows that ¢ is bounded below by ¢. a

As already noted, |¢”| = 1 is a singular value for (YKODE). We use the Lyapunov
function to prove the following lemma, which shows that smooth heteroclinic orbits are
forbidden from crossing this value. Lemma 4.3 is essential for showing that (YKODE)
does not have a smooth heteroclinic orbit connecting L to R when 7 is too large.

LEMMA 4.3. Let ¢(§) be a smooth heteroclinic orbit connecting L to R. Then for
all €, [¢"(€)] < 1.

Proof. We show ¢ (£) < 1. Proving ¢ (£) > —1 follows the same line of argument.
Suppose that ¢ is a smooth trajectory for which there exists a &, such that ¢” (&) > 1.
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We show that ¢ cannot connect L to R. Our argument follows directly from the ODE
and its Lyapunov function. Since ¢ is a smooth heteroclinic orbit,

Jim¢"(€) =0,

so we can find some &, so that ¢"(§.) = 1 and ¢”(£) > 1 for £ € (&, &,]. Since
¢ is smooth, and ¢'(¢")¢” + g(¢”) = 0 for ¢’ = 1, we must have r(é(&.)) = 0,
and therefore ¢(£.) = +7y. Suppose ¢(¢.) = 7. Then the Lyapunov function implies
@' (&) > 0, so there is some € > 0 so that ¢(&) > « for € € (&,&. + €). The ODE then
implies ¢’ (£) > 0 for £ € (&, &. + ¢€), and since both ¢'(£) and ¢”(§) are positive on
the same interval, ¢ will continue to grow without bound, prohibiting it from being a
heteroclinic orbit.

Now suppose ¢(£.) = —v. Then the Lyapunov function implies ¢'(£.) < 0. We
can pick a new e > 0 such that ¢(§) < —v and ¢"(€) > 1 for € € (&,&: + €). The
ODE then implies ¢"’(£) > 0 on the same interval. In fact, the ODE ensures that this
interval can be extended and ¢” will continue to increase until ¢’ becomes positive
and ¢ once again intersects —y. So there is some &' > £. with ¢(&') = —v, ¢'(¢') > 0,
and ¢”(&') > 1. So £1(§') > R(—7), and ¢ cannot be a heteroclinic orbit connecting
L to R. 0

4.3. Nonexistence of traveling waves for (YKODE). Integrating (YKODE)
on an arbitrary interval [£1,&s], we see

&2
(4.8) 9(¢"(£2))0" (&2) — 9(¢"(£1))¢" (&1) =/ r(¢(y))dy-
Since |g(s)s| < %, smooth solutions of (YKODE) are restricted by

(4.9) <1

&2
/ r(6(y))dy

on any interval [£1,&3]. We now use (4.9) to show that when ~ is too large, the You-
Kaveh ODE does not have a smooth heteroclinic orbit between L and R.

THEOREM 4.4. There exists a finite C > 0 such that (YKODE) has no smooth
solution satisfying
(4.10) (Jim ¢(§) =~ and (Jim P(&) = —v
when v > C.

Proof. Suppose ¢ is a smooth solution of (YKODE) that satisfies (4.10). Then
¢ must be a heteroclinic orbit connecting L to R, and there exists at least one &
with ¢(§) = 0. Let & be the minimum of all points & satisfying ¢(£) = 0. Let £_
be the largest number satisfying both £_ < & and ¢(£_) = . Since ¢"’ > 0 when
—y < ¢ <7, &€ <0 forall £ € [£_,&)]. Otherwise both ¢’ and ¢” would become
positive in ({_,&). ¢ would have to become negative again so that ¢(&p) = 0, but
this would require that ¢ become larger than -, contradicting the assumptions on £_.

Let p denote the minimum of ¢' on [£_,&.]. Then restriction (4.9) implies

567 = gcfr s ¢,(s)s 1 gcfr 5))¢'(s)ds
vz [T o= [T ro Gz L [T o)

- %(R(v) ~R(0)).
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Since p < 0 and R(7y) < R(0), the above gives
(4.11) R(0) = R(7) < |ul.
From the bounds on ¢ and ¢” given by Lemmas 4.2 and 4.3, we see that

(4.12) Il <2y2y

as a result of the following interpolation lemma.
LEMMA 4.5. Suppose f € C*(R) satisfies |f| < M and |f"| < C. Then

|f'] <2VCOM.

Proof. Given x € R, Taylor’s theorem shows

for all h > 0 and some £ € [—h, h]. The bounds on f and f” give us

= (€A

M
@) < 5+ O

Choosing h = 4/ % gives

M 2
|f'(@)* < (h - Ch) —4MC. O
Calculating
R(0) - R() = 5(2)°
and combining (4.11) with (4.12) proves Theorem 4.4. O

Remark. Theorem 4.4 does not depend on the choice g = H_% It relies only on

the properties of thresholding functions as explained in [36] and in section 1.1. In
particular, the nonexistence follows mainly from the nonmonotonicity of g(s)s.

4.4. The (YKODE) phase space. We rewrite (4.1) as a system of first order
ODEs:

7(9)
g (w)yw + g(w)

System (4.14) has two equilibrium points, L = (v,0,0) and R = (—~,0,0). A
traveling wave solution of (YK) satisfying (2.2) corresponds to a heteroclinic orbit
connecting L to R. Let W*(L) and W*(L) denote, respectively, the stable and unstable
manifolds of L, and define W*(R) and W*(R) in the same way.

Since v > 0, W*(L) and W*(R) are both two-dimensional with complex eigenval-
ues, while W*(R) and W#*(L) are one-dimensional manifolds. We follow the method
used in [8] and [14]. We illustrate the unstable manifold of L by considering a set
of initial values near L and integrating (4.14) forward in time. Each trajectory will
approach W*(L). To visualize the manifold, we mark the intersections of each com-
puted trajectory with a two-dimensional plane (a Poincaré section) in the phase space.

(4.14) d=v, =w, w=—
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Intersections of Stable and Unstable Manifolds With ZO

v=0.5
T T
0.5 -
, WS(RO.S)\\\ ><
. WR,)
(]) 0
= u , e Wy |
Wik w0y
0.5 .
-1 ! 29 ! ! ! B
-1.5 -1 -0.5 0 0.5 1

F1G. 6. Cross-section of the phase plane of (YKODE) with v = 0.5. We show the intersections
of the stable and unstable manifolds of both equilibrium points with the plane ¢ =0 (denoted %o ).

This plane is chosen so that all trajectories intersect the plane transversely. Any
two-dimensional manifold intersects the plane on a curve, and any one-dimensional
manifold intersects at a point. Picking initial points near R and integrating the ODE
backward in time produces trajectories approaching W#*(R). Traveling wave solutions
of (4.14) correspond to intersections of W*(L) with W*(R).

In each figure, initial values are taken at a distance of 107 to 10~ from the
corresponding equilibrium point. We consider the plane ¢ = 0, denoted by Y. Any
intersection of W*(L) with W?*(R) must appear on ¥g. The symmetry of (4.14) implies
that the restriction of W*(L) (N W#(R) to ¥ occurs on the line w = 0.

Figure 6 shows the intersection of stable and unstable manifolds of u; and ug
with X for 4 = 0.5. Since W*(L) and W*(R) intersect each other, there is a hetero-
clinic orbit connecting L to R. One end of W*(L) spirals around the one-dimensional
manifold, W*(R). Symmetry gives the same relationship between W#(R) and W*(L).
As ~ is increased, the spiral structure of W* (L) shifts toward the line w = 1, while
W#(R) shifts toward w = —1. Figure 7 demonstrates that the manifolds do not have
this spiral structure on Xy when « is too large. The one-dimensional manifolds W* (L)
and W*(R) no longer intersect Yo when these spiral structures disappear. Further
increasing v moves W*(L) and W#*(R) away from each other. For large enough =,
W*(L) and W*(R) do not intersect each other, as seen in Figure 7, where v = 1.3.

In Figure 8, we draw W"(L) for a sequence of v values. W#(R) is not shown,
since it can be deduced by reflecting W*(L) across the line w = 0. The two manifolds
intersect only when the restriction of W*(L) to 3, intersects the line w = 0. W*(L)
(and consequently W#(R)) shifts away from the line w = 0 as v increases. For large
enough v, W¥(L) does not intersect the line w = 0 at Xy. As proved in Theorem 4.4,
there is a value . such that W*(L) and W#(L) do not intersect when v > ~.. Our
numerical experiments suggest that 1.16 < v, < 1.17.
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Intersections of WS(Ry) and Wu(Ly) With ZO
v=10 andy=1.3

1 \

=
wh
T

FiG. 7. Changing manifolds of (YKODE) with increasing v. The intersections of W% (L) and
WS(R) with o are shown for v = 1.0 and v = 1.3. In both cases, W*(L) and W*(R) do not
intersect Xg. When v = 1.3, W¥(L) does not intersect W*(R), so there can be no traveling wave
solution of the PDE.

Intersections of W' ( L) with Z,

=
()}
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=
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I

!
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O

Fi1G. 8. W¥(L) (N Zo for (YKODE) with different values of 7. A traveling wave solution exists
when W*(L)(Zo intersects the line ¢"” = 0. We see that no such intersection exists for large
enough .
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q)ii Along Intersection of Wu(L) with ZO
v=1.0

1 [ i
near top boundary .:
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F1G. 9. Trajectories of (YKODE) near the boundaries of W%(L) for v = 1.0. We show the
second derivatives of trajectories that pass nmear the top and bottom boundaries of W™(L) () Xo.
Trajectories near the top boundary have second derivatives approaching the singular value w =1 as
¢ approaches 0, as can be seen from Figure 7. Trajectories near the bottom boundary have a second
derivative near ¢" = —1 but not where ¢ = 0. The traveling wave solution’s second derivative is
shown for comparison.

4.5. Manifold boundaries caused by singularities in solutions of
(YKODE). W%(L) and W*(R) have boundaries caused by the ODE’s singularity.
Consider v = 1.0, for which W*(L) (%o is bounded above by w = 1. Certainly the
manifold cannot extend past w = 1, since (4.14) is singular there, but there is also a
boundary on the opposite end of W*(L) () Xo. This boundary is far from either line
of singularity, w = 41. Figure 9 shows the second derivative of trajectories near these
top and bottom boundaries of W*(L) () 3o. Let & denote the value of £ for which a
given trajectory ¢(§) intersects Xg (& could be different for each trajectory). Near
the top boundary, ¢” (&) gets arbitrarily close to ¢” (&) = 1. Trajectories near the
bottom boundary approach ¢”(£.) = —1 for some &, < &.

The singularities of solutions to (YKODE) are similar to those of (PMODE),
but they occur in higher derivatives. Consider a trajectory ¢ with second derivative
approaching —1 (the case ¢ — 1 is very similar). Assume there is some &, with

slilr&l* (b//(g) = —1 and 511}1?* ¢(£) ="

Again we have multiple cases, but this time they depend on the zeros of 7(¢).
Case 1. r(¢*) # 0. This corresponds to the case v > 1 for (PMODE). But now
the singularity occurs in ¢ as £ — &,:

(4.15) ¢" (&) ~2/r(¢*) (6 — &) — 1.
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You-Kaveh Traveling Waves
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Fi1G. 10. Traveling wave solutions of (YK). We show them for different values of .

This singularity is demonstrated by trajectory near the top boundary of W*(L),
drawn in Figure 9.
Case 2. r(¢*) = 0. Either ¢* =~ or ¢* = —~. It is easy to check that

(4.16) ¢"(&) ~V2[¢ - & — 1.

Case 2 is demonstrated by the trajectory near the bottom boundary of W*(L), as
seen in Figure 9. It also corresponds to a critical case for traveling wave solutions of
(YKODE). We expect that there is some 7, for which (YKODE) has a nonsmooth
traveling wave solution analogous to the solution of (PMODE) for v = 1.

4.6. Traveling wave solutions of (YK). Solutions of ODE (4.1) that corre-
spond to traveling waves connecting L to R are given by the intersection of W* (L)
with W#(R). Our study of the phase space suggests that there is at most one such
intersection for any given . The traveling waves shown in Figure 10 were produced
by finding this intersection.

In Figure 11, we provide graphs of the second derivative of traveling wave solu-
tions. In each case, |¢”| is bounded by 1 as expected. The local extrema of ¢” are
achieved at ¢ = +~, where ¢"”/ = 0. As y increases, these extreme values approach the
singular values ¢’ = £1. Because of the ODE’s symmetry, ¢” approaches a singular
value in two places. ¢” approaches —1 when ¢ = <, and it approaches +1 when
¢ =—.

To illustrate that the traveling waves are stable for the PDE dynamics, we im-
plement (YK) with a fully implicit scheme. We use centered differences for all spatial
derivatives, including the Burgers term, which is approximated by centered differences
in flux form. We use a Newton solver and an adaptive time step. The time step was
adjusted to expedite convergence of the Newton method, as was done for (PM) in
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¢§§ for Different Values of y
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F1G. 11. The second derivatives of traveling wave solutions of (YK). Traveling waves for v near
1.16 have second derivatives near the singular value w = —1.

section 3.4. The correspondence between (YK) and (YKODE) is not as clear as it is
for (PM) and (PMODE). The numerics become very difficult for v near the range of
nonexistence of traveling waves. In this parameter range, the PDE numerics do not
converge nicely to a traveling wave solution, even when our ODE numerics suggest
one exists. It is not clear whether this difficulty results from the numerics or from
the PDE. We show an example with a smaller v in Figure 12. In this case, the PDE
solution clearly converges to the solution of (YKODE).

5. Tumblin—Turk with advection. We show that (TT) is qualitatively differ-
ent from both (PM) and (YK). We first use a topological argument to prove that for
all ¥ > 0, (TTODE) has an orbit corresponding to a traveling wave solution of (TT).
Our primary tool is the Conley index, as discussed in [40]. We use standard meth-
ods [8, 37], but the particular nonlinear structure of (TTODE) requires new a priori
bounds and estimates. We rely on the observation that (TTODE) can be rewritten as

(5.1) r(¢) = —(arctan(¢”))’

1

1357 The analysis consequently depends very much on this particular

when g(s) =

choice of g.
In section 5.3, we present phase plane illustrations that contrast solutions of

(TTODE) to those of (YKODE) and (PMODE). We conclude our discussion of the

Tumblin-Turk equations with numerical simulations of (TT).

5.1. Lyapunov function for (TTODE). We seek a Lyapunov function, £s(£),
for (TTODE). Let R(s) denote a primitive of r(s). Multiplying (5.1) by ¢’ and inte-
grating produces

3
R(¢) = — arctan(¢” )¢’ —|—/ arctan(¢”(s))¢" (s)ds.
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You—Kavehy\iv%tgl Advection
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Fi1G. 12. Approzimate solution of (YK). When v = 0.7, u approaches the traveling wave solution
given by (YKODE).

Since arctan(s)s > 0 for all s, we easily check that

(5.2) £2(6) = R($(6)) + arctan(6” (€))¢/(€)
satisfies
(5.3) @ £5(6) = arctan(¢"(€))¢"(€) > 0.

dé
As was the case for L1, £2(€) = R(4(€)) at zeros of ¢’ and ¢”. This establishes the
entropy condition v > 0 and the following lemma.

LEMMA 5.1. Let ¢ and ¢ be defined by (4.5). Any bounded smooth solution ¢ of
(TTODE) that is defined on the real line must satisfy

(5:4) o< 9 <9
for all € € R.
Proof. The proof follows the same argument as that of Lemma 4.2. 0

5.2. System of ODEs for (TTODE). We rewrite (TTODE) as a system of
three ODEs:

(5.5) ¢ =v, v =tan(w), w =-r(¢).

System (5.5) has two equilibrium points, L = (v,0,0) and R = (—~,0,0). We use
Conley index theory to prove the existence of a heteroclinic orbit connecting L to R.
To do this, we first find uniform bounds for all bounded solutions (¢, v, w) of (5.5).
Lemma 5.1 provides such a bound for ¢. It is particularly important to find a bound
C such that |w| < C < 5. To do so, we first examine v' = ¢".
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LEMMA 5.2. Any bounded smooth solution ¢ of (TTODE) satisfies

(56) [ actan@ o) s)is < RE-)-R) = 207

— 00

Proof. We follow an argument used in the proof of Theorem 4.8 in [10]. Let ¢
be a bounded solution of (TTODE). Bound (5.6) is obvious if either ¢(§) = v or
@(&) = — for all £&. Since L = (v,0,0) and R = (—+,0,0) are the only equilibrium
points of (TTODE), we now assume that ¢ is nonconstant. We first examine the
behavior of ¢(§) as & — oco. There are two cases to consider, depending on the set of
extrema of ¢.

Case 1. Suppose there exists a £y such that ¢ has no extrema for € > &r. Then ¢
approaches an equilibrium point as £ — oco. Since L is increasing, ¢ — —y as £ — o0;
otherwise all extrema of ¢ would be less than ¢, and ¢ would grow without bound as
& — —o0. We therefore have B

| aretan(s ()6 ()ds = R(-) - R((0),

Case 2. Now assume that there is no such &£ys. Since ¢ solves (TTODE), it is
analytic (see, e.g., [41]) and must have a countable set of extrema with no limit
point. Suppose the extrema occur at & with & > 0 and &; < &;41. The Lyapunov
function implies that R(§;) is a bounded increasing sequence, and we therefore have
R(§) — R4 for some Ry < R(—v). For each &,

&
/0 arctan (¢”(s))¢" (s)ds = R (¢(&) — R (¢(0)) < R(—7) — R((0)).

The monotone convergence theorem gives us

(5.7) /Ooo arctan(¢”(s))¢" (s)ds = Ry — R(6(0)) < R(—7) = R(¢(0)).

Similar arguments show

0
(5.8) [ arctan(e" ()¢ (s)ds < R((0) - R(),

— 00

Combining (5.7) and (5.8) completes the proof. d

We interpret Lemma 5.2 to mean that ¢” = v’ is almost L', since arctan (s)s is
linear in s for large s. Specifically, for any € > 0, we define S = {s: |¢'(s)| > €} and
discover

1

arctane

60 [ 1) < | farctan(er ()6 (s)lds

< L /00 arctan(¢”(s))¢” (s)ds < #73.

arctane J_ o 3arctane

We now show that w is bounded away from 47, the asymptotes of tanw.
LEMMA 5.3. There exists a positive Cy < 5 such that for any bounded solution
(¢, v, w) of system (5.5), |w| < Cy for all £ € R.
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Proof. Since ¢ < ¢(§) < ¢ for all &, | — r(¢)| < %, which by (5.5) implies a
uniform Lipschitz bound for w,

(5.10) w(& — h) > w(&) —v*h for all & and all h > 0.

We use (5.9) with the uniform Lipschitz continuity of w to derive a pointwise bound
on w. We focus on bounding w away from w = +75. To make use of (5.9), we must
find an interval on which w is bounded away from zero. Pick & with 7 < w(&) < §.
If no such &y exists, then w(§) < §. Choose § > 0 so

(5.11) > w(&) — 776 >

7T
67

N

also implying by (5.10) that w(§) > § for all £ € [§o — 6, 6]. Let

11 \/g_ ™
S—{§:¢(§)23tan6}.

Then Lemma 5.2 ensures
6
(5.12) [wl= [ 1< 2 RE=) = R@) = 24
S S ™ ™

Now using (5.10) and (5.11), we calculate

/Slv’(s)ldsz/;& V' (s)|ds

€o
= / | tan (w(s))|ds
&

0—06

&o
> /5 tan (w(&y) — 72(50 —5))ds

0—06
1 cos (w(&y) — 726) ‘
= — 10
cos (w(&o))
1 cos T
> —lo 4 .
— 42 & cos (w(&o))
Combining this with (5.12), we see
1 V2 4
1 - < 243
(5.13) ~2 2cos (w(&o)) | — T
S0
(5.14) cos (w(&p)) > ge“ﬂé”g) >0
and

(5.15) w(&p) < Cy := arccos (?6_“&’) < g



62 J. B. GREER AND A. L. BERTOZZI
The same argument with slight adjustments shows that

™

2 4.5
w(§p) > —C1 = — arccos (?e_ﬂ ) > =5 0

COROLLARY 5.4. There exists a Co > 0 satisfying |v| < Cs.

Proof. Since w is bounded in an interval strictly contained within (=%, %), we
have a bound on ¢” = tanw. We use Lemma 4.5 to bound v = ¢'. O

THEOREM 5.5. Given any v > 0, there exists a solution ¢ of (TTODE) such that
$(€) — 7 as € — —oo, and B(€) — —7 as & — ox.

Proof. Our proof centers on the Conley index. We refer the reader to [40], which
contains an excellent description of Conley index theory. Let C; and Cy be given by
Lemma 5.3 and Corollary 5.4. Define the set

6<p< ¢
(5.16) N = (¢p,v,w) : lv| < Cq
lw| < €y

N is an isolating neighborhood, as all bounded trajectories are strictly contained

within the interior of N. As explained in Theorem 22.18 of [40], N contains an isolat-

ing block, B. Isolating blocks of (TTODE) are special isolating sets whose boundary

points immediately leave the set in positive or negative time under the flow defined

by (TTODE). The Conley index is the homotopic equivalence class of the quotient

space B/b*, where b* is the set of all points on OB that leave B in positive time.
Let 8 € R, and define the continuous deformation of (TTODE),

(5.17) (@) + B8 =—g(¢")e".

Let By = g Consider 3 € [0, 8y). The new system has a new function

Ro() = 50+ (8- 37°) o

The new Lyapunov function is found by replacing R with Rg. The system has two

equilibrium points: Lg = (0,0, /7% —28) and Rz = (0,0, —/v? — 20). The system
has new upper and lower bounds for all bounded solutions:

O5=2/12—-28<¢

and
Qﬁ:—Q 72 =28 2> ¢.

It is easy to check that B is an isolating block for the adjusted system with 0 < § < .

When 8 = [, the only bounded trajectory of (5.17) is the constant function ¢ =
0, so B remains an isolating block. Choosing 8 > [y produces a differential equation
with no equilibrium points. B remains an isolating block of the flow and contains
no isolated invariant set (other than the null set). It follows that the homotopic
equivalence class of B/b+ is that of the null set, implying the existence of an orbit of
(TTODE) connecting L and R (see Theorem 22.33 in [40]). The Lyapunov function
ensures that the trajectory flows from L to R. ]
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Intersections of WS(Ry) and Wu(Ly) With ZO
v=1.0 and y=2.0

1.5

F1G. 13. Changes of the manifolds for (TTODE) with increasing . The intersections of W* (L)
and W#(R) with 3¢ are shown for v =1.0 and v = 2.0.

5.3. The (TTODE) phase space. As suggested by our analysis of both equa-
tions, the phase plane geometry of (TTODE) is remarkably different from that of
(YKODE). Using the method discussed in section 4.4, we visualize the phase space
by considering the cross-section u = 0, denoted by . Any intersection of W* (L)
with W*(R) is visible on ¥, where it must occur on the line w = 0. We draw W (L)
by computing trajectories with initial conditions near L and marking their intersec-
tions with Xg. W#(R) is drawn similarly but by numerically integrating (TTODE)
backward in time.

Smooth curves in the phase space must lie between the two planes w = &7, since
v = tanw. Figures 13 and 14 show the intersections of W#(R) and W*(L) with X
for various values of . Since W*#(R) and W*(L) do not have boundaries caused by
singularities of (TTODE), both manifolds stretch from w = —% to w = 7, even for
large . This allows an intersection at w = 0 for all v > 0; increasing ~ shifts only
the manifolds in the —v = —¢’ direction. This is remarkably different from the You—
Kaveh ODE (YKODE), for which W#*(R) and W*(L) have boundaries that allow the

manifolds to shift away from each other when + is increased.

5.4. Traveling wave solutions of (TT). Figure 15 shows traveling wave so-
lutions of (TT) for a series of y-values. Each traveling wave was produced by finding
the intersection of W*(L) with W*(R) in the phase space of (TTODE). As the jump
height from wu; to up increases, so does the traveling wave’s slope near the jump.
Although the ODE solutions are smooth, the jump transition can be so severe that
when viewed at large length scales the solution appears to have a shock. This is
demonstrated when v = 7, as shown in Figure 15.

Numerical examples suggest that the heteroclinic orbits of (TTODE) are stable
traveling wave solutions of (TT). To numerically integrate (TT), we use the change
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Intersections of WS(Ry) and Wu(Ly) With 20

v=2.0,5.0and 8.0
n/z 5 T T T T JEERET LT i } ]

W0

-1

- 2 C 4 ‘ L l I | | Moereeeeeey R S } |
M40 120 <100 80 60 40 20 0
\%

Fi1a. 14. Changes of the manifolds for (TTODE) with increasing . The intersections of W* (L)
and W#(R) with ¢ are shown for v = 2.0,5.0, and 8.0. Each manifold’s structure persists while
mncreasing .

Tumblin-Turk Traveling Waves

— v=2.0
..... ’Y: 4.0 —
—y=7.0

Fi1G. 15. Heteroclinic orbits of (TTODE). At this length scale, the traveling wave solution for
v =T appears to have a shock.
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Tumblin—Tu%k_v%th Advection

----- t=0.0

- t=0.2 L
> --t=05

- 1=20

— traveling wave

F1G. 16. Numerically integrated solution of (TT) for v = T7.0.

of variables w = arctan u,, and solve the nonlinear system

(5.18) Uy + Uy = Wy,

tanw = —Ugy

using a fully implicit scheme with centered differences in space. We use Newton’s
method and an adaptive time step, as we did for (PM) in section 3.4. The change of
variables w = arctan u,, is used to ensure that wu,, remains bounded. See [7] for a
discussion on numerically implementing the fourth order diffusion.

Figure 16 shows the behavior of w, given an initial condition near the traveling
wave profile. The computations suggest that the traveling wave is a stable solution of
the PDE.

6. Conclusions. We have considered traveling wave solutions of the advection-
diffusion equations

1
and
Lo
(TT) Ut + iu = 7(g(umr)uxzz)za
with g(s) = 14-%’ in order to clearly illustrate the features of higher order nonlinear

diffusion equations recently proposed for use in image processing.
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The advection term (1u?), in (YK) and (TT) serves two roles. First, it allows
for traveling wave solutions that approximate shocks, which in images correspond to
edges. By converting the problem to one of traveling waves, we reduce a fourth order
PDE to a third order ODE for which we are able to prove rigorous results and perform
clear phase space computations. Second, advective PDEs combining similar diffusion
terms are being used for such processes as image inpainting [2, 3]. Thus these kinds
of equations are interesting for image processing in their own right.

We discover a fundamental difference between solutions of (YK) and (TT). Smooth
traveling waves solutions of (YK) do not exist for sufficiently large jump height,
whereas solutions of (TT) exist for all jumps. This suggests that the dynamics of
the full PDE (YK) is quite different from that of (TT). In a separate paper, we prove
that in one dimension the PDE (TT) without advection has globally smooth solutions,
given smooth initial data. The study in this paper would lead us to conjecture that
(YK) without advection does have finite time singularities in w,,, just as the classical
Perona—Malik equation has finite time singularities in the slope.

Although the PDE numerics suggest that the smooth traveling waves are stable, a
rigorous proof of this is still forthcoming. Rigorous stability results for traveling wave
solutions of second order convection-diffusion equations include Goodman’s proof of
multidimensional stability of viscous scalar shock fronts [22] and Osher and Ralston’s
proof of stability of traveling wave solutions of the convective porous media equation
[35]. Fourth order traveling waves are more difficult to analyze due to the lack of
a maximum principle and the fact that the traveling waves themselves often do not
have a closed form expression. In [9], Evans function techniques are used to prove
instability of fourth order thin film traveling waves, although they establish only a
consistent condition for stability.

Our work is done entirely in one dimension, but there is at least one obvious
extension to two dimensions. Traveling wave solutions of the model equations cor-
respond to plane wave solutions of the equations with diffusions in two dimensions,
while the advection term remains only in the z-direction. These plane waves move
in the z-direction and do not depend on y. In physical applications, the existence
and stability of plane waves is relevant for pattern formation [5, 22, 42]. Analagous
questions in imaging are interesting and have not been explored to our knowledge.
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THE SUBCRITICAL MOTION OF A SEMISUBMERGED BODY:
SOLVABILITY OF THE FREE BOUNDARY PROBLEM*

CARLO D. PAGANIT AND DARIO PIEROTTI'

Abstract. We discuss existence and regularity of the solutions of the wave-resistance problem
for a thin semisubmerged body moving at uniform subcritical velocity in a heavy fluid (e.g., water)
of constant depth. The main assumption (on the geometry of the body) is that the flow is two-
dimensional; i.e., it can be completely described in the vertical plane containing the direction of
the motion. Then the problem can be formulated in terms of a boundary value problem for a
holomorphic function (the complex velocity field) satisfying a nonlinear condition (the Bernoulli
condition) on a free boundary (the free surface of the fluid). By a hodograph transformation and
choosing an appropriate functional setting, we first reduce the problem to the resolution of a nonlinear
functional equation depending on two unknown parameters, which are related to the positions in the
hodograph plane of the points of contact between the free surface and the body. The main result
of this paper is the proof of the existence, under mild assumptions on the body’s profile, of an
exact solution of the nonlinear problem: the resulting free surface is asymptotically flat at infinity
upstream and is oscillating downstream; moreover, it is tangent to the body’s profile at the contact
points.

Key words. free boundary, nonlinear boundary condition, hodograph transformation
AMS subject classifications. 35J65, 35R35, 76B10

DOI. 10.1137/S0036141003425982

1. Introduction and statement of the problem. Let us consider an infinitely
long, semisubmerged horizontal cylinder, moving at a uniform speed on the free surface
of a heavy fluid, in the direction orthogonal to its generators. The unperturbed
fluid, which is at rest, has finite constant depth H. Compressibility and viscosity
are neglected as well as surface tension; moreover, the fluid motion is assumed to be
irrotational.

We want to find the steady flow generated by the cylinder’s motion. Because of
the geometry of the problem, the flow can be completely described in the vertical plane
containing the direction of the motion. Then the problem can be formulated in terms
of a boundary value problem for a holomorphic function (the complex velocity field)
satisfying a nonlinear condition (the Bernoulli condition) on a free boundary (the free
surface of the fluid); moreover, the free boundary is the union of two disconnected
curves ending on the cylinder’s profile at unknown points (see Figure 1).

The solvability of this problem was established in [1] (for a cylinder with sym-
metric cross section) and in [2] (for a generic cylinder) in the case of supercritical
velocity (see below). The proof relies on the assumption that the piercing part of
the cylinder is small compared to its length (and to the fluid’s depth) and essentially
consists in the application of the implicit function theorem to a functional equation
in the hodograph plane. In this approach, a crucial step is the proof of the unique
solvability of a linear problem, which is obtained by considering the limit when the
cylinder’s section becomes a beam and the flow (in a reference system connected with
the cylinder) approaches the constant, parallel flow [3].
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-

Fic. 1.

In the present work, we prove the solvability of the free boundary problem in
the case of subcritical velocities. As it is already clear at the level of the linearized
problem [4] and from numerical experiments [5], the properties of the solutions are
quite different for subcritical and supercritical flows. For example, in the former case
the flow may have nontrivial oscillations at infinity downstream, while in the latter
case it is asymptotically parallel. This behavior is of course related to the situation
that arises in the free-surface water waves: there, a supercritical flow is associated
with solitary waves (that exponentially decay at infinity in both directions; see, e.g.,
[6], [7]), while subcritical flows develop a periodic wave train [7], [8, Chap. 71]. As a
consequence, the former proof of the solvability will not extend in a trivial way to the
subcritical flow. Nevertheless, we can still formulate the problem in terms of a func-
tional equation in the hodograph plane with the same assumptions on the geometry
of the cylinder. As in the case of supercritical velocities, we seek a “local” result of
existence for a solution which, for some small parameter € tending to zero, approaches
the constant parallel flow. To reach this goal, in contrast with the supercritical case,
we will not fix a priori the asymptotic velocity of the perturbed field at infinity up-
stream; the solution that we obtain will be a perturbation of the constant flow with
prescribed subcritical velocity

(1.1) co < /gH

(here g is the acceleration of gravity); the perturbed flow will be parallel at upstream
infinity, but its velocity ¢ will depend on the parameter ¢ and will approach the
unperturbed velocity ¢y as € — 0. Similarly, the origin in the hodograph plane will
not be completely fixed a priori, but we let it depend on a parameter changing with
€; we prescribe only its value in the limit ¢ = 0 when the hodograph map is linear
(see section 2). Both these quantities will be determined, as functions of €, from
the resolution of the problem, together with the free surface and the velocity field.
The necessity of considering additional unknowns comes from the requirement to
satisfy two nonresonance conditions at infinity downstream, where the velocity field
is oscillating. More precisely, one finds that in the linearized problem (see below)
the wave number and the phase of the oscillating far field are directly related to the
above parameters; hence, by suitably setting their values, we can search the perturbed
solutions in a common space of functions oscillating with the same wave number at
downstream infinity.

In order to state the various equations of the problem, we choose a coordinate
system connected with the cylinder and such that the xy-plane is orthogonal to the
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horizontal generators of the cylinder; the z-axis is directed as the unperturbed flow,
the undisturbed free surface is at y = 0, and the bottom of the region occupied by
the fluid is at y = —H. The cross section of the “hull” is described by the equation

(1.2) y=cef(z),

where € > 0 is a small parameter and f is a C! function defined in some neighborhood
of the origin, say J, and such that, for some other neighborhood of the origin J’ =
(a,b) C J, we have

f(z) <0 for xzeJ,

flz)=0 for x=a and x=0,
(1.3) f(x)y>0  for xzeJ\J,

zf'(x) >0  for z € J\{0},

f(0)=0

The fluid surface is described by the equation y = h(z), where h is an unknown
smooth function defined in R\[z_,z4], with 1+ € J. The two numbers x4 are the
abscissae of the points where the free surface meets the hull so that h(zy) = ef(zy).
Note that the values x4+ are unknown, and their determination is part of the problem.
It is natural to assume that z_ and x4 lie in small neighborhoods of the points a and
b, respectively, which are bounded away from the origin.

We set
«r | h(z) fore<ax_, z>x4
(1.4) () = {ef(x) forz_ <z <z,
Then
(1.5) S* ={(z,y) eR* : —H <y < h*(x)}

will denote the region filled with the fluid. We assume (as usual) that the curve
y = h*(x) is a streamline; i.e., the free surface and the wetted part of the cylinder
form a single streamline; the bottom {y = —H} is also assumed to be a streamline.
Let us introduce the complex variable z = x + iy and the complex velocity function
w(z) = u(z,y) —iv(x,y), holomorphic in S*, with v and v components of the velocity
vector. We can now state our problem in the following form: find three scalars,
the asymptotic velocity ¢, the abscissae x4 > 0 and z_ < 0, and a real function
h € CY(R\[z_,z4]) and a complex function w = u — iv holomorphic in S* and
bounded in S*, such that the following boundary conditions hold:

(1.6) %|w(w, h(z))|* + gh(z) = constant, x<T_Oorx>Ty,
(L.7) v(z, h(x)) = ( Ju(z, h(z)), &<z orz>uxy,

(1.8) v(z,ef (z)) = ef (@)ulz,ef(2)), - <z <y,

(1.9) v(x,—H):O, z eR,

(1.10) xEIwa(z) =g,

(1.11) zEIPoo h(z) = 0.

Equations (1.7), (1.8) indicate that the free surface and the wetted hull are arcs of
a streamline; (1.9) expresses the same property for the bottom, while (1.6) is the
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Bernoulli condition on the free surface. The asymptotic conditions (1.10), (1.11)
state that at infinity upstream the flow approaches a constant parallel flow, and the
free boundary approaches the straight line h(z) = 0. We stress that the asymptotic
velocity c¢ is an unknown function of € which tends to ¢y as € — 0. As discussed above,
the perturbation due to the presence of the cylinder does not in general vanish (in
two dimensions) at infinity downstream if (1.1) holds. The statement of the problem
is completed by the continuity conditions

(1.12) h(zy) = ef (z1).

Rigorous mathematical results about nonlinear ship waves are quite rare in the
literature; the problem appears in a linearized version (the Neumann—Kelvin problem;
see, e.g., [4, Part 2] and references cited therein), or it has been treated by numerical
methods [5]. Some authors [9], [10] (see also [7]) consider the water waves problem
by assuming a variable pressure of the form: py (atmospheric pressure) +ep(x) acting
on the free surface; if p(x) is compactly supported, this extra pressure may simulate
the action of a ship.

The aim of this paper is to prove the existence, for small values of the parameter ¢,
of an exact solution of the nonlinear problem, which, for ¢ — 0, reduces to the trivial
parallel flow w = ¢g, h = 0. The main steps in implementing this program are the
following: in the next section, we use a hodograph transformation which (partially)
overcomes the difficulties due to the free boundary; the transformed problem proves
to be convenient for a functional reformulation. The proof of solvability is achieved
in two steps: see sections 3 and 4; in particular, in section 3 we exploit the results
obtained in [3] for the linearized problem. Some technical results and side properties
of the solution are described in the appendix.

The main result of the paper (the precise statement is Theorem 5.6) is that, for a
given profile ef(x) with ¢ > 0 small, f satisfying (1.3), and some additional technical
conditions (also involving the data ¢y and H) there is a solution of the system (1.6)-
(1.12). More specifically, there is a flow we(z) which is asymptotically parallel when
r — —o00; the asymptotic velocity c is a known quantity depending on € and tending
to co as € — 0. The free surface and the cylinder profile form a single C! streamline:
they match at known points z_ and x; (depending on €). Moreover, the free surface
is exponentially vanishing for x+ — —oo and is bounded and asymptotically periodic
when x — 4o00; the period is also a known function of e. This result qualitatively
agrees with the numerical experiments presented in [5, Par. 3] for Froude numbers
approximately ranging from 0.35 to 0.6 and for a parabolic profile. Also, the analysis
developed in [9] (where we still have a localized obstacle on the bottom and a localized
extra pressure on the free surface) shows that, for Froude numbers strictly less than
1, all bounded solutions are asymptotically periodic at infinity downstream.

2. The hodograph transformation. By means of the hodograph transfor-
mation (see [2] for details) we can reformulate the problem by taking the complex
potential

(2.1) w =@+ 1t
(where p(z,y) is the velocity potential and ¥ (z,y) the stream function) as the inde-
pendent variable and the reciprocal of the velocity field

1

(2.2) e

=Qw), Q=U-iV,
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as the unknown. Given the function 2, the (inverse) hodograph map w — 2z =
x + 1y is defined by the relation dz/dw = Q modulo an additive complex constant;
the imaginary part of this constant can be fixed in such a way that the streamline
consisting of the free surface and the wetted hull corresponds to ¥ = 0 (see (2.5)).
Then the domain S* of the physical plane is mapped onto the strip

(2.3) Ag ={(p,9) €R?* :  —cH < <0}

The real part of the additive constant is left undetermined for the moment and is
assumed to change with €. For ¢ = 0 we assume that the image of the point w = 0
coincides with the origin in the physical plane, which can be placed at a minimum
point of the function f on the z-axis; for € > 0, the origin of the hodograph plane
will be mapped (for small enough €) to an unknown point (Z, ef(z)) on the cylinder’s
profile according to the discussion of the introduction. Taking account of the above
conditions, the relation between the physical plane variables and the hodograph plane
ones can be written

® P
(2.4) z(p, ) zi—i—/o U(s,w)ds—&—/o V (0, t)dt,

Y ®
(25 o) = [ Uted-tH=v- [ Viswas

—cH

We stress that the functions U, V' and the parameters Z, ¢ in (2.4), (2.5) depend on
€; for e =0, we have U = 1/¢p, V =0, £ = 0, and ¢ = ¢g, and the map is simply the
multiplication by 1/c¢g.

We call p_ and ¢ the values of ¢ at the separating points P_ = (z_,ef(z_))
and Py = (x4, ef(xy)), respectively. Then the upper boundary of the strip consists
of the segment

(2.6) I'={(g,9) : =0, o <p<pil,
which is the image of the cylinder’s hull, and the two half-lines
27 F={(p,¥): ¢v=0, o<e_tU{(e,9¥): =0, ¢>pi}

which are the image of the free surface; we stress that the separating abscissae p_ < 0
and ¢4 > 0 are also unknown. The bottom is mapped onto the line

(2.8) B={(¢p,0): ¥=—cH, ¢cR}

Then the function 2 must be holomorphic in Ay and satisfy the boundary conditions

19|92 _
(2.9) T2 oy +gV =0 on F,
(2.10) V+ef'(x)U=0  onl,
(2.11) V=0 on B.

Moreover, we require the condition at infinity upstream

(2.12) lim Q= .

p——00 c
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The continuity conditions (1.12) are written

(2.13) - /Wi V(s,0)ds = ef (m + /O<Pi U(s,O)ds) .

— 0o

As already noticed in [2] these two conditions, now written in the hodograph plane,
are not independent if (2.10) holds. We now show, however, that there is another
independent condition at the point (¢4, 0), related to the Bernoulli equation (1.6). In
fact, for physical reasons and recalling the asymptotic conditions (1.10), (1.11), the
constant appearing on the right-hand side of (1.6) must have the same value ¢?/2 on
both components of the free surface; this holds in particular at the two points Py.
In terms of the hodograph variables, we get by (2.5), (2.9), and the limit condition
(2.12)
2
3 1960,0) [ 4 gy(p,0) = 5
for ¢ < ¢_ (and ¥ = 0); by (2.2), this is equivalent to (1.6). On the other hand,

there is no prescribed limit at infinity downstream (only boundedness of the flow field
is required). This means that we have the additional condition

_ 2g
leQ(p4,0)] 2 + Sule,0) =1,

which, taking account of (2.13), becomes

(213) e 0+ 2ef (24 [T Us.00ds) 1.
¢ 0

Equations (2.9)—(2.13") formulate the problem in the hodograph plane; by the previous
discussion, we could replace (2.13) with the analogous of (2.13") at ¢_.

We stress that in the above problem the size and the position of the segment
I defined by (2.6) are unknown (the same is true for the depth of the bottom B
of the strip in the hodograph plane; see (2.8)). Therefore, a further change of the
independent variables and unknowns will prove convenient in the following. Let us
first introduce the new parameters

* P+ — - m Y+ + o
2.14 2 _ _
(2.14) @ 5 ¥ 5

Then, by setting

(2.15) p= e GV
cp cp

the beam I is mapped onto the interval (—1, 1) of the p-axis, and the strip Ay becomes
(2.16) A*={(p,0) eR?*: —H* <o <0},

where

H
2.17 H = —.
(2.17) o
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Then we define the new unknown
xX=&—1m

(as a function of the new variables (2.15)) by subtracting the asymptotic field 1/c¢
from Q and dividing by €; namely, we set

(215) Uew) = (1+e0.0),  Vigw) = n(p.o)

We now want to write the nonlinear boundary conditions (2.9), (2.10) as formal
operator equations in the new variables. We first note that on the line o = 0 (that is,
1 = 0) the right-hand side of (2.4) takes the form

m

(2.19) T+ /P (1+ €£(s,0))ds = z(p),

where we set p™ = —p™/p*; note that (2.19) is independent of c.
We now define the functions

(2.20) G(p) = f'(x(p))
and
(2.21) Bl(oaem o' = {nte()a+e}|
Furthermore, by introducing the parameter
(2.22) vt =ty = cp*%,
c

we define
(2.23) BF (x,v*¢) = {—ig|1+ex|_2+y*n}’

2¢ dp lp|>1,0=0
and
(2:24) B(x,z,v"39™, 0% €) = (B (x. 39", ¢, €), B (x, v €)).
Then, for every € > 0, the equation
(2.25) B(x,7,v"¢™, 9" €) =0

is equivalent to the conditions (2.9), (2.10). Moreover, the function x must be holo-
morphic in A*, vanishing for p — —oo, and satisfying the linear condition n(p, —H*) =
0. The notation used stresses the dependence of the differential system on the various
parameters of the problem: Z, v* (and then ¢), ™, ¢*; such quantities are unknown
functions of € as well as the field xy. Our strategy for solving the problem in the
hodograph plane will consists of two steps: first, we fix ©* and ™ independent of
e and solve (via the implicit function theorem) (2.25) with respect to x, v*, and &
for small ¢, starting with the solution of a linear problem at ¢ = 0 (see section 3.1
below). The values of v* and Z for € > 0 will be determined by requiring the solution
X to belong to an appropriate Banach space (see section 3.2). Thus, in this way, we
determine a family of hodograph maps depending on the parameters ¢*, ¢™, and €
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(note that also the strip A* where the function x is defined depends on ¢*; see (2.16),
(2.17)). Then, in the second step, we select a pair * = ¢*(€), ™ = ¢ (€) by solving
(2.13), (2.13'): the selected map, corresponding to those values of the parameters, will
finally determine the solution of the problem in the physical plane. The reason for
this two-step procedure is that we do not know a priori the limit positions for ¢ — 0 of
the points Py so that we cannot linearize the whole problem around a known solution
at e =0.

In the next section, we will formulate (2.25) as an operator equation between
suitable Banach spaces; this equation will be solved, for fixed ™, ¢*, in section 4,
while in section 5 we discuss (2.13), (2.13’) determining ¢™, ©*.

3. The functional setting of the problem.

3.1. The problem at € = 0 in the hodograph plane. According to the
previous discussion, we fix the two parameters ¢* > 0 and @™ and discuss the linear
problem obtained from (2.25) by letting ¢ — 0 (formally) in the expressions (2.21),
(2.23); the results obtained will suggest the correct functional setting of the nonlinear
problem.

We first recall that ¢ — ¢p and £ — 0 as € — 0; hence, by recalling (2.22) we also
have v* — v, where

(3.1) v = ¢*g/c

Then, for e — 0 the system (2.25), together with the condition on the bottom and
the asymptotic condition, leads to the following problem for a holomorphic function
Xo = & — inp in the domain A* (see [2]):

0pé0+1v5m0 =0 for o=0, |p|>1,
n0(p,0) = —f'(¢"p+¢™)  for [p] <1,
no =0 for o=—-H" peR,
lim xo=0.
p——00
By substituting, in the first equation, 0,£ with —0,70, we obtain a boundary
value problem for the harmonic function 79 (the harmonic conjugate & is then deter-

mined by the requirement of vanishing at infinity upstream).
Problem Lg. Find 79 harmonic in A* such that

60770(/)7 O) - Vg 770(,07 0) =0 for |p| > 1,

no(p,0) = —f'(*p+¢™)  for |p| <1,
mo(p,—H*)=0  for peR,

i no(p, ) = 0.

By adding to (3.2)—(3.5) the natural requirement that the solution is H}_ and
bounded (more generally, polynomially bounded) in the strip outside any neighbor-
hood of the interval [—1,1] x {0}, Problem Lg coincides with the problem obtained
by formal linearization of the original nonlinear problem in the physical plane; see [3].
Then, by the results of [3], we have the following.
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THEOREM 3.1. Given f' € H'Y*(I) (with I defined by (2.6)), Problem Lo is
uniquely solvable for vy H* = gH/c3 > 1, provided the positive solution ui of

(3.6) tanh(uH*) = £
Yo
is different from nm/2, n = 1,2,.... Furthermore, if f' € H?'?(I), the solution is

continuous and bounded in the closed strip A*, and there are real constants Ay, By
such that

(3.7) ( SI)lpA e*lPlng(p, o) — 0(p)[Ao sin(up) + Bo cos(up)] sinh(u(o + H*))| < oo,
p,0)EA*

where X\ is the first positive solution of the equation

(3.8) tan(AH*) =

)
and 0 is the characteristic function of the interval (0,+00).

From Theorem 3.1 we get no information on the solvability of Problem Lg at the
“singular values” u = nw/2, n = 1,2,.... However, by a careful reconsideration of
some arguments of [3], it can be shown that the solutions defined by Theorem 3.1 have
well defined limits for g — nm/2 and that these limits are still solutions to Problem
Lo with the same regularity and asymptotic properties (3.7). In fact, we can now
state the following.

THEOREM 3.2. Let f be given as in Theorem 3.1, and suppose that the positive
solution of (3.6) satisfies u = nw/2, n=1,2,.... Then there is a unique solution ng
of Problem Lq, which is defined as the limit for  — nw/2 of the solutions given by
Theorem 3.1.

The proof is given in the appendix.

Remark 3.3. It is worthwhile to point out further properties of the solution of
Problem Lg which will be useful for the definition of an appropriate functional setting
for (2.25). We stress that these properties, as well as the asymptotic representation
(3.7), hold for every positive value of p.

(i) It can be shown (see also [1]) that if the datum in (3.2) belongs to the Sobolev

1

space W;ig(—l, 1), with p € (1,4/3), then 1o belongs to W2(B) for every
bounded, measurable B C A*. We recall the inclusion W2(B) C C**(B),
with @ = 2 — 2/p ; also notice that the space Wp2 is an algebra for p > 1 and
that the product between functions of WI? is continuous. Moreover, since the
gradient of 79 is locally integrable along any curve contained in the closed
strip A*, the harmonic conjugate &, is continuous on A* (and also in Wg of
any bounded subset).

(ii) The holomorphic function yo = & — 79 is everywhere bounded in A* and
smooth up to the boundary outside any neighborhood of the interval [—1, 1] x
{0}. Moreover, a bound similar to (3.7) also holds for the function 9,&o.

(iii) For coefficients Ay and By, in the representation (3.7), the following formulas
hold (see Proposition A.4 of the appendix):

(3.9) Ap = /_1f’(so*p+<pm)a(p)dp,

(3.10) By = [1f’(w*p+¢m)ﬂ(p)dp,
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where «, § are real continuous functions on [—1, 1] depending only on v§ and
H*.

Remark 3.4. By Theorems 3.1 and 3.2, we have that the linearized problem of
the flow past a surface-piercing obstacle is uniquely solvable for every subcritical value
of the welocity cy. This property was never proved before in the linear theory of
wave-body interaction, [4] and will be discussed in a more general framework in a
forthcoming paper.

Let us now go back to the representation (3.7); we note that the parameter v
determines the wave number of the perturbed flow at downstream infinity. Moreover,
the choice T = 0 at € = 0 affects the asymptotic phase of 7. Actually, for p — 400
we can write

(3.11) No(p,0) =~ Cosin(up + &) sinh(u(o + H)),

where 6y = arctan(By/Ap); since Ag and By are linear functionals of the boundary
datum of Problem Lo, i.e., of —f'(¢*p+¢™) for |p| < 1, a different choice of the limit
value of Z corresponds to a shift of the argument of f’ and therefore to a change of &g.
Now, it is clear that, given ¢*, ©™, 1§, and H*, the constant &y in (3.11) is fixed by
the integrals on the right-hand sides of (3.9), (3.10) (we suppose that at least one of
these integrals is not vanishing; if Ag = 0 we take §o = 7/2). In the following, for the
sake of simplicity, we shall assume that the function p — f/(¢*p + ¢™) is orthogonal
to 3 so that By = 0 and 69 = 0. In this case, the solution 7g is asymptotically odd
with respect to p for p — +o0o. Then we will look for solutions of the nonlinear
problem (2.25) with the same symmetry at infinity. We point out that the restriction
to invariant subspaces of functions with definite symmetry is also a crucial step in the
proof of the existence of periodic water waves by bifurcation methods [8], [11]. Later,
we will show how to get rid of the previous orthogonality assumption; we remark only
here that, in the general case, the function p — no(p — 6§, 0) is asymptotically odd,
where

(3.12) 85 = 80/ p.

Remark 3.5. When Ag, By are both vanishing, we get Cp = 0 in (3.11), and
the phase gy is undetermined. In this case, we have a waveless solution of the linear
Problem Lg (see [4], [14]), which is also uniquely determined.

3.2. The functional equation. It is now convenient to outline our strategy
for solving (2.25); we want to solve such an equation for every pair ¢*, ¢ in a
neighborhood of the previously discussed solution at ¢ = 0. We remark that this
solution is a function xo = &y — 19 holomorphic in the strip (2.16); moreover, xq
vanishes for p — —oo and approaches, for p — +00, a holomorphic function x{; which
is 27t/ periodic with respect to p, where u is the positive solution of (3.6). Finally, by
the discussion at the end of the previous section, x§ satisfies the symmetry condition
X§ (=p,o) = x§ (p, o).

Thus, it is natural to solve the functional equation (2.25) in a space of functions
defined in the fixed strip A* and with the above asymptotic properties. We note in par-
ticular that we look for solutions having the same wave number and symmetry, in the
limit p — 400, for every positive (small enough) ¢; as we will see, this can be accom-
plished by letting the parameters v*, z vary from the initial values v, 0. This means
that we will solve the functional equation with respect to the unknowns (x, Z,v*) in
a neighborhood of the solution (xo,0, ;). We first define suitable Banach spaces for
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the discussion of the functional equation (2.25); then we will show that the operator
B is a continuously differentiable map between these spaces. In the next section, we
will prove the invertibility of the Frechet derivative B’ at e = 0 and solve (2.25) by
the implicit function theorem. Taking account of Theorem 3.1 and Remark 3.3, we
now introduce a Banach space X of holomorphic functions defined in A* and contin-
uous up to the boundary. Let us fix py > 1 and set Q,, = [-H*, 0] x R\(—po, po);
moreover, given p > po, let B; C A* be the bounded rectangle (—H*,0) x (—p, p).
Finally, take 1 < p < 4/3, « =2 — 2/p, and define

X ={x=¢-imeHol(A"), x5, € W2(B,). Xla,, €C " (Qp),
(3.13) n(,—H*)=0, lim x=0, lim |x—y*| :0,},
p——00 p—+o0

where x# = &£# —in# is holomorphic in the strip and 27 /u-periodic with respect to p
and such that x#(—p, ) = x#(p, o). The limits in (3.13) are uniform with respect to
0. The space X is endowed with the following norm:

Ixllx = llxlleracq, + Ixllwzs,)
(3.14)  +supe P{|n(p,a) = 0(p)n* (p,0)| + 10,E(p, 0) — B(p)D,E* (p, o)},

PO

where 0 < \* < Ag and )\ is the lowest positive solution of (3.8). We note that X is a
linear space of bounded, continuous functions up to the boundary of A*; furthermore,
X is complete with respect to the norm (3.14). In fact, if y,, is a Cauchy sequence in
X, we have in particular that y,, converges uniformly on the closure of the strip A* to
a continuous function x which is holomorphic in A*; moreover, it can be shown that
X is the limit in X of the sequence. For, by (3.14), if x,, € X is a Cauchy sequence of
functions asymptotic to the periodic functions x#, then the x# form is also a Cauchy
sequence in C%([o, 0 + 27 /] x [—H*,0]), with 0 > po; hence, x# — x* uniformly,
with x* holomorphic and satisfying the properties described below (3.13). Now, by
writing explicitly the Cauchy condition for x,, — x.» and taking the limit for m — oo
at every point of the closed strip, we find that x € X with the above limit x# in the
definition (3.13); moreover, lim,, o Xn = X in X. Let us now define the space

_1
(3.15) Y =W, P (=1,1) X Yy s,

where Y, 5 is the set of the real functions [ defined (a.e.) in R\[—1, 1] and with the
following properties:

1—1 B B
Hi—p—1ua.p € Wp "((=p,=1) U (1, p)),
R\~ po,p0) € CV(R\(—p0; o)),
(3.16) sup X i(p) = 0(p)1, (p)| < o0,
[p|>po

where [, is continuous, 27/ p-periodic, and odd. The linear space Y, 5, equipped with
the norm

Wy = (2] .- ) + 1] co.o R\ (= po,po))

1
P((=p

Wp p,—1)U(l,p
(3.17) + sup X Plji(p) — 0(p)l,(p),
[pl>po

is a Banach space. The crucial result of this section is the following.
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THEOREM 3.6. Let f be a C3! function defined in an interval J containing the
interval (2.6). Then, for every bounded domain ® C R? of the form ¢* € [a,b] C R,
O™ € [—p*,¢*], there exists g > 0 and a bounded open set U C X x R? such that
the operator

B:Ux®x[0,6)—Y,

defined by (2.24), is continuously differentiable with respect to (x,Z,v™); furthermore,
the solution (xo,0,v4) of the linear problem

B(x,Z, v ¢™,¢%,0) =0

belongs to U.

Proof. This proof follows along the same lines as the proof of Theorem 3.5 in [1]
and of Theorem 3.2 in [2] and is only sketched here. We recall that B is a family of
operators, acting on the variables (x, Z,v*) € X x R?, depending on three parameters:
©*, @™, and e. We assume that e belongs to some interval [0,¢p) and the pair p*,
©™ to some bounded domain ¢ as defined above. We prove the assertions of the
theorem separately for the two components of the operator B. We stress that the
assumption f € C*!(J) guarantees the continuity of the Nemitski operator associated

1 1

with f” from W,?_E(—l, 1) to W;_E (—1,1); furthermore, by Remark 3.3(i) it follows
1

2— =
that W, ”(—1,1) is an algebra and that the product between functions in this space
is continuous (see also [12, Theorem 1.4.4.2]). These properties allow us to conclude
that, for suitably chosen U; C X X R (containing the point (xo,0)) and ey > 0, the
1

21
operator B! given by (2.21) is continuous from U; x ® x [0,¢) into W, *(—1,1)
and continuously differentiable with respect to (x,Z); its G-differential at the point
(x0,0) € Uy is given by

deB' (xo0,0;€)[x, 7]

p

LR CF O

+f" <<P* /pp (1+ 650(&0))618) (14 €&o(p,0)) (a: + ep* /p: §(S7O)ds)

m

(3.18) =n(p,0) +Zf"(¢"p+ ™)+ 0(e),  |p| <1.

It is easy to check that the map (x, Z; ¢™, ©*, €) — daB(x, T; ™, ©*, €) is continuous;
then B! is Frechet differentiable with the continuous derivative in Uy x ® x [0, €).
Similarly, we can check differentiability of B! with respect to the parameters ™, p*,
and e.

In order to exploit similar arguments for the second component of B, i.e., BY
given by (2.23), it is convenient to write it in the form

F *, _ * a %(772 - 352) - 65(52 + 772)
(3.19) BF (x,v ,e){l/ R TR w3 e e }‘|p|>1,a_o'

1

Again by the properties of the spaces Wj 7 with p > 1 and recalling the definitions
(3.16), (3.17), one can verify that, for suitably chosen Up C X x Ry (containing the
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point (xo,24)) and €y > 0, the operator B acts continuously from Uz x [0, €g) into
Y,,,5; We particularly emphasize that if x satisfies the asymptotic symmetry condition
specified in the definition of the space X, then the right-hand side of (3.19) satisfies
the analogous condition for the space Y,, 5 (see (3.16)). The operator B is also
differentiable with respect to (x,v*), and its G-differential at the point (xo, () can
be written

(3:20)  deB" (x0,5; €)[x, ] = v 10(p, 0) + 15m(p, 0) + &, (p, 0) + O(e),  [p > 1.

The map (x,v*;¢€) — dgB¥ (x,v*;€) is continuous; then B is Frechet differentiable
with the continuous derivative in U x [0, €p). We can also readily check the differen-
tiability of BY with respect to e. By collecting all these facts, we get the proof of the
theorem.

4. Solvability of the functional equation. In this section we solve (2.25) in
a neighborhood of the solution at € = 0. To this aim, we prove the invertibility of
the Frechet derivative B’(xo, 0, 15; ©™, ¢*,0); by Theorem 3.6 and evaluating (3.18),
(3.20) at ¢ = 0, we are led to consider the following boundary value problem.
Problem L. Find x = £ —in € X such that

(4.1) Mo (p,0) —vgn—v"no(p,0) =1(p)  for [p[>1,
(4.2) n(p,0) +zf"(¢"p+¢™) =k(p)  for |p| <1,
(4.3) n(p,—H") =0,

where the pair (k,1) belongs to the space Y defined by (3.15), (3.16). We will show
that problem (4.1)—(4.3) is uniquely solvable in the space X (see (3.13)) for a unique
choice of the pair (Z,v*) in a neighborhood of (0,v§). We search a solution of the
problem in the form

n=mn+mn2,

where 71, 12 are harmonic in the strip and satisfy, respectively, the conditions

(4.4) dom(p,0) —vgm =0 for |p|>1,

(4.5) m(p,0) =k(p) —2f"(¢*p+ ™) —m2(p,0)  for [p] <1,
(4.6) m(p,—H*)=0  for peR,

(4.7) Iom2(p,0) —v5m2 = Up) + V" no(p,0)  for |[p| >1,
(4.8) n2(p,—H*) =0 for peR.

It is readily verified that if 7y, 12 solve the system (4.4)—(4.8), their sum 7 solves
Problem L; on the other hand, we know that (4.4)-(4.6) is solvable by Theorem 3.1.
Now we will consider problem (4.7)-(4.8). By the definition of the space Y, ; and
by the continuation properties of Sobolev space functions [12, Par. 1.4.3], we can
assume that the datum ! on the right-hand side of (4.7) is defined on R and satisfies

1
l—5.p) € W; ?(=p, p). Furthermore, let us define

(4.9) "(p) = Up) +v" no(p,0), p€R.
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We denote by Z the set of functions [* defined in R such that

1

(=55 € W,}_E(fﬁ, p) and have property (3.16) in R\(—1,1).
We stress that a function I* € Z may be decomposed as

(4.10) (p) = l5(p) + 0(p)I* (p),

where [§ is integrable and exponentially decaying for |p| — oo, while I# is 27/u-
periodic, continuously differentiable, and odd. We now discuss an auxiliary problem
in the strip whose solution proves the existence of the required function 7.

4.1. An auxiliary problem. Let us consider the following problem:

(4.11) AT =0 in A"
(4.12) 05U (p,0) — 5 T (p,0) =1"(p) for peR,
(4.13) U(p,—H*)=0 for peR.

Moreover, we require that ¥ vanishes for p — —oo. Then, we have the following.

PROPOSITION 4.1. For every I* € Z there exists a function U satisfying (4.11)—
(4.13) and vanishing exponentially for p — —oo. Moreover, if I* satisfies the linear
condition

/b
(4.14) / sl () =0,

then W is bounded and asymptotically 2/ p-periodic (with respect to p) for p — +oo.
Proof. Let us consider the convolution

(4.15) (Kx1")(p,0) = /RK(p =o', o) *(p)dp,
where
1 , sinh[p(c + H*)]
4.1 K = — PP .
(4.16) (p, ) 27 /R ¢ peosh(pH*) — v¢ sinh(pH*) dp

We stress that the integrand in (4.16) has two simple poles at p = £u on the real
axis; therefore, the integral is understood as the Fourier transform of a tempered
distribution, which can be evaluated by integrating along the path in the complex
plane consisting of the intervals (—oo, —pr —€), (—p+ €, u—€), (1t + €, +00) of the real
axis and two semicircles of radius € and center at (£, 0) surrounding the poles in the
lower half plane. As a result, we obtain

(4.17) K(p,) = r(p, o) + C0(p) sin(up) sinh[u(o + H")]

where C' is a constant, 6 is the characteristic function of the interval (0, 400), and

K(p,0) = Z cn sin[A, (o + H*)]e_/\n|ﬂ|.
n=0
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The coefficients ¢,, are given by
en = [(1 = viH*) cos(A\H*) — N\ H*sin( A\, H*)]™!, n=0,1,2...,
where A,, are the positive solutions of the equation

tan(AH™) = i*
Yo

Note that A, H* ~ (n + 3/2)7 for large n so that |¢,| = O(1/n). It follows in
particular that |(p, )| < Clog(|p|) for p in a neighborhood of the origin so that, for
every o € [-H*,0] and p > 1, the function p — k(p, o) belongs to LP(R). Moreover,
we have from (4.16) that AK = 0 in A* and that K,(p,0) — viK(p,0) — 6(p) in
S'(R) for 0 — 0; then (4.15) solves (4.11)—(4.13) at least for I* € S(R). We will now
show that (4.15) is well defined also for I* € Z and that the proposition holds with
U= (K *1%).

Let us first consider the function x % I*; by (4.10), we can write

+oo
(w5 1)) = (55 15) o)+ [ o= o))

By explicit bounds using the integrability and the decay properties of the factors we
get |(kx13)(p,0)] < Ce="1Pl where C' depends on the norms of & and I in L'(R).
The second term is a bounded function defined in R and decreasing like Ce*? for
large negative values of p (recall that Ao > A*); moreover, we have the identity

“+oo +oo
(4.18) / w(p— o, o) (o )dp! = /R K o) (p— o) — / 5(0 o) * (p— p')dg

p

Recalling that [# is periodic and odd and observing that x(—p, o) = k(p, o), we have
that the first term on the right-hand side is periodic and odd with respect to p. The
second term is also vanishing as Ce *? for p — +oo. Let us now consider the
convolution between [* and the last term of (4.17); it is proportional to the function

(4.19) siublp(o+ 1)) [ sinlp(p - 1)

— 00

which is bounded by Ce* ? for p — —oo. To study the other limit, we write

(4.20) / ' sin[u(p — p)|I"(p")dp" = [A(p) + Pe(p)]sin(up) + [B(p) + Ps(p)] cos(up),

— 00

where

@) )= [ @) eosud. B = [ 1600 st

—0o0 — 00

p

(4.22) P.(p) = AP cos(up)*(p")dp',  Ps(p) = —A sin(up")I* (p")dp'.

By expanding I* in Fourier sine series and integrating term by term in (4.22), we
find that the function Ps is bounded (and periodic) only if condition (4.14) holds. We
point out that a second “nonresonance” condition for P, is ruled out by the choice of



84 CARLO D. PAGANI AND DARIO PIEROTTI

an odd {*. Then the right-hand side of (4.20) approaches a 27 /u-periodic function
for p — 4o00; note that such a function is not odd, unless lim,_, o B(p) = 0.

It remains to prove that (4.15) actually solves the problem. We point out that,
by (4.10), the Fourier transform in &’ of a function [* € Z has the form

(4.23) "(p) =I5(p) = > _ buls(p),

where I%(p) is a smooth function, b, are the coefficients of the Fourier series of I*#,
and 1% (p) = lim._onu/[(p — i€)> — (np)?] (the limit being in S'(R)). Then we can
define the one-parameter family of tempered distributions

bp.0) = o ). o e [-HL0,

where the first factor on the right-hand side is regularized as in the discussion following
(4.16). Tt is readily checked that

lim [0,¥(p, o) —v5¥(p,0)] = " (p)

in the distributional sense. Thus, by the properties of the Fourier transform F in S’
(see [13], Thm. 7.15) we have that the inverse transform F~'W solves (4.11)-(4.13)
and is equal (a.e.) to the convolution (4.15). 0

Remark 4.2. We remark that if (4.14) holds, the coefficient by of the series on
the right-hand side of (4.23) vanishes. As a consequence, in evaluating the inverse
Fourier transform of ¥ by complex plane integration, we have only contributions of
simple poles, which produce the oscillating terms of the solution at +oco. If by # 0,
there are poles of order two at p = +pu, generating a “resonance” term in ¥, whose
amplitude grows linearly for p — 400, in agreement with the previous calculations
(see (4.20) and (4.22)).

By taking [* as in (4.9) we can now choose 72 = ¥ as the harmonic function
satisfying (4.7) and (4.8). We now show that there is a unique value of v* such that
(4.14) holds. For, by (4.9) and by the asymptotic properties of ng, we have

1*(p) = lu(p) + v* Ag sinh(uH™) sin(up);
inserting in (4.14) we find

1 T/

(4.24) ve= _7ersinh(,ubF“)/_,r/u Ly (p) sin(pp)dp.

4.2. Invertibility of the Frechet derivative. We can now state the main

result of this section.
THEOREM 4.3. Let v > 1/H*, and assume that

1
(4.25) FWWwﬂE/gﬂ@%+w%mmw#0

Then, for every pair (k,1) €Y, there is a unique pair (Z,v*) € R? such that Problem
L is uniquely solvable in X.



SUBCRITICAL MOTION OF A SEMISUBMERGED BODY 85

Proof. We first note that, by Theorems 3.1 and 3.2, there is a unique harmonic
function 7, which satisfies (4.4)—(4.6) and the asymptotic condition (3.7). Then the
function n = ny + 12, with 7, defined in section 4.1, satisfies (4.1)—(4.3) and vanishes
(exponentially) at —oo. Moreover, by choosing v* as in (4.24), we have that 7 is
bounded and asymptotically 27 /u-periodic for p — +o0o0. It remains to satisfy the
symmetry condition. To this aim, we recall that by (4.18)-(4.22) the function 72
approaches, for p — +00, the sum of an odd (periodic) function with the function

(4.26) By cos(up) sinh[u(o + HY)],

where B, is proportional to the limit for p — +o00 of the function B(p) defined in
(4.21). On the other hand, by denoting with k* the right-hand side of (4.5), we have
for large positive values of p

(4.27) m = [A; sin(up) + By cos(pp)] sinh[u(o + H)],

where, by recalling (3.10), By = f_ll k*(p)B(p)dp.
Then 7 is asymptotically odd if

B+ By =0.

By the definition of £* and by (4.25) the above equation is satisfied by choosing

(129) o= i { B [ 160 - 013N .

It remains to prove uniqueness. Assume that the real numbers  and 7* and the
function 7 solve the homogeneous Problem L. By Proposition 4.1, there is a harmonic
function 72, vanishing for p — —oo, bounded by a linear function for p — +o0 (see
Remark 4.2), and satisfying conditions (4.7), (4.8) with [ = 0 and v* = v*. As a
consequence, 7 = 7 — 7j2 solves (4.4)—(4.6) with k = 0 and with T = % and satisfies
the same conditions at infinity. Then, by Theorems 3.1 and 3.2, such an 7; is uniquely
determined and satisfies (3.7); it follows that 7 is bounded and asymptotically periodic
only if 72 has the same properties. By (4.24), this implies 7* = 0 so that 7o = 0. In
this case, condition (4.5) becomes 71(p,0) = =2 f"(¢*p + ¢™), for |p| < 1. However,
by condition (4.25), 77 = 7, cannot approach an odd (periodic) function for p — +oo,
unless £ = 0. Then we also get 77 = 0.

We could now deduce local solvability of (2.25) by the implicit function theorem.
We recall, however, that Theorem 4.3 has been proved by assuming a specific symme-
try of the solutions at downstream infinity, starting from the additional condition that
the right-hand side of (3.10) vanishes. We now show that the theorem holds without
this extra assumption if one suitably modifies the definitions of the function spaces X,
Y and the condition (4.25); at the end of the section, we will discuss the restrictions
on the form of the cylinder’s profile f for the validity of the latter condition.

Recalling the discussion at the end of section 3.1, if 6§ # 0 in (3.12), we change
the definition (3.13) of the space X by requiring that the limit function x# satisfies
the condition x*(—p— 065, 0) = x*(p — 63, 0). Similarly, in the definition (3.16) of the
space Y,, 5 we assume l,(—p — 65) = —l.(p — 6;); then we can formulate Problem
L as before, referring to the new spaces X, Y. We can also modify in the obvious
way the definition of the space Z below (4.9) and the properties of the function I# in
the decomposition (4.10). The first crucial remark is that a solution of the auxiliary
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problem (see section 4.1) with datum * in the new space Z is simply a translation
(with respect to p) of the solution ¥ given by Proposition 4.1, corresponding to the
asymptotically odd datum p — I*(p — 6§). More precisely, Proposition 4.1 is now
satisfied by the function (p, o) — ¥(p+ 65, 0), provided the following condition holds:

T/
(4.29) / | sinlulo + &)1 ) =0

We can now proceed as in section 4.1 and choose 12(p,0) = VU (p + 65, 0) to satisfy
conditions (4.7), (4.8); by (4.9) and recalling (3.11), we easily check that there is again
a unique value of v* such that (4.29) holds. Let us now turn to Theorem 4.3; we
define as before n = 1y + 12, with 7y solving (4.4)—(4.6) and satisfying the asymptotic
condition (4.27); then, by a suitable translation of (4.26) we find that n belongs to
the (new) space X if

(A1 — By sinég) sin(up) + (By + By cos 8g) cos(pp) = C'sin(pup + o),
that is,
(4.30) Ajsindy — By cosdy = By

Note that, for 6o = 0, (4.30) reduces to the previous condition By + By = 0. Recalling
(3.9), (3.10), if the assumption (4.25) is replaced by

1
(431)  Fo(g™ ") = / I ™ leos 0 ) = sindo a(p)ldp £ 0.

we can solve (4.30) by choosing

@32) i= {B+ + [ 0) = (. O)lfcos 50 A(p) — sy a(p)]dp} .

The rest of the proof of Theorem 4.3 now follows with obvious modifications. Now,
with the new definitions of the space X (and Y') and by the implicit function theorem,
we can state the following.

THEOREM 4.4. Let f € C3t, (¢™,p*) € ® C R?, and U C X x R? be given as
in Theorem 3.6; moreover, assume that condition (4.31) holds, with 8y defined by the
asymptotic condition (3.11). Then there exists g > 0 such that, for every € € [0, €),
the equation B(x, T, v*, o™, ¢*,€) = 0 has a unique solution

(x(@™, @™ €),v(e™, 0" €), (™, 0" €)) € U.

Moreover, the map € — (x(¢™, ¢*, €),v(™, ©*, €),T(™, ©*,€)) is differentiable.

In view of the discussion of the last conditions (2.13), (2.13), it will be important
to investigate the properties the function Fy defined in (4.31) (see section 5 and the
appendix). We remark here that the form of this function also depends on the data
Co, H, f/. 0

5. Solution of the additional conditions. Theorem 4.4 provides, for a given
pair of parameters ™, ¢*, a function x holomorphic in A*, satisfying the requested
conditions on the boundary of A* and the prescribed asymptotic behavior. We still
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have to satisfy the continuity condition (2.13) and the additional condition (2.13').
These two conditions, when € — 0, reduce to

-1
(5.1) —¢" [m no(s,0)ds = f(o™ — "),

960(1,0) = f(¢™ +¢°).

Here 79 is the solution to Problem Lg, and &; is its harmonic conjugate vanishing
at infinity upstream. We shall prove that there exists a pair of numbers (™, p*)
satisfying system (5.1); then, by a continuity argument, we will deduce the existence,
for small enough values of €, of a pair solving (2.13) and (2.13’). Notice that, by
integrating from —oo to —1 the boundary condition following (3.1), we get

—1 02
p / (s 0)ds = Leo(~1,0).

— 00

Then, by returning to the parameters ¢y (see (2.14)), we can write system (5.1) in
the form

flo-/co) = %éo(—170;<p—,s0+),

(5.2) !
floy/co) = %050(170;<P—MP+)~

Here we have stressed the dependence of £, on the unknowns ¢.. By arguments
similar to those used in the proof of Proposition 4.1 in [2], one finds that the maps
(p—,o4) — &(£1,0;¢0_, ) are continuous on the second quadrant of the plane
(¢, +). We first show that system (5.2) has a solution. Let us fix R > 0 and define
Or = (—coR,0) x (0,coR); consider now the function

G : QR - R27
2
(5.3) Cro—p4) = flp—/eo) — 5 0(=1,0:0,02),
2
(5.4) Galp—rp+) = fo+/co) — %éou,o;go_,m

Then we have the following. )

LEMMA 5.1. Let f be a function satisfying (1.3) and such that [’ € Wp%; on
any interval including the origin; assume further that f satisfies the growth condition
f(z) = Colz|™ (Co, a positive constants) for large |x| and that this relation can be
differentiated. Then there exists R > 0 such that G1(—coR, p4+) > 0 for 0 < o1 < ¢oR
and Go(p—,coR) >0 for —coR < p_ < 0.

Proof. By recalling Remark 3.3, the quantities |{o(£1, 0; o—, v+)| can be bounded
by a (local) Sobolev norm of the solution of Problem Lg; then, mapping the problem
in the plane of the scaled hodograph variables (¢/cq,1/co) (which equal the physical
space variables at € = 0; see the discussion following (2.4), (2.5)) and using estimates
on the solution (see, e.g., [1, equation (4.9)]), it can be proved that the absolute values
of the right-hand sides of (5.2) are bounded by the Sobolev norm of f in the interval
(¢—/co,¢+/co). Then the proposition follows by the assumptions on the growth of f
and its derivatives. ]
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Remark 5.2. We note that the quantities |{o(£1,0;9_, ¢4 )| decrease to zero
for oy — ¢@_ — 0; this means that, in this limit, both components of G are strictly
negative.

PROPOSITION 5.3. Let f satisfy the assumptions of Lemma 5.1; suppose further
that for every point in Qr with o =0 or o, = 0 we have

2 2
(5.5) £(0) < %Ofo(l,o;o,so_), £(0) < %0@(*1,0;%0)-

Then system (5.2) has a solution.
Proof. By Lemma 5.1, conditions (5.5) and definitions (5.3), (5.4) we have

Gl(*CORa QD-‘r) > 07 G1(07 904') <0
for 0 < p4 < ¢oR and
GQ((,O_,CQR) > 0, GQ((,O_,O) <0

for 0 < ¢_ < ¢gR. Now the statement that the map G has a zero in Qp is equivalent
to the Brouwer fixed point theorem. a

Remark 5.4: Regarding condition (5.5), we notice that, in the linear problem, the
two quantities égo(jzl, 0) represent the height of the free boundary at the contact
points with the cylinder. Then, roughly speaking, the two inequalities in (5.5) state

the (quite natural) requirement that the free surface reaches the cylinder’s hull at
least at the minimum of its profile (placed at x = 0). It can be shown that, for
fixed (p_/co,+/co), the quantities égo(jzl, 0) are vanishing for ¢g — 0; hence, the
assumptions of Proposition 5.3 hold (for a given f) if the velocity ¢y is small enough.
This is in agreement with the physical intuition, since for small values of the velocity
the perturbation of the free boundary from the line y = 0 should be small, even if
compared to the width of a thin obstacle. It is also clear that, for ¢cg < 1, the solutions
of (5.2) are such that ¢p_/co = a and ¢4 /¢y = b, where a, b are, respectively, the
negative and positive solutions of f =0 (see (1.3)).

Now, assuming that condition (4.31) holds for every pair (¢*, ¢,,) corresponding
(through (2.14)) to a point of Qg, we get the solvability of the system (2.13), (2.13')
for small e. In fact, by Theorem 4.4, we can define a map € — Q(p,0; o4, p_, €) such
that the composite maps appearing in (2.13), (2.13’) are continuous on Qg; moreover,
(2.13), (2.13") reduce to (5.1) (that is, (5.2)) when € — 0.

Thus, as remarked at the end of the previous section, we should study the domain
of validity of condition (4.31) for a given profile f and positive ¢y, H satisfying (1.1);
we note, however, that it is not strictly necessary to satisfy such a condition at every
point of Qr. In fact, by homotopy with the linear map (p_, ;) — (—COZR oo —

1, CuichJr — 1), it follows that the topological degree deg(Qg, G,0) is equal to 1;
then, if the solutions of (5.2) are isolated points in Qg, there is at least one solution
O* = (¢*, %) with local mapping degree (or index i(G, ®*,0)) different from zero by
the index sum theorem [15]. Now, assuming only that (4.31) holds at ®* and observing
that the function Fy appearing in this condition is continuous, we can still define a
map € — Q(p,0; vy, o, €) in a suitable neighborhood of this point and write (2.13),
(2.13") as small perturbations of (5.1) in the same neighborhood; by the continuity
property, the local mapping degree does not change for small enough € so that (2.13),
(2.13') have a solution near ®*. Then we introduce the following definition:
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DEFINITION 5.5. We say that a pair of positive real numbers cy, H satisfying
(1.1) and a real function f (satisfying (1.3)) are admissible data for the nonlinear
problem if the following conditions hold:

(i) f satisfies the assumptions of Theorem 4.4 and has polynomial growth;

(ii) relations (5.5) hold;

(ili) condition (4.31) is satisfied at least for one solution ®* = (¢* , %) of system

(5.2) with indez i(G, ®*,0) # 0.
In the appendix, by exploiting some qualitative properties of the function Fy, we will
show, as an example, that all the conditions of the above definition are satisfied for
hulls with parabolic profiles and for every subcritical value of the Froude number
co/VGH.

Summing up the previous results, we can finally state our main result.

THEOREM 5.6. Let f, cg, H be admissible data as in Definition 5.5. Then
one can find ey > 0 such that, for every e € [0,¢€y), there exist a positive constant
¢ (c =co at e =0), two real numbers x_ < 0, x4 > 0, a real function h(z) on
(=00, z_)U(z4, +00), and a complez function w holomorphic in the domain S* defined
by (1.5) such that conditions (1.6)—(1.12) hold. Moreover, the free surface and the
cylinder profile form a single C* streamline, given in parametric form by

P
o) =o+ ¢ [ (14 e€(s,0)ds

P pER,
y(p) = —ep* / (s, 0)ds,

where ©* > 0, p™, and T € (x_,x) are known quantities (depending on €) and the
functions £(p,0), 1(p,0) are now determined from Theorem 4.4. By the properties of
& and n, the free surface is exponentially vanishing for x — —oo and is bounded and
asymptotic to a 2= -periodic function when x — +0o; here g is the positive solution

Ko
of the equation
i

As a concluding remark, we observe that, in contrast with the situation encoun-
tered in the supercritical case, we are not able to give more detailed information on
the location of the contact points x4.

Appendix. In part I we prove Theorem 3.2 and property (iii) of Remark 3.3.
Moreover, by exploiting some technical results obtained in the course of the proof (see
Proposition A.4 below) in part IT we write a more explicit form of the function Fy
defined in (4.31) and provide simple examples of data satisfying Definition 5.5.

I. To begin with, we need the following result, which is proved in [3, section 4].

PROPOSITION A.1. For every v§ > 1/H* such that p # nw/2 (with p the solution
of (3.6) there are nontrivial harmonic functions ¢°, (¢ satisfying (3.2), (3.4) and the
homogeneous condition (3.3) (i.e., with f' =0) and with the following properties:

(Al) Cs(ipvo-) = 768(/770-)7 Cc(fpa U) = Cc(p,O'),
(A.2)  (*(p,0) = [Assin(pp) + sgn(p)Bs cos(up)] sinh[p(o + H)] + (5 (p, o),

(A3) ¢“(p,0) = [sen(p)Acsin(up) + Be cos(up)] sinh[p(o + H")] + (5(p, ),
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where the functions (¢, (§ are exponentially decreasing as p — oo and the coefficients
As, Ae, Bs, B depend analytically on p and are such that

(A4) AB. — Bs A, = A(p) sin p cos p,

with A(p) > 0. We stress that the functions ¢, ¢ do not satisfy the asymptotic con-
dition (3.5) and therefore are not solutions of the homogeneous Problem Lg. However,
they play a crucial role in the proof of unique solvability in Theorem 3.1; in fact, it is
proved in [3, Theorem 4.7] that if u # nn/2 the solution of Problem Lg is uniquely
determined and has the form

(A.5) 1o = fjo + ¢’ + Bo(”,

where 7y is a suitably defined harmonic function satisfying the conditions of Problem
Lo except for the asymptotic condition (it is in general oscillating at both limits
x — $00; see [3, Proposition 4.3]) and the coefficients ag, 5y are uniquely determined
by imposing condition (3.5).

Now there are further properties of the functions (®, (¢ and of the coefficients «y,
Bo which allow us to prove solvability when the relation p = nw/2 holds. Actually,
we have the following.

PROPOSITION A.2. Let ng be the solution of Problem Lo given by Theorem 3.1.
Then there exists the limit of no for p — nmw/2 and is still a solution of Problem Lg
with the same regularity and asymptotic properties.

Proof. Let ng be given by (A.5). By Proposition 4.3 of [3], the function 7y on the
right-hand side is defined for every positive value of i and satisfies the regularity prop-
erties discussed in Remark 3.3; further results in [3] (see section 4 and the appendix)
show that the coefficients A, B, and the function ¢§ in (A.2) are proportional to sin p,
while the coefficients A., B. and the function ¢§ in (A.3) are proportional to cos .
Then the functions (¢ have well-defined uniform limits in the strip A* for

sin CS’ cos
w—nr/2,n=12. M, such ﬁmits define nontrivial harmonic functions in the strip
satisfying the same homogeneous boundary conditions. On the other hand, it follows
by explicit calculation (see [3, equation (4.21)]) that for u # nn/2 the coefficients of
¢%, ¢¢ in (A.5) have the form

Ap(p) _Ap(p)

Qo = . 5 50 - ;
sin CoS

where, for every positive p, Ay (u) is a linear functional proportional to

(A.6) / fl@p+e )[ o 0) = o (p; 0)} dp.
(The traces of the derivatives (2, (¢ are continuous functions on [—1,1] by the regu-
larity results of [3]). From the previous discussion, we have that the uniform limits for
w—nmw/2,n=1,2 ... of the functions ny given by Theorem 3.1 exist and are solu-
tions to Problem Lg corresponding to the values nm/2 of the solution of (3.6). d
In order to prove the uniqueness statement of Theorem 3.2, we investigate the
relation between the coefficients Ay, By in the asymptotic representation (3.7) and
the functions ¢*, ¢°.
LEMMA A.3. Let 19 be a solution of Problem Lo with u # nw/2, and let °, (¢
be defined by Proposition A.1. Then the following formulas hold:

(a0 A= B [ e AG(0) - A (0
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K*

(A.8) Bo= pA sin g cos

1

| £+ oM IBG0.0) = Bt (0. 0)ldp,
—1

where A is defined by (A.4) and

K*

2 (sinh(2,uH*) B 1)—1 0
- H* 2uH* '

Proof. Apply Green’s formula to 79 and to each of the harmonic functions {*, (¢
in the bounded rectangle (—R, R) x (—H*,0), with R > 1; then, letting R — oo and
taking account of (3.7), (A.2), and (A.3) (which can be differentiated with respect to
p) we get

1
0 :/ @ p+ ™) (p,0)dp
-1
0

[ [cS(R, ) dpmo(R, o) — no(R, o) C3(R, a)} do

1
= /_1f'(<p*p+w’”)4§(p, 0)dp

0

+ u(AoBs — BoAy) / sinh?[u* (o + H*)]do,
_H*

1
0 =/ (@ p+¢™)C5(p,0)dp
-1
0

[ [40(3, ) dpmo(R, @) — no(R, o) CE(R, a)] do

1
Z/_lf’(w*erwm)Ci(p,O)dp

0

+ u(AgB. — By A.) / sinh? [w* (o + H")]do.
_H*

Then, (A.7) and (A.8) follow by elementary calculations. d
PROPOSITION A.4. Let p # nw/2; then the relations (3.9), (3.10) are satisfied by
choosing

K*
(A.9) a(p) = m[v‘\cﬁ(ﬂ’ 0) — AsCs(p,0)],
K* S C
(A.10) B(p) = W[BCCU(p7 0) — Bs(5(p,0)].

Moreover, the right-hand sides of (A.9), (A.10) have limits for u — nm/2, which verify
(3.9), (3.10) for p =nm/2.

Proof. From (A.7), (A.8), the above defined «, § verify relations (3.9), (3.10)
for u # nmw/2. On the other hand, recalling the proof of Proposition A.2, the proof
of Lemma A.3 is also valid for p = nw/2 by replacing ¢*, (¢ with the limits for
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w— nm/2 of Si}m(s, Colsucc, respectively. Furthermore, it is easily checked that also
the right-hand sides of (A.9), (A.10) have finite uniform limits for p — nw/2. Hence,
the proposition follows. O

Proof of Theorem 3.2. Existence of a solution 7y for the “singular values” of p
follows from Proposition A.2. Suppose that 7y is another solution corresponding to
@ = nm/2 and with the same boundary data; then by (3.9), (3.10) we have that 7jg
satisfies (3.7) with the same coefficients Ag, By as n9. Then ny — 7jp is a waveless
solution of the homogeneous Problem Lg; in particular, 79 — 7o belongs to H*(A*).
By the uniqueness of a variational solution (see [14, Theorem 4.7]) we get 19 = 7.

I1. Discussion of condition (4.31) and an example of data satisfying Definition 5.5.
From (A.9), (A.10), the function Fy in condition (4.31) can be written

1
Fo(e™,¢™) =/ f'(@"p+ @™ )v0(p)dp,
—1
where 7o(p) is proportional to the function

———— [(cos 69 B, — sin 8 A ) (p, 0) — (cos bpBs — sin bg As)C5 (p, 0)} .

sin p cos i

We note that, by the proof of Lemma A.3 and by the definition of §p in (3.11), the
coefficients of (%, ¢S in the above expression are proportional to the scalar products

1
(f',¢5) Z/_lf’(w*pﬂom)(ﬁ(p,o)dp,

1
(. ¢2) = / 0+ G 0 00,

respectively; hence, we can write (4.31) in the form

1

(A.11) _—
sin 4 cos [

(7.6 = (£ )] # 0,

where the scalar products involving f” are defined in the same way. It can be shown
that the above scalar products are analytic functions of the parameters v§, H* of
Problem Lg; recalling (2.17) and (3.1), we conclude that the left-hand side of (A.11) is
an analytic function of ¢* and ™ if also f is analytic. We now show that this function
does not vanish identically in the simple case of the parabolic profile f(z) = 22/2 — v
(v > 0). Then we have f'(¢*p + ¢©™) = ¢*p + ™ and f"(¢*p + ¢™) = 1, with
p € [—1,1]; by the symmetry relations (A.1) we get from (A.11)

(A12) e ( / 11 <§(p,0>dp> ( / 11 o3 (0, O)dp) £0,

We note that the left-hand side of (A.12) is independent of ¢™. By estimates of the
above integrals which follow from the definitions of ¢*, (¢ (see [3, equations (4.13),
(4.14)]) and by scaling p — ¢*p, 0 — @*0o, one can show that (A.12) holds for ¢* > 0
small enough. Then (A.12) is satisfied for every positive value of ¢*, except possibly
for a discrete set. We further remark that the integrals in the above condition depend
on ¢* only through the parameters v, H*; therefore, for a given Froude number
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\/c;’fH = \/Vi? we can say that (A.12) holds for any fized value of the ratio v /H*
outside a discrete set. Let us now discuss system (5.2) for the parabolic profile; we
denote by a+ and by the values of {o(£1, 0) corresponding to a solution of Problem Ly,
respectively, with the functions p and 1 on the right-hand side of (3.3). We stress that,

for a given Froude number, the quantities a4, b1 depend only on the ratio v5/H*; by

2
linearity and the relation %0 = ¢* /1, system (5.2) takes the form (in terms of the
variables ¢*, ©™)

— * b_
e e e L

(A.13)

Nl= M=

m * a * b % m
(@™ 4+ @) =y = TEe™ + Thote™.

We will solve this system with respect to ¢*, ¢™ for given values of v§, H*; in
terms of the physical parameters, this means that we do not fix ¢g and H but only the

Froude number \/C‘LH Now, again by scaling arguments, one can show that the four
g

quantities 2=, zj: are vanishing for v§/H* — oo (at a fixed Froude number). Then,
0 0

by elementary calculations, we find that (A.13) has a unique solution (with ¢* > 0)
for any large enough values of 15/ H*; by the previous discussion, these values, except
possibly for a discrete subset, also satisfy (A.12). d
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SUPREMAL MULTISCALE SIGNAL ANALYSIS*
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Abstract. We introduce a novel approach to nonlinear signal analysis, which is referred to as
supremal multiscale analysis. The proposed approach provides a rigorous mathematical foundation
for a class of nonlinear multiscale signal analysis schemes and leads to a decomposition that can
effectively be used in signal processing and analysis. Moreover, it is related to the supremal scale-
spaces proposed by Heijmans and van den Boomgaard and is similar in flavor to the well-known
linear multiresolution theory of Mallat and Meyer. In this framework, linear concepts such as vector
spaces, projections, and linear operators are replaced by conceptually analogous nonlinear notions.

We use supremal multiscale analysis to construct a multiscale image decomposition scheme based
on two mathematical concepts that play a key role in the analysis and interpretation of images by
vision systems, namely, regional maxima and connectivity. The resulting scheme is referred to as
skyline supremal multiscale analysis and satisfies several useful properties desired by any multiscale
image analysis tool. It is grayscale invariant, as well as translation and scale invariant. Moreover,
it progressively removes connected components from the level sets of an image without introducing
new ones. But, most importantly, it decomposes the regional maxima of an image in a natural causal
hierarchy by gradually removing these maxima without introducing new ones.

Image decomposition by skyline supremal multiscale analysis can be used to construct nonlinear
tools for image processing and analysis that provide solutions to problems where traditional linear
techniques are ineffective. We discuss one such tool and illustrate its use in object-based extraction
and denoising.

Key words. complete lattices, connectivity, connected operators, mathematical morphology,
multiscale signal approximation, multiscale signal analysis, nonlinear signal analysis, scale-spaces,
object-based image analysis
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1. Introduction. An important methodology for signal processing and analysis
represents a signal at multiple scales. This methodology is based on the fundamen-
tal observation that information pertaining to features of interest in a signal is not
confined to a particular scale, but it may span several scales. In order to effectively
characterize such information, it is necessary to gradually simplify the signal, by
means of a scale-dependent operator, which monotonically removes features of inter-
est as the scale increases. The resulting evolution of a signal from fine to coarse scales
is known as a scale-space (e.g., see [1, 2, 18, 21, 22, 42]).

Although early scale-space techniques were based on linear operators, it has been
increasingly recognized that these techniques severely limit the capability of scale-
spaces to accurately represent features of interest at coarser scales. For this reason,
scale-space techniques based on nonlinear operators (or nonlinear partial differential
equations) have appeared in the literature (e.g., see [1, 2, 32, 38, 41]). It is noticeable
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that several of these techniques are based on morphological operators [1, 2, 3, 8, 9, 10,
15, 17, 28, 29, 37, 38].

On the other hand, a popular approach for multiscale signal processing and anal-
ysis is based on the multiresolution theory of Mallat [23, 24, 25] and Meyer [30].
According to this approach, approximations of a given signal at various scales (or
resolutions) can be computed by means of orthogonal projections of the signal on a
sequence of approximation spaces. The signal is then represented by means of a coarse
approximation plus added details. The details are computed by means of orthogonal
projections of the given signal on a sequence of detail spaces, with the detail spaces
being orthogonal complements to the corresponding approximation spaces. At finer
scales, the approximation error tends to zero, and a signal is spanned by spaces of
successive details at all resolutions. This approach has naturally led to popular tech-
niques for signal processing and analysis based on wavelet decompositions and filter
banks (e.g., see [25, 39]).

The basic assumption behind the multiresolution theory of Mallat and Meyer
is that signals reside in a vector space (namely, the space L*(R) of finite energy
functions), with the approximation and detail spaces being subspaces of this vector
space. Therefore, the theory is applied to linear multiscale tools for signal analysis. An
attempt to conceptualize this approach in a nonlinear setting has appeared in [13, 14].
However, the discussion in [13, 14] on this issue is only preliminary.

To accomplish this goal, it is necessary (among other things) to extend linear
concepts such as vector spaces, orthogonal projections, orthogonal spaces, and linear
operators to a nonlinear setting. One way to do this is to assume that the signal space
is a complete lattice (i.e., a nonempty collection of partially ordered elements such that
any subcollection has a supremum and an infimum [4]). Complete lattices form the
algebraic foundation of mathematical morphology [16], which assumes that signals
are not combined by means of numerical addition and subtraction but by means
of supremum and infimum. In mathematical morphology, an operator is “linear”
if it commutes over suprema or infima. In the former case, the operator is called a
dilation, whereas, in the latter case, it is called an erosion. Many linear concepts, such
as convolution, can be recast in terms of suprema and infima (e.g., see [12, 26, 27]).

In this paper, we introduce a novel approach to nonlinear signal analysis that
provides a rigorous mathematical foundation for a class of nonlinear multiscale signal
analysis schemes and leads to a decomposition that can effectively be used for sig-
nal processing and analysis. The proposed approach, which we refer to as supremal
multiscale analysis, is related to the supremal scale-spaces proposed by Heijmans and
van den Boomgaard in [15] and is similar in flavor to the well-known linear multires-
olution theory of Mallat and Meyer. In this framework, vector spaces are replaced
by sup-closed spaces, projections are replaced by idempotent operators, orthogonal
projections are replaced by sup-projections, orthogonal spaces are replaced by sup-
orthogonal spaces, and linear operators are replaced by morphological operators.

We use supremal multiscale analysis to construct a multiscale image decomposi-
tion scheme, based on morphological reconstruction operators, which selectively re-
moves regional maxima from a signal. Perhaps the most important feature of the
proposed scheme, which is referred to as skyline supremal multiscale analysis, is its
construction by means of two mathematical concepts that play a key role in the anal-
ysis and interpretation of images by vision systems, namely, regional maxima and
connectivity (e.g., see [17, 20, 34]). This scheme represents a signal as the supremum
of a coarse approximation and details. The coarse approximation preserves regional
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maxima that are at some level o or above, while it flattens the rest. In addition, the
details preserve regional maxima with values in nonoverlapping subintervals of (0, o)
and flatten the rest. The skyline supremal multiscale analysis is shown to satisfy
a number of useful properties desired by any multiscale signal analysis tool. It is
grayscale, translation, and scale invariant. Moreover, it progressively removes con-
nected components from the level sets of a signal without introducing new ones. But,
most importantly, it decomposes the regional maxima of a signal in a natural causal
hierarchy by gradually removing these maxima without introducing new ones.

Image decomposition by skyline supremal multiscale analysis can be used to con-
struct nonlinear tools for image processing and analysis that can provide solutions
to some problems where traditional linear techniques are ineffective. We discuss one
such tool and illustrate its effectiveness in object-based extraction and denoising.

This paper is structured as follows. In section 2, we provide a brief overview of
basic mathematical concepts used throughout the paper and introduce our notation.
In section 3, we introduce our framework for nonlinear multiscale analysis, which leads
to the concepts of supremal multiscale approximation and supremal multiscale anal-
ysis. We also establish a relationship between the supremal multiscale approximation
and scale-spaces and present two binary examples that illustrate these concepts. In
section 4, we present the skyline supremal multiscale analysis scheme, constructed
by means of morphological reconstruction operators, which decomposes the regional
maxima of a signal in a natural causal hierarchy by selectively removing these maxima
without introducing new ones. We show that the proposed scheme is indeed a supre-
mal multiscale analysis, and we study its main properties. In section 5, we present
examples that illustrate the use of the proposed multiscale approach in two image
processing and analysis problems: object-based extraction and denoising. In the first
case, the skyline supremal multiscale decomposition scheme is used to extract objects
of interest, by placing them on individual frames, and enhance their presence by sup-
pressing (flattening) surrounding details. In the second case, the scheme is used to
restore an image corrupted by structured (more than a pixel thick) “pepper” noise.
Finally, we summarize our conclusions in section 6.

2. Mathematical preliminaries. In this section, we review basic mathemati-
cal concepts and introduce our notation. For a more detailed exposition, the reader
is referred to [4, 5, 6, 7, 16, 35, 36].

A partially ordered set or, briefly, a poset, is a nonempty set furnished with a
binary partial order relation < (i.e., a binary order relation that is reflexive, antisym-
metric, and transitive). A complete lattice (£, <) is a poset such that every family
M C L has an infimum A M and a supremum \/ M in £. Every complete lattice
(L, <) has a least element O and a greatest element I, given by O = A Land I =\/ L,
respectively. In this paper, whenever we use the term “lattice” we mean “complete
lattice.” In addition, we often refer to “lattice £” when there is no confusion as to
the underlying partial order.

The following are some examples of lattices.

Ezample 1.

(a) The collection P(E) of all subsets of a set E, with set inclusion as the par-
tial order. The infimum and supremum are set intersection and set union,
respectively. This lattice is used as a mathematical model for binary images
defined on E.

(b) The collection G(R?) of all open subsets of the Euclidean space R?, with set
inclusion as the partial order. The infimum is the topological interior of set
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intersection, whereas the supremum is set union. This lattice can also be used
as a mathematical model for binary images on E. In this case, it is assumed
that images do not include their boundary.

(c) The set R = RU {—00,00} of extended real numbers and the set Z = Z U
{—00,00} of extended integers, as well as any closed subinterval of those,
with the usual numerical ordering as the partial order. The infimum and
supremum are given by the usual numerical infimum and supremum. These
are chains (i.e., totally ordered lattices), which are used for modeling image
values.

(d) The collection Fun(E,7T) of all functions from a set E into a lattice 7, with
the partial order f < g if f(v) <7 g(v), for all v € E, where “<7” is the
partial order relation on 7. The infimum and supremum are the pointwise
infimum and supremum, given, respectively, by (A fo)(v) = A fa(v) and
(V fa)@) =V fa(v), for all v € E, where the infimum and supremum on
the right-hand side are in 7. When 7 is a chain, this lattice is used as a
mathematical model for grayscale images defined on F.

(e) The collection Fun, (E,T) of all upper semicontinuous (u.s.c.) functions [19]
from a topological space E into a lattice 7, with the partial order f < g
it f(v) <7 g¢g(v), for v € E. The infimum is the usual pointwise infi-
mum, given by (A, fa)(v) = A fa(v), for v € E. However, the supremum
is given by (\fa)(v) = V{t € T | v € UXi(fa)}, for v € E, where
Xi(f) = {v € E | f(v) > t} is the level set of f at level ¢, and A denotes

the closure of a set A [7, Prop. 4.2.6]. Nevertheless, it can be shown that
the supremum of any finite family of u.s.c. functions corresponds to the usual
pointwise supremum. In general, whenever \/ f, is u.s.c., then \/, fo =V fa
so that the supremum in lattice Fun, (E,R) can, and often does, reduce to
the usual pointwise supremum. When 7 is a chain, this lattice is also used
as a mathematical model for grayscale images defined on F. In this case,
however, images are assumed to satisfy the property of upper semicontinuity.

The level sets of a function f € Fun(E,7) satisfy the following properties:
(a) X¢(f) C Xs(f) if t > 55 (b) f < g if and only if X;(f) C Xi(g) for all t € T (in
particular, f = g if and only if X;(f) = X:(g) for all t € T); (c) for t € T, we have
that X (A fo) = N Xt(fa), whereas X (V fo) = U X:(fo) if {fa} is a finite family or
if T is finite; (d) f € Fun,(F,7) if and only if the sets X;(f) are closed in E for all
teT.

Given a family M C L, we denote by (M | V) the family sup-generated by M,
i.e., the family consisting of all elements of £ that are obtained by taking suprema of
elements of M. The family M is said to be sup-closed if M = (M | V) (in particular,
M must be nonempty, since O =\/ 0 € M).

A subset S of a lattice L is called a sup-generating family for L if every element
of L can be written as the supremum of elements in S; i.e., L = (S| V). An element
of the sup-generating family S is called a sup-generator. It is assumed here that O is
not a sup-generator; i.e., O ¢ S. For example, the lattice P(E) of binary images is
sup-generated by the points in E. We define the family S(A) = {x € § | © < A} for
A € L. Clearly, A is sup-generated by S(A).

An operator 1 on a lattice £ is a mapping ¥: £ — L. The invariance domain of
1 is defined as Inv(vp) = {4 € L | (A) = A}. An operator ® is said to be increasing,
if A< B = ¢(A) < ¢¥(B), for all A,B € L; antiextensive, if Y(A) < A, for all
A € L; idempotent, if Yip(A) = P(A), for all A € L. If ¢ distributes over infima,



98 ULISSES BRAGA-NETO AND JOHN GOUTSIAS

it is called an erosion, whereas, if it distributes over suprema, it is called a dilation.
If 4 is increasing, antiextensive, and idempotent, it is called an opening. It can be
shown (e.g., see [33]) that if {v,} is a family of openings, then \/~, is an opening
as well, with Inv(\/ v4) = (UInv(vs) | V). Given a poset K, the family of openings
{Ya | @ € K} is a granulometry if 7o, < Ya, for a; > as.

The translation Ay, of a set A € P(E) is another set in P(FE), given by A, = {v+
h | v € A}. The translation-invariant erosion of A € P(E) by a structuring element
B € P(F)isdefined as ep(A) = AeB={h € E | B;, C A}. Similarly, the translation-
invariant dilation of A by B is defined as ég(A) = A® B = J{Br | h € A}. It can
be shown that the operator Op(A) = AOB = (ASB)® B = ,cp{Bn | Bn C A} is
an opening. This operator is referred to as a structural opening. If A € Inv(fp), we
say that A is B-open.

An increasing operator ¥ on L is said to be |-continuous if, for every totally
ordered subset I of £ that contains at most a countable number of elements, we have

6 (AK) = Nwa.

Aekl

If ¢ is an |-continuous operator on a lattice £ and if {A(s) | s € R} is a decreasing
family of elements in £, then [7, Prop. 2.2.10]

(2.1) i (/\ A(s)> = N\v(A(s) VteR

s<t s<t

Consider now a lattice £, with a sup-generating family S. A family C C L is
called a connectivity class in L if the following conditions are satisfied:

(i) O € C;
(i) S CC;
(iii) for a family {C4} in C such that A C, # O, we have that \/ C,, € C.

The family C generates a connectivity in £, and the elements in C are said to be
connected.

Classical topological and graph-theoretic connectivities correspond to connectiv-
ity classes, and so do several examples of fuzzy connectivity [5, 7]. Moreover, based
on the notion of connectivity class, many new interesting examples of connectivity
can be defined [5, 6, 7, 35, 36].

We say that C is a connected component of A € L if C € C, C < A, and
there is no C’ € C different from C such that C < ¢’ < A. In other words, a
connected component of an object is a maximal connected part of the object. The
set of connected components of A is denoted by C(A).

We can define an operator 7,(A) that extracts connected components from ele-
ments A € L by

(A =\/[{CeClz<C<A}, AeL, ze€S.

It can be seen that this operator is an opening; it is called the connectivity opening
associated with C. Tt can also be checked that 7,(A) € C. As a matter of fact, v, (A)
is the connected component C' of A marked by z (i.e., such that z < C).

It is natural to extend connectivity openings to operators that extract connected
components marked by arbitrary markers, not just sup-generators. This gives rise



SUPREMAL MULTISCALE SIGNAL ANALYSIS 99

p(f 19

(@) (b)

Fic. 1. (a) Original image f and a marker g. (b) The grayscale reconstruction p(f | g),
according to the usual topological connectivity of the Euclidean real line.

to the reconstruction operator associated with a connectivity class C. For a marker
M € L, the reconstruction p(A | M) of a given A € L from M is defined by

p(A| M) = \/ %(4) = \/{CeCA)|CAM+0}.
zeS(M)

The second equality above can be easily verified [6, 7]. Hence, the reconstruction
operator p(A | M) extracts the connected components of A that “intersect” marker M.
Being a supremum of openings, the operator p(- | M) is an opening on £ for a fixed
marker M € L. When M reduces to a sup-generator x, the reconstruction p(4 | z)
reduces to the connectivity opening 7, (A), provided that = < A.

Given a connectivity class C in the binary lattice P(FE) and the associated recon-
struction operator p: P(E)xP(E) — P(E), we can define an operator p: Fun(E,7) x
Fun(E,7) — Fun(E,7) by

(2.2) p(f 1)) =\{teT|vepXf) | Xi(9)}, veE.

It can be shown that p(- | ¢g) is an opening on Fun(E,7) for a fixed marker g €
Fun(E, 7). If we assume that 7 is a chain, then the operator p(f | ¢) in (2.2) is known
as the grayscale reconstruction of f from marker g associated with the connectivity
class C. The grayscale reconstruction is a very useful operator in applications [40].
Figure 1 illustrates the grayscale reconstruction operator in the one-dimensional case.

3. Supremal scale-spaces and multiscale analysis. In this section, we in-
troduce a framework for nonlinear multiscale signal analysis, which is related to the
supremal scale-spaces introduced by Heijmans and van den Boomgaard [15]. The pro-
posed framework is referred to as supremal multiscale analysis and leads to a nonlinear
multiscale signal representation scheme that decomposes a signal into the supremum
of a coarse approximation and details. We show that supremal multiscale analysis
satisfies a number of properties, which are similar in flavor to properties satisfied by
the well-known linear multiresolution signal analysis scheme of Mallat [23, 24, 25] and
Meyer [30]. As a matter of fact, we derive the supremal multiscale analysis scheme by
using nonlinear analogues of certain linear concepts (e.g., vector spaces, orthogonal
projections, and orthogonal complements).

We assume that signals of interest reside in a complete lattice (V, <). An operator
¢ on V is said to be a projection if it is idempotent [14, 31]. Furthermore, we say that
¢ is a projection on Y C V if Ran(¢) = U and ¢ is idempotent on U (in which case
Inv(¢) = Ran(¢) = U), where Ran(¢) denotes the range of operator ¢. In the linear
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multiresolution framework proposed in [23, 24, 25, 30], approximations of signals
at various scales are computed by means of orthogonal projections on a sequence
of approximation spaces. An orthogonal projection of a signal f € V on a vector
subspace U C V is defined as the signal ¢(f) € U that minimizes the norm ||f — g||
over all signals g € U. Note that the range of this operator is U and that the operator
is idempotent; therefore, it is a projection on ¢/. In the nonlinear framework proposed
here, V is not a vector space in general. Therefore, we introduce the alternative notion
of sup-projection, which is conceptually analogous to an orthogonal projection.
DEFINITION 3.1. LetU CV such that U is sup-closed in V. The operator

(3.1) o(f)=\{geUulg<ft feV.

defines the sup-projection of f on U.

The sup-closure requirement and (3.1) imply that Ran(¢) = U and that ¢ is idem-
potent on U; therefore, ¢ is a projection on U. The requirement that & must be
sup-closed is analogous to the linear requirement that & must be a vector space (i.e.,
closed under linear combinations). Note that (3.1) implies that ¢(f) is the “closest”
element to f in U/, in the sense of the underlying partial order. Hence, a sup-projection
is a nonlinear analogue of an orthogonal projection.

A fundamental aspect of (linear) multiresolution analysis is that distinct signal
approximations can be obtained from each other by means of scaling (this is known
as the “dilation” property). In order to formulate this idea in a nonlinear setting, we
use a general definition of scaling, proposed in [15]. In what follows, id denotes the
identity operator.

DEFINITION 3.2. A family S = {s: |t € (0,00)} of operators on a lattice V is a
scaling if

(1) S1 = Id,

(i) spst = sp¢ forr,t € (0,00).

This definition implies that S is a commutative group, where the inverse s; bof

s; is given by s; ' = 1, for t € (0,00). Moreover, if S = {s; | ¢t € (0,00)} is a scaling
on V, then so is S? = {sw | t € (0,00)}, p € R [15].

Ezample 2.

(a) For V = P(R?), the scaling {tA | t € (0,00)}, where tA = {tv | v € A}, for
A €V, is known as the spatial scaling.

(b) For V = Fun(E,R), the scalings {tf(-) | t € (0,00)}, {f(:/t) | t € (0,00)},
and {tf(-/t) | t € (0,00)} are known as the gray-level, spatial, and umbral
scalings, respectively.

In practice, useful scalings consist of increasing operators. We refer to these as
increasing scalings. For example, all scalings considered in Example 2 are increasing.
The following result shows that scalings are increasing if and only if they consist of
dilations.

PROPOSITION 3.3. A scaling S = {s; | t € (0,00)} on a lattice V is increasing if
and only if s¢ is a dilation for every t € (0,00).

Proof. The reverse implication follows trivially from the fact that every dilation
is an increasing operator [16]. We show the direct implication. Given ¢ € (0, 00) and
{fa} €V, we have that s;(\ fo) > V st(fa), since s; is increasing. To show the
reverse inequality, note that s; ' (\/ s:(fa)) > V 87 's:(fa) = V fa, since s;' = s,
is increasing. Applying s; on both sides of this inequality gives s;s; *(\/ 5¢(fa)) =
V s:(fa) = se(V fo). Therefore, s;(\/ fo) =V s:(fa), and s, is a dilation on V. O
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We now introduce an axiomatic formulation for supremal multiscale approxima-
tions, which compute approximations of signals at various scales by means of sup-
projections on a sequence of approximation spaces.

DEFINITION 3.4. Let S be a scaling on a lattice V. A family {V, | o € (0,00)}
of sup-closed subsets of V is said to be a supremal multiscale S-approximation of V
if the following properties are satisfied:

1. The sequence {V, | o € (0,00)} is decreasing; i.e.,

(3.2) V:CV, for T>o0.

This implies that an approximation at scale o contains all necessary infor-
mation to compute an approximation at a coarser scale T > o.

2. The sequence {V, | 0 € (0,00)} “converges” to V, as o — 0%, in the sense
that

: A _
(3.3) lim v, & < U v v> =V.
o€

(0,00)

This implies that any signal can be recovered by the supremum of its approx-
imations at sufficiently small scales.
3. (S-invariance). We have that

(3.4) feVe & s5:(f)eVy for o€ (0,00).

This means that an approximation space V, can be obtained from another
approximation space Vy, and vice-versa, by means of scaling.

The previous properties are similar in flavor to properties satisfied by the linear
multiresolution analysis scheme of Mallat and Meyer. The approximation of a signal
f €V at scale 0 € (0,00) is given by the sup-projection of f on the approximation
space V,, which therefore must be sup-closed. This is the nonlinear analogue of
the assumption that the approximation spaces are vector subspaces. The inclusion
property specified by (3.2) is also true in the linear case. The convergence requirement
specified by (3.3) is similar to the one in the linear case, except that linear closure is
replaced by sup-closure. Finally, the scaling requirement specified by (3.4) is similar
to the one in the linear case. However, a very important property of the linear case
is the existence of vector bases for the approximation spaces. This is an inherently
linear property and has no counterpart in a nonlinear setting.

Note that the sup-closure assumption implies that, for o € (0, 00), V, is a complete
lattice under the partial order of V [16, Prop. 2.12]. The proof of the following result
is straightforward.

PROPOSITION 3.5. The family {V, | 0 € (0,00)} is a supremal multiscale S-
approzimation of V if and only if the family {Vor | 0 € (0,00)}, p € R, is a supremal
multiscale SP-approzimation of V.

For each o € (0,00), let us define the approzimation operator ¢, on V as the
operator that maps an element f € V to its sup-projection on V,; i.e.,

(3.5) ¢o(f)=\{g€Vslg<fl, feV, o€ (0,00)

The operator ¢, provides the approximation of a signal in V' at scale ¢. The following
fundamental result implies that a supremal multiscale approximation can be specified
by its approximation operators.
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PROPOSITION 3.6. Let {V, | 0 € (0,00)} be a supremal multiscale S-approzimation
of V, where S is an increasing scaling. The family {¢, | o € (0,00)} of approzimation
operators is such that Inv(¢s) = V., for o € (0,00), and

(i) the family {¢, | o € (0,00)} is a granulometry on V,

(11) \/UE(0,00) ¢U =id,

(ili) ¢o = So/r Or s;/lT for o,7 € (0,0).

Conversely, if {¢p, | 0 € (0,00)} is a family of operators on V that satisfies the pre-
vious properties (1)—(iii), then {V, = Inv(¢,) | 0 € (0,00)} is a supremal multiscale S-
approximation of V, with approximation operators that coincide with {¢, | o € (0,00)}.

Proof. For f € Inv(¢,), we have that f = ¢,(f) = \V{g € Vs | g < f} =
f e (Vo|V) =V, since V, is sup-closed, so that Inv(¢,) C V,. The reverse
inclusion follows easily from (3.5); hence, Inv(¢,) = V,. We now show (i). From
(3.5), it is clear that ¢, is increasing and antiextensive. This implies that ¢,¢, <
¢o. On the other hand, (3.5) implies that ¢ € V,, 9 < f = g < ¢,(f) so that
¢o(f) =V{g € Vo | g < f} < V{9 € Vo | 9 < 66(f)} = dodo(f) for f e V.
Therefore, ¢, is idempotent, and hence it is an opening. For 7 > o, we have that
Inv(¢,) =V, CV, = Inv(¢, ), which implies that ¢, < ¢, [16, Thm. 3.24]. Therefore,
{¢s | 0 € (0,00)} is a granulometry on V. To show (ii), we use the fact that the
supremum \/ 0, of openings is an opening, with Inv(\/ 0,) = (UInv(6,) | V). Hence,
10V(V 1 (000y ) = { Upeoroe) 119(68) | V) = (Upe ooy Vo | V) = V = Tnv(id). But.
since id is an opening and two openings are equal if and only if their domains of
invariance are equal [16, Thm. 3.24], we get that \/06(0,00) ¢o = id. We now show (iii).
For f € V, we have that ¢ (f) = V{9 € Vs | 9 < f} =V {s6/7(h) | h € Vs, 55/, (h) <
[} =55/s(M{h|h €V, h < s;/lT(f)}) = S5/7 Or s;/lT(f), since s, /, is a dilation (see
Proposition 3.3). Therefore, ¢, = s,/ ¢+ s;/lT for o,7 € (0,00).

We now show the converse implication. Note that, for each o € (0,00), V, =
Inv(¢,) is sup-closed, since ¢, is an opening. Equation (3.2) follows from the fact
that ¢, < ¢, for o > 7 [16, Thm. 3.24]. Equation (3.3) follows from V = Inv(id) =
Inv(V,e(0,00) @7) = (Use(o,00) Vo | V). To verify (3.4), note that f € V, & f =

¢a(f) = So/7 (Z)T 5;/17-(.]0) g ST/O’(f) = (Z)TST/O'(f) ~ sr/o(f) € V> for o, T € (O’ OO)
Finally, if {¢/ | o € (0,00)} are the approximation operators associated with {V, |
o € (0,00)}, then Inv(¢)) = V, = Inv(¢,) < ¢, = ¢, for o € (0,00) (see [16,
Thm. 3.24]). O

The following proposition shows that we can build supremal multiscale approxi-
mations by using unions of existing ones.

PROPOSITION 3.7. Let S be an increasing scaling. If, for each o, {V | 0 €
(0,00)} is a supremal multiscale S-approxzimation of V, with approzimation operators
{62 | 0 € (0,00)}, then {{U,V2|V) | 0 € (0,00)} is a supremal multiscale S-
approzimation of V as well, with approzimation operators {\/, ¢5 | o € (0,00)}.

Proof. Equations (3.2) and (3.3) are easy to show; therefore, we show only (3.4).
Let V, = (U, VS | V) for o € (0,00). For f € V,, we have that f =/ fz, where each
[ belongs to some V¢'. Therefore, s, /,(fs) € V-, for each 3 and 7 € (0, 00). Since V:
is sup-closed and since s/, is a dilation (see Proposition 3.3), we have that s, /,(f) =
5:/0(V f8) =V 87/5(fs) € V-, as required. Now let ¢, be the approximation operator
associated with V,. Since Inv(¢S) = V3, we have that Inv(¢,) =V, = (U, Ve | V) =
Inv(\/, ¢5). Since two openings are equal if and only if their domains of invariance are
equal [16, Thm. 3.24] and since \/_, ¢% is an opening, we conclude that ¢, =/, ¢2,
as required. 1]
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To illustrate the concept of supremal multiscale approximation, we now provide
two binary examples. A grayscale supremal multiscale approximation scheme will be
discussed in the next section.

Ezxample 3.

(a)

Let V = G(R?) be the lattice of open subsets of the Euclidean space, and
consider the spaces

(3.6) V,={Ae€V|AisoB-open}, o€ (0,00),

where B € V is a bounded convex structuring element (e.g., an open ball of
unit radius). In (3.6), 0B = {ob | b € B}. The family {V, | o € (0,00)} is
a supremal multiscale S-approximation of V, where S is the spatial scaling:
V. is sup-closed, for ¢ € (0,00), and (3.2) and (3.4) are clearly satisfied,
whereas (3.3) follows from the facts that B = {(¢B), | v € R%, 0 € (0,00)} C
Uae(o,oo) V, and B is a basis for the Euclidean topology. In this case, the
approximation operators are the structural openings

¢s(A)=A0oB, A€V, o€ (0,00).

Let V = G(RY), furnished with a connectivity class C, and consider the opening
by reconstruction operators:

(3.7) ¢s(A)=p(A|AOoB), AeV, o€ (0,0),

where B € V is a bounded structuring element. It can be shown that the
invariance domain of ¢, is given by

(3.8) Vo (A)={AeV|COeB£0YCeCA}, oe (0, 00).

The family {V, | 0 € (0,00)} is a supremal multiscale S-approximation of V,
where S is the spatial scaling. Properties (i) and (iii) of Proposition 3.6 are
clearly satisfied. Now we have that ¢,(A4) = |J{C € C(A) |CN(A©oB) #
0} =U{C € C(A) | v € C such that (¢B), C A}. Since A is open, for any
C € C(A) andv € C, we can find a o such that (¢B), C A so that C C ¢,(A).
It then follows that A = U, ¢ (g ) ¢o(A4), which shows property (ii). The

approximation operators {¢, | o € (0,00)} are, of course, given by (3.7).

We now show that supremal multiscale approximations and scale-spaces are re-
lated. The following definition introduces the notion of supremal scale-space in the
terminology of [15].

DEFINITION 3.8. Let V be a lattice, and let S be a scaling on V. A family
{ds | 0 € (0,00)} of operators on V is said to be a supremal S-scale-space if

(i)
(i)

GoPr = dovr for o, € (0,00),
DoSo = Sad1 for o € (0,00).

We have the following result.

PROPOSITION 3.9. Let {V, | o € (0,00)} be a supremal multiscale S-approzimation
of V, where S is an increasing scaling. The family {¢, | o € (0,00)} of approzimation
operators, giwen by (3.5), is a supremal S-scale-space.

Proof. Properties (i) and (ii) of a supremal scale-space follow directly from prop-
erties (i) and (iii) in Proposition 3.6. a

Therefore, given a signal f € V), its approximations {¢,(f) | o € (0,00)} form
a scale-space, where increasing scale corresponds to an “evolution” of f towards de-
creasing levels of “detail.” Several scale-spaces that coincide with or are similar to the
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two binary supremal multiscale approximation schemes of Example 3 have appeared
in [3, 8,9, 10, 15, 17, 28, 29, 37].

We now proceed to derive a nonlinear multiscale signal analysis scheme based on
supremal multiscale approximations.

In linear orthogonal wavelet decomposition schemes, given two approximation
spaces V411 C V,, one defines a detail space W51 (also called a wavelet space) as the
orthogonal complement of V, ;1 in V,, given by

(3'9) Weot1 = {f € Vo | fLi VU+1}-

From the fact that V, and V, 1 are vector spaces, it follows that W, is a vector
space as well. Moreover, W,11 C V, and Wy41 L Vi

In vector analysis, a space V is said to be the direct sum of two subspaces V;
and Vs, which is denoted by V = V; & Vs, if

(3.10) V={f+g|feV,and g €Vo} and VNV, ={0}.

A fundamental property of linear wavelet analysis is that V, = Vy41 @& We41; i.e., the
approximation space at scale o is the direct sum of the approximation and detail spaces
at scale o 4+ 1 (which, in this case, is also an orthogonal sum, since Wy11 L V,11).
In order to formulate similar ideas in a nonlinear setting, we need to define non-
linear analogues of the notions of “orthogonal complement” and “direct sum.” A
signal f is said to be sup-orthogonal to a sup-closed space V if its sup-projection on
V is O. Therefore, a signal f is sup-orthogonal to an approximation space V, if and
only if ¢, (f) = O. A space W is said to be sup-orthogonal to V if every signal in W is
sup-orthogonal to V. Note that this implies that VW and V cannot have any common
elements other than {O}. Given two approximation spaces V, and V,, with 7 > o,
we define a detail space W,  as the sup-orthogonal complement of V. in V,, given by

(3.11) Wor={f€Vs|d:(f) =0}, 7>0.

Note that this is the nonlinear analogue of (3.9). Moreover, we say that a space V is
the direct sup-sum of two subspaces V; and Vs, which we denote by V = V; ) Vs, if

V=<V1UV2|\/> and VlﬁVQZ{O}.

This is the analogue of (3.10), where vector summation is replaced by supremum.
We now have the following definition.
DEFINITION 3.10. Let{V, | 0 € (0,00)} be a supremal multiscale S-approximation
of V. If the detail spaces W, -, given by (3.11), satisfy the property

(3.12) Vo=V OW, . for o€ (0,00), 7€ (0,00),

then {Vo, Weo,r | 0 € (0,00), T € (0,00)} is said to be a supremal multiscale S-analysis
of V.

It follows that, in a supremal multiscale analysis, for every o € (0,00), T € (0, 00),
we have that

(a) Vs, Wso,r C Vs,

(b) W, ; is sup-orthogonal to V-,

(¢) V, is the direct sup-sum of V; and W, ..
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These properties are the nonlinear analogues of similar properties satisfied by the
approximation and detail spaces in linear orthogonal wavelet analysis.

Next, we define the notion of detail operator.

DEFINITION 3.11. Let {Vy, Wy, | 0 € (0,00), T € (0,00)} be a supremal multi-
scale S-analysis of V. If ¥, . is a projection on Wy, and

(3.13) b6 =G+ VYo, for o€ (0,00), T € (0,00),

then {Yyr | 0 € (0,00), 7 € (0,00)} is a family of detail operators of the supremal
multiscale S-analysis.

From (3.13), it follows that an approximation ¢,(f) of a signal f € V can be
decomposed, in a unique way, as the supremum of a sup-projection ¢,(f) on V;,
and a projection ¥, -(f) on W, . Furthermore, ¢, -(f) is sup-orthogonal to V;;
ie, ¢:9,-(f) = O. Therefore, the approximation of f at scale o has a unique
decomposition as the supremum of the approximation signal at scale 7 and a sup-
orthogonal detail signal, which contains information about f that is present at scale o
but is removed at the coarser scale 7. Finally, by applying the supremum \/ . (0,7) O1
both sides of (3.13) and by using properties (i) and (ii) of Proposition 3.6, we get

(3.14) F=0:() vV \) Yor(f) for 7€ (0,00).

c€(0,7)

This shows that a signal f € V can be uniquely decomposed in terms of a scaled
signal ¢, (f) at scale 7 € (0, 00) and detail signals ¥, - (f), o € (0,7). It is worthwhile
noticing that the decomposition suggested by (3.14) is conceptually analogous to the
well-known wavelet decomposition.

Note that, for 7/ > 7, we have ¢+ Vs - (f) < ¢rtbo(f) = O = ¢ 05 (f) = O.
Therefore, a detail signal ¢, -(f) is sup-orthogonal to all approximation spaces V;,
7>

In practice, a multiscale signal decomposition scheme can be constructed by se-
lecting initial and final approximation scales o and 7 and a set of intermediary scales

090 =0, 01,...,0N-1,0N = T such that o < o471 for k =0,1,..., N — 1. Then, by
repeatedly applying (3.13), we get
(3~15) ¢0(f) = ¢‘r(f) \ \/ ¢Uky0k+l(f)7 T >0,

0<k<N-—1

which provides a decomposition of the approximation ¢, (f) of a signal f into the
sequence {¢-(f), Yoo (), Yor,0.(f), s Yon_1,+(f)}. Clearly, all detail signals are
sup-orthogonal to the final approximation space V;; i.e., ¢:¢o, 0., (f) = O for k =
0,1,...,N —1.
Ezample 4.
(a) Let ¥V = G(R?), and consider the supremal multiscale approximation of V
given in Example 3(a). Using (3.6) and (3.11), we get

Wyr={A€V|AOocB=A and AOTB=0}, 7>o0.

Clearly, Vo = (V. UW,, | V) and V, N W, , = {0}. Therefore, (3.12) is
satisfied so that {V,, W, | 0 € (0,00), T € (0,00)} is a supremal multiscale
S-analysis of V), where S is the spatial scaling. If B is a structuring element
that contains the origin, then the operators

Yo (A)=A0OcB~NASTB, T>o0,
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Fic. 2. A binary “Matisse” image.

are projections on W, , that satisfy (3.13). Therefore, {¢5,- | 0 € (0,00), T €
(0,00)} is a family of detail operators associated with the supremal multiscale
analysis. As an illustration, this scheme is applied on the binary “Matisse”
image! depicted in Figure 2. The result is depicted in Figure 3. Note that

Yor(A)=(AcoB)®oB~(AcoB)s(r—o0)B, T>o0.

This shows that the detail signal ¢, -(A) is obtained by applying a mor-
phological gradient on the erosion A & 0B (a morphological gradient is an
operator of the form A ®tB ~\ AS sB, where B is a structuring element that
contains the origin—see [12, 16]).

Let V = G(R?), and consider the supremal multiscale approximation of V
given in Example 3(b). Using (3.8) and (3.11), we get

Wer={A€V|COoB#0 and COTB=0VC eC(A)}, 7>o,

for o € (0,00) and 7 € (0,00). Again, V, = (V; UW, - | V) and Vo N W, =
{0}. Therefore, (3.12) is satisfied so that {V,, Wy.r | 0 € (0,00), T € (0,0)}
is a supremal multiscale S-analysis of V, where S is the spatial scaling. The
operators

Yor(A) = p(A| AOGB)  p(A| AOTB), 7>,

are projections on W, . that satisfy (3.13). Therefore, {¢)5,- | 0 € (0,00), T €
(0,00)} is a family of detail operators associated with the supremal multi-
scale analysis. The detail signal ¢, - (A) contains the connected components
of A whose “size” is between o and 7. The resulting supremal multiscale
S-analysis scheme is a discrete size transform based on openings by recon-
struction (see [12, 16] for the notion of the discrete size transform and [10]
for such a decomposition). This scheme is illustrated in Figure 4.

The previous examples are binary. In the following, we present an important
example of supremal multiscale analysis based on a reconstructive scheme that selec-
tively removes regional maxima from a grayscale signal.

1Henri Matisse: Woman with Amphora and Pomegranates, 1952—Paper on canvas.
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Vi, 4)

Fic. 3. An illustration of supremal multiscale analysis of a binary “Matisse” image A depicted
in Figure 2 based on structural openings. Note that ¢ (A) = ¢pr41(A) Uk k41(A), for k=1,2,3,
and ¢1(A) = ¢a(A) UY1,2(A) Uha 3(A) Uz a(A), in accordance with (3.13) and (3.15). In this
example, B is a disk structuring element of unit radius.
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Fi1G. 4. Anillustration of supremal multiscale analysis of the binary “Matisse” image A depicted
in Figure 2 based on openings by reconstruction. Note that ¢y (A) = ¢r41(A) U Yg py1(A), for
k=1,2,3, and ¢$1(A) = ¢pa(A) Up1,2(A) Ut 3(A) Ups.4(A), in accordance with (3.13) and (3.15).
In this example, B is a disk structuring element of unit radius.



SUPREMAL MULTISCALE SIGNAL ANALYSIS 109

X,(f)

Fic. 5. A signal f with a regional mazimum R at level t. Note that R is a connected component
of X¢(f), that RN Xs(f) = 0, for s > t, and that f is constant over R. The usual topological
connectivity of the Fuclidean real line is assumed.

4. Skyline supremal multiscale analysis. Recall the lattice Fun,(E,7T) of
u.s.c. functions, discussed in Example 1(e). Here we adopt as the lattice V of signals
of interest the lattice V = Fun,(E,R;) of nonnegative u.s.c. real-valued functions
defined on a topological space E. We are making the following basic assumption.

Assumption 1. We assume that E is a compact Hausdorff space with a countable
basis. Moreover, we assume that E is furnished with a connectivity class C C P(FE)
such that we have the following:

(a) A € C implies that A € C (in this case, the connectivity class C is said to be

compatible with the topology of E [6]).
(b) The connectivity openings {7, | z € E'}, associated with C, are |-continuous
operators on F(E) (i.e., on the collection of all closed subsets of E).

(¢) Foreach A € F(FE), vz(A) is an u.s.c. function from A into F(E).

For example, one may assume F to be a connected, closed, and bounded subset
of R%, with the Euclidean topology, and take C to be the connectivity class consisting
of the usual Euclidean connected subsets of E. It has been shown in [6] that this
choice satisfies all conditions stated in Assumption 1.

Next, we give a precise definition of a regional maximum of a signal in V.

DEFINITION 4.1. A set R C E is a regional maximum of f € Fun,(E,R,) at
level t € Ry if R is a connected component of X;(f) and RN X,(f) =0 for all s > t.

Therefore, regional maxima depend on the underlying connectivity assumed. See
Figure 5 for an illustration. A regional maximum is always a closed set, since X;(f)
is closed and C is compatible [7]. It is easy to see that a signal f € Fun,(E,R,)
is constant over a regional maximum R; we denote this constant value by f(R). In
addition, we denote by R(f) the set of all regional maxima of a signal f and by R:(f)
the set of all regional maxima of f at level ¢ or above; i.e., Ri(f) = {R € R(f) |
f(R) >t} fort e R,.

We have the following result regarding regional maxima.

PROPOSITION 4.2.

(a) Any function f € Fun,(E,R,) has at least one regional mazimum.

(b) A function f € Fun,(E,R,) has exactly one regional mazimum if and only

if X¢(f) €C for allt € R,.

Proof. (a) From Weierstrass’s theorem of real analysis [19] and the facts that E

is compact and f is an u.s.c. function, f achieves its supremum in E; i.e., there is a
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point g € E such that f(zg) = V{f(z) | x € E}. Tt is clear that X;(f) = 0 for all
t > f(xo). Hence, R = 74, (Xf(z0)(f)) is a regional maximum of f at level f(xo).

(b) We show that f has two or more regional maxima if and only if X,(f) & C,
for some ¢t € R, which is the contrapositive of the assertion. To show the direct
implication, assume that R; and Ry are two regional maxima of f. If f(R;) =
f(R2) = t, then Xi(f) ¢ C. Otherwise, let f(Ry) = t1 > to = f(R2). We have
that Ry C Xy, (f) € X4, (f). But RN Xy, (f) =0 = R1 N Ry = 0 so that Ry must
be a strict subset of Xi,(f), which implies that X;,(f) ¢ C. To show the converse
implication, assume that X;(f) &€ C, for some t € R, and let C; and Cy be two
connected components of X;(f). Sets C and Cy are closed subsets of the compact
space E; thus C; and Cy are themselves compact [11]. Hence, the restrictions f;
and fy of f to C7 and Cj, respectively, are u.s.c. functions defined on compact sets
so that each achieves its supremum, say, at points z; € R; and x5 € Ry. Clearly,
the corresponding regional maxima of f; and fo at f(z1) and f(z2), respectively, are
distinct regional maxima of f. a

Part (a) of the previous proposition shows that the set R(f) of regional maxima
of f is nonempty, whereas part (b) indicates that the notions of regional maxima and
connectivity of level sets are closely related.

Recall from section 2 the grayscale reconstruction operator associated with a
connectivity class C C P(F). This operator will be central for our purposes. The
next fundamental result shows that a signal f € Fun,(E,Ry) can be “reconstructed”
from the grayscale reconstructions of f “marked” by each of its regional maxima.
Before that, we need the following definition: A cylinder ha; of base A C E and
height ¢ € R, is a function in Fun,(FE,R,) defined by

t ifzxeA,

. fi .
0 otherwise orz€E

ha(x) = {

PROPOSITION 4.3. Let f € Fun,(E,R;). For each R € R(f), we have that
g=p(f | hrsr)) € Fun,(E,R,), and R(g) = {R}, with g(R) = f(R). Moreover,

(4.1) F =\ | hrgry) | R € R(S)}

Proof. From the definition of p in (2.2), we can write

(4.2) g() =p(f | hrpr) () = \/{t € Ry [ v € p(Xi(f) | Xe(hrp(m))}, v € E.

Note that X;(hp sr) = R, if t < f(R), and Xy(hg sr)) = 0 if t > f(R). Also,
Xi(f)yN R = 0 for t > f(R). Hence, p(X:(f) | X¢(hr,rr)) = p(X:(f) | R) for
all t € R,. Moreover, R is connected so that it must be contained in one of the
connected components of X;(f), and, therefore, p(X:(f) | R) = 7(X:(f)) for some
r € R. Thus, (4.2) becomes g(v) = V{t € Ry | v € v,(X:(f))} for v € E. Hence,
Xe(9) = Nyt V(X (f)) = 72 (ﬂs<t XS(f)) = 72(X¢(f)), for all t € Ry, from the
|-continuity of «, on F(E) and (2.1). In other words, X;(g) is a closed (by the
compatibility of C) connected set, for all ¢t € R, so that, by Proposition 4.2(b), g is
u.s.c. and has a single regional maximum. In addition, we have that X;(g) = R, for
t = f(R), and X;(g) = 0, for t > f(R), so that R is the only regional maximum of g
at level g(R) = f(R). This shows the first part of the result. Note that the right-hand
side of (4.1) makes sense, since p(f | hg ¢(r)) is a function in Fun,(E,R;) for each
R € R(f). Let C be a connected component of any nonempty level set X;(f) of f. It



SUPREMAL MULTISCALE SIGNAL ANALYSIS 111

follows from the fact that any closed subset of a compact space is compact and from
the compatibility of C that C' is compact. In addition, the restriction of f to C' is
an u.s.c. function; hence, C contains some regional maximum R € R;(f). Moreover,
the definition of regional maximum implies that each R € R;(f) must be contained
in some component C' of X;(f). Since X;(f) equals the union of its components, we
conclude that X¢(f) = Uger, ) P(Xe(f) [ R). But, by definition, any R € R(f)
Ri(f) does not intersect Xy(f). Hence, Xi(f) = Uper(s) p(X:(f) | R). In addition,

from our previous discussion, we have that X:(p(f | hg, tr))) = p(X¢(f) | R) for all

t € Ry. It follows from the last two equations and the fact X;(f) = N,.,UXs(fa)
that [7]

X(V@UmmmnRemm>ﬂ U Xe(3(f | hrpir)))

s<t RER(f)

=N U»rx(nIR)

s<t RER(f)
= () X.(f) = () X:(f) = Xu(f),
s<t s<t
for all t € R, which implies (4.1). d
Now consider the subsets V, of V given by
(4.3) Vo ={0}U{f €eVIR(f) =Ro(f)}, 0€(0,00).

In other words, V,, consists of the least signal O and all signals whose regional maxima
are at level o or above. The following is a fundamental result for our purposes.
PROPOSITION 4.4. The space V, is sup-closed in Fun,(E,R,) for o € (0,00).
Proof. First, note that \/ = O € V,, for every o € (0,00). For a given o € (0, 00),
let {f,} be a family of functions in Fun, (E, R, ) such that {f,} C V,. We can assume,
without loss of generality, that f, # O for all a. Hence, R,(fo) = R(fa) # 0, for
each fo, which implies that X;(f,) # 0 for all t < 0. Let f = \/, fo. We have

that X;(f) = Nyey UXs(fa) 2 UXi(fa) [7]. Therefore, X;(f) # 0 for all ¢t < o.
Suppose that R is a regional maximum of f at a level r < ¢. By definition, we have
that RN Xy (f) = 0 for all ¢ > r. Therefore, the sets R and T = X, (f) are closed
nonempty disjoint sets. Moreover, since E is a compact Hausdorff space, there exist
disjoint open sets U and V such that R C U and T C V [11]. Now, given = € R,

we have that B = 75(X,()) = 7e(Mye, UXa)) = Moy (U X (fa) from the
|-continuity of v, on F(E) and (2.1). Let C(s) = v,(IUXs(fa)) for s < r. Note
that {C(s)}s<r is a decreasing family of nonempty closed sets in the compact space
E, and (,_, C(s) C U. It follows that there is some p < r such that C'(p) C U
[7, Prop. 2.3.7]. Since v;(A) is an u.s.c. function from A into F(E), we can apply
Proposition 4.1.14 in [7] to conclude that there is some connected component C' of
U Xp(fa) such that C' C U. Clearly, this implies that there is some index o’ such
that a connected component C” of X,(f,/) is contained in U. This follows from the
fact that each component of | J A, must contain at least one component of some A, .
However, note that T = X, (f) 2 | X (f«) implies that X, (f,) C V for all a. Hence,
C'NX,(foar) = 0 so that function f,/ has a regional maximum inside C’ at some level
below ¢, which is a contradiction. Therefore, f = \/, fo must not have any regional
maxima below level o; i.e., f € V,, as required. 1]
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We can now use the previous result to show that the family {V, | o € (0,00)} is
a supremal multiscale approximation of V.

PROPOSITION 4.5. The family {V, | 0 € (0,00)}, given by (4.3), is a supremal
multiscale S-approzimation of V for the gray-level scaling S = {tf(-) |t € (0,00)}.

Proof. From Proposition 4.4, V, is sup-closed in V for each o € (0,00). In
addition, (3.2) is clearly satisfied, whereas (3.4) is a direct consequence of the fact
that X, (f) = X (tf), which implies that R is a regional maximum of f at level 7
if and only if R is a regional maximum of ¢f at level ¢7. To show (3.3), note that
Proposition 4.3 implies that, for a given f € V, p(f | hgr,f(r)) € Vyr) for each R €
R(f). Moreover, it implies that f = \/{p(f | hgr,rr)) | RER()} € (UVs | Vu),
from which we obtain the desired result. |

The next result provides an expression for the associated approximation operators.

PROPOSITION 4.6. Let {V, | 0 € (0,00)} be the supremal multiscale approzima-
tion of V, given by (4.3). The associated approzimation operators are given by

(4.4) 6o()) =\ 1P I hrsm) IRERS(N)}, fEV, oeRy.

Proof. Let o € (0,00), and consider the operator 6(f) = \/{p(f | hrsr)) | R €
Rs(f)} for f € V. Note that Proposition 4.3 guarantees that € is an operator on V.
We show that ¢,(f) =\, {g €V, |9 < f} =0(f) for f € V. First, we show that 6 is
an increasing operator. Let f,g € V such that f < g. Consider a regional maximum
R € R,(f) at level t = f(R). Since R € C and R C X;(f) € X:(g), we must have
that R C C for some connected component C' of X;(g). As argued in the proof of
Proposition 4.3, there is a regional maximum R’ € R,(g) such that " C C. For
any s < t, it is clear that p(Xs(g) | R) = p(Xs(g) | R'), since both R and R’ are
contained in the same connected component of X,(g) that contains C. This implies
that X.(p(/ | hasm)) = p(Xa(F) | R) € p(Xe(9) | B) = p(Xa(a) | BY) = Xa( (o |
hgs g(ry)), for all s < f(R), where we have used the fact that p(- | R) is an opening
and thus is increasing. Since X (p(f | hg,f(r))) = 0, for s > f(R), we conclude that
p(f | hrsr) < p(g| hrr g(ry)- This implies that 6(f) < 6(g) so that 6 is increasing.
Now let f € V. If R,(f) = 0, then clearly §(f) = ¢,(f) = O. Hence, we can assume
that R, (f) # 0. We have that ¢,(f) € V,; hence Ry (9o (f)) = R(és(f)). It follows
from Proposition 4.3 that ¢,(f) = 0(d,(f)). But, since 6 is increasing and ¢, is
antiextensive, we have that 6(¢,(f)) < 6(f). Therefore, ¢,(f) < 6(f). To show the
converse inequality, note that Proposition 4.3 implies that p(f | hg fr)) € Vo for
each R € R,(f). Since V, is sup-closed, we must have 6(f) € V,. Combined with
the fact that 6(f) < f, this implies that 0(f) < ¢,(f). Hence, ¢,(f) = 0(f). d

Given a signal f € V, its approximation ¢, (f), obtained from f by means of (4.4),
preserves the regional maxima of f that are at level o or above, while it flattens the
rest. As the scale o increases, only the highest peaks in the signal survive. In this
scale-space, evolution towards decreasing levels of detail is akin to viewing a city
skyline as one moves away from it: near the city, the shorter buildings are visible, but
far away only the tallest buildings can be discerned. This is illustrated in Figure 6. For
this reason, we refer to this scheme as a skyline supremal multiscale approximation,
whereas the associated scale-space is referred to as a skyline supremal scale-space.

In addition to being grayscale, translation, and scale invariant, the most striking
property of the skyline supremal scale-space is that, by construction, it decomposes
the regional maxima of a function f in a natural causal hierarchy. As o increases, the
scaling operator ¢, removes regional maxima from f without introducing new ones.
Moreover, as ¢ increases, the scaling operator ¢, progressively removes connected
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b, (f) Yo,0.(f)

45, () Yo, 0 (f)

g, ()

f

Fic. 6. Skyline supremal multiscale analysis of a one-dimensional signal f. Note that the
scaling ¢ (f) preserves the regional mazima (depicted by *) of f that are at level o or above, while
it flattens the rest. Moreover, the detail signal Yo~ (f) preserves the regional mazima of f with
values in [o,T) and flattens the rest. Finally, ¢o, (f) = ¢opp1 (f) V Yoy,0p41 (f), for k=0,1, and
Do (f) = Yoo (f) V Yoq,01 (f) V Yoy ,00(f), in accordance with (3.13) and (3.15), respectively.

components from the level sets X;(f) of f without introducing new ones. These
properties are much desired by any useful scale-space scheme [3, 18, 21, 22, 41].

We now derive the corresponding supremal multiscale analysis. From (3.11), (4.3),
and (4.4), we have that

Wer = {0} U{f €V|R(f) = Ro(f) N R-(f)}, T>0.

It is easy to check that (3.12) is satisfied so that {V,, W, | 0 € (0,00), T € (0,00)}
is a supremal multiscale S-analysis of V, where S is the gray-level scaling. This is
referred to as the skyline supremal multiscale analysis of V. The operators

Yor(£) =\ {P(f | hrsw) | RER(FNR(N}, 7> 0,
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f

Fia. 7. The function f € Vs is level-o connected, but it is not level-T connected. The usual
topological connectivity of the Fuclidean real line is assumed for the underlying binary connectivity
class C.

are projections on W, .. Therefore, these are detail operators associated with the
skyline supremal multiscale analysis scheme. The detail signal ¢, . (f) preserves the
regional maxima of f with values in [0, 7) and flattens the rest. This is illustrated in
Figure 6.

From our previous discussion, it is clear that (4.3) satisfies (3.2) and (3.3), regard-
less of the choice of scaling. Whether or not (3.4) is satisfied depends on the choice of
scaling and the choice of the connectivity class C, since the concept of regional maxi-
mum depends on the underlying connectivity class. In the case of gray-level scaling,
our results hold true for any choice of connectivity class C. However, in the cases of
spatial and umbral scalings, the results are valid if C is invariant to spatial scalings,
e, if Aec C & tA e, forall A e F(F) and ¢t € (0,00). Topological connectivity
clearly satisfies this property.

Additional insight can be gained by realizing that each approximation space V,
constitutes a complete lattice, under the partial order of V, with supremum \/? and
infimum A, given by

\ Fa =\ fo
N =62 (AN da) =N AB (N lhrpsom ) | R ER(N fa) }-

In this framework, A f, = O if and only if A f, has no regional maxima at level o or
above. Hence, even if the signals { f,} have nonzero pointwise infimum, they can still
have zero infimum in V.

It has been shown in [7] that the family

So ={bui |t 20} U{f € V| R(f) = {R}, f(R) =0}

is sup-generating in V,. Moreover, assuming this sup-generating family, we can define
a connectivity class C, on V,, given by [7]

Co={feV, | Xi(f)eCVL< 0}

We call this the level-o connectivity class. In this framework, a function f € V,
is level-o connected if all level sets below level ¢ are connected, according to the
connectivity class C. Loosely speaking, this means that f is not allowed to have any
“disconnecting dips” below level o. See Figure 7 for an illustration.
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f multiscale D(f) filteri D(f) image f
decomposition fitering restitution

multiscale object-based filtering

F1c. 8. Block diagram for multiscale object-based filtering.

The connected components of a function f € V, are associated with the regional
maxima of f contained in the connected components of the level set X, (f). For each
C € C(X,(f)), there corresponds a grayscale level-o connected component fo of f,
given by

fo = \/u{ﬁ(f | hr,r(r)) | R € Ro(f) and R C C}.

Therefore, we can write the approximation signal ¢, (f) as the supremum of grayscale
connected components; i.e.,

d)a(f):\/u{fc |C€C(Xa(f))}v o€ (0,00)

These grayscale connected components are “mutually disjoint,” in the sense that, for
a # 8, we have that ¢, (fc, A fc,) = O, which says that the infimum fc, A fo,
has no regional maxima above level o. This is similar to the linear case, in which the
orthogonal projection of a function f over a linear approximation space V, is obtained
with an expansion in terms of the orthogonal scaling basis [25].

5. Multiscale object-based filtering. Several image processing and analysis
tasks are geared towards identifying objects of interest and manipulating those ob-
jects to achieve a desired result. For example, if we want to remove certain objects
from a scene, we should first identify those objects and then extract them from the
scene with operators that do not affect other objects. This task is referred to as
object-based filtering and can be effectively implemented by the three-step multiscale
approach depicted in Figure 8. The first step performs a multiscale decomposition
of an image f into a finite collection D(f) = {f1, fo,..., fn} of images that contain
objects of interest in f at various scales such that f can be uniquely reconstructed
from D(f). The images in D(f) are then processed individually by the filtering step.
This produces a new multiscale decomposition ﬁ( f), which is then used to restitute
the filtered image f. Note that D(f) = ﬁ(f)

In this paper, we assume that objects of interest are identified by their intensity
distribution and, more precisely, by the regional maxima of such intensities. Moreover,
we assume that regional maxima associated with similar objects have similar values.
In this case, we are interested in a technique that identifies the regional maxima of an
image f and decomposes f into a finite collection D(f) = {f1, fo,..., fn}, with each
image fr containing all regional maxima of f with similar values, such that f can be
uniquely reconstructed from D(f). This naturally leads to the previously discussed
skyline supremal multiscale analysis scheme.

We specify a finite collection {0y | k € I} of scales, where I = {0,1,...,N},
such that ¢,,(f) = f and o} < 041, and decompose the grayscale image f into the
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collection D(f) = {toy, 004, (f) | k € I}, Where Yoy oy, (f) = doy (f). The image f
can be uniquely reconstructed from such decomposition, since (recall (3.15))

[ = ¢ao(f) = \/wo'k:,o'k+1(f)'

kel

Recall that 94, 5, (f) contains the regional maxima of f with values in [0}, 0%41)
with all other regional maxima suppressed (flattened), whereas ¢, (f) contains the
regional maxima of f that are above level oy with all other regional maxima sup-
pressed.

During the filtering step, a subset J C [ is determined, and then the images
{Yo,,0;:,(f) | j € J} are processed to produce a new collection {ts, o;,,(f) |

j € J}. The output of the filtering step depicted in Figure 8 is given by B(f) =

{wak,gkﬂ(f),zzgj,gjﬂ(f) | k € INJ,j € J}, and the new filtered image f is obtained
by means of

.}?: \/ w0k70k+1(f)\/ \/{/;0'_7‘101‘4-1(.]0)‘

keI~J jeJ

We illustrate the previous filtering approach with two examples. Figure 9(a)
depicts a grayscale MRI “tumor” image f that contains several objects, including a
large tumor on the right-hand side and a small tumor slightly above it.? Our objective
is to extract the tumors and place them on two different image frames. Moreover,
we would like to enhance their presence by flattening surrounding details. We set
or=k+1,for k=0,1,..., N — 1, where N is the maximum grayscale value in f (in
this case, N = 255). The skyline supremal multiscale decomposition of the “tumor”
image f reveals that most information related to the small tumor is contained in
the detail images ¥y k4+1(f), 153 < k < 173, whereas most information related to
the large tumor is contained in the detail images ¥y x+1(f), 206 < k < 212. This
observation leads to a “filtering” step in Figure 8 that preserves the previous detail
images and sets the rest equal to zero. The images f , obtained by the “restitution”
step of Figure 8, are depicted in Figures 9(b) and (c). The results indicate that, as
expected, the skyline supremal multiscale decomposition scheme successfully extracts
the two tumors and flattens surrounding details.

Figure 10 depicts a grayscale "boat” image f that has been corrupted by “pepper”
noise. The noise consists of black spots (that may be more than one pixel thick), which
are randomly distributed over the entire image. Our objective is to remove the noise
from the image depicted in Figure 10(b) and recover a sufficiently good approximation
of the original image depicted in Figure 10(a). This is the classical problem of image
denoising.

As before, we set o, = k+ 1, for k =0,1,...,N — 1, where N = 255. Skyline
supremal multiscale analysis of the noisy “boat” image f depicted in Figure 10(b)
reveals that most information related to noise is contained in image ¢n(N — f),
since the black spots in f show as narrow bright peaks of amplitude N in the negative
image N — f. This observation leads to a “filtering” step in Figure 8 that preserves all
detail images but replaces ¢y (N — f) with its grayscale reconstruction p(¢n (N — f) |
¢N(N — f) O B), where B is a disk structuring element of radius 4. The structural
opening ¢ (N — f) O B removes most peaks in ¢ (N — f) due to noise and provides

2The image is courtesy of Christos Davatzikos.
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Fic. 9. (a) A grayscale MRI “tumor” image. (b) Extraction of the small tumor and flattening
of surrounding details. (c) Extraction of the large tumor and flattening of surrounding details.

a marker for the reconstruction of the “noise-free” part of ¢n (N — f). The image f ,
obtained by subtracting the result of the “restitution” step of Figure 8 from N, is
depicted in the first row of Figure 11(a).

On the other hand, the first row of Figure 11(b) depicts the result obtained
from a conventional morphological denoising approach that subtracts the grayscale
reconstruction p(N — f | (N — f) O B), applied on the negative noisy image N — f,
from N. Although, at first glance, the two results seem to be similar, the details
depicted in the second row of Figure 11 reveal that they are different in quality.
Although noise has been equally suppressed in both cases, the result depicted in
Figure 11(b) shows that direct application of grayscale reconstruction on the noisy
image may result in excessive smoothing of important features (e.g., the masts and
the letters on the stern). Clearly, a denoising approach based on skyline supremal
multiscale analysis is more preferable in this case.

6. Conclusion. In this paper, we have presented a new approach to nonlinear
multiscale signal analysis. The proposed scheme is related to the concept of supremal
scale-spaces, introduced by Heijmans and van den Boomgaard, and is referred to as
supremal multiscale analysis. To develop this approach, we have extended (among
other things) the concepts of (orthogonal) vector spaces, (orthogonal) projections,
and linear operators to a nonlinear setting. We have accomplished this by employing
the theory of complete lattices in conjunction with mathematical morphology and by
replacing numerical addition with supremum. We have also proposed a particular
supremal multiscale analysis scheme that is based on morphological reconstruction
operators. This approach, which is referred to as skyline supremal multiscale analysis,
decomposes the regional maxima of a signal in a natural causal hierarchy by gradually
removing these maxima without introducing new ones. More precisely, the skyline
supremal multiscale analysis scheme represents a signal as the supremum of a coarse
approximation and details. The coarse approximation preserves the regional maxima
above some level ¢, while it flattens the rest. On the other hand, the details preserve
regional maxima with values in nonoverlapping subintervals of (0,0) and flatten the
rest. We show that this scheme is grayscale, translation, and scale invariant, and it
progressively removes connected components from the level sets of a signal without
introducing new ones. We believe that skyline supremal multiscale analysis can be
effectively used for multiscale signal decomposition, representation, and analysis.
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(a) (b)

Fi1c. 10. (a) An original grayscale “boat” image. (b) A noisy copy of the image depicted in (a).

Fi1c. 11. Denoising results obtained: (a) by skyline supremal multiscale analysis and grayscale
reconstruction of ¢n (N — f) from its structural opening ¢n (N — f)OB, and (b) by grayscale recon-
struction of N — f from its structural opening (N — f)OB.
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Abstract. We consider the initial-boundary value problem in a convex domain for the Vlasov—
Poisson system. Boundary effects play an important role in such physical problems that are modeled
by the Vlasov—Poisson system. We establish the global existence of classical solutions with regular
initial boundary data under the absorbing boundary condition. We also prove that regular symmetric
initial data lead to unique classical solutions for all time in the specular reflection case.
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1. Introduction. The behavior of a confined hot plasma is governed by the
Vlasov—Maxwell system with boundary conditions. A simpler model is the Vlasov—
Poisson system where the speed of light is treated as infinity and the magnetic field
is neglected. For the absorbing case, we consider IT = [0,T] x Q x R3, where ) is a
smooth bounded convex domain in R? and T > 0 is arbitrary, while we restrict to the
unit ball 2 = B in the case of the specular reflection. We denote by n, the outward
normal vector at a boundary point x € 9€2. The Vlasov—Poisson system describes a
collisionless plasma electrostatic:

Jt+v 0 f+Vp-0,f =0,
(1.1) Ago:p=47r/ f(t z,v)dv,
R3
f‘t:():f()a

where f (¢, z,v) represents the distribution of an electron gas, and ¢ is the electrostatic
potential. The particles have the same sign of charge inside the region 2, and Vo (¢, x)
is the self-consistent electric field. Boundary effects play an important role in such
physical problems as tokamaks, diodes, and electron guns. Particles can be either
absorbed at the boundary or reflected specularly at the boundary. For the absorbing
boundary case, at {v-n, < 0}, with n, the outward normal at z € 92, we have

(1.2) ft,zv) =gt x,v),

where g is a given function. In the case of the specular reflection, at {v-n, < 0}, we
have

(1.3) ftx,v) = f(tzv.),
where v, = v — 2 (v ng) Ng.
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In this article, we construct classical solutions for the nonlinear Vlasov—Poisson
system in a three-dimensional smooth bounded convex domain. We demonstrate our
results of regularity as follows.

THEOREM 1.1 (absorbing case). Assume the absorbing condition (1.2) for the
Vlasov and the Dirichlet boundary condition for the Poisson. Let fo > 0, g > 0 be
smooth with compact supports and fo be not identically zero. Let fo and g satisfy
some compatibility conditions. Moreover, assume some vanishing condition for g at
{x-ny = 0}. Then there exists a unique smooth solution f and ¢ of (1.1) with (1.2),
where f has compact support for v.

THEOREM 1.2 (specular reflection case). Assume the specular boundary condition
(1.3) for the Viasov and the Dirichlet boundary condition for the Poisson. Assume
there is an wo > 0 such that fo (x,v) is constant for (1 — |9U|2)2 +(2v- )% < wp.

(a) Assume fo € C'. Let fo have compact support and satisfy the compatibility
conditions. Let fqo be spherically symmetric. Then there exists a unique spherically
symmetric solution (f,¢) of (1.1) with (1.3) such that f € W1 with compact sup-
port.

(b) Assume fo € C17 for some n > 0. Let fo have compact support and satisfy
the compatibility conditions. Let fy be spherically symmetric. Then there exists a
unique spherically symmetric solution (f,¢) of (1.1) with (1.3) such that f € CY*,
© € C3H for some 0 < pu < m, with compact support.

Much effort and fruitful achievement have been made for the Cauchy problem
for the Vlasov—Poisson system during the last few decades. Many mathematicians
have made their contributions to the Vlasov—Poisson system in the whole three space
dimensions without boundary conditions. In particular, in [22], [18], [23], and [16],
global classical solutions for the Vlasov—Poisson system have been constructed by
different methods, provided the initial data is regular.

However, the boundary-value problem is much more complicated since the bound-
ary is always characteristic. In a half space with a flat boundary [7], [8], it is known
that singularities of distribution function are expected, forming from the boundaries,
unless the electric field has the correct sign. The global classical solutions for the full
Vlasov—Poisson system have been constructed for a half space with a flat boundary
in [7], [8] for one dimension and three dimensions, respectively.

This article extends the work of Guo to a three-dimensional smooth convex do-
main. We note that convexity plays an important role in obtaining regularity of the
solutions of the Vlasov equation with boundary conditions. We refer the reader to [8]
for a simple counterexample. We begin by generalizing the linear C1'* and WP
estimates in [7] and [8] to a general smooth bounded convex domain where a new
geometric part comes in. As in the half space case, the main difficulty lies in the
estimation of the particles moving slowly in the normal direction near the boundary.
This can be overcome via the geometric velocity lemma with an extra factor coming
from the geometry of the convexity. We still require the outwardness of the electric
field F at the boundary and the flatness of the initial density fo to ensure the regular-
ity in the linear problem. In the absorbing case, we adopt the high-moment technique
in [18] in order to establish the existence of global classical solutions for the absorbing
boundary condition. The key step to get control of large velocities is to represent the
macrocharge density in the presence of the boundary condition. We are able to attain
a representation for the charge density in spite of the complex particle paths by an
exact cancellation at the boundary. This cancellation demands a new computation.
Unfortunately, neither this high-moment method nor the technique first invented by
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Pfaffelmoser worked for the specular reflection case. The central difficulty comes
from the fact that we cannot avoid so many repeated bounces of the particles near
the boundary with very small tangential angles if the particles are allowed to reflect
at the boundary. This accelerates the hindrance to the control on the behavior of the
particles near the boundary in addition to the difficulty from large velocities. In fact,
the number of bounces of a particle near the boundary with constant velocity v and
its tangential angle 6 is proportional to |v|/0. So even if the particle moves slowly
near the boundary, we easily lose the control on the number of bounces, because the
particle moves almost tangentially with the very small §. However, the invariance
of the angular momentum in the spherically symmetric case enables us to treat the
particles with small tangential angles since the angular momentum of the particles
near the boundary with small tangential velocity amounts approximately to the full
velocity. This leads to a global bound on the increase in velocity, employing the idea
in [14].

This article is arranged as follows. From section 2 to section 4, we study the
linear problem. In section 2, we establish the velocity lemma for a convex domain,
followed by the study of the bouncing trajectories. The absorbing case is discussed in
section 3. We deal with the linear estimates for the specular reflection in section 4.
In section 5, we treat the fully nonlinear Vlasov—Poisson system with the absorbing
boundary condition and get its regularity. Finally, in section 6, the nonlinear Vlasov—
Poisson system, endowed with the specular boundary condition, obtains the regularity
for the spherically symmetric case.

2. Bouncing trajectories. Let the boundary v of II consist of

(2.1) vy ={(t,z,v)|0<t<T,x € 00 v-n, <0},
¥ ={{t,z,0) [0 <t < T,z € 0 v-n; >0},
W ={t,z,0)|0<t<T,2€0Nv -n, =0}.
Let Iy ={t =s}NI,ys={t=s} Ny, v ={t=s}nyT, and v, ={t =s} Ny~

for 0 < s <t.
Let the unique trajectory of

d d
2.2 —X = —V =F
(2.2) dr v dTV

such that X (¢;¢,z,v) = 2, V (¢;¢,z,v) = v be the following:
(2.3) T (r;t,z,0) = (13 X (138, 2,0), V (13 t,2,0))

where E (t,z) = Vo (t,) is the given electric field.
We consider in this section the initial-boundary problem for the linear Vlasov
equation

(2.4) fi+v-0.f+E-0,f =0,
f‘t=0:f07 f|’yJr =9

where the given electric field E (¢, x) satisfies F (¢,z) - n, > 6 > 0 at the boundary,
for a fixed 6 > 0.

In the following, we establish a generalized velocity lemma [8] for our convex
domain.
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Let zgp € 09; there exist a neighborhood V' of 3 and a smooth convex function
¢ (x1,z2) such that, after proper translation and rotation, o = (0,0,0), 92NV =
{z = (x1,22,23) |T1 = ¢ (22,23)}, and ANV = {& = (x1,22,23) |21 > ¢ (x2,23)}.
Straightening out the portion of the boundary by the diffeomorphism ® (z1, o, 23) =
(1 — ¢ (x2,23) , 22, x3) with the inverse U (z1,x9,23) = (1 + ¢ (22, 23) , 2, 3), We
may assume that near the point zy = (0,0,0), 9Q = {z1 = 0}, Q@ = {1 > 0}. Now
we consider the Vlasov—Poisson system in the new coordinates

ti=t, 2:=®(x), =09 (x)v,
E(t,%) = 0% (2) E (t,z) = 0® (¥ (2)) E (£, ¥ (2)) ,
fE2,0) = f(t,z,0) = f (£, ¥ (2),00 (%))

Then we have

O=fi+v-0f+E-0uf
= fi+0-0:f + [E(E,i)Jrva?@(x)v] - 05.f.

Notice that the outward normal 71z = n,0V (Z), and so the boundary set v corre-
sponds to ¥*, 40 corresponds to 4", and vy~ corresponds to 4, respectively, under
this change of variables since

Ng - 0 = [N 0V (Z)] - [0 () v] = ny - v.

Furthermore, the assumption on the electric field is invariant under the change of
variables for the same reason. We shall now look at the sign on v9?®! () v as follows:

0 0 0 1
v-0?®  v=[v vy vz ]| 0 —0xp —03¢ v2
0 —032¢ —033¢ v3

) -0
~(n [ 2 ][] <o

since ¢ is a convex function.

We can thus reduce locally our case to the half space case with a different equation.
For our convenience, we will use the notation without a tilde, indicating things with
a tilde, throughout this section. We now consider locally the following system in the
upper half space in the time interval [f,7 + ¢]:

fitv-Ouf +[E({2)+J (z,0)]-0uf =0,

where E (t,2) < —6 <0, Jy (z,v) <0 for all v, at v = {(t, z,v) |1 = 0}.

LEMMA 2.1 (velocity lemma). Suppose E; (t,0,Z) < —6 and Jy (z,v) < 0. Let
E € C"and J € C*. Let (1,X (7),V (7)) € I for small time interval [t,t+¢].
Thenforfgsgtgf—i-s,

(2.5) e O30 (5) < a(t) < et Da(s),
where

alt)=X; )+ V2@ —2[E (0, X (1) + J1 (X, V)] Xy,
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(r, X (1), V(7)) 4s a trajectory (2.2), and C depends on , ||E|c:, 6, and

SupsSTSt |V (T)|
Proof. We follow closely the proof of Lemma 1.1 in [7]. Expanding Fi (¢, )
around z; = 0, we get from (2.2)

(2.6) X7 =W,
VP=F (T; 0,X (T)) + 0, E (T; ¢, X (T)) Xi(n)+ (X (1),V (1)),
where e means the 7 derivative, and 0 < ¢ < X (7). We multiply the first of (2.6)

with X3 (7) and the second of (2.6) with V; (7). Then there is a C' large, depending
on ||V E|, such that, along the trajectory,

[eCT (X12 (1) + V¢ (7’))]. >2[Ey (1;0,X (1)) + J1 (X (7),V (7))] e“TV; (1)
for s < 7 < t. Notice that

(2.7) [El (T; 0,X (T)) +J1 (X (1), V (’7’))} e“T (1)
={[BE1 (;0,X (1)) + J1 (X (7),V (7))] e“" X1 (1)}
- C [El (T; 0,X (T)) +J1 (X (r),V (7‘))} T X, (1)
d

g [Ey (130, X (7)) + J1 (X (1), V (7))] "X, (7).

Integrating (2.7) from s to t, for C large enough, we get the left-hand side (LHS) of
(2.5) as

9

X (M) + V() —e” (X (1) + Vi (7))
2[B1 (£0,X (1)) + J1 (X (£),V ()] e7' Xy (t)
-2 [El (s 0 X(s)) + J1 (X (s), (s))] C“’Xl( )

14
—/ % [El (T;O,)_((T)) +J1 (X (1), V(T))] e“TX, (T)dr

Y]

— / C [El (T;O,X (T)) +J1 (X (r),V (T))] e“T X, (r)dr
> 2By (0,X (¢) + J1 (X 1),V ()] e“" X1 (2)
—2[B1 (50, X () + J1 (X (5),V (s))] €“* X1 (s).

We have used the fact that

’dci' [El (T;O,X (T)) + (X (1),V (T))]

< |E1t (T;O,X(T))qLszEl (T;O,X(T)) V(T)+VeJ (X (1), V(1) - V()
+ Vo Ji (X (7),V (1) - [E (15 X (7)) + J (X (), V (1))]|
<CA+|[Ele),

and B (130, X (1)) + J1 (X (1),V (1)) < =6 < 0. Similarly, we establish the right-
hand side (RHS) of (2.5). 0

COROLLARY 2.2. Suppose that E (t,z) -n, > 6 > 0 for all x € 9Q for some fized
constant 6 > 0. Let (t,xz,v) with © ¢ 0 connect to (tg,xo,v0) with x € OQ through
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a trajectory, where tg < t and the trajectory stays in the domain  in (to,t]. Then
we have (tg,xo,v0) € YT,

Proof. We may assume without loss of generality that x is near the boundary
so that we can localize near the point x. Then, by Lemma 2.1, we deduce that
(to,l‘o,’l)o) €’7+. 0

The following corollary gives a better estimate for C' in the velocity lemma when
(d/dt) Eq1]y, = 0. We refer the reader to [7], [8] for the proof in the half space case
with the flat boundary. It is important for the nonlinear specular case.

COROLLARY 2.3. If E € Cf; and Eq (¢,0,%) = E9 (0,%) <0 for all 0 <t < T,
then fort < s<t<t-+e,

e U8 (s) < B (1) < e“UTIB(s),
where
B(t)=VE(t) =2 [Eo (0,X (1)) + i (X (1), V ()] X1 (1),

and C" depends only on supg<y<t || Bl co.1/2(q) (1), Eo, and sup,< <, [V (7)].

In many physical problems, particles may have the complex behavior of bouncing
off the boundary repeatedly. In order to describe such phenomena and to study
especially the specular reflection case, we will investigate trajectories which bounce
many times at the boundary. We call such a particle path which ends at a given point
a “back-time cycle” as in [8]. Notice that the density is constant along these kinds of
generalized trajectories.

DEFINITION 2.4. v, = v — 2 (v - ng) ng s said to be the reflected velocity of v.

DEFINITION 2.5 (back-time cycles). Given a C* field E (t,x), by an l-cycle, we
mean the trajectories in 11 which connect (t,x,v) = (tl,xl,vl) with (tl_l,xl_l,vl_l),
(tl_l,xl_l,vi_l) with (tl_Q,xl_Q,vl_Q), cer, (ti, xt, vi) with (ti_l,xi_l, vi_l), cer,
(tl,xl,vi) with (0,x0,v0), where t* > 71 28 € 90 for 1 <i <1—1,v'-ny >0,
1<i<I.

We rewrite the velocity lemma, Lemma 2.1, involving our geometry. Let £ (x) be
a smooth function which defines the boundary such that

(2.8) 00 ={¢(x) =0}, Q={{(x)>0};

then n, = —V¢& () / |V ()| is the outward normal at each point z at the boundary.
For instance, £ (x) = 1 — |z|? for the unit ball.

LEMMA 2.6 (geometric velocity lemma). Let E (t,z) - ngy > 6 > 0 for all x € 00
with E € C'. If the trajectory stays away from the origin, i.e., |X (1)| > o for
s <71 < t, for any small fized o > 0, then
(2.9) e 0 (s) < a(t) < e“Hal(s),

where

a(t) =€ (X (1) +[V (1) - VE(X (1)
2 [E(1.X (1) - VE (X () + V(1) VEX (1) -V ()] €(X (1)
and where C' depends on ||E||q1, supg<,<; [|X (7)[ + [V (7)]], 6, and .

Proof. Let X be the point at the boundary which lies on the half-line from the
point X in the direction —V¢ (X). Then we expand E - V& (X) around E - V¢ (X) to
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get
(B- V) (X) = (E-VE) (X) + V. (E-VE) - (X —X)
) ve (s (x- %)
=E(t,X) -VE(X) + v%(E-vg).W £(X).
From the fact that £ (X) = £ (X) + VE(0) - (X — X) = VE(0) - (X — X) for some

point 6 on the line segment connecting X and X, which implies that V¢ (6)- )5{( X))() =1,

we can easily see that ’(X ‘ < C. (Near the boundary where £ (X) = 0, we have

[VE(0)] > ¢ >0, and VE () 1s almost parallel to X — X.) Along the trajectory, there
is a C so large that

{er [¢ )+ (vove2] )
= 7 [CE (X) + C (V- V)’ + 26 (X) (V- V)

+2(V - VE) (E.vg(X)+V~v2§~v)]

_ 6CT

C§Q(X)+C’(V~V§)2+2<1+VI(E‘V§)'(X_X)>§(X)(V~V§)

2(V -V (E(t,X) - VE(X) +V -V V)

>e“T[2(V -V (E(t,X) - VE(X)+ V-V V)]
Assuming that F (t,z) - n, > 6 > 0, we notice that for a large C,

“T2(V-VE (B (LX) VEX)+V V-V
={27¢(X) [E (t,X) - VE(X)+V-V%-V]}
2e°TC[E (t,X) - VE(X)+ V- V- V]E(X)
— 2“7 [Ey (t,X) - VE(X) + X°* - VLE (t, X) - VE(X)
+E(t,X) V(X)) X*+2E-V¥(X)-V
+ V- (VR(X)- V) V] E(X)
> {2e97¢(X) [E (t,X) - VE(X) +V - V2% V]},
where £ (X) > 0, and |X*®| < C (since |X (1) >0 > 0), [ X (1)< C, V(1) <C
and |E|, < C. This proves the LHS of (2.9). Similarly, we get the RHS of (2.9) to
complete the proof of the lemma. 0
The following lemma shows that if a particle initially has a nonzero normal ve-
locity, then its normal velocity of a particle remains bounded away from 0, and the
bound is independent of the number of the bounces.

LEMMA 2.7. Let E(t,z)-ny > 6 > 0 for all x € 0Q. Consider the back-time
cycle of (t,z,v). Then there exist C; and Cy such that

Cr [€(@) + (v Ve @)°] < (v Ve ()" < O [€ (o) + (w0 - VE (20))°]
G [¢ (20) + (v - VE (@0))*] < (v V€ (2))” < C2 [ (@) + (v VE(@))°]
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where 1 < i <1, and Cy and Csy are independent of | and dependent on ||E|c1, 6,
and the bound for |V (7)].
Proof. We may assume that () contains the origin without loss of generality. We

first consider small balls B, with radius ¢ > 0 small and let (s,y,w) connect with
(¢,2,7) through a trajectory in the ball B,. Since |X (7)| < o, we have £ (X (7)) >
C (o). Then there is a constant D such that

{eP7 [6(X) + (V- Ve ()]} = €7 [DE(X) + D (V- VE (X)) +V - V€ (X)

+2(V-V§(X))(E-vg(X)+V~V2§-V)}
>0

b

where D depends on ||E||s, €2, 0, and the bound for |V (7)|. Hence we get

(2.10) P ¢ () + (w- VE )] < P ¢ (@) + (@ VE@)?].

Next, let (s,y,w) connect with (t~, z, 6) through a trajectory which goes through the
T 717/) be the

two points with |y | = ’ac | = o on the trajectory connecting (s, ¥y, w (t i‘,ﬁ). Then
by the geometric velocity lemma and by (2.10), there exist a C' and D such that

P (w- VE () < P {52 () + (v ve(s))
o {imv (4 oo v (1) )6 6]

<o [o(0) (v v ()]
o i) (F e (6))]
e (¥)

o-ball, where both y and ¥ are at the boundary. Let ( ,y w ) and (

where C depends on || E||w, 2, 6, and the bound for |V (7)|. Now we observe that
the number # of such happenings of hitting the o-ball through the whole cycle is
uniformly bounded. Along the trajectory, we have

t//
/ V(r)dr
t’

which implies that At > C, > 0. Then C, x # < > At < T indicates that # is
uniformly bounded. Now pick ¢ and consider |vi - V¢ (:L‘l) ‘2. For the upper bound,

CAt > = |Az| > ¢4,




REGULARITY FOR THE VLASOV-POISSON SYSTEM 129

we have
eDti (Ui Ve (xz))
< O#eDt [52 (2) + (v-VE(2)? —2(E - VE(F) +v- V3 (z) - 0) € (fc)}

2

< O x C#eDt [g (z) + (v VE (x))2] .
On the other hand, the lower bound is achieved as

* [26€ (a0) + (vo - V& (20))°]
<c* [52 (o) + (vo - VE (20))” = 2 (E - V& (%0) + vo - V¢ (w0) - vo) € (xO)}
< Pt (vi -VE (a:z))Q

Therefore, we get
C1 [€ (o) + (vo - VE (20))°] < (v VE (21))" < Ca [€(0) + (v VE(@))7]

where C7 and Cy are independent of [ and dependent on || E||c1, 6, §2, and the bound
for |V (1) on the cycle. Similarly, we can get the second part of the lemma. a
We prove the following corollary by the same method as in [7], [8].
COROLLARY 2.8. Suppose that E € C?”xl and [E (t,x) ng)|y = Eo(z) > 0.
Consider the back-time cycle of (t,x,v). Then there are C; and Cy > 0 such that

Cr (@) + (0 VE@)] < (o7 Ve (27))* < o [€ (w0) + (20 V& (20))°]
O [€ (w0) + (o0 - VE (20))°] < (v VE (+7))" < 3 [€ (@) + (v VE(@))°]

where C7 and Cy are independent of the mumber of the bounces, depend on
supo<r<7 | Ellcoa/2q) (7). [ Eoller, and the bound for |V (1)| on the cycle.

We now see that tq (t,z,v), zq (t,z,v), vo(t,z,v) are C* functions of (t,z,v)
locally when (g, zg,v9) connects with (¢, z,v) through a trajectory:

930:17+/tt0 PM[E(T)GZT] ds.

Let € be the smooth function which defines the boundary in (2.8). Then we have

0= ¢ (o)

:g(x+/tt0 |:’U—|—/tsE(T)dT:| ds) =€ (to; t, @, v)

with C! coefficients. By differentiating & with respect to to, we get, by Corollary 2.2,

gé (tost, @, v) = V& (wo) {U i /tto B dT]

= V& (xg) - vg = Ny - Vo < 0.

We thus have tg = to(t,z,v) € C! by the implicit function theorem and vy =
vo (t,2,v), 2o = 20 (t,7,v) € CL.
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Now we consider trajectories without any bounces from a point to a boundary
point, which are close to each other, and from any point to an initial point.

LEMMA 2.9. Let (t,z,v) connect with (0,xq,v9) through a trajectory. Then

0
Vg :v+/ E(r,X (1;t,x,v)) dr,
t

t s
Zo :x—vtf/ / E(r,X (1;t,z,v)) drds.
o Jt

Considering xo and vy as functions of (t,x,v), we have
0
vor = —E (t,2) +/ V. E - Xidr,
t
t s
Totr = —U—I—E(tw)t—/ / V.E - Xdr,
0 Jt

0 0
Vv = / V,.EV.Xdr, Vovo =1 + / V.EV,Xdr,
t t

t s t s
Vaexg =1 —/ / V. EV, Xdr, Vyxg =—tI —/ / V. EV,Xdr.
0 Jt 0 Jt

Here all the integrations are taken along the trajectory (1, X (7;t,xz,v),V (1;t,x,v)).
V.EV,.X and VE,V,X are matrixz multiplications.

LEMMA 2.10. Let (t,xz,v) connect with (to,xo,v0) through a trajectory, where
xg € 02. Then

(2.11) ’Uov+/tt0E(T)dT, 930:17+/tt0 {U+lsE(T)dT] ds.

For vy with ng, - vo <0,

to to to
Tot = torV — U + tos E()dT—/ E(tmds+/ /VE Xydr,
t

V;cl“o—f—ktox@(v—l-/ d7’> / / V.EV, . Xdrds,

t

Voo = (to —t) I +tg, @ (v +/ E (1) dT) +/ / V.EV,Xdrds,
t ¢ Ji

to
vor = torE (to, wo) — E (t, x) +/ V. E - Xidr,
t
to

vaO (th ‘TO) Y tOm + / VmE vadTa

Vovo =1+ E (to, zo) ® toy + / V.EV,Xdr,

tog = (Ngy - v {n% / / Ngy + (Vo BV, X) d’rds} ,

{t—to ) Mg //nmo (VoEV X)des],

to

tor =14 (ng, - vo) " [/ E(r)dr+ (to —t) E(t,x) / / V. E - Xthds]

tOv na:g
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Proof. Let £ be the function defining the boundary as in (2.8); then we have

(2.12) &(xo (t,z,v)) =0.
We differentiate (2.12) with respect to x, v, and ¢ to get
(213) Ny - vwwo = 0) Ny - v’uxo = 07 Ny = Tot = 0.

We now differentiate the second equation of (2.11) to get

to S
(2.14) Vaexg =1+ v9 Qtor + / / V.EV, Xdrds.
t Jt

By multiplying (2.14) with n,, and by (2.13), we get

to s
0 =m0z - Vaxo = (Nox - Vo) tox + Now + / / nog - (Vo BV, X)drds.
t Jt

We thus have if ng, - v9 <0,

t s
(2.15) toe = (Nay - o) [nmo +/ / Ngo + (Vo VxX)deS] :
to Jt

By differentiating the second equation of (2.11) with respect to v and ¢, we deduce the
formulas for tg, and to;. We differentiate the first equation of (2.11) and do the same
thing to obtain the formulas for V vg, V,v9, and vg;. Thus our lemma follows. O

LEMMA 2.11. Let (t,z,v) connect with (tg, zo, vo) through a trajectory witht close
to tg, where xg € 0. If E-n > 6 > 0 at the boundary for all time, then

|t = to| < Clvo - 1o |,
where C' depends on ||E||c1 and é.
Proof. We need only to consider the case when |vg - 1, | is small. Notice that

t s
:E:xo—i—vo(t—to)—i—/ E (7)drds.
to Jto

Setting

ht)=¢(x)=¢ <$0+Uo(t—t0)+/t tsE(T)des> 7
we expand h (t) around t =ty to get
€(x) =& (wo) + ' (to) (t—to) + R (to) (t —to)® + O (t — t)®
= (vo - V& (20)) (t —to)
+ [vo - V2€ (o) - vo + E (to, x0) - VE (20)] (t — t0)> + O (t —to)> .
Thus, we obtain
t—to
vo - V€ (wo) £ \/(UO - VE (20))” + 4€ () [vo - V2€ (o) - vo + E (to, o) - VE (z0)]
- —~2[vg - V%€ (o) - v + B (to, %0) - VE (a0)]

+o (t - to) .
Since — [vg - V£ (0) - vo + E (to, o) - VE (z0)] = 6 |VE (z0)| > 0, we have

1
‘t—to‘é ( )|2|’Uo'v5($0)|:5|’U0'7Lm0|. 0

1
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3. Regularity for linear absorbing.

THEOREM 3.1.  Let Q be a smooth bounded conver domain, E(t,x) €
ct ([0,00) X Q), and E(t,x) -ny, > 6 > 0 for all x € 9Q for some fized constant
5 > 0. Let an initial datum fo € C! (I:IO) and a boundary datum g € C' (3T) be
compactly supported. Assume the following compatibility conditions hold for x € 0N)
and v with ng - v <0 (2.1):

(31) fO (1‘,’0):9(0,1?,1)),
9: (0,2,0) +v -V fo (z,v) + E(0,z) - Vo fo (z,v) = 0.

(a) Then there exists a solution f € C* (II\Y°) to (2.4).
(b) Furthermore, assume the following vanishing conditions hold:

(33) Vgt z,v)] < Clng o™, Vo (x,0)| < C(E ()] + |na - v])",
where £ is the function defining the boundary O in (2.8) and k > 0. Then f (t,z,v) €
C(ID).

Proof. We define f (t,z,v) as follows. For any (¢,z,v) € [0,T] x Q x R3\AY, let
(to, o, vo) be the first point on OII which connects with (¢, z,v) through a back-time

trajectory. By applying the velocity lemma, Lemma 2.1, it follows that (¢g, zo, vo) ¢
7% i.e., (to, o, vo) is not in the singular set. If o = 0, we define

[t z,v) = fo(wo,vo)-
The t-derivative of f is given by
(3.4) fe (t,2,0) = Vi fo (20, v0) - ot + Vi fo (20, v0) - vor

= V. fo (zo,v0) - l:—U +E(t,x)t— /t /S V.FE - Xtdrds}
; o Ji
+ V. fo (xo, vo) - {—E (t,x) +/t V.E- Xth} )

On the other hand, if xy € 012, we define
(3.5) [t @, v) = g (to, zo,vo) -
When n, - v < 0, by Lemma 2.10, the ¢-derivative of f is
(3.6)  fi(t,x,v) = g¢ (to, w0, v0) tor + Vzg (to, o,v0) - Tor + Vg (to, o,v0) - Vor-
It is clear to see that f is well defined when tg = 0 and xg € 92 by the assumption

(3.1). We now show that the two different ¢-derivatives of f coincide in the case that
to =0, xg € 09, and ny, - vo < 0. Using the formulas

t
v:vg—|—/ E (7)dr,
0

t t(J S
tor =14 (nay - v0) " Ny - [ E(r)dr + (to —t) E(t,z) + / / V.E - Xthds]
¢ Jt

to
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from Lemma 2.10 and the compatibility conditions (3.1), (3.2) into (3.6) yields
fe(t,z,v) = [—vo - Vo fo — E(0,20) - Vo fo] tor

t s

+Vafo- [towo —v—FE(tz)t— / / V. E - Xthds]
o Jt
0

Vo (B 0.0~ Blt.0)+ [ V.B- X

¢

t S
=Vafo- {U —E(t,x)t— / / V.E - Xthds}
o Jit
0
+ Vi fo- {E (t,x) +/ V.E - Xth] )
t

This is the same as (3.4). By similar computations, we see that f, and f, are contin-
uous when to = 0 and z¢ € 9. Thus part (a) follows.

For (b), we define f (¢,z,v) = 0 for (t,x,v) € v°. We show that |V f (t,2,v)| — 0
when (¢, z,v) goes to a point in 4. If (¢,2,v) connects with (tg, zg, vg), then it follows
from (3.5), (3.4), and from the velocity lemma, Lemma 2.1, and Lemma 2.10 that

1 K
IV (t2,0)f (t,2,0)| £ C———|Vg (to, m0,v0)| < C |ng, - vol” -
|nxo 'U0|

If (¢, 2,v) connects with (0, zp,vg), then by (3.4)

IV (2, 0)| < CIV fo (20, v0)| < C(I€ (x0)] + |12 - v0])".

By the velocity lemma, Lemma 2.1, as &2 (z) + (n, - v)?2

|€ (x0)] + |nay - vo] — 0. The theorem thus follows. O

We also deduce the following theorem.

THEOREM 3.2. Let E (t,x) € C* ([0,00] x Q) with E (t,z)-n, > 6 >0 on 9. Let
Fy (z,v), H (t,z,v), and G (t,z,v) be (nx 1)-vector-valued functions and A (t,x,v) be
an (n x n)-matriz function such that G (t,z,v) € C* (37), Fy € C* (Ily), H (¢, z,v)
and A (t,z,v) € C! (1:1), and H, G, and Fy have compact support in v. Assume the
compatibility conditions hold for x € 0, v with v -n; < 0:

— 0, ngy - vo — 0 and

(37) FO (SL’,U) = G(O,l’,’l}),
Gt (.’,E,’U)+U'vxFO+E(O,I)'VUFO:A(O,Z‘,U)Fo(ﬂfﬂ})+H(O,l‘,1}).

(a) Then there exists a unique (nx1)-vector-valued function F (t,z,v) € C* (IT\o)
such that Fy+v-V F+E-NV,F = AF+H, F|,+ =G, F|i— = Fy for (t,z,v) € I\"o.
(b) Furthermore, assume that the vanishing conditions hold:

|VG (t,a:,v)| < C‘U : nw‘1+n’ ‘VH (t,m,v)| < C(‘f (CL‘)| + |U : nw|)1+ﬁ7
[VEy (t,2,0)| < C(I§(2)] + [v-na )"

Then F (t,z,v) € C* (I_I)

From now on, VI denotes the tangential derivative, V& denotes the normal
derivative, v7 denotes the tangential component of v, and v' denotes the normal
component of v.
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THEOREM 3.3. Let 1 < p < o0, and let

foe WHP (Ily), ge WP (y1),
(3.8) Vgl < Clng -v].

Let fy and g have compact support and satisfy
fo(z,v) =g(0,z,v) for all z € OQ and v with n, - v < 0.

Let E (t,x) € W ([0,00) x Q) (E € WhNC?! forp = o0) and E (t,x)-ny > 6 > 0.
Then there exists an f (t,x,v) € WP (Il,) for 0 < s < T such that

(3.9) fetv - Vof +E-Vof =0, flizo=fo, fli+ =g

in the sense of distribution. The following estimates hold:

Joses [ meoinrs [ = [ oeor
+O// |V fI? dr,
IVafl + | (e o) VI < | VR = [ (ne-0)[Vigl"
Jo e ] J 1750 = ],
+C// |V fI? dr,
1wt [ e Vsl < [ 9P [ e |viel
+c// VP dr,
[V [ e ) 9fP s [Vl = [ ) Vgl
Vs
+c// \Vf|pd7

Vi floe == (e -v) " [ge+ 0T VEg+ E-Vig],
Vig=—(ns-v)" [g+0v" - Vig+E- Vg,
Vi flizo = fou, 0<s<T.

where

Proof. Let N, be a o-neighborhood of 4° = {x € 9Q, n, - v = 0}.
We construct f§ € C2°, which is constant on N,, and E™ € C*° such that

o — foin WHP (TII)\N,), E™ — Ein Wh>®, E™.n, >§/2> 0.
After choosing fi' and E™, we construct ¢” such that

g" (0,z,v) = f§ (z,v) on y"\N,,
gl (0,2,v) = —v -V fy — E"(0,2) - V, i on v\ N,,
9" —gin W (yF\N,).
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We first choose g" — g in WP (yF\N,), where ¢g" € C°. Then modify it as
g (t,2,0)+ 7 (2, 0) —g" (0,2, 0)]+Ex () [0 - V.. — B" (0,) — g7 (0,2, v)], where
x (t) € C*, x (0) =1, and [ |x (¢)|” dt is very small. We can see that this sequence sat-
isfies all the above conditions. Clearly, from Theorem 3.1 there exists f* € C! (f[\’yo)
such that f™ satisfies (3.9) with initial and boundary data f' and g™, respectively.
By applying the Gronwall inequality and since |n, - v| > o, we deduce that

”anWlJ’(H\NU) S Om
||fn||W1,p(ryf\Na) S CO'

for all o > 0, uniformly in n. By letting n — oo, we show that for 1 < p < co there
exists an f in WP such that

fr— f in WP (II\Ny) N WP (4\N)

for all o > 0, and our theorem thus follows. For p = 1, we show that {f™} is a Cauchy
sequence in W1 by considering f™ — f™ in (3.9). From the equation for f* — f™,

at (f’fL _ f’fl'L) + v - vw (fn _ fm) + E’fL . vv (f’ﬂ _ f’l’ﬂ) — (E’H’L _ En) . V’UfW'L’

we take derivatives (in the sense of distribution) and integrate with respect to  and v
and then with respect to time. Using that {fJ'}, {g"} are Cauchy in Wb! and f™ and
its derivatives are compactly supported uniformly in n (since ||E™||w, ., are uniformly
bounded in n and fJ', g are compactly supported), we can deduce that {f"} is a
Cauchy sequence. For p = oo, we use E € C! itself instead of using approximate
fields E™ in our construction of f§,¢" to apply Theorem 3.1. Then we have, by
taking derivatives,

(O (f" = ™) +v- Ve (O(f" = ™)+ E-Vy (O(f" = f™) =0E -V, (f™ = [").

By integrating along the corresponding trajectory, we get the Gronwall inequality for
A (f™ — f™), which implies that {f"} is a Cauchy sequence in W1>°. Here we note
that by the vanishing assumption (3.8),

1w < € (1+ Wollwroag + 19lwrais )

where C' depends on T, the support of fy and g, and the constant on the vanishing
condition on g, ||F||y1.cc. Our theorem thus follows. o

We also deduce the following theorem.

THEOREM 3.4. Let 1 < p < oo, and let Fy (z,v), H (t,x,v), and G (t,z,v) be
(n x 1)-vector-valued functions and A (t,x,v) be an (n x n)-matriz function such that
G (t,x,v) € WLP (yF), Fy (x,v) € WLP (Tly), H (-,z,v) € WP (IL,) N WP (yF) for
0<s<T, and A€ CY% (I). Let the vanishing condition hold on O):

VG| < Clng -v|, |[VH| < C|ng-vl.
Let Fy and G have compact support in v, and let Fy and G satisfy
Fy (z,v) = G(0,z,v) for all x € O and v with n, - v < 0.

Let E (t,x) € W ([0,00) x Q) (E € WhNC! forp=o0) and E (t,2)-ng > 6 > 0.
Then there exists an F (t,x,v) € WP (Il;) N WP (yF) for 0 < s < T such that

Fi4v-VoF+E-V,F=A(F)+H, Flieo=Fy, Fl+ =G
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in the sense of distribution. The following estimates hold:

/|Ft|”+/ (nz~v>|Ft|”s/ \me/ (ns - v) |GHf?
II, Vs T o

+C// (|IVF|” +|VH|")dr,
o Ji,

JAREEr s [ o 9EE) < [ 9IRS - [ o0 vier

s Vs 0 Vs

+c// (VF[” + |VH[) dr,
o Jm,

o) |[VEF < [ [ VRGP

II V¥s

/ \V;F\’Ur/
Hs Vs
/ IV, FP + /
IIs .

Va2 Fo
0

+c/‘/ (VF[” + |VH[) dr,
o Jm,

(ns - 0) [V, FP < /

IV, Fl” —/ (e - 0) [V G
IIo ’Ys+

+c// (VF[” + |VH[) dr,
o Jm,

where VEiF|+ = —(ng - v) ' [Gy+ 0T -VIG+ E-V,G]|, ViF|1—o = Fos, and
ViG = —(ng-v) ' [Gi+vT - VIG+E-V,G],0<s<T.
DEFINITION 3.5 (boundary and initial operators). Suppose that f € C° satisfies

ft+'UV:cf+EV'uf:O7 f|t:O:f07 f‘7+:g

in the classical sense. The unique boundary operator L, and the unique initial oper-
ator Lo are defined by

0% fly+ = LY (VE,00,01) fly+, 0“flimo = LY (0z,0v) fli=os

where O is the usual differential operator of t,x,v with multi-index «; |a is the order
of a.

For the higher regularity, we refer the reader to [7], [8].

THEOREM 3.6 (high regularity). Suppose that E (t,x,v)-n, > 6 >0 on 0Q, E €
Wk Let 0 < fo € WP (Ily), fo have compact support in v, 0 < g € WhP (yF),
and g have compact support in v. Let 0%g (t,x,v) =0 for x € 00, v-n, =0, |a| =k,
and let ‘8(k)g| <Clv- nz|k Assume that the following compatibility conditions are
satisfied:

(3.10) 0 flp=oyrt = {L% (Vz,00.0%) g} li=o = {L§ (92, 00) fo} I+

where || <k —1. Then there is a unique WP solution f such that

/|39f|p+/ (v-ng) [0°f]" <C, 0<s<T,
11, -

s

where C' depends on fy, g, and E, 0| < k. For |a| <k,

0% flyr = LG (V3,00,8:) g, 0 fli=o = L§ (9x, 0y) fo-
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Sketch of proof. We use an induction on the order k. We omit the detailed proof;
instead we shall prove our theorem with |o| =k = 2:
0t0if +v -V O0f + E-V,0if = —0:E -V, f,
O0uf +v-VOu f + E- V0o f = =0,
010, f +v -V 0o f + E-V,0,.f = =0, E-V,f.
We think of F' = (0.f, 0. f, 0, f) as an unknown vector-valued function. We already

know that F' € LP by Theorem 3.3, and we want to prove here that F' is actually in
WP, Theorem 3.4 applies to this case with H = 0, and

0 O —-o0F
A= 03 —I3 03 ;
03 O3 -0, F

which is in W1°° by assumption, where Fy = (—v - Vi, fo — E -V, fo, 0z fo, Oufo)
Whe (M), G = (94,07 g, —(v - ng) " [gr + 0" - VIg+E-Vyg],8,9) € WHP (v7F).
By our assumption that !829’ < Clo-ngl?, || Ellwie < M, we have
VG| < Clv-ngl.
Moreover, by our compatibility condition, we have
Fy (z,v) = G(0,z,v).
We then apply Theorem 3.4 to get £ € WP, The theorem thus follows. ]

4. Regularity for linear specular reflection. Now we study the purely spec-
ular problem:

(4.1) fe+v-Vof +E-Vof =0, fli=o = fo,
ftx,v)=f(t,x,v.), €I
We seek the compatibility conditions. After the change of coordinates (flattening out

the boundary), we transform the original Vlasov—Poisson system into an equivalent
system. Using the same notation (¢,z,v) and f, we have

ft—|—’l}-vmf+(E+J)'va:O,
where J; (z,v) = (vq,v3)-0%¢ (x)- (v2,v3), J; (x,v) = 0 for j = 2,3. From the specular
reflection condition on f, we have f(¢,0,z,v1,v) = f(¢,0,%, —vy,9) for all # € R?
and v € R3, which also implies that f (0,%,v1,9) = fo (0,%, —v1,9). By taking the
t-derivative and plugging in ¢ = 0, we get
ft (anafﬂjla’(—)) = ft (anai‘v*vlal_})a

where

f:(0,0,Z,v1,0) = —v1 foz, (0,Z,v1,0) — V2 foz, (0,Z,v1,0) — v3 fog, (0,%,v1,0)

3
- Z (EZ + Jz) vai (07i',’01,’[)) 5
i=1
ft (0707537 _Ulaf}) - Ulanfl (O7i‘7 _’UlarD) - UZanCg (Ovi‘7 _/Ula@) - U3f0x3 (07537 _Ulaf})
3

o Z(El J’_Jl) vai (07i‘,—U1,17).

i=1
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Since val (07f7vl76) = _f01)1 (O,f,’l]l,f]), we get
(4.2)
v1 foz, (0,2,v1,0) + v1 for, (0,2, —v1,9) + 2 (E1 + J1) (0,0,Z,v) fou, (0,7,v1,0) = 0.

Therefore, the corresponding compatibility conditions under the original coordinate
system are

(43) fO (J,‘,U) :fO (J?,U*),
(44) U*lvi_fo (Z‘,’U*) + ’ULVi_fo (.13, U) + 2B+ (O,I) sz;_fO (.f, U) =0
for all x € Q. Assume that E (t,z) € C! and E (t,z) - n, > § > 0 at the boundary.
We also assume that fy € C! and has compact support, and
fo = constant  when £2 (z) + (v - V€ (2))* < wo

for some fixed wy > 0. We then define an iterating sequence as a family of the solutions
of the following linear problems:

(4.5) P b Vo T BV T =0, Ym0 = fo,
fk+1(t7x7v):fk(t7x7v*)7 xeaﬂ) ’U'nl‘go

for K =0,1,2,..., where fy is a smooth extension of II satisfying the compatibility
conditions. Since ||E||L~ < C, it easily follows that f* has a uniform bound for its
support in x and v. The major result in this section is the following theorem.
THEOREM 4.1. Let E (t,x) -ny = Eo (x) > 0 for all x € Q. Let fy have compact
support, and assume that when &2 (x) + (v - VE (:v))2 < wyg for some fixed wy > 0,

fo (x,v) = constant.
(a) Assume fo € C', E € C°(0,T] x Q), and

sup [|[VoEl|coq) (t) < oo.
0<t<T
Let fo satisfy (4.3). Then there exists a unique W1 solution f of (4.1), and
[fllw1.0 depends only onwo, | Ellcot+supo<i<r [[VaEl coq) (), [ Eollcr, and || follca -
(b) Moreover, if fo € CY" for some n > 0, assume that E € C%" ([0, T] x Q) and

sup |[|VaEl| o gy (¢) < oo
0<t<T

Let fo satisfy both (4.3) and (4.4). Then there exists a unique CY* solution f of
(4.1), for some 0 < p < n depending on wo, ||E|con + supo<i<r |VaEl conq) (1),

[Eollcr.n, and || follcrn-

We first show a uniform C! bound for the iterating sequence f*.

LEMMA 4.2 (C! bounds). Suppose that E (t,z) -n, = Eqy (x) > 0 for all x € 09,
E,Ey e C, fo e CY8, and

fo = constant  when &2 (z) + (v - V& (x))” < wo, wo > 0.

Suppose that (4.5) has a solution f*. Let (0,79,v0) be on the back-time cycle of
(t,z,v). Then

’v(t,f,v)f (t,.’L’,’U)| S C |v(z,v)f0 (3307’00)

b
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where C' is independent of k, and depends on fo, wg, Eo, and E.

Proof. Let the back-time cycle from (¢, z,v) be (tl,xl,vl) = (t,z,v), (tlil,xl’l,
ol L (2t vt), (0, @0, v0). We need only to consider when £ (z) + (v - VE (2))?
is small. We distinguish, on the back-time cycle from (¢,z,v) to (to,xo,v0), large-
time intervals from small-time intervals in the following way. By Lemma 2.7, we may
assume that [v7 - ng, | > ccu(l)/2 for all j, since V fo = 0 when £2 (z) + |v- V& (2)]? < wo.
Ifth —¢i=1 > cwé/ 2, then it is called a large-time interval on the cycle, otherwise a
small-time interval with ¢/ — /=1 < ccu(l)/2 < |v7 - nys|. We first treat the portion of
our back-time cycle with small-time intervals, which is more complicated but crucial
to estimate. Without loss of generality, we use the same back-time cycle as above for
our convenience in dealing with small-time intervals. From our construction (4.5), we
have

fk (t,x,v) _ fk (tl_l,xl_l,vl_l) — fk—l (tl_l,xl_l,Ui_l)
= fk_l (tl_27xl_27vl_2) == fO (CEO, UO) .

From the first relation that f* (t,z,v) = f* (tl_l,xl_lml_l), with z!=1 € 99, v/~ 1.
ngi—1 < 0, we have

IV ()| = L V5 (a0l

where
8tl71 aml—l 8,Ul71
ot at at
b — | etz ezttt awTt
-1 ox ox ox
o=t gzttt gttt
ov ov v
By Lemmas 2.10 and 2.11, Ill_1 takes the form
c C C
C(wo) C(wo) C(wo)
c C C

Here we have used Lemma 2.7 and the assumption to get
-1 1 1
‘m&c <Ct+——— <O+
C [¢ (o) + (vo - V€ (20))°]

- [t nga| — 1/2

C
<CH+ —=C(w
= + C(UQ ( O)a
where C' depends on ||E||c1. Next we consider
A G R et B P

= gl=1 =2 (vl_l 'nml—l) ngi—1. Clearly, we have

’vfk (tl_l,.Tl_l,Ul_l)‘ —

where v

)

Il—lvfk—l (tl_l xl—l ,Ul—l)

where I'=1 takes the form

o

O O =
(=
ISH
QQe
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Now consider the map (tjfl,scjfl,vjfl) (tJ ) U*), where 2771, 27 € 9Q, 2 <
7 < 1. Let J]]‘—1 be the Jacobian matrix of the map. We now estimate it. Since
(tj_l, mj_l,vj_l) connects with (tﬂxﬁvi) through a trajectory,

+J

vl =7t 4 E(7)dr,

ti—1

) =gt —|—vj — I~ 1 / / 7) drds.
ti ti

Here we notice that
(4.6) c( =) < | g <O -

by Lemma 2.11 and by expanding & (:UJ) around & (xjfl) as

Ozﬁ(xj)=£<a:3 Vi 1 — I~ 1 / /E deS)
= (T VE@T)) (F - O — ),

We then get a similar estimate

)

VY (¢, 27, 0| = JI VR L gt I
|fk1( *)| ‘lefkl( 1 1 1)

where
4 C C C
Ji_i=1 Cw) C(wo) C(wo) |,
C C C

and C depends only on the C* norm of E. Since (t!,z',v') connects with (0, zo, v),

with z1 € 992, we have
97402 101,00 = o )
< C'|Vfo (0,0 -

By Lemma 2.7 and (4.6), we have |v’-ng| > c(wo) for all i and I x ¢(wp) <
Zi |vi ngi| <Y (t”l — ti) < T to see that the number of bounces is uniformly
bounded and dependent on wy, 8, and ||E||c1. Therefore,

-1 -1
|V (t2,0)| = |1, H I H JI 15V fo (0, v0)
j=1 =2

< C (wo) |V fo (z0,0)] -

In a similar manner, we can obtain estimates on the portion of the cycle with large-
time intervals. Here we have the uniform bound on the number of bounces with
large-time intervals in a rather trivial way since the size of each interval was chosen

to be At > cwo/ by the construction. We thus deduce our lemma. a
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LEMMA 4.3. Suppose that E (t,x) - n, = Eg(x) > 0 at the boundary and that
(4.5) has the solution f*. Then

||kaL°°(H) < ”fOHLoo(HO) fO?” all k.

Proof. Let the cycle from (¢, x,v) be (ti,xi,vi), 1 <4<, and (0,z9,vg). Clearly,
on each trajectory f* is a constant. ]

We establish a uniform C%* estimate for f* in (4.5) by using Corollaries 2.2
and 2.3.

LEMMA 4.4. (a) The sequence is well defined, and f* € C!.
(b) If |x —y| is small and the field satisfies

sup |E(t,z) — E(t,y)| < —Llz —yllog|z —y|,
0<t<T

then there is aw > 0, depending on L and ||E||s, such that if € (x)+(v - VE (2))* < w,
Vi (t,z,v) = constant  for any k.

(¢) Moreover, for constants C and pn > 0 depending on L, w, and «,
k
1]l co.e < C I follo.a -

Proof. For (a), we apply Theorem 3.1. From the velocity lemma, Lemma 2.1, and
Lemma 4.2, |V(; 4.0 f* (t,2,0)] = 0 when |v - n,| < C(wp) to satisfy the vanishing
condition (3.3). It suffices to check for any k that the compatibility condition in
Theorem 3.1 is satisfied. First, it is trivial to see that fo (x,v) = f* (0,2, v.) by (4.2).
We use an induction on k. Clearly, it is true for & = 0 if we choose fy properly.
Supposing that the condition for k = n — 1 is true, we deduce from (4.5) and (4.2)
that for z € 09,

(0, 2,0) = 77 (2,00 o
= v, - Vo f" 1 0,z,v,) — E(0,2) - Vo f" 1 (0,z,v,)
= —0u Vo (5,00) — B (0,2) - Voo (2,0.)
=—v-Vufo(z,v) — E(0,2) - Vyfo(z,v).

This is exactly (3.2) in Theorem 3.1.
For part (b), we use Corollary 2.3, since

sup |E (t,x) — E(t,y)| < C’|x—y|1/2.

0<t<T

For any (¢, z,v) € II and for all k, let the back-time cycle of (¢, x,v) be (tlil, a1 vl’l),
..y (0,20,v9). From (4.5),
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fk (t,l’,’U) — fk (tl717xl71’rul71)
— fk:—l (tl_l, l’l_17’l)i_1)

— fkfl (tl72’ xl727vlf2)

= fo (xo,v0) .

By Corollary 2.8, we have
C1 | (@) + (v VE @)°] < (v V& (o))" < Ca [€ (0) + (v0 - VE (@0))°]
Oy [€ (o) + (vo - V€ (20))°] < (v VE (+7))" < O [€2 () + (v VE@))°]

for 1 <4 <, and C; and C5 depend only on L, ||Egl/c:. Let w = Ciwg. Then we
clearly have the conclusion of (b).

We omit the proof of part (c) and refer the reader to [8] for the proof in the case
of a half space with a flat boundary. 0

Now we are ready to prove Theorem 4.1.

Proof. From Lemma 4.2, ||f*|| ., is bounded uniformly in k, and it suffices to
show that the iterated sequence f* defined in (4.5) is indeed uniformly bounded in
ClH>. Now we pick two points (¢,z,v) and (t~, :i,f)). Consider the back-time cycles
through the two points. Let & = (|t — | 4+ | — &| 4+ [v — 0]). We keep track of the
difference of these two points case by case.

Case 1. Both of the trajectories emanate from {t = 0}.

This reduces to the Cauchy problem and the theory of ordinary differential equa-
tions.

Case 2. One trajectory emanates from {t = 0}, and the other one emanates from
the boundary 0.

We first note that &2 (z) + (v-VE(2))? > w > 0 and €2 (Z) + (- VE(2))? > w >0
from the velocity lemma, Lemma 2.1, since otherwise f* = constant. In this case, we
have

0 t ps
U0:v+/ E (1) dr, x::coJrthr// E (7)drds,
t 0o Ji

t

i t s
'=v4+ | E(r)dr, @:/ {wr/ E(T)dT] ds.
= t

We choose a third point (f,i, 17) such that (A,.fi, 17) connects with (O,i‘l,vo) through
a trajectory and satisfies
t—t|+[t—t <2|t—1], lx—2|+|2—F <2Jz—7|,

lv—20]+10—0| <2Jv—17|.

We can apply Lemmas 2.9 and 2.10 and the mean value theorem through the third
point (f,i,’[}) to get

[t + w0 — &' |+ [vo — 0| S C[|t = t| + |z — & + |v — 7] = CE,

where C' depends on ||E||¢c1,6,w. From the fact that |V¢ (2') - 0l| > w > 0 and
\%3 (5@1) -9} < 0, we know that V¢ (531) -9} < —w < 0. Since
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IVE(X (1) - V(]| =|V-V* V+VE-E|<C,
we have

VECX () V(1) =V () 0t [ TEC () -V (o)) ds
VE(E) - ui+O(H —7)

—c(w)+0() <0

IAIA

for 0 < 7 < #'. This means that the trajectory from (t',z',o') hits {t = 0} directly
and does not hit y*. Now we express V(t,m’v)fk (t,z,v) and V(t,m’v)fk (f,ﬁf:,f}) in
terms of the initial value V(, ,)fo. It will turn out that the compatibility condition
(4.2) exactly guarantees our theorem in this case.

For computational simplicity, we flatten out the boundary near (fl,ilj)l) and
(0, xg,v0). We choose (t/,x/,v/) and (f/,i‘,,ﬁ/) near 0f) such that (t/,x/,v/) is on the

trajectory from (¢,2,v) to (0,z0,vp), between (t,z,v) and (0,z0,v0), and (£,%,%")
is on the trajectory from (%,2,0) to (f',#',9'), between (¢,Z,9) and (¢*,z',01),
respectively. Hence we have

’

t'—?’+‘m'—f"+ v =7 | < Ce.
Since
t;—té + x;—f% + v;—f); < Cg,
t| + Ft’Jr z, +’£;~‘+ v |+ |5;| < C,

and |ka’ < C, it reduces to the case when (t,z,v) and (f,:ﬁ,f)) are all near the
boundary. Recall that in the flat coordinates, the Vlasov equation is transformed to
fEtv-Voff +(E+J) -V, ff =0, where J; =v-0?®-v <0, Jo = J3 =0.

We first consider fF (¢,x,v). Since the back-time trajectory emanates from t = 0
directly, we have

fE(ta,v)
t S
Zszfo(x(),vo)-{—v+t(E+J)(t,x,v)—//{VI(E—%J)-X,:—I—VUJ-V}}des}
o Jt

+ V. fo (w0, vo) - [—(E+J) (t,x,v)—k/tO{VI(E—kJ)~Xt+VvJ~V}}dT}



144 HYUNG JU HWANG

Vo (7 00) [—m (= 1) (£ +J) (i, 5,0)

[j/s{vz(E+J)~Xt+VUJ~V;}des]

+ Vo fo (2", 0) - {—(E+J) (E,i«,f;)+[ {Vx(E+J)-Xt+VUJ-Vt}dT]

29+ O (e), E € CY7, and

+0("),
where we have used (£,%,0) = (t,x,v) + O (e), &' =
fo € CY". Notice that

—o1 4+ (t—1") (BE1 + 1) //{VI(E1+J1)~Xt+VUJ1-V}}des

ol
= 7t ’Ul = ttUOh

since 9! = vg + O (¢). Therefore, we get

(4.7)

RCERD
= (~t;vor) fou, (&*500)

3
+3" fow, (7 00) [_@j -
=2

/ / V.E, Xthds]

+ fou (2,00) {— (Br+ ) (8,2,0) + | {Vz (Br+ 1) - X + Vo Ji - Vi} dT}
i

3 el
3" fou, (7 10) [—Ej G+ [ Vv.E, -xtdr] Lo,

where we have used that f% < C(w) and |V f*| < C.
Now we treat fF (£, #,7). The trajectory first hits (¢!, 2!, 8'), reflects (£, &', Po!)
with Po' = (=01, 03, 03), and then hits (0, Zo, 7). We have

3
(& 2,0) = ff () + fhods + fhods + ) fhow)
j=1

t (f A ) From the specular reflection condition on f, we have
&', Pot), f;“ (29" = f’c e pol), j=23,

G
=f§1_ Lt et), j=2,3.

A0 =
k(71 =1 =1y _ _ k=1 (71 =1 p=1 k(71 =1 =
f ( T U)__fﬁi (t,x,Pv), fﬁ; (t T v)
Since the trajectory finally hits (0, Zq, ¥9) directly, we have that

fE (8%, 0)
{szo[ Pil 41 (B + ) (25

it s
—/ [{Vx(E+J)-Xt+V1,J~Vt}des
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~ O ~
+Vufo- {— (E+J)(t, 20" +/ {V.(E+J) X, +VUJ'V%}dT:| }t;
{1

0 s
+ {meo : {6@' + / (Vo (E+J) VoX + VIV, V} des}
t

El

0
+Vofo- { AV (E+ ) VIX+VUJV$V}dTH.a{5:1
tl
3 Bos
+ {mem |:_t16ij —/ AV (E+J) VIX—#VvJVIV}des}
0 tl

0
+ Vo fo- [&-j +/ {Vo(E+J) V., X +VUJVzV}dT] } - Op P’
tl

at (0, %, D). Notice that t* = O (¢) to deduce
ft ({75:76)
= t} [—wao . Pyt — Vofo- (E4J) (El’i,lﬂjl)}

3 3
+ Z 3gf;f0xj — f0v18,§’l~1% + Z vaj (9{77]1- +0 (e),
j=2 j=2
evaluated at (0, x0,v0). By using (0, Zo,09) = (Ojl,P@l) +0(e) = (0,;%1,131)0) +
O (g), we get, at (0,561, on),

ft (t,2,0)
=1; [-Pvo - Vafo (&', Pvo) — (E+ J) (0,3, v0) - Vo fo]
3 3
+ Z 8fj}f0$j - 8577%]00111 + Z afﬁjl'vaj +0 (577) ,
j=2 j=2
where we used fy € C1". Hence, we have, by Lemma 2.10,
(4.8)
ft (t,%,9)

3
= E%U()lfom (fl,PUO) - Zt}voj'f(]zj (95171,0) +t~% (E1+ Ju) (07551»@0) fou, (951,@0)
j=2

3 3
_ Z{}EJ (0,2") fou, (2',00) + Zf%v()jfom,» (2", v0)
j=2 J=2
3 t s
3 {ﬁj (- B (B7) - / / V.E ~Xtd7ds} fou, (&', v0)
- tt Jt

fl

+ |: (E1 + Jl) ({, Zi’) + {Vm (El + Jl) : Xt + VvJ . V;t} dT:| f0v1 (5171}0)

{1

3 3
+ ) HE; (0,2") fou, (&' 00) + {—Ej (Li)+ | V.E; -Xth] fou, (21, v0)
. t
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Now we estimate the difference of (4.8) and (4.7) as
(4.9) £ (t,2,0) — fF (£,2,0)]

= |t} [vo1 fowr (21, —v01,v02,v03) + vo1 fou, (2, v01, V02, v03)

+2(E1+ 1) (0,2, v0) fou, (1,00)]| + O (7).

By our compatibility condition (4.2), the first term exactly vanishes. Similar com-
putations hold for z- and v-derivatives. Therefore, in Case 2, we obtain from (4.9)
that

‘V(t,:c,v)fk (taxav) - V(t,a:,'u)fk (Eajaﬁ)’ < c Ht - ﬂ + |J) - 'i‘ + |U - ’DHW :

Case 3. The trajectories emanate from (tl_l,xl_l,vl_l) and (fl_l,a?l_l,ﬁl_l).
In this case, we also have

(4.10) [t =8 4 2 = E T 4 T =T < Ce, O =C (w).

Consider the back-time trajectories from (¢'=!, 2!~ v!=1) and (¢!, 2171, 0'71). As-
sume that they are (¢=!, 2'~1, v"~!) and (¢, 27!, 5°1). Without loss of generality,
we may assume that the first trajectory hits {t = 0} after [ bounces. We have then

T (¢, 00 07) = JI T FEI (470 g0 i)

Vv ki (fj,£j7ﬁj) = ij,1Vf’€—j—1 (fj_l,jj_l,ﬁj_l) .
Taking the difference, we get

VE (28 0f) — VR (3 0

= JI_ AV L AJL VR (T 2T 00
By induction on j,

‘ka (fl_l,l‘l_l,vl_l) _ vfk ({l_17;fl_17’17l_1)‘

l
S H Jj,l I:ka—l—l (tl,.’L'l,'l)l) _ ka—l—l (fl,i‘l,ﬁl)]‘
7j=1

1
+ Z ’AJ;_I [Vf’“*j*1 (tl*jJrl’wlfjJrl’vl—jJrl)
j=1

kit ({lfj+175~cl7j+1’1~}l7j+1)] ‘ '
Notice that the number of bounces is uniformly bounded as in Lemma 4.2, and thus
|H§-:1 J;_l‘ < C. We thus get
(411) |vfk (tlflvxlfl’ ,Ulfl) _ ka (El*l’ ‘%l7175171)|
l
< C’vfk—l—l (tl,(El,’Ul) _ ka—l—l ({17551751” + CZ ‘AJ;_l’ .
j=1

Since E € CY" and by Lemma 2.10, (4.10), and applying the mean value theorem,
we obtain

(4.12) ’AJ;’_l‘ < Cen.
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Similarly, by using fo € C17, we get
(4.13) A7 A A e v il (A | RO
Hence by plugging (4.12), (4.13) into (4.11), we finally obtain
|vfk (th,xlq’vlq) _ vk (flil,ilfl,ﬁlflﬂ < Cen,

Since |t1 - fl| + ’xl — i1| + ’vl — 171| < Ce, the second cycle hits ¢t = 0 after at most
one bounce, as in Case 2. Applying Case 2 yields

|V(t,x,v)fk (ta z, ”U) - v(t,z,v)fk ({7 j’7 ﬁ)| < Cen.

This completes part (b) of the theorem.

For part (a), we construct f§* smooth such that fJ' — fo a.e., ||f§llct is uniformly
bounded (depending on | fo||c1), and f§ satisfies (4.3) and (4.4). By the result of
part (b), there is a unique solution f™ of (4.1) with data f§ such that ||f"|c: <
C|fgllcr £ C. Hence part (a) follows by letting n — co. For part (c), we refer the
reader to [8]. d

5. Regularity for the Vlasov—Poisson system with the absorbing bound-
ary condition. In this section, we consider the fully nonlinear Vlasov—Poisson sys-
tem with the absorbing boundary condition for the Vlasov and the Dirichlet boundary
condition for the Poisson equation:

ft+v'vwf+VLp'vvf:Oa
f‘t:():f(% f|'y+ =g,

Agozp:47r/fdv,
¢laa = 0.

THEOREM 5.1. Let k > 1,3 < p < oo. Let fo € WFP (Ily) and g € WEP (yT)
have compact support and fo > 0, g > 0. Assume the compatibility condition (3.10)
holds for x € 9Q and v with n, -v < 0 and for |a| < k — 1. Moreover, assume the
vanishing condition:

g(t,z,v) =0 on~°,
0% (t,z,0)| < Clng - 0| on~t, |o| =k,
where a is a multi-index. Then there erists a unique solution f € WP (II) and
o € WF2P where f has compact support in v.
We shall construct approximate solutions by establishing an iterating system. Let

19 be a suitable smooth extension of fy to II and satisfy the corresponding compati-
bility condition (3.10). Let the iterating sequence be

(5.1) Ofm ™ pu - Vo frt 4 VeV, M =0,

fn+1‘t20 = fO, fn+1"y+ =9,

(5.2) Ap" =p" = 47r/f”dv, ¢"laa = 0.



148 HYUNG JU HWANG

Since fo > 0, g > 0, and ¢"|sq = 0, by the Vlasov equation (5.1), we have
A" =A4mp" = 47T/f"dv > 0.

By the strong maximal principle and since f; is not identically zero,
©" < 0on Q.

We then apply the Hopf boundary principle to get

E"(t,z) ng = ifn (t,x) > 6, > 0
on 9Q N {support of f*}. From Theorem 3.6, f™*! is well defined in W*? for every
fixed n.
We shall use the idea which was in [18] for the Cauchy problem without boundary.
The key step is to represent the macrocharge density p™ in the presence of the complex
particle path, along the straight-line trajectory

dX dv
(53) T
We consider the back-time trajectory of dX/dt =V, dV/dt = 0 from a generic point
(t,z,v). We denote by B (t,z,v) = (to,xo,v) the possible boundary point when the
trajectory hits 9Q. We first note that for v # 0, there exists a unique zg = x¢ (z,v) €
0N along the straight-line trajectory from (¢,x,v) since €2 is convex. Let ¢y be the
time when the trajectory from (¢,z,v) hits the boundary. Then xzo = z + v (tg —t)

and tg —t = [(zo — x) - v] / |v|*. We define

a(w,0) = —[(zo — ) - 0] / [o]*

to see that the function a (z, v) is locally differentiable as follows: Let £ be the function
which defines the boundary (2.8). Then we have

Ozf(mo)zf(fl}‘i"l)(to—t)).

Set s = tg —t to get that 0 = & (x + sv) = £ (s;2,v) and 0¢/0s = VE(xg) - v =
Ng, - v < 0 since € is convex. By the implicit function theory, s = tg —t = —a (z,v) is
a locally differentiable function of x and v. Before giving the representation formula
for the macrocharge density, we present two preliminary lemmas.

LEMMA 5.2. a-Vza+Vya=0 forv#0, x€Q.

Proof. Let & be the function which defines the boundary (2.8). Since xg =
x — va (z,v), we have

(5.4) 0=~¢(x9) =& (x —va(x,v)).

Differentiate (5.4) with respect to x to get

(5.5) VE—(VE-v)Vza=0.
We now differentiate (5.4) with respect to v to get

(5.6) —aVE — (VE-v)Vya = 0.
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By multiplying (5.5) with a and adding it to (5.6), we get
(V& (zg) -v) [aVza + Vya] = 0.

Since V& () - v # 0 from the convexity of §2, the lemma follows. 0

First we note that for fixed x and ¢, a (x,v) = t defines a smooth surface except
for the origin and a (z,v) < ¢ defines the three-dimensional unbounded set outside of
the surface while a (z,v) > t defines the object inside of the surface. We shall use the
spherical coordinates (r, ¢, 6) instead of the usual rectangular coordinates (vy, va, v3)
for the moment. We denote by v = (1/7", Vo, ug) the outward normal in the spherical
coordinates to the surface defined by a (z,r, ¢,8) =t for fixed x. We also denote by
dS (r, ¢,0) the surface infinitesimal increment for the surface a (z,7,¢,0) = t.

LEMMA 5.3. Let T (z,v) be the Cl-vector-valued function in x,v. Then for
fixed t, we have

div, / T'(z,v)dv = / div, T (x,v) dv
a(z,v)<t a(z,v)<t

—/ I (x,r ¢,0) r? sin¢~anV—dS (r,0,0),
a(x,r,¢,0)=t Qar

div, / I (z,v)dv = / div, I’ (z,v) dv
a(z,v)>t a(z,v)>t

+/ T (z,7,¢,0)r2sin ¢ - VoalodS (r, 6,0).
a(z,r,¢,0)=t Qr

Proof. Note, by multiplying (5.6) with v, that v-V,a # 0 if ¢ 0Q and v # 0
since a =tg —t # 0, V€ # 0, and V¢ - v # 0. By using the spherical coordinates, we
get rdr.a # 0 and so d,.a # 0. We first consider a C''-scalar function h (r, ¢, 6) without
z-variables. We change variables as follows:

(T’ ¢)7 0) — (7717 2, 773) 3
where for fixed x,
(57) m :a(xaT7¢70)a Uy :¢7 13 =4.

We find the Jacobian of (11,72, n3) with respect to (r, ¢, 0):

da da da

or 9¢ 90
J <m,nz,g3> =det| 0 1 0 |= ?.
T ’¢, 0 0 1 T

For fixed 71, we differentiate with respect to x the equation 71 = a (x,r, ¢,0) to get
(5.8) 0=V.m =Vya+a.Vr

or
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V.a

ar

Vaer = —
We now consider, using the change of variables (5.7) back and forth and by changing
the orders of the integration,
0
h(r,¢,0)drdédd
axi a(z,r,¢,0)<t

9 1
= o, /1<th(r (1115 m25m3) , 1125 m3) adnldngdn?,

oh or 1 Qrpy, + QrpTa,
:/ 2 *dmdwdﬁs—/ h— = di dipadis
m <t or 8(Ez Qr m <t ay

h aw hary, = hag,ary
/ / / { - — :|d772d773d771
a? a3’
h T ZTi;wvrr
/ [ a - ha Lsa } d
m<t @y

(hay, ), n hay,; ary

2
a(x,r,¢,0)< |: ag a’g

h ;i )y h z;, rr
/ [—(a’)wr B2:8 ]ddqsda
a(xz,r,¢,0)<t Ay ar

_ / <h“””) drdgdo
a(z,r,¢,0)< Ay r

(@,7,,0) =

—~~
o
=)

Nl

Il

] ardrdpdd

where we have used (5.8) in (5.9) and the Gauss theorem in (5.10). We now consider
a Cl-scalar function h (v1,v2,v3). We then take the z;-derivative (i = 1,2,3) of the
integration of h with respect to v over a (x,v) < ¢ for fixed t. By changing variables
from (v1,va,v3) to (r, ¢, 0), we have, by (5.10),

7]
8331'

(511) / h(vl,vg,vg) d’Uld’Ugdvg
z,v)<t

0

2 .
:_/ %yrdS(r,gb,H).
(z,r,¢,0)=t

ar

/ h(r,é,0)r? sin pdrdpdd
a(s,r,$,0)<t

Now we consider the integration in our lemma

divm/ T (z,v)dv
a(z,v)<t

0 / I (z,v) dv
Ti Ja(z,v)<t

0
0y, T (z,v) dv — / Iy sm¢ “Ly'dS
a(x v)<t a(x,r,¢,0)=t Qr

Il
NE

=1

[
Mw

i=1
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where we have used the product rule of the differentiation and (5.11). This leads to
the conclusion of the first part of the lemma. Similarly, we get the second part, and
the lemma thus follows. d

We present the representation formula for the macrocharge density in the following
lemma.

LEMMA 5.4 (charge density). Let "' and ¢" be defined in (5.1) and (5.2). Let
B(t,z,v) = (t—a(z,v),z —a(z,v)v,v) €.
Then

(5.12)
Pt = [ fala-woyder [ goB(tavd
a(z,v)>t a(z,w)<t
t
—div, / / (t—1) (Vo ) (1,2 — (t = 1) v,v) drdv
a(z,w)>t JO
t
—div, / / (t—7) (Vo ) (1,2 — (t — 1) v,v) drdv.
a(z,v)<t Jt—a(z,v)
Proof. We fix x and ¢ and consider the back-time straight-line trajectory from

a generic point (¢,z,v). If t < a(x,v), then the back-time trajectory of (5.1) hits
{t = 0} directly. From the transport equation (5.1), we have

L

P (e —(t—1)v,0)dr
-

(5.13) fTH(t,x,0) = fo (x — tv,v) + /t
0

= fo (x—tv,v)+/t [atan (r,2— (t—T1)v,v)
0
+o- Vo f" M (rz— (t—7)v,0)] dr

— fo (x — tv,0) — /O dive (Vag )] (o — (4 — 1) v,0) dr

— fo(x— tv,0) /Ot divy [(Vog™ ™) (ry — (= 7) 0, 0)] dr
_ /Ot (t = 7)dive (Vo ") (rya — (t — 7) 0, 0) dr

= fo (z — tv,v) — div, /Ot (Vo ) (1,2 — (t— 7)v,0) dr

— div, t -7 L") (o — (t— 1) v, v) dr.
dive [ (4= (Tog ) (ra = (1= 7))

On the other hand, if ¢ > a (z,v), then the backward trajectory hits the boundary
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0f). Hence we have

(5.14)
¢ d
7_f"“ (rye—(t—7)v,v)dr

P (t,z,v) = go B(t,x,v) + .

t—a(z,v)

t
—goBtao+ [ B e (o))
t—a(z,v)

+v- Vet (rx— (t—1)v,0)| dr
t
=goB— [div, (Voo™ )] (1,2 — (t = 7)v,0) dr

t—a(z,v)

=goB— /t div, [(Vrgo"f”+1) (ryx—(t—1) v,v)] dr

—a(z,v)

— /75 (t —7)divy (Vo ") (2 — (t — 1) v,0) dr

—a(z,v)

t
:goB—divU/ (Voo ) (1,2 — (t — 7)) v,v) dr
t

—a(x,v)

- divx/t (t—7) (Vo f*) (1,2 — (t = T)v,0) dr

—a(z,v)
+ (Vfganf"”l) (t—a(z,v),z—a(z,v)v,v)  Vya

+ (Vfganf"”l) (t—a(z,v),z—a(x,v)v,v) aVa
t

:goB—divU/ (Voo™ ) (1,2 = (t — 7)) v,v) dr
t

—a(z,v)

t
— div, / (t—r7) (Vmcp"f”Jrl) (ryx — (t—71)v,v)dr,
t—a(z,v)

since we apply Lemma 5.2 to get, for v # 0, x ¢ 99,

(Vw@nfn+1) (t —a (l’,’l)) , X —a (Q},’U) v, U) : V’Ua’
+ (Vmgonfnﬂ) (t—a(z,v),z—a(z,v)v,v) aVa
= (Vo™ f") (to, o, v) - [Vya + aVza] = 0.

For fixed t and z, we now integrate v over R®. By dividing v by the region {a (z,v) > t}
and the region {a (x,v) < t}, we get

p"+1 (t’ I) = / fn+1 (ta €, ’U) dv + / fn+1 (t, Z, ’U) dv
(w,v)>t a(z,v)<t

=1 + Is.
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For I;, we use (5.13), Lemma 5.3, and the Gauss theorem to get
/ it e, v) dv
a(z,v)>t
z/ fo(w—tvv)dv
/ / Voo™ -ny) [P (1,2 — (t — 1) v,v) drdS (v)
(z,v)=t
- / dlvz/ (t—7) (Vo ") (12 — (t — 1) v,v) drdv
(z,v)>t 0
z/ fo(x—tvv)dv
/ / Voo™ - ny) fr (1,2 — (t — 1) v,v) drdS (v)
(z,v)=t
—div, / / (t—7) (Vo ) (1o — (t — 1) v,v) drdv
(z,v)>t
t T
+ / / (t—1) (Vmcp”f”'H) r?sin¢ - Vzay—ds (r,9,0),
a(z,r,¢,0)=t J0O Qy

where n, is the outward normal to the surface {a (z,v) = t} which contains inside
the region {a (z,v) < t}. For Iy, using (5.15), Lemma 5.3, and the Gauss theorem,
we have

/( - Yt x,v) do
a(x,v)<t

:/ go B (t,z,v)dv
(z,v)<t

/m / Vag™ o) f (1,3 = (¢ = 7)v,v) d7dS (v)

- / div, / (t—7) (Vo f) (1,2 — (t = 1) v,0) drdv
(z,0)<t

0

:/ go B (t,x,v)dv
(z,v)<t

/ / V" -ny) [P (1,2 — (t — 7)) v,v) drdS (v)
—div, / » <t/0 (t—7) (Vo " ") (1,2 — (t — 1) v,0) drdv
t "
— / / (t—7) (Vﬂp”f"“) r?sin¢ - Vya—dS (r,0,0).
(z,r,¢,0)=t JO Ay

Therefore, by all the cancellations out of I; and I, we obtain our lemma. 1]
In the following, we shall give some estimates on the sequences of f™ and ™,
uniformly in n.
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LEMMA 5.5. We have ||f™t||rr < C for 1 <p < oo and

||v9”(pn+1 HLP(Q) (t)

t
<[ [, [ 1o @@= 0170 (i = 0 1) 0 ara

L ()

/]RS /0 la<ty (V) Lg—aypy (7) (E —7) |(Vg0"f"+1) (r,x—(t—1)wv, v)| drdv

L (Q)

where 1 < p < oo, and C is a constant independent of n, depending only on the data

fo and g.
Proof. The first estimate on f" easily follows from standard estimates for the

transport equation (5.1). For the second estimate, we employ the elliptic equation
A"t = pntland the representation formula for "1 (5.12). We note that since
is bounded and the v—support of fy is compact, we get

(515) |:/ f() t’U v 1{a(z v)>t} ( )dU:| S C.

Similarly, we have

(5.16) |:2 * [/ f(B(t,2,9)) 1@<ty (V) dv] <C.

By standard elliptic estimates for a bounded domain [15] and by (5.15), (5.16), our
lemma follows. |
Now we give the lemma which is a major step for the global bound on the velocity.
LEMMA 5.6 (high moments bound). Let f™ and ¢™ be defined in (5.1), (5.2).
Then for a fized m > 3, we have

sup/ [o]™ f™ (t,z,v) dedv < oo
QxR3

n

for all 0 <t < T. In particular, there is a uniform bound (independent of n) for the

support of f™.
Proof. We shall closely follow the method given in [18]. We first define

M, (f™) (s) = sup / [o|™ " (t,z,v) dzdv.
0<t<s JOXR3
Then note that

(5.17) i/ [o|™ ™ (t,z,v) dedv = —/VI (o™ vf") dedv
dt Joxrs

- / | V- (V" f) dadv.

By the Gauss theorem, the first integral on the RHS of (5.17) becomes

—/ [v|™ f"v - ng.dS (z / /
OO xR3 v, <0 vNg >0

_7/ [v|™ g (t,z,v)v-n,dSdv
e

<C
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since ¢g has compact support. For the second integral on the RHS of (5.17), we first
use the integration by parts to get

—/Vv (o] Ve ) dado + m/ [o|™ V™V, (Ju]) dedy
= m/ o™ V"V, (Jv]) dedo,
where the first integral vanishes. Now, by using the interpolation method, we get

‘—/|v|m V, - (Vzgpnflf") dxdv

= ‘m/“}lm [V (Jo]) dady

<0 [ [Vap () ( [t [ |v|’“f”dv> ”
o lwl>R wl<R

< C'/ |V (t,2)] (R_l / [o|™ fdv + C’Rm+2) dx
)

m+2
m—+3
Q

m+

<C Hvz@nil (t)||Lm+3(Q) My, (f7) GE )

where R = (f [v]™ f”dv) 1/ (m+3) was used for the optimal inequality, and we used the
Hoélder inequality. Thus we get

(5.18)

d n n—1 ny (o) (m+2)/(m+3)
25 Mm (f7) (5) SCHC()S;IS)SIIVM O] Lwss () Mo (£7) (5) :

where C; depends on fo and g. We shall estimate ||V " ! (t)HLm%(Q). From
Lemma 5.4, we have

(5.19)
HVﬁD”*1 Hm-‘r3 (t)
t
/Rs/o Lia@w)zty (0) (& =7) [(Ve" 271 (1,2 — (t = 7) v,0)| drdv
/R \ /O Lia(ew<ty (V) Li—ay) (7) (t = 7)

X |(Vg0"_2f”_1) (rye—(t—71)v, v)’ drdv

S ‘

m+3

+

m+3
+C.

We shall estimate the two terms in the RHS by the sum of the long-time integral and

the short-time integral:
t to
T W T R
to m+3 0 m+3

(5.20) ‘
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where t( is some small time to be chosen later. We first do the long-time estimate
which is the first term in (5.20). Choose r = 3, r = 3/2. By the Hélder inequality,

(5.21) ‘

¢ tq .
/t H <c dT[ sup 1B (7)lly 2 Mom (/)| ()
0 m+3

to T T€(0,T)

< Clogty sup ||B(r Mo M (f7) 074 (1)
T7€(0

< Clog oMy, (f)/ " ().

For the short-time integral over (0,%p), we use the standard interpolation estimate
for pn—2,

(5.22) p"_2:/ f"‘de:/ +/
RS i<k Jijo|>R

<CRY |2+ OR [ ol 2o

3/(m+3)
<C (/ [v]™ f"_de> for any R,

Where we have chosen R so as to optimize the last inequality. Since ‘Vmcp" 2| <
B ‘2 * p"~2 (x), we apply the Hardy-Littlewood—Sobolev inequality to get

(5.23) sup HVZQO” 2HTSC' sup Hp -
7€(0,t) T€(0

<C sup ||p” 2Hm+3
7€(0,t)

< CMg, (f77%) (1),

where oo = 3/ (m + 3) < 1, and we have used that B?ZT < ™3 and 0 is bounded. By
the same argument as in (5.22), we have

1/r
(5.24) sup [/ ooz /" (t =72 — Tv,0) dv}
7€(0,t) R3 B m+3
= sup / 1{a(m,v)>t}f”_l (t—71,2—7v,0)dv ’
7€(0,t) || JR3 - m+3
< CMI/(7n+3) (fnfl) (t)
<CH0 sup [V Y
T€(0,t)
<C+C sw }|vx<p" b tmes
T€(0,
_ (k+3)/(m+3)
<C+C sup |[[p" ' (r)
s o O
<CH+COMG (") @),
where ™ + k+3, 8= m’%?;l, we have chosen ¢, k such that % = mi% — %, m+3S

Hk+3

k+3 S q, and we have used M (t) < C{M, (0) + SUP,¢(0,1) va(pn—l ey
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Therefore, by (5.23), (5.24),

(5.25)

‘ /to ‘
0 m—+3

SC’tg_?’/T sup ||Vm<p
T€(0,t)

anH
r

1/r
X sup [/ 1{a(z,v)>t}f"_1 (t—T,2—TU,0) dv]
7€(0,t) R3 B

m—+3

+Ct3_3/r sup |}Vmcp"_2||r
T€(0,t)

1/r
X sup |:/ 1{a(;c,v)§t}l(t—a(x,v),t)fnil (t —T,x—TY, U) d”U:|
T€(0,t) R3

m—+3
< e Mg (N () [0+ oM (Y ()]
< Ot M (1) (1)

Hence we have from (5.19), (5.21), and (5.25)

sup [|[Vae" Y| (8) < C + ClogtoMy, (f) ") (1) + Ctg %" M2+ (271) (1)

0<t<s m+3

Setting M,, ,, = maxi<i<n, My, (fi), we get, by (5.18),

d

%Mn,m () < C + ClogtoMpm (1) + Cty 2" Mg HFHm+D/(m43) (1)

Choosing t(2)—3/r = ]\Zfrlb;,’,l_g_(m“)/(m%), we deduce our lemma. By choosing m > 6,

we have ||V;¢"||p~ uniformly bounded and get a uniform upper bound for the
v-support of f". 0

Now we shall prove the main theorem of this section, Theorem 5.1.

Proof of Theorem 5.1. We first show that

177 H e < 00,

uniformly in n, for fixed 3 < p < oco. It suffices to show it in W1°°. In doing so, we
shall prove that ||V ||w1. does not grow faster than log || f" || 1.- in time. Since
Ap™ = p", 9" |aa = 0, we have

@" (t, 1) = /Qp" (t,y) G (z,y) dy,

where G (z,y) is Green’s function for the Laplacian, associated with the domain .
Then we find in [6] or [17] that

VOIS o ViG] <

|z —y




158 HYUNG JU HWANG
Assuming that the v-support of f™ is uniformly bounded in n, we have
Oy " (t, )
= Opya, A G (z,y) p" (t,y)dy
= 0, /Q@x]G (z,y) p" (t,y) dy
=0, /Q%G(x,y) [p" (t,y) — p" (t, )] dy + 311-/(23%9(9”’?/) Pt w) dy
= [ 9, G @) 7 () = 5" (1)) dy — [ 0., (0) 01" (1)
+0,,0" (t, ) /Q 0o, G (2,y) dy + p" (1, 7) Oz,a, /Q G (@,y)dy
= p" (t,2) oo, /QG(x,y) dy +/ O, G (,y) [0" (t,y) — p" (8, 2)] dy

z—y|>a

+ /| _ e O @) 00) = 0" 1)y
z—y|<a

Hence we get

(5.26) | Opia, " (t,2)]
1 1
<C+C ——=dy+C — 1" lwr. () |z — yldy
lz—y|>a |2 — Y| lz—y|<a |2 — Y|

< C+Cllogal + Callf"[ly1. (o)

<0 L 1og (14 1/l )| -
Here we have chosen a with a = ||f”||;vllm(m. For 0, V™, we employ from (5.1)
pp +div, j" =0,
where j" (t,2) = [vf™ (¢, 2,v) dv, to get
Opa ™ (t, )
= 0Oa, /Qdivy i* (ty) G (z,y) dy
=[G [ 60,0y

z—y|>a

- /| A ()22, G ) dy + / div, G () 9a, G (2,)) dy
fL’—y _(l

lz—y[>a

- / J" (t,y) Vy0s, G (x,y) dy.
|[z—y|>a
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Therefore, by the same choice of a, we have

|Ora, 0™ (8, 2)]

< Call My +

T—Y .,
/| | Y (t,y) 0,G (2, ) dSa (y)
z—y|l=a

a
n
+/ 7" ( ygldy
le—y|>a [T — Y]

< Callf"lwr(q) + €+ Cllogal

<C[t+10g (141 hwrmqen) |-
Now we start with the first derivatives of ™. By taking v-derivatives of (5.1), we get

O (Ouf™) + vV (O f™) + Va1 Vo (9 f) = =0 f™.
Along the trajectory given by d%X"’l N d%V”’l = V,¢" !, we have
s [0uf" (5, X" (5), V" ()] = —0uf,
and thus
0, f™ (£, 2,0)] < C + /Ot 0.7 (5)] ds.
For 0, f™, we have
O [0 f" (8, X771 (5), V1 (s))] = = (Vabae" ™) - Vi f " (5, X771 (5), V! (9))

which implies, upon integrating over time,

Dafo (w0, v0) = [y (326" ) - (Vo f™) (5) ds,
1im8—>t0(t7ft7v) axfn (S) - ftto (aigonil) : (vvfn) (S) dS,
depending on the back trajectory from (¢,z,v) to either (0,zq,v9) or (to,Zo,v0)

with 29 € 0Q. To compute lim,_; (; 5.0) 0z f" (5), we look at V. f™ (to,xo,v0) =
VTg (to, xo,v0) +1ims_yy VEf™ (5, X" (s), V"1 (s)). From the transport equation

O f™ (t,,v) = {

ol VT 4 (v-ng) V" + Ve -V, f =0,

we get, by the assumption |Vg (to, zo,v0)| < C |vg - Ny |

lim 9. f" (s)

s—to(t,z,v)

- ’7 (U ’ nm)_l [gt + Ug ’ ng + vﬂcgonil : ng] |(t07930,U0)

<C,

since the support of g is bounded and HVﬂp”‘Wm is uniformly bounded. Therefore,
we have, by (5.26),

t
e R e O PO | VAT

t
< C+/O log (L4 [/~ (5)[y1.00) [|0aor /7 (5)]], s,
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where C' depends on || follwi., ||g|lw1., the support of fy and g, ||V<,0”’1||Oo7 and
the constant C' which appears in the vanishing condition on g. We thus get a uniform
bound on || f™ (t) ||w1. by the Gronwall inequality. For the ¢-derivative, we employ

40 -Vef "+ Voo 1V, f" =0

to get a uniform bound on [|0; f"||«. It follows that ||f"(|\;1., is uniformly bounded
in n. For higher derivatives, for general ¢ < k, we can take the derivatives repeatedly
in (5.1). The only term involving vagp is that 9°V " 19, f, where |a| = i.
Since |0y f"]|oo < C, we then have

n—l“
wip

Jor v 10,17], < 079", 10,77 < 077,
We know, by elliptic theory, that

IV o < CIF lyprionn -

Thus, H anHWM is unformly bounded in n, and the uniform boundedness of
™ lww+2.» is also established from elliptic theory again. Once we have shown that
| frtt HW,W and ||¢"||lwr+2.» are uniformly bounded in n, we obtain their weak limits
f and ¢, respectively, in W*P? and W**+2P by a standard compactness argument.
Last, since V™ converges strongly to V¢ by compact embedding (p > 3), we can
pass to the limits in (5.1) and (5.2). The uniqueness of solution for (5.1) and (5.2) can
be attained by considering the difference between two solutions with the same initial
and boundary conditions. It reduces to looking at the solution for the same (Vlasov—
Poisson) system (5.1) and (5.2) with vanishing initial and boundary data. Integrating
(5.1) over all x,v leads to the decrease of the L! norm in time. Together with the
positivity of solution, we obtain the uniqueness. Hence, our theorem follows. 0

6. Regularity for the Vlasov—Poisson system with the purely specular
boundary condition. In this section, we assume the purely specular boundary con-
dition for the Vlasov equation with the Dirichlet boundary condition on the electric
potential. The Vlasov—Poisson system takes the form

(6.1) fe+v-Vof + V-V, f =0, flizo= fo(z,v),
ftzv)=f(t,z,v.), x€0Q,
Agpzp:47r/fdv,
SD‘BQ = 07

where fy is a given initial datum. We now restrict ourselves to the case when (2 = B
and fy is spherically symmetric, where B is the unit ball in R?. Then we look for a
spherically symmetric solution of (6.1) with datum fy. Our main result in this section
is the following.

THEOREM 6.1. Assume that there is an wy > 0 such that fo (x,v) is constant for
(1- |x\2)2 +(2v-7)? < wo.

(a) Assume fo € C1. Let fo have compact support and satisfy the compatibility
conditions (4.3). Let fo be spherically symmetric. Then there exists a unique spheri-
cally symmetric solution (f,p) of (6.1) such that f € W12 with compact support.

(b) Assume fo € CY for some n > 0. Let fo have compact support and satisfy
the compatibility conditions (4.3) and (4.4). Let fo be spherically symmetric. Then



REGULARITY FOR THE VLASOV-POISSON SYSTEM 161

there exists a unique spherically symmetric solution (f,¢) of (6.1) such that f € C1H,
@ € C3H for some 0 < pu < 1, with compact support.

We first give a preliminary lemma on some conserved quantities in a bounded
domain without the spherically symmetric assumption.

LEMMA 6.2. Let f be a classical solution of (6.1) on some time interval (0,T)
with a nonnegative compactly supported datum fo € C* (Q X RB). Then we have the
following:

(a) The total mass is conserved, i.e.,

/ / fdvdz = constant = M.
Q JRr3

(b) The total energy is conserved, i.e.,

/ {/ v|? fdv + |E|2] dx = constant = €.
o L/r3

(©) llp@)[Lss < C for 0 <t <T, C = C([[folloo, €0)-

Proof. For (a), notice that from the specular boundary condition f|, is an even
function of the normal component x-v of v. Hence by integrating the Vlasov equation
over x and v, we get

0=—/88/st~vf(t,x,v)dvd5'z:/Bp(t,x)dm—/po(m)dx.

Therefore, the total mass is conserved. For (b), by multiplying the Vlasov equa-
tion (6.1) with |v|? and then integrating over x and v, we get

0= 8t/ / |v]? fdvdx+/ / Vg - <|U|2’Uf) dzdv
Q Jr3 r3 JQ
—2//Uf~Edvdac
= 8t/ |v|2 fdvdx—i—/ / V- Ny |v|2 fdS,dv
Q Jrs r3 Joq
—2//vf~EdvdJ;
:at// |v|2 fdvdx—2/j-de.
Q Jrs Q

Here we have used the specular reflection condition at the boundary. Now we integrate
(6.1) over z and v to get

pt+ Ve -j=0,
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where j (t,2) = [vfdv. Next we observe that
1d
5%/ |E\2dx:/E~Etdac:/VgaoV<ptd:r
Q Q Q
:/ sonm'V%de—/wA%dfﬂ
G19) Q
= —/ ppidx
Q
:/Sovx'jdx
Q
:/ gp[/nw-vfdv} dSI—/V<p~jd:c
X9) Q
= —/ j - Edx,
Q

since ¢|asn = 0. Hence we obtain part (b). Since |E (t,z)| < Cr=2 % p(t,z), we have,
by the Hardy-Littlewood—Sobolev lemma,
1B ()]l g2 < Cllr2 % p(t)]] 2 < Cllp ()l o5

7/12 5/12 5/12
<Clpll2 e I3 < Clo @134

By a standard interpolation method, we get
/ p5/3dx < C’/ |v|2 fdv < C. O
Q

Now we construct approximate solutions for (6.1) through an iterating sequence.
Let f° be a suitable smooth extension of fy to II, which satisfies the compatibility
conditions (4.3), (4.4). Consider the following iterating sequences:

(6'2) ftn+1 +v- vxfn+l + V‘»On : van+1 =0, fn_‘—l‘t:O = fo,
(e, v) = P (e, v), @ € 0B,

Ap" = p" = 47r/f"dv, ¢lop = 0.

In contrast to the absorbing boundary case, we shall adopt the idea in [14] in
order to get a global bound for the velocity in the spherically symmetric case. The
key point is to employ the invariance of the angular momentum in order to control
the particles with small tangential angles near the boundary.

We assume that fj is spherically symmetric; i.e., fo (Az, Av) = fo (z,v) for every
proper rotation A on R3. It is known that the solution f (¢,z,v) satisfies the same
property in  and v, and therefore depends only on r = |z|, u = |v|, a, and ¢, where
« is the angle between x and v. The density p depends then only on r and ¢ and has
the following representation:

p(t,r) = 27r/ / f (t,r,u, @) u? sin adadu.
o Jo

Thus ¢ is also radial and has the following relation with p:

1" 1
<p(m):_,/ >\2p(t,)\)d)\—/ Ao (t, \) d\ + My /4,
T 0 .

lirr%) r2p, (t,r) = 0.
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To see this relation, we use the harmonic operator A, in the spherical coordinates,
Orr + %Br. Hence the corresponding Poisson equation in these spherical coordinates
is
2
(63) Prr + ;SDT = p-

By multiplying (6.3) with 7 and 72, respectively, we get

(6.4) (rer + ), =1p,
(T2<Pr)r =r?p.

We integrate (6.4) from r to 1 and (6.5) from 0 to r to get
1
(6.6) or(t ) = o= o= [ AN

1 T
(6.7) ror = ;/ X2p(t, \)dA,
0

where we used the Dirichlet boundary condition. Plugging (6.7) into (6.6) yields

o (t,r) = _7/ N (t, \)dX\ — /)\pt/\)d)\—kcpr(t 1),

E(t,z) = Vap(t,r) = //\2 (t,\)d\ = r~2M (t,r )%,

where M (t,r) = [ A2p(t,\) dX. Note that |E| = r=2M (t,r) and M (t,1) = My /4
for all ¢. Note also that for x € 9B, n, - E (t,z) =z - E (t,xz) = M (t,1) = My /47 =
constant. Hence, ¢, (,1) = = - Vzgo(t,:c) lr=1 = M (t,1) = My/4m. Moreover, the
normal component of the electric field at the boundary is unchanged over time. This
satisfies the condition for Corollaries 2.3 and 2.8.

Spherical symmetry also leads to a simplification of the trajectory equations:

dR
. — = A

(6.8) I U cos A,
dU  cosA
&2y
dr R2 (. 8),
dA M(r,R) U\ .
o (2R T A
dr ( rU T R) S

where R (t;t,r,u, ) =7, U (t;t,7,u,) = u, A(t;t,r,u,a) = . Notice from (6.8)
that we have the invariance of angular momentum, i.e.,

(6.9) RU sin A = rusin « for all 7.

This is a crucial fact which will be used to treat such trajectories with small tangential
angles near the boundary and lead to the velocity bounds. We now define, for ¢ > 0,

P (t) =sup{U (s;0,r,u,0) |0 < s < t, (r,u,a) € {support of fo}}

and note that P is nondecreasing.
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LEMMA 6.3. There exists a constant Cy such that forr >0 and 0 <t < T,

B (t,z)| = M(’;’ ") < min (Moﬂ,clp‘*/?' (t)),
T

where Cy depends only on | folleo and ||p (t)||zs/s and My is the total mass.

Proof. Clearly |E (t,z)| < Myr—2. We employ the Poisson equation Ay = p with
the Dirichlet boundary condition for ¢ and F = V,p. Let 0 < Ry < 2, and note that

t
Bols [ L0,
|z —y|

p(ty Pty

S P
lz—y|<Ro |T — Y| lz—y|>Ro | — Y|
—2

<@l [ -yl

|z—y|<Ro

Fllo Ol 2 [ [ )™ dy]

—lp (D)l 47 Ro + [lp (8)|[ o5 [27 (RG% —272)]
< lp ()]l 47 Ro + ||p ()| 1o/ (27)*° Ry *°,

2/5

2/5

where we have used that |VG (z,y)| < C/ |z —y|* for Green’s function G (z,y) for

the unit ball. Now we choose Ry > 0 such that Ry ||p(t)[|., = |lp (t)]| 5/ RJ4/5 or
Ro=(llp (@)l zsss / o (t)]lo.)°/°. Here we may assume that Ry < 2 because otherwise
we would have ||p (t)|lcc < C, and so ||E (t,)||cc < 87 ||p (t)],, < C. Then we have

lloo

B (t.2)] < C o175 lp (0)]|2°
< Cllp 120, 1foll 2 PY2 (1)
< PY3 (1),

This completes the proof of the lemma. ]

Now consider a trajectory through some point (rg, ug, ag) with a positive angular
momentum roug sinag > 0. Then L = R (s) U (s) sin A () is a positive invariant along
the trajectory. We define

1
K (t,r) = —/ min (MOA_2,01P4/3 (t)) d\

for 0 <r <1andt>0. Note that K is continuously differentiable in r and increasing
in r. We also let Ry = MY/? (CyPY3 (1)) ""/%. 1£0 < A < Ry, then C1PY/3 (1) <
MoA~2, and if Ry < A < 1, then MoA~=2 < C;P*/3 (t). Here again we may assume
without loss of generality that Ry < 1, since otherwise Mol/2 (ClP4/3 (t))71/2 >1
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would imply the bound for P (t). We compute
1
K (t,0) = _/ min (MO/\‘2,01P4/3 (t)) d\
0
Ro 1
= —/ CLPY3(t)dh— | MoA~2d\
0 Ro

1/2
= —CyPY3 (t) Ry + My — MY/? <01P4/3 (t))

1/2 1/2
_ _Mol/z (01134/3 (t)) T+ My — M(}/Q (01]34/3 (t))

1/2
> —oM/? (01134/3 (t)) .

Therefore

1/2
K (t,m) = K (t,m2)] < K (£,0)] < 2My/ (€Y (1))

= CoPYO (1), Cy=2M)"*C),
LEMMA 6.4. Assume that either R >0 on [ty,ts] or R <0 on [t1,ts]. Then

S0 (1) = 3U% (1)

5 S[K (R (t2),t2) — K (R (t1),t2)] -

Proof. Note that

t2%’f(R(s),t2)R(s)ds

- /t2 0K :
t1

5, (B(s),t2) R(s)
since R is of one sign on [t;, %] and K /dr > 0. We also note that for ty > s,

|K (R (t2) t2) — K (R (t1) ,t2)| =

ds,

oK . _
5y (B(s) t2) = min (MO)\ 2 0, pA/3 (tg))
> min (MO/\_Z7 C1PY3 (s))
oK
= or (R(s),8).

Since |E (t,z)| = r=2M (t,r) < OK/Or (t,r) and by the trajectory equations (6.8), we
have

O (R (5) 1) e )| 2 | D (R (), ) R (s)
M (R(s), 5 -
> | S U eosAls) ’U(S)U(s)’
d1
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Therefore
2ld1_,
K (R(t).t2) ~ K (R() )] = [ |250%(5)|ds
t1
2 q 1
> —_U?%(s)d
- /t1 ds 2 (s) S’
1 1
= [ZU? (ta) — =U? (th)].
U )~ 0 )
Thus the proof of the lemma is complete. ]

LEMMA 6.5. On each interval where the trajectory is smooth, R can be zero at
most one value of s. If R(t1) = 0, then R has an absolute minimum at t; on the

interval.
Proof. Recall that R(s)U (s)sin A(s) = rougsinag # 0 by hypothesis. So
R(s) #0,U (s) #0, and sin A (s) # 0 for all s. From (6.8),

R(s) =U (s)cos A(s);
thus R = 0 only if A (s) = 7/2. However, also from (6.8),

L (MBE.S) UYL
i) =~ (T + ) a© <0

for all s. A(s) is thus strictly decreasing for s on the interval and hence can attain
the value of 7/2 at most once. So R can be zero at most once as long as the trajectory
is smooth on the interval. Now suppose that R (t1) = 0; then A (s) > 7/2 for s < t,
A(t)) = n/2, and A(s) < 7/2 for s > t;. From (6.8), R < 0 for s < t;, R(t;) = 0,
and R > 0 for s > t;. Therefore R has an absolute minimum at #; on the smooth
interval. a

Now we consider the trajectory from a generic point (¢, z,v), and we compute the
lower bound on the time spent travelling from one boundary point to another along
the trajectory.

LEMMA 6.6. Let (to, 29, ’UO) and (tl, xt, vl) be two points on the trajectory, where
20, 2! € 0B, t° < t'. Suppose that the trajectory stays inside the unit ball B on the
interval (to,tl). Then

tl tO S mi |UO| cos af cos a? 1
— 1" > min | — y )
3suPn<act [E ()™ 3101 [supye,cy 12 (s)]]

where o is the angle between x° and v°.

Proof. Since

tt T
at =20 + / V(rydr, V(r)=1"+ [ E(s)ds,
¢

0 tO
we have
) tt tt
1=|a']" = 1:0+/ V(r)dr| - 1:0+/ V (r)dr

10 10

tt T tt

:1+2m0-/ {v0+ E(s)ds] dr + V (r)dr

tO tO tO
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So, if t1 — 0 <

1
then
[supg<s< 1E(s)[o0]/2?

0<22% 0% (¢ =) +2 sup [|E(s)]|, (t' — t0)2
0<s<t

2
+2 ’1)0’2 (t' - t0)2 +2 ( sup ||E (s)||oo) (t' — t0)4 )
0<s<t

0<a® o*+ sup |E(s)]|, (£ —1°) + [o° (¢* —1°)
0<s<t

+ sup [|E(s) (tl - to) .
0<s<t

Thus we get

1 0 —T v
th—t0> — .
[vO0]” + 2supge oy |12 (5) ]| oo
Note that —a® -0 > 0. If supge,<; | E ()]l < [0°],
‘1}0‘ COS (XO
3SUPogsgt ||E(8)||oc’

th— 9 >

_ 2
and if supg< <, |1 £ (s)ll o > [v°[,
0
cosa
th—t0 > ———.
- 30

We thus obtain the lemma. 0

In the presence of the boundary, the central obstacle comes from the particles near
the boundary with so many bounces or with small tangential angles, in addition to
the difficulty of controlling the particles with high velocity. However, the invariance
of the angular momentum enables us to overcome this main barrier. The angular
momentum of the particles near the boundary with small tangential angle amounts
approximately to the full velocity. This observation suggests that the initial control
on the invariant angular momentum would reduce to the concern only on the high
velocities and thus lead to resolving our difficulty.

Now fix M7 > 0. Suppose that fo (x,v) = 0 when the angular momentum

F =rusina = |z| |v|sina > M.

Note that if (¢, 2z,v) connects with an initial point in the support of fy, x € 9B, and
| — /2] < /6, then

1

3 [v| < |v|sina = F < My,
and therefore
(6.10) lv| < 2M;.

Let (to, 29, vo) be the first point at the boundary on the back-time cycle from (¢, z,v)
such that |vg| < 2Mj, and, if it does not happen through the whole cycle, then let
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to = 0. Let the back-time cycle from the time ¢ to the time t° be (t, z,v) = (¢, 2", v"),
(et an o), o (69,29,0%). We compute Atf = ¢t — ¢ for 0 < i < n— 2.
By the definition of the time ¢°, we have, for all i, |ai — 7r/2| > 7/6 and |vz| > 2M,
from (6.10). We then apply Lemma 6.6 to compute the time spent for each bounce,
and we have

i i 2M; Y3 M
(6.11) - [o"] cos > 2= L Py,
3supp<s< £ (s)lloe — 3C1PY3 (1) V30

_cosa > V3/2 _ 1 P,
3lvil T 3P(t) 23

—1/2 p—
v A A OF

1

[SUPogsgt |E (S)HOO]

Since we are concerned only with large P (t), we may assume that the minimum

among (6.11) is \/%V[él P=4/3(t), and thus At’ > f]\;—élp"lm (t). Therefore the number

of bounces on the cycle through (¢, z,v) until the time t° is at most

\/gTCl P4 /3

(6.12) i

(t) + 2.

Now we assert the control on the increase in velocity.

LEMMA 6.7. Let f be a classical solution of (6.1) on [0,T) with a smooth, non-
negative, spherically symmetric data fo which has compact support and vanishes for
(ryu,a) ¢ (0,1] x (0,00) x (0,7), rusina > My, where My is a fized constant such
that My > 8\/§M5/2C’f/2T, My is the total mass, and C; = C’||p(t)|\5L/£,g Hf0||ié9.
Then P (t) is uniformly bounded on [0,T).

Proof. Let t € [0,T). Consider the back-time cycle from a generic point (¢, z,v)
with 0 < rusina < M;. Suppose 0 < t; <t <t and the trajectory remain.s smooth

on [t1,ta], i.e., [t1,t2] is between the two jump times, and suppose that R > 0 on
[t1,t2] or R <0 on [t1,t2]. Then, by Lemma 6.4,

(6.13) %U? (ts) < %UQ (1) + |K (R (t2) , £2) — K (R(t1) ,12)|

1
< 5U2 (t1) + CoPYO (1),

where Cy = 2M01/2Cll/2. Now we consider the back-time cycle from (¢, z,v) until the
point (to,ajomo) with }v0| < 2M;. Suppose that R vanishes somewhere on [ti7ti+1].
By Lemma 6.5, there is only one such point where R vanishes; call it £ € [ti7ti+1].
Then R cannot change sign on [ti,fi] or on [fi,ti+1]. Hence applying (6.13) twice
yields

%UZ (ti+1) < %UQ (_El) + 02P4/6 (t)

IN

%UQ (t') + 20, PY0 (t).
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Thus by (6.12), we have through the back-time cycle until ¢,
1
5U2 (t) < U2 (t°) + 2NC.PY5 (1)

U (t°) + 205 (@;ClP‘*/g (1) + 2) P5 (1)
1

N~ N

IN

2v/3C,CyT

<
= M,

(2M)? + P2 (t) +4C, PV (1),

N |

where N is the number of bounces through the cycle. Applying this argument to all
possible (¢, z,v), we deduce

44/3C,CsT

P2 (t) < (2M)? 4+ 8C,PY0 () +
M,y

P2 (t).

Since 4v/3C,CsT = 8\[M01/203/2T < M, we have
P2 (t) < (2M;)? 4+ 8Co P (1) + C3P? (1),

where C3 = 4‘[0102T < 1. This implies that P (t) is bounded by a constant depend-
ing on C’l, Cs, T and M, or a constant depending only on the total mass M, the
total energy g, T, || follco, and M;. Thus this completes the proof of the lemma. d

We consider our iterated scheme (6.2). Lemma 6.7 yields the uniform and global
bound on the support of f™.

Now we are ready to establish our main theorem in this section, Theorem 6.1.

Proof of Theorem 6.1. Uniqueness can be proven by using a standard Gronwall-
type argument, since now the solutions are regular. We consider only the existence.
By Lemma 6.7, p™ is uniformly bounded in L*°. Therefore, ¢™ is uniformly bounded
in W?2? for 1 < p < co. Hence ¢" is uniformly bounded in C*". We claim that

V™ (t,x) = V" (t,y)] < —L|x —y[log |z —yl,

where L is independent of n, and |x — y| is small.

Proof of the claim. By the representation formula for the Poisson equation with
the Dirichlet boundary condition for ¢, we have

n n r—z r—Z
Vet ta) = [ () |t - T e
B jz— 2" |z[ |z - 2]
where | - | is the Euclidean distance in R® and z = z/|z|?. Therefore,
r—z
el
B |z — z|
/p"(t,z)[ ro2 i 1 z|.
B ez —2°  J2lly — 2

(6.14) [V[p" (t,z) — " (t,y)]| <

+
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We first estimate the first term of (6.14) by splitting it as

/p”(t,z) $—Z3_ y—z3 dz
B [z =27y -2

/ +
{zminflo—z|,ly—z12[z—yl/2} J{zmin[le—z||y—zl|<|le—y|/2}
— 1 + L.

For I, we apply the mean value theorem to get

Tr—z Yy —z 1 1
3 3 §C|ﬂf7y| 3+ 3 -
|z — 2" |y — 2z |z — 2" |y —2|
Thus
S |
L <Clz -y —dr < —L |z —y|log|z —y]|,
le—yl/2 "

where L is a constant, independent of n. For I, without loss of generality, we may
assume that |z — z| < |z — y| /2 and |y — z| > |z — y| /2. Then we have

T—z y—z T —z T —2z T — 2z y—z

3 3 3 3 3 3
|z —2" |y —2| lz—z2" y—=z" ly—z2" |y—z|

2 [z —y
Cle—zt ly -l
Hence,
lz—yl/2 c 1
I2§C/ 1dr + C |z — y| —dr < —L|z —y|log|z —y|.
0 o—yl/2 T

Now we estimate the second term of (6.14). By the change of coordinates z — z =
z/|2?,

/pn(t,z)[ $—273_ y_z3]dz‘§0/
B |2l e =27 |z]ly — 2] 2121
<cf

which reduces to the first case. Thus our claim holds.

By Lemma 4.4, f™ is uniformly bounded in C°" for some n > 0. Hence, from
the Poisson equation Ap™ = p", sup; <, <; || V29" || c1.n and || V49" co., are uniformly
bounded. Applying Theorem 4.1 to f™ yields that f" is uniformly bounded in C*,
u > 0. Let f and ¢ be the limits of f™ and ™, respectively, such that

r—Zz Yy—z

_3 _
lz— 2" |y—2]

r—z Yy—z
|3

—_3 _
lz -2 |y—=z

sup Vel i + IVapllcow + ([ fllorn < o0
0<r<t

Therefore, our theorem follows by letting n — oo in (6.2). a
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Abstract. We investigate the uniqueness of limit solutions for a free boundary problem in heat
propagation that appears as a limit of a parabolic system that arises in flame propagation.
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1. Introduction. In this paper we consider the following problem arising in
combustion theory:

Auf —uf = Yef(u) inD,

(1.1) .
AYe-YF = Yef.(u®) inD,
where D ¢ RV+1,

This model appears in combustion theory in the analysis of the propagation of
curved flames. It is derived in the framework of the theory of equidiffusional premixed
flames analyzed in the relevant limit of high activation energy for Lewis number 1. In
this application, Y¢ represents the fraction of some reactant (and hence it is assumed
to be nonnegative), and u° is minus the temperature (more precisely, u® = X\(Ty —T°),
where T is the flame temperature and A is a normalization factor). Observe that
the term Y*f.(u®) acts as an absorption term in (1.1). Since T° = Tj — (u®/\),
it is in fact a reaction term for the temperature. In the flame model, such a term
represents the effect of the exothermic chemical reaction and f has, accordingly, a
number of properties: it is a nonnegative Lipschitz continuous function which is pos-
itive in an interval (—oo,e) and vanishes otherwise (i.e., reaction occurs only when
T > Ty — ). The parameter ¢ is essentially the inverse of the activation energy of
the chemical reaction. For the sake of simplicity we will assume that f.(s) = E% (),
where f is a Lipschitz continuous function with f(s) > 0if s < 1 and f(s) = 0
if s > 1.

For the derivation of the model, we cite [1].

Here we are interested in high activation energy limits (i.e., £ — 0). These limits
are currently the subject of active investigation, especially in the case u® = Y*. This
is a natural assumption in the case of traveling waves.

In a previous paper [5] we have studied this problem in the case in which the
initial values for u® and Y¢, both converging to the same function wug, satisfy the
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condition

Y5 () — ug(x)

(1.2) -

— wo(z) uniformly in RY
with wg > —1.
Problem (1.1) reduces to a single equation, namely,

(Pe) Au® —up = (u® +w®) fo (u),

where the function w®(z,t) is the solution of the heat equation with initial datum
Y§(x) — ug(x). Observe that u® +w® =YY< > 0.
By (1.2) there exists the limit

(1.3) lim ——— =

and wo(z,t) is the solution of the heat equation with initial datum wq(z).

In this way, at least formally, the reaction term converges to a delta function, and
a free boundary problem appears. In fact, we have proved in [5] that every sequence
of uniformly bounded solutions to (1.1), {u®"}, with &, — 0 has a subsequence {u*"+ }
converging to a limit function v > 0 which is a solution of the following free boundary
problem:

®) { Au—u; =0 in {u > 0},

|[Vut| = /2M(z,t) on d{u > 0},

where M (z,t) = fiwo(m’t) (5 + wo(z, 1)) f(s)ds.

We see that the free boundary condition strongly depends on the approximation
ug, Yy of the initial datum ug. In particular, the limit function u is different for
different approximations of the initial datum wu.

It is therefore natural to wonder whether the only condition that determines the
limit function w is condition (1.2).

The purpose of this paper is to prove that this is indeed the case, at least under
some monotonicity assumption on the initial value ug. This monotonicity assumption
is similar to that used to prove uniqueness of the limit for the case u® = Y© in [9].

In fact, we follow here some of the ideas of [9] which are based on the fact that any
limit function is a supersolution to (P). This is still true in our case. Unfortunately,
the simple construction in [9] of supersolutions of (P.) that approximate a strict
classical supersolution of (P), when w® = 0, does not work in the general case unless
one asks for a lot of complementary conditions on the reaction function f.

Therefore, we follow here the construction done in [7]. The proof that this con-
struction works is based on blow up of the constructed functions. This technique was
already seen to work very well for (P.), under condition (1.2), in [5].

Our result can be summarized as saying that under suitable assumptions on the
domain and on the initial datum ug, there exists at most one limit solution to the free
boundary problem (P) with nonvanishing gradient near its free boundary, as long as
the approximate initial data, converging uniformly to ug with supports that converge
to the support of ug, satisfy (1.2).

Moreover, under the same geometric assumptions, if there exists a classical solu-
tion to (P), this is the only limit of solutions to (P.) with initial data satisfying the
conditions above. In particular, it is the only classical solution to (P).
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As already stated, in the case u® = Y¢, uniqueness results for limit solutions
under geometric hypotheses similar to the ones made here can be found in [9]. Also,
in [7] the authors study the uniqueness and agreement between different concepts of
solutions of problem (P) (again in the case u® = Y©) under the assumption of the
existence of a classical solution and under different geometric assumptions. See also
[8] for a similar result in the two-phase case.

Notation. Throughout the paper IV will denote the spatial dimension. In addi-
tion, the following notation will be used:

For any 79 € RY, tg € R, and 7 > 0, B.(z¢) := {z € RY/|z — 20| < 7} and
B, (x0,t0) = {(z,t) € RN /|x — 20| + |t — to]? < 72}.

When necessary, we will denote points in RY by x = (xq,2'), with 2/ € RV -1,
Given a function v, we will denote v = max(v,0).

The symbols A and V will denote the corresponding operators in the space vari-
ables; the symbol d, applied to a domain will denote parabolic boundary.

Finally, we will say that u is supercaloric if Au — uy; < 0, and u is subcaloric if
Au—u; > 0.

Outline of the paper. An outline of the contents is as follows. In section 2 we
give precise definitions of classical sub- and supersolutions and prove a comparison
result for problem (P) (Lemma 2.1). In section 3 we state some auxiliary results. In
section 4 we prove that a strict classical supersolution to problem (P) is the uniform
limit of a family of supersolutions to problem (P.) (Theorem 4.1), and as a conse-
quence we obtain the boundedness of the support for limit solutions in the geometry
under consideration (Proposition 4.1). Finally, in section 5 we prove our main result
(Theorem 5.1). We discuss in a final section (section 6) the results proved in the
paper as well as other possible geometries that can be considered.

2. Preliminaries. Following [9] we will define what we will understand by a
classical supersolution of problem (P). Note that the meaning of classical here differs
from the usual one since we are not assuming that the function is C* up to the free
boundary or that the free boundary is C*.

DEFINITION 2.1. A continuous nonnegative function u in Qp = RN x [0,T], T >
0, is called a classical supersolution of (P) if u € C*({u > 0}) and

(i) Au—wu <04nQ={u>0};

(i) Hmsupgs(y,e)— (e |Vuly, s)| < /2M(x,t) for every (x,t) € 002N Qr;

(iii)  u(-,0) > up.

Respectively, u is a classical subsolution of (P) if conditions (i), (i), and (iii) are
satisfied with reversed inequalities and lim inf instead of limsup in (ii).

A function u is a classical solution of (P) if it is both a classical subsolution and
a classical supersolution of (P).

Neat, a classical supersolution u of (P) is a strict classical supersolution of (P) if
there is a 6 > 0 such that the stronger inequalities

(") Hmsupgsy,¢)— (e [Vuly, s)| < /2M(x,t) =6 for every (x,t) € 02N Qr,

(iii") w(-,0) > ug+ 6 on Qo = {up > 0}
hold. Analogously, a strict classical subsolution is defined.

As a consequence of the results in [5], one can check that every limit solution
u=1lim;_, . u% of (P) is a classical supersolution in the sense of Definition 2.1.

PROPOSITION 2.1. Let u® be solutions to (Paj), with we satisfying (1.3) and
wo > —1, such that u®9 — u uniformly on compact sets and €; — 0. Assume that
the initial datum ug is Lipschitz continuous and that the approzimations of the initial
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datum verify |u(z)|,|Vug(x)| < C, and uf € C*({u§ > 0}). Then u is a classical
supersolution of (P).

Proof. We have to verify conditions (i)—(iii) of Definition 2.1.

From our assumptions on the initial datum wug, by Proposition 5.2.1 of [6], we
have that 4 — u uniformly on compact sets of Q7 so that u is continuous up to ¢t = 0
and (iii) holds.

Now (i) is proved in [5].

Finally, (ii) is a straightforward modification of Theorem 6.1 of [2] using Lem-
mas 2.1, 2.2, and 2.3 of [5] instead of Lemma 3.2 and Propositions 5.2 and 5.3 of [2],
respectively. 0

Let us suppose that the initial datum wug of problem (P) is starshaped with respect
to a point zp, which we always assume to be 0, in the following sense: For every
A€ (0,1) and x € RY,

(2.1) uo(Az) > up(z), Ay CC Qo,

where Qg = {ug > 0}.
Also, assume that

(2.2) wo(Az,0) < wo(z,0) ifzeRY, 0< <1,

Let u be a classical supersolution of (P). Let A and X be two real numbers with
0 <A< X < 1. Define
(2.3) uy(z,t) = %u()\x, A1)
in Q7/x2. The rescaling is taken so that u, is a supersolution of the heat equation in
(2.4) Q= {(z,t): (2, \%t) € Q}.

Moreover, the fact that 0 < A < A’ < 1 makes u, a strict classical supersolution of
(P).

In fact, let us first see that
MMz, \*t) < M(z,t) if0<A< 1.

This is a consequence of the fact that the function

a— (s+a)f(s)ds

—a

is nondecreasing and

(2.5) wo(Az, \2t) < wp(z,t)  if0O< A< 1.
In fact, the function wy(z,t) = wo(Az, A%t) is caloric, and wy(x,0) < wo(z,0) if
0 < A < 1 by hypothesis. Thus, by the comparison principle, wy(z,t) < wq(z,t) in

RN x (0,T).
Now let (xq,tp) € d{uy > 0}. Then

limsup  |Vuy(z,t)| = lim sup
Qa3 (z,t)—(z0,to) Q5 (Az,A2t)—(Az0,\2t0)

A A
S y\/zM(/\l'o,AZto) S \/ZM(J?Q,to) — (1 — )\/) \ 2M0,

where 0 < My < M(z,t) in RN x (0, 7).

A
qu(/\x, )\2t)‘
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On the other hand, since Ay CC g, there holds that
up(Az) > v >0 if z € Q.

Thus, for x € Qq,

ux(z,0) = %uo()\x) = up(A\x) + (% - 1)uo()\x)

1
> ug(@) + (5 — 1)
The following comparison lemma for problem (P) can be proved as Lemma 2.4 in
[9]. We omit the proof.
LEMMA 2.1. Let ug satisfy (2.1) and wq satisfy (2.2). Then every classical sub-
solution of (P) with bounded support is smaller than every classical supersolution of

(P); i.e., if u' is a classical subsolution such that Q' is bounded and u is a classical
supersolution, then

Q' cQ and v <u,
where Q' = {u’ > 0} and Q@ = {u > 0}.
3. Auxiliary results. This section contains results on the following problem:
(Po) Au—uy = (u+ wo) f(u),

where the function f is as in section 1 and wyg is a constant, wyg > —1. The results
will be used in the next sections where (Pg) appears as a blow-up limit. The proofs
are very similar to those of Lemmas 4.1, 4.3, and 4.4 in [7]. We leave the details to
the reader.

LEMMA 3.1. Let a,b > 0, and let ¥ be the classical solution to

Yss = (Y +wo)f(y) fors >0,
1/)(0) = a, d)s(o) = *\/%.

Let B(r) = |7, (p+wo)f(p) dp.

(3.1)

(3.2) Ifb=0and a € {—wo} U[l,+0), then i) =a.

(3.3) Ifb=0 and a € (—wp, 1), then lim;_, 4o ¥(s) = +00.

(3.4) Ifb € (0, B(a)), then lim,_ o ¥(s) = +00.

(3.5) If 0 < b= B(a), then s <0 and lim,_. 1o P(s) = —wp.
(3.6) Ifb € (B(a), +00), then 1y <0 and lims_, o0 ¥(s) = —00.

LEMMA 3.2. Let B(7) be as in the previous lemma, let R, = {(x,t) € RN /2y >
0, —0c0o<t<~v},0<0<1+wpy, and let U € C?*T*1T5(R,) be such that
AU -U = (U+w)f(U) inR,,
U=1-46 on {z1 = 0},
—wo <U<1-96 in R.
(1) If 6 =0, then |VU| < /2B(1) on {z1 = 0}.
(2) If0 <0 <1+wyand 0 < o < B(1) are such that fi;f(erwo)f(p) dp =
B(1) — o, then |VU| = y/2(B(1) — o) on {x; = 0}.

Finally, we state a compactness result.
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LEMMA 3.3. Let €, Ve;, and 7., be sequences such that e; >0, €5 — 0, 7., > 0,
Ve, — 7V, with 0 <y < 400, 7o, >0, 7, — 7 with 0 < 7 < 400, and such that
T < 400 implies that v = +oo0. Assume that w® [e; converge to woy uniformly in
compact sets of RN x [0,T]. Let p > 0 and

2 2
A, = {(m,t) Jlel < 2, —min (rej,pz> <t < min (mﬂ)}-
£j £ &

Let (z0,t9) € RY x [0,T]. Assume that 0 < 0 < 1+ wo(zo,t0), and let ©% be weak
solutions to
w (g2 + ey, €5t 4 L)

€j

AT — ) = (ffj + ) f(@) in {z1 > he, (2, )} N A,
' =1—6 on {1‘1 :ﬁaj(x’,t)}ﬂAgj,
w (52 + ey, €5t + e,

- <u <1—-0 in{xy>h, (@ )} NA,,
£j

where (vc;,t.;) — (zo,to), with u¥ € C({w1 > he, (2, 1)} NA.,), and Vusi € L?.

Here he; are continuous functions such that he;(0,0) = 0 with he;, — 0 uniformly

on compact subsets of RN™! x (—7,7). Moreover, we assume that ||he,||c1(x) +

N ||Ca,%(K) are uniformly bounded for every compact set K C RN=1 x (—7,7).
Then there exists a function u such that, for a subsequence,

aeC?te ({21 > 0,7 >t > —7}),

¥ — a4 uniformly on compact subsets of {x1 >0, v >t > —7},

At — 1ty = (a4 + wo(zo, to)) f(@) in{xy >0,v>t>—7},

u=1-0 on{xy1=0,v>t>—-7},
—wo(x,to) <u<1-106 in{ry >0,v>t>—7}

If v < 400, we require, in addition, that
”BE]‘ (‘T/7t + Ve; — ’Y)HC’l(K) + HVI/E€]' (:L'/, t+ Ve; — ’7)”0%%(}()
be uniformly bounded for every compact set K C RN~! x (—00,v]. We deduce that

we CProlts ({z > 0,t <v}).

If 7 < 400, we let

p —
B., = {:z: / x| < E—j, T > hsj(a:’,—ng)},
and we require, in addition, that for every R > 0,

@ (x, —ng)||ca(gsjm§R(0)) < Cg,

and that there exists r > 0 such that

@ (x, *Tsj)”cHa(Egij,.(O)) <C,.
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Moreover, we assume that ||he,(z',t—7, +7)||cr (1) + | Varhe, (2, T — 7, +7-)||Ca,%(K)
are uniformly bounded for every compact set K C RN=1 x [—7,+00).

Then there holds that

ueC*:({x1>0,t>-7}), Vue C{0 <z <7, t > —7}),

u (2, —7.,) — u(x,—7) uniformly on compact subsets of {x1 > 0}.
In any case (1,7 be infinite or finite)
[Va©i(0,0)| — |Vu(0,0)].

4. Approximation result. In this section we prove that, under certain as-
sumptions, a classical supersolution to problem (P) is the uniform limit of a family
of supersolutions to problem (P.) (Theorem 4.1), and we prove an analogous result
for subsolutions (Theorem 4.2). Also, we prove that for compactly supported initial
data, limit solutions have bounded support (Proposition 4.1).

The following construction follows the lines of Theorem 5.2 in [7]. In our case we
have to be more careful with the construction of the initial data.

THEOREM 4.1. Let u be a classical supersolution to (P) in Qr with € C*({u > 0})
and such that {& > 0} is bounded. Assume, in addition, that there exist by, so > 0
such that

IVat| < V2M(x,t) — 8 on QN a{a >0},

|Vﬂ|>60 ian{0<a<So}.

Let w® be a solution of the heat equation in RN x (0, T') such that @ — wo(z,t)
uniformly in RN x [0, T] with wo € C(RN x [0,T]) and wo > —1+ &, for a certain
positive constant 6.

Then there exists a family u® € C(Qr), with Vu® € LE (Qr), of weak supersolu-
tions to (P.) in Qr such that, as e — 0, u — u uniformly in Qr.

Proof.

Step 1. Construction of the family u. Let 0 < 6 < 6; be such that

1

6

/ (s + W) f(s)ds = =,

1-6 8

where W is a suitable uniform bound of ||w® /e

define the domain D® = {u < (1 — f)e} C Q.
Let 2® be the bounded solution to

HLOC({Z>0})' For every ¢ > 0 small, we

Azf — zf = (25 4 w®) f(2°) in D%,

with boundary data

o) = (1—0)e ondD Nt >0,
) Z(z)  in DTN {t=0}.

In order to give the initial data z§, we let 1°(s, z) be the solution to (3.1) with

a=1-0, b:/l_a <s—|—w€(x’0)>f(s)ds, wo = L&0).

—we(z,0)/e € 5
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Assume first that |V4| is smooth. Then, by extending |Va(z,0)| to the whole RY as

a positive function, we let
R e 1-0-¢
90 (5737) *dj <Vﬂ($,0)7x) 9

and we define

1.
z5(x) = e (u(:c,O),:z:) .
€
If @ is not regular enough, we can replace |Vu(z,0)| by a smooth approximation
F.(x) so that the initial datum 2§ is C1T. We leave the details to the reader.
Finally, we define the family u® as follows:

. {a in {@ > (1-0)e},

z¢ in De.

Step 2. Passage to the limit. If (x,0) € D, then we have 0 < 1%(z,0) < 1 — 6.
Since, from Lemma 3.1, we know that —w®(z,0)/e < ¢°(s,z) < 1 —0 for s > 0,
it follows that —w®(x,0) < 2°(x,0) < (1 — H)e. Since f.(s) > 0, constant functions
larger than —w*®(z,t) are supersolutions to (P.). Therefore, (1—60)e is a supersolution
if € < g1, for some €; > 0, and we may apply the comparison principle for bounded
super- and subsolutions of (P.) to conclude that —w® < z¢ < (1 — f)e.

Hence,

sup |u® — | = sup |2° — u| < Ce,
Qr be

and therefore the convergence of the family u® follows.

Step 3. Let us show that there exists ¢y > 0 such that the functions u® are
supersolutions to (P.) for € < &.

If u® > (1—0)e, then u® = u, which by hypothesis is supercaloric. Since f-(s) > 0
and (1 —0)e > —w* if £ < g1, it follows that u® are supersolutions to (P.) here.

If u® < (1—0)e, then we are in D¢, and therefore, by construction, u® are solutions
to (Pe).

That is, the u®’s are continuous functions, and they are piecewise supersolutions
to (P¢). In order to see that u® are globally supersolutions to (P.), it suffices to see
that the jumps of the gradients (which occur at smooth surfaces) have the right sign.

To this effect, we will show that there exists €y > 0 such that

(4.1) [Vu®| > \/2M (z,t) — 8p/2 on d{u < (1 — @)} for e < .

Assume that (4.1) does not hold. Then, for every j € N, there exist €; > 0 and
(2e,,te;) € Q, with

g5 —0 and (z.,,t;;) — (wo,t0) € {u > 0},

such that

(4.2)  w(xe;,te;) = (1=0)g; and |Vu(z.,,1t,)| < \/QM(mgj,tEj) —b0/2.



180 J. FERNANDEZ BONDER AND N. WOLANSKI

From now on we will drop the subscript j when referring to the sequences defined
above, and € — 0 will mean 7 — oo.

We can assume (performing a rotation in the space variables if necessary) that
there exists a family g. of smooth functions such that, in a neighborhood of (., t.),

{us =1 -0)e}={(x,t) /21 — 21 = gc(2' — 2./, t — t.)},

(43) {uf < (1—=0)e} ={(z,t) /21 — 201 > g-(2' — 2/, t —t.)},

where there holds that
9:(0,0) =0, |V4xg:(0,0)] =0, e—0.
We can assume that (4.3) holds in (B, (z.) x (t. — p*, t. +p*)) N{0 < t < T} for some
p>0.
Let us now define

1 1
ac(xz,t) = gus(a:g +ex,t. +e%t), g.(a,t) = gga(ex’,52t),

and let

We have, for a subsequence,
Te =7 T, Ye =7,

where 0 < 7,7 < 400, and 7 and - cannot be both finite.
We now let

2 2
A= {@,t) / |zl < g — min (752) <t < min (’yé)}

Then the functions u¢ are weak solutions to

€ t 2
ATE — T = (a€+ v (%“:’ ete )) F(@)  in {z1 > g/, )} N AL,
w=1-46 on {z1 = g.(«/,t)} N A,
€ t %t —
LW temt +e) ey in {1 > go(«/, 1)} N A,
13

Note that we are under the hypotheses of Lemma 3.3. Then there exists a func-
tion @ such that, for a subsequence,

ue C*rtE ({21 >0, -1 <t <v}),
4® — @ uniformly on compact subsets of {x1 >0, —7 <t < v},
At — ay = (u + wo(wo, o)) f () in{z1 >0, -7 <t <~}
u=1-—10 on {x; =0, -7 <t <7},
—wo(xg,to) <u<1-—0 in {z; >0, —7 <t <~}

We will divide the remainder of the proof into two cases, depending on whether
T = +00 or 7 < —+00.
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Case 1. Assume 7 = +o0.
In this case, Lemma 3.3 also gives

[Va(0,0)] — [Va(0,0)].
On the other hand, @ satisfies the hypotheses of Lemma 3.2, and therefore
V| > \/2M (z0,t0) — 80/4 on {z1 = 0},

which yields

[Va®(0,0)] > /2M (o, to) — 360/8
for € small. But this gives

|Vus (zc, )| > /2M (z2,t.) — 60/2

for € small. This contradicts (4.2) and completes the proof in case 7 = +o0.
Case 2. Assume 7 < +00. (In this case vy = +00.)
There holds that @ (z, —7.) = 1uf(z. + ex,0); then

1>
1_
(4.4) w(x,—7) = ¢° <5u($5 +ex,0), zc + 5x> .

Here we want to apply the result of Lemma 3.3 corresponding to 7 < 4o00. In
fact, we can see that there exist C,r > 0 such that [|a°(-, —TE)|\01+Q(§T(O)) <C.

Now Lemma 3.3 gives, for a subsequence,

ueC*2 ({1 >0,t>-7}),

a*(x,—7.) — @(x,—7) uniformly on compact subsets of {z; > 0}.

Therefore, we get that (recall that in the case we are considering tg = 0)

(e, —1) = (1= 0 — |VE* (w0, to)] 1,30 )

where @(s, ) = w(lvlifx_g)‘,x) and 9(s,x) is the solution of (3.1) with

1-0
a=1-0, b= [ (s un(@0)f(s)ds, wn = uof.0)
—wo (z,0)
Thus,
w(x, —7) = ¥(x1,x0).

Since the function ¥ (z1,zo) is a stationary solution to equation (Pg), bounded
for x1 > 0, and @ = ¥ on the parabolic boundary of the domain {xl >0,t> —T},
we conclude that

u(x,t) =Y(z1,20) in{z >0,¢t> -7}

It follows from Lemma 3.1 and the choice of 6 that

1-6
(:(0,20))° = / (s +wo(@o,t0)) f(s) ds = M(xo,to) — %O

—wo(z0,t0)

1

N =
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That is,

\Va| > \/2M (2o, to) — 8o/4 on {zy =0,t > —7}.
But Lemma 3.3 gives
[Vas(0,0)] — [Va(0,0)],

which yields

|V (0,0)] > v/2M (0, to) — 360/8

for € small. Then

|Vu5(:c5,t5)| > \/2M(x67t6) - 60/2

for & small. This contradicts (4.2) and completes the proof in case 7 < +o0. 0
Remark 4.1. Observe that from the construction of u done in the previous proof
it follows that

ut =u in {u> (1-0)c}.

THEOREM 4.2. Let u be a classical subsolution to (P) in Qr withu € C1({u > 0})
such that {u > 0} is bounded. Assume, in addition, that there exist 6y > 0 such that

IVat| > 2M(z,t) + 6 on QN A{u > 0}.

Let w® be a solution of the heat equation in RN x (0,T) such that @ —
wo(z,t) uniformly in RN x [0, T]. Assume, moreover, that wo € C(RY x [0,T]) and
wo(xz,t) > =14 61 for a certain positive constant 6.

Then there exists a family u¢ € C(Qr), with Vu® € L2 (Qr), of weak subsolu-

loc

tions to (Pe) in Qr such that, as € — 0, u® — u uniformly in Qr.

Proof. The proof is analogous to Theorem 4.1. See [7] for a similar result in the
case w® = 0. ]

Finally, we end this section by showing that, for compactly supported initial data,
the support of a limit solution of problem (P) is bounded.

PROPOSITION 4.1. Let ug € C(RYN) with compact support. Let u§ converge
uniformly to ug with supports converging to the support of ug, and let w® be a solution
of the heat equation in RN x (0,T) such that @ — wo(x,t) uniformly in RN x
[0,T). Assume, moreover, that wy € C(RN x [0,T]) and wo(z,t) > —1+ & for a
certain positive constant 61. Finally, let u® be the solution to (P.) with function w*®
and initial condition ug.

Let uw =limu® . Then {u > 0} is bounded. Moreover, u vanishes in finite time.

Proof. Let —1 < wp < w®(x,t)/e. Then it is easy to check that

1 1
(4.5) M, = / (s+wo)f(s)ds < M(z,t) = / (s +wo(z,t)) f(s)ds.

—wo —wo(z,t)

Let us now consider the following self-similar function:

Ve, t;T) = (T — ) 2h(|z|(T — t)~/?),
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where h = h(r) is a solution of

N-1 1 1
h"+(r+r>h’+2h:0, 0<r<R,

2
(4.6) R'(0)=0, h(r)>0, 0<r<R,
h(R) =0, h'(R)=—/2M,,.

It is proved in [4, Proposition 1.1] that there exists a unique R > 0 and a unique h
solution of (4.6).
Moreover, it can be checked that if one picks T sufficiently large, then

V(z,0;T) >up+1 in {ug > 0},

and so V(z,t;T) is a strict classical supersolution of (P) with bounded support and
a positive gradient near its free boundary.

Now let u®/ be solutions to (P¢,), with initial data ugj converging uniformly to
ug such that support ugj — support ug such that v = limu®.

By Theorem 4.1, there exists a family v% of supersolutions of (P.;) such that
v%i — V uniformly on compact sets, and v (x,0) > w7 (x,0). Therefore, by the com-
parison principle, we obtain «® < v and, passing to the limit, u(z,t) < V(x,t;7T);
the result follows. d

5. Uniqueness of the limit solution. In this section we arrive at the main
point of the article: we prove that, under certain assumptions, there exists at most
one limit solution to the initial and boundary value problem associated with (P) as
long as condition (1.2) is satisfied.

Let us begin with the following proposition, which is the key ingredient in the
proof of our main result.

PROPOSITION 5.1. Let @ be a strict classical supersolution to (P) with bounded
support in RN x (0,T) such that there exists so > 0 so that |Vu| > 0 in {0 <4 < 8o},
and let w€ /e be solutions to the heat equation in RN x (0, T) converging to wo uniformly
with wg € C(RN x [0,T]) and wo > —1+ &1 for a certain positive constant b;.

Let u® be solutions to (P.) with function w® and initial condition uf, where uf
are uniform approximations of uy with support ug — support ug. Then

limsup v®(x,t) < u(zx,t)
e—0+

for every (z,t) € Qr.
Proof. Let @ be a strict classical supersolution of (P). Let us first define the
following regularization:

u(x,t) = (u(x, t +h) —n)*

for h,m > 0 small so that u is a strict classical supersolution of (P) with C} free
boundary, C1({u > 0}), and |Vu| > &, > 0 in a neighborhood of its free boundary.
So, by Theorem 4.1, there exists a v° supersolution of (P.) such that v* — u uniformly
in Qr—p.

Now, using the comparison principle, we conclude that u® < v® in Q7_j, and the
proposition now follows letting first ¢ — 0+ and then h,n — 0+. O

Finally, we arrive at the main point of the paper: the uniqueness of limit solutions
of (P).
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THEOREM 5.1. Let the initial datum ug be Lipschitz continuous with compact
support and satisfy condition (2.1). Then there exists at most one limit solution such
that its gradient does not vanish near its free boundary as long as the function w® in
problem (P.) satisfies condition (1.3).

More precisely, let ugj,ﬁg’“ be uniformly Lipschitz continuous in RN with uni-

€j

formly bounded Lipschitz norms and ¢, e, — 0. Assume that uy’ € C*({uy’ > 0}),
agr € CY({agt > 0}), uy,ag" — wo uniformly and support uy’, support ig*—
support ug. Let w® /e; and W /e, be solutions of the heat equation converging to the
same function wo € C(Qr), uniformly bounded from below by —1 + &1 for a certain
positive constant 61. Also, assume that wy satisfies the monotonicity condition (2.2).

Let u® (resp., u** ) be the solution to (P, ) with function w® and initial datum ug’
(resp., the solution to (P_ ) with function W and initial datum 45" ). Let u = lim u®s
and @ = Uma®~. If there exists so > 0 such that |Va| > 0 in {0 < @ < so}, then
u < Uu.

Proof. Since @ is a classical supersolution of (P), @ € C*({& > 0}), and, by
Proposition 4.1, its support is bounded, the function @, as defined in (2.3) satisfies
the hypotheses of Proposition 5.1 in Qr/x2 O Q7. So by letting A — 1— we arrive at

(5.1) u(z,t) < alx,t).

This finishes the proof. ]

THEOREM 5.2. Let the initial datum ug be as in Theorem 5.1. Assume that there
exists a classical solution v to (P) with initial datum ug, and let uy’ be uniformly
Lipschitz continuous in RN with e; — 0 such that uy’ € C'({ug’ > 0}), uy’ — uo
uniformly, and support uf)j—> support ug. Assume w® [e; is a solution of the heat
equation converging to wo uniformly with wy € C(RN x [0,T]) and wo > —1+ 61 in
RN x (0,T) for a certain 6; > 0. Also, assume that wq satisfies the monotonicity
condition (2.2).

Let u®i be the solution to (ng) with function w and initial datum uy’, and let
u=limu®. Then u=v.

In particular, there exists at most one classical solution to (P).

Proof. Since u is a classical supersolution to (P) and v is a classical subsolution,
Lemma 2.1 applies, and we get that v < u.

On the other hand, if we define vy as in (2.3), with 0 < A < X < 1, we have that v,
is a strict classical supersolution. Since vy has compact support (see Proposition 4.1)
it satisfies the hypotheses of Proposition 5.1. Thus,

u = limu® < wy.

Letting A — 1~ we obtain the desired result. 1]

6. Conclusions. In this paper we have proved that the limits of sequences of
solutions to (P.) with different constitutive functions w® and initial data uf coincide,
as long as certain monotonicity assumptions are made, if the limits of w® /e and of u
are prescribed.

The monotonicity assumptions are necessary to provide strict classical supersolu-
tions as close as we want to any classical supersolution. This kind of condition was also
used with the same purpose, in the case in which w® = 0, in [9] and [7]. In the latter,
a different geometry was considered; namely, the domain was a cylinder, Neumann
boundary conditions were given on the boundary of the cylinder, and monotonicity in
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the direction of the cylinder axis was assumed. In [7] it was proved that, if a classical
solution exists and w® = 0, then it is equal to any limit of solutions to (P.).
In our case, this is with w® # 0 satisfying (1.3) and nondecreasing in the direction

of the cylinder axis; the uniqueness result in the presence of a classical solution still
holds.

The cylindrical geometry has the advantage of giving the condition of nonvanish-
ing gradient in the positivity set of any limit solution. Since in dimension 2 one can
prove that limit solutions are classical supersolutions up to the fixed boundary, the
uniqueness of limit solutions follows in this case without further assumptions.
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SUFFICIENT CONDITIONS FOR THE EXISTENCE OF VISCOSITY
SOLUTIONS FOR NONCONVEX HAMILTONIANS*
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Abstract. We study a sufficient geometric condition for the existence of a W1:°°(Q) wiscosity
solution of the Hamilton—Jacobi equation

F(Du)=0 in Q,
u=¢ on O,

where 2 C R™ and F : R™ — R are not necessarily convex.
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1. Introduction. In this paper we consider the Dirichlet problem
{F(Du) =0 in

1.1
(1.1) u=¢@ on O,

where Q C R" is a bounded open set, F' : R" — R is continuous, and ¢ € Lip(0Q)
(by the notation ¢ € Lip(0€2) we mean that there exists a constant C' > 0 such that
lo(x) — o(y)| < Clz —y| for all x,y € 9Q). In particular, we are interested in the
existence of viscosity solutions u € W1>°(Q) N C(Q) of problem (1.1).

The study of Hamilton—Jacobi equations arises from classical problems in calculus
of variations, and the notion of viscosity solution has aroused much interest since its
introduction by Crandall and Lions in [11]. In particular, the interest of finding
viscosity solutions of problem (1.1) is well known and studied in optimal control
theory, differential games theory, etc. (see [1, 2, 9, 10, 21] for further details).

We should remark that the notion of viscosity solution is stronger than that of
the almost everywhere solution: indeed, the viscosity method, when it establishes the
existence of solutions, at the same time, gives a criterion of selection among them.
Moreover, under appropriate hypotheses, we have uniqueness, maximality, stability,
and explicit formulas (see [9, 10, 21]).

Here we want to investigate some sufficient geometrical conditions for the exis-
tence of W12 (Q) N C(Q) viscosity solutions of (1.1).

This study has been motivated by a recent paper of Cardaliaguet et al. [6], where
they gave a necessary and sufficient geometric condition for the problem (1.1) to admit
a W1 (Q) viscosity solution, under some restrictive hypotheses on € and ¢. In
particular, they showed that if  is convex, ¢ € C*(Q), and verifies the compatibility
condition

(1.2) Dy(z) € EUintcoE Vaz € Q,
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where E = {£ € R" | F(§) = 0} and int co E is the interior of the convex envelope of
E, then the condition
e (G1) Vy € 09, where the inward normal, v(y), is uniquely defined, there
exists A(y) > 0 such that

De(y) + Ay)v(y) € E

is necessary and sufficient for the existence of W1:°°(£) viscosity solution of (1.1).

We should remark that, as shown in [15], the compatibility condition (1.2) is
sufficient for the existence of infinitely many W1>°(Q) almost everywhere solutions
of problem (1.1); in fact, the aim of [6] was to compare the theory for existence of
almost everywhere solutions of implicit partial differential equations developed by
Dacorogna and Marcellini (see [12, 13, 14, 15]) with the classical method of viscosity
and to investigate the existence of W1 viscosity solutions under assumption (1.2)
only.

Our aim goes in a different direction: we want to show that the same type of
techniques used in [6] can be refined to obtain a more general result in a more general
framework. Moreover, we will see that the compatibility condition (1.2) can also be
weakened in order to obtain a condition for the existence of viscosity solutions of
equation (1.1).

We will prove that if Q is bounded and connected, not necessarily convex, ¢ €
Lip(092), and verifies a compatibility condition like (1.2) only on the boundary 9§
(the precise meaning of this condition will also be clarified in what follows), then the
geometrical condition (G1) can be replaced by

o (G2) Vy € 09, where NH@L\Q(y) # () there exists h € DV p(y) such that

Vv e NHQL\Q (y) there exists a unique A, > 0 such that
h+ /\u,hl/ € F,

where NH]J@\Q(y) is the normal cone to the set R™ \ Q and Dtp(y) is the
superdifferential of ¢ in y (see Definitions 2.1 and 2.5).
In particular, we will see that (G2) is a sufficient condition for the existence of
W1oo(Q) viscosity solutions of (1.1).

We should remark that (G2) strictly extends (G1): indeed, if  is convex, Vy €
0f), where the inward normal, v(y), is uniquely defined, we have N]\fl\ﬂ(y) ={v(y)},
and if ¢ € C*, then DT p(y) = {Dy(y)} (see Remark 2.2 and Proposition 2.6).

REMARK 1.1. If ¢ is an affine function, then the condition (G2) is also necessary
for the existence of viscosity solutions, as it can be deduced by the last section of [6].

To better understand the conditions (G1) and (G2) one should keep in mind the
following examples.

EXAMPLE 1.2. Let

Fi(6,6)=—(& -1~ (& -1)*; p=0.

Clearly,

Ei={¢cR: = =1}={(cR?: F(§) =0},
coE1 ={6eR? : |&]| <1, & <1},
E; C 9(coEy) and E; # 0(co Ey).
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F1G. 1. Partition of the plane in the definition of f.

For this classical example the condition (G1) allows us to say that the only convex 2
for which there exists a W1°°(§2) viscosity solution of

(13) {Fl(Du):O in 9,

u=0 on 0N

are rectangles whose normals are in E;. The condition (G2) instead allows us to
make this selection among all the sets €2, convex and not; in particular, there are no
W120(Q) viscosity solutions of problem (1.3) if € is a nonconvex domain.

EXAMPLE 1.3. Let f : R? — R be a positive continuous function which is zero
only on the vertical segment S = {(&1,&) : & = 1,& € [—1,1]}; for instance, we
can consider

52 -1 Zf(§1,€2) € Q1,
_ if (&1, &2) € Qo,
T8 = 5 +1zf(51,£2>eQ3,
—& = 1if (§1,62) € Qu,
where Q;, i =1,...,4, is a partition of the plane as in Figure 1.

Let

Fy(&1,6) = f(61,&)F1(6,&) = f(&.&)[-(6 - 1)° — (& — 17,

where F1(£1,&2) is the function defined in the previous example and ¢ = 0.
Clearly, we have

E2:E1US:{£€R2 : FQ(&):O},

coBy={£eR? : [§] <1, [&] <1},
Ey C 9(coEy) and Es # 0(co E»).

If we consider the problem

Fy(Du)=0 1in L,
(1.4) { u=0 on 09,

where € is the nonconvex domain as in Figure 2, we can easily verify the condition
(G2) that ensures the existence of viscosity solutions. Indeed, since ¢ = 0, to verify
(G2) it is sufficient to show that the sets of directions of the internal normal cone to
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A E”
Y

\/

F1c. 2. Domain of problem (1.4).

o0 at y, NH]{\L\Q(y), are contained in Eo for every y € 0Q2. In order to see this, we
start by observing that in the points of reqularity of 02 the inward unit normal is in
FEy. Then we have to consider Nﬂé\fq,\ﬂ(yi) fori=20,...,5. The only point at which
N&\Q(yi) # 0 is y3, since at the other points Q0 is convex and N%\Q(yi) is empty;
moreover, we can see that

Ngmq(ys) = S,
and this proves (G2).

2. Preliminaries. This section is divided into two parts. In the first part we
recall several definitions of normal and tangent cones to a compact set that gen-
eralize the notions of normal and tangent vectors in the case where the set is not
regular. In the second part, after recalling the definition of a viscosity solution of
a Hamilton—Jacobi equation, we state some preliminary results on the existence of
viscosity solutions of a Dirichlet problem with a convex Hamiltonian.

2.1. Normal and tangent cones. We start by giving some definitions.

DEFINITION 2.1. Let K be a locally compact subset of R" and x € K. A wvector
v € R" is a generalized tangent to K at x if there are h, — 07, v,, — v such that
T+ hpv, € KV n €N. The set of all generalized tangent vectors to K at x is denoted
by Tk (x), that is,

Tk (z) = {veR”|3hn—>0+,vn—>v : x—l—hnvnEK}.

A vector v € R™ is a generalized outward normal to K at x if, for every generalized
tangent v to K at x, (v,v) < 0. We denote by Nk (x) the set of generalized normals
to K at x. That is,

Ni(z):={reR"|{v,v) <0 Vv e Tk(x)}.
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F1a. 3. Different tangent cones.

The set Tk (x) is a closed cone containing the origin, and we will refer to it as
tangent conel to K at x; by duality we will call N (z) the normal cone to K at .
Moreover, we denote by N (x) the set of directions of the normal cone to K at z,
that is,

NN (2) = {;u € Ni(x)\ {0}} .
REMARK 2.2. Let K be a locally compact subset of R™ and x € K.
(i) If the boundary of K is piecewise C*, then N (x) reduces to a single vector
Vg, where v, is the usual outward normal at any x € K, where the normal exists.
(ii) If Q is an open subset of R™ and x € 0f), then a generalized normal v €
NRn\Q(x) can be regarded as an interior normal to Q0 at x.
Another useful set that can be defined is Clarke’s tangent cone to K at x (see
8, 22]). It is defined by?

Ck(z) = {veR"Wmon,thHOJﬁﬂvnﬁv DXy +tav, € K,Vn € N}.

DEFINITION 2.3. A set K is said to be regular in the sense of Clarke at x,
provided Tk (z) = Ck ().

To have an idea of the relations between the two definitions of tangent cones
Tk (z) and Ck () we can take a look at Figure 3.

IThe set T (x) was introduced in 1932 by Bouligand [4] with the name of contingent cone and it
was studied for the theory of derivations of functions on R?. Later, in the theory of optimal control
it was called simply tangent cone (see, for example, [19, 23, 24]).

2The original definition of C'x (x) was given by Clarke in a slightly different way, more indirectly,
but the two definitions are equivalent (see [7]).
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REMARK 2.4. Let K be a locally compact subset of R™ and x € K.

(i) Ck(x) is always a closed convex cone contained in Tk (x); for this reason
some authors prefer Ck(x) instead of Tk (x) as definition of tangent cone in many
applications (see, for example, [22]).

(ii) If Tk (x) is convez, then Ng(x) is, in fact, the polar cone of Tk (x) in the
sense of convexr analysis. It is the case, for example, of a set K regular in Clarke’s
sense at x for which we have

(2.1) Ni(x) = Tg(z) = Ck (x),

where C%(x) and T (x) denote the polar cones of Ck(z) and Tk (x) in the sense of
convex analysis.
(iii) Any convezx set is reqular in the sense of Clarke.

2.2. Viscosity solutions and convex Hamiltonians. Let us start by giving
the definition of subdifferential and superdifferential of continuous functions defined
on an open set @ CR™ (see [1, 2, 11, 17]).

DEFINITION 2.5. Let u € C(); we define for x € Q the following sets:

y—x,yeNQ |$ _y|

D™ u(z) = {p €R" : liminf uly) = ul(z) = {p.y = ) > O} .
B =~ 3]

DT u(z) (D~ u(x)) is called the superdifferential (subdifferential) of u at x.
In the following proposition we recall some useful properties of DT u(x) and
D~ u(x) that we will need in what follows.
PROPOSITION 2.6. Let u € C(Q) and x € Q. Then we have the following.
(i) DYu(x) and D™ u(x) are closed, convex (possibly empty) subsets of R™.
(ii) If w is differentiable at x, then

(2.2) Dt u(x) = D™ u(x) = {Du(z)}.

(iii) If for some x both DT u(x) and D~ u(x) are nonempty, then (2.2) holds.
(iv) If u e Whee(Q), then

(2.3) Dt u(x) UD u(x) C co {p eR™ | p= lim Du(z,), z, — 1:} ,

where the limit is taken over all the sequence x,, — x such that Du(x,) exists and the
sequence {Du(x,)} converges.

There are many ways to define the W1*° viscosity solution of a differential equa-
tion (see [1, 11, 17]). Here we give a definition of such a solution in terms of sub- and
superdifferential. We use this definition since it is more convenient for our purposes.

DEFINITION 2.7.

(i) u € C(Q) is a viscosity subsolution of F(Du(xz)) = 0 in Q if and only if
F(p) <0 for every x € Q Vp € DV u(x).

(il) v € C(Q) is a viscosity supersolution of F(Du(x)) =0 in Q if and only if
F(p) > 0 for every x € Q Vp € D™ u(x).

A function v € C(Q) is a viscosity solution of F(Du(x)) = 0 if u is a viscosity
subsolution and supersolution.
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REMARK 2.8. The definition of viscosity solution was originally given in terms
of test functions (see, for example, [21]). The equivalence of the two definitions can
be found in [1] or [21].

For stating the main result we need to recall some preliminary results on viscosity
solutions of Hamilton-Jacobi equations with convex Hamiltonians (cf. [18, 21] for
further details).

We focus our attention on the problem

(2.4) {H(Du) =n(z) in Q

u(z) = p(x) on 0L,
where H : R™ — R is convex, continuous, and satisfies
H(p) — o0 as|p| — oo,

and n € C(Q) is such that n > infg« H(p) in .

We first define the function L(z,y) V (z,y) € Q x

Q a
(2.5) L(z,y) := inf { max < —5 > }
’ £€SyLy 0 PEPe dt’

where

Py i={p e R" | Hp) = n(s)) },

_ d€ oo
Suy = {€: 0,11 = 0 €0) = €)=y, §F € 1701
REMARK 2.9. We should point out that L can be written also in terms of the
Lagrangian (i.e., the dual convex function) of H (see [21, section 5.3]).
REMARK 2.10. Many authors refer to the function L as optical length; let us

point out why. For an admissible path & (i.e., a function £ : [0,1] — Q such that
£(0) =z and £(1) = y) we define the optical length of £ as

1 df
L&) = —— t
&) ; prg%it< dt,p> dt,

and this denomination introduced by Kruzkov in [20] is motivated by the fact that in
the very special case H(p) = |p|?, n(x) = const, this coincides with the optical length
introduced by Born and Wolf in [5].

Now we can state the classical (cf. [21, Theorem 5.2]).

THEOREM 2.11 (Hopf-Lax formula). Let Q be a bounded, connected domain of
R™ with Lipschitz boundary 0. Let ¢ € Lip(0Q). If ¢ wverifies the compatibility
condition

(2.6) e(z) = ¢(y) < L(z,y) Va,y € 09,
then the function

u(e) = inf () + Lix.)}

is the unique W (Q) wiscosity solution of the problem (2.4).
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In section 3 we will apply Theorem 2.11 in the particular case where the Hamil-
tonian H is the gauge function of a convex set. For this reason we now want to
investigate how L can be rewritten in the special case where n(z) = 1 and H is a
gauge function; that is, H is convex and

H() >0 VE#D,
{H(tf) —tH({) VEER™, Vi>0.

Under these assumptions the function L can be rewritten as

! d¢
2. L ;= inf m -5 ¢
(2.7) (z,y) Slily{ ; H(p§§1< dt’p> d},

and, by the definition of the polar® function of a gauge, (2.7) is equivalent to

(2.8) L(z,y) := énf {/01110 (—fé) dt},

where H? is the polar function of H.

In the last part of this section we recall a Mac—Shane-type extension lemma
which is, in fact, a consequence of the Hopf-Lax formula (for more details see, for
example, [15]).

LEMMA 2.12. Let  C R™ be a bounded closed set. Let H : R — R be a gauge
function, that is, a positively homogeneous convex function, and let H be its polar.
If ¢ : 00 — R satisfies

(2.9) p(x) —ply) <H(z—y) Ya,y € 09,

then the function

is a Lipschitz extension of ¢ to the whole R™, and, moreover, it satisfies
¢(x) —p(y) <H(x—y) Va,y € R"

and

(2.10) H°(D@(x)) <1 ae inR™

REMARK 2.13. The condition (2.9) is more restrictive than (2.6) since using
Jensen’s inequality we can easily prove that

L(z,y) > Ho(z —y).

Moreover, we should note that if the segment [x,y] is an admissible path for the defi-
nition of L (that is, it is completely contained in Q), then L(z,y) = H®(z —y); this
is the case, for example, when ) is convex.

3The polar of a gauge H is defined as
HO(€) =inf{A >0 : (£€") SAH(E) VEER™)

ner =gl g -

and is characterized by
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3. Main result. In this section we establish a sufficient condition for the ex-
istence of a W1°°(Q) viscosity solution of the problem (1.1) under the following
hypotheses:

e (H1) Let F': R — R be continuous and such that

E={ eR": F() =0} C d(coFE),

with E bounded, 0 € intco E, and F(§) < 0 for every € € intco E.
REMARK 3.1. If F is convex and coercive, as in the classical literature, then

coE:={¢eR" : F(&) <0},

and (H1) is satisfied with E = 0(co E).
Following an idea used in [6], we want to compare the solution of (1.1) with the
viscosity solution of the equation

p(Du)=1 in Q,
(3:1) { u=¢ on 09,

where p is the gauge associated with co F defined as
p(§) =inf{A>0]& € AcoE}.

We start by observing that p is well defined since by (H1) 0 € intco F and co F is
compact; moreover, p is, by definition, convex and positively homogeneous of degree
1. Therefore we have the right hypotheses to apply the preliminary work done in the
previous section for the convex Hamiltonian; in particular, we can write the “optical
length” L(x,y) related to problem (3.1) as follows:

(3.2) Liey) = inf { / L (—flf) dt},

where p® is the polar function of p in the sense of convex analysis and, therefore, p°
is convex and positively homogeneous.
Before stating the main result, we need to set our hypotheses on .
e (H2) Let ¢ € Lip(0Q), with

(3.3) 0 # Dty(x) CEUintco E Vx € 09Q
and satisfying the compatibility condition

(3.4) o(x) — o(y) < p(z,y) Ya,y € 0.

REMARK 3.2. We should note that in condition (H2) we refer to DY p(x) as the
superdifferential of the Lipschitz extension of ¢ given by Lemma 2.12. Moreover, we
can prove that DY ¢(x) CcoEVx € Q (see the proof of Theorem 3.3).

Finally, Theorem 2.11, Remark 2.13, and (H2) allow us to write the W1°°(Q)
viscosity solution of (3.1) as follows:

(3.5) u(z) = mf {e(y) +Liz.y)}, 2l

Now we are in the position to state the main theorem of this section.
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THEOREM 3.3. Let 2 C R™ be a bounded connected set. Let F and ¢ satisfy
(H1) and (H2). If Yy € 09Q, where N&\Q( ) # 0, there exists h € DV o(y) such that

Yv e NI{R\L\Q(y) there exists a unique A, p, > 0 that verifies
h+Apv € F,

then there exists u € W1°°(Q) wiscosity solution of (1.1).

REMARK 3.4. Let h € D ¢(y) be as in Theorem 3.3 and v € Nﬂé\fb\g(y); then,
since E C 0(co E), the unique Ay, > 0 such that h+ X\, pv € E is determined by the
equality

p(h+ A, pv) = 1.

We will prove that, under the hypotheses of Theorem 3.3, the function u: Q — R
defined by (3.5) is actually the viscosity solution of (1.1). Before starting the proof
we need to investigate the properties of u. Let us start by proving the following key
lemma and making some remarks.

LEMMA 3.5. Let Q2 be a bounded connected open set of R™ with Lipschitz boundary
09, and let v € Lip(0) verify (H2). Let u be defined by (3.5) and y(x) € 9Q be such
that u(xz) = p(y(z)) + L(z,y(x)). ThenVp € D™ u(zx) and Vh € DT o(y(x)),

(p—h,q) <0 VYq&Tpmal(y(r)),

that is, p — h € Ngm\q(y(x)).

Proof. Let xg € §, yo € 0 such that u(xo) = p(yo)+L(zo,yo) and ¢ € Trm\a(%o)-
Let qx — ¢, as in Definition 2.1, such that yo + exqr € Q and xg + exqr € Q. By
definition of L(xg,yo) for every ¢ > 0 we can find §y € Sg,,y, (that is, & : [0,1] —
Q[€0) =9, £(1) = yo, %0 € L>(0,1)) such that

1
d
(36) L(‘T07y0) +e> / pO (&J(t)> dt.
0 dt
Next we define, for every k € N, &(t) = & (t)+erqr; clearly, we have £(0) = xo+ekqr,
k(1) = yo + ekqy, and Lk = dﬁt

Since & and 0N ar(i continuous, there exist ¢t € (0,1) and y, € 9 such that
&k(ty) = yi and & (t) € @ Vi <t (see Figure 4).
Using (3.6), the properties of &, and the definition (3.5) of u, we have

u(ro) = (o) + L(zo,y0)
> )+ [0 (-5 )ar-e

= o(yo) — ¢(yo + exqr)
(3.7) +  o(yo +exqr) — e(yk) _|_/ P ( dcio( )> it

ty
tr d
+  o(yr) +/0 p’ (—ff(t)) dt —e
©(yo) — (Yo + exqr) + u(ro + xqr)

+ oo + exar) — (yr) +/ p’ <—Cilt(t)> dt —e,

ty

Y%
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Y, +€:4,

X +€,9,

Fic. 4. Geometrical construction of path &.

where we have used the homogeneity of p° to establish

/Otk o <_C§f(t)) dt = /01'00 (_d(fkézks))) ds > Llzo 4+ coan.vn).

We claim that

(3.8) e(yo + erar) — o(yx) +/t o <—C§:(t)> dt > 0.

Indeed, Lemma 2.12 ensures us that

(3.9) (Yo + eraqr) — o (yr) > —Po(yk — Yo — €kqk);

moreover, by Jensen’s inequality we have

(3.10) /t: p° (—ﬁ?(t)) dt = /01 P (_dfk((l —dtsk)s + lfk)) s

> p%(yk — Yo — Ekqr)-

Combining (3.9) and (3.10) we obtain the claim.
Now using (3.7) and (3.8) we can write, letting € — 0,

(3.11) w(zo) > u(wo + xar) — (#(yo + £rar) — ©(v0)).
Therefore, taking h € DT p(yo) and p € D~ u(zo), we have by definition that

©(Yo + exqr) — p(yo) < (h,exqr) + o(ek),
u(wo + exqr) — w(wo) > (P, erqr) + olex),

and in light of (3.11), we can say that
(P, ki) < u(wo + epqr) — u(zo) + o(ek)

< (Yo +erar) — ©(yo) + olex)
< (p,erqr) + oler)-
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Finally, dividing both sides of the last inequality by 5 and taking the limit for k¥ — oo,
we obtain

(p —h,q) <O0.

This proves the lemma. 1]

REMARK 3.6. If we fix p € D~ u(z) and h € DV p(y(x)) with h # p, then there
exist Vp p € N]Y,\Q(y(x)) and a unique App > 0 such that p = h + Ap hvp .

We now give the proof of the main theorem.

Proof of Theorem 3.3. Let u be defined as in (3.5); by definition, u is a viscosity
solution of (3.1). We claim that v is also a viscosity solution of (1.1). We divide the
proof into two steps: first, we show that w is in fact a supersolution of (1.1) and then
show that u is also a subsolution.

e We start by observing that Vo € Q and Vp € D~ u(z) we have p(p) = 1 (see
also [3]). Indeed, since u is a supersolution of (3.1), we have that Vz € {2 and
Vp € D u(x), p(p) > 1. Moreover, since u is also a viscosity subsolution of
(3.1), in particular we have p(Du(z)) <1 (i.e., Du(x) € co E) Vz € (2, where
Du(x) exists, since in such points DVu(x) = {Du(z)}. The continuity of p
ensures us that

p ( lim Du(mn)) <1

n—oo

Vz, — x such that Du(x,) is well defined and Du(x,) converges; that is,
the following inclusion holds:

(3.12) {p eR" | p= lim Du(x,) : z, — CE} CcoFE.

Therefore, by Proposition 2.6(iv) and (3.12) we can say that

D~ u(z) Cco {p e€R" |p= lim Du(z,) : z, — m} CcoE,
n—oo

that is, p(p) <1 Vp € D~ u(x), and this proves the claim.
Now let y(x) € 99 be such that u(z) = ¢(y(z)) + L(z,y(z)) and h €
Dt p(y(z)) as in the hypotheses. We distinguish two cases.

(1) If h = p, then p(h) = 1; since h € EUintco E, we have h € E, and
so p € E, that is, F(p) = 0.

(2) If h # p, by Remark 3.6, there exist v, € NN\Q(y(x)) and a
unique A, p > 0 such that

(3.13) p=h+ )\p’hup’h;

moreover, A, j, is uniquely determined by p(h+ A, nvp 1) = 1. The hypothesis
made on h and (3.13) imply p € E; that is, as before, F(p) = 0.
In particular, u is a viscosity supersolution of (1.1).
e Since u is also a viscosity subsolution of (3.1), then for every x € Q and
p € DT u(x) we have p € coE (i.e., p(p) < 1). As (H1) is satisfied and F is
continuous, it follows that F'(p) < 0. So w is a viscosity subsolution of (1.1).
The two above observations complete the proof. 1]
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4. Corollaries. This section is divided into two parts. In the first part we focus
our attention on the differentiability properties of Lipschitz and semiconcave functions
with the aim of relating the notions of normal and tangent cones to the sets described
by such types of functions (e.g., epigraphs or level-sets) to their generalized gradients.
In the second part we state two corollaries of Theorem 3.3 in which the hypotheses on
the geometry of the domain €2 can be written in a nicer way in terms of the differential
property of the functions that represent the boundary 0f2.

4.1. Lipschitz continuity and semiconcavity. Let us recall briefly some def-
initions and relevant differential properties of locally Lipschitz continuous functions
that we will use in what follows. By the Rademacher theorem such functions are
almost everywhere differentiable with locally bounded gradients (see [16]). Hence, if
u € Lipioe(2), we can consider the set

D*u(x) := {p eR"” : p= nh_)rr;o Du(zy,), zn, — x},
where x,, is a sequence of points of differentiability for u. We note that D*u(z) is
nonempty and closed for any x € €.
Let u :  — R be Lipschitz in a neighborhood of a given point z, and let ¢ € S*~!
be a direction in R™. We define
e the one-sided directional derivative of u at x in the direction g as

e the generalized directional derivatives of u at x in the direction g as

t —
Wz, q) = limsup uly +tq) —uly)
y—x,t—0* t

wo(w,q) = limins YT —ul)

y—x,t—0t t ’

e the generalized gradient (or Clarke’s gradient) of u at = as

ou(r) ={p e R™ : u’(z,q) > p-q Vg cR"}
={peR" : up(z,q) <p-qVgeR"}.

In the following proposition we collect some well-known properties of Lipschitz
functions (see [1, 8]).
PROPOSITION 4.1. Let u: Q — R be locally Lipschitz continuous in the open set
Q; then
(i) uo(z,q) = —u(z,—q) Vo € Q, ¢ € R™;
(ii) Yo € Q the function q — u®(x,q) is finite, positively homogeneous, subad-
ditive, and convez (and locally Lipschitz continuous);
(iii) the map (x,q) — u°(z,q) is upper semicontinuous;
(iv) Vo € Q we have co D*u(x) = du(z);
(v) DYu(z) and D~ u(z) are bounded Vx €  and

Dt u(x) UD u(x) C du(x);
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(vi) Vq € 8"~ there erists the classical one-sided directional derivative u'(z,q)

at any x € Q, where DT u(x) = Ou(x) and the following equality holds:
/ .

(4.1) wiwg)= min p-q=to(,q)

REMARK 4.2. Looking at the definition of D*u(x) and Proposition 4.1(iv), one
can observe that Proposition 4.1(v) is just a reformulation of Proposition 2.6(iv).

Now we introduce a definition of regularity of functions that is in some way related
to regularity of sets in Clarke’s sense (from which the name derives). It will be useful
for stating some hypotheses that allow us to write the normal cone of a set in a nicer
way.

DEFINITION 4.3. A function u : Q@ — R is said to be regular at x (in the sense
of Clarke), provided

(i) Vq € R™ the one-sided directional derivative u'(x,q) exists;

(ii) Vg € R™ the equality u'(x,q) = u°(z,q) holds.

The following theorem (a proof of which can be found in [8]) and its corollaries
give us a useful characterization of normal cone to the level sets of regular functions.

THEOREM 4.4. Let f : R™ — R be Lipschitz near a given point x, and suppose
that 0 € Of (z). If K is defined as

K:={yeR": f(y) < f(z)},
then

Ci(z) C | rof(x).

A>0

If, in addition, [ is regular in the sense of Clarke at x, then equality holds, and K is
Clarke regular at z, that is,

(4.2) Ni () = C () = | A0f(a).
A>0

REMARK 4.5. The first equality in (4.2) follows by (2.1) of Remark 2.4(iii), since
K is regular.

REMARK 4.6. The above proposition holds also in a more general framework,
that is, for functions defined in a general Banach space, as stated in [8].

COROLLARY 4.7. Let Q :={y € R" : f(y) > 0}, where f is a Lipschitz continu-
ous function. Let yo € N2, and suppose that f verifies the following properties:

(i) f is regular in Clarke’s sense at yo;

. (i) 0 € df(yo) = D~ f(yo) U DT f(y0);
then

_ N
(4.3) Nugz\ﬂ(yo) = (D f(yo)UD+f(yo)) .
Proof. We note first that 0 C {y € R™ : f(y) = 0}; then yo € 9Q imply
f(yo) = 0. So we can write

R"\Q:={yeR" : f(y) < f(yo)}.

Hence we can apply Theorem 4.4, and, in particular, since f is Clarke regular, by
(4.2) we have

Nemo(yo) = U A0 f (yo)-

A>0
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Finally, we can conclude, using hypothesis (ii) of Corollary 4.7, that

N

Niawo) = | U A0fwo) | = (0Fwe))N = (D™ f(yo) UD* f(yo))™ . O

A>0

In order to prove a second corollary of Theorem 4.4 that is equally useful, we need
to recall the definition and some relevant properties of semiconcave and semiconvex
functions (see [1] for further details).

DEFINITION 4.8. We say that u : Q0 — R is semiconcave on an open convex set
Q if there exists a constant C' > 0 such that

(4.4) Au(z) + (1= Nu(y) <u(dz+ (1 —Ny) + %C’/\(l — Nz —y)?

or, equivalently, if the application x — u(x) — %C’|x|2 is concave.
We say that u : Q — R is semiconvez if —u is semiconcave.
If w is continuous, an equivalent way to express condition (4.4) is to require that

u(z + h) — 2u(z) +u(z — h) < C|h|?

for any x € Q and h € R™ with sufficiently small |h|.
REMARK 4.9. It can be proved (see, for example, [1]) that a semiconcave function
w in  is in fact locally Lipschitz continuous and ¥V x € Q) we have

DT u(x) = Ou(x) = co D*u(x),
while
D7 u(z) #0 = u is differentiable in x.

Now we can prove the following corollary.
COROLLARY 4.10. Let Q := {y € R™ : f(y) < 0}, where f is a semiconcave
function, if yo € 0Q and 0 & DT f(yo); then

NHJRXL\Q(ZJO) = —(DJFf(yo))N'

Proof. We first note that from Remark 4.9 f is locally Lipschitz continuous and
DT f(yo) = 0f(yo)- So we can say, by Proposition 4.1(vi), that

f'(yosa) = fo(yo,q) Vq €S
Moreover, using the definition of generalized derivatives we have
— (=f"(y0,9)) = f'(y0,9) = folyo, ) = = (= f(yo, @) Vg €57
that is, —f is regular at yo in the sense of Clarke. We now observe that, since
—D(~f)(0) = DT f(y0) = 9f (y0) = —(—f)(y0):

f verifies the hypothesis of Corollary 4.7 with Q := {y € R™ : —f(y) > 0}, and so we
have

Nﬂi\fl\ﬂ(yo) = (D_(—f)(yo))N =—(D*f(y))N. O



EXISTENCE OF VISCOSITY SOLUTIONS 201

REMARK 4.11. The two above corollaries hold also if the hypotheses are verified
only locally, that is, if for yo € O there exists a ball B(yo,r) centered in yo such that
QN B(yo,r) can be represented as the sublevel or superlevel set of a function defined
on B(yo,r) satisfying the hypotheses required.

The last result that we want to recall can be found in [8], and it gives us a useful
relation between the generalized gradient of a locally Lipschitz function f and Clarke’s
normal cone C7; s to its epigraph.

ProproSITION 4.12. Let f : 2 C R™ — R be Lipschitz continuous near a given
point x; then & € R™ belongs to 0f (z) if and only if (£, —1) belongs to C° . .(x, f(z)).

epi f

4.2. Corollaries. In the two following corollaries we consider some hypotheses
on the geometry of the domain 2 that allow us to write Theorem 3.3 in a nicer way.

Let 2 be a Lipschitz domain, and we have that €2 can be locally represented as
the epigraph of a Lipschitz function; that is, Vy € 0f) there exists a direction v, and a
function w, defined on the hyperplane orthogonal to v, such that in a neighborhood
of y, € is the epigraph of w,.

DEFINITION 4.13. We will say that Q0 is convex (concave) at y € I if there
exists a vy, € S"™1 such that the function w,, which represents Q in the direction v,
is convex (concave).

COROLLARY 4.14. Let Q be a locally Lipschitz domain, and denote by J the set
of the points of nondifferentiability of 0Q). Suppose that Q) is convex or concave at
yVy e J. Let F and ¢ satisfy (H1) and (H2).

If Yy € 09, where DYwy,(y) # 0, there exists h € D p(y) such that V¢ €
D™ (wy)(y) there exists a unique A\, ¢ that verify

(4.5) h—Ane(§+vy) €E,

then there exists a u € WH°°(Q) wiscosity solution of (1.1).

REMARK 4.15. We have to note that in (4.5) & has to be considered as a point of
R™ using the classical immersion in R™ of the hyperplane orthogonal to v, to which &
belongs by definitions.

REMARK 4.16. In the statement of Corollary 4.14 we have used the functions w,;
with this notation it seems that we have to change wy Yy € 082, but we can simply
observe that the compactness of 02 ensures us that we need only a finite number of
wy. In fact, we can consider for every y € 02 a neighborhood 2, of y in which §) is
represented by the function w,. From this cover we can extract a finite one UF_,Q,.,
where wy = wy, for every y € Q,, N OSD.

REMARK 4.17. If we consider an orthogonal basis {e1,...,e,} for R™, with
en = Uy, we note that £ lives in the space spanned by {eq,...,en—1}, and (4.5) can be
rewritten as

h—Ane(é,1) € E Y€€ DY(f,)(y).

Proof of Corollary 4.14. Looking at the proof of Theorem 3.3 we need only to
work with the points on 90 that realize the minimum in definition (3.5). Now let
z € @ and y € 9Q be such that u(z) = p(y) + L(z,y). If DTw,(y) # 0, then Q is
convex in y, and we can prove, using the same argument of Lemma 2.9 in [6], that y
must be a point of differentiability for 92, and this is a contradiction. Hence we have
that all the points that realize the minimum in (3.5) have D*w,